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Abstract

First, we study the entanglement entropy Sap of a d + 1 dimensional massless free scalar field
on two disjoint compact spatial regions A and B whose sizes are R and Ro, respectively, and the
distance between them is r. The state of the massless free scalar field is the vacuum state. We
consider the mutual information Sa.p = S4 + Sp — Sap where Sy and Sp are the entanglement
entropy on the inside region of A and B, respectively. We develop the computational method based
on that of Bombelli et al and obtain the result that Ss.p = M%G(Rl,Rg), when r > Ri, Rs.
When A and B are spheres in d = 2 and 3, we obtain explicit results G(R1, Ry) = 0.37R1 Ry for
d =2 and G(Ry, Ry) = 0.26 R?R3 for d = 3 by numerical calculations.

By using the method used in the Minkowski spacetime case with some modifications, we study
the entanglement entropy, S¢, of the massless free scalar field on the outside region C' of two black
holes A and B whose radii are Ry and Ry and how it depends on the distance, r(>> Ri, Rs) ,
between two black holes. If we can consider the entanglement entropy as thermodynamic entropy,
we can see the entropic force (we call this entanglement entropic force) acting on the two black

holes from the r dependence of Sc. We consider the property of the entropic force.

*shiba@het.phys.sci.osaka-u.ac.jp



I. INTRODUCTION

Entanglement entropy in quantum field theory (QFT) was originally studied to explain
the black hole entropy [1, 2]. Entanglement entropy is generally defined as the von Neumann
entropy Sa = —Trpalnpy corresponding to the reduced density matrix pa of a subsystem
A. When we consider quantum field theory in d + 1 dimensional spacetime R x N, where
R and N denote the time direction and the d dimensional space-like manifold respectively,
we define the subsystem by a d dimensional domain A C N at fixed time ¢t = ¢y. (So this
is also called geometric entropy.) Entanglement entropy naturally arises when we consider
the black hole because we cannot obtain the information in the black hole. In fact, in the
vacuum state the leading term of the entanglement entropy of A is proportional to the area
of the boundary 0A in many cases [1, 2]. This is similar to the black hole entropy, and
extensive studies have been carried out [3-8].

First, we study the entanglement entropy Sap of a d+ 1 dimensional massless free scalar
field on two disjoint compact spatial regions A and B whose sizes are R; and Ry, respectively,
and the distance between them is r. The state of the massless free scalar field is the vacuum
state. In higher dimensional (more than two dimensional) QFT, it is not easy to compute
the entanglement entropy for arbitrary regiions even in free field theories. Entanglement
entropy of two disconnected regions has been studied, see e.g. [9-11]. We studied Syp
in [12] analytically and in [13]. We develop the computational method based on that of

Bombelli et al [1]. When r > Ry, Ry, we obtained the r dependence of Sap as [12]

G(R1, Ry, a
SAB%SA‘FSB_%a (1)

where a is an ultraviolet cutoff length and G(Ry, Ry,a) = G(Ry, Ry,a) > 0. We cannot
obtain the explicit form of G(R;, Ry, a) analytically. When A and B are spheres in d = 2
and 3, we obtain explicit results for G(R;, Ry, a) by numerical calculations [13]. We obtain
the result that the mutual information S4.p = Sa+Sp—954p is independent of the ultraviolet
cutoff length and G(R;, Rz, a) is proportional to the simple product of the surface areas of
two spheres. (Note that we cannot determine the functional form of G(R;, Ry) only by the
constraints from dimensional analysis, symmetry, and behavior in the limit R; — 0. For
example, G(Ry, Ry) = R}Ry; + R R is not prohibited by these constraints.) The mutual
information is a quantity that measures the entanglement between two systems. (See e.g.

[14]) Recently, our numerical results of the mutual information of two spheres for d = 2 and
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d = 3 are checked by analytical calculation carried out by Cardy [23]. Our results agree
with the results of Cardy [23] within numerical errors. In order to examine whether only the
degrees of freedom on the surface of the spheres contribute to the mutual information or not,
we calculate the mutual information Sp.g of two same spherical shells D and E for d = 3 and
the mutual information Sy of two same rings H and [ for d = 2. The internal (external)
radii of the spherical shell and the ring are Ly (Lg). The distance between the centers of the
two spherical shells and that between the two rings are . We obtain the result that Sp.g
and Spy.; are monotone decreasing function of L;. Then not only the degrees of freedom
on the surface of the sphere but also those on the inside region contribute to the mutual
information. This result is remarkably different from that of the entanglement entropy to
which the degrees of freedom on the surface of the boundary contribute mainly.

By using the method used in the Minkowski spacetime case with some modifications, we
study the entanglement entropy, S¢, of the massless free scalar field on the outside region C
of two black holes A and B whose radii are R; and Ry and how it depends on the distance,
r(> Ry, Ry) , between two black holes [12]. To a distant observer, an object falling into a
black hole takes an infinite time to reach the event horizon and the outside region is isolated
from the inside region if we neglect the change of the mass of the black hole. Then we are
probably able to consider the entanglement entropy of quantum fields on the outside region
C of two black holes A and B as thermodynamic entropy, and we can see the entropic force
acting on the two black holes from the r dependence of So. We consider two systems X
and Y, then one can show Sy = Sy in general [14] if a composite system XY is in a pure
state. Then S = Ssp when the state of the field on the whole space is a pure state. So
we can use the method used in the Minkowski spacetime case with some modifications. We
consider the case that the state of the massless free scalar field is the vacuum state which
depends how to choose the time coordinate. We choose the coordinate system which covers
whole space time and does not have the coordinate singularity on the horizons. We consider
the property of the entropic force. We will roughly estimate the magnitude of the entropic
force between two black holes by using S4p in Minkowski spacetime.

We mention our assumption that we can consider the entanglement entropy of two black
holes as thermodynamic entropy. The important point is that the outside region is isolated
or not. To a distant observer, an object falling into a black hole takes an infinite time to reach

the event horizon and the outside region is isolated from the inside region. Black holes act



as "walls” which hide inside regions but hold the entanglement between inside and outside
regions. So we are probably able to consider the entanglement entropy of quantum fields
on the outside region C of two black holes A and B as thermodynamic entropy. However,
entanglement entropy has property which is different from that of thermodynamic entropy.
So we must reconsider statistical mechanics from a fundamental level to judge whether our
assumption is really correct or not.

This thesis is organized as follows. The first half is the analytical study. In Section II we
review basic ideas and basic properties of entanglement entropy. In Section III we obtain the
general behavior of the entanglement entropy of two disjoint regions in translational invariant
vacuum in general QFT. There have been some computational methods of entanglement
entropy [15-17] and the reader is urged to refer to [18-20] for reviews. Among several others,
we review in Section IV the method of Bombelli et al [1] which is most straightforward and
powerful enough to obtain the r dependence of S in free scalar field theory and suitable for
numerical calculations. In Section V we study S45 in d+1 dimensional Minkowski spacetime.
In this case the state of the massless free scalar field is the Minkowski vacuum state and we
take the trace over the degrees of freedom residing in A and B. We develop the method of
Bombelli et al and obtain the leading term of S4p with respect to 1/r. The result in this
section agrees with the general behavior in Section III. This method can be used for any
scalar fields in curved space time whose Lagrangian is quadratic with respect to the scalar
fields (i.e higher derivative terms can exist). In Section VI we consider the black hole case.
We use the method used in Section V with some modifications. We show that So can be
expected to be the same form as that in the Minkowski spacetime case. But in the black hole
case S4 and S depend on r, so we do not fully obtain the r dependence of S¢. In Section
VII we assume that the entanglement entropy can be regarded as thermodynamic entropy,
and consider the entanglement entropic force. We argue how to separate the entanglement
entropic force from other force and how to cancel S, and Sp whose r dependence are not
obtained. Then we obtain the physical prediction which can be tested experimentally in
principle, and discuss the possibility to measure the entanglement entropic force.

The second half is the numerical study. In Section VIII, we apply the formalism of
Bombelli et al [1] to a massless free scalar field on lattices in order to calculate numerically
the entanglement entropy. We improve the computational method of Bombelli et al to reduce

the computational complexity. In Section IX, we numerically calculate the entanglement



entropy Sap, the mutual information Sp.p, and Sy.; in (d + 1)-dimensional Minkowski
spacetime for d = 2,3. We roughly estimate the magnitude of the entropic force between
two black holes by Ssp in (3+1)-dimensional Minkowski spacetime. In Appendix B we

obtain a formula for a finite series as a by-product of our calculation.

II. BASIC PROPERTIES OF ENTANGLEMENT ENTROPY

In this section we review basic ideas and basic properties of entanglement entropy [14, 18|.

A. The definition of entanglement entropy

We consider a quantum mechanical system with many degrees of freedom such as spin
chains. We divide the total system into two subsystems A and B. In the spin chain ex-
ample, we just artificially cut off the chain at some point and divide the lattice points into
two groups. Notice that physically we do not do anything to the system and the cutting
procedure is an imaginary process. Accordingly the total Hilbert space can be written as a
direct product of two spaces H;,; = Hq ® Hp corresponding to those of subsystems A and
B. The observer who is only accessible to the subsystem A will feel as if the total system
is described by the reduced density matrix p4 = trgpap where the trace is taken only over
the Hilbert space Hg. Now we define the entanglement entropy of the subsystem A as the

von Neumann entropy of the reduced density matrix p4
Sa = —trapalnpy. (2)

Notice that Syp = 0 does not necessarily mean S, = S = 0. For example, we consider
the case that A and B are the spin 1/2 particles and the state of total system is [¢)) =
(J0) |1) 4 ]1)|0))/v/2 where |0) (]1)) is the spin down (up) state. In this case Syp = 0 and
Sa =1n2 because pa = (]0) (0] + |1) (1])/2. The entanglement entropy measures the degree
of entanglement.

When we devide the total system into three subsystems A, B, and C, we define the
entanglement entropy in the same way. For example, we define the entanglement entropy of
A and B as

Sap = —trappapInpas, (3)

where pap = trepasc.



B. General properties

There are several useful properties which entanglement entropy enjoys generally.(See e.g.
[14].) We summarize some of them for later use.
1. If a composite system AB is in a pure state, then Sy = Sp.
2. If pap = pa ® pp, then Spp =S4 + 9.
3. For any subsystem A and B, the following inequalities hold:

Sap < Sa+ Sg, (4)
Sap >|Sa— 958 (5)

The first is the subadditivity inequality, and the second is the triangle inequality. From (4)

the mutual information S4.p = Ss + Sp — Sap is always positive.

C. Entanglement entropy in QFT and area law

When we consider quantum field theory in d 4+ 1 dimensional spacetime R x N, where
R and N denote the time direction and the d dimensional space-like manifold respectively,
we define the subsystem by a d dimensional domain A C N at fixed time ¢t = ¢y. (So this
is also called geometric entropy.) In the vacuum state the leading term of the entanglement
entropy of A is proportional to the area of the boundary dA in many cases [1, 2]. This
behavior can be intuitively understood since the entanglement between A and B occurs at
the boundary 0A most strongly. However, the simple area law does not always holds. The
entanglement entropy in 1 4+ 1 dimensional CFT scales logarithmically with respect to the
length [ of A, S4 = £Inl, where c is the central charge of the CFT [15].

There have been some computational methods of entanglement entropy [15-17]. We
review in Section IV the method of Bombelli et al [1]. Now we mention other methods.
There is a useful technique called the replica trick. In order to calculate the entanglement
entropy, we first evaluate tryp’, differentiate it with respect to n and finally take the limit
n—1,

Sp = —trpalogps = 711% % = —%tmpz ln=1 - (6)
This is the replica trick. Therefore, what we have to do is to evaluate tr p%. The path

integral representation of tr4p" is useful for analytical studies. In [10, 11, 15], the entangle-

ment entropy in 1+ 1 dimensional CF'T was analytically studied by using the path integral



representation. In higher dimensional (more than two dimensional) QFT, it is not easy to
evaluate tr4p". Ryu and Takayanagi [17] proposed the method to calculate entanglement
entropy by using AdS/CFT correspondence. They proposed that the entanglement entropy

S in d 4 1 dimensional CFT can be computed from the following area law relation

~ Area(va)

SA — 4GS€[H_2) . (7)

The manifold v4 is the d-dimensional static minimal surface in AdS;» whose boundary is
given by 0A. Its area is denoted by Area(v,). Also Gg\cfrz) is the d + 2 dimensional Newton
constant. This holographic formula reproduce the results in 1 + 1 dimensional CF'T and its
validity is checked in [17, 18]. This formula is very useful in higher dimensional QFT because
the calculation of Area(y,) is not so difficult in higher dimensions. However, we cannot use
(7) in order to calculate the entanglement entropy of two disjoint compact regions A and B
in a massless free scalar field. When the separation between the two regions is large enough
compared to their sizes, a disconnected surface v4% with Area(v%%) = Area(vya)+ Area(yg)
is the minimal surface. Then, from (7) we obtain Sap = Sa+Sp and Sa.p = Sa+Sp—Sap =
0. This result means that the correlations between A and B vanishes even if the distance
between them is finite. This behaviour comes probably from the large N limit in AdS/CFT
correspondence [24] and we cannot use (7) to calculate the entanglement entropy of two
disjoint compact regions in a massless free scalar field.

In higher dimensional QFT, it is not easy to compute the entanglement entropy for
arbitrary regiions even in free field theories. Recently, Cardy develops the computational
method to calculate the mutual information of two disjoint compact regions in the limit
when the separation between them is much greater then their sizes [23]. This method is
based on the path integral representation of tr pp’ 5. He calculated the mutual information
of two spheres A and B for d = 2 and d = 3 [23]. The results are Sa.p = %RIRQ/TQ ford =2
and Spp = £ RIR3/r* for d = 3. (4/15 = 0.266...) On the other hand, our numerical results
are Sa.p = 0.3TR Ry /r? for d = 2 and Sa.p = 0.26RIR%/r* for d = 3. The corrections to
the leading terms of S5 with respect to 1/r are more important in d = 2 than d = 3 which

may account for the above discrepancy [23].



III. GENERAL BEHAVIOR

We consider entanglement entropy of two disjoint regions (A and B) in translational
invariant vacuum in general QFT in d+ 1 dimensional spacetime (d > 2). We will show that
S¢ reaches its maximum value when r — oo, where C' is the outside region of A and B.

Because of translational invariance, S4 and Sp are independent of their positions,

954 _

5 0 and % = 0. And the total system is in a pure state, so we have Sc = S43p.

SO
Moreover, in the vacuum state, lim, ,., pap = pa ® pp because of the cluster decomposition

principle [25]. So the general property 2 suggests

lim Se(r) =S4+ Ss. (8)

=00

We apply (4) and (5)to this system, then we obtain
’SA—SB |§ Sc(T’)SSA-i-SB. (9)

Egs. (8) and (9) show that S¢ (as a function of r) reaches its maximum value when r — oc.

IV. HOW TO COMPUTE ENTANGLEMENT ENTROPY

In this section we review the computational method developed by Bombelli et al [1].

A. Entanglement entropy of a collection of coupled harmonic oscillators

As a model amenable to unambiguous calculation we deal with the scalar field on R? as a
collection of coupled oscillators on a lattice of space points, labeled by capital Latin indices,
the displacement at each point giving the value of the scalar field there. In this case the

Lagrangian can be given by
1 s 1
L= §GMNquN - EVMN(]MQN7 (10)

where ¢™ gives the displacement of the Mth oscillator and ¢ its generalized velocity. The
symmetric matrix G,y is positive definite and therefore invertible; i.e., there exists the

inverse matrix GMY such that

GMPGpy = 6My. (11)



The matrix Vj sy is also symmetric and positive definite. The matrices Gy and Vi, are

independent of ¢™ and ¢™. Introducing the conjugate momentum to ¢,
Py = Gund™, (12)
we can write the Hamiltonian for our system as
H= %GMNPMPN + %VMNquN. (13)
Next, consider the positive definite symmetric matrix Wj,n defined by
WiaG P Wy = Vi, (14)

In this sense the matrix W is the "square root” of V' in the scalar product with G.
Now consider a region € in R¢. The oscillators in this region will be specified by Greek
letters, and those in the complement of €2, Q2¢, will be specified by lowercase Latin letters.

We will use the following notation

Wap Wag A B s [werowes D E
Wap = = w = = , (15)
Wap Was BT C Wb yyes ET F

where W4PB is the inverse matrix of Wap (W42 is not obtained by raising indices with GA5).

So we have

10y _(AB D E) _ AD+ BET AFE + BF | (16)

01 BT C ET F BTD+ CET BTE+CF
If the information on the displacement of the oscillators in € is considered as unavailable,
we can obtain a reduced density matrix p,.q for ¢, integrating out over ¢® € R for each of

the oscillators in the region €2, and then we have
prea(q”, ¢"°) = /H dg“p(q®, 4%, 4", q%), (17)

where p is a density matrix of the total system.
We can obtain the density matrix for the ground state by the standard method, and it
is a Gaussian density matrix. Then, p,.q is obtained by a Gaussian integral, and it is also a

Gaussian density matrix. The entanglement entropy S = —trp,eqIn preq is given by [1]
S=Y fO), (18)

f) = 1n(%A1/2) + (140 I[(1 4+ A2+ A7, (19)



where )\, are the eigenvalues of the matrix
Ay = —W*Wy, = —(EB")" , = (DA)", — 6%, (20)

In the last equality we have used (16). The last expression in (20) is useful for numerical
calculations when Q¢ is smaller than €2, because the indices of A and D take over only the
space points on 2¢ and the matrix sizes of A and D are smaller than those of B and E. It

can be shown that all of A, are non-negative as follows. From (16) we have
AN = —AEBT = BFB". (21)

It is easy to show that A, C, D and F are positive definite matrices when W and W1 are
positive definite matrices. Then AA is a positive semidefinite matrix as can be seen from
(21). So all eigenvalues of A are non-negative. After all, we can obtain the entanglement

entropy by solving the eigenvalue problem of A.

B. The continuum limit

Next, we apply the above formalism to a massless free scalar field in (d+1) dimensional
Minkowski spacetime. We take the continuum limit in the above formalism. In this case the
Lagrangian is given by

L= / dr5ld? — (Vo)) (22)

Then the potential term becomes
1 1
SVand'a” = [ ala3(Ver) (23)

The matrices V, W and W1 are given in the momentum representation by,

V(m,y)—/éﬂl;d(k?)eik-(xy) (24)
W(z,y) Z/(;ZWI;(M)l/?eik'(fry) (25)
W) = [ i) ke (26)

From (20), the matrix A is obtained as a sum over the oscillators in the region €,
May) == [ W a2 Wz, 27)
Q
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We now have to solve the eigenvalue equation

[ dtute o) = Afia), (28)

where €2¢ is the complementary set of {2, and then we use the eigenvalues in the expression

for the entropy (18).

V. ENTANGLEMENT ENTROPY OF TWO DISJOINT REGIONS IN A MASS-
LESS FREE SCALAR FIELD IN d+1 DIMENSIONAL MINKOWSKI SPACETIME

We consider two spheres A and B whose radii are R; and Ry, and define the outside
region as C. (See Fig 1.) We derive the r(>> Ry, Rs) dependence of S¢(r, Ry, R2) by using
the formalism of the preceding section. (In the later analysis we do not use the shapes of
A and B, so all analysis in this section holds for A and B which have arbitrary shapes. In
this case R; and Ry are the characteristic sizes of A and B.)

We consider Syp(r, Ri, Ry2) because Sc = Sup in a pure state and the r dependence of
Sap is clearer than that of S¢ in the calculation. In this case the region €2 is C.

We obtain the r dependence of Ssp by following three steps:

(1) We obtain the r dependence of A by using the ||z — y|| dependences of W (z,y) and
W=Y(z,y). We decompose A into the non-perturbative part and the perturbative part as
A =A%+ 5A, where A = lim, o, A.

(2) We obtain A, (r) which are the eigenvalues of A by perturbation theory. This is almost
similar to the time-independent perturbation theory in quantum mechanics in the presence
of degeneracy. We can regard A as Hamiltonian. Note that A is not a symmetric matrix.
So we must slightly modify the perturbation theory in quantum mechanics.

(3) In Step (2), we had \,,(r) as A\ (r) = A2 + 5\, (r), where \! are the eigenvalues of
A°. We substitute these \,,(r) into (19), then we obtain Sag(r, Ry, Rs).

First we examine the ||z — y|| dependences of W (x,y) and W~!(z,y). Generally en-
tanglement entropy has UV divergence as discussed in [1]. So we use a momentum cutoff
[7! in integrals (24)-(26), though these integrals are well defined as Fourier transforms of
distributions. (The other regularization methods are discussed in [1].) When d > 2 and
Uz —y|| = 0, W(x,y) and W~(z,y) are

Aa
[ =yl

By

W(z,y) = W,

Wz, y) = Ag,BgeR (29)

11



FIG. 1. Two spheres A and B, and the outside region C.

A B C

Al 1O Ol 16| |70
Bl |—O||0 ©||0™®
c\ l[Follo® |00

FIG. 2. The matrix elements of W. The lines denote the matrix elements W (z,y) in (29). An
initial point and an end point of an arrow denote a row and a column respectively. We can obtain
products of matrices by connecting arrows and integrating joint points on regions where the joint

points exist. Instead of solid lines we use dotted lines for W1,

where A, and By are nonzero dimensionless constants (see Appendix A). We cannot ob-
tain (29) by only using a dimensional analysis because [/||z — y|| is dimensionless. Indeed
V(x,y) — 0 when I/||z — y|| = 0, i.e. V(z,y) is zero when ||z — y|| is finite. On the other
hand W and W' have nonzero value for ||z — y|| > 0 because they are kernels of integral
operators of nonlocal interaction (i.e Fourier transformations of (vA2)*) . In Appendix A
we explicitly show that W and W' have nonzero value for ||z —y|| > 0 and Eq. (29) holds.

Next, we obtain the r dependence of A by using (29). We represent the matrix elements

12



FIG. 4. The diagrammatic representations of A in (32) and the identity in (31).

>0

00

& O

ob)

& O

o

7o

0™®

FIG. 3. The diagrammatic calculation of A in (30).

+

0O™®

0

0

@ ....... @
O\, = o\, =
@ ....... @ O
A= 1@ O 0
0 -[oo

A=A, +0N\ +A,

FIG. 5. The diagrammatic representations of §A1, A2 and Ap.
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o 0 _ A" g
0 © 0 A”
@ 0
A =—
0 Q
0 -0
AN, =

FIG. 6. The diagrammatic representations of A% A% and A%FA;.

@ 7|0l 0

FIG. 7. The diagrammatic calculation of 6Ap in (41).

of W (W=1) diagrammatically in Fig 2. Instead of solid lines we use dotted lines for W1
The lines denote the matrix elements W (z, y)(or W= (z,y)) in (29). An initial point and an
end point of an arrow denote a row and a column respectively. We can obtain products of
matrices by connecting arrows and integrating joint points on regions where the joint points
exist. We label coordinates in A, B and C as x4, z, and x.. Then, from Fig 3 we obtain

A =—EB7T as

A= A Lq, ya) A(:Eaa yb) Wﬁl(l’aa Zc)
A

(
- Wize,ya) Wize, ysp
Ay, ya) Ao, yo) W=y, 2.) ( (2e:4a) Wlze:y )>

fC ddzcwil(xaa ZC)W(ZC7 ya) fC ddzcwil<xa7 ZC)W(267 yb)
Jo dP W @y, 2e)W (26, ya) [ d22cW (@, 26) W (Ze, 1)

(30)

14



To make the r dependence of the non-diagonal elements of A clear, we use the following

identity,
/ AW (a0, 2)W (2, 1) = 6(z4 — 1) = 0. (31)
A+B+C

We represent this identity diagrammatically in Fig 4. From (30) and (31) we obtain (see
Fig 4)

A(xmyb) :/ddzaW1($a>za)W(za7yb)+/ ddsz71<:L‘a,zb)W<Zb,yb)
Ma ) = [ a2V o)W za) + [ V™ o)W G )
A B

Note that from (29) W (z,y) and W~(z,y) have the different ||z —y|| dependence. So, from
(30) and (32) we decompose A as

AN=Ap+ oA +0A, (33)
where we define (see Fig 5)
A LayYa 0
Ay = (Tas Ya) | 50
0 A(xba yb)
0 d4a, W (24, 20) W (2,
SA, = S5 d* W (a, 25)W (25, y) | (35)
fA diz, Wy, 20)W (24, Ya) 0
0 Az W2y, 20 )W (24,
= fA ( W (20, Us) (36)
fB ddeW?l(xba Zb)W(Zln ya) 0

We approximate W (x,, ) ~ 7%511 and WY (z,, ) ~ T?—fl because r > Ry, Ry. Then we

have
SAL ~ B, 0 S5 A% W (20, 9) (37)
1~ 7 )
rE [ AW (20, Ya) 0
SA Ay 0 [y d%2W (24, 24) (38)
0" —
rdtl fB ddeW_1<.Z'b, Zb) 0

Next we consider the non-perturbative part A® = lim, ., A. From (37) and (38) we can
see that dA; and dAy become 0 when r — oo. Note that the integral region of the integral
in A(x.,v.) (A(xp, ) become A° =R — A (B¢ = R? — B) when r — oo, then we obtain

15



(see Fig 6)

AW (2, 2)W (2, Y 0
0 Jge AW (@, )W (2, 1)
From (39) we rewrite (33) as follows,
A=A+ 6A; + 0Ay + 0Ap, (40)
where we define (see Fig 7)
dh 2 W (20, 2)W (2, U 0
SAp = Ap— A” = fB Zp (as 20)W (20, Ya) (41)
0 fA ddZaW_l(‘rba ZG)W(Z(M yb)
We use the same approximation as we used in (37) and (38), then we obtain
A B f dde O
SAp ~ :Qdd b (42)

0 f A diz,

When we perform the perturbative calculation to obtain A, (r) which is the eigenvalues of
A, from (37), (38), (40) and (42) we can neglect 6Ap because it is higher order than 0A;
and dA, with respect to 1/r. And we can neglect A5 because its nonzero matrix elements
are in the same position as 0A; and dAs is higher order than JA; with respect to 1/r.
Because A is not a symmetric matrix, in the later perturbative calculation we need A%5A;
where A° is defined as (see Fig 6)
W(waya) 0

A= lim A= . (43)
e 0 W (xp, yp)

From (35), (37) and (43) we obtain (see Fig 6)

AOSA 0 N diz, I A2y W (2, 2a)W (24, 25) W (2, 1)
1 p—
fB ddzb fA ddzaw(wbaZb)W_l(tha)W(zaaya) 0

Bd 0 fA ddzaW<ma,7 Za) fB ddeW(Zb, yb)
d—1 :
r fB dz, W (2, 2p) fA d2aW (2a, Ya) 0

~
~

(44)

We have finished the first step.

16



Next, we calculate \,,(r) by perturbation theory. This is almost similar to the time-
independent perturbation theory with degeneracy of quantum mechanics. The only differ-
ence is that A is not a symmetric matrix and AA is a symmetric matrix.

We can approximate A ~ A° + 6A; and regard JA, as the perturbative part. Then, from
(37) we expand A, (r) with respect to 1/r?!. We expand \,, around A\, = \,,(r = o),

A = A0+ O+ ONZ,, (45)

where A and 6)2, are the first and the second order perturbations.

Next we substitute (45) into (19),

Sap(r, Ry, Ry) = Zf

(46)
df 1 &f
= Sa(f) + Sp(R2) + Z O%m A | =)0, 5(5)\ a OYH P ] |

where ), = dA\L + 6)\%2. We will show that the first order perturbation in (46) (i.e
d

>, 0L y ;\f ) is zero, so we must calculate the second order perturbations.

m |\, =\0,

We label the A2 ’s as A2 > A2 when m > n. And we define the eigenvectors of A%

0 (4 0
7(7]11(1 = fmla( ) ) anQﬁ - 0 AO ronla = )\0 mla’ A° gﬂﬁ )\D m267 (47)
0 fn2,8 (xb
whereaa=1,---, M,, and § =1,---, N, are the labels of the degeneracy. And we normalize

0. (1=1,2) as follow,

mix

0T 0 0
mwcA njps

= 0pmn0ij0as. (48)
This normalization is always possible because A° is a positive definite symmetric matrix.
For general R; and Ry, A% and A% have different eigenvalues, so there are two groups of
)\0 .

m)

one is the group of the common eigenvalues of A% and A%, the other is not. We will
see that d\} of the latter group are zero. We expand f,,,, which is the eigenvector of A in

the following way,

fm’y = Z a’Yafg’Lla + Zb’Yﬁf’rOnQﬁ + f;’w + f’r%z’y = ggz'y + f'rln'y + fr%z'y (49)
a B
where f, and f7_ are the first and the second order perturbations. Note that when ),

is an eigenvalue of A% (A°?) and is not an eigenvalue of A" (A%), then the coefficients b,z
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(ayo) are zero ; because the zeroth order eigenvectors fy,5 (fi,) do not exist. So either

the coefficients a,, or b,g are zero when A’ is not a common eigenvalue of A and A%?. We

substitute (49) into the eigenvalue equation (we approximate A &~ A° + §A;) , then we have
(A 4+ 0A1) fony = (A, + Oy + OA2) fine (50)
We obtain equations of the first and the second order perturbation.

Aofgyy + 5A1§1(’)n'y = A?nffln'y + 5>\11n'y ?n'yﬂ (51)

A f2 4 OA foy = A Sy + O ey ONS E (52)

We multiply (51) by f°Z_, A° from the left . The first term of the left hand side of (51) cancel

mjy

the first term of the right hand side of (51) because A°A° is a symmetric matrix, then we

obtain
D a0V D> byaViR = 0N (a0 by 672, (53)
a g
where
Vil s = fob ASALSY 5. (54)

From (44) we obtain V1 ~=V22 =0 and

manf3 manf3

AO(SAI (Iaa ya) AO(SAl (waa yb) 0

VrrlLimB: fron a(xa> 0
< ! > AN (20, ya) AYONL (0, 00) |\ frlap(us)

B B
== d_ill/ddxa/ ddZaW<xaaza)fnozla(xa)/ ddyb/ ddzbw(ybvzb)ff;Qﬁ(yb) = d__dlcmomﬁ
r A A B B r
(55)
and Vnﬁmﬁ = Vn%ma. We define an M, x N,, matrix Cp,, as (Cpn)ag = Cmang and write
(53) as follows,
B, 0 Chm a
st | =an, (7 (56)
r Orji;m 0 b"/ b’Y

where (a,), = a,, and (b,)s = bys. From (56), if A is not a common eigenvalue of A®" and
A% 5)‘71m is zero; because either a,, or b,z are zero when A is not a common eigenvalue of

A% and A2, We first consider the case that M,, > N,,. In this case we obtain the following
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eigenvalue equation [26].

dot | T TMm M = det(z1p,,xar,) det(xln,, xn,, — 2 'CL Crm)

—CL  xln <N, (57)

= M Nm det(2? 1, wn,, — CL Coum) = 0.

We define the eigenvalues of CT Com as ¢pa (o = 1,-+-M,,). CT C,m is a positive
semidefinite matrix because C,,,, is a real matrix, so ¢,,, > 0. Then we obtain 5>‘71m from

(56) and (57) .

0
1
Ny = B, : (58)
ﬂ:m,/cma (=1,---My,)
When M,, < N,,, we can obtain (5)\},W in the same way. We define the eigenvalues of

CrimCT as dpe(>0) (a=1,--+N,,). Then we obtain

0
SAL = : (59)
my B

:t—d\/dma (a=1,--Ny)

Then ) 0A,,, dff
m | X, =\0

m

= 0, because we have Y7 dA, = 0 from (58) and (59).

Next we consider 5)\,271 We skip the detailed calculation because it is also almost similar
to the time-independent perturbation theory with degeneracy of quantum mechanics. Then

we can write 07, as follows

A%, = Z U f%A“éA €0 )(ENT AOG AL f25)
n(#m) (60)
= Z OTAoéAlcbnaAl&?m
n(#m
where
én = ngmfgz‘TﬁAo- (61)
B

quSn is a projection operator on the eigenspace of \). To obtain 5)‘72717 we must obtain g?w by

solving the eigenvalue problem, but it is not necessary for our purpose because we want to
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know only Y5 oA A

. From (60) we obtain

" Do Iy
ZM’”V A |5, =20, B ;n(z#;t) A : 0523;1405/&1%5/\15&7 Cg{m Am=A2,
_ m%;#n) i L v Tr(dmdArdndAy) dcftm -
_ m’%:m) ﬁw(émamwm) (% - ddfn . ) |

In the second line we have used

Zf?m&OT AY = o,

(62)

(63)

and in the third line we have used cyclic property of trace. Next we examine the sign of

(62). Its trace term is positive because

Tr(GmbMdnbAr) = Y (fon APGALf05) (foh s AP AL £o:0)

i7a7j76

= Y Vi i = 3 V=2 () O 20

i’a7.776 i7a7j7/5

And from (19) we obtain

df 1 1 1

d\ 2\/1+/\n AV '

P2f 1 1 T 1 1

cf_ {1+ 5+ | +——| <0 for A>0.
AN TN |1 PNVAY )\\/1+)\] g

From (64), (66) and A% > X° (m > n) , (62) is negative. And from (66) we obtain

e @f

m7’y

< 0.

Am=A0,

20

(65)

(66)

(67)



Finally, from (46), (58), (59), (62) and (64) we obtain

San(r, Ry, Ba) — Sa(Ry) — Sp(R) = 3 |z, AL i £F
T o o myy my d)\m Am=A0, 2 d)\2 Am=A0,
df df
momﬂ T T (68)
( ) |:m 7§>n )‘0 o /\0 Z <d>\m Am=A0, dA, ,\n:)\QL>
— d)\2 )\ —AU m” d)\2 _)\0 ' 7”2d72 ’ -

where >, denotes the summation taken over the common eigenvalues of A% and A",
whose degeneracy is M,, > N,,, and ), denotes the summation taken over the common
eigenvalues of A’ and A%, whose degeneracy is M,, < N,,.

We have obtained the r dependence of So(r, Ry, Ry) = Sap(r, R1, R2) in (68), then we

next consider G(Ry, Ry). To calculate G(Ry, Ry) we need to know A\ and f2. which we

(70

do not examine in this paper. But from Cyans(R1 = 0, Rsy) = Cransg(R1, Re = 0) = 0 we
obtain a trivial property of G(R;, R»),

G(R, = 0, Ry) = G(Ry, Ry = 0) = 0. (69)

And G(Ry, Ry) depends on the cutoff length [ because A2, | fO.
(A2, are dimensionless, so they depend on R;/l or Ry/l. And in (55) [, d*z,W (2, 2,) and

and C,anp depend on [.

I dz,W (y, 2,) depend on [ because W (z,y) depend on [ for z ~ y, s0 C,,ans depends on
[. ) Probably G(Ry, Ry) diverges when [ — 0, as S4(R;) and Sp(Rs) have 1/1971 divergence
[1, 2]. And G(Ry, Ry) most likely diverges more weakly than S4(R;) and Sg(Rz). Then, by
dimensional analysis, when R; = Ry = R we can assume

R m R n
G(RlzR,RQ:R):gRQd_2(T) (m(T)) d—1>m>0,n>0,¢g>0 (70)

where ¢ is a dimensionless constant.

Finally we consider the condition under which the approximations are good. When
r > Ry, Ry, O0A =~ §Ay is a good approximation. When |%C’mang| < A2 — AV, the
perturbation theory is a good approximation. The latter condition might have [ dependence,

so we might need the condition R/r < (I/R)*, where a > 0.
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FIG. 8. The diagrammatic representations of Ap, A and §Ap.

VI. ENTANGLEMENT ENTROPY OF TWO BLACK HOLES IN A d+1 DIMEN-
SIONAL MASSLESS FREE SCALAR FIELD

In this section we consider the entanglement entropy of the massless free scalar field on
the outside region C' of two black holes A and B whose radii are Ry and Rs. The action of

the massless free scalar field is given by

S = —% / d?r\/=gg"'V .oV, . (71)

First we specify the vacuum state of the scalar field. The vacuum state is specified by spec-
ifying the time coordinate t. We use the coordinate system which have following properties:
this coordinate system covers the inside and the outside regions of two black holes and does
not have the coordinate singularity on the horizons and becomes the orthogonal coordinate
system of Minkowski spacetime in the region far from the two black holes. To construct
this coordinate system, we use the coordinates which is similar to the Kruskal coordinates
in the inside regions and the neighborhood of black holes, and similar to the Schwarzschild
coordinates in the other region. In this coordinate system ¢' is positive everywhere, then
from (71) Gy and Vi in (10) are positive definite. So we can use the formalism in the
Section IV.

We can use the method of the last section with some modifications. In the black hole
case W(z,y) and W~!(z,y) depend on r, so we write them as W (z,y;r) and W~ (z,y;7).
Exactly in the same way as in Minkowski spacetime, Eqs. (33)-(36) hold because (31) holds.
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On the other hand Ag(= lim,_,,, A) changes because W (z, y;7) and W~ (x,y;r) depend on
r. We define Wy (z,y) and Wit (x,y)(Wg(z,y) and W' (x,y)) as W(z,y) and Wt(z,y)
in the case that the only one black hole A(B) exists. Then we have

fAC ddzwgl(xa,z)WA(z’ya) 0
0 [ie AW 5 (2, 2) W (2, ys)

A = — (72)

It is difficult to evaluate the r dependence of SAp = Ap — A because it is difficult to evaluate
W(x,y;r) — Wap)(z,y) and Wz, y;r) — W;(IB) (x,y). So, in the black hole case we do
not consider Ay as the non-perturbative part. Instead we define Ap(r) and A(r) as (see Fig

8)

X AA TasYa; T 0
Ap(r) = ( )
0 Ap(xy, yp;7)
— [y AW N @o, 27 )W (2, Yai 1) 0
_ , (73)
0 — Jpe d2W (@, 2 m)W (2, 45 7)
~ Wixg, Yao; 7 0
Ay = [ Vo bai) , (74)
0 W(xln Yv; T)

and we consider Ap as the non-perturbative part. Note that A4 and Ap are the matrices
A corresponding to Sa(r, Ry, Rs) and Sp(r, R, R2). So we will obtain S4p as the following
form, Sap(r, Ry, Re) = Sa(r, Ry, Re) + Sp(r, R, Rs) + 0Sap(r, R, Rs). We calculate the
leading term of 0S45(r, Ry, R) with respect to 1/7.

We define §Ap = Ap — Ap (see Fig 8), then we have A = Ap + 6A; + 0A; + 6Ap. To
evaluate dA;, 6A, and A p, we evaluate W (za, yp;7) and Wz, yp; 7). When r > Ry, Ry,
by dimensional analysis we obtain W (x4, ys;7) ~ 24 Li(Ry/r, Ra/r) and W= (z,, yp;7) ~
7%Lg(Rl /r, Ry /1), where L; and Ly are dimensionless functions of Ry/r and Ry/r. The
space time becomes Minkowski space time when R; — 0 and Ry — 0, so in this limit
probably we have L; — 1 and L, — 1. This limit is equivalent to r — oo, so we have
lim, ,o L1 = lim, .o Ly = 1. Then we obtain 6A; = O(1/r% 1), 6Ay = O(1/r**!) and
6Ap = O(1/r??) as well as the Minkowski spacetime case. We can neglect §A, and dAp
for the same reason as in the Minkowski spacetime case (see below Eq.(42)). So we can
approximate A ~ Ap+ dA;. Then we change the perturbative calculation in the last section
as follow

A= Ap(r)y A= A(r) X0, = A0 o = () (75)

mic
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where A2, (r) and f, (r) are the eigenvalues and the eigenvectors of Ap(r). The perturbative
calculation is the same as that in the last section. In this case A(r), A% (r) and f°. (r) depend
on r, but we can remove their r dependence as follow. Because we want to calculate the

leading term of Syp(r, Ri, R2) — Sa(r, R1, R2) — Sg(r, R1, Ry) with respect to 1/r, we can

approximate
ASA. BdL2(717 72) 0 fA A2, W (24, 24;7) fB dez, W (2, yp; 1)
1R
rd=t fB ddsz([L’b,Zb;’l“) fA ddZaW(Zaaya;T) 0
~ Bd 0 fA ddZaWA(:Eaa Za) fB ddeWB(Zba yb)
Td_l fB ddszB(xba Zb) fA ddZaWA<Zaa ya) 0

(76)
In the second line we have approximated Lo(f, 22) ~ 1, W(x,, 24;7) & Wa(2q, z,) and
W (2, yp;7) ~ Wa(z, ). And we can approximate A0 (r) ~ X\, (r = co) = A, and
fO..(r) =~ fO.(r = c0) = fO . Note that \° and f2.

o o ic mio are the eigenvalues and the

eigenvectors of A% i.e. (A isin (72))

0 o f?nla(za) 0o _ 0 A(] 0
mla — »JIn28 T 0 mla
0 fn25($b)

where « = 1,--+ | M,, and 8 =1,--- , N,, are the labels of the degeneracy.

- >\0 mla? AO m28 — /\O m267 (77)

Finally we obtain

1
SAB(h Rl,RQ) SA<7’ Rl,RQ) + SB(T Rl,RQ) 7“ G(Rl,RQ) (78)

where G(Ry, Ry) is the same function as that in (68). Note that in this case from (76) Cnans
in G(Rl, RQ) is

Com = [ s [ deaWa(onsz) fonaln) [ ' [ dalWaon ) fostu): (79)

A A B B
As in the Minkowski spacetime case, we obtain G(R; = 0, R2) = G(R;, Ry = 0) = 0 from
Crnang(R1 = 0, Ry) = Crrang(R1, Ry = 0) = 0, and G(R;y, Ry) probably diverges when [ — 0,
where [ is the cutoff length. The 1/ dependence of G(R;, Rs) is most likely the same as

that in the Minkowski spacetime, then we obtain

R\™ R\\"
G(Rl = R, RQ = R) = gBHRZd_Q (7) (ln (7)> d—1 Z m Z 0,7’L Z O,QBH >0 (80)

where ggpy is a dimensionless constant, and m and n are the same numbers as those in the

Minkowski spacetime.
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VII. ENTANGLEMENT ENTROPIC FORCE AND THE PHYSICAL PREDIC-
TION

We assume that we can consider the entanglement entropy of two black holes as thermo-
dynamic entropy. If this assumption is correct, the entropic force acts on two black holes.
We consider the force of the scalar field which acts on two black holes. We consider two
black holes which have same radius Ry = Ry = R, then we can consider the temperature 7T’
to be the Hawking temperature. We define the energy and the free energy of the field on
the region C' as E¢(r, R) and Fo(r, R),

Fo(r, R) = Fo(r, R) — TSo(r, R) = Ee(r,R) — T (QSA(T, R) - %G(R)) @)

where G(R) = G(Ry = R, R2 = R) and we have used (78). We define the force of the field
on the region C' which acts on one black hole in the direction of increasing r as Xo. We

obtain X¢ by partially differentiating Fi» with R fixed,

Xc(T‘, R) = —

% . _aEc(T,R) +T 2aSA<T7R)
or or

D (2a- 2)T2i1G(R)) (82
In (82) the second term is the entropic force.

We cannot see the effect of the entropic force only from (82) because we do not know
Sa(r, R). To see the effect of the entropic force we consider three situations . (See Fig 9)
(1) There are two black holes which have the same radius R and the distance between them
is r.(This is the situation we have considered.) (2) There are one black hole whose radius
is R and one solid ball whose radius is Ry ~ R(Ry > R), and the distance between them is
r. This ball has mass M which is the same as that of a black hole whose radius is R. And
the scalar field does not exist in this ball. The boundary condition on the scalar field on
the surface of this ball is not so important in the later calculation that we do not specify
the boundary condition in detail. We only require that the scalar field on the outside region
of this ball is not so different from that in the situation (1). (3) There are two solid balls
which have the same radius Ry and the distance between them is r. These balls have the
same properties as those in the situation (2).

We define the force of the field which acts on one black hole or on one ball in the direction
of increasing r as X(C1 ), X(CQ2 ) and Xégg ). We illustrate in Fig 9 the directions of force and the

names of the regions.
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(1) black hall
¢

(2)

black hall solid ball
(2)
Xex {3 @
r
C, R,

(3)

solid ball
X8
r
R, R,
C3

FIG. 9. Three situations to see the effect of the entropic force. (1) There are two black holes. (2)

There are one black hole and one solid ball. (3) There are two solid balls. We define the force of

the field which acts on one black hole or on one ball in the direction of increasing r as Xg ), X éi )
and Xg; ),

In the situation (2) the state of the field is |0>E42J)FCQ, where |0>E§J)FC2 is the vacuum state
on A+ Cy. Because \O)f}r@ is a pure state, then 5(022) = Sf). We define AS)(AE?) as A
corresponding to SS)(SI(E)). Because the scalar field does not exist in the ball, then we

obtain

Af) — AS) ~ /

1
AW xq, 2)W (25, ya) = O <@> : (83)
B

Then we can approximate Sf) = Sgl)(r, R) 4+ O(4:) = SS)(T, R). Then we obtain

XO gy = OFC OB R) 05D R) OB R) 05D R)

. (84
or or or or or (84)
In the situation (3) the state of the field on the region Cj5 is a pure state, so 5(033) = 0.

Then we obtain f
OFY)  OES)(r,R)

3)
X = = .
¢, (1 F) or or (85)
From (82) (84) and (85) we obtain
0 1
Xg) = 2XE) + XE) ~ — o [BG) — 2B8) + BG4+ (24 = DT 5 G(R).  (86)

E(Cll) — 2Eé22 )+ Eg) ) is Casimir energy.

3
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We have not considered the force of gravity. But we can include them in (86) easily. We
define total force acting on one black hole or on one ball in the direction of increasing r as

]-"1(41), }_ﬁf) and .Fb(jl)l. Then we obtain

0 1

1 2 3 1 2 3 1 2 3

FO 2P+ FE = x8) —ox8) - x&) ~ 5 (ES) —2BS) + ES)+ (2d - 2T 557G (R).
(87)

The force of gravity is canceled in (87). The first and the second terms in the right hand

side are the Casimir force and the effect of entropic force, respectively.

Finally we consider the case d = 3. In this case the Hawking temperature is 7' =

. From (80) and (87) we obtain

AR’

f ) R (R\™ R\\"
FO —2FP 4 78 ~ —Z(ES) 28D + B + “”%H— (—) (m (7)) .
88

1 _
8rGNM

or r> \ [

2>m>0,n>0, gz > 0.

We roughly estimate the Casimir force by analogy with that of electromagnetic field between
two dielectric spheres with center-to-center distance r in Minkowski spacetime. The Casimir
force between the two sphere was calculated in [22], and it is O(1/r®). So, in our case we can
probably neglect —%[E(Cll) —2Eé22) —i—Eg;)] in (88). The left hand side of (88) can be measured
experimentally, so (88) is the physical prediction. From (88) the effect of the entropic force
becomes significant when R is large. We can probably use heavy stars as the balls in the
situation (2) and (3). So we can possibly confirm the effect of the entropic force by the
cosmic observation (e.g. binary black holes and binary neutron stars).

We estimate the magnitude of the effect of the entropic force. We set the cutoff length [
to the Planck length (p = (Gyh/c®)'/?, then the ratio of the effect of the entropic force to

o @) e

3 m n 2 4 P2
.FeefEhchHR—<R) (ln(£>) F= G ok (90)

s ro E lp

the force of gravity is

where
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VIII. NUMERICAL STUDIES OF ENTANGLEMENT ENTROPY IN A MASS-
LESS FREE SCALAR FIELD IN (d + 1)-DIMENSIONAL MINKOWSKI SPACE-
TIME: LATTICE FORMULATION

We could not obtain the explicit form of G(Ry, Rs) in (68) analytically. Next we calculate
G(Ry, Ry) numerically. We apply the formalism of Bombelli et al [1] reviewed in Section IV
to a massless free scalar field in (d + 1)-dimensional Minkowski spacetime. The Lagrangian
is given by

L= [d( - (voy (o1)
As an ultraviolet regulator, we replace the continuous d-dimensional space coordinates x by
a lattice of discrete points with spacing a. As an infrared cutoff, we allow the individual
components of n = x/a to assume only a finite number N of independent values —N/2 <
n, < N/2. The Greek indices denoting vector quantities run from one to d. Outside this

range we assume the lattice is periodic. The dimensionless Hamiltonian Hy = aH is given

by

d
o 1, 1 9 a’m? 91 1, 1
Hy=aH = ;[5% +3 ;(¢ny+5w — ¢n,)" + T¢”] = zﬂ: 3™t ; §¢men¢m (92)
where ¢,, and m, are dimensionless and Hermitian, and obey the canonical commutation

relations
(D, Tn] = 105m.- (93)

In Eq.(92) we insert a mass term in order to remove a zero eigenvalue of V,,,,,; if V,,,,, should
have the zero eigenvalue, W' in (15) would not exist. Later we will take N to infinity. In
this limit we can neglect the zero eigenvalue of V,,,, and will take am to zero. Taking N
to infinity is important in order to calculate the entanglement entropy Sap of two spheres.
The entanglement entropy of two spheres is more sensitive to the value of N than that of
one sphere. (In fact, we numerically calculated S4p for finite N with antiperiodic boundary
conditions without the mass term. Ssp depends on N when the distance r between two
spheres is close to N/2, and we could not obtain the clear r dependence of Sap.)

From (92) we obtain (see e.g. [21])

d
ok .
Wi = N~ [a?m? 423 (1 — cos =]/ 22k, (94)
k pn=1
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d

2k ,

Wwol=nN" Z[a2m2 +2 Z(l — Cos —7;\7”)]’1/262”““("’7”)/N, (95)
k pu=1

where the index k also carries d integer valued components, each in the range of —N/2 <

k, < N/2. We take N to infinity and change the momentum sum into an integral with the

replacements g, = 27k, /N and N=*%, — f:r (gigd, and then we have

N |
—~
Ne)
D
~—

™ dd ) d
Won = / (27Tq)deZQ(n—m) [a2m2 + 22<1 — cos qu)] :

pn=1
T ddq ) d -1
Wl = / (2—7T)de“1(”_m) [a*m? + 2 Z(l —cosq)] 2. (97)
- =

In (96) and (97) the integrals converge when am — 0, so we can take am to zero,

T ddq ig(n—m) : L
Wi — / e D1~ cosgu)z, (98)
. =
— " ddq g(n—m a _—1
Wm;—/ WM 2 (1 —cosgu)] 2. (99)
. —

From (98) and (99) we can compute W,,, and W, ! numerically. Then we can compute
the entanglement entropy from (18), (19) and (20). The integrands in (98) and (99) highly
oscillate when |[n — m|| > 1, and the numerical integrals converge very slowly. We can
obtain approximate expressions of W,,, and W, ! by hand when |[n — m/| > 1, so we will

use them when ||[n —m/|| > 1 in order to reduce the computational complexity of W,,,, and

W=t To evaluate W,,, and W1

mn’ mn

when ||[n —m|| > 1, we define r = a(n — m) and take
|n — m]| to infinity keeping r fixed. We change the variable as p = ¢/a, and then we have

o dip P 1 < dp ,,._a 1
W =t [ S L2y 1= cosaplt =ttt [~ EL oSy 100)

p=1 o0

We can perform the integral in (100) analytically when ||r||/a — oo (see Appendix A ), and

then we obtain

A A
Wi — a0 = : 101
2 e (101)
where
d— 1)l
—W for even d > 2,
v
Aa = (d— 1)1 (102)
— W for Odd d Z 3
T
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We can evaluate W1 when ||n —m/| > 1 in the same way (see Appendix A), and then we

obtain
o ddp ; a =1 Bd Bd
Wt = att [ R ST o 0t 2 S o)
oo (2m)° [rfa=t fln —m]l?
where
d— 3)
W for even d > 2,
T
Ba=9 “a-s3n (104)

(27-(-)(—d+1)/2 for odd d Z 37

where 0!l = (=1)!I! = 1.

IX. NUMERICAL CALCULATIONS

We calculate numerically the entanglement entropy Sap of two spheres A and B whose
radii are R; and R, and the distance between the centers of them is r for d = 3.

We put the centers of the spheres on a lattice. We define the sphere whose radius is
R as a set of points which are at distances of R or less from the center of the sphere. In
order to reduce the computational complexity of W,,, and W 1 we use the approximate
expressions (101) and (103) when ||[n —m|| > 10, and we use the numerical integrals of exact
expressions (98) and (99) when ||n —m/|| < 10. When ||n —m|| = 10, the differences between
the numerical integrals of the exact expressions and the approximate expressions are less
than 4% for W, and less than 1% for W, 1. We perform matrix operations and calculate
the eigenvalues A, of the matrix A in (20) with Mathematica 8. The number of columns
and rows of A is the number of points in the region of which we calculate entanglement
entropy.

We show the computed values of S(R) which is the entanglement entropy of one sphere
as a fumction of R?/a? in Fig.10, where a is a lattice spacing. The points are fitted by a

straight line:
S =0.37R*/a*. (105)

This result agrees with the result in [2] except for the coefficient. (The coefficient in [2] is
0.30. This difference necessarily arises from the difference of regularization methods. In [2]
the author use the polar coordinate system and replace the continuous radial coordinate by

a lattice.)
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We show the computed values of Syp(r, Ry, Ry) which is the entanglement entropy of two
spheres as a function of r/a for Ri/a = Ry/a = 6,7 in Fig.11. As can be seen, Syp reaches
its maximum value Sy + S when r — oco. In order to clarify the behavior of Ssp as a
function of r, we show the computed values of (S4 + Sp — SAB)71/4(T, Ry, Ry) as a function
of r/a for Ry/a = Ry/a = 6,7 in Fig.12. The straight lines in Fig.12 are fitted by the data
between r/a = Ry/a+ Ra/a+ 24 and r/a = Ry/a + Ry/a + 84. In these regions the points
are beautifully fitted by the straight lines. Then, when r > R;, Ry, we obtain
G(Ry, Ry)

rd

_SA;B = SAB(T, Rl, RQ) — SA(Rl) — SB(RQ) ~ — , (106)

where G(Ry, R») is defined in (106) and G(Ri, R2) = G(R2, R1) > 0. Sa.p is the mutual
information of A and B. From Fig.12 the approximate expression (106) is precise for rel-
atively small r. (When Ry = Ry, = R, for r £ 3R (106) is precise from Fig.12.) We can
obtain G(Ry, Ry)/a* from slopes of graphs of (S4 + Sg — Sap)~"/*(r, Ry, Ry), and then we
show the computed values of G(Ry, Ry)/a* as a function of R3/a® for Ry/a = 4,4.5,...,7
in Fig.13. From Fig.13 we can see that G(Ri, Ry)/a* is proportional to R3. Because
G(Ry, Ry) = G(Ry, Ry), we obtain G(Ry, Ry) = gR?R3, where g is a dimensionless con-
stant. We can obtain the values of gR? from slopes of graphs of G(Ry, Ry) as a function of
R2. To obtain the precise value of g, we show the computed values of gR?/a? as a function
of R?/a* in Fig.14 and obtain g = 0.26 from the slope of the line which is the best linear fit
in Fig.14.
Finally, when r > R;, Ry, we obtain

O.26R§R§.

4

_SA;B = SAB(T, Rl, Rg) — SA(Rl) — SB<R2) ~ — (107)

r

When r ~ Ry, Ry, from Fig.12, S,p rapidly decreases when r decreases. (Note that we
cannot determine the functional form of G(R;, Rs) only by the constraints from dimensional
analysis, symmetry, and behavior in the limit B, — 0. For example, G(Ry, Ry) = R3Ry +
R R3 is not prohibited by these constraints.)

For d = 2, we compute Sup in the same way. We show only the computed values of
(Sa 4+ Sp — Sap)~Y2(r, Ri, Ry) as a function of r/a for Ri/a = Ry/a = 15,16 in Fig.15.
The straight lines in Fig.15 are fitted by the data between r/a = Ry/a + Ry/a + 101 and
r/a = Ry/a+ Ry/a + 201. In these regions the points are beautifully fitted by the straight

lines. We cross-checked our numerical procedure with the data of related calculations in
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FIG. 10. The entanglement entropy S(R) of one sphere whose radius is R as a fumction of R?/a?.

The line is the best linear fit.
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FIG. 11. Syp—S4—Sp as a function of r/a for Ry /a = Rs/a = 6,7, where S4p is the entanglement
entropy of two spheres A and B whose radii are Ry and Rs. The distance between the centers of

the two spheres is r.

Figure 1 in [19]. (In the figure, the authors show the mutual information of two discs for
Ry = Ry = R and r = 3R. Our results were very close to theirs.) Finally, when r > Ry, Rs,

we obtain
0.37TR1 R,

2

—Sap = Sap(r, R, R2) — Sa(Ry) — Sp(Ra) = — (108)

r

In order to examine whether only the degrees of freedom on the surface of the spheres
contribute to the mutual information or not, we calculate the mutual information Sp. of two
same spherical shells D and E for d = 3 and the mutual information Sg.; of two same rings H
and [ for d = 2. The internal (external) radii of the spherical shell and the ring are Ly (Ls).
The distance between the centers of the two spherical shells and that between the two rings

are r. When r >> Lo, we obtain Sp.p &~ G (L1, Ly)/r* and Sy.; ~ G, (L1, Ly)/r?. We show
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T . . . . . . . . . . . . . ! r/a

FIG. 12. (S4 + Sp — SAB)_1/4 as a function of r/a for Ri/a = Ry/a = 6,7, where Syp is
the entanglement entropy of two spheres A and B whose radii are R; and Rs. The distance
between the centers of the two spheres is r. The straight lines are fitted by the data between
r/a = Ri/a+ Ra/a+ 24 and r/a = Ri/a+ Ra/a + 84. For r Z 3R(= Ry = Rp) the lines are

beautifully fitted and the approximate expressions (106) and (107) are precise.

G(Ry.Ry)/a’*
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400 Ry/a=5.5
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200 - R, /a=4

100F

T 0w s e R
FIG. 13. G(Ry, Rs)/a* in (106) as a function of R2/a? for Ri/a = 4,4.5,...,7. The lines are the

best linear fit.

(Gys(Ly, Ly))Y2/L% for Ly = 10a as a function of L;/Ly in Fig.16 and (G, (Ly, Lo))"/?/ L
for Ly = 22a as a function of L; /L, in Fig.17. The curve in Fig.16 is 0.50(1 — (L;/Ly)3)?/3
and the curve in Fig.17 is 0.56(1 — (L1/L2)?)'/2. We show these curves for comparison with
the data. From Fig.16 and Fig.17, (Ggs(L1, L2))Y?/L3 and (G,(Ly, L))"/ Ly are monotone
decreasing function of Li/L,, and (G (L1, Ly))*/? is not proportional to the 2/3 power of
the volume of the spherical shell, and (G,(L1, L»))"/? is not proportional to the 1/2 power
of the area of the ring. Then not only the degrees of freedom on the surface of the sphere

but also those on the inside region contribute to the mutual information, and the degrees of
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FIG. 14. gR?/a* as a function of R?/a?, where g is defined as G(Ry, R2) = gR?R3. The line is the

best linear fit.
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FIG. 15. (Sa + S — SAB)_1/2 as a function of r/a for R1/a = Ry/a = 15,16, where Sap
is the entanglement entropy of two discs A and B whose radii are R; and Rp. The distance
between the centers of the two discs is r. The straight lines are fitted by the data between
r/a = Ri/a+ Ra/a+ 101 and r/a = Ri/a+ Ra/a + 201. For r Z 4R(= Ri = Ra) the lines are

beautifully fitted and the approximate expression (108) is precise.

freedom on the inside region does not contribute uniformly to the mutual information.

We roughly estimate the magnitude of the entropic force between two black holes by using
Sap in Minkowski spacetime. We consider two black holes (A and B) which have the same
radius Ry = Ry = R and the distance between which is r. For simplicity, we consider the
case that the state of the field on the whole space is a pure state. Generally, if a composite
system XY is in a pure state, then Sx = Sy [14]. Then the entanglement entropy of the
outside region of two black holes is equal to that of the inside regions of two black holes.

We define the entropic force of the field on the outside region which acts on one black hole
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FIG. 16. (Gss(Ll,Lz))l/Q/L% for Ly = 10a as a function of Li/Ly. Ggs(Ly, L) is defined as
Sp.p = Gss(L1, La) /r* when r > Ly, Ly. The curve is 0.50(1 — (L1/L2)3)?/3. (Gss(L1, La))"/?/ L3
is monotone decreasing function of L; /Ly and not proportional to (1 — (Ly/Ly)%)%/3.

(GAL1,L) P [(La)?

FIG. 17. (G,(L1,L»))"/?/L3 for Ly = 22a as a function of Li/Ly. G,(Ly,Ly) is defined as
Su.r ~ Gy(L1, Ly)/r? when r > Ly, Ly. The curve is 0.56(1 — (L1/L2)?*)"/%. (G, (L1, L2))Y/?/L3 is

monotone decreasing function of L; /Ly and not proportional to (1 — (Ly/Lg)?)Y/2.

in the direction of increasing r as F,¢. Iy is given by

0548
Feop=T o (109)

where T is the temperature of the field of the outside region. To estimate F.¢, we set Sup
to that in Minkowski spacetime and T to the Hawking temperature 7' = (87GyM)™! =
(47R)~!. In this approximation the entropic force is repulsion force because Sup increases
when r increases. 0S45/0r is independent of the ultraviolet cutoff, and then we obtain

= (/B = e
where Sa.p = Sa(R) + Sp(R) — Sap(r, R) and S’y 5 = 0Sa,5/0(r/R). (Sa;p is independent

of the ultraviolet cutoff and a function of r/R.) Then the ratio of the entropic force to the

Fey Sap(r/R), (110)
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FIG. 18. The ratio of the entropic force to the force of gravity (%) % as a function of /R for
R/a = 10.
. 2 2 .
force of gravity (F, = — <2 = —4G1fw2) is
E — l l_P ’ Sfl47B<T/R) (111)
F, T \ R RZ/r2 |7

where Ip is the Planck length Ip = (Gyh/c®)Y2. When r > R, we substitute (107) into

(111), and then we obtain
Ip\> R

Fey
F

g

2
F.f
Fg

as a function of r/R for R/a = 10

When r &~ R, we show the computed values of (%)

Fey
Fg

2
in Fig.18. (Although from (111) (%)

is a function of /R and is independent of the

2
Fof
Fg

choice of the value of R/a, the computed values of (%) slightly depend on the choice

of the value of R/a because the spheres on the lattice are distored. When R/a is large,
the spheres on the lattice are similar to the real spheres and this R/a dependence is small.)
From (112) and Fig.18 the entropic force is much smaller than the force of gravity when

R > lp and comparable to the force of gravity when R =~ [p.

X. CONCLUSIONS AND DISCUSSION

In Section IIT we showed that the entanglement entropy (S¢ = Sap) of two disjoint regions
in translational invariant vacuum in general QFT reaches its maximum value when r — co.
And we obtained the inequality (9). In Section V we developed the method to obtain the r

dependence of S¢ and obtained the r dependence of S¢ (68) in the free massless scalar field
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in (d+ 1) dimensional Minkowski spacetime. We can use this method in curved space time
and for scalar field theory whose Lagrangian is quadratic. To know only the r dependence
we need only the ||z — y|| dependence of W (x,y) and W~!(x,y) when ||z — y]| is large. To
know the R; and Ry dependence we must solve the zeroth order eigenvalue equation and

obtain A%, and f°. . Tt is difficult to solve the zeroth order eigenvalue equation analytically,

so we need to perform numerical calculation. But we assumed the R = R; = R, dependence
(70) by using dimensional analysis and the cutoff dependence of S4 and Sp.

In Section VI we showed that Sc can be expected to be the form (78) in the black
hole case. In this case the only assumption we made is the r dependence of W (x,, ) and
W (xy, yp). We did not explicitly calculate W (x4, y,) and W1 (24, 4), but assumed the r
dependence of W (x4, 1) and W—t(z,, 1) by dimensional analysis.

In Section VII we assumed that we can consider the entanglement entropy of two black
holes as thermodynamic entropy, and investigated its entropic force. We considered three
situations (1), (2) and (3) and obtain the relationship (88) between the force acting on one
black hole or on one ball and the sum of the Casimir force and the effect of the entanglement
entropic force. Because we can probably neglect the Casimir force, we can confirm (88)
experimentally in principle.

Next we discuss the entanglement entropic force in different systems. In the black hole
case, black holes act as "walls” which hide inside regions but hold the entanglement between
inside and outside regions. So if there are walls of this type, the entanglement entropic
force will exist between regions surrounded by these walls. Then we will be able to confirm
the entanglement entropic force by experiments in a laboratory if we make this wall. And
if entanglement entropy depends on some external parameter, entanglement entropic force
probably appears also in quantum mechanical (i.e. not quantum field theoretical) systems.

In Section VIII and IX we calculated numerically the entanglement entropy Sap of two
spheres and obtained the approximate expression (107). From Fig.12, (107) is precise for
relatively small 7. (When Ry = Ry = R, for r £ 3R (107) is precise from Fig.12.) We showed
that the mutual information Sy, of A and B is independent of the ultraviolet cutoff for
d = 2,3 though Sy and Sp depends on the ultraviolet cutoff. The mutual information S,z
measures the entanglement between A and B and S4 measures the entanglement between
A and A° where A° is the complementary of A. Then our results mean that the ultraviolet

divergence of entanglement entropy in QFT is caused by the entanglement between points
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which are infinitely close to each other and the entanglement between regions which are
finitely separate from each other is finite. And we showed that S4.5 is the simple product of
a function of R, and that of Ry for d = 2,3. These properties of Sy.p for d = 2,3 are most
likely the same as those for d > 4. Then, from (1), for d > 4 when r > Ry, Ry we assume

d—1 pd—
~ galt 1Rz '

SA;B ~ 7’2d_2 ) (113)

where g; > 0 is a dimensionless constant.

In order to examine whether only the degrees of freedom on the surface of the spheres
contribute to the mutual information or not, we calculate the mutual information Sp.p of
two same spherical shells D and E for d = 3 and the mutual information Sp.; of two same
rings H and [ for d = 2. We obtained the result that not only the degrees of freedom
on the surface of the sphere but also those on the inside region contribute to the mutual
information, and the degrees of freedom on the inside region does not contribute uniformly to
the mutual information. Because Sp.p and Sy, measure the entanglement between regions
which are finitely separate from each other, it is natural that the inside region contribute to
the mutual information. The result that the inside region does not contribute uniformly to
the mutual information means that the mutual information is not the product of the simple
sum of the contribution from each volume elements. These results are different from that of
the entanglement entropy to which the degrees of freedom on the surface of the boundary
contribute mainly and uniformly. So the mutual information of two disconnected regions
is not universally proportional to the product of the surface areas of the regions. Because
a sphere has only one dimensionful parameter, the mutual information of two spheres is
proportional to the product of the surface areas. For example, the mutual information of
two rectangular solids is most likely not proportional to the product of the surface areas
because a rectangular solid has three dimensionful parameters.

Our numerical method has three properties. First, we take the volume of the whole
space to infinity, i.e. N — oo in (94) and (95). Second, the computational complexity of
our method depends only on the number of points on the regions of which we compute the
entanglement entropy and does not depend on the distance between the separated regions.
The computational complexity of conventional methods increases when the distance between
the separated regions increases. This is because the numerical integrals of W, in (98) and

W, -Lin (99) converge very slowly when ||n —m|| > 1. In order to reduce the computational
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complexity of W,,, and W1 we use the approximate expressions (101) and (103) when
|n —m|| > 10. Third, we can compute the entanglement entropy of general shaped regions
by our method because we do not use any symmetry of the regions of which we compute
the entanglement entropy in our method. For example, we can compute the entanglement
entropy of more than two separated regions. The first and the second properties enable us
to obtain the r dependence of S4g. And the third property enable us to compute Sap for
Ry # R,.

We estimated roughly the magnitude of the entropic force between two black holes. From
(112) and Fig.18 the entropic force is comparable to the force of gravity when R = [p. This
rough estimate suggests that the entropic force is important for Planck scale black holes.
(Of course, this result would be changed if the effect of quantum gravity would be taken
into account when R = [p.)

Next, we discuss the microscopic origin of the entropic force. As we see from (110) the
entropic force is proportional to the r derivative of the mutual information S4.5. So the
origin of the entropic force is the entanglement between inside regions of two black holes.
Due to the entanglement between inside regions of two black holes, the density matrix of
the scalar field on the outside region changes when r changes. Then the force acts on black
holes along the direction in which S4p increases.

Finally we mention the validity of this estimate. When r > R, it is shown that S4.p in
the black holes case can be expected to be similar to that in the Minkowski spacetime case
except for the coefficient because almost all regions between two black holes is similar to
Minkowski spacetime [12]. So, the rough estimate corresponds to the contribution to Fi.s in
(109) from Sy, 5. However, in the black holes case Sy and Sg depend on r and contribute to
F.;. These contribution from Sy and Sp has been discussed in [12]. When r =~ R, S4.p in
the black holes case is probably different from that in the Minkowski spacetime case because
the region between two black holes is very different from Minkowski spacetime. However,
even when r =~ R, S4.p is most likely independent of the ultraviolet cutoff as that in the

Minkowski spacetime case.
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Appendix A: The calculation of W and W~!

In this appendix we calculate W (z,y) and W~(z,y) ( (25) and (26) ) explicitly. We
regularize them by including convergence factor e “*#! in them, where [ is the cutoff length.
We define W, as

ddk —a ik-(x— —
Wa(x,y):/w<k2)(l )/2 gik-(z—y) o~k (A1)

Then we have Wy = W and W, = WL, First we consider the case d > 3.
(1)d>3

We perform the integrals of angular coordinates which do not enter the inner product,

(2m)* - m+1

r d—m
142 2 >~ ! 2923 ikrt _ikpd—a
Wy (z,y) = H VT — dk | dit[l —t7] 2 ™ "k (A2)
-2 T (d—+) 0 -1
2

where r = ||z — y|| and we change the variable as ¢t = cos . Next we perform the k integral

o 1 d—3 1 i3 (1 d=a poo
/ dk / dt[l — %] 2 ethrtethpd—o = / dt[l —t?] 2 (__i) / dke™rtetk
0 ~1 ~1 it dr 0

(A3)
— (- )l ap e
== Wpdmart | (t + iz)d—ot1
where z = [/r. We define
d=3 1
g(t) =[1 -] 2 (A4)

We want to show W, # 0 when z — 0.

(i)d=2m+2 (m>1)

In this case ¢(t) has a branch cut on the real axis from —1 to 1. We perform the integration
along the contour shown in Fig 19 (a), and obtain

1 . ' 1 dd—a ) d—3
/ dtg(t) = miRes;—_;.g(t) = mi = o) (dtd—a 1—1¢t7] 2 )

1

(A5)

t=—1iz
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FIG. 19. The contours of the integrals. (a) d=2m+2 (m>1). (b)d=2m+1 (m>1).

The derivative in (A5) can be calculated by the derivative of a composite function,

_ o)
dd « 5 d—3 d— a)! d—a—2r d—a—r
(dtd—a[l — ] ) N ; T!(d(—a—)QT)!(2t) (=1)

(SO -0 (@ —a-r - ) - )T e

(A6)

where [%(d — oz)} is the Gauss’ symbol which is the greatest integer that is less than or equal

to +(d — a).

Then, when z — 0, we obtain

/1dtg(t) = —m’(&)&—l)%(?)(? _ 1)...<d;3 _ (d;a _1)
) ’ ' a—« (A?)
o1 1\ 2
= ’L@ (—5) (d—g)(d—1)<04—1)

Then, from (A2), (A3) and (A7), for a = 2l < d(l € Z) W, is nonzero and W, has the form
of (29) when z — 0. (When a = d, we obtain fjl dtg(t) = —mi from (A5). (Note that g(t)
has the branch cut, then [1 + 2%]“=3/2 — (—1) when z — 0.))

(i) d=2m+1 (m>1)

We perform the integration along the contour shown in Fig 19 (b), and obtain

/_ dtg(t) = —2miRes;—_;.g(t) —/ dtg(t). (A8)

1 Cr
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For a = 2I(l € Z), d — « is odd, so we obtain lim, ,o Res;—_;,¢(t) = 0 from (A6). Then, for

a =20 and z — 0 we obtain

1 ™ . _d—3
/ dtg(t) — — / dtg(t) = i(—1)" / dheild=)0[| _ (20
-1 Cr 0
_ Z(—l)da(—2l)m1/ deefi(Qerlfa)Gei(mfl)Q(Sin 9>m71
0

= (=1)"2" " (I fm — 1,m +2 — a] —il,[m —1,m +2 — al) (A9)
B 2m=Lim T Im —1,m+2—a] #0 for odd m,
- 2m=timl.m—1,m+2—a]#0  for even m,
where
Ielm,n] = /07T df(sin0)" cos(nf) , Iss[m,n] = /07r df(sin 0)™ sin(nd). (A10)

Then, from (A2) (A7) and (A9) , for a = 2I(l € Z) W, is nonzero and W, has the form of
(29) when z — 0.

From (i) and (ii) we showed (29) for d > 3. Next we consider d = 2.

(2) d=2

In this case we can perform the angular integral first,

W LL' y 27[_ / kdk’/ dekl « zkrcos@ Ik

1 oo
2— oo —lk 2—a  —zw
_27r dk:k: Jo(kr) = Sy /0 dxx“e " Jy(x)

(A11)

where Jy is the Bessel function of zeroth order. We perform the integral for « = 2 and

a=0.

(i)a=2
In this case we have
o 1
dre " Jy(x) = ) Al12
/ (o) = (A12)
Then, when z — 0 we obtain
1
Wa:2(x7y) = W_l(xu y) = % (A13)
(i) a=0
In this case we have
o . I'(3) 3 1
/0 drz’e Jo(x) = = F (5,2, 1; —;) — -1 (z—0) (A14)



where F'is the Gaussian hypergeometric function. Then, when z — 0 we obtain

—1
2mr3’

WazO(*Tu y) = W(Jf,y) =

(Al5)

Finally we have showed (29) for d > 2.

Appendix B: A formula for a finite series

In this appendix we obtain a formula for a finite series by calculating the following integral.
A= / dk:k:%/ df(sin §)Perreest=ek e >p >0 bc€Z e¢r>0 e,r €¢R. (Bl)
0 0

This integral is a generalization of W, in (A1). The parameter € and r are auxiliary and they
do not appear in the last formula. We obtain the finite series when we perform the 6 integral
before performing the k integral. On the other hand we obtain the simple expression when
we perform the k integral before performing the 0 integral. Then we obtain the formula for
the finite series.

(i) We perform the 6 integral before performing the & integral.

We perform the 6 integral,

T : 1 d? T , 1 d?
: 2b _ikr cos 6 b ikr cos O b
/0 df(sin §)*’e =(1+ y= _dr2> /0 dfe =m(l+ = _drz) Jo(kr) (B2)

where Jy is the Bessel function of zeroth order. We substitute (B2) into (B1) and perform

the k integral. Then we obtain
b 2 b 21
d o AN " T(u) . (p p+1 r?
A= E C|— dke”*E 2 Jo(kr) = E Cl—| —F|(Zz,—,1;,—
i — ’ l(dr) /0 ‘ olkr) = — "\ dr er 27 2 77 ¢

where © = 2¢ — 2l + 1 and F is the Gaussian hypergeometric function. We have used the
condition ¢ > b > 0 in the second equality in (B3). When € — 0, we obtain

r 1 2 1/2 r
g L (opL T T (1) — (B4)
e—0 M 2 2 €2 i F(l _ %)r( +#)

From (B3) and (B4) we obtain

b 21 b
) () d 1 m3/2 1
_ 3/22 S ;Z
15%’4 T ”Clr(1 — 4P () (dr) pi 20t (2¢) bclr(l — 4r(HE) (B5)

=0 2 =0

(ii) We perform the k integral before performing the 6 integral.
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We change the variable as t = cos# and perform the k integral,

1 oo
A= / dt b 1/2/ dkaceith—ek _ / dt[l ]b 1/2 (1 d > / dkeikrt—ek
1 it dr 0

— j2er1 129 (20)! / dt[1 — ]b—1/2 1

2c+1 (t + Z'Z)Qc—‘rl

(B6)

where z = ¢/r. We perform the integration along the contour shown in Fig 19 (a) in the

same way as Eqs.(A5)-(A7), and obtain

g%A—z?ﬁl%(—m)é(—m%b—%)(b-%)...(b—w%)
:wrgfglc!(b—%)(b—%). (b—c+ 1) (B7)
(20)! (-1)*°

From (B5) = (B7) we obtain the formula for the finite series. We simplify (B5) = (B7)
and obtain the following formula,
b

2 — 21 — 1)l 2 — 1)11(2¢ — 2b — 1)I!
Z(_2)ll!((b—l)!(c —)l)! - (_Db( ) (b!c! )

c>b>0 bceZ.  (BY)
1=0

We can also rewrite (B8) as follows;
b

(2¢ — 21)! , (20)!1(2¢ — 2b)!
Z l'b—l [(C—Z)!P:(_l) ()2l (c — b)!

¢c>b>0 bceZ  (BY)
=
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When d=1, this is not correct because generally the correlation function (0| ¢(t, z)o(¢,y) |0)
does not become zero when |z —y| — co. For example the correlation function of massless free
scalar fields does not become zero when |z — y| — oco.

We use the following easily verifiable identity,

A C A—CB D B! 10 A0 1 A~LC
D B 0 1 D B D1 0 B— DA lC
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