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Abstract

First, we study the entanglement entropy SAB of a d + 1 dimensional massless free scalar field

on two disjoint compact spatial regions A and B whose sizes are R1 and R2, respectively, and the

distance between them is r. The state of the massless free scalar field is the vacuum state. We

consider the mutual information SA;B ≡ SA + SB − SAB where SA and SB are the entanglement

entropy on the inside region of A and B, respectively. We develop the computational method based

on that of Bombelli et al and obtain the result that SA;B = 1
r2d−2G(R1, R2), when r # R1, R2.

When A and B are spheres in d = 2 and 3, we obtain explicit results G(R1, R2) = 0.37R1R2 for

d = 2 and G(R1, R2) = 0.26R2
1R

2
2 for d = 3 by numerical calculations.

By using the method used in the Minkowski spacetime case with some modifications, we study

the entanglement entropy, SC , of the massless free scalar field on the outside region C of two black

holes A and B whose radii are R1 and R2 and how it depends on the distance, r(# R1, R2) ,

between two black holes. If we can consider the entanglement entropy as thermodynamic entropy,

we can see the entropic force (we call this entanglement entropic force) acting on the two black

holes from the r dependence of SC . We consider the property of the entropic force.

∗shiba@het.phys.sci.osaka-u.ac.jp
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I. INTRODUCTION

Entanglement entropy in quantum field theory (QFT) was originally studied to explain

the black hole entropy [1, 2]. Entanglement entropy is generally defined as the von Neumann

entropy SA = −TrρA ln ρA corresponding to the reduced density matrix ρA of a subsystem

A. When we consider quantum field theory in d + 1 dimensional spacetime R × N , where

R and N denote the time direction and the d dimensional space-like manifold respectively,

we define the subsystem by a d dimensional domain A ⊂ N at fixed time t = t0. (So this

is also called geometric entropy.) Entanglement entropy naturally arises when we consider

the black hole because we cannot obtain the information in the black hole. In fact, in the

vacuum state the leading term of the entanglement entropy of A is proportional to the area

of the boundary ∂A in many cases [1, 2]. This is similar to the black hole entropy, and

extensive studies have been carried out [3–8].

First, we study the entanglement entropy SAB of a d+1 dimensional massless free scalar

field on two disjoint compact spatial regions A and B whose sizes are R1 and R2, respectively,

and the distance between them is r. The state of the massless free scalar field is the vacuum

state. In higher dimensional (more than two dimensional) QFT, it is not easy to compute

the entanglement entropy for arbitrary regiions even in free field theories. Entanglement

entropy of two disconnected regions has been studied, see e.g. [9–11]. We studied SAB

in [12] analytically and in [13]. We develop the computational method based on that of

Bombelli et al [1]. When r # R1, R2, we obtained the r dependence of SAB as [12]

SAB ≈ SA + SB − G(R1, R2, a)

r2d−2
, (1)

where a is an ultraviolet cutoff length and G(R1, R2, a) = G(R2, R1, a) ≥ 0. We cannot

obtain the explicit form of G(R1, R2, a) analytically. When A and B are spheres in d = 2

and 3, we obtain explicit results for G(R1, R2, a) by numerical calculations [13]. We obtain

the result that the mutual information SA;B ≡ SA+SB−SAB is independent of the ultraviolet

cutoff length and G(R1, R2, a) is proportional to the simple product of the surface areas of

two spheres. (Note that we cannot determine the functional form of G(R1, R2) only by the

constraints from dimensional analysis, symmetry, and behavior in the limit R1 → 0. For

example, G(R1, R2) = R3
1R2 + R1R3

2 is not prohibited by these constraints.) The mutual

information is a quantity that measures the entanglement between two systems. (See e.g.

[14]) Recently, our numerical results of the mutual information of two spheres for d = 2 and
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d = 3 are checked by analytical calculation carried out by Cardy [23]. Our results agree

with the results of Cardy [23] within numerical errors. In order to examine whether only the

degrees of freedom on the surface of the spheres contribute to the mutual information or not,

we calculate the mutual information SD;E of two same spherical shells D and E for d = 3 and

the mutual information SH;I of two same rings H and I for d = 2. The internal (external)

radii of the spherical shell and the ring are L1 (L2). The distance between the centers of the

two spherical shells and that between the two rings are r. We obtain the result that SD;E

and SH;I are monotone decreasing function of L1. Then not only the degrees of freedom

on the surface of the sphere but also those on the inside region contribute to the mutual

information. This result is remarkably different from that of the entanglement entropy to

which the degrees of freedom on the surface of the boundary contribute mainly.

By using the method used in the Minkowski spacetime case with some modifications, we

study the entanglement entropy, SC , of the massless free scalar field on the outside region C

of two black holes A and B whose radii are R1 and R2 and how it depends on the distance,

r(# R1, R2) , between two black holes [12]. To a distant observer, an object falling into a

black hole takes an infinite time to reach the event horizon and the outside region is isolated

from the inside region if we neglect the change of the mass of the black hole. Then we are

probably able to consider the entanglement entropy of quantum fields on the outside region

C of two black holes A and B as thermodynamic entropy, and we can see the entropic force

acting on the two black holes from the r dependence of SC . We consider two systems X

and Y , then one can show SX = SY in general [14] if a composite system XY is in a pure

state. Then SC = SAB when the state of the field on the whole space is a pure state. So

we can use the method used in the Minkowski spacetime case with some modifications. We

consider the case that the state of the massless free scalar field is the vacuum state which

depends how to choose the time coordinate. We choose the coordinate system which covers

whole space time and does not have the coordinate singularity on the horizons. We consider

the property of the entropic force. We will roughly estimate the magnitude of the entropic

force between two black holes by using SAB in Minkowski spacetime.

We mention our assumption that we can consider the entanglement entropy of two black

holes as thermodynamic entropy. The important point is that the outside region is isolated

or not. To a distant observer, an object falling into a black hole takes an infinite time to reach

the event horizon and the outside region is isolated from the inside region. Black holes act
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as ”walls” which hide inside regions but hold the entanglement between inside and outside

regions. So we are probably able to consider the entanglement entropy of quantum fields

on the outside region C of two black holes A and B as thermodynamic entropy. However,

entanglement entropy has property which is different from that of thermodynamic entropy.

So we must reconsider statistical mechanics from a fundamental level to judge whether our

assumption is really correct or not.

This thesis is organized as follows. The first half is the analytical study. In Section II we

review basic ideas and basic properties of entanglement entropy. In Section III we obtain the

general behavior of the entanglement entropy of two disjoint regions in translational invariant

vacuum in general QFT. There have been some computational methods of entanglement

entropy [15–17] and the reader is urged to refer to [18–20] for reviews. Among several others,

we review in Section IV the method of Bombelli et al [1] which is most straightforward and

powerful enough to obtain the r dependence of SAB in free scalar field theory and suitable for

numerical calculations. In Section V we study SAB in d+1 dimensional Minkowski spacetime.

In this case the state of the massless free scalar field is the Minkowski vacuum state and we

take the trace over the degrees of freedom residing in A and B. We develop the method of

Bombelli et al and obtain the leading term of SAB with respect to 1/r. The result in this

section agrees with the general behavior in Section III. This method can be used for any

scalar fields in curved space time whose Lagrangian is quadratic with respect to the scalar

fields (i.e higher derivative terms can exist). In Section VI we consider the black hole case.

We use the method used in Section V with some modifications. We show that SC can be

expected to be the same form as that in the Minkowski spacetime case. But in the black hole

case SA and SB depend on r, so we do not fully obtain the r dependence of SC . In Section

VII we assume that the entanglement entropy can be regarded as thermodynamic entropy,

and consider the entanglement entropic force. We argue how to separate the entanglement

entropic force from other force and how to cancel SA and SB whose r dependence are not

obtained. Then we obtain the physical prediction which can be tested experimentally in

principle, and discuss the possibility to measure the entanglement entropic force.

The second half is the numerical study. In Section VIII, we apply the formalism of

Bombelli et al [1] to a massless free scalar field on lattices in order to calculate numerically

the entanglement entropy. We improve the computational method of Bombelli et al to reduce

the computational complexity. In Section IX, we numerically calculate the entanglement

4



entropy SAB, the mutual information SD;E, and SH;I in (d + 1)-dimensional Minkowski

spacetime for d = 2, 3. We roughly estimate the magnitude of the entropic force between

two black holes by SAB in (3+1)-dimensional Minkowski spacetime. In Appendix B we

obtain a formula for a finite series as a by-product of our calculation.

II. BASIC PROPERTIES OF ENTANGLEMENT ENTROPY

In this section we review basic ideas and basic properties of entanglement entropy [14, 18].

A. The definition of entanglement entropy

We consider a quantum mechanical system with many degrees of freedom such as spin

chains. We divide the total system into two subsystems A and B. In the spin chain ex-

ample, we just artificially cut off the chain at some point and divide the lattice points into

two groups. Notice that physically we do not do anything to the system and the cutting

procedure is an imaginary process. Accordingly the total Hilbert space can be written as a

direct product of two spaces Htot = HA ⊗HB corresponding to those of subsystems A and

B. The observer who is only accessible to the subsystem A will feel as if the total system

is described by the reduced density matrix ρA = trBρAB where the trace is taken only over

the Hilbert space HB. Now we define the entanglement entropy of the subsystem A as the

von Neumann entropy of the reduced density matrix ρA

SA = −trAρA ln ρA. (2)

Notice that SAB = 0 does not necessarily mean SA = SB = 0. For example, we consider

the case that A and B are the spin 1/2 particles and the state of total system is |ψ〉 =

(|0〉 |1〉 + |1〉 |0〉)/
√
2 where |0〉 (|1〉) is the spin down (up) state. In this case SAB = 0 and

SA = ln 2 because ρA = (|0〉 〈0|+ |1〉 〈1|)/2. The entanglement entropy measures the degree

of entanglement.

When we devide the total system into three subsystems A, B, and C, we define the

entanglement entropy in the same way. For example, we define the entanglement entropy of

A and B as

SAB = −trABρAB ln ρAB, (3)

where ρAB = trCρABC .
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B. General properties

There are several useful properties which entanglement entropy enjoys generally.(See e.g.

[14].) We summarize some of them for later use.

1. If a composite system AB is in a pure state, then SA = SB.

2. If ρAB = ρA ⊗ ρB, then SAB = SA + SB.

3. For any subsystem A and B, the following inequalities hold:

SAB ≤ SA + SB, (4)

SAB ≥| SA − SB | . (5)

The first is the subadditivity inequality, and the second is the triangle inequality. From (4)

the mutual information SA;B ≡ SA + SB − SAB is always positive.

C. Entanglement entropy in QFT and area law

When we consider quantum field theory in d + 1 dimensional spacetime R × N , where

R and N denote the time direction and the d dimensional space-like manifold respectively,

we define the subsystem by a d dimensional domain A ⊂ N at fixed time t = t0. (So this

is also called geometric entropy.) In the vacuum state the leading term of the entanglement

entropy of A is proportional to the area of the boundary ∂A in many cases [1, 2]. This

behavior can be intuitively understood since the entanglement between A and B occurs at

the boundary ∂A most strongly. However, the simple area law does not always holds. The

entanglement entropy in 1 + 1 dimensional CFT scales logarithmically with respect to the

length l of A, SA = c
3 ln

l
a , where c is the central charge of the CFT [15].

There have been some computational methods of entanglement entropy [15–17]. We

review in Section IV the method of Bombelli et al [1]. Now we mention other methods.

There is a useful technique called the replica trick. In order to calculate the entanglement

entropy, we first evaluate trAρnA, differentiate it with respect to n and finally take the limit

n → 1,

SA = −trρA log ρA = lim
n→1

trAρnA − 1

1− n
= − ∂

∂n
trAρ

n
A |n=1 . (6)

This is the replica trick. Therefore, what we have to do is to evaluate trAρnA. The path

integral representation of trAρnA is useful for analytical studies. In [10, 11, 15], the entangle-

ment entropy in 1 + 1 dimensional CFT was analytically studied by using the path integral
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representation. In higher dimensional (more than two dimensional) QFT, it is not easy to

evaluate trAρnA. Ryu and Takayanagi [17] proposed the method to calculate entanglement

entropy by using AdS/CFT correspondence. They proposed that the entanglement entropy

SA in d+ 1 dimensional CFT can be computed from the following area law relation

SA =
Area(γA)

4G(d+2)
N

. (7)

The manifold γA is the d-dimensional static minimal surface in AdSd+2 whose boundary is

given by ∂A. Its area is denoted by Area(γA). Also G(d+2)
N is the d+2 dimensional Newton

constant. This holographic formula reproduce the results in 1 + 1 dimensional CFT and its

validity is checked in [17, 18]. This formula is very useful in higher dimensional QFT because

the calculation of Area(γA) is not so difficult in higher dimensions. However, we cannot use

(7) in order to calculate the entanglement entropy of two disjoint compact regions A and B

in a massless free scalar field. When the separation between the two regions is large enough

compared to their sizes, a disconnected surface γdisAB with Area(γdisAB) = Area(γA)+Area(γB)

is the minimal surface. Then, from (7) we obtain SAB = SA+SB and SA;B = SA+SB−SAB =

0. This result means that the correlations between A and B vanishes even if the distance

between them is finite. This behaviour comes probably from the large N limit in AdS/CFT

correspondence [24] and we cannot use (7) to calculate the entanglement entropy of two

disjoint compact regions in a massless free scalar field.

In higher dimensional QFT, it is not easy to compute the entanglement entropy for

arbitrary regiions even in free field theories. Recently, Cardy develops the computational

method to calculate the mutual information of two disjoint compact regions in the limit

when the separation between them is much greater then their sizes [23]. This method is

based on the path integral representation of trABρnAB. He calculated the mutual information

of two spheres A and B for d = 2 and d = 3 [23]. The results are SA;B = 1
3R1R2/r2 for d = 2

and SA;B = 4
15R

2
1R

2
2/r

4 for d = 3. (4/15 = 0.266...) On the other hand, our numerical results

are SA;B = 0.37R1R2/r2 for d = 2 and SA;B = 0.26R2
1R

2
2/r

4 for d = 3. The corrections to

the leading terms of SA;B with respect to 1/r are more important in d = 2 than d = 3 which

may account for the above discrepancy [23].
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III. GENERAL BEHAVIOR

We consider entanglement entropy of two disjoint regions (A and B) in translational

invariant vacuum in general QFT in d+1 dimensional spacetime (d ≥ 2). We will show that

SC reaches its maximum value when r → ∞, where C is the outside region of A and B.

Because of translational invariance, SA and SB are independent of their positions,

so,∂SA
∂r = 0 and ∂SB

∂r = 0. And the total system is in a pure state, so we have SC = SAB.

Moreover, in the vacuum state, limr→∞ ρAB = ρA⊗ ρB because of the cluster decomposition

principle [25]. So the general property 2 suggests

lim
r→∞

SC(r) = SA + SB. (8)

We apply (4) and (5)to this system, then we obtain

| SA − SB |≤ SC(r) ≤ SA + SB. (9)

Eqs. (8) and (9) show that SC (as a function of r) reaches its maximum value when r → ∞.

IV. HOW TO COMPUTE ENTANGLEMENT ENTROPY

In this section we review the computational method developed by Bombelli et al [1].

A. Entanglement entropy of a collection of coupled harmonic oscillators

As a model amenable to unambiguous calculation we deal with the scalar field on Rd as a

collection of coupled oscillators on a lattice of space points, labeled by capital Latin indices,

the displacement at each point giving the value of the scalar field there. In this case the

Lagrangian can be given by

L =
1

2
GMN q̇

M q̇N − 1

2
VMNq

MqN , (10)

where qM gives the displacement of the Mth oscillator and q̇M its generalized velocity. The

symmetric matrix GMN is positive definite and therefore invertible; i.e., there exists the

inverse matrix GMN such that

GMPGPN = δMN . (11)
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The matrix VMN is also symmetric and positive definite. The matrices GMN and VMN are

independent of qM and q̇M . Introducing the conjugate momentum to qM ,

PM = GMN q̇
N , (12)

we can write the Hamiltonian for our system as

H =
1

2
GMNPMPN +

1

2
VMNq

MqN . (13)

Next, consider the positive definite symmetric matrix WMN defined by

WMAG
ABWBN = VMN . (14)

In this sense the matrix W is the ”square root” of V in the scalar product with G.

Now consider a region Ω in Rd. The oscillators in this region will be specified by Greek

letters, and those in the complement of Ω, Ωc, will be specified by lowercase Latin letters.

We will use the following notation

WAB =



Wab Waβ

Wαb Wαβ



 ≡



 A B

BT C



 WAB =



W ab W aβ

W αb Wαβ



 ≡



 D E

ET F



 , (15)

where WAB is the inverse matrix of WAB (WAB is not obtained by raising indices with GAB).

So we have


1 0

0 1



 =



 A B

BT C







 D E

ET F



 =



 AD +BET AE +BF

BTD + CET BTE + CF



 . (16)

If the information on the displacement of the oscillators in Ω is considered as unavailable,

we can obtain a reduced density matrix ρred for Ωc, integrating out over qα ∈ R for each of

the oscillators in the region Ω, and then we have

ρred(q
a, q′b) =

∫ ∏

α

dqαρ(qa, qα, q′b, qα), (17)

where ρ is a density matrix of the total system.

We can obtain the density matrix for the ground state by the standard method, and it

is a Gaussian density matrix. Then, ρred is obtained by a Gaussian integral, and it is also a

Gaussian density matrix. The entanglement entropy S = −trρred ln ρred is given by [1]

S =
∑

n

f(λn), (18)

f(λ) ≡ ln(
1

2
λ1/2) + (1 + λ)1/2 ln[(1 + λ−1)1/2 + λ−1/2], (19)
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where λn are the eigenvalues of the matrix

Λa
b = −W aαWαb = −(EBT )a b = (DA)a b − δa b. (20)

In the last equality we have used (16). The last expression in (20) is useful for numerical

calculations when Ωc is smaller than Ω, because the indices of A and D take over only the

space points on Ωc and the matrix sizes of A and D are smaller than those of B and E. It

can be shown that all of λn are non-negative as follows. From (16) we have

AΛ = −AEBT = BFBT . (21)

It is easy to show that A,C,D and F are positive definite matrices when W and W−1 are

positive definite matrices. Then AΛ is a positive semidefinite matrix as can be seen from

(21). So all eigenvalues of Λ are non-negative. After all, we can obtain the entanglement

entropy by solving the eigenvalue problem of Λ.

B. The continuum limit

Next, we apply the above formalism to a massless free scalar field in (d+1) dimensional

Minkowski spacetime. We take the continuum limit in the above formalism. In this case the

Lagrangian is given by

L =

∫
ddx

1

2
[φ̇2 − (∇φ)2]. (22)

Then the potential term becomes

1

2
VABq

AqB →
∫

ddx
1

2
[(∇φ)2]. (23)

The matrices V,W and W−1 are given in the momentum representation by,

V (x, y) =

∫
ddk

(2π)d
(k2)eik·(x−y) (24)

W (x, y) =

∫
ddk

(2π)d
(k2)1/2eik·(x−y) (25)

W−1(x, y) =

∫
ddk

(2π)d
(k2)−1/2eik·(x−y) (26)

From (20), the matrix Λ is obtained as a sum over the oscillators in the region Ω,

Λ(x, y) = −
∫

Ω

ddzW−1(x, z)W (z, y). (27)
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We now have to solve the eigenvalue equation
∫

Ωc

ddyΛ(x, y)f(y) = λf(x), (28)

where Ωc is the complementary set of Ω, and then we use the eigenvalues in the expression

for the entropy (18).

V. ENTANGLEMENT ENTROPY OF TWO DISJOINT REGIONS IN A MASS-

LESS FREE SCALAR FIELD IN d+1 DIMENSIONAL MINKOWSKI SPACETIME

We consider two spheres A and B whose radii are R1 and R2, and define the outside

region as C. (See Fig 1.) We derive the r(# R1, R2) dependence of SC(r, R1, R2) by using

the formalism of the preceding section. (In the later analysis we do not use the shapes of

A and B, so all analysis in this section holds for A and B which have arbitrary shapes. In

this case R1 and R2 are the characteristic sizes of A and B.)

We consider SAB(r, R1, R2) because SC = SAB in a pure state and the r dependence of

SAB is clearer than that of SC in the calculation. In this case the region Ω is C.

We obtain the r dependence of SAB by following three steps:

(1) We obtain the r dependence of Λ by using the ‖x − y‖ dependences of W (x, y) and

W−1(x, y). We decompose Λ into the non-perturbative part and the perturbative part as

Λ = Λ0 + δΛ, where Λ0 ≡ limr→∞ Λ.

(2) We obtain λm(r) which are the eigenvalues of Λ by perturbation theory. This is almost

similar to the time-independent perturbation theory in quantum mechanics in the presence

of degeneracy. We can regard Λ as Hamiltonian. Note that Λ is not a symmetric matrix.

So we must slightly modify the perturbation theory in quantum mechanics.

(3) In Step (2), we had λm(r) as λm(r) = λ0m + δλm(r), where λ0m are the eigenvalues of

Λ0. We substitute these λm(r) into (19), then we obtain SAB(r, R1, R2).

First we examine the ‖x − y‖ dependences of W (x, y) and W−1(x, y). Generally en-

tanglement entropy has UV divergence as discussed in [1]. So we use a momentum cutoff

l−1 in integrals (24)-(26), though these integrals are well defined as Fourier transforms of

distributions. (The other regularization methods are discussed in [1].) When d ≥ 2 and

l/‖x− y‖ → 0 , W (x, y) and W−1(x, y) are

W (x, y) =
Ad

‖x− y‖d+1
, W−1(x, y) =

Bd

‖x− y‖d−1
, Ad, Bd ∈ R (29)
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r
A

C

B

1R 2R

FIG. 1. Two spheres A and B, and the outside region C.

!

!

"

"

C

C

=W

FIG. 2. The matrix elements of W. The lines denote the matrix elements W (x, y) in (29). An

initial point and an end point of an arrow denote a row and a column respectively. We can obtain

products of matrices by connecting arrows and integrating joint points on regions where the joint

points exist. Instead of solid lines we use dotted lines for W−1.

where Ad and Bd are nonzero dimensionless constants (see Appendix A). We cannot ob-

tain (29) by only using a dimensional analysis because l/‖x − y‖ is dimensionless. Indeed

V (x, y) → 0 when l/‖x − y‖ → 0, i.e. V (x, y) is zero when ‖x − y‖ is finite. On the other

hand W and W−1 have nonzero value for ‖x − y‖ > 0 because they are kernels of integral

operators of nonlocal interaction (i.e Fourier transformations of (
√
k2)±1) . In Appendix A

we explicitly show that W and W−1 have nonzero value for ‖x− y‖ > 0 and Eq. (29) holds.

Next, we obtain the r dependence of Λ by using (29). We represent the matrix elements
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−=Λ

−=

FIG. 3. The diagrammatic calculation of Λ in (30).

=Λ
+

+

−

−

+ + = 0
FIG. 4. The diagrammatic representations of Λ in (32) and the identity in (31).

≡Λ1δ
0

0

0

0
≡Λ2δ

≡ΛD

0

0 −

−

21 Λ+Λ+Λ=Λ δδD

FIG. 5. The diagrammatic representations of δΛ1, δΛ2 and ΛD.
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0

0
−=Λ0 ≡

01Λ
02Λ
0

0

0
0

−=0A

=Λ1
0δA

0

0

FIG. 6. The diagrammatic representations of Λ0, A0 and A0δΛ1.

=ΛDδ

0

0 −

0Λ−ΛD

=
−

0

0
=

FIG. 7. The diagrammatic calculation of δΛD in (41).

of W (W−1) diagrammatically in Fig 2. Instead of solid lines we use dotted lines for W−1.

The lines denote the matrix elements W (x, y)(or W−1(x, y)) in (29). An initial point and an

end point of an arrow denote a row and a column respectively. We can obtain products of

matrices by connecting arrows and integrating joint points on regions where the joint points

exist. We label coordinates in A,B and C as xa, xb and xc. Then, from Fig 3 we obtain

Λ = −EBT as

Λ =



Λ(xa, ya) Λ(xa, yb)

Λ(xb, ya) Λ(xb, yb)



 = −



W−1(xa, zc)

W−1(xb, zc)




(
W (zc, ya) W (zc, yb)

)

= −




∫
C ddzcW−1(xa, zc)W (zc, ya)

∫
C ddzcW−1(xa, zc)W (zc, yb)

∫
C ddzcW−1(xb, zc)W (zc, ya)

∫
C ddzcW−1(xb, zc)W (zc, yb)



 .

(30)
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To make the r dependence of the non-diagonal elements of Λ clear, we use the following

identity, ∫

A+B+C

ddzW−1(xa, z)W (z, yb) = δ(xa − yb) = 0. (31)

We represent this identity diagrammatically in Fig 4. From (30) and (31) we obtain (see

Fig 4)

Λ(xa, yb) =

∫

A

ddzaW
−1(xa, za)W (za, yb) +

∫

B

ddzbW
−1(xa, zb)W (zb, yb)

Λ(xb, ya) =

∫

A

ddzaW
−1(xb, za)W (za, ya) +

∫

B

ddzbW
−1(xb, zb)W (zb, ya).

(32)

Note that from (29) W (x, y) and W−1(x, y) have the different ‖x−y‖ dependence. So, from

(30) and (32) we decompose Λ as

Λ = ΛD + δΛ1 + δΛ2 (33)

where we define (see Fig 5)

ΛD ≡



Λ(xa, ya) 0

0 Λ(xb, yb)



 , (34)

δΛ1 ≡



 0
∫
B ddzbW−1(xa, zb)W (zb, yb)

∫
A ddzaW−1(xb, za)W (za, ya) 0



 , (35)

δΛ2 ≡



 0
∫
A ddzaW−1(xa, za)W (za, yb)

∫
B ddzbW−1(xb, zb)W (zb, ya) 0



 . (36)

We approximate W (xa, yb) ≈ Ad
rd+1 and W−1(xa, yb) ≈ Bd

rd−1 because r # R1, R2. Then we

have

δΛ1 ≈
Bd

rd−1



 0
∫
B ddzbW (zb, yb)

∫
A ddzaW (za, ya) 0



 , (37)

δΛ2 ≈
Ad

rd+1



 0
∫
A ddzaW−1(xa, za)

∫
B ddzbW−1(xb, zb) 0



 . (38)

Next we consider the non-perturbative part Λ0 = limr→∞ Λ. From (37) and (38) we can

see that δΛ1 and δΛ2 become 0 when r → ∞. Note that the integral region of the integral

in Λ(xa, ya) (Λ(xb, yb)) become Ac ≡ Rd − A (Bc ≡ Rd − B) when r → ∞, then we obtain
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(see Fig 6)

Λ0 = −




∫
Ac ddzW−1(xa, z)W (z, ya) 0

0
∫
Bc ddzW−1(xb, z)W (z, yb)



 . (39)

From (39) we rewrite (33) as follows,

Λ = Λ0 + δΛ1 + δΛ2 + δΛD, (40)

where we define (see Fig 7)

δΛD ≡ ΛD − Λ0 =




∫
B ddzbW−1(xa, zb)W (zb, ya) 0

0
∫
A ddzaW−1(xb, za)W (za, yb)



 . (41)

We use the same approximation as we used in (37) and (38), then we obtain

δΛD ≈ AdBd

r2d




∫
B ddzb 0

0
∫
A ddza



 . (42)

When we perform the perturbative calculation to obtain λm(r) which is the eigenvalues of

Λ, from (37), (38), (40) and (42) we can neglect δΛD because it is higher order than δΛ1

and δΛ2 with respect to 1/r. And we can neglect δΛ2 because its nonzero matrix elements

are in the same position as δΛ1 and δΛ2 is higher order than δΛ1 with respect to 1/r.

Because Λ is not a symmetric matrix, in the later perturbative calculation we need A0δΛ1

where A0 is defined as (see Fig 6)

A0 ≡ lim
r→∞

A =



W (xa, ya) 0

0 W (xb, yb)



 . (43)

From (35), (37) and (43) we obtain (see Fig 6)

A0δΛ1 =



 0
∫
A ddza

∫
B ddzbW (xa, za)W−1(za, zb)W (zb, yb)

∫
B ddzb

∫
A ddzaW (xb, zb)W−1(zb, za)W (za, ya) 0





≈ Bd

rd−1



 0
∫
A ddzaW (xa, za)

∫
B ddzbW (zb, yb)

∫
B ddzbW (xb, zb)

∫
A ddzaW (za, ya) 0



 .

(44)

We have finished the first step.
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Next, we calculate λm(r) by perturbation theory. This is almost similar to the time-

independent perturbation theory with degeneracy of quantum mechanics. The only differ-

ence is that Λ is not a symmetric matrix and AΛ is a symmetric matrix.

We can approximate Λ ≈ Λ0 + δΛ1 and regard δΛ1 as the perturbative part. Then, from

(37) we expand λm(r) with respect to 1/rd−1. We expand λm around λ0m ≡ λm(r = ∞),

λm = λ0m + δλ1m + δλ2m, (45)

where δλ1m and δλ2m are the first and the second order perturbations.

Next we substitute (45) into (19),

SAB(r, R1, R2) =
∑

m

f(λm)

= SA(R1) + SB(R2) +
∑

m

[
δλm

df

dλm

∣∣∣∣
λm=λ0m

+
1

2
(δλm)

2 d2f

dλ2m

∣∣∣∣
λm=λ0m

]
,

(46)

where δλm ≡ δλ1m + δλ2m. We will show that the first order perturbation in (46) (i.e
∑

m δλ
1
m

df

dλm

∣∣∣∣
λm=λ0m

) is zero, so we must calculate the second order perturbations.

We label the λ0m’s as λ
0
m > λ0n when m > n. And we define the eigenvectors of Λ0,

f 0
m1α =



f 0
m1α(xa)

0



 , f 0
n2β =



 0

f 0
n2β(xb)



 ,Λ0f 0
m1α = λ

0
mf

0
m1α,Λ

0f 0
m2β = λ

0
mf

0
m2β, (47)

where α = 1, · · · ,Mm and β = 1, · · · , Nn are the labels of the degeneracy. And we normalize

f 0
miα (i = 1, 2) as follow,

f 0T
miαA

0f 0
njβ = δmnδijδαβ. (48)

This normalization is always possible because A0 is a positive definite symmetric matrix.

For general R1 and R2, Λ01 and Λ02 have different eigenvalues, so there are two groups of

λ0m; one is the group of the common eigenvalues of Λ01 and Λ02, the other is not. We will

see that δλ1m of the latter group are zero. We expand fmγ which is the eigenvector of Λ in

the following way,

fmγ =
∑

α

aγαf
0
m1α +

∑

β

bγβf
0
m2β + f 1

mγ + f 2
mγ ≡ ξ0mγ + f 1

mγ + f 2
mγ (49)

where f 1
mγ and f 2

mγ are the first and the second order perturbations. Note that when λ0m

is an eigenvalue of Λ01 (Λ02) and is not an eigenvalue of Λ02 (Λ01), then the coefficients bγβ
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(aγα) are zero ; because the zeroth order eigenvectors f 0
m2β (f 0

m1α) do not exist. So either

the coefficients aγα or bγβ are zero when λ0m is not a common eigenvalue of Λ01 and Λ02. We

substitute (49) into the eigenvalue equation (we approximate Λ ≈ Λ0 + δΛ1) , then we have

(Λ0 + δΛ1)fmγ = (λ0m + δλ1mγ + δλ
2
mγ)fmγ. (50)

We obtain equations of the first and the second order perturbation.

Λ0f 1
mγ + δΛ1ξ

0
mγ = λ

0
mf

1
mγ + δλ

1
mγξ

0
mγ, (51)

Λ0f 2
mγ + δΛ1f

1
mγ = λ

0
mf

2
mγ + δλ

1
mγf

1
mγ + δλ

2
mγξ

0
mγ. (52)

We multiply (51) by f 0T
mjγ′A

0 from the left . The first term of the left hand side of (51) cancel

the first term of the right hand side of (51) because A0Λ0 is a symmetric matrix, then we

obtain

∑

α

aγαV
j1
mγ′mα +

∑

β

bγβV
j2
mγ′mβ = δλ

1
mγ(aγγ′δ

j1 + bγγ′δ
j2), (53)

where

V ij
mαnβ ≡ f 0T

miαA
0δΛ1f

0
njβ. (54)

From (44) we obtain V 11
mαnβ = V 22

mαnβ = 0 and

V 12
mαnβ =

(
f 0
m1α(xa) 0

)


A0δΛ1(xa, ya) A0δΛ1(xa, yb)

A0δΛ1(xb, ya) A0δΛ1(xb, yb)







 0

f 0
n2β(yb)





=
Bd

rd−1

∫

A

ddxa

∫

A

ddzaW (xa, za)f
0
m1α(xa)

∫

B

ddyb

∫

B

ddzbW (yb, zb)f
0
n2β(yb) ≡

Bd

rd−1
Cmαnβ

(55)

and V 12
mαnβ = V 21

nβmα. We define an Mm × Nn matrix Cmn as (Cmn)αβ = Cmαnβ and write

(53) as follows,

Bd

rd−1



 0 Cmm

CT
mm 0







aγ

bγ



 = δλ1mγ



aγ

bγ



 (56)

where (aγ)α = aγα and (bγ)β = bγβ. From (56), if λ0m is not a common eigenvalue of Λ01 and

Λ02, δλ1mγ is zero; because either aγα or bγβ are zero when λ0m is not a common eigenvalue of

Λ01 and Λ02. We first consider the case that Mm ≥ Nm. In this case we obtain the following
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eigenvalue equation [26].

det

∣∣∣∣∣∣

x1Mm×Mm −Cmm

−CT
mm x1Nm×Nm

∣∣∣∣∣∣
= det(x1Mm×Mm) det(x1Nm×Nm − x−1CT

mmCmm)

= xMm−Nm det(x21Nm×Nm − CT
mmCmm) = 0.

(57)

We define the eigenvalues of CT
mmCmm as cmα (α = 1, · · ·Mm). CT

mmCmm is a positive

semidefinite matrix because Cmm is a real matrix, so cmα ≥ 0. Then we obtain δλ1mγ from

(56) and (57) .

δλ1mγ =






0

± Bd

rd−1

√
cmα (α = 1, · · ·Mm)

. (58)

When Mm < Nm, we can obtain δλ1mγ in the same way. We define the eigenvalues of

CmmCT
mm as dmα(≥ 0) (α = 1, · · ·Nm). Then we obtain

δλ1mγ =






0

± Bd

rd−1

√
dmα (α = 1, · · ·Nm)

. (59)

Then
∑

m,γ δλ
1
mγ

df

dλm

∣∣∣∣
λm=λ0m

= 0, because we have
∑
γ δλ

1
mγ = 0 from (58) and (59).

Next we consider δλ2mγ. We skip the detailed calculation because it is also almost similar

to the time-independent perturbation theory with degeneracy of quantum mechanics. Then

we can write δλ2mγ as follows

δλ2mγ =
∑

n('=m),i,β

1

λ0m − λ0n
(f 0T

niβA
0δΛ1ξ

0
mγ)(ξ

0T
mγA

0δΛ1f
0
niβ)

=
∑

n('=m)

1

λ0m − λ0n
ξ0TmγA

0δΛ1φ̂nδΛ1ξ
0
mγ

(60)

where

φ̂n ≡
∑

i,β

f 0
niβf

0T
niβA

0. (61)

φ̂n is a projection operator on the eigenspace of λ0n. To obtain δλ2mγ we must obtain ξ0mγ by

solving the eigenvalue problem, but it is not necessary for our purpose because we want to

19



know only
∑

m,γ δλ
2
mγ

df

dλm

∣∣∣∣
λm=λ0m

. From (60) we obtain

∑

m,γ

δλ2mγ
df

dλm

∣∣∣∣
λm=λ0m

=
∑

m,γ

∑

n('=m)

1

λ0m − λ0n
ξ0TmγA

0δΛ1φ̂nδΛ1ξ
0
mγ

df

dλm

∣∣∣∣
λm=λ0m

=
∑

m,n(m '=n)

1

λ0m − λ0n
Tr(φ̂mδΛ1φ̂nδΛ1)

df

dλm

∣∣∣∣
λm=λ0m

=
∑

m,n(m>n)

1

λ0m − λ0n
Tr(φ̂mδΛ1φ̂nδΛ1)

(
df

dλm

∣∣∣∣
λm=λ0m

− df

dλn

∣∣∣∣
λn=λ0n

)
.

(62)

In the second line we have used

∑

γ

ξ0mγξ
0T
mγA

0 = φ̂m, (63)

and in the third line we have used cyclic property of trace. Next we examine the sign of

(62). Its trace term is positive because

Tr(φ̂mδΛ1φ̂nδΛ1) =
∑

i,α,j,β

(f 0T
niαA

0δΛ1f
0
mjβ)(f

0T
mjβA

0δΛ1f
0
niα)

=
∑

i,α,j,β

V ij
nαmβV

ji
mβnα =

∑

i,α,j,β

(V ij
nαmβ)

2 = 2

(
Bd

rd−1

)2∑

α,β

(Cmαnβ)
2 ≥ 0.

(64)

And from (19) we obtain

df

dλ
=

1

2
√
1 + λ

ln

[√
1 +

1

λ
+

1√
λ

]
> 0 for λ > 0, (65)

d2f

dλ2
= − 1

4
√
1 + λ

[
1

1 + λ
ln

[√
1 +

1

λ
+

1√
λ

]
+

1

λ
√
1 + λ

]
< 0 for λ > 0. (66)

From (64), (66) and λ0m > λ0n (m > n) , (62) is negative. And from (66) we obtain

∑

m,γ

(δλ1mγ)
2 d2f

dλ2m

∣∣∣∣
λm=λ0m

≤ 0. (67)
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Finally, from (46), (58), (59), (62) and (64) we obtain

SAB(r, R1, R2)− SA(R1)− SB(R2) =
∑

m,γ

[
δλ2mγ

df

dλm

∣∣∣∣
λm=λ0m

+
1

2
(δλ1m)

2 d2f

dλ2m

∣∣∣∣
λm=λ0m

]

=

(
Bd

rd−1

)2 [ ∑

m,n(m>n)

2

λ0m − λ0n

∑

α,β

(Cmαnβ)
2

(
df

dλm

∣∣∣∣
λm=λ0m

− df

dλn

∣∣∣∣
λn=λ0n

)

+
∑

m′,α

cm′α
d2f

dλ2m

∣∣∣∣
λm=λ0

m′

+
∑

m′′,α

dm′′α
d2f

dλ2m

∣∣∣∣
λm=λ0

m′′

]
≡ −1

r2d−2
G(R1, R2) ≤ 0

(68)

where
∑

m′ denotes the summation taken over the common eigenvalues of Λ01 and Λ02,

whose degeneracy is Mm ≥ Nm, and
∑

m′′ denotes the summation taken over the common

eigenvalues of Λ01 and Λ02, whose degeneracy is Mm < Nm.

We have obtained the r dependence of SC(r, R1, R2) = SAB(r, R1, R2) in (68), then we

next consider G(R1, R2). To calculate G(R1, R2) we need to know λ0m and f 0
miα which we

do not examine in this paper. But from Cmαnβ(R1 = 0, R2) = Cmαnβ(R1, R2 = 0) = 0 we

obtain a trivial property of G(R1, R2),

G(R1 = 0, R2) = G(R1, R2 = 0) = 0. (69)

And G(R1, R2) depends on the cutoff length l because λ0m , f 0
miα and Cmαnβ depend on l.

(λ0m are dimensionless, so they depend on R1/l or R2/l. And in (55)
∫
A ddzaW (xa, za) and

∫
B ddzbW (yb, zb) depend on l because W (x, y) depend on l for x ≈ y, so Cmαnβ depends on

l. ) Probably G(R1, R2) diverges when l → 0, as SA(R1) and SB(R2) have 1/ld−1 divergence

[1, 2]. And G(R1, R2) most likely diverges more weakly than SA(R1) and SB(R2). Then, by

dimensional analysis, when R1 = R2 ≡ R we can assume

G(R1 = R,R2 = R) = gR2d−2

(
R

l

)m (
ln

(
R

l

))n

d− 1 ≥ m ≥ 0, n ≥ 0, g > 0 (70)

where g is a dimensionless constant.

Finally we consider the condition under which the approximations are good. When

r # R1, R2, δΛ ≈ δΛ1 is a good approximation. When | Bd

rd−1
Cmαnβ| 2 |λ0m − λ0n|, the

perturbation theory is a good approximation. The latter condition might have l dependence,

so we might need the condition R/r 2 (l/R)a, where a ≥ 0.
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FIG. 8. The diagrammatic representations of Λ̃D, Ã and δΛ̃D.

VI. ENTANGLEMENT ENTROPY OF TWO BLACK HOLES IN A d+1 DIMEN-

SIONAL MASSLESS FREE SCALAR FIELD

In this section we consider the entanglement entropy of the massless free scalar field on

the outside region C of two black holes A and B whose radii are R1 and R2. The action of

the massless free scalar field is given by

S = −1

2

∫
ddx

√
−ggµν∇µφ∇νφ. (71)

First we specify the vacuum state of the scalar field. The vacuum state is specified by spec-

ifying the time coordinate t. We use the coordinate system which have following properties:

this coordinate system covers the inside and the outside regions of two black holes and does

not have the coordinate singularity on the horizons and becomes the orthogonal coordinate

system of Minkowski spacetime in the region far from the two black holes. To construct

this coordinate system, we use the coordinates which is similar to the Kruskal coordinates

in the inside regions and the neighborhood of black holes, and similar to the Schwarzschild

coordinates in the other region. In this coordinate system gtt is positive everywhere, then

from (71) GMN and VMN in (10) are positive definite. So we can use the formalism in the

Section IV.

We can use the method of the last section with some modifications. In the black hole

case W (x, y) and W−1(x, y) depend on r, so we write them as W (x, y; r) and W−1(x, y; r).

Exactly in the same way as in Minkowski spacetime, Eqs. (33)-(36) hold because (31) holds.
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On the other hand Λ0(= limr→∞ Λ) changes because W (x, y; r) and W−1(x, y; r) depend on

r. We define WA(x, y) and W−1
A (x, y)(WB(x, y) and W−1

B (x, y)) as W (x, y) and W−1(x, y)

in the case that the only one black hole A(B) exists. Then we have

Λ0 = −




∫
Ac ddzW

−1
A (xa, z)WA(z, ya) 0

0
∫
Bc ddzW

−1
B (xb, z)WB(z, yb)



 . (72)

It is difficult to evaluate the r dependence of δΛD = ΛD−Λ0 because it is difficult to evaluate

W (x, y; r) − WA(B)(x, y) and W−1(x, y; r) − W−1
A(B)(x, y). So, in the black hole case we do

not consider Λ0 as the non-perturbative part. Instead we define Λ̃D(r) and Ã(r) as (see Fig

8)

Λ̃D(r) ≡



ΛA(xa, ya; r) 0

0 ΛB(xb, yb; r)





≡



−
∫
Ac ddzW−1(xa, z; r)W (z, ya; r) 0

0 −
∫
Bc ddzW−1(xb, z; r)W (z, yb; r)



 , (73)

Ã(r) ≡



W (xa, ya; r) 0

0 W (xb, yb; r)



 , (74)

and we consider Λ̃D as the non-perturbative part. Note that ΛA and ΛB are the matrices

Λ corresponding to SA(r, R1, R2) and SB(r, R1, R2). So we will obtain SAB as the following

form, SAB(r, R1, R2) = SA(r, R1, R2) + SB(r, R1, R2) + δSAB(r, R1, R2). We calculate the

leading term of δSAB(r, R1, R2) with respect to 1/r.

We define δΛ̃D ≡ ΛD − Λ̃D (see Fig 8), then we have Λ = Λ̃D + δΛ1 + δΛ2 + δΛ̃D. To

evaluate δΛ1, δΛ2 and δΛ̃D, we evaluate W (xa, yb; r) and W−1(xa, yb; r). When r # R1, R2,

by dimensional analysis we obtain W (xa, yb; r) ≈ Ad
rd+1L1(R1/r,R2/r) and W−1(xa, yb; r) ≈

Bd
rd−1L2(R1/r,R2/r), where L1 and L2 are dimensionless functions of R1/r and R2/r. The

space time becomes Minkowski space time when R1 → 0 and R2 → 0, so in this limit

probably we have L1 → 1 and L2 → 1. This limit is equivalent to r → ∞, so we have

limr→∞ L1 = limr→∞ L2 = 1. Then we obtain δΛ1 = O(1/rd−1), δΛ2 = O(1/rd+1) and

δΛ̃D = O(1/r2d) as well as the Minkowski spacetime case. We can neglect δΛ2 and δΛ̃D

for the same reason as in the Minkowski spacetime case (see below Eq.(42)). So we can

approximate Λ ≈ Λ̃D+ δΛ1. Then we change the perturbative calculation in the last section

as follow

Λ0 → Λ̃D(r) A0 → Ã(r) λ0m → λ̃0m(r) f 0
miα → f̃ 0

miα(r) (75)

23



where λ̃0m(r) and f̃ 0
miα(r) are the eigenvalues and the eigenvectors of Λ̃D(r). The perturbative

calculation is the same as that in the last section. In this case Ã(r), λ̃0m(r) and f̃ 0
miα(r) depend

on r, but we can remove their r dependence as follow. Because we want to calculate the

leading term of SAB(r, R1, R2) − SA(r, R1, R2) − SB(r, R1, R2) with respect to 1/r, we can

approximate

ÃδΛ1 ≈
BdL2(

R1
r , R2

r )

rd−1



 0
∫
A ddzaW (xa, za; r)

∫
B ddzbW (zb, yb; r)

∫
B ddzbW (xb, zb; r)

∫
A ddzaW (za, ya; r) 0





≈ Bd

rd−1



 0
∫
A ddzaWA(xa, za)

∫
B ddzbWB(zb, yb)

∫
B ddzbWB(xb, zb)

∫
A ddzaWA(za, ya) 0





(76)

In the second line we have approximated L2(
R1
r , R2

r ) ≈ 1, W (xa, za; r) ≈ WA(xa, za) and

W (zb, yb; r) ≈ WB(zb, yb). And we can approximate λ̃0m(r) ≈ λ̃0m(r = ∞) ≡ λ0m and

f̃ 0
miα(r) ≈ f̃ 0

miα(r = ∞) ≡ f 0
miα. Note that λ0m and f 0

miα are the eigenvalues and the

eigenvectors of Λ0, i.e. (Λ0 is in (72))

f 0
m1α =



f 0
m1α(xa)

0



 , f 0
n2β =



 0

f 0
n2β(xb)



 ,Λ0f 0
m1α = λ

0
mf

0
m1α,Λ

0f 0
m2β = λ

0
mf

0
m2β, (77)

where α = 1, · · · ,Mm and β = 1, · · · , Nn are the labels of the degeneracy.

Finally we obtain

SAB(r, R1, R2) = SA(r, R1, R2) + SB(r, R1, R2)−
1

r2d−2
G(R1, R2) (78)

where G(R1, R2) is the same function as that in (68). Note that in this case from (76) Cmαnβ

in G(R1, R2) is

Cmαnβ =

∫

A

ddxa

∫

A

ddzaWA(xa, za)f
0
m1α(xa)

∫

B

ddyb

∫

B

ddzbWB(yb, zb)f
0
n2β(yb). (79)

As in the Minkowski spacetime case, we obtain G(R1 = 0, R2) = G(R1, R2 = 0) = 0 from

Cmαnβ(R1 = 0, R2) = Cmαnβ(R1, R2 = 0) = 0, and G(R1, R2) probably diverges when l → 0,

where l is the cutoff length. The 1/l dependence of G(R1, R2) is most likely the same as

that in the Minkowski spacetime, then we obtain

G(R1 = R,R2 = R) = gBHR
2d−2

(
R

l

)m (
ln

(
R

l

))n

d−1 ≥ m ≥ 0, n ≥ 0, gBH > 0 (80)

where gBH is a dimensionless constant, and m and n are the same numbers as those in the

Minkowski spacetime.
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VII. ENTANGLEMENT ENTROPIC FORCE AND THE PHYSICAL PREDIC-

TION

We assume that we can consider the entanglement entropy of two black holes as thermo-

dynamic entropy. If this assumption is correct, the entropic force acts on two black holes.

We consider the force of the scalar field which acts on two black holes. We consider two

black holes which have same radius R1 = R2 ≡ R, then we can consider the temperature T

to be the Hawking temperature. We define the energy and the free energy of the field on

the region C as EC(r, R) and FC(r, R),

FC(r, R) = EC(r, R)− TSC(r, R) = EC(r, R)− T

(
2SA(r, R)− 1

r2d−2
G(R)

)
. (81)

where G(R) ≡ G(R1 = R,R2 = R) and we have used (78). We define the force of the field

on the region C which acts on one black hole in the direction of increasing r as XC . We

obtain XC by partially differentiating FC with R fixed,

XC(r, R) = −∂FC

∂r
= −∂EC(r, R)

∂r
+ T

(
2
∂SA(r, R)

∂r
+ (2d− 2)

1

r2d−1
G(R)

)
. (82)

In (82) the second term is the entropic force.

We cannot see the effect of the entropic force only from (82) because we do not know

SA(r, R). To see the effect of the entropic force we consider three situations . (See Fig 9)

(1) There are two black holes which have the same radius R and the distance between them

is r.(This is the situation we have considered.) (2) There are one black hole whose radius

is R and one solid ball whose radius is R0 ≈ R(R0 > R), and the distance between them is

r. This ball has mass M which is the same as that of a black hole whose radius is R. And

the scalar field does not exist in this ball. The boundary condition on the scalar field on

the surface of this ball is not so important in the later calculation that we do not specify

the boundary condition in detail. We only require that the scalar field on the outside region

of this ball is not so different from that in the situation (1). (3) There are two solid balls

which have the same radius R0 and the distance between them is r. These balls have the

same properties as those in the situation (2).

We define the force of the field which acts on one black hole or on one ball in the direction

of increasing r as X(1)
C , X(2)

C2
and X(3)

C3
. We illustrate in Fig 9 the directions of force and the

names of the regions.
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FIG. 9. Three situations to see the effect of the entropic force. (1) There are two black holes. (2)

There are one black hole and one solid ball. (3) There are two solid balls. We define the force of

the field which acts on one black hole or on one ball in the direction of increasing r as X(1)
C , X(2)

C2

and X(3)
C3

.

In the situation (2) the state of the field is |0〉(2)A+C2
, where |0〉(2)A+C2

is the vacuum state

on A + C2. Because |0〉(2)A+C2
is a pure state, then S(2)

C2
= S(2)

A . We define Λ(1)
A (Λ(2)

A ) as Λ

corresponding to S(1)
A (S(2)

A ). Because the scalar field does not exist in the ball, then we

obtain

Λ(2)
A − Λ(1)

A ≈
∫

B

ddzbW
−1(xa, zb)W (zb, ya) = O

(
1

r2d

)
. (83)

Then we can approximate S(2)
A = S(1)

A (r, R) +O( 1
r2d ) ≈ S(1)

A (r, R). Then we obtain

X(2)
C2

(r, R) = −
∂F (2)

C2

∂r
= −

∂E(2)
C2

(r, R)

∂r
+ T

∂S(2)
A (r, R)

∂r
≈ −

∂E(2)
C2

(r, R)

∂r
+ T

∂S(1)
A (r, R)

∂r
. (84)

In the situation (3) the state of the field on the region C3 is a pure state, so S(3)
C3

= 0.

Then we obtain

X(3)
C3

(r, R) = −
∂F (3)

C3

∂r
= −

∂E(3)
C3

(r, R)

∂r
. (85)

From (82) (84) and (85) we obtain

X(1)
C1

− 2X(2)
C2

+X(3)
C3

≈ − ∂
∂r

[E(1)
C1

− 2E(2)
C2

+ E(3)
C3

] + (2d− 2)T
1

r2d−1
G(R). (86)

E(1)
C1

− 2E(2)
C2

+ E(3)
C3

is Casimir energy.
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We have not considered the force of gravity. But we can include them in (86) easily. We

define total force acting on one black hole or on one ball in the direction of increasing r as

F (1)
A , F (2)

A and F (3)
ball. Then we obtain

F (1)
A −2F (2)

A +F (3)
ball = X(1)

C1
−2X(2)

C2
−X(3)

C3
≈ − ∂

∂r
[E(1)

C1
−2E(2)

C2
+E(3)

C3
]+ (2d−2)T

1

r2d−1
G(R).

(87)

The force of gravity is canceled in (87). The first and the second terms in the right hand

side are the Casimir force and the effect of entropic force, respectively.

Finally we consider the case d = 3. In this case the Hawking temperature is T = 1
8πGNM =

1
4πR . From (80) and (87) we obtain

F (1)
A − 2F (2)

A + F (3)
ball ≈ − ∂

∂r
[E(1)

C1
− 2E(2)

C2
+ E(3)

C3
] +

gBH

π

R3

r5

(
R

l

)m (
ln

(
R

l

))n

2 ≥ m ≥ 0, n ≥ 0, gBH > 0.

(88)

We roughly estimate the Casimir force by analogy with that of electromagnetic field between

two dielectric spheres with center-to-center distance r in Minkowski spacetime. The Casimir

force between the two sphere was calculated in [22], and it is O(1/r8). So, in our case we can

probably neglect − ∂
∂r [E

(1)
C1

−2E(2)
C2

+E(3)
C3

] in (88). The left hand side of (88) can be measured

experimentally, so (88) is the physical prediction. From (88) the effect of the entropic force

becomes significant when R is large. We can probably use heavy stars as the balls in the

situation (2) and (3). So we can possibly confirm the effect of the entropic force by the

cosmic observation (e.g. binary black holes and binary neutron stars).

We estimate the magnitude of the effect of the entropic force. We set the cutoff length l

to the Planck length lP = (GN!/c3)1/2, then the ratio of the effect of the entropic force to

the force of gravity is

Feef

Fg
=

−4gBH

π

(lP )2R

r3

(
R

lP

)m (
ln

(
R

lP

))n

(89)

where

Feef ≡ !cgBH

π

R3

r5

(
R

lP

)m (
ln

(
R

lP

))n

Fg ≡ −GNM2

r2
= − c4R2

4GNr2
. (90)
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VIII. NUMERICAL STUDIES OF ENTANGLEMENT ENTROPY IN A MASS-

LESS FREE SCALAR FIELD IN (d + 1)-DIMENSIONAL MINKOWSKI SPACE-

TIME: LATTICE FORMULATION

We could not obtain the explicit form of G(R1, R2) in (68) analytically. Next we calculate

G(R1, R2) numerically. We apply the formalism of Bombelli et al [1] reviewed in Section IV

to a massless free scalar field in (d+ 1)-dimensional Minkowski spacetime. The Lagrangian

is given by

L =

∫
ddx

1

2
[φ̇2 − (∇φ)2]. (91)

As an ultraviolet regulator, we replace the continuous d-dimensional space coordinates x by

a lattice of discrete points with spacing a. As an infrared cutoff, we allow the individual

components of n ≡ x/a to assume only a finite number N of independent values −N/2 <

nµ ≤ N/2. The Greek indices denoting vector quantities run from one to d. Outside this

range we assume the lattice is periodic. The dimensionless Hamiltonian H0 ≡ aH is given

by

H0 ≡ aH =
∑

n

[
1

2
π2n +

1

2

d∑

µ=1

(φnν+δνµ − φnν )
2 +

a2m2

2
φ2n] ≡

∑

n

1

2
π2n +

∑

m,n

1

2
φmVmnφn, (92)

where φn and πn are dimensionless and Hermitian, and obey the canonical commutation

relations

[φn, πm] = iδnm. (93)

In Eq.(92) we insert a mass term in order to remove a zero eigenvalue of Vmn; if Vmn should

have the zero eigenvalue, W−1 in (15) would not exist. Later we will take N to infinity. In

this limit we can neglect the zero eigenvalue of Vmn and will take am to zero. Taking N

to infinity is important in order to calculate the entanglement entropy SAB of two spheres.

The entanglement entropy of two spheres is more sensitive to the value of N than that of

one sphere. (In fact, we numerically calculated SAB for finite N with antiperiodic boundary

conditions without the mass term. SAB depends on N when the distance r between two

spheres is close to N/2, and we could not obtain the clear r dependence of SAB.)

From (92) we obtain (see e.g. [21])

Wmn = N−d
∑

k

[a2m2 + 2
d∑

µ=1

(1− cos
2πkµ
N

)]1/2e2πik(n−m)/N , (94)
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W−1
mn = N−d

∑

k

[a2m2 + 2
d∑

µ=1

(1− cos
2πkµ
N

)]−1/2e2πik(n−m)/N , (95)

where the index k also carries d integer valued components, each in the range of −N/2 <

kµ ≤ N/2. We take N to infinity and change the momentum sum into an integral with the

replacements qµ = 2πkµ/N and N−d
∑

k →
∫ π
−π

ddq
(2π)d , and then we have

Wmn =

∫ π

−π

ddq

(2π)d
eiq(n−m)[a2m2 + 2

d∑

µ=1

(1− cos qµ)]
1
2 , (96)

W−1
mn =

∫ π

−π

ddq

(2π)d
eiq(n−m)[a2m2 + 2

d∑

µ=1

(1− cos qµ)]
−1
2 . (97)

In (96) and (97) the integrals converge when am → 0, so we can take am to zero,

Wmn =

∫ π

−π

ddq

(2π)d
eiq(n−m)[2

d∑

µ=1

(1− cos qµ)]
1
2 , (98)

W−1
mn =

∫ π

−π

ddq

(2π)d
eiq(n−m)[2

d∑

µ=1

(1− cos qµ)]
−1
2 . (99)

From (98) and (99) we can compute Wmn and W−1
mn numerically. Then we can compute

the entanglement entropy from (18), (19) and (20). The integrands in (98) and (99) highly

oscillate when ‖n − m‖ # 1, and the numerical integrals converge very slowly. We can

obtain approximate expressions of Wmn and W−1
mn by hand when ‖n −m‖ # 1, so we will

use them when ‖n−m‖ # 1 in order to reduce the computational complexity of Wmn and

W−1
mn. To evaluate Wmn and W−1

mn when ‖n − m‖ # 1, we define r ≡ a(n − m) and take

‖n−m‖ to infinity keeping r fixed. We change the variable as p = q/a, and then we have

Wmn = ad
∫ π

a

−πa

ddp

(2π)d
eipr[2

d∑

µ=1

(1− cos apµ)]
1
2 → ad+1

∫ ∞

−∞

ddp

(2π)d
eipr−

a
π ‖p‖[‖p‖2]

1
2 . (100)

We can perform the integral in (100) analytically when ‖r‖/a → ∞ (see Appendix A ), and

then we obtain

Wmn → ad+1 Ad

‖r‖d+1
=

Ad

‖n−m‖d+1
, (101)

where

Ad =






−(d− 1)!!

(2π)d/2
for even d ≥ 2,

−2
(d− 1)!!

(2π)(d+1)/2
for odd d ≥ 3.

(102)
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We can evaluate W−1
mn when ‖n−m‖ # 1 in the same way (see Appendix A), and then we

obtain

W−1
mn → ad−1

∫ ∞

−∞

ddp

(2π)d
eipr−

a
π ‖)p‖[‖,p‖2]

−1
2 → ad−1 Bd

‖r‖d−1
=

Bd

‖n−m‖d−1
. (103)

where

Bd =






(d− 3)!!

(2π)d/2
for even d ≥ 2,

2
(d− 3)!!

(2π)(d+1)/2
for odd d ≥ 3,

(104)

where 0!! = (−1)!! = 1.

IX. NUMERICAL CALCULATIONS

We calculate numerically the entanglement entropy SAB of two spheres A and B whose

radii are R1 and R2, and the distance between the centers of them is r for d = 3.

We put the centers of the spheres on a lattice. We define the sphere whose radius is

R as a set of points which are at distances of R or less from the center of the sphere. In

order to reduce the computational complexity of Wmn and W−1
mn, we use the approximate

expressions (101) and (103) when ‖n−m‖ > 10, and we use the numerical integrals of exact

expressions (98) and (99) when ‖n−m‖ ≤ 10. When ‖n−m‖ = 10, the differences between

the numerical integrals of the exact expressions and the approximate expressions are less

than 4% for Wmn and less than 1% for W−1
mn. We perform matrix operations and calculate

the eigenvalues λn of the matrix Λ in (20) with Mathematica 8. The number of columns

and rows of Λ is the number of points in the region of which we calculate entanglement

entropy.

We show the computed values of S(R) which is the entanglement entropy of one sphere

as a fumction of R2/a2 in Fig.10, where a is a lattice spacing. The points are fitted by a

straight line:

S = 0.37R2/a2. (105)

This result agrees with the result in [2] except for the coefficient. (The coefficient in [2] is

0.30. This difference necessarily arises from the difference of regularization methods. In [2]

the author use the polar coordinate system and replace the continuous radial coordinate by

a lattice.)
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We show the computed values of SAB(r, R1, R2) which is the entanglement entropy of two

spheres as a function of r/a for R1/a = R2/a = 6, 7 in Fig.11. As can be seen, SAB reaches

its maximum value SA + SB when r → ∞. In order to clarify the behavior of SAB as a

function of r, we show the computed values of (SA + SB − SAB)−1/4(r, R1, R2) as a function

of r/a for R1/a = R2/a = 6, 7 in Fig.12. The straight lines in Fig.12 are fitted by the data

between r/a = R1/a+R2/a+ 24 and r/a = R1/a+R2/a+ 84. In these regions the points

are beautifully fitted by the straight lines. Then, when r # R1, R2, we obtain

−SA;B ≡ SAB(r, R1, R2)− SA(R1)− SB(R2) ≈ −G(R1, R2)

r4
, (106)

where G(R1, R2) is defined in (106) and G(R1, R2) = G(R2, R1) ≥ 0. SA;B is the mutual

information of A and B. From Fig.12 the approximate expression (106) is precise for rel-

atively small r. (When R1 = R2 ≡ R, for r ! 3R (106) is precise from Fig.12.) We can

obtain G(R1, R2)/a4 from slopes of graphs of (SA + SB − SAB)−1/4(r, R1, R2), and then we

show the computed values of G(R1, R2)/a4 as a function of R2
2/a

2 for R1/a = 4, 4.5, . . . , 7

in Fig.13. From Fig.13 we can see that G(R1, R2)/a4 is proportional to R2
2. Because

G(R1, R2) = G(R2, R1), we obtain G(R1, R2) = gR2
1R

2
2, where g is a dimensionless con-

stant. We can obtain the values of gR2
1 from slopes of graphs of G(R1, R2) as a function of

R2
2. To obtain the precise value of g, we show the computed values of gR2

1/a
2 as a function

of R2
1/a

2 in Fig.14 and obtain g = 0.26 from the slope of the line which is the best linear fit

in Fig.14.

Finally, when r # R1, R2, we obtain

−SA;B = SAB(r, R1, R2)− SA(R1)− SB(R2) ≈ −0.26R2
1R

2
2

r4
. (107)

When r ≈ R1, R2, from Fig.12, SAB rapidly decreases when r decreases. (Note that we

cannot determine the functional form of G(R1, R2) only by the constraints from dimensional

analysis, symmetry, and behavior in the limit R1 → 0. For example, G(R1, R2) = R3
1R2 +

R1R3
2 is not prohibited by these constraints.)

For d = 2, we compute SAB in the same way. We show only the computed values of

(SA + SB − SAB)−1/2(r, R1, R2) as a function of r/a for R1/a = R2/a = 15, 16 in Fig.15.

The straight lines in Fig.15 are fitted by the data between r/a = R1/a + R2/a + 101 and

r/a = R1/a+ R2/a+ 201. In these regions the points are beautifully fitted by the straight

lines. We cross-checked our numerical procedure with the data of related calculations in
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FIG. 10. The entanglement entropy S(R) of one sphere whose radius is R as a fumction of R2/a2.

The line is the best linear fit.
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FIG. 11. SAB−SA−SB as a function of r/a for R1/a = R2/a = 6, 7, where SAB is the entanglement

entropy of two spheres A and B whose radii are R1 and R2. The distance between the centers of

the two spheres is r.

Figure 1 in [19]. (In the figure, the authors show the mutual information of two discs for

R1 = R2 = R and r = 3R. Our results were very close to theirs.) Finally, when r # R1, R2,

we obtain

−SA;B = SAB(r, R1, R2)− SA(R1)− SB(R2) ≈ −0.37R1R2

r2
. (108)

In order to examine whether only the degrees of freedom on the surface of the spheres

contribute to the mutual information or not, we calculate the mutual information SD;E of two

same spherical shellsD and E for d = 3 and the mutual information SH;I of two same ringsH

and I for d = 2. The internal (external) radii of the spherical shell and the ring are L1 (L2).

The distance between the centers of the two spherical shells and that between the two rings

are r. When r # L2, we obtain SD;E ≈ Gss(L1, L2)/r4 and SH;I ≈ Gr(L1, L2)/r2. We show
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FIG. 12. (SA + SB − SAB)−1/4 as a function of r/a for R1/a = R2/a = 6, 7, where SAB is

the entanglement entropy of two spheres A and B whose radii are R1 and R2. The distance

between the centers of the two spheres is r. The straight lines are fitted by the data between

r/a = R1/a + R2/a + 24 and r/a = R1/a + R2/a + 84. For r ! 3R(≡ R1 = R2) the lines are

beautifully fitted and the approximate expressions (106) and (107) are precise.

!!!
!
! !

!
!

!

!
!

!

!

!

"
"

"
"

"
"

"

"
"

"

"
"

"
"

##
##
#
#
#
#
#

#

#

#
#

#

$
$

$

$

$

$
$

$

$

$

$

$

$

$

%%
%%
%
%
%
%

%

%

%

%

%

%

&&
&
&

&
&
&

&

&

&

&

&

&

&

'
'
'
'

'
'

'

'

'

'

'

'

'

'

10 20 30 40 50 60
"R2!a#2

100

200

300

400

500

600

G"R1,R2#!a4

R1!a"4
R1!a"4.5
R1!a"5

R1!a"5.5
R1!a"6

R1!a"6.5
R1!a"7

FIG. 13. G(R1, R2)/a4 in (106) as a function of R2
2/a

2 for R1/a = 4, 4.5, . . . , 7. The lines are the

best linear fit.

(Gss(L1, L2))1/2/L2
2 for L2 = 10a as a function of L1/L2 in Fig.16 and (Gr(L1, L2))1/2/L2

for L2 = 22a as a function of L1/L2 in Fig.17. The curve in Fig.16 is 0.50(1− (L1/L2)3)2/3

and the curve in Fig.17 is 0.56(1− (L1/L2)2)1/2. We show these curves for comparison with

the data. From Fig.16 and Fig.17, (Gss(L1, L2))1/2/L2
2 and (Gr(L1, L2))1/2/L2 are monotone

decreasing function of L1/L2, and (Gss(L1, L2))1/2 is not proportional to the 2/3 power of

the volume of the spherical shell, and (Gr(L1, L2))1/2 is not proportional to the 1/2 power

of the area of the ring. Then not only the degrees of freedom on the surface of the sphere

but also those on the inside region contribute to the mutual information, and the degrees of
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2 as a function of R2
1/a

2, where g is defined as G(R1, R2) = gR2
1R

2
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best linear fit.
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FIG. 15. (SA + SB − SAB)−1/2 as a function of r/a for R1/a = R2/a = 15, 16, where SAB

is the entanglement entropy of two discs A and B whose radii are R1 and R2. The distance

between the centers of the two discs is r. The straight lines are fitted by the data between

r/a = R1/a + R2/a + 101 and r/a = R1/a + R2/a + 201. For r ! 4R(≡ R1 = R2) the lines are

beautifully fitted and the approximate expression (108) is precise.

freedom on the inside region does not contribute uniformly to the mutual information.

We roughly estimate the magnitude of the entropic force between two black holes by using

SAB in Minkowski spacetime. We consider two black holes (A and B) which have the same

radius R1 = R2 ≡ R and the distance between which is r. For simplicity, we consider the

case that the state of the field on the whole space is a pure state. Generally, if a composite

system XY is in a pure state, then SX = SY [14]. Then the entanglement entropy of the

outside region of two black holes is equal to that of the inside regions of two black holes.

We define the entropic force of the field on the outside region which acts on one black hole
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is monotone decreasing function of L1/L2 and not proportional to (1− (L1/L2)3)2/3.
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FIG. 17. (Gr(L1, L2))1/2/L2
2 for L2 = 22a as a function of L1/L2. Gr(L1, L2) is defined as

SH;I ≈ Gr(L1, L2)/r2 when r # L1, L2. The curve is 0.56(1− (L1/L2)2)1/2. (Gr(L1, L2))1/2/L2
2 is

monotone decreasing function of L1/L2 and not proportional to (1− (L1/L2)2)1/2.

in the direction of increasing r as Fef . Fef is given by

Fef = T
∂SAB

∂r
, (109)

where T is the temperature of the field of the outside region. To estimate Fef , we set SAB

to that in Minkowski spacetime and T to the Hawking temperature T = (8πGNM)−1 =

(4πR)−1. In this approximation the entropic force is repulsion force because SAB increases

when r increases. ∂SAB/∂r is independent of the ultraviolet cutoff, and then we obtain

Fef = −T

R
S ′
A;B(r/R) = − 1

4πR2
S ′
A;B(r/R), (110)

where SA;B = SA(R) + SB(R)− SAB(r, R) and S ′
A;B ≡ ∂SA;B/∂(r/R). (SA;B is independent

of the ultraviolet cutoff and a function of r/R.) Then the ratio of the entropic force to the
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FIG. 18. The ratio of the entropic force to the force of gravity
(

R
lP

)2 ∣∣∣Fef

Fg

∣∣∣ as a function of r/R for

R/a = 10.

force of gravity (Fg = −GNM2

r2 = − R2

4GNr2 ) is

∣∣∣∣
Fef

Fg

∣∣∣∣ =
1

π

(
lP
R

)2 ∣∣∣∣
S ′
A;B(r/R)

R2/r2

∣∣∣∣ , (111)

where lP is the Planck length lP = (GN!/c3)1/2. When r # R, we substitute (107) into

(111), and then we obtain ∣∣∣∣
Fef

Fg

∣∣∣∣ ≈ 0.33

(
lP
R

)2 R3

r3
. (112)

When r ≈ R, we show the computed values of
(

R
lP

)2 ∣∣∣Fef

Fg

∣∣∣ as a function of r/R for R/a = 10

in Fig.18. (Although from (111)
(

R
lP

)2 ∣∣∣Fef

Fg

∣∣∣ is a function of r/R and is independent of the

choice of the value of R/a, the computed values of
(

R
lP

)2 ∣∣∣Fef

Fg

∣∣∣ slightly depend on the choice

of the value of R/a because the spheres on the lattice are distored. When R/a is large,

the spheres on the lattice are similar to the real spheres and this R/a dependence is small.)

From (112) and Fig.18 the entropic force is much smaller than the force of gravity when

R # lP and comparable to the force of gravity when R ≈ lP .

X. CONCLUSIONS AND DISCUSSION

In Section III we showed that the entanglement entropy (SC = SAB) of two disjoint regions

in translational invariant vacuum in general QFT reaches its maximum value when r → ∞.

And we obtained the inequality (9). In Section V we developed the method to obtain the r

dependence of SC and obtained the r dependence of SC (68) in the free massless scalar field
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in (d+ 1) dimensional Minkowski spacetime. We can use this method in curved space time

and for scalar field theory whose Lagrangian is quadratic. To know only the r dependence

we need only the ‖x− y‖ dependence of W (x, y) and W−1(x, y) when ‖x− y‖ is large. To

know the R1 and R2 dependence we must solve the zeroth order eigenvalue equation and

obtain λ0m and f 0
miα. It is difficult to solve the zeroth order eigenvalue equation analytically,

so we need to perform numerical calculation. But we assumed the R ≡ R1 = R2 dependence

(70) by using dimensional analysis and the cutoff dependence of SA and SB.

In Section VI we showed that SC can be expected to be the form (78) in the black

hole case. In this case the only assumption we made is the r dependence of W (xa, yb) and

W−1(xa, yb). We did not explicitly calculate W (xa, yb) and W−1(xa, yb), but assumed the r

dependence of W (xa, yb) and W−1(xa, yb) by dimensional analysis.

In Section VII we assumed that we can consider the entanglement entropy of two black

holes as thermodynamic entropy, and investigated its entropic force. We considered three

situations (1), (2) and (3) and obtain the relationship (88) between the force acting on one

black hole or on one ball and the sum of the Casimir force and the effect of the entanglement

entropic force. Because we can probably neglect the Casimir force, we can confirm (88)

experimentally in principle.

Next we discuss the entanglement entropic force in different systems. In the black hole

case, black holes act as ”walls” which hide inside regions but hold the entanglement between

inside and outside regions. So if there are walls of this type, the entanglement entropic

force will exist between regions surrounded by these walls. Then we will be able to confirm

the entanglement entropic force by experiments in a laboratory if we make this wall. And

if entanglement entropy depends on some external parameter, entanglement entropic force

probably appears also in quantum mechanical (i.e. not quantum field theoretical) systems.

In Section VIII and IX we calculated numerically the entanglement entropy SAB of two

spheres and obtained the approximate expression (107). From Fig.12, (107) is precise for

relatively small r. (When R1 = R2 ≡ R, for r ! 3R (107) is precise from Fig.12.) We showed

that the mutual information SA;B of A and B is independent of the ultraviolet cutoff for

d = 2, 3 though SA and SB depends on the ultraviolet cutoff. The mutual information SA;B

measures the entanglement between A and B and SA measures the entanglement between

A and Ac where Ac is the complementary of A. Then our results mean that the ultraviolet

divergence of entanglement entropy in QFT is caused by the entanglement between points
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which are infinitely close to each other and the entanglement between regions which are

finitely separate from each other is finite. And we showed that SA;B is the simple product of

a function of R1 and that of R2 for d = 2, 3. These properties of SA;B for d = 2, 3 are most

likely the same as those for d ≥ 4. Then, from (1), for d ≥ 4 when r # R1, R2 we assume

SA;B ≈ gdR
d−1
1 Rd−1

2

r2d−2
, (113)

where gd ≥ 0 is a dimensionless constant.

In order to examine whether only the degrees of freedom on the surface of the spheres

contribute to the mutual information or not, we calculate the mutual information SD;E of

two same spherical shells D and E for d = 3 and the mutual information SH;I of two same

rings H and I for d = 2. We obtained the result that not only the degrees of freedom

on the surface of the sphere but also those on the inside region contribute to the mutual

information, and the degrees of freedom on the inside region does not contribute uniformly to

the mutual information. Because SD;E and SH;I measure the entanglement between regions

which are finitely separate from each other, it is natural that the inside region contribute to

the mutual information. The result that the inside region does not contribute uniformly to

the mutual information means that the mutual information is not the product of the simple

sum of the contribution from each volume elements. These results are different from that of

the entanglement entropy to which the degrees of freedom on the surface of the boundary

contribute mainly and uniformly. So the mutual information of two disconnected regions

is not universally proportional to the product of the surface areas of the regions. Because

a sphere has only one dimensionful parameter, the mutual information of two spheres is

proportional to the product of the surface areas. For example, the mutual information of

two rectangular solids is most likely not proportional to the product of the surface areas

because a rectangular solid has three dimensionful parameters.

Our numerical method has three properties. First, we take the volume of the whole

space to infinity, i.e. N → ∞ in (94) and (95). Second, the computational complexity of

our method depends only on the number of points on the regions of which we compute the

entanglement entropy and does not depend on the distance between the separated regions.

The computational complexity of conventional methods increases when the distance between

the separated regions increases. This is because the numerical integrals of Wmn in (98) and

W−1
mn in (99) converge very slowly when ‖n−m‖ # 1. In order to reduce the computational
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complexity of Wmn and W−1
mn, we use the approximate expressions (101) and (103) when

‖n−m‖ > 10. Third, we can compute the entanglement entropy of general shaped regions

by our method because we do not use any symmetry of the regions of which we compute

the entanglement entropy in our method. For example, we can compute the entanglement

entropy of more than two separated regions. The first and the second properties enable us

to obtain the r dependence of SAB. And the third property enable us to compute SAB for

R1 3= R2.

We estimated roughly the magnitude of the entropic force between two black holes. From

(112) and Fig.18 the entropic force is comparable to the force of gravity when R ≈ lP . This

rough estimate suggests that the entropic force is important for Planck scale black holes.

(Of course, this result would be changed if the effect of quantum gravity would be taken

into account when R ≈ lP .)

Next, we discuss the microscopic origin of the entropic force. As we see from (110) the

entropic force is proportional to the r derivative of the mutual information SA;B. So the

origin of the entropic force is the entanglement between inside regions of two black holes.

Due to the entanglement between inside regions of two black holes, the density matrix of

the scalar field on the outside region changes when r changes. Then the force acts on black

holes along the direction in which SAB increases.

Finally we mention the validity of this estimate. When r # R, it is shown that SA;B in

the black holes case can be expected to be similar to that in the Minkowski spacetime case

except for the coefficient because almost all regions between two black holes is similar to

Minkowski spacetime [12]. So, the rough estimate corresponds to the contribution to Fef in

(109) from SA;B. However, in the black holes case SA and SB depend on r and contribute to

Fef . These contribution from SA and SB has been discussed in [12]. When r ≈ R, SA;B in

the black holes case is probably different from that in the Minkowski spacetime case because

the region between two black holes is very different from Minkowski spacetime. However,

even when r ≈ R, SA;B is most likely independent of the ultraviolet cutoff as that in the

Minkowski spacetime case.
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Appendix A: The calculation of W and W−1

In this appendix we calculate W (x, y) and W−1(x, y) ( (25) and (26) ) explicitly. We

regularize them by including convergence factor e−l|k| in them, where l is the cutoff length.

We define Wα as

Wα(x, y) =

∫
ddk

(2π)d
(k2)(1−α)/2eik·(x−y)e−l|k|. (A1)

Then we have W0 = W and W2 = W−1. First we consider the case d ≥ 3.

(1) d ≥ 3

We perform the integrals of angular coordinates which do not enter the inner product,

Wα(x, y) =
1

(2π)d

d−2∏

m−2




√
π

Γ

(
d−m

2

)

Γ

(
d−m+ 1

2

)





∫ ∞

0

dk

∫ 1

−1

dt[1− t2]
d−3
2 eikrte−lkkd−α (A2)

where r ≡ ‖x− y‖ and we change the variable as t = cos θ. Next we perform the k integral
∫ ∞

0

dk

∫ 1

−1

dt[1− t2]
d−3
2 eikrte−lkkd−α =

∫ 1

−1

dt[1− t2]
d−3
2

(
1

it

d

dr

)d−α ∫ ∞

0

dkeikrte−lk

= (−i)d−α−1(d− α)! 1

rd−α+1

∫ 1

−1

dt[1− t2]
d−3
2

1

(t+ iz)d−α+1

(A3)

where z ≡ l/r. We define

g(t) ≡ [1− t2]
d−3
2

1

(t+ iz)d−α+1
. (A4)

We want to show Wα 3= 0 when z → 0.

(i) d = 2m+ 2 (m ≥ 1)

In this case g(t) has a branch cut on the real axis from−1 to 1. We perform the integration

along the contour shown in Fig 19 (a), and obtain
∫ 1

−1

dtg(t) = πiRest=−izg(t) = πi
1

(d− α)!

(
dd−α

dtd−α
[1− t2]

d−3
2

)∣∣∣∣
t=−iz

. (A5)
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FIG. 19. The contours of the integrals. (a) d = 2m+ 2 (m ≥ 1). (b) d = 2m+ 1 (m ≥ 1).

The derivative in (A5) can be calculated by the derivative of a composite function,

(
dd−α

dtd−α
[1− t2]

d−3
2

)
=

[1
2 (d−α)

]

∑

r=0

(d− α)!
r!(d− α− 2r)!

(2t)d−α−2r(−1)d−α−r

(
d− 3

2
)(
d− 3

2
− 1) · · · (d− 3

2
− (d− α− r − 1))(1− t2)

d−3
2 −(d−α−r)

(A6)

where
[
1
2(d− α)

]
is the Gauss’ symbol which is the greatest integer that is less than or equal

to 1
2(d− α).

Then, when z → 0, we obtain
∫ 1

−1

dtg(t) = −πi 1

(d−α2 )!
(−1)

d−α
2 (

d− 3

2
)(
d− 3

2
− 1) · · · (d− 3

2
− (

d− α
2

− 1))

= −πi 1

(d−α2 )!

(
−1

2

)d−α
2

(d− 3)(d− 1) · · · (α− 1).

(A7)

Then, from (A2), (A3) and (A7), for α = 2l ≤ d(l ∈ Z) Wα is nonzero and Wα has the form

of (29) when z → 0. (When α = d, we obtain
∫ 1

−1 dtg(t) = −πi from (A5). (Note that g(t)

has the branch cut, then [1 + z2](d−3)/2 → (−1) when z → 0.))

(ii) d = 2m+ 1 (m ≥ 1)

We perform the integration along the contour shown in Fig 19 (b), and obtain
∫ 1

−1

dtg(t) = −2πiRest=−izg(t)−
∫

CR

dtg(t). (A8)
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For α = 2l(l ∈ Z), d− α is odd, so we obtain limz→0Rest=−izg(t) = 0 from (A6). Then, for

α = 2l and z → 0 we obtain
∫ 1

−1

dtg(t) = −
∫

CR

dtg(t) = i(−1)d−α
∫ π

0

dθe−i(d−α)θ[1− e2iθ]
d−3
2

= i(−1)d−α(−2i)m−1

∫ π

0

dθe−i(2m+1−α)θei(m−1)θ(sin θ)m−1

= (−1)m2m−1im(Isc[m− 1,m+ 2− α]− iIss[m− 1,m+ 2− α])

=






2m−1im+1Iss[m− 1,m+ 2− α] 3= 0 for odd m,

2m−1imIsc[m− 1,m+ 2− α] 3= 0 for even m,

(A9)

where

Isc[m,n] ≡
∫ π

0

dθ(sin θ)m cos(nθ) , Iss[m,n] ≡
∫ π

0

dθ(sin θ)m sin(nθ). (A10)

Then, from (A2) (A7) and (A9) , for α = 2l(l ∈ Z) Wα is nonzero and Wα has the form of

(29) when z → 0.

From (i) and (ii) we showed (29) for d ≥ 3. Next we consider d = 2.

(2) d = 2

In this case we can perform the angular integral first,

Wα(x, y) =
1

(2π)2

∫ ∞

0

kdk

∫ 2π

0

dθk1−αeikr cos θ−lk

=
1

2π

∫ ∞

0

dkk2−αe−lkJ0(kr) =
1

2πr3−α

∫ ∞

0

dxx2−αe−zxJ0(x)

(A11)

where J0 is the Bessel function of zeroth order. We perform the integral for α = 2 and

α = 0.

(i) α = 2

In this case we have ∫ ∞

0

dxe−zxJ0(x) =
1√

z2 + 1
. (A12)

Then, when z → 0 we obtain

Wα=2(x, y) = W−1(x, y) =
1

2πr
. (A13)

(i) α = 0

In this case we have
∫ ∞

0

dxx2e−zxJ0(x) =
Γ(3)

z3
F

(
3

2
, 2, 1;− 1

z2

)
→ −1 (z → 0) (A14)
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where F is the Gaussian hypergeometric function. Then, when z → 0 we obtain

Wα=0(x, y) = W (x, y) =
−1

2πr3
. (A15)

Finally we have showed (29) for d ≥ 2.

Appendix B: A formula for a finite series

In this appendix we obtain a formula for a finite series by calculating the following integral.

A ≡
∫ ∞

0

dkk2c

∫ π

0

dθ(sin θ)2beikr cos θ−εk c ≥ b ≥ 0 b, c ∈ Z ε, r > 0 ε, r ∈ R. (B1)

This integral is a generalization of Wα in (A1). The parameter ε and r are auxiliary and they

do not appear in the last formula. We obtain the finite series when we perform the θ integral

before performing the k integral. On the other hand we obtain the simple expression when

we perform the k integral before performing the θ integral. Then we obtain the formula for

the finite series.

(i) We perform the θ integral before performing the k integral.

We perform the θ integral,
∫ π

0

dθ(sin θ)2beikr cos θ = (1 +
1

k2

d2

dr2
)b
∫ π

0

dθeikr cos θ = π(1 +
1

k2

d2

dr2
)bJ0(kr) (B2)

where J0 is the Bessel function of zeroth order. We substitute (B2) into (B1) and perform

the k integral. Then we obtain

A = π
b∑

l=0

bCl

(
d

dr

)2l ∫ ∞

0

dke−εkka−2lJ0(kr) = π
b∑

l=0

bCl

(
d

dr

)2l Γ(µ)

εµ
F

(
µ

2
,
µ+ 1

2
, 1;−r2

ε2

)

(B3)

where µ ≡ 2c − 2l + 1 and F is the Gaussian hypergeometric function. We have used the

condition c ≥ b ≥ 0 in the second equality in (B3). When ε→ 0, we obtain

lim
ε→0

Γ(µ)

εµ
F

(
µ

2
,
µ+ 1

2
, 1;−r2

ε2

)
=
π1/2

rµ
Γ(µ)

Γ(1− µ
2 )Γ(

1+µ
2 )

. (B4)

From (B3) and (B4) we obtain

lim
ε→0

A = π3/2
b∑

l=0

bCl
Γ(µ)

Γ(1− µ
2 )Γ(

1+µ
2 )

(
d

dr

)2l 1

rµ
=
π3/2

r2c+1
(2c)!

b∑

l=0

bCl
1

Γ(1− µ
2 )Γ(

1+µ
2 )

. (B5)

(ii) We perform the k integral before performing the θ integral.
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We change the variable as t = cos θ and perform the k integral,

A =

∫ 1

−1

dt[1− t2]b−1/2

∫ ∞

0

dkk2ceikrt−εk =

∫ 1

−1

dt[1− t2]b−1/2

(
1

it

d

dr

)2c ∫ ∞

0

dkeikrt−εk

= i2c+1 (2c)!

r2c+1

∫ 1

−1

dt[1− t2]b−1/2 1

(t+ iz)2c+1

(B6)

where z ≡ ε/r. We perform the integration along the contour shown in Fig 19 (a) in the

same way as Eqs.(A5)-(A7), and obtain

lim
ε→0

A = i2c+1 (2c)!

r2c+1
(−iπ)

1

c!
(−1)c(b− 1

2)(b−
3
2) . . . (b− c+ 1

2)

= π
(2c)!

r2c+1c!
(b− 1

2)(b−
3
2) . . . (b− c+ 1

2)

= π
(2c)!

r2c+1c!

(−1)c−b

2c
(2b− 1)!!(2c− 2b− 1)!!.

(B7)

From (B5) = (B7) we obtain the formula for the finite series. We simplify (B5) = (B7)

and obtain the following formula,

b∑

l=0

(−2)l
(2c− 2l − 1)!!

l!(b− l)!(c− l)!
= (−1)b

(2b− 1)!!(2c− 2b− 1)!!

b!c!
c ≥ b ≥ 0 b, c ∈ Z. (B8)

We can also rewrite (B8) as follows;

b∑

l=0

(−4)l
(2c− 2l)!

l!(b− l)![(c− l)!]2
= (−1)b

(2b)!(2c− 2b)!

(b!)2c!(c− b)!
c ≥ b ≥ 0 b, c ∈ Z. (B9)
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A C

D B



 =



A− CB−1D CB−1

0 1







 1 0

D B



 =



A 0

D 1







1 A−1C

0 B −DA−1C



 .
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