
Title Efficient Code Clone Management based on
Historical Analysis and Refactoring Support

Author(s) Hotta, Keisuke

Citation 大阪大学, 2013, 博士論文

Version Type VoR

URL https://doi.org/10.18910/26162

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Efficient Code Clone Management based on

Historical Analysis and Refactoring Support

Submitted to

Graduate School of Information Science and Technology

Osaka University

July 2013

Keisuke HOTTA

Abstract

Code clones have recieved great interests in recent years from many researchers,

engineers, and practitioners in the field of software engineering. A code clone is

defined as a group of code fragments that are identical or similar to one another.

Code clones are introduced into source code of software systems by various rea-

sons, and the most typical one is code cloning by copy-and-paste operations for

reusing existing features. Typical software systems contain a certain amount of

code clones because code cloning is a common practice for software developers.

The existence of code clones has been regarded as a bad smell for software evo-

lution over a period of time because code clones require much attention to be main-

tained. Once code clones are introduced into source code, most of them should be

consistently maintained. Unintended inconsistencies among code clones have a

high risk for introducing bugs in software systems. However, it is not an easy task

for developers or maintainers to be aware of all the code clones and maintain all

of them consistently, specifically in the case of large software systems. This is a

reason why code clones are regarded as bad factors for software evolution.

Many researchers have proposed a variety of techniques to cope with code

clones based on this common wisdom. However, some of recent empirical studies

have been against it. That is, these studies revealed that code clones do not highly

affect software evolution. The discussion for harmfulness of code clones remains

inconclusive, but it is widely accepted that not all but a part of code clones have

negative impacts on software evolution.

For these reasons, it is not effective to prohibit software engineers from code

cloning. Furthermore, prohibiting code cloning is also unrealistic because of ad-

vantages of it. Therefore, it is strongly required to manage code clones effectively.

The objective of the work described in this dissertation is to promote efficient

software evolution through effective managements for code clones.

To achieve this objective, it is necessary to know state-of-the-art of research

achievements. Therefore, we conducted a survey on research literatures on code

clones. This survey categorized literatures into five categories, detection, removal,

prevention, analysis, and bug detection. The survey told us current states of re-

search on code clones. It also told us limitations of previous research on code

clone analysis, and unclear points of characteristics of them.

Based on the results of the survey, we conducted an empirical study to reveal

how negative impacts code clones have. Although some existing studies inves-

tigated the impacts of code clones, they have some limitations to genealize their

findings. To resolve these limitations, this study proposed a new metric and used

multiple clone detectors. The metric proposed by this study captures modifica-

tion frequencies on code clones, which is under an assumption that code clones

have negative impacts if they are frequently modified. This study compared metric

values on cloned code with non-cloned code to judge whether code clones affect

software evolution on 15 open source software systems with four clone detectors.

The experimental results indicate that code clones do not tend to be modified more

frequently than non-cloned code, hence the study concluded that code clones do

not have seriously negative impacts on software evolution.

Through the emprical study, we recognized a necessity of further analyses on

impacts of code clones. This is because our first study lumped code clones all to-

gether, and so it did not consider how individual code clones affect on software

evolution. Analyzing histories of individual code clones is helpful to investigate

the research problem. To anlayze histories of individual code clones, it is neces-

sary to track code clones across version histories of source code. There are some

techniques to tackle this challenging task, but they still remain some issues. There-

fore, we developed a new technique to track code clones by enhancing an existing

clone tracking technique. The key idea of the enhancement is to link clones lo-

cated in not only exactly the same regions but also similar ones. We confirmed

an improvement of accuracy of clone tracking through an experiment on two open

source software systems. Furthermore, we conducted an investigation for reasons

why code clones are gone as an application of the proposed technique for clone

tracking.

With the new tracking technique, we conducted another empirical study on

evolution of code clones. This study detected clone genealogies, which represent

how individual code clones evolved, and analyzed them. This investigation was

interested in how long code clones survived and how many times they were mod-

ified throughout their lifetimes. The experimental results reaffirmed that most of

clones had short lifetimes and were modified at most once, both of which were

reported in previous research. Furthermore, the results revealed some characterit-

ics that have not been revealed in previous research. One of the findings is that

approximately 3% of code clones are long-lived and modified multiple times. In

other words, approximately 97% of code clones do not require high costs to be

maintained. This finding empirically supports an opinion that not all but a part of

clones affect software evolution. Another finding is that code clones tend to be

modified more frequently in the former halves of lifetimes than in the latter ones.

This finding suggests that it is necessary to start managing code clones in earlier

stages of their lifetimes for an effective code clone management.

In the next, we proposed a way to cope with code clones, which is a sup-

port to remove them with a particular refactoring pattern. The refactoring pattern

used in this study enables to remove code clones even if they include some gaps.

Moreover, the proposed technique performs a fine-grained analysis on source code,

which allows to handle instances that any of previous refactoring supports cannot

handle. Furthermore, the proposed technique can handle all the code fragments

included in a code clone as against to existing techniques that can only handle a

pair of code fragments. We have developed a software tool as an implementation

of the proposed technique, and validated the usefulness of the technique through

two experiments, one is on open source software systems, and the other is with

subjects.

This dissertation is organized as follows.

Chapter 1 gives the background of this work and an overview of this disserta-

tion.

Chapter 2 presents the survey results on literatures that are related to code

clones. This chapter explains a definition of code clones, and then it discusses

some perspectives of them. The introductions of each research achievement follow

the discussion, with categorized loosely into five categories.

In Chapter 3, we present the result of the empirical study on stabilities of code

clones. The chapter describes how to perform the investigation, the experimental

targets of this study, and the experimental results. In this study, we compared the

experimental results of our experimental methodology with other methodologies

proposed by other researchers. This chapter refers to the results of the comparisons,

and then it discusses the experimental results.

Chapter 4 proposes the new clone tracking technique. This technque is an

enhanced version of an existing technique. We fist explain the key idea of the

enhamcement, and then discuss the effectiveness of the proposed technique with

an experiment on open source software systems. Furthermore, we conduct another

experiment to reveal why clones are gone, which is an application of the proposed

technique.

Chapter 5 presents the result of the empirical study on genealogies of code

clones. This chapter revisits two major findings on evolution of code clones, and

then reveals some characteristics that any of previous reseach did not address.

Chapter 6 proposes the refactoring support technqiue for code clones including

some gaps. This chapter formally describes the technique and introduces an im-

plementation of the proposed technique. It also presents the experimental results

to confirm the usefulness of the proposed technique.

Finally, Chapter 7 summalizes this dissertation and shows some future direc-

tions of this work.

List of Publications

Major Publications

[1-1] Keisuke Hotta, Yukiko Sano, Yoshiki Higo, and Shinji Kusumoto: “Is Dupli-

cate Code More Frequently Modified than Non-duplicate Code in Software

Evolution?: An Empirical Study on Open Source Software,” in Proceed-

ings of the 11th International Workshop on Principles of Software Evolution

(IWPSE-EVOL 2010), pp.73-82, Antwerp, Belgium, September 2010.

[1-2] Keisuke Hotta, Yukiko Sano, Yoshiki Higo, and Shinji Kusumoto: “An Em-

pirical Study of Influence of Duplicate Code on Software Maintenance Based

on Modification Frequency Comparison,” IPSJ Journal, Vol.52, No.9, pp.2788-

2798, September 2011 (in Japanese).

[1-3] Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto: “Identifying, Tailor-

ing, and Suggesting Form Template Method Refactoring Opportunities with

Program Dependence Graph,” in Proceedings of the 16th European Confer-

ence on Software Maintenance and Reengineering (CSMR 2012), pp.53-62,

Szeged, Hungary, March 2012.

[1-4] Keisuke Hotta, Yui Sasaki, Yukiko Sano, Yoshiki Higo, and Shinji Kusumoto:

“An Empirical Study on the Impact of Duplicate Code,” Advances in Soft-

ware Engineering, Hindawi Publishing Corporation, Vol.2012, May 2012.

[1-5] Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto: “CRat:

A Refactoring Support Tool for Form Template Method,” in Proceedings of

the 20th International Conference on Program Comprehension (ICPC 2012),

pp.250-252, Passau, Germany, June 2012.

[1-6] Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto: “Supporting Template

Methods Pattern Application on Code Clones by Program Dependence Graph,”

IEICE Journal, Vol.J95-D, No.7, pp.1439-1453, July 2012 (in Japanese).

i

[1-7] Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto: “A Refac-

toring Support with Form Template Method for Groups of Multiple Similar

Methods,” IEICE Journal, Vol.J96-D, No.2, pp.362-364, February 2013 (in

Japanese).

[1-8] Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto: “A Survey on Code

Clone Management Focusing on Prevention, Methodology for Efficient Anal-

ysis, and Bug Detection,” accepted by JSSST Computer Software, February

2014 (in Japanese).

Related Publications

[2-1] Yui Sasaki, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto: “Is Dupli-

cate Code Good or Bad? An Empirical Study with Multiple Investigation

Methods and Multiple Detection Tools,” in Proceedings of the 22nd Interna-

tional Symposium on Software Reliability Engineering (ISSRE 2011), Hi-

roshima, Japan, December 2011.

[2-2] Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto: “Enhancement of CRD-

based Clone Tracking,” accepted by the 13th International Workshop on

Principles on Software Evolution (IWPSE 2013), Saint Petersburg, Russia,

August 2013.

ii

Acknowledgements

During this work, I have been fortunate to have received assistance from many

individuals.

First, I would like to express my heartfelt gratitude to my supervisor, Profes-

sor Shinji Kusumoto, for his considerate support, encouragement, and guidance

throughout this work. He has spent much time and effort for this work. I do not

believe this work would have been possible without his help.

I would like to express my sincere gratitude to Dean and Professor Katsuro

Inoue for his helpful comments, valuable questions, and kind advice for this work.

I also would like to express my sincere appreciation to Professor Toshimitsu

Masuzawa for his valuable comments and helpful suggestions on this dissertation.

I would like to express my sincere appreciation to Professor Ken-ichi Mat-

sumoto, in Nara Institute of Science and Technology, for his valuable questions

and discussions for this work.

Also, I would like to thank Associate Professor Kozo Okano for his valuable

suggestions and discussions for this work.

I am deeply grateful to Associate Professor Hiroshi Igaki. I could not complete

this work without his helpful comments, valuable suggestions, and kind encour-

agement.

I would like to express my heartfelt appreciation to Assistant Professor Yoshiki

Higo for his great contributions throughout this work. His zealous coaching and

support have strongly encouraged me, and his helpful comments and suggestions

made it possible to complete this work.

Many of courses that I have taken during my graduate and undergraduate ca-

reers have been helpful in preparing this thesis. I would especially like to acknowl-

edge the guidance of Professor Ken-ichi Hagihara and Professor Yasushi Yagi.

I also would like to express my appreciation to Assistant Professor Takeshi

Kakimoto, in Kagawa National College of Technology, for his valuable suggestions

and helpful advice.

I would like to thank Assistant Professor Norihiro Yoshida, in Nara Institute of

Science and Technology, and Assistant Professor Hideaki Hata, in Nara Institute of

iii

Science and Technology, for their valuable feedback for this work. I also would like

to thank researchers on software engineering who have given me helpful comments

and encouragement.

I would like to thank all the members and graduates of our laboratory, Kusumoto

Laboratory.

I would like to express my sincere appreciations to the clerks of our laboratory,

including Ms.Tomoko Kamiya and Ms.Kaori Fujino. Their kind support has been

quite helpful for me to prepare this dissertation.

I owe deep debts of gratitude to my contemporaries at our laboratory, Mr.Kazuki

Kobayashi, Mr.Tatsuya Fujikawa, and Ms.Yuko Muto, for their kind assistance and

helpful comments. Loosing any of them must make it impossible to complete this

work because their assistance has strongly helped and encouraged me.

My heartfelt thanks go to Ms.Yui Sasaki for her valuable comments, helpful

suggestions, and close cooperation throughout this work, especially for the work

described in Chapter 3. It must be impossible to accomplish this work without her

kind assistance and great contributions.

I would like to express my appreciation to Dr.Takeshi Nagaoka for his help

to prepare this dissertation. I also would like to thank Ms.Yukiko Sano for her

coaching and assistance, especially for the work described in Chapter 3. I would

like to appropriate Mr.Masayuki Owashi, Mr.Akihiko Ito, Mr.Masataka Ugumori,

Mr.Kensuke Tanaka, Mr.Tetsuaki Nakamura, and Mr.Keizo Miyamoto for their

helpful suggestions and valuable advice. I learned many things from them, in-

cluding how to work on research problems and how to enjoy the work.

I would like to express my gratitude to Mr.Shinya Yamada for his coaching,

warm encouragement, and helpful advice. Moreover, I am deeply grateful to

Mr.Katsuma Ubukata, Ms.Tomoko Kanemitsu, and Mr.Minoru Nishino for their

valuable discussions for this work. I also would like to thank Mr.Toshiaki Tanaka

and Mr.Kiyoyuki Miyazawa for their valuable technical advice. I could not finish

this work without kind support from the above individuals.

I am grateful to the members of our research group, including Mr.Tomoya

Ishihara, Mr.Shuhei Kimura, Mr.Hiroaki Murakami, Mr.Jiachen Yang, Ms.Ayaka

Imazato, and Mr.Noa Kusunoki for their valuable comments and kind support.

Their technical advice has been very helpful to prepare this dissertation, and their

assistance has encouraged me many times.

Moreover, I would like to appreciate Mr.Yoshihiro Nagase, Mr.Kentaro Hanada,

Mr.Kazuki Yoshioka, Mr.Yoshitomo Okada, Mr.Akiyoshi Taguchi, Mr.Takuya Ya-

sunaga, Mr.Koichi Umekawa, Mr.Yukihiro Sasaki, and Mr.Hiroaki Shimba for

their encouragement. I could have had cheerful days in our laboratory because

of their delightful breezinesses.

I feel deep appreciations for all the other members and graduates of our labora-

iv

tory. I think I am very fortunate because I could work with such great colleagues.

I also wish to thank the members and graduates of Inoue Laboratory for their

assistance, including Ms.Eunjong Choi, Mr.Yu Kashima, Mr.Masayuki Tokunaga,

Mr.Tomoo Masai, Mr.Masakazu Ioka, Mr.Pei Xia, Mr.Akira Goto, and Mr.Yuki

Yamanaka. Their technical comments have been very valuable for this work.

Finally, I would like to thank my famirly and all of my friends in or graduated

from Osaka University for their kind support and encouragement. I could complete

this work because I could have really enjoyed my days in Osaka University, which

is owing to them.

v

Contents

1 Introduction 1
1.1 Background . 1

1.2 Overview of the Research . 3

1.3 Overview of the Dissertation . 6

2 A Survey on Code Clone Management 7
2.1 Code Clones . 7

2.1.1 Definition . 7

2.1.2 Types . 8

2.2 Discussions on Code Clones . 10

2.2.1 Causes of Creation . 10

2.2.2 Harmfulness . 12

2.3 Management of Code Clones . 15

2.3.1 Needs . 15

2.3.2 Definition . 15

2.4 Detection . 16

2.4.1 Overview . 16

2.4.2 Text-based Techniques 17

2.4.3 Token-based Techniques 17

2.4.4 Tree-based Techniques 18

2.4.5 Graph-based Techniques 19

2.4.6 Other Detection Techniques 20

2.4.7 Comparison and Evaluation of Clone Detectors 21

2.5 Removal . 21

2.5.1 Refactoring . 22

2.5.2 Refactoring Patterns Used for Code Clone Removals . . . 23

2.5.3 Research on Clone Removal 29

2.6 Prevention . 31

2.7 Analytic Methodology . 32

vii

2.7.1 Filtering and Categorizing 32

2.7.2 Visualizing . 35

2.8 Detection and Prevention of Clone Related Bugs 38

2.8.1 Preventing Clone Related Bugs 38

2.8.2 Detecting Clone Related Bugs 39

3 An Empirical Study on Influences for Clones on Software Evolution 41
3.1 Background . 41

3.2 Motivation . 42

3.2.1 Motivating Example . 42

3.2.2 Objective of this Study 45

3.3 Terms . 45

3.3.1 Clone Detectors Used in This Research 45

3.3.2 Revision . 47

3.3.3 Target Revision . 47

3.3.4 Modification Place . 48

3.4 Proposed Method . 48

3.4.1 Research Questions and Hypotheses 48

3.4.2 Modification Frequency 49

3.5 Design of Experiment . 52

3.5.1 Experiment 1 . 53

3.5.2 Experiment 2 . 53

3.6 Experiment 1 - Result and Discussion 57

3.6.1 Overview . 57

3.6.2 Result of Experiment 1-1 57

3.6.3 Result of Experiment 1-2 61

3.6.4 Answers to Research Questions 65

3.6.5 Discussion . 66

3.7 Experiment 2 - Result and Discussion 67

3.7.1 Overview . 67

3.7.2 Result of MASU . 70

3.7.3 Result of OpenYMSG 71

3.7.4 Discussion . 72

3.8 Threats to Validity . 74

3.9 Summary . 76

4 Enhancing CRD-based Clone Tracking based on Similarity of CRD 79
4.1 Motivation . 79

4.2 Tracking clones . 81

4.2.1 Clone Region Descriptor 82

viii

4.2.2 Hash generation . 83

4.2.3 Clone Linking . 84

4.3 Implementation . 88

4.3.1 Hash generation . 88

4.3.2 Clone Linking . 90

4.4 Experiment . 91

4.4.1 Setup . 91

4.4.2 Performance . 92

4.4.3 Answer to QUESTION1 92

4.4.4 Answer to QUESTION2 96

4.5 Revealing why clones are gone 98

4.6 Threats To Validity . 102

4.7 Summary . 102

5 Analyzing Clone Genealogies with the Enhanced Clone Tracking 105
5.1 Motivation . 105

5.2 Research Questions . 106

5.3 Detecing Clone Genealogies . 107

5.3.1 Detection of Code Clones 107

5.3.2 Definition of Clone Genealogy 107

5.3.3 Definitions of Terms Related to Clone Genealogy 109

5.3.4 Example of Clone Genealogy 110

5.4 Experimental Setup . 111

5.5 Experimental Results . 113

5.6 Discussion . 125

5.6.1 Long-Lived and Frequently Modified Code Clones 125

5.6.2 Threats to Validity . 125

5.7 Summary . 126

6 Clone Removal with Form Template Method Refactoring 127
6.1 Background . 127

6.2 Motivation . 128

6.2.1 Issues of Previous Studies 128

6.2.2 Objective of This Study 132

6.3 Outline of the Proposed Method 133

6.3.1 Inputs and Outputs . 133

6.3.2 Specialization of PDGs 134

6.3.3 Processing Flow . 136

6.3.4 Definitions . 138

6.4 Supporting for Method Pairs . 142

ix

6.4.1 STEP-P1: Create PDGs 142

6.4.2 STEP-P2: Detect Code Clones 142

6.4.3 STEP-P3: Identify Method Pairs 144

6.4.4 STEP-P4: Detect Common and Unique Processes 145

6.4.5 STEP-P5: Detect Sets of Statements Extracted as a Single

Method . 147

6.4.6 STEP-P6: Detect Pairwise Relationships 155

6.5 Supporting for Method Groups 159

6.5.1 STEP-S7: Identify Method Groups 159

6.5.2 STEP-S8: Detect Common and Unique Processes 159

6.5.3 STEP-S9: Detect Relationships on ENSs 161

6.6 Implementation . 162

6.6.1 Overview . 162

6.6.2 Functionalities for Method Pairs 162

6.6.3 Functionalities for Method Groups 168

6.7 Evaluation . 168

6.7.1 Evaluation of Supporting for Method Pairs 169

6.7.2 Evaluation of Supporting for Method Groups 171

6.7.3 Experiment with Subjects 172

6.8 Discussion . 176

6.8.1 PDG Creation . 176

6.8.2 Detection of Common Statements 177

6.8.3 Candidates that Need to be Tailored 177

6.8.4 Detection of Method Groups 178

6.8.5 Threats to Validity of the Experiment with Subjects 178

6.9 Summary . 178

7 Conclusion 181
7.1 Contributions . 181

7.2 Future Research Directions . 183

x

List of Figures

2.1 Clone Pair and Clone Set . 8

2.2 Types of Clones . 9

2.3 An Example of ASTs . 18

2.4 A Clone Pair with a Differnt Order of Statements 19

2.5 An Example of Extract Class 24

2.6 An Example of Extract SuperClass 24

2.7 An Example of Extract Method 25

2.8 An Example of Pull Up Method 26

2.9 An Example of Parameterize Method 26

2.10 An Example of Refactorings with Form Template Method . . . 28

2.11 Rieger et al.’s Visualization (Duplication Web) (Cited from the lit-

erature [130]) . 35

2.12 An Arc Diagram (Cited from the literature [152]) 36

2.13 Clone Visualization with Bundle Edge View (Cited from the liter-

ature [40]) . 36

2.14 Clustered Source Files based on Their Similarities (Cited from the

literature [162]) . 37

2.15 An Exapmle of Scatter Plots Shown by Gemini [147] 37

3.1 Motivating Example of Our Empirical Study 43

3.2 A Simple Example of Comparing Two Source Files with diff . . . 47

3.3 Result of Item A on Experiment 1-1 57

3.4 Result of Item B on Experiment 1-1 59

3.5 Result of Item A on Experiment 1-2 62

3.6 Result of Item B on Experiment1-2 63

3.7 An Example of Unstable Cloned Code 68

3.8 Result of the Proposed Method on MASU 70

3.9 Result of Krinke’s Method on MASU 70

3.10 Result of Lozano’s Method on MASU with Simian 71

3.11 Result of the Proposed Method on OpenYMSG 72

xi

3.12 Result of Krinke’s Method on OpenYMSG 72

3.13 Result of Lozano’s Method on OpenYMSG with Simian 73

3.14 An Example of Modification by Refactoring 73

4.1 Actual modification that existing techniques cannot track clones . 80

4.2 Clone Region Descriptor . 82

4.3 Intuitive example how hash values are measured from source code 85

4.4 Example of clone tracking . 87

4.5 Example of Database Updating 89

4.6 Number of blocks that were not tracked by the proposed or con-

ventional methods . 93

4.7 An EBG that only the proposed method tracked 95

4.8 Cloned blocks not tracked by the proposed method because types

in their conditions were changed 97

4.9 Cloned blocks not tracked by the proposed method because their

conditions were changed . 98

4.10 Number of EBGs whose elements disappeared 100

4.11 Code where an unintended inconsistency occurred 101

5.1 An Example of Clone Genealogies 111

5.2 The Length of Lifetime (Revisions) 114

5.3 The Length of Lifetime (Days) 115

5.4 CDF(k) and R(k) . 117

5.5 The Number of Modifications 119

5.6 Modifications on Each Genealogy 121

5.7 Timing of Modifications on Individual Clone Genealogies 123

5.8 An Instance of Long-Lived and Frequently Modified Clones . . . 124

6.1 Motivating Example 1 . 130

6.2 Motivating Example 2 . 131

6.3 The Output of the Proposed Method 134

6.4 An Example of PDG . 135

6.5 An Example of PDG with Execute Dependence Edges 136

6.6 Data Dependence Considering State Changes of Objects 137

6.7 A Directed Graph . 138

6.8 A PDG . 140

6.9 ClonePairs(G1, G2) . 141

6.10 An example of Method Pairs Including Redundant Clone Pairs . . 147

6.11 An example of the Detection of ENSs 148

6.12 An Example of Inputs and Outputs of ENSs 149

xii

6.13 Behavior of Algorithm 6.4 . 154

6.14 An Instance of Segmentalization of Block Statements 154

6.15 An Example of Wrong Pairwise Relationships Caused by not Con-

sidering Conditions for Call . 157

6.16 An Example of Pairwise Relationships 158

6.17 An Example of Method Group 160

6.18 A Whole Snapshot of CRat (for Method Pairs) 162

6.19 A Snapshot of Source Code View 163

6.20 A Snapshot of PDG View . 164

6.21 A Snapshot of Apposing View of Source Code View and PDG View 165

6.22 An Example of Candidate Method Pair 166

6.23 A Snapshot of Filtering View . 167

6.24 A Metrics Graph . 167

6.25 View of the Metrics Values . 168

6.26 A Whole Snapshot of CRat (for Method Groups) 169

6.27 An Example of Application of Form Template Method with the

Proposed Method . 170

6.28 The Box-Plot of the Time to Apply Form Template Method on

Synapse . 171

6.29 Candidate Method Groups . 173

xiii

List of Tables

2.1 Overview of Methods for Filtering/Categorizing/Clustering Clones 33

3.1 Target Software Systems - Experiment 1 54

3.2 Overview of Investigation Methods 54

3.3 Target Software Systems - Experiment 2 57

3.4 Ratio of Code Clones - Experiment 1 58

3.5 Overall Results - Experiment 1 60

3.6 The Average Values of MF in Experiment 1-1 60

3.7 Comparing MF s based on Programming Language and Detector . 64

3.8 The Average Values of MF in Experiment 1-2 64

3.9 Ratio of Code Clones - Experiment 2 67

3.10 Overall Results - Experiment 2 69

4.1 Overview of Target Software - Target Revisions - 91

4.2 Overview of Target Software - LOC - 91

4.3 Timing information on experiment (execution with eight threads) . 92

4.4 Modification types that the proposed technique could track 96

4.5 Moditications preventing the proposed method from tracking clones 99

4.6 Reasons why clones were gone 99

5.1 Target Software Systems . 112

5.2 Long-Lived Genealogies which are Modified Multiple Times . . . 120

5.3 Spearman’s Rank Correlation Coefficients 122

5.4 Timing of Modifications on Quartered Periods 122

5.5 The Results of Chi-Square Test 124

6.1 The Values of Metrics in the Method Pair of Figure 6.22 166

6.2 Target Software Systems . 169

6.3 The Number of Detected Candidates and Elapsed Time on Method

Pairs . 169

xv

6.4 The Number of Detected Candidates and Elapsed Time on Method

Groups . 171

6.5 The Features of Target Method Groups 172

6.6 Groups of Subjects . 174

6.7 Elapsed Time to Finish Form Template Method Application . . 175

6.8 The Average Time . 175

6.9 The Candidates that Need some Modifications for CRat’s Outputs 177

xvi

Chapter 1

Introduction

1.1 Background

Software evolution refers to the process of developing software initially and

repeatedly updating it for various reasons. The term lacks a general definition, but

it is used as a substitute of software maintenance [17, 123]. One of the reasons

why it refers to specifically the maintenance phase of software development is

that the phase consumes a large amount of costs for developing typical software

systems [19].

Software maintenance is one of the software life cycle processes [1]. It is a

set of activities associated with changes to a software product after it has been

delivered to end users. ISO/IEC 14764 presents the following four categories of

software maintenance activities [2].

Corrective: reactive modification to correct discovered problems. This category

also includes emergency maintenance which is defined as unsheduled and

temporary maintenance to keep a software system operational.

Adaptive: modification to keep a software product usable in a changed/changing

enviroment.

Perfective: modification to improve some aspect of software quality, such as per-

formance, maintainability, or reliability.

Preventive: modification to detect and correct latent faults in a software product

before they appear as actual faults.

The role of software systems in social activities has become more and more

important, which also inidicates the high importance of software maintenance ac-

tivities. However, the growth of size and complexity of software products makes

1

software maintenance more difficult and more burdensome. Czerwonka et al. re-

ported common characteristics of software maintenance as follows [25].

• Software maintenance phase comsumes the majority of resources of software

life cycle processes. Vliet said that maintenance phase requires at least 50%

of total costs in his book [149].

• It often happens that maintenance tasks are done by people who had not

created the software product.

• The maintenance team is typically much smaller than the development team.

• Changes on deployed software sometimes introduce unwanted behavior, which

indicates that maintenance activities have a high risk.

• Creating and verifying a fix for deployed software frequently have to be done

in a limited time frame.

These characteristics indicate how difficult and how severe software mainte-

nance is. Because of these factors, technologies that make software maintenance

more efficient are strongly required in society.

This dissertation focuses on code clones to meet such a challenging require-

ment. A code clone, or simply a clone, is defined as ‘a code fragment that has
identical or similar code fragments to one another’. The presence of code clones

is pointed out as a bad smell for software maintenance [32]. The reason is that: if

we need to make a change in one place, we will probably need to change the others

as well, but we sometimes might miss it [98].

The harmfulness of code clones could cause collapses of software projects at

the worst case. One of such cases is the collapse of the software project of the

Japan Patent Office in the Ministry of Economy, Trade and Industry, Japan. Reuses

of existing code that was not well-tested introduced many negative code clones,

which was pointed out as one of the causes of the collapse [52]. As just described,

the harmfulness of code clones appears in real software projects. For these reasons,

code clones have a high level of interest, which makes code clone analysis a hot

topic in the research area of software engineering.

In spite of the potential harmfulness of code clones, software systems contain a

certain amount of code clones [7]. One of the typical situations where code clones

are introduced in software systems is cloning existing code by copy-and-paste op-

erations. Code cloning by copy-and-paste operations should result in creating new

code clones, but it has a strong advantage that it allows developers to implement

new functions quickly. Developers, therefore, often perform such instant reuses of

code [76, 163]. This is a typical reason why code clones exist in software systems

2

even though the presence of code clones is regarded as a bad smell for software

maintenance.

For these reasons, managing code clones is necessary to avoid or reduce neg-

ative impacts of code clones and to take advantage of code cloning. Herein, the

term ‘code clone management’ means the whole activities on code clones, includ-

ing locating, monitoring, tracking or removing them [84]. The eventual goal of this

research is to achieve an effective management of code clones for efficient software

maintenance.

1.2 Overview of the Research

This dissertation presents the results of four studies, all of which are closely

related to management of code clones. The first one is an empirical study on the

influences of code clones. The second one improves a conventional technique to

track code clones across version histories of source code. The third one is another

empirical study on clone evolution, which analyzes genealogies of code clones.

The last one is a technique to support removing code clones that cannot be removed

easily.

An Empirical Study on the Influences of Code Clones

For efficient management of code clones, it is necessary to know how harmful

code clones are. If code clones are not harmful, it should be reasonable for effi-

cient software maintenance to deal with other factors instead of code clones. On

the other hand, if code clones have negative impacts on software maintenance, it

should be valid to pay attention to code clones. Although some research efforts

have been done to reveal the impact of code clones on software maintenance, the

argumentation on the harmfulness of code clones is still open.

In this study, we conducted an empirical study on how harmful code clones

are. The key idea of this study is that code clones have a negative impact if code
fragments included in at least one code clone are modified more frequently than
ones that are not included in any code clones. We proposed a new metric named

Modification Frequency to capture our key idea, which is calculated based on the

number of modifications, not the number of changed lines of code. We conducted

an experiment on open source software systems with multiple code clone detectors.

Our experimental results showed the following findings:

• Code fragments included in code clones are not modified more frequently

than ones not included in code clones totally, but there exists some code

clones modified frequently.

3

• Modification frequencies on code clones differ from code clone detectors.

• Modification frequencies on code clones are variable throughout their life-

time.

To summarize our experimental results, it is not always true that code clones

have a negative impact on software maintenance, but there exists some instances

that have a negative impact. This finding indicates the importance to detect and

focus on code clones that affect software maintenance negatively.

Tracking Clones’ Evolution across Version Histories

Tracking clones allows us to know how they evolved. Detecting clone evolu-

tion, which represents how a code clone evolves, should contribute to a successful

clone management. The bases of this are as follows.

• Analyzing clone evolution provides us with phenomena and characteristics

of clones that cannot be revealed by analyzing clones at the latest revision of

code.

• Clone evolution tells us when and how it was modified, which enables us

to find unintended inconsistencies of modifications on code clones. In other

words, clone evolution can be used to detect bugs related to code clones.

There exists some techniques to track clones in version histories. Clone Region

Descriptor [27] (refered as CRD) is one of the well known techniques for clone

tracking. CRD tracks clones based on their locations, which allows CRD to surpass

the other techniques in change-tolerance on clones. In other words, CRD can track

clones that the other techniques cannot.

Although the original CRD-based tracking has good change-tolerance, it has a

room for improvement. This study enhances the original CRD-based tracking and

realizes better change-tolerance than the original one. Also, this study reveals the

reason of clone disappearances with the enhanced CRD. As well as the investiga-

tion of clone disappearances, the enhanced tracking will be able to be a basis of the

further research on clone evolution.

Analyzing Genealogies of Code Clones with the Enhanced Clone Tracking
Technique

Clone tracking allows us to analyze the influences of clones more detail be-

cause it can tell how an individual clone evolves. However, because our previous

study on the influcences of clones does not consider evolution of them, it cannot

4

reveal the influcences of individual clones. Although our manual inspections found

some instances of clones having negative impacts, our previous study did not re-

veal how many clones have negative impacts on software evolution. To know the

influences of clones more detail, this study analyzes the influences of clones with

the clone tracking technique that enhances the CRD-based tracking.

This fine-grained analysis revealed that there are a few code clones that should

require much attention of developers or maintainers. This finding empirically sup-

ports the results of the first study, which is that not all but a part of clones have

negative impacts. Our another finding through this study is that clones tend to be

modified more frequently in former halves than in latter halves of their lifetimes.

Hence, we can say that it is important to find negative clones in their earlier stages

and start dealing with them as soon as possible.

A Support for Removing Code Clones

The two previous studies revealed that not all but a part of clones has negative
impacts on software maintenance. To achieve an intelligent clone management, it

is necessary to handle negative clones.

Removing code clones is one of the effective ways to handle negative clones.

However, the activity has not just positive aspects but also negative ones. The

negative aspects of removing code clones are as follows.

Risky: To remove code clones from source code, of cource, it is necessary to

make some modifications on the source code. Careless removal of code

clones may introduce new bugs into the source code.

Costly: Removing code clones requires much effort for software maintainers.

They need to locate code clones to be removed, consider how to remove

them, and decide whether they should remove the code clones or not.

These characteristics become more noticeble in the case that code clones to

be removed have some gaps. Gaps included in code clones make the removal

process of the clones more complicated. This means that removing such clones is

more risky and more costly. Therefore, techniques to assist removing clones having

some gaps are required for software maintainers to achieve such a challenging task.

This study proposed a novel technique to support removing code clones having

some gaps. This technique regards wholes of methods having code clones as its tar-

get, instead of targetting code clones themselves. Focusing on wholes of methods

enables to remove code clones having some gaps easily. By applying the proposed

technique to similar methods, code clones existing between them are merged with

unique processes of each method remained preserved.

5

We have implemented the proposed technique as a tool named CRat, and con-

firmed the effectiveness of it through case studies.

1.3 Overview of the Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 refers to current states of research on code clones. It privides a defi-

nition of code clones, and introduces some discussions around them. Furthermore,

it explores literatures of research on code clones with five categories, including

detection, removal, prevention, analysis, and finding bugs related to clones.

Chapters 3, 4, 5, and 6 present the four studies described above. In Chapter 3,

we describe the study on stability of code clones. This chapter presents the method-

ology, the experimental targets, and the results of this empirical experiment, and

then it compares the experimental results with other experimental methodologies

proposed by other researchers.

Chapter 4 explains a new clone tracking technique based on CRD. It describes

our key idea to track code clones more accurately, and comfirms improvements of

accuracy of clone tracking through an experiment on two open source software sys-

tems. Moreover, it presents an application of the clone tracking technique, which

reveals why and how frequently clones are gone.

Chapter 6 presents a refactoring support for code clones. It formally describes

the clone removal technique, and then it explains a tool implementation of the

proposed method. In addition, it validates the usefulness of the proposed method

through two experiments, one of which is on open source software systems, and

the other one is with some subjects.

Finally, Chapter 7 concludes this dissertation with a summary and directions

for future work.

6

Chapter 2

A Survey on Code Clone
Management

2.1 Code Clones

2.1.1 Definition

A code clone is a set of code fragments that are similar to each other according

to some definitions of similarity [15]. As this definition expresses, there exists a

vagueness on the definition of code clones. That is, there is no formal or generic

definition of them. Therefore, every clone detector has its own definition of code

clones [43,54,131]. Establishing a suitable definition of code clones is still an open

issue for all the researchers who are intereseted in them [84].

Here, we introduce some terms around code clones; clone relationship, clone

pair, cloned fragment, and clone set. Let α and β be code fragments, and assume

that they are similar to each other. Then, it is defined that there is a clone rela-

tionship between α and β. In addition, a pair of the two code fragments (α, β) is

called a clone pair, and each code fragment of which a clone pair consists is called

a cloned fragment. Moreover, a set of code fragments is called a clone set if every

code fragment included in the set is similar to all the other fragments in the set.

Note that clone set has alternative names such as clone class or clone group. This

dissertation, however, uses clone set among its alternatives.

Figure 2.1 shows a simple example of clone pairs and clone sets. This example

has three code fragments, α, β, and γ, and they have clone relationships to each

other. Hence, there are three clone pairs (α, β), (β, γ), and (α, γ) in this example.

In addition, there is a clone set that consists of the three cloned fragments α, β, and

γ.

7

A Clone Set

α

β

γA Clone Pair

A Clone Pair

A Clone Pair

Figure 2.1: Clone Pair and Clone Set

2.1.2 Types

Code clones can be categorized into the following three types by the degree of

their similarities [16].

Type-1: An exact copy except for white spaces and comments.

Type-2: Syntactically identical copy; only identifiers of variables, types, literals,

or functions were changed.

Type-3: A copy with further modifications in Type-2; statements were changed,

added, or removed.

Adding to the traditional three types, some researchers have proposed another

type of clones, which is referred as Type-4 clones. The following is the definition

of Type-4 clones [131].

Type-4: Fragments perform the same computation but implemented through dif-

ferent syntactic variants.

Type-1, Type-2, and Type-3 clones can be said as syntactically similar, whereas

Type-4 clones can be said as semantically similar.

Figure 2.2 describes each type of clones. Figure 2.2(a) represents the original

code fragment, and the other fragments shown in Figures 2.2(b), 2.2(c), 2.2(d), and

2.2(e) are clones of the original fragment.

8

1: public static int sum(int[] a) {
2: int result = 0;
3: for (int i = 0; i < a.length; i++) {
4: result += a[i];
5: }
6: return result;
7: }

(a) Original Fragment

1: public static int sum(int[] a) {
2: int result = 0;
3:
4: for (int i = 0; i < a.length; i++) {
5: // adding a[i] into result
6: result += a[i];
7: }
8:
9: return result;

10: }

(b) Type-1 Clone

1: public static int sum(int[] a) {
2: int s = 0;
3: for (int j = 0; j < a.length; j++) {
4: s += a[j]; // adding a[j] into s
5: }
6: return s;
7: }

(c) Type-2 Clone

1: public static int sum(int[] a) {
2: int s = 0;
3: for (int i = 0; i < a.length; i++) {
4: s += a[i];
5: }
6: // printing the result
7: System.out.println(“the sum is “ + s);
8: return s;
9: }

(d) Type-3 Clone

1: public static int sum(int[] a) {
2: return calc(a, 0);
3: }
4:
5: public static int calc(int[] a, int i) {
6: if (i < a.length) {
7: return a[i] + calc(a, i + 1);
8: } else {
9: return 0;

10: }
11: }

(e) Type-4 Clone

Figure 2.2: Types of Clones

The code fragment in Figure 2.2(b) is an exact copy of the original one except

for the different layout and the presence of a comment. This means that the code

fragment in Figure 2.2(b) and the original one consists of a Type-1 clone. Figure

2.2(c) shows another code fragment having some differences compared to the one

in Figure 2.2(a). In addition to the presence of a comment, this code fragment has

different names of variables from the original one. Hence, the code fragment in

Figure 2.2(c) is a Type-2 clone of the original one. Figure 2.2(d) presents a code

fragment having more gaps than the one in Figure 2.2(c). This code fragment has

not only differences of variable names and comments but also a statement that the

original fragment does not have. Therefore, the clone shown in 2.2(d) is a Type-3

clone.

As these figures show, code fragments shown in Figures 2.2(b), 2.2(c), and

2.2(d) are textually similar. In contrast, the one in Figure 2.2(e) is no longer similar

to the original in the text level. However, the method sum in Figure 2.2(e) and the

original method sum in Figure 2.2(a) compute the same values from the same

9

arrays. In other words, these two methods functionally equal to each other. This is

an example of Type-4 clones that are semantically similar to each other.

2.2 Discussions on Code Clones

2.2.1 Causes of Creation

Code clones are created into software systems by a variety of reasons. Baxter

et al. listed the followings as the reasons [15].

Code reuse by copying pre-existing idioms: Code cloning by developers will in-

troduce code clones into software systems. This is the most popular situation

that code clones are created. Code reuse by copy-and-paste operations is a

common practice in software development, because it is quite easy, and it

enables to make software development faster.

Coding styles: Some functions should be coded in accordance with standard styles.

Error reporting or user interface displays will be typical instances of such

functions. These styles sometimes create clones, because functions that are

coded in the same style have a high possibility that they are similar to each

other.

Instantiations of definitional computations: Many of simple and frequently used

functions will be repeated in software systems even when copying is not

used, which results in the presence of clones. Payroll tax, queue insertion,

or data structure access are instances of such functions.

Failure to identify/use abstract data types: Some programming languages do

not support abstract data types. If software systems are written in such lan-

guages, functions intended for use on another data structure of the same type

will be duplicated. Baxter et al. reported that “we have founded many sys-
tems with poor copies of insertion sort on different arrays scattered around
the code”, which is an instance of clones created by this reason.

Performance enhancement: Some clones are introduced intentionally for per-

formance reasons. Code abstraction, such as extracting existing features as

new methods, will reduce code duplications, but may introduce overheads

of execution. Hence, developers of systems having tight time constraints

sometimes repeat the same functions without abstracting them to avoid oc-

curences of such overheads.

Accidents: Different developers may write similar code accidentally. However, it

is rare that the amount of similar code generated accidentally becomes high.

10

In addition, using code generation tools, plagiarism of code, and padding the

amount of code by intentional cloning are pointed out as causes of clone creation

[71].

Among a variety of reasons, code cloning by developers is the most typical

cause of clone creation.

Kapser and Godfrey categorized patterns of cloning into the following four

groups [74].

Forking: cloning the existing code as a ‘springboard’ of development of similar

solutions. A case of this group of cloning is that developers create a new

driver for a hardware family by cloning the existing driver and tailor it to

new one. In this cloning group, cloned fragments will evolve independently

from the original code.

Templating: cloning when the desired behavior is already known and an exist-

ing solution closely satisfies this need. One simple example is to achieve

the same behavior for float and short in the C programming language.

Cloned fragments created by patterns of cloning categorized into this group

will evolve closely to the original code.

Customization: cloning when existing code solves a very similar problem to the

current development problem, but it cannot be used to solve the current prob-

lem as is. In such a case, developers clone the existing code, and make some

customizations on it to handle the current problem.

Exact Matches: cloning to solve a particular problem repeated with in a software

system. Cloning categorized into this group occurs in the case that the cloned

code is too small or there is little worthwhile to abstract the solution of the

problem. One of the examples is cross-cutting concerns such as logging or

debugging.

Some researchers revealed why code cloning occurs in development of experi-

mental software systems.

Kim et al. investigated the reasons why developers clone code with researchers

in IBM Corporation [76]. Their research showed that some clones were created by

unavoidable reasons including limitations of programming languages.

As well as Kim et al.’s investigation, Zhang et al. analyzed the situations where

code cloning occurs in a commercial software system [163]. Their interviews for

developers of the system revealed that close to half of developers claimed that they

“often” clone code by copy-and-paste, and almost all of the remaining subjects

claimed that they “sometimes” do code cloning. Furthermore, they found that de-

velopers copy existing code by not only technical reasons, including “Avoiding

11

breaking existing features” and “Difficult to be reused”, but also the presence of

time limitations or some organizational reasons, including “Issues of code owner-

ship”.

Summarizing these findings, ad hoc reuse of the existing code by code cloning

is not only a common practice but also sometimes unavoidable one. Hence, it is

impossible to avoid creating clones in software systems completely.

2.2.2 Harmfulness

At present, there is a huge body of work on empirical evidence on code clones,

starting with Kim et al.’s report on clone genealogies [78]. They have conducted

an empirical study on two open source software systems, and found that 38% or

36% of groups of code clones were consistently changed at least once. On the

other hand, they observed that there were groups of code clones that existed only

for short periods (five or ten revisions) because each instance of the groups was

modified inconsistently. Their work is the first empirical evidence that a part of

code clones, not all of them, increases costs required for modifications on source

code.

However, Kasper and Godfrey have different opinions regarding code clones.

They reported that code clones can be a reasonable design decision based on an

empirical study on two large-scale open source systems [74]. They built several

patterns of code cloning in the target systems, and they discussed the pros and

cons of code cloning using the patterns. Bettenburg et al. also reported that code

clones do not seriously affect software quality [18]. They investigated inconsistent

changes to code clones at the release level on two open software systems, and they

found that only 1.26% to 3.23% of inconsistent changes introduced software errors

into the target systems.

Monden et al. investigated the relation between software quality and code

clones on the file level [115]. They used the number of revisions of every file

as a barometer of quality: the larger the number of revisions of a file is, the lower

its quality is. They selected a large scale legacy system, which had been being op-

erated in a public institution, as the target of their experiment. The result showed

that, modules including code clones were 40% lower quality than modules not in-

cluding code clones. Moreover, they reported that the more code clones a source

file included, the lower quality it has.

Lozano et al. investigated whether the presence of code clones was harmful or

not [100]. They developed a tool that traces which methods include code clones (in

short, duplicate method) and which methods are modified in each revision. They

conducted a pilot study, and found that: duplicate methods tended to be more fre-

quently modified than non-duplicate methods; however, duplicate methods tended

12

to be modified less simultaneously than non-duplicate methods. Their findings

imply that the presence of code clones increased costs for modifications, and pro-

grammers were not aware of code duplications, so that they sometimes overlooked

code fragments that had to be modified simultaneously.

Also, Lozano and Wermelinger investigated the impact of code clones on soft-

ware maintenance [101]. Three barometers were used in the investigation. The first

one is likelihood, which indicates the possibility with which a method is modified

in a revision. The second one is impact, which indicates the number of methods that

are simultaneously modified with a method. The third one is work, which can be

represented as a product of likelihood and impact (work = likelihood × impact).
They conducted a case study on four open source systems for comparing the three

barometers of methods including and not including code clones. The result showed

that: likelihood of methods including code clones was not so different from one

of methods not including code clones; there were some instances that impact of

methods including code clones were greater than one of methods not including

code clones; if code clones existed in methods for a long time, their work tended

to increase greatly.

Moreover, Lozano et al. investigated the relation between code clones, fea-

tures of methods, and their changeability [103]. Changeability means the ease of

modifications. If changeability decreased, it will be a bottleneck of software main-

tenance. The result showed that the presence of code clones can decrease change-

ability. However, they found that changeability was more greatly affected by other

properties such as length, fan-out, and complexity of methods. Consequently, they

concluded that it was not necessary to consider code clones as a primary option.

Krinke hypothesized that if code clones are less stable than code fragments that

are not included in any code clones, maintenance costs for cloned code are greater

than those for non-cloned code. He conducted a case study in order to investigate

whether the hypothesis is true or not [88]. The targets were 200 revisions (a ver-

sion per week) of source code of five large scale open source systems. He measured

added, deleted, and changed LOCs on cloned code and non-cloned code, and com-

pared them. He reported that non-cloned code was more frequently added, deleted,

and changed than cloned code. In other words, code clones are more stable than

non-cloned code. Consequently, he concluded that the presence of code clones did

not necessarily make it more difficult to maintain source code.

Göde et al. replicated Krinke’s experiment [34]. Krinke’s original experiment

adopted line-based approach whereas their experiment adopted token-based ap-

proach. The experimental result was basically the same as Krinke’s one: cloned

code was more stable than non-cloned code in the viewpoint of addition and change.

On the other hand, from the viewpoint of deletion, non-cloned code is more stable

than cloned code.

13

Also, Krinke conducted an empirical study to investigate ages of code clones

[89]. In this study, he calculated and compared average ages of cloned code and

non-cloned code on four large-scale Java software systems. He found that the

average age of cloned code is older than non-cloned code, which implies cloned

code is more stable than non-cloned code.

Rahman et al. investigated the relationship between code clones and bugs

[128]. They analyzed four software systems written in C language with bug in-

formation stored in Bugzilla. They used Deckard, which is an AST-based clone

detector, and reported that only a small part of bugs located on code clones, and

the presence of code clones did not dominate bug appearances.

Göde modeled how Type-1 code clones were generated and how they evolved

[33]. He investigated how code clones evolved with nine open source software

systems. The result showed that: the ratio of code duplications was decreasing as

time passed; the average lifetime of code clones was over a year; in the case that

code clones were modified inconsistently, there were a few instances that additional

modifications were performed to restore their consistency.

Also, Göde et al. conducted an empirical study on clone evolution and per-

formed a detailed tracking to detect when and how clones had been changed [35].

In their study, they traced clone evolution and counted the number of changes on

each clone genealogy. They manually inspected the result in one of the target sys-

tems, and categorized all the modifications on clones into consistent or inconsis-

tent. In addition, they carefully categorized inconsistent changes into intentional or

unintentional. They reported that almost all clones were never changed or changed

only once during their lifetimes, and only 3% of the modifications had high sever-

ity. Therefore, they concluded that many of clones do not cause additional change

effort, and it is important to identify clones having high threat potential to manage

code clones effectively.

To summarize these experimental results, some empirical studies reported that

code clones should have a negative impact on software evolution whereas the others

reported the opposite result.

The former, which claims that clones are harmful, is summalized as follows.

• There exists many clone related bugs [65, 98].

• Methods having clones are more frequently modified than those not having

clones [100, 102].

• Methods having clones require more maintenance costs than those not hav-

ing clones [101, 114].

• Modules having clones have less maintainability than those not having clones

[115].

14

On the other hand, the latter, which states clones are not harmful, is summalized

as follows.

• Many clones live for only a short time period [78].

• Lack of modifing correspondents of cloned fragments rarely occur [5,18,35,

135, 143].

• Most of code clones have no relation to bugs [128].

• Clones are modified less frequently than non-cloned code [34, 38, 88, 89].

• There exists little clones that affect software maintenance (such as having

the same bugs) [74].

At present, there is no consensus on the impact of the presence of code clones

on software evolution. However, these variabilities of investigational results indi-

cate that not all of clones are harmful, but a part of them negatively affect software

maintenance.

2.3 Management of Code Clones

2.3.1 Needs

As described in 2.2.1, code cloning is a common practice in actual software

development. Moreover, in some cases, it is unavoidable because of limitations

of time, programming languages, or organizations. In addition, some researchers

claimed that most of clones cannot be easily removed [77, 78].

These facts indicate that it is no longer possible to completely prohibit clones

from existing in software systems.

Furthermore, as described in 2.2.2, not all but a part of clones has negative

impacts on software maintenance. This indicates that it is not effective to spend

much effort to prevent or remove clones that are not harmful [150].

Therefore, software maintainers should pay their attention to harmful clones by

preventing or removing them, or by assessing the presence of such harmful clones.

In other words, managing code clones is necessary to achieve effective software

evolution.

2.3.2 Definition

Because of the abstractiveness of the term “clone management”, there can be

a variety of its definitions. This dissertation gets into line with the definition that

15

Rainer Koschke stated in the literature [84]. He defined clone management as

follows.

“Software clone management comprises all activities of looking after

and making decisions about consequences of copying and pasting.”

This definition includes not only detetion or removal of clones but also all the

other activities that are concerened about code clones.

This dissertation categorizes all the activities of clone management into the

following five categories.

• Detection

• Removal

• Prevention

• Analytic methodology

• Detection and prevension of clone related bugs

Research achievements in each category are introduced in the following sub-

sections.

2.4 Detection

2.4.1 Overview

Clone detection is the most hot topic in the research area of code clones. Clone

detection reports the information where code clones are in target software sys-

tems. The role of clone detection is quite important because many of research or

techniques of clone management stand on it. Hence, great effort has been spent

on clone detection, which has yielded many techniques and tools to automatically

detect code clones from source code [43, 54, 71, 83, 129, 131].

Detectors of code clones can be classified into the following categories [16,43].

• Text-based

• Token-based

• Tree-based

• Graph-based

• Others

The remainder of this section describes each category in detail.

16

2.4.2 Text-based Techniques

Text-based detection techniques detect code clones by comparing every line of

code as a string. They detect multiple consecutive lines that match in specified

threshold or more lines as code clones. The biggest advantage of this technique is

that it can detect code clones quickly compared with other detection techniques.

This technique requires no pre-processing on source code, which realizes the fast

detection. However, detectors based on this technique cannot detect code clones

including differences of coding styles (e.g. whether long lines are divided into

multiple lines or not).

The method proposed by Johnson [64] and the method proposed by Ducasse

et al. [28] are instances of text-based clone detectors. In these methods, every line

of code is compared after white spaces and tabs are removed. These methods are

language-independent because they compare lines of code textually.

Simian is one of the well-used text-based clone detectors [140], which can

handle many programming languages. DuDe is another text-based clone detector

that detects chains of smaller extract clones [154]. SDD is a scalable detector,

which generates index and inverted index for code fragments and their positions

and finds similar fragments with an n-neighbor distance algorithm [95].

2.4.3 Token-based Techniques

In the token-based approach, source code is lexed/parsed/transformed to a se-

quence of tokens. This technique detects common subsequences of tokens as code

clones. Compared to the text-based approach, the token-based approach is usually

robuster against code changes such as formatting and spacing. Detection speed is

inferior as compared with text-based techniques, meanwhile superior as tree- or

graph-based approaches. This is because, in token-based approach, source code

need not to be transformed into intermediate representations.

One of the famous clone detectors categorized into the token-based detectors

is CCFinder, developed by Kamiya et al. [72]. It has been widely used among re-

searchers or engineers. A variety of enhancements has been proposed on CCFinder,

including an extended version named CCFinderX [21] and a distributed version

named D-CCFinder [99].

CP-Miner is also a token-based detector. CP-Miner has been developed by

Li et al. [98]. CP-Miner calculates a hash value from every statement, and then

it applies a frequent pattern mining algorithm to detect code clones [4]. Frequent

patterns do not have to be consecutive, which means that CP-Miner can detect

Type-3 clones.

RTF, a clone detector proposed by Basit et al, uses suffix arrays on tokens to

17

int num = k + size * 4;

Variable Declaration Statement

int num +

k *

size 4

Figure 2.3: An Example of ASTs

reduce costs for clone detection [13].

Kawaguchi et al. developed SHINOBI, a token-based clone detector on an

IDE [75]. It works as an add-in of Microsoft Visual Studio, and it applies a token-

based clone detection engine, which is similar to CCFinder.

2.4.4 Tree-based Techniques

In the tree-based detection, a program is parsed to a parse tree or an abstract

syntax tree (in short, AST) with a parser of the language in interest. An AST is one

of the intermediate representations that capture structures of source code. Figure

2.3 shows an example of ASTs. Tree-based techniques regard common subtrees as

code clones. This approach considers the structure of source code, therefore tree-

based detectors do not detect code clones ignoring the structure of source code

such as code clones including a part of a method and a part of another method.

However, a disadvantage of this approach compared with text- and token-based

approaches is that it requires more costs including both of time and memories for

its clone detection because of the additional costs required to transform source code

to parse trees or ASTs.

One of the pioneers of AST-based clone detectors is CloneDR developed by

Baxter et al. [15, 23]. CloneDR compares subtrees of ASTs by characterization

metrics based on a hash function through tree matching, instead of comparing sub-

trees of ASTs directly. This processing allows CloneDR to detect code clones

quickly from large software systems. It can handle many programming languages.

18

fp3 = lookaheadset + tokensetsize;
for (i = lookaheads(state); i < k; i++) {

% fp1 = LA + I * tokensetsize;
% fp2 = lookaheadset;
% while (fp2 < fp3)
% *fp2++ |= fp1++;

}

fp3 = base + tokensetsize;
…
if (rp) {

while ((j = *rp++) >= 0) {
…

fp1 = lookaheadset;
fp2 = LA + j * tokensetsize;
while (fp1 < fp3)
*fp1++ |= *fp2++;

}
}

(a) Code Fragment 1 (b) Code Fragment 2

Figure 2.4: A Clone Pair with a Differnt Order of Statements

Moreover, it has a function to assist clone removal.

DECKARD is another well-used clone detector based on tree comparisons [61].

It applies a locality sensitive hashing algorithm [26] to detect code clones, which

allows DECKARD to detect Type-3 code clones.

Koschke et al. developed clones [85], which is also a tree-based approach as

well as CloneDR and DECKARD. It compares ASTs with a suffix tree algorithm

to have an increase of detection speed.

2.4.5 Graph-based Techniques

In the graph-based approach, code clones are detected by comparing graphs

created from source code. Isomorphic subgraphs are regarded as code clones in

this approach. Program dependence graph (in short, PDG) is one of the well-used

graphs to detect code clones, which is a directed graph that represents dependencies

between elements of programs [31, 153].

These graphs require semantic analyses for their creation, therefore this ap-

proach requires much more costs including both of time and memories than the

other detection techniques. However, this technique can detect code clones with

additions/deletions/changes in statements or code clones including some differ-

ences that have no impact on the behavior of program. This is because graph-based

techniques can consider the meanings of program.

Figure 2.4 shows one of the code clones that include some differences that have

no impact on the behavior of programs. Other techniques cannot detect these two

code fragments as a code clone because there is a different order of statements.

One of the leading graph-based clone detection methods is the one proposed

by Komondoor and Horwitz [81]. Their method detects isomorphic subgraphs

of PDGs with program slicing. Krinke’s method [86], and Higo et al.’s method

[42, 139] are also included in graph-based techniques. Each detection method is

optimized to reduce detection cost. Krinke sets a limit of search ranges of PDGs

19

with a threshold. By contrast, Higo et al. confine nodes to be bases of subgraphs

with some conditions. Moreover, Higo et al. use execution dependence, which

enables detecting code clones that other graph-based methods could not detect.

2.4.6 Other Detection Techniques

One of the detection techniques that can be categorized into this category is

a metrics-based approach. First, metrics-based detectors calculate metrics on ev-

ery program module (such as files, classes, or methods), then detect code clones by

comparing the coincidence or the similarity of these values. CLAN is a clone detec-

tor categorized into the metrics-based approach [109]. CLAN finds duplications by

comparing metrics obtained from ASTs created from source code. Kontogiannis

et al. developed another metrics-based detector [82], which uses ASTs to calcula-

tions of metric values as well as CLAN. Ottenstein proposed an approach to detect

plagiarisms of source code with metrics [126]. Lanubile and Mallard developed a

metrics-based approach to find functional clones in web applications [91]. Kodhai

et al. combined metrics-based approach and texual comparison of source code to

detect Type-1 and Type-2 functional clones [79].

Beside this, there are some file-based detection methods [125, 138]. This de-

tection technique detects code clones by comparing every file instead of statements

or tokens, which let it be one of the most scalable approach to detect clones. How-

ever, this technique cannot find code clones that exist in a part of a file. In addition,

there exists method-based techniques that are more fine-grained compared with

file-based techniques [56]. Although these techniques are inferior to file-based

ones in the point of detection speed, they can detect code clones that file-based

techniques miss.

Moreover, incremental detection techniques are under intense studies [36, 47,

51,120]. The incremental clone detection keeps results of clone detection in previ-

ous revisions and their intermediate products, and it uses them in the next detection

of code clones. Reusing results and intermediate products of analyses on previous

revisions can reduce cost of the clone detection on the current revision substan-

tially.

There exists some techniques not classified into the above categories. The fol-

lowings briefly describe them. NICAD is able to detect Type-3 clones on the levels

of methods or blocks by using pretty printing and an algorithm to detect longest

common subsequences [122, 132]. Basit and Jarzabek proposed a technique to

detect higher-level clones than code fragments, which means structual clone detec-

tion [11, 12]. Murakami et al. developed a clone detector named FRISC, which

uses hash sequences created from statements to detect code clones [116]. FRISC
holds repeated instructions as a pre-processing of clone detetion to eliminate false

20

positives and detect clones that other detectors cannot detect. Murakami et al. also

developed another detector that is also based on comparison of hash sequences,

which is named CDSW. [117] CDSW uses a well-known algorithm, the Smith-

Waterman algorithm [141], that finds similar alignments between two sequences.

They optimized the Smith-Waterman algorithm for the purpose of clone detec-

tion. Li and Thompson combined tokens and ASTs to detect and remove code

clones [96]. Maeda proposed a technique for clone detection using PALEX [105].

PALEX is a representation of source code that contains recorded parsing actions

and lexical formatting information, and using it enables his technique to be lan-

guage independent.

2.4.7 Comparison and Evaluation of Clone Detectors

Comparing and evaluating clone detectors plays an important role to identify

an efficient clone detector. However, lacking generic or strict definitions of code

clones makes it challenging to compare and to evaluate clone detectors. Further-

more, suitable detectors should vary with individual purposes or individual users.

Therefore, it is impossible to decide what is the best detector among all the clone

detectors.

There are some empirical studies for comparison and evaluation of clone de-

tectors [16, 20, 30, 85, 133, 134, 144]. Rattan et al. reported some general remarks

among the above studies through their systematic review as follows [129].

• Token-based detectors have high recall and reasonable precision because

they detect a large number of clones.

• Tree-based detectors detect less number of clones than token-based detec-

tors, which results high precision and low recall compared to token-based

detectors.

• Metrics-based detectors have good precision but low recall because less num-

ber of clone candidates are detected.

• Graph-based tools is robust for Type-3 clone detection, but they suffer from

high time complexity.

2.5 Removal

Clone removal is also an active research area as well as clone detection, and

so many researchers proposed techniques to remove clones from source code [48].

Basically, clone removal stands on refactoring. Refactoring means changing the

21

internal structures of software systems without changing their external behavior.

Because clone removal must not change the behavior of its target software, it can

be said that clone removal is a kind of refactoring.

First, this section describes what is refactoring, and then refers how to remove

clones, and finally introduces research achievements on clone removal after that.

2.5.1 Refactoring

Definition

Refactoring is one of the frequently performed activities in the maintenance

phase. Fowler, a pioneer of refactoring, defined refactoring as “the process of
changing a software system in such a way that it does not alter the external be-
havior of the code, yet improves its internal structure” [32]. It has been reported

that the maintainability of software systems decays over time [29]. A set of suit-

able refactorings could be beneficial to prevent decays of software maintainability.

However, applying refactorings requires much effort for software maintainers, and

it is quite difficult for maintainers to apply refactorings manually without introduc-

ing any human errors because of the difficulty of applying refactorings [118].

Because of these factors, techniques to assist refactoring activities are required.

This fact makes refactoring as one of the hot topics in the research area of software

engineering [111].

Process

The refactoring process consists of several activities as follows [111]:

1. Identify places that should be refactored,

2. Determine which refactroing(s) should be applied to the places,

3. Guarantee that the behavior of the program is preserved by the selected refac-

toring(s),

4. Apply the refactoring(s),

5. Assess the effect of the refactoring(s) on quality of the software or the pro-

cess and

6. Maintain the consistency between the refactored program and other software

artifacts (e.g. documentation, design documents, requirements specification,

tests).

22

Each of these activities can be supported by different tools, techniques or for-

malisms.

Behavior Preservation

Refactoring must not change the behavior of program accoring to its definition.

The original definition of behavior preservation is suggested by Opdyke [124].

The definition states that, for the same set of input values, the resulting set of out-

put values should be the same before and after the refactoring. However, requiring

the preservation of input-output behavior is insufficient, since many other aspects

of the behavior may be relevant as well. For example, in the case of real-time
software, an essential aspect of the behavior is the execution time of certain oper-

ations. Thus, refactoring must preserve all the kinds of temporal constraints. For

embedded software, memory constraints and power consumption are also impor-

tant aspects.

Another pragmatic way to guarantee the behavior preservation is using test

suites. This means that if all the test suites are passed before and after refactorings,

it is regarded that the refactorings do not affect the behavior of the program. If

sufficient test suites are prepared, the fact that all the test suites still pass after the

refactorings will be a good evidence that the behavior of the program is preserved.

Another approach is to formally prove that refactorings preserve the full pro-

gram semantics. The bahavior preservation can be formally proved if a language

with a simple and formally defined semantics is used in the target software sys-

tems. However, it is difficult to prove the behavior preservation for more complex

languages such as C++.

2.5.2 Refactoring Patterns Used for Code Clone Removals

This subsection describes refactoring patterns that can be used for clone re-

moval, all of which were proposed by Fowler [32, 44].

Extract Class/SuperClass

Extract Class indicates extracting a part of a class as a new class. If there is

a large and/or complex class, the class requires much costs for its maintainance.

Extract Class is useful in such a case. If there is a class-level duplication, Ex-
tract Class will remove code clones included in the duplicated classes. Figure 2.5

shows an example of refactoring with Extract Class. In this case, there are du-

plicate fields officeAreaCode and officeNumber, and duplicate operation

about them. By applying Extract Class to this example, duplicate fields and dupli-

cate operation are extracted as a new class TelephoneNumber, and the classes

23

Person

name
officeAreaCode
OfficeNumber

getTelephoneNumber()

Company

address
officeAreaCode
OfficeNumber

getTelephoneNumber()

Person

name

getTelephoneNumber()

Company

address

getTelephoneNumber()

TelephoneNumber

areaCode
number

getTelephoneNumber()

1 1

1 1

officeAreaCode
OfficeNumber

getTelephoneNumber()

officeAreaCode
OfficeNumber

getTelephoneNumber()

TelephoneNumber

areaCode
number

getTelephoneNumber()

Figure 2.5: An Example of Extract Class

Department

getTotalAnnualCost()
getName()
getHeadCount()

Employee

getAnnualCost()
getName()
getId()

Party

getTotalAnnualCost()
getName()
getHeadCount()

Department Employee

getAnnualCost()
getHeadCount()

getAnnualCost()
getId()

getTotalAnnualCost()
getName()

getAnnualCost()
getName()

Party

getTotalAnnualCost()
getName()
getHeadCount()

Figure 2.6: An Example of Extract SuperClass

Person and Company uses the class. By this modification, the duplicate code is

removed from the two classes.

If duplicate classes do not extend different base classes, Extract SuperClass
may be a better solution for clone removal. Extract SuperClass is similar to Ex-
tract Class. The difference is that Extract SuperClass uses inheritance; mean-

while Extract Class uses delegation. In Extract SuperClass, duplications be-

tween two (or more) classes are extracted as a new class and all the original classes

are changed to extend the new class. Figure 2.6 shows an example of the applica-

tion of Extract SuperClass. In this example, a new class Party is created by

extracting the duplication of two classes Department and Emproyee, then the

two classes are changed to extend the class Party.

24

void printTaxi(int amount) {
String name = getTaxiName();

System.out.println(“name: “ + name);
System.out.println(“amount: “ + amount);

}

void printBus(int amount) {
String name = getBusName();

System.out.println(“name: “ + name);
System.out.println(“amount: “ + amount);

}

void printTaxi(int amount) {
String name = getTaxiName();
print(name, amount);

}

void printBus(int amount) {
String name = getBusName();
print(name, amount);

}

void print(String name, int amount) {
System.out.println(“name: “ + name);
System.out.println(“amount: “ + amount);

}

void print(String name, int amount) {
System.out.println(“name: “ + name);
System.out.println(“amount: “ + amount);

}

System.out.println(“name: “ + name);
System.out.println(“amount: “ + amount);

System.out.println(“name: “ + name);
System.out.println(“amount: “ + amount);

Figure 2.7: An Example of Extract Method

Extract Method

Extract Method indicates extracting a part of a method as a new method. This

refactoring pattern is often used for improving reusability by segmentalizing too

long and/or too complex methods into short and simple methods. Extract Method
can remove code clones by extracting them as a new method and replace them by

method call instructions for the method. Figure 2.7 shows an example of clone

removal with the application of Extract Method. In this example, there are the

same statements between two methods printTaxi and printBus. By applying

Extract Method, these duplicate statements are extracted as a new method print,

and the original statements are replaced by the method call. As a result, code clones

between the two methods are merged into a single method. An advantage of this

pattern as clone removal technique is that it can be applied if a part of a method

contain code clones and the other part does not contain code clones. In addition,

this pattern is capable of wide applications because it does not use class hierarchies.

Therefore, this pattern is useful in such a case that versatile processes, which can

be merged as a library, are scattered across source code as code clones. However,

this pattern introduces many methods if multiple cloned fragments exist in a single

method and there are some non-cloned fragments between every two fragments.

Pull Up Method

Pull Up Method indicates pulling up identical methods existing in derived

classes into their common base class as a new method. This pattern is effective

if there are some methods that behave the same way in all the derived classes.

By applying this pattern, duplicate methods are merged into a base class, which

25

Salesman

getName()

Engineer

getName()

Employee

Salesman Engineer

Employee

getName()getName()

getName()getName()

Figure 2.8: An Example of Pull Up Method

Employee

fivePercentRaise()fivePercentRaise()
tenPercentRaise()

Employee

raise(percentage)raise(percentage)

Figure 2.9: An Example of Parameterize Method

means that code clones existing in derived classes are removed. Figure 2.8 shows

an example of the application of Pull Up Method. In this case, two duplicate

methods getName in class Salesman and Engineer are pulled up into the

same base class Employee. This pattern can be applied if and only if target

methods are exactly the same. Moreover, this pattern uses inheritance relationships

among classes. Therefore, the range of application of this pattern is narrower than

that of Extract Method refactoring pattern.

Parameterize Method

If there are similar methods in a single class, the duplication may be removed

by Parameterize Method. Parameterize Method is used in a case that sev-

eral methods do similar things but with different values contained in the method

body. In this pattern, a new method that uses a parameter for different values

is created. Figure 2.9 shows an example of Parameterize Method refactoring.

The class Employee before refactored in this example has two similar meth-

ods, named fivePercentRaise and tenPercentRaise. A Parameterize
Method refactoring creates a new method that uses a parameter for different values

between the two methods, which removes clones between them.

26

Pull Up Constructor

This pattern is very similar to the Pull Up Mehtod. The only difference is the

target of this pattern is not a method but a constructor.

Replace Method with Method Object

This pattern is a hybrid of Extract Class and Extract Method refactoring

patterns. This pattern is used in the case that there exists long and similar methods

that use local variables, which make it difficult to extract these methods by Extract
Method refactoring pattern. This patten applies Extract Class refactoring pattern

to such methods. Extract Class replaces local variables into fileds of the extracted

class, and so Extract Method can be applied easily after Extract Class refactoring

is applied.

Form Template Method

Form Template Method refactroing pattern is a hybrid of Extract Method
and Pull Up Method refactoring patterns. This pattern targets similar methods

existing in derived classes that have a same base class. In this pattern, processes

that are common in all the target methods are pulled up into the base class with

Pull Up Method refactoring pattern. On the other hand, the processes that are

not common in the target methods remain in each derived class. The remaining

processes are unique in each derived classes. These unique processes are extracted

as a new method with Extract Method refactoring pattern.

The steps for applying Form Template Method are as follows:

1. Detect common processes in all the target methods,

2. Extract unique processes as new methods with Extract Method refactoring

pattern,

3. Rename methods to make correspondence of signatures. The targets of re-

naming are methods that created in 2. and called in the same point of the

common processes and

4. Pull up common processes as a new method in the base class with Pull Up
Method refactoring pattern.

Figure 2.10 shows an example of refactorings with this pattern. There are two

classes that have the same base class, Site, and these two classes have the meth-

ods that are similar to each other, getBillableAmount.

27

Site

ResidentialSite
getBillableAmount()

LifelineSite
getBillableAmount()

double base = units * rate * 0.2;
double tax = base * Site.RATE * 0.5;
return base + tax;

double base = units * rate;
double tax = base * Site.RATE;
return base + tax;

(a) before refactoring

ResidentialSite
getBillableAmount()
method1()
method2()

Site

LifelineSite
getBillableAmount()
method3()
method4()

double base = method3();
double tax = method4();
return base + tax;

double base = method1();
double tax = method2();
return base + tax;

return units * rate;

return base * Site.Rate * 0.5;return base * Site.Rate;

return units * rate * 0.2;

(b) after step1 and step2

ResidentialSite
getBillableAmount()
getBase()
getTax()

Site

LifelineSite
getBillableAmount()
getBase()
getTax()

double base = getBase();
double tax = getTax();
return base + tax;

double base = getBase();
double tax = getTax();
return base + tax;

return units * rate;

return base * Site.Rate * 0.5;return base * Site.Rate;

return units * rate * 0.2;

(c) after step3

Site
getBillableAmount()
getBase()
getTax()

ResidentialSite
getBase()
getTax()

LifelineSite
getBase()
getTax()

double base = getBase();
double tax = getTax();
return base + tax;

return units * rate;

return base * Site.Rate * 0.5;return base * Site.Rate;

return units * rate * 0.2;

(d) after refactored

Figure 2.10: An Example of Refactorings with Form Template Method

To apply Form Template Method to this target, at first, it is necessary to

distinguish the common and unique processes in the two methods. In this example,

the differences of the two methods are in the calculation ways of variables base
and tax.

The next step extracts each of the calculations of base and tax as new meth-

ods (shown in Figure 2.10(b)), which results in four methods (currently, they are

named as method1, method2, method3, and method4).

In the next step, the four new methods are renamed to make correspondence of

signatures (shown in Figure 2.10(c)). In this example, method1 in ResidentialSite
and method3 in LifelineSite are called as the first processing of the original

methods. Also, method2 and method4 are called as the second processing of

the original methods. Therefore, method1 and method3 are renamed to make

their signatures correspondent. In this example, method1 and method3 are re-

named as getBaseAmount. Similary, method2 and method4 are renamed as

getTaxAmount.

Finally, the common processes are pulled up as a new method in the base class

Site. Note that this step defines getBaseAmount and getTaxAmount as ab-

stract methods in the base class. Figure 2.10(d) shows the code after the refactoring

28

has finished.

By applying this refactoring pattern to similar methods, code clones existing

between these methods are merged into a base class. An advantage of clone re-

moval with this pattern compared with Pull Up Method is that this pattern can

be more widely used than Pull Up Method because this pattern can be applied to

methods that are not exactly the same. Compared with clone removal with Ex-
tract Method refactoring pattern, the application range of this pattern is narrower.

However, this pattern is effective in such a case that common processes are seg-

mentalized by unique processes. This is because separated common processes can

be merged as a single method with Form Template Method refactoring pattern,

meanwhile each fragment of common processes is extracted as a method with Ex-
tract Method refactoring pattern.

The rest of this dissertation calls a method created in base classes by pulling

up the common processes template method.

2.5.3 Research on Clone Removal

Fowler, a pioneer in the field of refactoring, mentioned that “the number one in
the stink parade is duplicate code” [32]. He also presented some sets of operations

for merging code clones. However, because it is quite difficult for maintainers to

apply refactorings manually without introducing any human errors, much research

effort has been performed on refactoring assistance [111].

Choi et al. found from open source software systems that most of refactor-

ings applied to code clones are either Extract Method or Replace Method with
Method Object [22].

Higo et al. proposed a method for merging code clones [44]. Their method con-

sists of two phases. The first phase is quick detection of refactoring-oriented code
clones from source code. The second phase is measurement of metrics indicating

how the refactoring-oriented code clones should be merged. They implemented

their method as a tool named ARIES. Using ARIES in the refactoring process, main-

tainers of software systems can readily know which and how code clones can be

merged. They conducted a case study with ARIES, and they confirmed that ARIES
performs the process successfully.

CloneDR, which is an implementation of the AST-based technique of clone de-

tection, offers not only the locations of code clones but also forms of merged code

fragments [15]. The forms help users understand what operations are required to

merge code clones. However, the tool does not care about the positional relation-

ship between code clones in the class hierarchy.

Bakazinska et al. proposed a refactoring technique for duplicate methods [9].

Their technique provides the differences between code clones, which help users

29

to determine whether code clones can be merged or not. Also, their technique

measures the coupling between a duplicated method and its surrounding code. In

their method, code clones are removed by using two design pattern Strategy and

Template Method.

Cottrell et al. implemented a tool that visualizes the detailed correspondences

between a pair of classes [24]. The classes are generalized to form an intermediate,

AST-like structure that distinguishes between what is common and what is specific

to each class. The specific instructions will influence the degree of relatively be-

tween the classes. The tool works after users identify two classes that should be

merged.

Komondoor et al. proposed an algorithm for procedure extraction [80]. The

inputs to the algorithm are the CFG (control-flow graph) of a procedure and a

set of nodes in the CFG. The goal of the algorithm is to revise the CFG with the

following conditions:

• The set of nodes that are extractable from the revised CFG;

• The revised CFG is semantically equivalent to the original CFG.

The implementation of this algorithm adopts heuristics for enhancing scalabil-

ity. Although the algorithm has a worst-case exponential time complexity, their

experimental results indicated that it may work well in practice. However, the al-

gorithm can be applied only to a single clone pair. Different techniques are needed

to determine how two or more code clones can be extracted as a single procedure

with preserving semantics.

The majority of clone removal techniques is based on Extract Method or Pull-
Up Method refactorings, and there are few techniques based on Form Template
Method refactoring.

Juillerat et al. proposed a method to automatically apply Form Template
Method to a pair of similar methods with ASTs [66]. Their method can show

source code after the application of the pattern, and the execution time and mem-

ory space required to the calculation are not so high.

Masai et al. proposed a method to support refactorings with Form Template
Method with ASTs likewise Juillerate et al. [107]. Their method considers the

structural information of ASTs to detect unique processing, meanwhile Juillerat et

al. compare ASTs with token sequences that are made from ASTs. Also, they im-

plemented a function to suggest suitable divisions between common- and different-

parts on the specified method pair to users with a cohesion metric COB [37, 55].

Although many reseachers have spent their effort on research of clone removal,

as described in 2.2.2, it cannot be said that all the clones are “bad smells” for

30

software maintenance. In addition, clone removal has been countered by some

reseachers [77, 78]. The bases of such counter opinions are as follows.

• Many code clones live in a short time.

• Most of code clones that live in a long time cannot be easily refactored.

Hence, it is important before removing clones to select targets of removal care-

fully, with pros and cons of it (including benefits that the removal will offer, costs

that the removal will require, and risks that the removal might bring) being consid-

ered.

2.6 Prevention

As 2.2.1 described, code cloning by copy-and-paste operations should result

in creation of code clones. Although clones created by the operations may affect

software maintenance adversely, it has a big advantage that is hard to be abandoned.

That is to say, it can rapidly provide functions that are similar to the existing ones.

Almost all of recent software development has a strictly-limited time and resources,

which forms a hotbed of cloning. In addition, cloning is sometimes unavoidable

because of technical or organizational limitations [163].

However, it is quite obvious that unlimited cloning wreaks enormous damage

on software evolution because of a large amount of negative clones. Hence, it is

important for effective software evolutaion to prohibit creating negative clones and

to allow creating only positive ones.

Laguë et al. proposed a strategy of clone prevention named “Preventive Con-

trol” [90]. It allows code cloning only when the cloning has a valid reason. When

developers want to clone any code fragment, preventive control forces them to ex-

plain the reason of the cloning that they want to do. In the case that the explained

reason is regarded as valid, developers can perform the cloning. If it is not the case,

the cloning will be rejected. Therefore, preventive control can prevent introducing

negative clones in software systems.

Another way of clone prevention stands on watching behavior of developers on

IDEs. Venkatasubramanyam et al. proposed a framework to observe developers’

behavior to prevent clone creation [148]. When developers are just about to clone

any code, the framework checks whether the cloning satisfies constraints that all the

cloning is imposed. If the cloning violates any constraints, the framework rejects

the cloning. A big feature of this framework is that its users can define the con-

straints of cloning as they like. Venkatasubramanyam et al. provided an instance of

constraints that “Do not clone code fragments whose cyclomatic complexity [110]

values are larger than or equal to five”.

31

Furthermore, there exists a techique to predict harmfulness of clones that are

created by copy-and-paste operations at the point of these operations, which was

proposed by Wang et al. [151]. They regarded code cloning as harmful if clones

created by it need any consistent modifications in the future. On the other hand,

code cloning is regarded as not harmful in the case that clones created by the

cloning no longer need any modifications, or they do not need any consistent

modifications. Their prediction uses 21 metrics that are collected based on fea-

tures or locations of code. They predicted harmfulness of clones with Bayesian

Networks [127], a well-known machine learning technique, and collected metrics.

This technique can be used in the following two strategies.

• Prohibiting cloning that is predicted to produce any harmful clones.

• Allowing cloning only if it is predicted to produce non-harmful clones only.

Wang et al. evaluated their technique on both of the two strategies with com-

mercial software products of Microsoft, and they stated that their technique is

enough effective on both of the two strategies.

2.7 Analytic Methodology

As described in 2.4, much effort has been spent on clone detection, which

produces a variety of clone detectors. Coupled with advanced hardware, clone

detectors are now substainable for use on very large scale software in industry.

Of course, detecting clones is not enough to promote effective software evo-

lution. Clone detectors come into their own when their outputs are used in some

way. A particular way to make use of detected clones is to analyze them. However,

clone detectors tend to report a long list of clones from a large scale software sys-

tem. Hence, it becomes a challenging task for developers or maintainers of large

scale software systems to treat such a large amount of clones [63]. This indicates

that there is a strong demand for techniques to analyze a large amount of clones

effectively.

This section introduces some techniques that can respond to such a request.

2.7.1 Filtering and Categorizing

One way to promote efficient analysis of clones is to reduce the amount of

clones by filtering out uninteresting clones. Similarly, categorizing or clustering

clones should allow developers or maintainers to analyze clones in a shorter time

frame. Table 2.1 summalizes these techniques.

32

Table 2.1: Overview of Methods for Filtering/Categorizing/Clustering Clones

Proposed by Basis Overview

Jiang et al. [63] Specified by users Omitting clones not satisfying

specified conditions

Yang et al. [158, 159] Machine learning with

TF-IDF

Learning useful clones speci-

fied by individual user

Zhang et al. [164] Specified as the SQL

format

Getting clones that satisfy con-

ditions specified with the SQL

format

Tairas & Gray [142] Latent semantic analy-

sis based on identifier

names

Clustering clones sharing many

identifiers having the same

names into the same cluster.

Kapser & Godfrey [73] Locations of clones Categorizing clones with their

locations such as Same File,

Same Dir, Different File.

Merlo & Lavoie [112] Owner blocks of clones Categorizing clones like

method-method, block-block,

or method-block.

Balazinska et al. [10] Comparison of meth-

ods shairing cloned

fragments

Categorizing clones into 18

types based on differences of

methods.

Xing et al. [156] Comparison of PDGs Categorizing clones into 7

types based on differences of

PDGs

Kamiya [69] Configurations such as

Makefiles

Classifying clones based on

configuration information such

as appearing in a configura-
tion, but not in another config-
uration

Kamiya [70] Caller-callee relation-

ships

Classifying cloned functions

that call the same funciton as

content clone, and those that

are called by the same function

as context clone.

33

Jiang et al. proposed a filtering technique for code clones based on data mining

techniques [63]. This filtering ommits “uninteresting” clones from the results of

clone detectors. Their method allows its users to decide criterion of “interesting”

clones because it strongly depends on the purpose of clone analysis or the ana-

lyzers’ notions whether a code clone is “interesting” or “uninteresting”. In other

words, a code clone can be “interesting” even though it is “uninteresting” in an-

other situation or for another analyzer.

Yang et al. proposed another technique to filter code clones [158,159], which is

based on a machine learning technique. In similar to Jiang et al., Yang et al. stand

on the basis that usefulness of a code clone should differ in according to situations

or users. To be flexible to such variability of usefulness of clones, they developed a

web-base system named Fica for filtering of clones. Fica internally uses a machine

learning technique to predict whether a given code clone is “interesting” or not in

a particular situation and/or for a particular user. Fica learns judgements of use-

fulness of clones from training data sets, and predicts whether clones not included

in the training data sets are “interesting” or not. Each user of Fica has her/his own

training data set, thus Fica can be flexible to different notions of different users. In

addition, every user of Fica can have multiple training data sets, which offers Fica
a great frexibility for different usages.

They performed an open survey, with 33 participants contributed. The survey

revealed a high accuracy of Fica’s prediction. Furthermore, it found the following

observations.

• “Uninteresting” clones tend to fall into several categories, thus they are likely

to form clusters.

• “Interesting” clones tend to be unique comparing to uninteresting ones.

• Users having more experience on code clones are more likely to agree with

each other compared to users having less experience. In other words, experts

on code clones share common opinions on interests of clones.

Zhang et al. developed a filtering of clones based on SQL instructions [164].

Their method stores results of a clone detector, named CloneMiner [12], which

allows users to select clones with any SQL instructions. In addition, they have

implemented their method as a plugin of Eclipse, the de-facto standard of IDEs for

Java, which is named CloneVisualizer.

Tairas and Gray proposed a technique to cluster clones based on a latent se-

mantic analysis [142]. This method regards an identifier as a word, thus clones

sharing many identifiers with the same names are clustered into a single group.

34

Figure 2.11: Rieger et al.’s Visualization (Duplication Web) (Cited from the litera-

ture [130])

Many categorizations of clones have been proposed in recent years, including

techniques based on locations [73], syntactical information [112], differences [10,

156], configurations [69], or caller-callee relationships [70]. These categorizations

will be helpful to assess or understand code clones in software systems.

2.7.2 Visualizing

Software visualization is quite useful to understand software systems [14].

Many researchers successifully have made use of visualization techniques to un-

derstand circumstances of code clones.

Rieger et al. applied polymetric views to clone visualization [130]. Polymetric

view is a visualization technique that represents mulitple characteristics in a single

view [92]. They proposed six types of clone visualization, one of which is shown

in Figure 2.11. Figure 2.11 shows an instance of duplication web. Duplication

web places all the source files as boxes in a concentric fashion, and draws edges

between source files if they share any code clones. The width of each edge repre-

sents the amount of shared clones between two source files. This means that there

is a heavy edge between two source files if they share a large amount of clones.

Furthermore, the length of each box indicates the amount of code clones whose el-

ements are included only in the file represented by the box without any exceptions.

Duplication web shows which files share a lot of clones, which will be helpful for

software maintainers.

Wattenberg proposed Arc Diagram that visualizes patterns of strings that fre-

quently occur [152]. Figure 2.12 describes an example of an arc diagram. Arc

diagrams can show patterns frequently observed in not only source code but also

other sequences including byte code, DNA arrangements or musical scores.

35

Figure 2.12: An Arc Diagram (Cited from the literature [152])

Figure 2.13: Clone Visualization with Bundle Edge View (Cited from the literature

[40])

Hauptmann et al.’s technique uses bundle edge views [40]. Bundle edge view

is a kind of graph visualizing techniques. To reduce the number of edges of graphs,

bundle edge view bundles edges with similar origins and destinations together [49].

Figure 2.13 shows an example of bundle edge views for clone visualization. Each

edge of the graph indicates that two source files connedted by the edge shares

clones. This view shows distribution of clones across the whole of a given software

system in a concise way.

Yoshimura and Mibe proposed a technique to visualize analogous relationships

between source files [162], which is shown in Figure 2.14. Their goal is to explain

how clones distribute for stakeholders who are not experts of software develop-

ment. This visualization technique can show how many source files share clones

in one glance.

Ueda el al. developed Gemini [147], which is a GUI frontend of CCFinder
[72]. Gemini uses scatter plots to look down at distributions of clones. In addition,

it has a function to filter out clones with some metrics. It is equipped a graph

named Metric Graph to support the filtering. Users of Gemini can filter clones in a

36

Figure 2.14: Clustered Source Files based on Their Similarities (Cited from the

literature [162])

Figure 2.15: An Exapmle of Scatter Plots Shown by Gemini [147]

intuitive way with the graphs. As another research related to Gemini, Miyazaki et

al. proposed a technique to support users of Gemini to decide where they should

start analysis of clones [113].

Adar and Kim have offered a library for clone visualization named SoftGUESS
[3]. Their library includes visualizations for clone genealogies, for hierarchical

structures of clones, and dependencies of clones at the package level.

Recent research has high interests on clone genealogies. As described above,

SoftGUESS can visualize clone genealogies. Another technique to visualize clone

genealogies is proposed by Saha et al., which uses scatter plots [136].

37

2.8 Detection and Prevention of Clone Related Bugs

The presence of code clones can be a cause of bug spreadings. That is to say, if

a bug hides in one of cloned fragments, its correspondents have high probabilities

that they also have the same bug. Hence, developers or maintainers may neglect

to fix all the cloned fragments in a clone set if they are unaware of the presence

of the clone. Moreover, it is quite natural that similar bugs will be exposed in

similar situations. This means that, if a bug in a system was fixed and the fixed bug

was one of clone related bugs, the system should still fail to work in the similar

situations that the fixed bug occured. In this case, users of the system will think

that “the bug has not been fixed even though the provider of the system said the

bug was already fixed”. They might even say that “the provider and the developers

have low technical capabilities because they could not fix a bug”. Therefore, clone

related bugs may force providers, developers or maintainers of software systems to

lose their users’ trust.

Unfortunately, it is sometimes not enough for finding clone related bugs to run

clone detectors, specifically in large scale software systems. Many researchers have

spent great effort to detect clone related bugs efficiently from large scale software

systems for this reason. This section simply describes their achievements.

2.8.1 Preventing Clone Related Bugs

There is a variety of approaches to prevent introducing clone related bugs.

The approaches include supporting simultaneous modifications, suggesting cloned

fragments of the code fragments that a developer is about to modify, or finding

oversights of simultaneous modifications.

Toomim et al. proposed a technique to support simultaneous modifications on

clones, which is named “Linked Editing” [145]. Users of linked editing prescribe

it to link two code fragments as the first step of use. Once links of two code frag-

ments are specified, modifications applied on a code fragment will be automatically

applied to the other code fragment. If users do not want to apply a modification

simultaneously to the other fragment, they can flexibly avoid the automatic mod-

ification. Another technique to encourage simultaneous modifications on clones

is the one proposed by Higo et al. [46]. Their technique detects cloned fragments

that have clone relationships between the user-specified fragment and shows them

to users. Unlike linked editing, Higo et al.’s technique requires only a single code

fragment to be specified, because it automatically detects clones with a code clone

detector.

Other techniques monitor developers’ copy-and-paste operations to prevent

clone related bugs. They automatically record links between the original and the

38

destination fragments, and support simultaneous modifications on them [50,57,58,

155]. Another technique achieves prevension of introducing clone related bugs by

showing code clone information as comments [137].

There are some systems available to prevent clone related bugs. One of them

is JSync, which is proposed by Nguyen et al. [119]. JSync automatically detects

uninconsistent changes on clones and alerts its users. In addition to that, JSync has

a function to suggest how to fix the uninconsistent changes.

Duala-Ekoko and Robillard developed another clone management system, which

informs users of modifications applied on clones [27]. It tells the locations of

cloned fragments that have clone relationships to the code fragment that users are

modifying.

The system proposed by Yamanaka et al. reports how clones are modified

across version histories [157]. Their method informs users of additions, deletions,

or changes on clones, which prevents unawareness of them. They evaluated the

effectiveness of their method on an experimental web system developed in NEC

Corporation.

2.8.2 Detecting Clone Related Bugs

Many techniques have been proposed to detect clone related bugs. It is said that

most of clone related bugs are introduced by unintended inconsistencies on clones.

Hence, most of these techniques find and use inconsistencies of cloned fragments

in code clones to detect bugs. Inconsistencies used to detect clone related bugs

have a wide variety, including identifier names [53, 98], and control structures of

owners of clones [62]. In addition, there is a technique for detecting clone related

bugs that uses differences of results of multiple clone detectors [45].

Li and Ernst developed CBCD, which suggests code fragments having a high

possibility to have a clone related bug [97]. CBCD is used when its users find a

bug. CBCD takes the code fragment having the found bug as its input, and detects

code fragments that are suspected to have similar bugs.

There exists some other ways that are similar to CBCD, including using infor-

mation about identifiers [160, 161] or targetting concurrent processing [59].

Lucia et al. stated that bug detection tools for clones tend to report many false

positives, and proposed a technique that eliminates such false positives from the

results of the tools [104]. Their method refines clone anomaly reports to achieve

the objective. Using thier method after clone related bug detection enables to find

clone related bugs more efficiently. In similar to Lucia et al,’s technique, Hayase et

al. proposed a filtering for CP-Miner to eliminate false positives [41].

In addition, there are some techniques that combine fault-prone module pre-

diction with code clones [6, 68].

39

Some configuration management systems have been proposed for code clones

in recent years [39, 121]. It is difficult to detect clone related bugs only with the

code of the latest revision of the target software system if many modifications were

added after copy-and-paste operation. This is because the origin and the destination

of the cloning are no longer detected as clones because of gaps between them.

Clone-aware configuration management systems will resolve such issues because

they are able to provide historical information of the clones. In addition, they have

another advantage than clone related bug detection. As Hata et al. have stated in

the literature [39], using clone-aware configuration management systems allows

us to gain rich data about clones including process related information or human

attributes. That is, by using clone-aware configuration management systems, we

can apply techniques of repository mining, which is one of the most hot topics in

the research area of software engineering, to histories of code clones.

40

Chapter 3

An Empirical Study on Influences
for Clones on Software Evolution

3.1 Background

It was generally believed that code clones negatively affect software evolution.

However, some researchers doubted the accepted notion, and conducted empirical

studies to reveal whether it is really true.

In order to answer the question whether code clones are harmful or not, they

compare characteristics of cloned code and non-cloned code instead of directly

investigating maintenance costs that they require. This is because measuring the

actual maintenance costs is quite difficult. The experimenal results are split: some

of them supported the accepted notion and claimed that code clones are harmful for

software evolution [100, 101, 115], and others argued that code clones do not have

seriously negative impacts [34,35,78,88,89,103,128]. There even exists opinions

that code cloning is a good choice for design of the source code [74].

Such a variation of opinions on harmfulness of clones may imply that many of

clones are not harmful, however, there still exists some instances having negative

impacts on software maintenance. This fact indicates that managing all of clones

carefully is not only effort-consuming but also uneffective. In other words, we thus
have to carefully select the clones to be managed to avoid unnecessary effort man-
aging clones with no risk potential [35]. To achieve such a challenging objective,

it is necessary to know the characteristics that harmful clones have.

In this study, we conduct an empirical study that compares cloned code to

non-cloned code from a different standpoint of previous research, and reports the

experimental result on open source software. The features of the investigation in

this study are as follows:

41

• every line of code is investigated whether it is cloned code or not. Such

a fine-grained investigation enables an accurately judge on whether every

modification conducted to cloned code or to non-cloned code;

• maintenance cost consists of not only source code modifications but also

several phases prior to it. In order to estimate maintenance cost more ap-

propriately, this study defines and uses a new indicator that is not based on

modified lines of code but the number of modified places;

• we evaluate and compare modifications of cloned code and non-cloned code

on multiple open source software systems with multiple clone detectors.

That is because every clone detector detects different code clones from the

same source code.

We also conducted a comparison experiment with two investigation methods

previously proposed by other researchers. The purpose of this experiment is to re-

veal whether comparisons between cloned code and non-cloned code with different

methods yield the same result or not. In addition, we carefully analyzed the results

in the cases that the comparison results were different from each method to reveal

the causes behind the differences.

3.2 Motivation

3.2.1 Motivating Example

As described in Chapter 2, much research effort has been performed on evalu-

ating the influence of code clones. However, these investigation methods still have

some points that they did not evaluate. This subsection explains these points with

the example shown in Figure 3.1. In this example, there are two similar methods

and some places are modified, with the modified places classified into four parts,

modification A, B, C, and D.

Investigated Units

In some studies, large units (e.g. files or methods) are used as their investi-

gation units. In those investigation methods, it is assumed that code clones have

a negative impact if files or methods having a certain amount of code clones are

modified, which can cause a problem. The problem is the incorrectness of modifi-

cations count. For example, if modifications are performed on a method which has

a certain amount of code clones, all the modifications are assumed as performed

on the cloned code even if they are actually performed on non-cloned code of the

42

public void highlight(Graph target) {
if (target.isEmpty()) {

return;
}
Set<Node> nodes = target.getNodes();
Set<Node> uninterestNodes =

new HashSet<Node>();
for (Node node : target.getNodes()) {

if (node.getEdges().isEmpty()) {
uninterestNodes.add(node);

}
}
nodes.removeAll(uninterestNodes);

for (Node node : nodes) {
addHighlight(node, Color.red);

}
}

Revision R

public void highlight(Graph target) {
if (target == null || target.isEmpty()) {

return;
}
Set<Node> nodes = target.getNodes();
Set<Node> uninterestNodes =

new HashSet<Node>();
for (Node node : target.getNodes()) {

if (node.getEdges().isEmpty()) {
uninterestNodes.add(node);

}
}
nodes.removeAll(uninterestNodes);

System.out.println(“Processing Nodes");
for (Node node : uninterestNodes) {

paint (node, getPaintColor());
}

for (Node node : nodes) {
addHighlight(node, getColor());

}
}

public void highlight(Graph target) {
if (target == null || target.isEmpty()) {

return;
}
Set<Node> nodes = target.getNodes();

for (Node node : nodes) {
addHighlight(node, getColor());

}
}

modification B

}
et getNodes();

modification A

modification C

modification D

bli id hi hli

Revision R+1

code clones detected
by both CCFinder & Scorpio
code clones detected
by only Scorpio

public void highlight(Graph target) {
if (target.isEmpty()) {

return;
}
Set<Node> nodes = target.getNodes();
Set<Node> uninterestNodes =

new HashSet<Node>();
for (Node node : target.getNodes()) {

if (node.getEdges().isEmpty()) {
uninterestNodes.add(node);

}
}
nodes.removeAll(uninterestNodes);

System.out.println(“Processing Nodes");
for (Node node : uninterestNodes) {

drawLineThrough (node);
}

for (Node node : nodes) {
addHighlight(node, Color.red);

}
}

Figure 3.1: Motivating Example of Our Empirical Study

43

method. Modification C in Figure 3.1 is an instance that suffers from this problem.

This modification is performed on non-cloned code, nevertheless method or file

based investigations regard that this modification is performed on cloned code.

Line-based Barometers

Some other studies used line-based barometers to measure the influence of code

clones on software evolution. Herein, the line-based barometer indicates a barom-

eter calculated with the amount of added/changed/deleted lines of code. However,

line-based barometer cannot distinguish the following two cases: the first case is

that consecutive 10 lines of code were modified for fixing a single bug; the second

case is that 1 line modification was performed on different 10 places of code for
fixing 10 different bugs. In real software maintenance, the latter should require

much more costs than the former because software maintainers have to conduct

several steps before actual modifications on source code such as identifying buggy

modules, identifying buggy instructions and so on.

In Figure 3.2.2, Modification A is a single line modification, and performed

on two places, meanwhile Modification B is a modification including seven con-

secutive lines on a single place. With line-based barometers, it is regarded that

Modification B has the impact 3.5 times larger than Modification A. However, this

is not true because software maintainers have to identify two places of code for

Modification A meanwhile a single place need to be identified for Modification B.

A Single Clone Detector

Each of the previous studies used a single clone detector to detect code clones

in target software systems. However, as discussed in Chapter 2, there is neither

a generic nor strict definition of code clones. Each detector has its own unique

definition of code clone, and it detects code clones based on the own definition.

Consequently, different code clones are detected by different detection tools from

the same source code. Therefore, the investigation result with one detector is dif-

ferent from the one from another detector. Figure 3.1 shows the differences of

detected clones between a detector CCFinder and another detector Scorpio. Con-

sequently, if we use Scorpio, Modification D is regarded as being affected with

code clone, nevertheless it is regarded as not being affected with code clone if we

use CCFinder. Therefore, the investigation with a single detector is not sufficient

to get a generic result about the impact of code clones on software evolution.

44

3.2.2 Objective of this Study

This study stands on a different point from previous research. The features of

this study are as follows:

Fine-grained Investigation Units: In this study, every line of code is investi-

gated whether it is included in any code clones or not, which offers us with

more accurate judgements on whether every modification is conducted on

cloned code or non-cloned code.

Place-based Indicator: This study uses a new indicator based on the number of

modified places, not the number of modified lines. The purpose of using

such a place-based indicator is to evaluate the impact of the presence of

cloned code with different standpoints from the previous research.

Multiple Detectors: This study uses four clone detectors to reduce biases of each

detector.

3.3 Terms

This section describes clone detectors used in this study, and then explains

some terms to which the remainder of this study refers.

3.3.1 Clone Detectors Used in This Research

CCFinder

CCFinder is one of the famous token-based clone detectors developed by Kamiya

et al. [72]. The major features of CCFinder are as follows:

• CCFinder replaces user-defined identifiers such as variable names or func-

tion names with special tokens before the matching process. Consequently,

CCFinder can identify code fragments that use different variables as code

clones.

• Detection speed is very fast. CCFinder can detect code clones from millions

lines of code within an hour.

• CCFinder can handle multiple popular programming languages including

C/C++, Java, and COBOL.

45

CCFinderX

CCFinderX is a major version up from CCFinder [21]. CCFinderX is a token-

based clone detector as well as CCFinder, but the detection algorithm was changed

to bucket sort from suffix tree. CCFinderX can handle more programming lan-

guages than CCFinder. Moreover, it can effectively use resources of multi-core

CPUs, which realizes faster detection.

Simian

Simian is a text-based clone detector [140]. As well as the CCFinder family,

Simian can handle multiple programming languages. Its text-based technique real-

izes clone detection on small memory usage and short running time. Also, Simian
allows fine-grained settings to its users. For example, users can configure to ignore

import statements in the case of Java language.

Scorpio

Scorpio is one of the graph-based clone detectors developed by Higo et al. [42].

Currently, Scorpio can handle software systems written in Java. The major features

of Scorpio are as follows.

Detecting code clones with different user-defined variables: Scorpio replaces user-

defined identifiers by special characters. Therefore, it can detect code clones

having different user-defined variables.

Detecting Type-3 code clones and non-contiguous code clones: Scorpio can de-

tect Type-3 code clones and non-contiguous code clones because it is a PDG-

based clone detector.

Robustness for detecting contiguous code clones: One of the disadvantages of

PDG-based clone detectors is that they cannot regard sequences of program

elements as code clones if every element in the sequences has no dependence

between other elements in the sequences. To improve this matter, Scorpio
introduces execute dependence, which enables it to expand the range of pro-

gram slicing, so that the ability to detect contiguous code clones is improved.

Using both of two graph search algorithms: There are two ways to search graphs,

forward and backward slicing. Scorpio uses both of forward and backward

slicing, which enlarges results of clone detection because there are similar

subgraphs that cannot be detected by using only forward or backward slicing.

46

1: A
2: B
3: will be changed 1
4: will be changed 2
5: C
6: D
7: will be deleted 1
8: will be deleted 2
9: E
10: F
11: G
12: H

1: A
2: B
3: changed 1
4: changed 2
5: C
6: D
7: E
8: F
9: G
10: added 1
11: added 2
12: H

3,4c3,4
< will be changed 1
< will be changed 2

> changed 1
> changed 2
7,8d6
< will be deleted 1
< will be deleted 2
11a10,11
> added 1
> added 2

(a) before modification (b) after modification (c) diff output

Figure 3.2: A Simple Example of Comparing Two Source Files with diff

Heuristics for reducing costs of detection: To reduce detection costs, Scorpio
makes a limitation on start points of slicing. Unnecessary slicing points are

identified and removed by this heuristic.

3.3.2 Revision

In this study, it is necessary to analyze historical data of code. Therefore,

this study targets software systems managed by version control systems. Version

control systems store information about snapshots of software products, including

source code and documents, and changes applied to them. Each snapshot is identi-

fied by a number, called “revision”. We can get source code in arbitrary revision,

and we can also get modified files, change logs, and the name of developers who

made changes in arbitrary two consecutive revisions with version control systems.

Due to the limit of implementation, we restrict the target version control system

to Subversion. However, it is possible to use other version control systems such as

CVS.

3.3.3 Target Revision

This study is only interested in changes in source files. Therefore, we find

out commits that have some modifications in source files. The remainder of this

chapter uses a term target revisions, which indicates revisions that are related to

any of such commits. That is, a revision R is regarded as a target revision if at least

one source file is modified from R to R+ 1.

47

3.3.4 Modification Place

This study uses the number of places of modified code, instead of lines of

modified code. That is, even if multiple lines are modified, this study regards it as

a single modification if the modified lines are consecutive. In order to identify the

number of modifications, this study uses the traditional diff command of UNIX.

Figure 3.2 shows an example of diff output. In this example, we can find three

modification places. One is a change in the third and fourth lines, another is a

deletion of the seventh and eighth lines, and the other is an addition of statements

between the 11th line and the 12th line. As shown in Figure 3.2, it is very easy

to identify modified places from diff outputs; all we have to do is just parsing the

output of diff so that start lines and end lines of all the modifications are identified.

3.4 Proposed Method

This section describes our research questions and the investigation method.

3.4.1 Research Questions and Hypotheses

The purpose of this study is to reveal whether the presence of code clones really

affects software evolution or not. This study is under an assumption that if cloned
code is more frequently modified than non-cloned code, the presence of cloned code
has a negative impact on software evolution. The basis of this assumption is that

if much cloned code that is never modified during its lifetime is included in source

code, the presence of cloned code never causes inconsistent changes or additional

maintenance effort. Our research questions are as follows.

RQ1: Is cloned code more frequently modified than non-cloned code?

RQ2: Are the comparison results of stability between cloned code and non-cloned

code different from multiple detection tools?

RQ3: Is cloned code modified uniformly throughout its lifetime?

RQ4: Are there any differences in the comparison results on types of modifica-

tions?

To answer these research questions, we define a new indicator, named modifi-
cation frequency (in short, MF). We measure and compare MF of cloned code

(in short, MFd) and MF of non-cloned code (in short, MFn) for investigation.

48

3.4.2 Modification Frequency

Definition

As described above, this study uses MF to estimate the influence of code

clones. MF is an indicator based on the number of modified code, not lines of

modified code.

The following formula (3.1) describes the definition of MFd .

MFd =

∑

r∈R
MCd(r)

|R| (3.1)

where,

• R is a set of target revisions.

• MCd(r) is the number of modifications on cloned code between revision r
and r + 1.

We also define MFn in the formula (3.2).

MFn =

∑

r∈R
MCn(r)

|R| (3.2)

where,

• MCn(r) is the number of modifications on non-cloned code between revi-

sion r and r + 1.

These values mean the average number of modifications on cloned code or

non-cloned code per revision. However, in these definitions, MFd and MFn are

very affected by the amount of code clones included the source code. For example,

if the amount of code clones is very small, it is quite natural that the number of

modifications on cloned code is much smaller than non-cloned code. However,

if a small amount of cloned code is included but it is quite frequently modified,

we need additional maintenance effort to judge whether its correspondents need

the same modifications or not. We cannot evaluate the influence of code clones in

these situations in these definitions.

In order to eliminate the bias of the amount of code clones, we normalize the

formulae (3.1) and (3.2) with the ratio of cloned code. Here, we assume that:

• LOCd(r) is the total lines of cloned code in revision r.

49

• LOCn(r) is the total lines of non-cloned code on r.

• LOC(r) is the total lines of code on r, so that the following formula is

satisfied:

LOC(r) = LOCd(r) + LOCn(r) (3.3)

Under these assumptions, the normalized MFd and MFn are defined in the

following formulae (3.4) and (3.5).

normalizedMFd =

∑

r∈R
MCd(r)

|R| ×

∑

r∈R
LOC(r)

∑

r∈R
LOCd(r)

(3.4)

normalizedMFn =

∑

r∈R
MCn(r)

|R| ×

∑

r∈R
LOC(r)

∑

r∈R
LOCn(r)

(3.5)

In the reminder of this chapter, the normalized MFd and MFn are refered as

just MFd and MFn, respectively.

Measurement Steps

MFd and MFn are calculated with the following steps:

STEP1: Identify target revisions from the repositories of target software systems.

Then, all the target revisions are checked out into our local storage.

STEP2: Normalize all the source files in every target revision.

STEP3: Detect code clones within every target revision, and then the detection

result is analyzed in order to identify the file path and the lines of all the

detected cloned code.

STEP4: Identify differences between two consecutive revisions. The start lines

and the end lines of all the differences are stored.

STEP5: Count the number of modifications on cloned code and non-cloned code.

STEP6: Calculate MFd and MFn.

The remainder of this subsection explains each step of measurement in detail.

50

STEP1: Obtains target revisions

In order to measure MFd and MFn, it is necessary to obtain historical data

of source code. As described above, this study uses a version control system,

Subversion, to obtain the historical data.

This step identifies which files were modified, added, or deleted in each revi-

sion and finds out target revisions. After identifying all the target revisions from

the historical data, they are checked out into the local storage.

STEP2: Normalizes source files

STEP2 normalizes every source file in all the target revisions with the following

rules:

• deletes blank lines, code comments, and indents,

• deletes lines that consist of only a single open/close brace, and the open/close

brace is added to the end of the previous line.

The presence of code comments influences the measurement of MFd and

MFn. If a code comment locates within cloned code, it is regarded as a part

of cloned code even if it is not a program instruction. Thus, the LOC of cloned

code is counted greater than it really is. Also, there is no common rule how code

comments should be treated if they are located in the border of cloned code and

non-cloned code, which can cause a problem that a certain detector regards such

a code comment as cloned code meanwhile another tool regards it as non-cloned

code.

As mentioned above, the presence of code comments makes it more difficult

to identify positions of cloned code accurately. Consequently, this step completely

eliminates all the code comments from source code. As well as code comments,

different clone detectors handle blank lines, indents, lines including only a single

open or close brace in different ways, which also influences results of clone detec-

tion. For this reason, blank lines and indents are removed, and lines that consist

of only a single open or close brace are removed, and the removed open or close

brace is added to the end of the previous line.

STEP3: Detects code clones

This step detects code clones from every target revision with clone detectors,

and stores the detection results into a database. Each detected cloned code is identi-

fied as a three-tuple (v, f, l), where: v is the revision number where a given cloned

51

code was detected; f is the absolute path to the source file where a given cloned

code exists; l is a set of line numbers where cloned code exists. Note that storing

only the start line and the end line of cloned code is not feasible because a part of

cloned code is non-contiguous.

This step is very time consuming because this step need to run each clone

detector on every target revisions. That is, if the history of the target software

includes 1,000 target revisions, cloned code detection need to be performed 1,000

times. However, this step is fully-automated, and no manual work is required.

STEP4: Identifies differences between two consecutive revisions

STEP4 finds out modification places between two consecutive revisions. As

described above, just parsing outputs of diff offers this information.

STEP5: Counts the number of modifications

In this step, we count the number of modifications on cloned code and non-

cloned code with the results of the previous two steps. Here, we assume the variable

for the number of modifications of cloned code is MCd, and the variable for non-

cloned code is MCn. Firstly, MCd and MCn are initialized with 0, then they are

increased as follows; if the range of specified modification is completely included

in cloned code, MCd is incremented; if it is completely included in non-cloned

code, MCn is incremented; if it is located across the border of cloned code and

non-cloned code, both MCd and MCn are incremented. All the modifications are

processed with the above algorithm.

STEP6: Calculates MFd and MFn

STEP6, the last step of measurement, calculates values of MFd and MFn with

the definitions in the formulae (3.4) and (3.5).

3.5 Design of Experiment

The investigation in this study consists of the following two experiments.

Experiment 1: Compare MFd and MFn on 15 open source software systems.

Experiment 2: Compare the result of the proposed method with two conventional

investigation methods on five open source software systems.

The remainder of this section describes the design of these experiments in de-

tail.

52

3.5.1 Experiment 1

Outline

The purpose of this experiment is to answer our research questions. This ex-

periment consists of the following two sub-experiments.

Experiment1-1: Compare MFd and MFn on software systems having various

sizes with a scalable clone detector, CCFinder.

Experiment1-2: Compare MFd and MFn on small size software systems with

four clone detectors described in section 3.3.1.

The following items are investigated in each sub-experiment.

Item A: Investigate whether cloned code is modified more frequently than non-

cloned code, with MFd and MFn calculated on the entire periods.

Item B: Divide the entire period into 10 sub-periods and calculate MF s on every

of the sub-periods.

Target Software Systems

Experiment 1 targets 15 open source software systems shown in Table 3.1. Five

software systems are investigated in Experiment 1-1, and the other 10 software

systems are investigated in Experiment 1-2. The criteria for the selection of these

target software systems are as follows:

• the source code is managed with Subversion;

• the source code is written in C/C++ or Java.

Note that we took care not to bias the domains of the targets.

3.5.2 Experiment 2

Outline

Experiment 2 compares the results of the proposed method and two investiga-

tion methods that are previously proposed by other researchers on the same tar-

gets. The purpose of this experiment is to reveal whether comparisons of cloned

code and non-cloned code with different methods always introduce the same re-

sult. Also, we evaluate the efficacy of the proposed method compared to the other

methods.

53

Investigation Methods to be Compared

Here, we describe investigation methods used in Experiment 2. Experiment 2

uses two investigation methods. One is proposed by Krinke [88] (in short, Krinke’s

method) and the other is one proposed by Lozano et al. [101] (in short, Lozano’s

method). Table 3.2 shows an overview of these methods and the proposed method.

The selection of the two investigation methods was performed based on the follow-

ing criteria:

Table 3.1: Target Software Systems - Experiment 1

(a) Experiment 1-1

Name Domain
Programming

of Revisions
LOC

Language (Latest Revision)

EclEmma Testing Java 788 15,328

FileZilla FTP C++ 3,450 87,282

FreeCol Game Java 5,963 89,661

SQuirrel SQL Client Database Java 5,351 207,376

WinMerge Text Processing C++ 7,082 130,283

(b) Experiment 1-2

Name Domain
Programming

of Revisions
LOC

Language (Latest Revision)

ThreeCAM 3D Modeling Java 14 3,854

DatabaseToUML Database Java 59 19,695

AdServerBeans Web Java 98 7,406

NatMonitor Network(NAT) Java 128 1,139

OpenYMSG Messenger Java 141 130,072

QMailAdmin Mail C 312 173,688

Tritonn Database C/C++ 100 45,368

Newsstar Network(NNTP) C 165 192,716

Hamachi-GUI GUI,Network(VPN) C 190 65,790

GameScanner Game C/C++ 420 1,214,570

Table 3.2: Overview of Investigation Methods

Method Krinke [88] Lozano et al. [101] Proposed Method

Target Revisions a revision per week all all

Investigation Unit line method place

Measure ratio of modified lines work MF

54

• The investigation is based on the comparison of some characteristics be-

tween cloned code and non-cloned code.

• The method has been published at the time when our research started (at

2010/9).

In the experiments of Krinke’s and Lozano’s papers, only a single clone de-

tector, Simian or CCFinder, was selected, respectively. However, this experiment

applies all the four clone detectors used in Experiment 1 for bringing more general

results.

We have developed software tools for Krinke’s and Lozano’s methods based

on their papers. The followings are brief explanations for Krinke’s method and

Lozano’s method.

Krinke’s Method

Krinke’s method compares stability of cloned code and non-cloned code [88].

Stability is calculated based on ratios of modified lines in cloned code and in non-

cloned code. This method uses not all the revisions but a revision per week.

First of all, a revision is extracted from every week history, and then cloned

code is detected from every of the extracted revisions. Next, every consecutive

two revisions are compared for obtaining where added lines, deleted lines, and

changed lines are. With this information, the ratios of added lines, deleted lines,

and changed lines on cloned code and non-cloned code are calculated and com-

pared.

Lozano’s Method

Lozano’s method categorizes Java methods, then compares distributions of

maintenance costs based on the categories [101].

First, Java methods are traced based on their owner class’s full qualified name,

start/end lines, and signatures. Methods are categorized as follows:

AC-Method: methods that always had cloned code during their lifetimes;

NC-Method: methods that never had cloned code during their lifetimes;

SC-Method: methods that sometimes had cloned code and sometimes did not.

Lozano’s method defines the following terms, where m is a method, P is a

period (a set of revisions), and r is a revision.

55

• ChangedRevisions(m,P): a set of revisions that method m was modified

in period P ,

• Methods(r): a set of methods that existed in revision r,

• ChangedMethods(r): a set of methods that were modified in revision r,

• CoChangedMethods(m, r): a set of methods that were modified simultane-

ously with method m in revision r. If method m is not modified in revision

r, it becomes 0. Note that the following formula holds if method m was

modified in revision r.

ChangedMethod(r) = m ∪ CoChangedMethod(m, r) (3.6)

Then, this method calculates the following formulae with the above definitions.

Lozano’s method regards work as an indicator for estimating the maintenance costs.

likelihood(m,P) =
ChangedRevisions(m,P)∑

r∈P
|ChangedMethods(r)|

(3.7)

impact(m,P) =

∑

r∈P

|CoChangedMethods(m, r)|
|Methods(r)|

|ChangedRevisions(m,P)| (3.8)

work(m,P) = likelihood(m,P)× impact(m,P) (3.9)

In this research, we compare work between AC-Method and NC-Method. In

addition, we also compare SC-Methods’ work on cloned period and non-cloned

period.

Target Software Systems

Experiment 2 targets five open source software systems shown in Table 3.3.

Two targets, OpenYMSG and EclEmma, are selected as well as Experiment 1.

Note that the number of revisions and LOC of the latest revision of these two

targets are different from Table 3.1. This is because they had been being in devel-

opment between the time-lag in Experiment 1 and Experiment 2. Every source file

is normalized with the rules described in Section 3.4.2 as well as Experiment 1. In

addition, automatic generated code and testing code had been removed from all the

revisions before the investigation methods were applied.

56

0

5

10

15

20

d n d n d n d n d n

EclEmma FileZilla FreeCol Squirrel WinMerge

change delete add
M

F

Figure 3.3: Result of Item A on Experiment 1-1

3.6 Experiment 1 - Result and Discussion

3.6.1 Overview

Table 3.4 shows the average ratio for each target of Experiment 1. Note that

“ccf”, “ccfx”, “sim”, and “sco” in the table are the abbreviated form of CCFinder,

CCFinderX, Simian, and Scorpio, respectively.

Table 3.5 shows the overall result of Experiment 1. In this table, label “C”

means MFd > MFn in that case, and “N” means the opposite result. For exam-

ple, the comparison result in ThreeCAM with CCFinder is MFd < MFn, which

means cloned code was not modified more frequently than non-cloned code.

The following subsections describes the experimental results in detail.

3.6.2 Result of Experiment 1-1

Figure 3.3 shows all the results of Item A on Experiment 1-1. The labels ‘d’

and ‘n’ in X-axis means MF in cloned code and non-cloned code, respectively,

and every bar consists of three parts, which means change, delete, and add. As

shown in Figure 3.3, MFd is lower than MFn on all the target systems. Table 3.6

shows the average values of MF based on the modification types. The comparison

Table 3.3: Target Software Systems - Experiment 2

Name Domain
Programming

of Revisions
LOC

Language (Latest Revision)

OpenYMSG Messenger Java 194 14,111

EclEmma Testing Java 1,220 31,409

MASU Source Code Analysis Java 1,620 79,360

TVBrowser Multimedia Java 6,829 264,796

Ant Build Java 5,412 198,864

57

results of MFd and MFn show that MFd is less than MFn in the cases of all the

modification types. However, the degrees of differences between MFd and MFn

are different for each modification type.

Figure 3.4 shows the result of Item B on Experiment 1-1. X-axis is the divided

periods. Label ‘1’ is the earliest period of the development, and label‘10’ is the

most recent period. In the case of EclEmma, the number of periods that MFd is

greater than MFn is the same as the number of periods that MFn is greater than

MFd. In the case of FileZilla, FreeCol, and WinMerge, there is only one period

that MFd is greater than MFn. In the case of Squirrel SQL Client, MFn is greater

than MFn in all the periods. This result implies that if the number of revisions

becomes large, cloned code tends to become more stable than non-cloned code.

However, the shapes of MF transitions are different from every software system.

For WinMerge, we performed detail investigation on two periods. One is pe-

riod ‘2’, where MFn is much greater than MFd, and the other is period ‘10’, where

Table 3.4: Ratio of Code Clones - Experiment 1

(a) Experiment 1-1

Software Name ccf ccfx sim sco

EclEmma 13.1% - - -

FileZilla 22.6% - - -

FreeCol 23.1% - - -

SQuirrel 29.0% - - -

WinMerge 23.6% - - -

(b) Experiment 1-2

Software Name ccf ccfx sim sco

ThreeCAM 29.8% 10.5% 4.1% 26.2%
DatabaseToUML 21.4% 25.1% 7.6% 11.8%
AdServerBeans 22.7% 18.2% 20.3% 15.9%

NatMonitor 9.0% 7.7% 0.7% 6.6%
OpenYMSG 17.4% 9.9% 5.8% 9.9%
QMailAdmin 34.3% 19.6% 8.8% -

Tritonn 13.8% 7.5% 5.5% -

Newsstar 7.9% 4.8% 1.5% -

Hamachi-GUI 36.5% 23.1% 18.5% -

GameScanner 23.1% 13.1% 6.6% -

58

0510152025

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

1
2

3
4

5
6

7
8

9
10

MF

Ti
m

e
Pe

rio
d

(a
)

E
cl

E
m

m
a

05101520

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

1
2

3
4

5
6

7
8

9
10

MF

Ti
m

e
Pe

rio
d

(b
)

F
il

eZ
il

la

0510152025

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

1
2

3
4

5
6

7
8

9
10

MF

Ti
m

e
Pe

rio
d

(c
)

F
re

eC
o

l

010203040

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

1
2

3
4

5
6

7
8

9
10

MF

Ti
m

e
Pe

rio
d

(d
)

S
Q

u
ir

re
L

0510152025

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

1
2

3
4

5
6

7
8

9
10

MF

Ti
m

e
Pe

rio
d

(e
)

W
in

M
er

g
e

F
ig

u
re

3
.4

:
R

es
u
lt

o
f

It
em

B
o
n

E
x
p
er

im
en

t
1
-1

59

is only the period that MFd is greater than MFn. In period ‘10’, there are many

modifications on test cases. The number of revisions that test cases are modified

is 49, and the ratio of cloned code in test cases is 88.3%. Almost all modifications

for test cases were performed on cloned code, so that MFd is greater than MFn.

Omitting the modifications for test cases, MFd and MFn became inverted.

Table 3.5: Overall Results - Experiment 1

(a) Experiment 1-1

Software Name ccf ccfx sim sco

EclEmma N - - -

FileZilla N - - -

FreeCol N - - -

SQuirrel N - - -

WinMerge N - - -

(b) Experiment 1-2

Software Name ccf ccfx sim sco

ThreeCAM N C N N

DatabaseToUML N N N N

AdServerBeans N N N N

NatMonitor C C N C

OpenYMSG C C C N

QMailAdmin C C C -

Tritonn N C N -

Newsstar N N N -

Hamachi-GUI N N N -

GameScanner C C N -

Table 3.6: The Average Values of MF in Experiment 1-1

Modification MF
Type cloned code non-cloned code

change 7.0337 8.1039

delete 1.0216 1.4847

add 1.9539 3.7378

ALL 10.0092 13.3264

60

The summary of Experiment 1-1 is as follows: cloned code detected by CCFinder
was modified less frequently than non-cloned code. Consequently, we conclude

that code clones detected by CCFinder do not have a negative impact on software

evolution even if the software is large and has a long lifetime.

3.6.3 Result of Experiment 1-2

Figure 3.5 shows all the results of Item A on Experiment 1-2. In Figure 3.5,

each clone detector is abbreviated as follows: CCFinder → C; CCFinderX →
X; Simian → Si; Scorpio → Sc. There are the results of three detectors except

Scorpio on C/C++ systems, because it does not handle C/C++. As shown in the

figure, MFd is less than MFn in the 22 comparison results out of 35. In the four

target systems out of 10, cloned code is modified less frequently than non-cloned

code in the cases of all the detectors. In the case of the other target system, MFd

is greater than MFn in the cases of all the detectors. In the remaining systems,

the comparison results are different from the detectors. In addition, we compared

MFd and MFn based on programming languages and detectors. The comparison

results are shown in Table 3.7. The result shows that MFd is less than MFn on

all the programming languages, and MFd is less than MFn on the three detec-

tors, CCFinder, CCFinderX, and Simian, whereas the opposite result is shown in

the case of CCFinderX. We also compared MFd and MFn based on modification

types. The result is shown in Table 3.8. As shown in Table 3.8, MFd is less than

MFn in the cases of change and addition, whereas the opposite result is shown in

the case of deletion.

We investigated whether there is a statistically-significant difference between

MFd and MFn by t-test. The result is as follows: there is no difference between

them where the level of significance is 5 %. Also, there is no significant difference

in the comparison based on programming languages and detectors. It is generally

said that the presence of code clones makes it more difficult to maintain software.

However, these experimental results do not show such a tendency.

Figure 3.6 shows the result of Item B on Experiment 1-2. Figure 3.6 contains

graphs for the results of three software systems: Figure 3.6(a) shows the results

of AdServerBeans, Figure 3.6(b) shows those of OpenYMSG, and Figure 3.6(c)

shows those of NatMonitor, respectively.

In Figure 3.6(a), period ‘4’ shows that MFn is greater than MFd on all the de-

tectors meanwhile period ‘7’ shows exactly the opposite result. In period ‘5’, there

are also hardly differences between cloned code and non-cloned code. We investi-

gated the source code of period ‘4’ to reveal the reason why such grate differences

between MFd and MFn occured. In this period, many source files were created

by copy-and-paste operations, and a large amount of code clones was detected by

61

MF

01020304050607080

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

Th
re

eC
AM

Da
ta

ba
se

To
U

M
L

Ad
se

rv
er

Be
an

s
N

at
M

on
ito

r
O

pe
nY

M
SG

ch
an

ge
de

le
te

ad
d

(a
)

Ja
v
a

S
o

ft
w

ar
e

05010
0

15
0

20
0

25
0

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

C
X

Si
C

X
Si

C
X

Si
C

X
Si

C
X

Si

Q
M

ai
lA

dm
in

Tr
ito

nn
N

ew
ss

ta
r

Ha
m

ac
hi

-G
U

I
G

am
eS

ca
nn

er

MF

(b
)

C
/C

+
+

S
o

ft
w

ar
e

F
ig

u
re

3
.5

:
R

es
u
lt

o
f

It
em

A
o
n

E
x
p
er

im
en

t
1
-2

62

05010
0

15
0

20
0

25
0

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

1
2

3
4

5
6

7
8

9
10

ch
an

ge
de

le
te

ad
d

(a
)

A
d

S
er

v
er

B
ea

n
s

01020304050

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

1
2

3
4

5
6

7
8

9
10

ch
an

ge
de

le
te

ad
d

(b
)

O
p

en
Y

M
S

G

0102030405060

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

C
X

Si
Sc

1
2

3
4

5
6

7
8

9
10

ch
an

ge
de

le
te

ad
d

(c
)

N
at

M
o

n
it

o
r

F
ig

u
re

3
.6

:
R

es
u
lt

o
f

It
em

B
o
n

E
x
p
er

im
en

t1
-2

63

each clone detector. The code generated by the copy-and-paste operations was very

stable whereas the other source files were modified as usual. This is the reason why

MFn is much greater than MFd in period ‘4’.

Figure 3.6(b) shows a tendency of modification frequencies: cloned code tends

to be modified more frequently than non-cloned code in the anterior half of the

period, whereas the opposite occurred in the posterior half. We found that there

was a large number of cloned code that was repeatedly modified in the anterior

half. On the other hand there was rarely such cloned code in the posterior half,

which results in the occurrence of such a tendency.

Table 3.7: Comparing MF s based on Programming Language and Detector

(a) Comparison on Programming Language

Programming MF
Language cloned code non-cloned code

Java 20.4370 24.1739

C/C++ 49.4868 57.2246

ALL 32.8869 38.3384

(b) Comparison on Detection Tool

Detection MF
Tool cloned code non-cloned code

CCFinder 38.2790 40.7211

CCFinderX 40.3541 40.0774

Simian 26.0084 42.1643

Scorpio 20.9254 24.1628

ALL 32.8869 38.3384

Table 3.8: The Average Values of MF in Experiment 1-2

Modification MF
Type cloned code non-cloned code

change 26.8065 29.2549

delete 3.8706 3.5228

add 2.2098 5.5608

ALL 32.8869 38.3384

64

Figure 3.6(c) shows an opposite tendency of modification frequencies of Fig-

ure 3.6(c): cloned code was modified more frequently in the posterior half of the

period. In the anterior half, the amount of code duplications was very small, and

modifications were rarely performed on it. In the posterior half, amount of clones

became large, and modifications were performed on it repeatedly. In the case of

Simian detection, no cloned code was detected except period ‘5’. This is because

Simian detects only the exact-match clones whereas the other tools detect exact-

match and renamed clones in the default setting.

The summary of Experiment 1-2 is as follows: we found some instances that

cloned code was modified more frequently than non-cloned code in a short period

on each clone detector; however, in the entire period, cloned code was modified

less frequently than non-cloned code on every target software with all the detec-

tors. Consequently, we conclude that the presence of code clones does not have a

seriously negative impact on software maintenance.

3.6.4 Answers to Research Questions

This subsection offers the answers to every research question.

RQ1: Is cloned code more frequently modified than non-cloned code?

The answer is No. In Experiment 1-1, we found that MFd is lower than MFn

in all the target systems. Also, we found a similar result in Experiment 1-2: 22

comparison results out of 35 show that MFd is lower than MFn, also MFd is

lower than MFn in average. This result indicates that code clones tend to be more

stable than non-cloned code. Hence, the presence of code clones does not seriously

affect software evolution, which is different from the common belief.

RQ2: Are the comparison results of stability between cloned code and non-cloned
code different from multiple detection tools?

The answer is Yes. In Experiment 1-2, the comparison results with CCFinderX
are different from the results with other three detectors. Moreover, MFn is much

greater than MFd in the case of Simian. At present, we cannot have found the

causes of the differences of the comparison results. One of the causes may be the

ratio of code clones. The ratio of code clones is quite different in each clone detec-

tor on the same software systems. However, we cannot see any relation between

the ratio of code clones and values of MF .

65

RQ3: Is cloned code modified uniformly throughout its lifetime?

The answer is No. The results of Item B of Experiment 1-1 and Experiment

1-2 showed that there are some instances that cloned code was modified more fre-

quently than non-cloned code in a short period even though MFd is less than MFn

in the whole period. However, these MF ’s tendencies varied according to target

software systems, so that we cannot find any common tendency. We also cannot

find any characteristic that causes such variability.

RQ4: Are there any differences in the comparison results on types of modifica-
tions?

The answer is Yes. The experimental results in Experiment 1-1 revealed that

MFd is less than MFn on all the modification types. However, there is a small

difference between MFd and MFn in the case of deletion, whereas there is a large

difference in the case of addition. The results in Experiment 1-2 showed similar

results in the cases of change and addition: MFd is less than MFn. Specifically,

MFn is more than twice as large as MFd in the case of addition. However, MFd

is greater than MFn in the case of deletion. These results show that deletion tends

to be affected by code clones, meanwhile addition tends not to be affected by them.

3.6.5 Discussion

The results of Experiment 1 showed that cloned code tends to be more stable

than non-cloned code, which indicates that the presence of code clones does not

have a negative impact on software evolution. To reveal the reasons why code

clones are stable, we investigated how the software evolved in some of the periods

that MFd is less than MFn. The manual investigation found that the following

activities should be a part of factors that cloned code is modified less frequently

than non-cloned code.

Reusing stable code: When developers want to implement new functionalities,

reusing stable code will be a good way to reduce the number of introduced

bugs. If most of cloned code is created by reusing stable code, MFd becomes

less than MFn.

Using generated code: Automatically-generated code is rarely modified manu-

ally. The generated code also tends to be cloned code. Consequently, MFd

will become less than MFn if the amount of generated code is high.

On the other hand, there are some cases that cloned code was more frequently

modified than non-cloned code in a short period. The period ‘7’ on AdServer-

66

Beans (Experiment 1-2, Item B) is one of these instances. We analyzed the source

code of this period to detect why MFd was greater than MFn in this period even

though the opposite results were shown in the other periods. Our manual inspec-

tion showed that there are some instances that the same modifications were applied

to multiple places of code, which is a situation that the precense of code clones has

a bad effect on software evolution.

Figure 3.7 shows an instance of unstable code clones. This code clone has five

code fragments as its members, and the figure shows one of the code fragments

included in the code clone. First, lines labeled with ‘%’ (shown in Figure 3.7 (b))

were modified to replace the getter methods into direct accesses into fields. In

the next, a line labeled with ‘#′ is removed (shown in Figure 3.7 (c)). These two

modifications were concentrically conducted in period ‘7’. Reusing unstable code

like this example can cause additional costs for software evolution. Moreover,

a code fragment was not simultaneously changed with its correspondents at the

second modification. If this inconsistency was introduced unintentionally, it might

cause a bug. If so, this is a typical situation that the presence of code clones affects

software evolution.

3.7 Experiment 2 - Result and Discussion

3.7.1 Overview

Table 3.9 shows the average ratios of code clones included in each target, and

Table 3.10 shows the comparison results of all the targets. In Table 3.10, “C” means

that cloned code requires more costs than non-cloned code, and “N” means its op-

posite. The discriminant criteria of “C” and “N” are different in each investigation

method.

In the proposed method, if MFd is lower than MFn, the column is labeled

with “C”, and the column is labeled with “N” in its opposite case.

Table 3.9: Ratio of Code Clones - Experiment 2

Software Name ccf ccfx sim sco

OpenYMSG 12.4% 6.2% 2.7% 5.5%
EclEmma 6.9% 4.8% 2.0% 3.7%

MASU 25.6% 26.5% 11.3% 15.4%
TVBrowser 13.6% 10.9% 5.4% 19.0%

Ant 13.9% 12.1% 6.2% 15.6%

67

int offsetTmp = dataGridDisplayCriteria
.getItemsPerPage() *

(dataGridDisplayCriteria.getPage() - 1);
if (offsetTmp > 0) --offsetTmp;
if (offsetTmp < 0) offsetTmp = 0;
final int offset = offsetTmp;
String sortColumn =

dataGridDisplayCriteria.getSortColumn();
Order orderTmp =

dataGridDisplayCriteria.getOrder()
.equals(AdServerBeansConstants.ASC) ?

Order.asc(sortColumn) :
Order.desc(sortColumn);

(a) Before Modification

int offsetTmp = dataGridDisplayCriteria
.getItemsPerPage() *

(dataGridDisplayCriteria.getPage() - 1);
if (offsetTmp > 0) --offsetTmp;
if (offsetTmp < 0) offsetTmp = 0;
final int offset = offsetTmp;
String sortColumn =

% dataGridDisplayCriteria.sortColumn;
Order orderTmp =

% dataGridDisplayCriteria.order
.equals(AdServerBeansConstants.ASC) ?

Order.asc(sortColumn) :
Order.desc(sortColumn);

(b) After 1st Modification

int offsetTmp = dataGridDisplayCriteria
.getItemsPerPage() *

(dataGridDisplayCriteria.getPage() - 1);
#

if (offsetTmp < 0) offsetTmp = 0;
final int offset = offsetTmp;
String sortColumn =

dataGridDisplayCriteria.sortColumn;
Order orderTmp =

dataGridDisplayCriteria.order
.equals(AdServerBeansConstants.ASC) ?

Order.asc(sortColumn) :
Order.desc(sortColumn);

(c) After 2nd Modification

Figure 3.7: An Example of Unstable Cloned Code

68

In Krinke’s method, if the ratio of changed and deleted lines on cloned code is

greater than changed and deleted lines on non-cloned code, the column is labeled

with “C”, and in its opposite case the column is labeled with “N”. Note that herein

we do not consider added lines because the amount of add is the lines of code

added in the next revision, not in the current target revision.

In Lozano’s method, if work in AC-Method is statistically greater than one in

NC-Method, the column is labeled with “C”. On the other hand, if work in NC-

Method is statistically greater than one in AC-Method, the column is labeled with

“N”. Here we use Mann-Whitney’s U-test under setting 5% as the level of signif-

icance. If there is no statistically-significant difference in AC- and NC-Method,

we compare work in cloned period and non-cloned period in SC-Method with Wl-

coxon’s singed-rank test. We also set 5% as the level of significance. If there is no

statistically-significant difference, the column is labeled with “-”.

As this table shows, different methods and different clone detectors brought

almost the same result in the case of EclEmma and MASU. On the other hand, in

the case of other targets, we get different results with different methods or different

detectors. Specifically, in the cases of TVBrowser and Ant, the proposed method

brought the opposite results to those of Lozano’s and Krinke’s method.

Table 3.10: Overall Results - Experiment 2

Software Name Method
Tools

ccf ccfx sim sco

OpenYMSG

Proposed N C C N

Krinke N C C N

Lozano - - N -

EclEmma

Proposed N N N N

Krinke N N N C

Lozano N N - -

MASU

Proposed C N C C

Krinke C C C C

Lozano C C C C

TVBrowser

Proposed N N N N

Krinke C C C C

Lozano C C C C

Ant

Proposed N N N N

Krinke C C C C

Lozano C C C C

69

0

5

10

15

20

25

d n d n d n d n

ccf ccfx sim sco

change delete add

Figure 3.8: Result of the Proposed Method on MASU

0
0.2
0.4
0.6
0.8

1
1.2
1.4

d n d n d n d n

ccf ccfx sim sco

change delete add

Figure 3.9: Result of Krinke’s Method on MASU

3.7.2 Result of MASU

Herein, we show comparison figures of MASU. Figure 3.8 shows the results

of the proposed method. In this case, all the clone detectors except CCFinderX
brought the same result that cloned code is more frequently modified than non-

cloned code. Figure 3.9 shows the results of Krinke’s method on MASU. As this

figure shows, the comparison of all the detectors brought the same result that cloned

code is less stable than non-cloned code. Figure 3.10 shows the results of Lozano’s

method on MASU with Simian. Figure 3.10(a) compares AC-Method and NC-

Method. X-axis indicates maintenance costs (work) and Y-axis indicates cumulated

frequency of methods. For readability, we adopt logarithmic axis on X-axis. In

this case, AC-Method requires more maintenance costs than NC-Method. Figure

3.10(b) compares cloned periods and non-cloned periods of SC-Method. In this

case, the maintenance cost in cloned period is greater than in non-cloned period.

In the case of MASU, Krinke’s method and Lozano’s method regard cloned

code as requiring more costs than non-cloned code in the cases of all the detectors.

70

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 10 100 1000

AC-Method
NC-Method

(a) AC-Method v. NC-Method

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 10 100 1000

duplicate period
non-duplicate period

(b) SC-Method

Figure 3.10: Result of Lozano’s Method on MASU with Simian

The proposed method indicates that cloned code is more frequently modified than

non-cloned code with CCFinder, Simian, and Scorpio. In addition, there is little

differences between MFd and MFn in the result of the proposed method with

CCFinderX, which is the only case that cloned code is more stable than non-cloned

code. Considering all the results, we can say that cloned code has a negative impact

on MASU. This result is reliable because all the investigation methods show such

tendencies.

3.7.3 Result of OpenYMSG

Figures 3.11, 3.12, and 3.13 show the results of the proposed method, Krinke’s

method, and Lozano’s method on another experimental target, OpenYMSG. In

71

0
5

10
15
20
25
30

d n d n d n d n

ccf ccfx sim sco

change delete add

Figure 3.11: Result of the Proposed Method on OpenYMSG

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

d n d n d n d n

ccf ccfx sim sco

change delete add

Figure 3.12: Result of Krinke’s Method on OpenYMSG

the cases of the proposed method and Krinke’s method, cloned code is regarded

as having a negative impact with CCFinderX and Simian, whereas the opposing

results are shown with CCFinder and Scorpio. In Lozano’s method with Simian,

cloned code is regarded as not having a negative impact. Note that we omit the

comparison figure on SC-Method because there are only three methods that are

categorized into SC-Method in OpenYMSG with Simian.

As these figures show, the comparison results are different for detectors or

investigation methods. Therefore, we cannot judge whether the presence of cloned

code has a negative impact or not on OpenYMSG.

3.7.4 Discussion

In the case of OpenYMSG, TVBrowser, and Ant, different investigation meth-

ods and different clone detectors brought opposing results. Figure 3.14 shows an

actual modification in found in Ant. Two methods were modified in this modifica-

tion. The hatching parts are detected as cloned code and frames in them mean pairs

72

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 10 100 1000

AC-Method

NC-Method

Figure 3.13: Result of Lozano’s Method on OpenYMSG with Simian

code fragment 1 code fragment 2

Clone pair relationship

Modified lines between this revision and the next

32
lines

38
lines

7 lines
7 lines

17 lines

17 lines

private void doClassicComplie() throws BuildException {
...
log(“Using classic compiler”, Project.MSG_VERBOSE);
Path classPath = getCompileClasspath(false);
...
argList.addElement(“-classpath”);
...
if (debug) { ... }
...
log(“Compilation args: “ + argList.toString(),

Project.MSG_VERBOSE);

String[] args = new String[argList.size() + complieList.size()];
...
Enumeration enum = complieList.elements();
while (enum.hasMoreElements()) { ... }
log(niceSourceList.toString(), Project.MSG_VERBOSE);
...
...

}

private void doClassicComplie() throws BuildException {
log(“Using classic compiler”, Project.MSG_VERBOSE);
Path classPath = getCompileClasspath(false);
...
argList.addElement(“-classpath”);
if (...) { ...
} else {

...
}
if (debug) { ... }
...
log(“Compilation args: “ + argList.toString(),

Project.MSG_VERBOSE);

String[] args = new String[argList.size() + complieList.size()];
...
Enumeration enum = complieList.elements();
while (enum.hasMoreElements()) { ... }
log(niceSourceList.toString(), Project.MSG_VERBOSE);
ByteArrayOutputStream out = new ByteArrayOutputStream();
...
...

}

Figure 3.14: An Example of Modification by Refactoring

of cloned code between two methods. Vertical arrows show modified lines by this

modification (77 lines of code were modified).

This modification is ain instance of Extract Method refactoring, which ex-

tracts the duplicated instructions from the two methods and merges them as a

new method. In the proposed method, it is regarded that there are two modifi-

cation places in cloned code and four places in non-cloned code, so that MFd and

MFn became 51.13 and 18.13, respectively. In Krinke’s method, DC + CC and

DN + CN became 0.089 and 0.005, where DC, CC, DN , and CN indicate the

ratio of deleted lines on cloned code, changed lines on cloned code, deleted lines

on non-cloned code, and deleted lines on non-cloned code, respectively.

73

In this case, both the proposed method and Krinke’s method regarded that

cloned code required more maintenance costs than non-cloned code. However,

there is a great difference in Krinke’s method than the proposed method. This

is caused by the difference of the barometers used in each method. In Krinke’s

method, the barometer depends on the amount of modified lines, whereas the

barometer depends on the amount of modified places in the proposed method. This

example is one of refactorings on code clones. In Krinke’s method, if removed

cloned code is large, cloned code is regarded as having more influence. However,

in the cases of cloned code removal, we have to spend much effort if the number

of cloned fragments is high. Therefore, we can say that the proposed method can

accurately measure the influence of cloned code in this case.

This is an instance that is advantageous for the proposed method. However,

we cannot investigate all the experimental data because the amount of the data is

too vast to conduct manual checking for all the modifications. Hence, there is a

possibility that the proposed method cannot accurately evaluate the influence of

cloned code in some situations.

In Experiment 2, we found that the different investigation methods or different

detectors draw different results on the same target systems. In Experiment 1, we

found that cloned code is less frequently modified than non-cloned code. However,

the result of Experiment 2 indicates that we cannot generalize the result of Exper-

iment 1. We have to conduct more experiments and analyze the results of them in

detail to gain more general results.

3.8 Threats to Validity

This section describes threats to validity of this study.

Cost required for every modification

In this study, we assume that cost required for every modification is equal to

one another. However, the cost must be different between every modification in

the actual software evolution. Consequently, the comparison based on MF values

may not appropriately represent the costs required for modifying cloned code and

non-cloned code.

In addition, when we modify cloned code, we have to consider keeping the

consistency between the modified cloned code and its correspondents. If the mod-

ification lacks consistency by error, we have to re-modify them for repairing the

consistency. The effort for keeping consistency is not necessary for modifying

non-cloned code. Consequently, the average costs required for cloned code may

74

be different from the one required for non-cloned code. In order to compare them

more appropriately, we have to consider the costs for keeping consistency.

Identifying the number of modifications

This study regards modifying consecutive multiple lines are regarded as a sin-

gle modification. However, it is possible that such an automatically processing

identifies an incorrect number of modifications. If multiple lines that were not

contiguous are modified for fixing a single bug, the proposed method presumes

that multiple modifications were performed. On the other hand, if multiple con-

secutive lines were modified for fixing two or more bugs by chance, the proposed

method presumes that only a single modification was performed. Consequently, it

is necessary to manually identify modifications if we have to use the exactly correct

number of modifications.

Besides, we investigated how many the identified modifications occurred across

the boundary of cloned code and non-cloned code. If this number is high, then the

analysis suspects because such modifications increase both the counts at the same

time. The investigation result is that, in the highest case, the ratio of such modi-

fications is 4.8%. That means that almost all modifications occurred within either

cloned code or non-cloned code.

Category of modifications

This study does not consider meanings of modifications, and so we counted all

the modifications regardless of their meanings. As a result, the number of modifi-

cations might be incorrectly increased by unimportant modifications such as format

transformations. A part of unimportant modifications remained even if we had used

the normalized source code described in section 3.4.2. Consequently, manual cate-

gorization for the modifications is required for using the exactly correct number of

modifications.

In addition, the code normalization used in this study removed all the com-

ments in the source files. If considerable cost was expended to make or change

code comments on the development of the target systems, we incorrectly missed

the cost.

Property of target software

In this study, we used only open source software systems, so that different

results may be shown with industrial software systems. It is generally said that

industrial software includes more cloned code than open source software. Conse-

quently, cloned code may not be managed well in industrial software, which may

75

increase MFd. Also, properties of industrial software are quite different from ones

of open source software. In order to investigate the impact of cloned code on in-

dustrial software, we have to compare MF on industrial software systems.

Division of development period

In this study, we divided the development periods of target software systems in

an automatic way based on the number of revisions. However, a different division

may yield different results. For example, if we divide the periods based on the

border of versions, we may be able to grasp the properties of every version. Or,

more fine grained division, that is, the period of every version is divided into multi-

ple sub-periods, which will let us know how cloned code and non-cloned code are

modified from a start of a version to the end of the version.

Settings of detection tools

In this study, we used default settings for all clone detectors. All the four clone

detectors used in this study have flexible settings, including the minimum length of

detected code clones or the way of code normalization before clone detection. It is

natural that the same clone detector reports different clones even in the same soft-

ware if it runs under different settings. Therefore, different results will be shown if

we adopt each clone detector in different settings.

3.9 Summary

In this study, we conducted an empirical study on the impact of the presence

of cloned code on software evolution. We assumed that if cloned code is modified

more frequently than non-cloned code, the presence of cloned code affects software

evolution, and compared the stability of cloned code and non-cloned code. To

evaluate from a different standpoint from previous studies, we used a new indicator,

modification frequency, which is calculated with the number of modified places of

code. In addition, we used four clone detectors to reduce the bias of detectors.

We conducted an experiment on 15 open source software systems, and the result

showed that cloned code was less frequently modified than non-cloned code. We

also found some cases that cloned code was intensively modified in a short period

though cloned code was stable than non-cloned code in the whole development

period.

Moreover, we compared the proposed method to other two investigation meth-

ods to evaluate the efficacy of the proposed method. We conducted another exper-

iment on five open source software systems, and in the cases of two targets, we

76

got the opposing results to other two methods. We carefully investigated the result

in detail, and found some instances that the proposed method could evaluate more

accurately than other methods.

Our experimental result showed that cloned code tends to be stable than non-

cloned code though there exists some clones that negativelly affect software evo-

lution. However, more studies are required to generalize this result, because we

found that different investigation methods may bring different results. In sum-

mary, our experimental results indicated that it is necessary to select and address

harmful clones to be managed from all the detected clones to achive effective clone

management.

77

Chapter 4

Enhancing CRD-based Clone
Tracking based on Similarity of
CRD

4.1 Motivation

As described in Chapter 3, our experimental results revealed that not all but a

part of clones has negative impacts on software evolution. However, there are still

some open issues. One of the issues is how many clones have negative impacts on
software evolution. To tackle these open issues, it is necessary to analyze clones in

more detail ways. That is, extracting and analyzing clone genealogies are required.

A clone genealogy indicates how a clone has been evolved across the version

history of the software having the clone [77, 78]. Therefore, using clone genealo-

gies enables to analyze how many times a particular clone has been changed. This

means that we can know how many clones have negative impacts on software evo-

lution, which is a fundamental qustion not addressed by our previous study.

There are some research reports that analyze clone genealogies [5,8,35,78,87,

143]. However, these studies focus on investigating how clones have evolved, not

tracking clones. That means, tracking techniques that they used were not feasible

if the clones were drastically modified or the clones were moved into other files

between the revisions.

Currently, there are several techniques for tracking clones. Some techniques

detect clones from every revision, and then link them between every of two con-

secutive revisions [8, 33, 78]. These techniques link clones based on textual simi-

larity of clones between two revisions, thus they will miss some links of clones if

modifications applied on the clones are not small, or the clones were moved. Some

79

��������	
���

���������������
�����
	�������

����
�����������
�
�������
����
�� ���!"���		����
��#������	
$�%����&�%�'��
�� ��(�)�
*����+,-./012�3�
��4�������������5
�� ����
�� ���3�
��6����7��	�����88��� ���
�� ������
����� ������������
��� ����
�� ���
�����������9���
�#:����������������;� �������"�������������;� �����
�#������������������/����,��� �;� �����
�� ��;��
�����$��/����,��� �����3�
�#<��������,��
�$����3�
�#�����������
	��������"������ �=
������!"���		����
�#>����������	
$�%����&�%�'����(�)�
*����+,-./012�3�
�#������������������5
�� �������3�
�##��������7�
�#4��������1
	�?�
	���	
������3�
�#6������7�� �����/2������

�������
�#������������
��������
	�������

����3�
�4:������7�
�4�����7�

� �3
��6����7��	�����88��� ���
�� ������
����� ������������
��� ����
�� ���
�����������9���
�#:����������������;� ��� ���"���� ��������;� ����
�#������������������/����,��� �;� �����
�� ��;��
�����$��/����,��� �����3
�#<��������,��
�$����3
�#�����������
	��������" ����� �=
������!"���		����
�#>����������	
$�%����&�%�' ���()�
*����+,-./012�3
�#������������������5
�� �������3
�##��������7�
�#4��������1
	�?�
	���	
������3�
�#6������7�� �����/2������

�������
�#������������
��������
	�������

����3
�4:������7�
�4�����7

������	
��
�����
���������������

����
�������9���9��	
�@�
�
��A,��������

����
��������������

Figure 4.1: Actual modification that existing techniques cannot track clones

other techniques detect clones from the initial revision, then tracking the clones

using change histories stored in historical code repositories [5, 87, 143]. These

techniques are robust for modifications on clones. That means, they can extract

some links of clones that techniques based on textual similarities of clones miss.

However, they have a weak point that they cannot track clones that appeared during

the target period because they are interested in only clones that exist in the initial

revision.

Among these techniques that track clones across version histories, Clone Re-

gion Descriptor (in short CRD) based tracking is one of the best techniques. CRD

was proposed by Duala-Ekoko and Robillard [27], and it is an abstract form to

represent locational information of a clone. Clone tracking using CRDs is robust

for large modifications on clones compared to the other clone tracking techniques.

The reason is that the linking technique of clones with CRD is based on locations

of clones, not their textual similarities. The location-based linking enables to link

clones even if they were drastically modified between two revisions.

Even though CRD is a well-designed clone tracking technique, it still has a

room for improvement. This means that the CRD based tracking is not so robust for

changes that affect locations of clones. Figure 4.1 shows an actual example of code

modifications on which the existing CRD-based technique cannot work well, which

is found in Ant. In the figure, the hatched part is detected as a clone. In revision

581,376, a try-block for catching JSchException was added outside of the

clone. This modification also added a new parameter to the signature. In the CRD-

based technique, blocks are tracked based on the nesting structures. Consequently,

the technique cannot regard that the else-block after the modification corresponds

to the else-block inside the new try-block. As a result, the clone is regarded as

80

disappeared.

Tracking clones is a fundamental technique in the field of software evolution

because it should be a basis of a variety of research relating to software evolution.

Consequently, accurate and scalable clone tracking techniques are necessary for

better results of research.

This study proposes another clone tracking technique based on CRDs. The pro-

posed technique borrows the basic idea of the original CRD-based tracking, with

the idea enhanced. The key idea of the enhancement is to use similarities of CRDs,

not CRDs themselves. Using similarities of CRDs enables clone tracking to be ro-

bust compared to the original CRD, with detecting few false positives. In addition,

we have implemented a clone tracking system based on the proposed method. The

system includes a function to detect clones, which has a high scalability because

it is incremental and block-based. This study evaluates the correctness of clone

tracking of the proposed method, and also shows an application result of the pro-

posed method for revealing why clones are gone in software evolution, which has

not been investigated yet.

4.2 Tracking clones

This section describes the proposed clone tracking technique. The primary

requirements for tracking clones are accuracy and speed. In order to achieve accu-

rate and rapid clone tracking, the proposed technique uses incremental hash-based

clone detection. The processing of the proposed technique consists of two phases,

hash generation and clone linking, each of which is described briefly as follows.

HASH GENERATION
Hash values are calculated from every block in source files in every revision.

If two or more blocks have the same hash value, they are regarded as clones.

All the hash values are stored into a database with their locational informa-

tion such as file paths, start lines, and end lines. In addition, a CRD [27] is

measured from every block, and it is also stored into the database.

CLONE LINKING
Cloned blocks in every revision are linked to blocks in its next revision based

on similarities of their CRDs. Then, their hash values are checked: if two

blocks having the same hash value (hr) in revision r have also the same

hash value (hr+1) in revision r+1, they are regarded as maintaining a clone

relationship during r and r + 1 even if hr+1 is different from hr.

The remainder of this section firstly introduces the definition CRD with a sim-

ple example in Subsection 4.2.1. Secondly, it describes the processings of the phase

81

�����������	
�������
��������������������
���������������
��
�� ������������
���������������!"����
���� �������
���!"�������#	� $�%�#&�
��$�%�#��$�%�#
	$�%�#����$�%�#�&
���$�%�
���������������������#� !$�%�#�
���$�%�#	
�
��!$�%�#�!��� ��
'��$�

(a) Definition

""��������������������	�
� ���
������
����""������
�������������	��	����
����������
���������� ��	������	�������������
�����������������
��������������
����������������������

�������	���	����������	���������
�����������������������������
��������������
��������������������

���������� ������

����� �	���	���� �����	��������
���������������������
�������

�

(b) Code situation

���������	�

���
��������
�����
���
�����������
����
����
����
��������
�
���������
���������
	�������
���

���������
��������

(c) Example

Figure 4.2: Clone Region Descriptor

“hash generation” in Subsection 4.2.2. Finally, it explains the processings of the

phase “clone linking” in Subsection 4.2.3.

4.2.1 Clone Region Descriptor

CRD (, which is an abbreviation of Clone Region Descriptor) is an abstract

description for location of a clone region in a software system. A CRD provides an

approximate location of a clone. CRD is independent of specification of based on

lines of source files. Figure 4.2 shows the definition and an example of CRD1. Fig-

ure 4.2(a) shows the definition of CRD in the extended Backus-Naur form. Figure

4.2(c) shows an example of CRD, which represents the block labeled with “A” in

Figure 4.2(b). In the technique proposed by Duala-Ekoko and Robillard [27], if a

block in revision r has the same CRD as a block in revision r+1, they are regarded

1These figures shows the same example used in the literature [27].

82

as the same block. On the other hand, the proposed technique uses the similarities

of CRDs for clone tracking to improve the clone tracking based on CRDs.

4.2.2 Hash generation

The purpose of this step is to analyze source code in every revision in the

target software system and to store the results into a database. The processing

of this phase takes a repository of a target system as its input. From the given

repository, it extracts every block in all the source files of all the target revisions,

calculates hash values and CRDs for all the extracted blocks, and store the result

of the calculation into a database. Thus, the output of this processing is a database

storing all the blocks with hash values and CRDs. There are five steps in this

processing as follows.

STEP1 (Syntax Analysis) This step performs lexical and syntax analyses for all

the source files. Every source file is transformed into a sequence of tokens

through lexical analysis. After the lexical analysis, this step detects all the

blocks from the sequences of tokens through syntax analysis. Note that the

syntax analysis is necessary because performing only lexical analysis is not

sufficient for identifying blocks from source files.

STEP2 (Splitting) Every subsequence of tokens corresponding to a block is ex-

tracted from the token sequences of the source files in this step. This step

puts a special token into the extracted position of token sequences that rep-

resents the information of the extracted block. The information described in

the special token includes the following information:

• type of the block (e.g., if, while, for),

• the conditional predicate (if the block is conditional one), and

• parameters (if the block is method or constructor).

STEP3 (Normalization) This step normalizes token sequences to detect clones

even if they have some trivial differeces. In this normalization, variable

names and literals are replaced with special tokens. Note that invoked method

names and type names are not normalized. It is easy to distinguish types of

tokens because syntax analysis performed in STEP1 provides type infor-

mation of tokens. The type information enables to normalize only variable

names and literals.

STEP4 (Building block texts) This step builds a character sequence for every of

token sequences that represent blocks. A hash value is calculated from every

83

of the character sequences with a hash function. A CRD is also calculated

from every of them in this step.

STEP5 (Persisting hash values) Hash values of all the blocks are stored into a

database. At the same time, file paths, start lines, end lines, revision num-

bers, and CRDs of every block are stored into the same database.

Figure 4.3 shows how source files are handled in every step. A remarkable

point of the processing “hash generation” is included in STEP2, which is a set of

operations that every of the sub-blocks in a block is extracted, then a small marker

is put into every of the extracted positions. This operation enables to identify blocks

including the same instructions as clones even if their sub-blocks are different. If

a block is totally duplicated to another block, their hash values and all the hash

values of their sub-blocks become the same.

4.2.3 Clone Linking

The input of the processing of this phase is an output of the processing “hash
generation”, which is a database that contains hash values and other attributes of

all the blocks in all the target revisions. This phase links blocks in every revision

to blocks in the next revision.

Hash values of blocks are used for identifying clone relationships in every revi-

sion. The same hash value means that blocks having the hash value are texutually

identical except for differences in their sub-blocks, variable names, and literals.

In other words, blocks having the same hash value are regarded as clones. The

remainder of this paper uses a term Equivalent Block Group (in short, EBG),

which represents a group of blocks having the same hash value.

In this processing, the proposed technique identifies links of blocks between

revisions r and r+1 based on the similarities of their CRDs. If block br in revision

r and block br+1 in revision r + 1 satisfy all the following conditions, br+1 is

regarded as the corresponding block of block br.

CONDITION1 The type of br+1 is the same as the one of br.

CONDITION2 If br and br+1 are conditional blocks, their conditions are the same

except variable names, method names and literals in them.

CONDITION3 If br and br+1 are methods or constructors, their names are the

same or their parameters are the same.

CONDITION4 In revision r+1, CRD of br+1 has the highest similarity with one

of br.

84

��������	
���	
���	
������	������������	���������	����	������
� ������	��������!"��	�������
�#����������	�����"������������$�	�����%� �&��
�'����������	�����"�����&��
�(����������	�����"��	���&��

�)����������*�	�����!"�������
�+��������������*�	������������!�����
�,�������������������$$&��
�-��������������.��
�/��������������*�	������������0������
���������������������11&��

� ��������������.��
�#��������������	�����!"�������
�'������������������	����2��"���������&��
�(���������������������������"���������&��

�)���������������������������"��2�&��
�+�������������������$$&��
�,�������������������11&��
�-��������������.�
 /����������.��

 �������������	
�3�������������������&��
 ������������	
�3���������������	����&���
 #������.�
 '��.��

()*+,-� ./,0� 1),-23/45� � ,65��� �44�7� ,65� +895� ,65� 4,:;5��� �� � <

�,9� +895� ��� 4,:;5� � <

,65� (� �44�7� � � +895� 	 4,:;5� �
 � ��

,65� +� � +895� ��

,65� 4 � ��4,:;5�

=;,+8� � +� ��� 4 � <

=;,+8� � �44�7� � +�

 � (� < +� 		� �� >

=;,+8� � �44�7� � 4
 � (� < 4 ��� �� >

,9� � +� ��� 4 � <

,65� 5?(� � �44�7� � +�
 ��

�44�7� � +�
 � �44�7� � 4
 ��

�44�7� � 4
 � 5?(� ��

+� 		� �� 4 ��� ��

>

>

1),-23/45� � �44�7� �� �� � ��

1),-23/45� � �44�7� �� +895� �� 4 � ��

+� 4,:;5�

>

> 5/286�/9�*+/-2�35�45�

5/286�/9�*+/-2�860�

������

��
��
��

������

��
��
��

������

�,9� ��� � <

,65� � � � 	 �
 � ��

,65� � ��

,65� � � ��

�����+��4�

1),-23/45� � �� �� � ��

1),-23/45� � �� �� � ��

>

=;,+8� � ��� � < ������44�7�+
�(� ������44�7�4
�(� ��+��4� >

=;,+8� � �
 � � < 		� �� >

=;,+8� � �
 � � < ��� �� >

,9� � ��� � <

,65� � �
 ��

�
 � �
 ��

�
 � ��

		� �� ��� �� >

()*+,-� ./,0� 1),-23/45� � ,65�
� ,65� ,65��� �� �

< ��+895��4,:;5� >

� � �

� �

� � � �

� �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

� � �

�

�

�

�

�

�

�

�

�

�����

�����

�����

 �!�

������

����!�

�,9� ��� � <

,65� (� �44�7� � � +895� 	 4,:;5� �
 � ��

,65� +� � +895� ��

,65� 4 � ��4,:;5�

�����+��4�

1),-23/45� � �44�7� �� �� � ��

1),-23/45� � �44�7� �� +895� �� 4 � ��

+� 4,:;5�

>

=;,+8� � +� ��� 4 � < ������44�7�+
�(� ������44�7�4
�(� ��+��4� >

=;,+8� � �44�7� � +�
 � (� < +� 		� �� >

=;,+8� � �44�7� � 4
 � (� < 4 ��� �� >

,9� � +� ��� 4 � <

,65� 5?(� � �44�7� � +�
 ��

�44�7� � +�
 � �44�7� � 4
 ��

�44�7� � 4
 � 5?(� ��

+� 		� �� 4 ��� �� >

()*+,-� ./,0� 1),-23/45� � ,65�
� �44�7� ,65� +895� ,65� 4,:;5��� �� �

<

+895� 4,:;5�

��+895��4,:;5� >

3(8-,�+�5/286�

�����

�����

�����

 �!�

������

����!�

()*+,-./,01),-23/45�,65�
��,65��,65��<��+895��4,:;5>�

,9������<,65������	��
�
�,65����,65���������+��41),-23/45��������1),-23/45��������>�

=;,+8������<������44�7�+
�(������44�7�4
�(��+��4>�

=;,+8����
���<�		�>�

=;,+8����
���<����>�

,9������<,65�����
����
����
����
����		�����>�

���

���

���

���

���

���

�����

�����

�����

 �!�

������

����!�

�"� �,+8�"� #$"� ��3;�

��

%�
%�

�5�45�,68� �60�,68� �5�45$8.,3,/6� �60$8.,3,/6�

��

��

��

��

��

��

��

��

��

��

��

@@@�

@@@�

@@@�

@@@�

@@@�

@@@�

���

���

���

���

���

���

��

��

��

 �

���

���

���

���

���

!�

���

�!�

��

��

��

��

��

��

@@@�

@@@�

@@@�

@@@�

@@@�

@@@�

Figure 4.3: Intuitive example how hash values are measured from source code

85

CONDITION5 In revision r, CRD of br has the highest similarity with one of

br+1.

The CRD similarity between blocks br and br+1 are measured by Levenshtein

Distance (in short, LD) of string representations of two CRDs calculated from

br and br+1. If the two blocks have the identical CRDs, the LD between them

becomes 0, which is the minimum value of LD. If the two blocks have completely

different CRDs, the LD becomes maximum value, which is the higher value of the

lengths of two string representations of two CRDs. Considering the similarity of

two CRDs enables to track clones even if they were moved.

Figure 4.4 shows examples of a revision history and a result of clone linking

from it. In Figure 4.4(a), the following modifications are performed.

• Method b2 in file B.java was changed (r1 → r2)

• Method a1 in file A.java was changed (r2 → r3)

• b2 was moved to file C.java (r2 → r3)

• Method c1 in C.java was deleted (r2 → r3)

• b1 in B.java was changed (r3 → r4)

In Figure 4.4(b), circles, arrows, and rectangles have the following meanings.

Circles: Every circle means a block. Numbers in blocks are their hash values.

Arrows: Every arrow means a link of two blocks between consecutive two revi-

sions.

Rectanbles: Every rectangle means an EBG. All the blocks in a rectangle have

the same hash value.

For example, blocks a1 and b1 are modified between revisions r2 and r3, so

that each of them has different hash values between the revisions. Even after the

modification, they have the same hash value, which means that they continue to be

duplicated in revision r3. However, between revisions r3 and r4, only block b1 is

modified, and the two blocks have different hash values to each other in revision

r4. Hence, the EBG consisting of a1 and b1 is regarded as disappeared in revision

r4.

Blocks a2 and c1 have the same hash value in revisions r1 and r2, which means

that they consist of a clone in the revisions. However, in revision r3, block c1

86

����
����	�

�
����
����	�

�

��
�������	� ��
�������
� ��
��������� ��
���������

��
�
��

��
�
��

����
����	�

�
����
����	�

�

���
����	�

�

���
����	�

�

�

���
����	�

�

���
����	�

�

���������������

����
����	�

�
����
����	�

�

����
����	�

�

����
����	�

�
����
����	�

�

�������
��������

�������
��
������
��
�
��

���������������

����
����	�

�

�������
��������

��
�
��

(a) Revisions

���

���

���

���

���

���

���

���

���

���

���

��� ���

��� ���

���

���

���

���

���

���

���

�� ���������	
���	�����

��	���

���������
	
����
��

�������
��	���	�

���������

���������

���������

���������

���������

���������

���������	
���	�����

��	���

�
��	������� �
�����	��
� �
�����	���� �
�����	����

(b) Tracking result

Figure 4.4: Example of clone tracking

87

itself disappeared. In this case, the EBG consisting of a2 and c1 is regarded as

disappeared in revision r3.

Blocks b2 and c2 have the different hash values in revision r1. Block b2 is

modified between revisions r1 and r2, so that they have the same hash value in

revision r2. Even block b2 was moved to C.java in revision r3, it can be tracked.

This is because the proposed method tracks cloned blocks based on similarities of

their CRDs.

4.3 Implementation

We have developed a software tool, CTEC based on the proposed technique.

Currently, CTEC handles only Java language. However, it is not difficult to ex-

pand CTEC to be able to handle other programming languages because it performs

only lexical and syntax analyses as language dependent processings. The language

dependent processing has been implemented with Java Development Tools [60].

CTEC uses SQLite as the database module because of its ease to use. Any

other database systems can take the place of SQLite. If we use other SQL database

systems such as PostgreSQL or Oracle database, the analysis speed will become

more rapid. However, we believe that the speed with SQLite is sufficient.

In CTEC, the two processings “hash generation” and “clone linking” are im-

plemented as independent ones. “Hash generation” registers hash values of blocks

in the target revisions into an SQL-based database. “Clone linking” takes the SQL-

based database that the “hash generation” phase outputs, and identifies links of

blocks in the next revision for every cloned block in every revision with comparing

similarities of CRDs.

The remainder of this section describes each of the processings, respectively.

4.3.1 Hash generation

In order to achieve high scalability, CTEC adopts an incremental hash gener-

ation. The following is an explanation of “processing for the first revision” and

“processing for the 2nd or later revisions”. This explanation is under an assump-

tion that the target revisions are {r1, r2, · · · , rn}. Figure 4.5 describes an example

of initializing and updating a database.

In the processing for the first revision (r1), all the blocks in all the source files

in revision r1 are stored into an SQL database. Note that column “EndRevision” of

all the blocks are set as rn, which is the last revision of the target.

In the processing for the 2nd or later revision (rk, 2 ≤ k ≤ n), blocks in only

source files modified, added, and deleted in rk are stored into the database. If

88

��

��

��

��

��

���	
�� �
�� ����� ��������	� ������	� �����
	�����
��

���
	�������

������� ����� ��� �� ��� ��� ���

������� ����� ��� ��� ��� ��� ���

 ������ �!�� ��� �� ��� ��� ���

 ������ �!�� ��� ��� ��� ��� ���

��

��

������� ��"�� ��� �� ��� ��� ���

������� ��"�� ��� ��� ��� ��� ���

�#�	������$%��&��	����������

�

�

�

�

������ ���� �� � �� �� ��

������ ���� �� �� ��

�

��

�

��

 ����� �!� �� � ��

�

��

�

��

 ����� �!� �� �� ��

�

��

�

��

�

�

������ ��"� �� � ��

�

��

�

��

������ ��"� �� �� ��

�

��

�

��

�#�	������$%��&��	��������
�

��

��

��

��

��

���	
��

�
�� ����� ��������	� ������	� �����
	�����
��

���
	�������

������� ����� ��� �� ��� ��� ���

������� ����� ��� ��� ���

�

���

�

���

 ������ �!�� ��� �� ���

�

���

�

���

 ������ �!�� ��� ��� ���

�

��� ���

��

��

������� ��"�� ��� �� ���

�

��� ���

������� ��"�� ��� ��� ���

�

���

�

���

��

��

 ������ �!�� ��� �� ���

�

�
�

�

���

 ������ �!�� ��� ��� ��� �
� ���

�

�

 ����� �!� �� � �� �
 ��

 ����� �!� �� �� ��

�

�

��

���

���

�#�	������$%��&��	����������

��

��

��

��

��

���	
��

�

�
�� ����� ��������	� ������	� �����
	�����
��

���
	�������

������� ����� ��� �� ��� ��� �
�

������� ����� ��� ��� ���

�

��� �
�

 ������ �!�� ��� �� ���

�

��� ���

 ������ �!�� ��� ��� ���

�

���

�

���

��

��

������� �!�� ��� �� ���

�

���

�

�
�

������� �!�� ��� ��� ���

�

��� �
�

��

��

 ������ �!�� ��� �� ��� �
� �
�

 ������ �!�� ��� ��� ���

�
� �
�

�

�

�

�

�

�

�� ������� ����� ��� �� ���

���

���

'�

���

������� ����� ��� ��� ��� ��� ���

 ������ �!�� ��� �� ��� ��� ���

���

���

������� ��"�� ��� �� ��� ��� ���

������� ��!�� ��� ��� ��� ��� ���

� ������ ���� �� � �� �� ��

'

��

������ ���� �� �� ��

�

��

�

��

 ����� �!� �� � ��

�

��

�

��

��

��

������ ��"� �� � ��

�

��

�

��

������ ��!� �� �� ��

�

��

�

��

��

��

��

��

��

���	
�� �
�� ����� ��������	� ������	� �����
	�����
��

���
	�������

������� ����� ��� �� ��� ��� �
�

������� ����� ��� ��� ���

�

���

�
�

 ������ �!�� ��� �� ���

�

���

���

 ������ �!�� ��� ��� ���

�

���

�

���

��

��

������� �!�� ��� �� ���

�

���

�

�
�

������� �!�� ��� ��� ���

�

���

�
�

��

��

 ������ �!�� ��� �� ��� �
� �
�

 ������ �!�� ��� ��� ���

�
�

�
�

�� ������� ����� ��� �� ���

���

���

'�

���

������� ����� ��� ��� ���

�

���

�

���

 ������ �!�� ��� �� ���

�

���

�

���

���

���

������� ��"�� ��� �� ���

�

��� ���

������� ��!�� ��� ��� ���

�

���

�

���

��� ������ �!�� ��� �� ���

�

���

�

���

���

�� ����� �!� �� � �� �� ��

�#�	������$%��&��	����������

Figure 4.5: Example of Database Updating

89

the database already includes blocks in the files, their columns “EndRevision” are

updated to rk−1.

The following explanation uses the example shown in Figure 4.5 to describe

how these processings work with. This example shows how database is updated

for revisions shown in Figure 4.4. Figure 4.5 shows the database content after the

processing for every revision. Gray cells mean that they have just been inserted or

updated. Note that, in this example, column “FileID” contains file names for ease

to explain. However, in the actual implementation, column “FileID” includes IDs

for source files. CTEC has another database table for mapping file name and its ID.

In the processing for revision r1, which is the first revision of the target, all the

source files are analyzed and their blocks are stored into the database. Note that

the values of column “EndRevision” of their blocks become r4, which is the last

revision of the target.

In the processing for revision r2, file B.java is reanalyzed, and its blocks are

stored into the database. The reason why only file B.java is reanalyzed is that

only file B.java is modified between revisions r1 and r2. In this case, the database

already has blocks in file B.java, and so their columns “EndRevision” are updated

to r1. This updating operation is performed for only blocks whose “EndRevision”

are r4.

In revision r3, files A.java, B.java, and C.java are modified. Hence, the pro-

cessing for those files in revision r3 is performed as well as the processing for file

B.java in revision r2. Note that the rows whose “ID” values are 2 and 3 are no

longer updated even though their owner file B.java is modified. This is because the

values of “EndRevision” in these rows are not r4.

In a similar way, the processing for revision r4 analyzes file B.java, inserts

newly detected blocks into the database, and updates the column “EndRevision” at

the row whose “ID” is 10.

4.3.2 Clone Linking

In order to link cloned blocks in every revision to corresponding blocks in the

next revision (rk and rk+1), it is necessary to obtain EBGs in revision rk from the

given database. The followings describe the steps to obtain EBGs in revision rk.

STEP1 obtaining records (blocks) satisfying the following formula. This opera-

tion means obtaining all the blocks existing in rk.

(StartRevision ≤ rk)
∧

(rk ≤ EndRevision) (4.1)

90

STEP2 classifying the blocks obtained in the STEP1 based on their hash values.

Two or more blocks having the same hash value form an EBG.

For each block in the EBGs identified in the STEP2, its corresponding block

is found with the proposed technique described in Subsection 4.2.3.

4.4 Experiment

This section describes the result of an experiment on well-known systems with

the proposed clone tracking technique. The purpose of this experiment is confirm-

ing that the proposed technique has a beneficial effect on tracking clones. In order

to achieve the purpose, this experiment has investigated tracking results in the way

to answer the following questions.

QUESTION1 Could the proposed technique track clones that the conventional

technique could not track?

QUESTION2 Did clones that the proposed technique could not track really dis-

appear?

Firstly, this section describes the experimental setup, then shows the perfor-

mance of CTEC. Lastly, it provides answers for our research questions.

4.4.1 Setup

We selected Ant and ArgoUML as the targets of this experiment. Tables 4.1 and

4.2 show an overview of the target systems. They are managed by using Subversion
(in short, SVN) The targets of the investigation are the source code under directory

Table 4.1: Overview of Target Software - Target Revisions -

Software Start revision (date) End revision (date) # of target revisions

ArgoUML 15,880 (2008-10-04) 19,794 (2011-11-17) 2,222

Ant 268,587 (2001-02-05) 904,537 (2010-01-30) 5,143

Table 4.2: Overview of Target Software - LOC -

Software LOC of start revision LOC of end revision

ArgoUML 329,170 362,604

Ant 57,124 211,855

91

“/ant/core/trunk/src/main” and “/trunk/src”, respectively. This experiment is inter-

ested only in the source code under the directories “trunk”, which is the main line

of the development in SVN repositories. This experiment also narrows down the

experimental target to particular subdirectories of “trunk” to exclude test files. The

target period of the investigation was carefully decided because we would like to

investigate development histories of multiple versions.

In this experiment, we specified 30 tokens as the threshold of minimum clone

length. If and only if a block includes 30 or more tokens, it can be stored into

databases and can be a member of a code clone. On the other hand, blocks in-

cluding less than 30 tokens will be ignored, and so they are not inserted into the

database.

4.4.2 Performance

Table 4.3 shows the performance of two processings, “hash generation” and

“clone linking”, from the view point of the elapsed time. A processing “hash gen-
eration’ consists of the analysis on all the target revisions of a target software sys-

tem. Hence, the processing “hash generation” was performed only once on each

of the experimental targets. On the other hand, a processing “clone linking” means

analyzing a pair of two consecutive revisions. Therefore, “clone linking” needs to

be performed multiple times, the number of pairs of two consecutive revisions, on

each of the experimental targets. The table shows total, maximum, minimum, and

average time of “clone linking”. We can see that maximum time is 46 seconds,

which means that CTEC can perform a processing “clone linking” interactively on

demand from users. In the case of batch executions, CTEC takes a few hours to

analyze several thousand of revisions. Considering the elapsed time shown in the

table, it can be said that CTEC works very well in the point of scalability.

4.4.3 Answer to QUESTION1

We tracked clones by using the proposed technique and a conventional tech-

nique proposed by Duala-Ekoko and Robillard [27]. The conventional technique

has been implemented by us based on the description of the paper of Duala-Ekoko

Table 4.3: Timing information on experiment (execution with eight threads)

Software Hash generation
Clone linking

total max. min. ave.

ArgoUML 132 mins. 43 mins. 46.0 secs. 0.043 secs. 21.3 secs.

Ant 100 mins. 50 mins. 31.2 secs. 2.8 secs. 17.1 secs.

92

��

��

��

��

��

���

���

���

���

���

���

	
�������
��������� ����������������

����� ����� ����� �����

������� ������� �����!� ���!��� �!��!��

(a) ArgoUML

��

��

��

��

��

���

���

���

���

���

���

	��������
��������� ����������������

��������

����

��!������������� ������!� ������!�!�������

���� ���� ���� ����

(b) Ant

Figure 4.6: Number of blocks that were not tracked by the proposed or conven-

tional methods

and Robillard. In the whole of the target period, the number of untrackable clones

of the proposed technique and the conventional technique is 345 and 581 in Ant,
and 537 and 739 in ArgoUML, respectively. There exists no clones that the con-

ventional technique tracked but the proposed technique could not. That is, 236 and

202 clones were tracked only by the proposed technique, respectively.

Figure 4.6 shows the number of clones that did not tracked by the proposed or

conventional techniques in every revision. Clones not tracked by the conventional

93

technique are colored red, and ones not tracked by the proposed technique are

colored black. Every black bar is drawn in front of red ones. If a red bar is taller

than its corresponding black bar, there are clones that were tracked only by the

proposed technique. The length of difference between red and black bars means

the number of such clones. Again, there exists no clones that the conventional

technique tracked but the proposed technique could not. Therefore, no black bar is

taller than its corresponding red bar.

We investigated clones tracked only by the proposed technique to reveal whether

tracking by the proposed technique had been correct or not. This was a manual

investigation, so that we narrowed down period “1.8” in Ant and “0.32” in Ar-
goUML. In this investigation, we checked what kinds of modifications were per-

formed in both the cases that tracking was correct and not correct. The following

is a list of kinds of modifications. Prefix “T” means that tracking was correct even

if the modifications were performed and “F” means that tracking was incorrect

because of the modifications.

T1 Clones (and their surrounding code) were extracted as new methods.

T2 New blocks were added as surrounding code of clones such as null checking.

T3 Conditional predicates on conditional blocks including clones were changed.

T4 Methods including clones were moved to other classes.

T5 New catch clauses were added on try blocks including clones. In the CRD

definition of try-block, it includes exception types of catch clauses attached

to the try-block [27]. Consequently, if a new catch clause is added to a try

block, CRD of the try block changes.

T6 Methods were inlined to other methods.

F1 Cloned blocks were deleted. As a result, other blocks in the next revision were

incorrectly linked to the deleted blocks.

F2 Cloned block became smaller than the threshold (30 tokens). Smaller blocks

than the threshold are not registered to the database. They are treated as the

same as deleted blocks. As a result, incorrect linking happened.

Figure 4.7 shows actual clones classified into T1. In this case, cloned if-

blocks and their subsequent code were extracted as new methods. Such modifica-

tions change CRDs of cloned if-blocks, hence the conventional technique misses

the links of clones. Therefore, this clone is regarded as disappeared if we use the

94

>���������
>#:�������	�
��	
�������������	�����������
�����
>#������������������������������� �
�!�:����
>#<����������� ��� "��������#������ �������%$������%����������
>#���������������������%�%��������%�&�%������	���%�����������
>#>����������%����%��������� ��'�
>#��������������������������(���
����)��� "���)�*��+�	��,�-../0�$�/�'�
>##����1�
>#4��������������*�������������������
�
�������������
�
>4�����1�
>6:�
>6����������������������������������� �
�!�:����
>6<����������� ��� "��������#������ �������%/�����%����������
>6���������������������%�%��������%�&�%������	���%�����������
>6>����������%����%��������� ��'�
>6�������������������������(���
������)��� "���)�*��+�	��,�-../0�$�/�'�
>6#����1���
���������� /�����22��������������������������
�
�������������
�
��:����1�
�������������#��
3� �22�������������������������
�
�������������

>#������������������������������� �
�!�:���
>#<����������� ��� "��������# ����� �������%$������%����������
>#���������������������%�%��������%�&�%������	���%�����������
>#>����������%����%��������� ��'�
>#��������������������� ����(���
����) �� "���) *��+�	��,�-../0�$�/�'�

>6����������������������������������� �
�!�:���
>6<����������� ��� "��������# ����� �������%/�����%����������
>6���������������������%�%��������%�&�%������	���%�����������
>6>����������%����%��������� ��'�
>6�������������������������(���
������) �� "���) *��+�	��,�-../0�$�/�'�

(a) Before modification (revision 567,592)

>���������
>#:�������	�
��	
�������������	�����������
�����
>#��������������
��'�
>#<���������������
��'�
>#�����������#��
3� �22�������������������������
�
�������������
�
�4���1�
�4>�
�4����������������
����
�4#������������������������
�����
�44������������������������������ �
�!�:����
�46����������� ��� "��������#������ �������%$������%����������
�4���������������������%�%��������%�&�%������	���%�����������
�6:����������%����%��������� ��'�
�6��������������������������(���
����)��� "���)�*��+�	��,�-../0�$�/�'�
�6<����1�
�6���������������*�������������������
�
�����������
�
�������1�
��#��1�
��4�
��6��������������������������
�����
������������������������������������� �
�!�:����
#::����������� ��� "��������#������ �������%/�����%����������
#:���������������������%�%��������%�&�%������	���%�����������
#:<����������%����%��������� ��'�
#:�������������������������(���
������)��� "���)�*��+�	��,�-../0�$�/�'�
#:>����1���
���������� /�����22��������������������������
�
�����������
�
#<6����1�
#<���1�

� �� �
�44������������������������������ �
�!�:���
�46����������� ��� "��������# ����� �������%$������%����������
�4���������������������%�%��������%�&�%������	���%�����������
�6:����������%����%��������� ��'�
�6��������������������� ����(���
����) �� "���) *��+�	��,�- ./0�$�/�'�

������������������������������������� �
�!�:���
#::����������� ��� "��������# ����� �������%/�����%����������
#:���������������������%�%��������%�&�%������	���%�����������
#:<����������%����%��������� ��'�
#:�������������������������(���
������) �� "���) *��+�	��,�-../0�$�/�'�

(b) After modification (revision 567,593)

Figure 4.7: An EBG that only the proposed method tracked

95

conventional technique. On the other hand, the proposed technique could continue

to track these blocks.

Table 4.4 shows the number of clones fallen into each category. The number of

correct tracking is 40, and the number of incorrect is only four. That is, the accuracy

of tracking for clones that were tracked only the proposed technique becomes about

91%.

4.4.4 Answer to QUESTION2

We investigated whether clones not tracked by the proposed technique had re-

ally disappeared. We conducted a manual investigation on period “1.8” in Ant and

“0.32” in ArgoUML as well as the investigation for QUESTION1. As a result, we

revealed the following modifications were factors that clones were not tracked by

the proposed technique. Note that prefixes “T” and “F” mean correct and incorrect

tracking respectively, as well as the investigation for QUESTION1.

T1 Cloned blocks existed after modifications. However, their sizes became smaller

than the threshold (30 tokens), so that they were regard as disappeared by the

proposed technique.

T2 Cloned blocks (and their surrounding code) were deleted from the source code.

T3 Cloned blocks evolved to different code by large modifications.

F1 Types appearing in conditions of cloned blocks were changed. In the proposed

method, variable names, method names, and literals are normalized but types

Table 4.4: Modification types that the proposed technique could track

category Ant ArgoUML
T tracking was appropriate 37 3

T1 extracting as new methods 18 0

T2 becoming deeper nested 9 0

T3 changing block’s conditions 5 2

T4 moving methods 2 1

T5 adding new catch clauses 2 0

T6 in-lined to other methods 1 0

F tracking was NOT appropriate 4 0

F1 deleting blocks 3 0

F2 shrinking blocks 1 0

96

�����1�����	
�����
����
�������������	�������
�����	������
�����������
���
�	������1�����
�
�������
�������1�����
�
����������1�����
�
�������
��
�� �����	
����������!	
�"������
�#$���������	
������
������
�#%�������	�����������1���������&�
��
��'	�(����
�#�����)�
�##��)�
�#��
�#���������
��������*�������+,���	��)-��	
��������(����$����

���������
������������������������

� �����1�����	
�����	
�"����
� #������������	�����������	������
� �������������
�	������1�����
�
�������
� �������1�����
�
���������1�����
�
��������
� ��������	
���������!	
�"������
� ������������	
������
������
� ����������	����������1���������&�
��
��'	�(����
� ������)�
�$$����)�
�$%����.����

��	
�-��	��-�/�
�"��-�
�0��
(������
�$���)�

�������	
��
�
�
���
����������������

�����������
���
�	����� 1�����
�
�������
�������1�����
�
��� ������1�����
�
�������
��
�� �����	
����������!	
�"������
�#$���������	
������
������
�#%�������	�����������1���������&�
��
��'	�(����
�#�����)
�##��)�

� ���������� ��
�	����� 1�����
�
�������
� ������ 1�����
�
���������1�����
�
�������
� ��������	
��� �����!	
�"������
� ������������	
������
������
� ����������	���� �����1���������&�
��
��'	�(����
� ������)�
�$$����)

�
���������������

�
���������������

��
���
�	������1���'��1�/���

����
�	������1���'��1�/���

Figure 4.8: Cloned blocks not tracked by the proposed method because types in

their conditions were changed

are not. Consequently, changes of types makes CONDITION2 unsatisfied,

which makes a failuer of tracking.

F2 Conditions of cloned blocks were changed. This kind of change makes CON-
DITION2 unsatisfied.

F3 New catch clauses were added to cloned try blocks. Such modifications make

CONDITION2 unsatisfied.

Figure 4.8 shows an actual instance of untracked clones found in Ant because

of a type in its condition (F1). In revision 688,724, FileResource was changed

to FileProvider in the condition of the cloned block. If the proposed tech-

nique was designed to normalize types in conditions of clone blocks, this clones

would tracked correctly. However, the more normalized conditions are, the more

incorrectly blocks will be tracked.

Figure 4.9 shows another example of clones not tracked by the proposed tech-

nique (F2), which is also found in Ant. The change performed in this example

is larger than the one in Figure 4.8. In order to track clones even if this kind of

large modifications were performed on conditions of cloned block, CONDITION2

97

�������1�����	
�����	
���
��
���������
�����	�����
�����	������
�����������
���
�	������1����
�����
����
�� ������1���!�
�"
�������!�
�"
��#���
�	
1���!�
�"
����1����
�����
��
���
��$�������	
���������%	
���
����
��&�����������	
������"������
������������	����������1���������'�
��"���	�(����
))������*�
)+����*�
),����-
���

��	
�.��	��.���
���
.�
�/��
(������
)���*�

�����������
���
�	����� 1����
�����
����
�� ������1���!�
�"
�������!�
�"
��#���
�	
1���!�
�"
����1����
�����
��
��
��$�������	
��� �����%	
���
���
��&�����������	
������"�����
������������	����������1���������'�
��"���	�(���
))������*
)+����*�

�,$��1�����	
�����"����
�,&����
�����	�����
�
�����	������
�,�������
�
���
�	������1����
�����
����
��)����1���!�
�"
����
��!�
�"
��#���
�	
1���!�
�"
����1����
�����
�
�
���
��+�����	
�����
����%	
���
����
��,���������	
������"������
����������	������
����1���������'�
��"���	�(����
�������*�
��� ��*�
�� �

�,�������
�
 ��
�	����� 1����
�����
����
��)����1���!�
�"
�� �
��!�
�"
��#���
�	
1���!�
�"
����1����
�����
�
�
���
��+�����	
�����
����%	
���
����
��,���������	
������"������
����������	������
����1���������'�
��"���	�(����
�������*�
�����*�

��1����!�
�"
����� ! �
�-�0���"���

1�� !
1���!�
�"
�1�� !
�-�0���"���

���������
�	
	����
�
�������������

���������

�	
	����
�
�������������

��
�
������������

��
�
������������

Figure 4.9: Cloned blocks not tracked by the proposed method because their con-

ditions were changed

must become much weaker or even be removed. However, such changes on CON-
DITION2 will yield much more incorrect tracking. Consequently, tracking clones

correctly even if their conditions are largely changed is not realistic on CRD-based

clone tracking approaches.

Table 4.5 shows the number of clones not tracked by the proposed technique

because of such modifications. We manually investigated 61 untracked clones,

and 56 out of them were correct. That is, accuracy of untracking of the proposed

technique is about 92%.

4.5 Revealing why clones are gone

As an application of the proposed technique, we investigated why clones are

gone in software evolution2. In the past, several studies investigated occurrences

and evolutions of clones [74, 78, 93, 121]: however there is no research focusing

on investigation of reasons why clones are gone. Several empirical investigations

on clones found that a part of clones was gone in software evolution [78, 121].

2In this application, we investigated why clone relationships among blocks had disappeared. On

the other hand, the experiment described in Section 4.4 focuses on tracking each cloned block

98

However, in those investigations, clone removal is a pattern of clone evolution.

They did not investigate why clones were gone.

This investigation was also conducted on Ant and ArgoUML. Figure 4.10 shows

the number of EBGs whose elements disappeared in every revisions. As shown in

this figure, clone are gone in every time of software evolution.

In order to reveal the reasons why clones are gone, we investigated disappeared

EBGs manually. We narrowed the target periods of this manual inspection because

investigating all the disappeared EBGs is not realistic. Herein, we investigated

all the disappeared EBGs in periods “0.32” of ArgoUML (see Figure 4.10(a)) and

“1.8” of Ant (see Figure 4.10(b)) as well as the manual inspections conducted in

the experiment described in section 4.4. The number of investigated EBGs are 43

and 37, respectively. Table 4.6 summarizes the investigation result.

The number of disappeared EBGs due to refactoring is 10 and 7, respectively.

However, some of those refactorings were not intended for removing duplicate

code. We found that the other intentions were shortening long methods or sim-

plifying complicated methods. Most of refactoring that caused disappearances of

Table 4.5: Moditications preventing the proposed method from tracking clones

category Ant ArgoUML
T not tracking was appropriate 23 33

T1 shrinking blocks 7 9

T2 deleting blocks 8 24

T3 changing blocks 8 0

F not tracking was NOT appropriate 5 0

F1 changing Types in block’s conditions 2 0

F2 changing block’s conditions 2 0

F3 adding catch clauses to try blocks 1 0

Table 4.6: Reasons why clones were gone

Reason ArgoUML Ant
Refactoring 10 (9) 7 (3)

Different evolution 6 11

Unintended inconsistency 15 10

Unneeded code deletion 8 5

Shrinking 4 0

CRD limitation 0 3

Total 43 36

99

��

��

��

��

��

���

���

���

���

���

���

��	���� �
	���� ��	�
�� ��	���� ��	
���

����� ��
�� ��
�� ��
��

(a) ArgoUML

��

��

��

��

��

���

���

���

���

���

���

���	��
����	�
���
�	�
�� �
�	�
�� ���	
������	�

�

���� ���� ���� ��
� ����

(b) Ant

Figure 4.10: Number of EBGs whose elements disappeared

clones were Extract Method pattern. As a result of refactorings, CONDITION2
became unsatisfied, so that EBGs could not be tracked.

Different evolution means that, different modifications (e.g., functionality en-

hancements or expansions) were applied to one or more blocks in an EBG, so that

they evolved differently. We classified 6 and 11 EBGs into this category.

Unintended inconsistency means that clones were gone unintentionally. For

example, incomplete simultaneous modifications for bug fix or error checking were

classified into this category. Disappearances of clones by these reasons will cause

100

���������	�
���
�	�����������	�
������
�������
�������
�	�����������	�����	�
���
	�������
���
	� ��������
��!���������"�
�������	������#�
��$�����	
�������������	
���������%	������	����
��&����
�	���	�����'����	�����	�
���
	��������	�
���
	����������
�!(��)�
�!*��
�	�
��
�	��

���
�������
�������
�	�����������	�����	�
���
	�������
���
	� ��������
��!���������"�
�������	������#
��$�����	
�������������	
���������%	������	���
��&����
�	���	�����' ���	�����	�
���
	��������	�
���
	����������
�!(��)�

�����������
����������	��
���
��
���

*+(���
���
	�������������
���
	�������
+����
�������
�	�������������
���
	� �������������"�
�������	������#�
*+������	
�������������	
���������%	������	����
*+,��������	�����'�������	�
���
	����������
*++��)�
*+�������	-�����
���
���
	���	������

� � � ���
+����
�������
�	�������������
���
	� ������� �����"�
�������	������#
*+������	
�������������	
���������%	������	���
*+,��������	�����' ������	�
���
	����������
*++��)�

����	��
���
��
��

�����
���
�����
����������	��
���
��
���

�	
����.�������������	�
���
	���������
���������/�������00�.�����/��������#�
��������	�����'�.�������
)�

Figure 4.11: Code where an unintended inconsistency occurred

maintenance problems because they have high risks to introduce or to remain bugs.

In this investigation, 15 and 10 EBGs were classified into this category. Figure

4.11 shows actual code of this category. This EBG consists of two blocks, which

are different source files. Only one of them was modified (null checking code was

added) in revision 671,018. However, those two blocks are logically the same. The

null checking must be added to the other code simultaneously.

Unneeded code deletion means EBGs were gone by deleting unneeded code.

We investigated commit logs for deciding whether the commits were for deleting

unneeded code or not. We classified 8 and 5 EBGs into this category.

Shrinking means the size of blocks in EBGs becomes smaller than the thresh-

old of minimum clone size to be detected. All the blocks consisting of an EBG

continue to be duplicated: however their size became smaller than the threshold by

consistency modifications. In consequent, they are not detected as clones after the

modifications. In this investigation, four EBGs in ArgoUML were classified into

this category.

CRD limitation means EBGs are judged as disappeared because tracking was

performed incorrectly. In this investigation, three EBGs in Ant were classified into

this category.

101

4.6 Threats To Validity

EBGs categorization

In this experiment, we conducted manual investigations on open source sys-

tems. However, the investigation result may not be correct entirely because the

authors are not developers of the target systems. In order to eliminate incorrect-

ness as much as possible, two of the authors performed the investigation together.

Totally, we spent approximately 10 hours for the categorizations.

Target systems

In this experiment, we targeted only two system written in Java. Currently,

it is difficult to generalize the investigation result because (1) only one program-

ming language was investigated and (2) the number of investigated systems is only

two. We selected ArgoUML and Ant as our targets because they are popular and

successful systems. However, if we selected other systems that are no more than

moderately successful, the investigation results may be different from this experi-

ment. In addition, a further investigation on industrial software systems is required

to generalize the experimental results on industrial software systems. This is be-

cause industrial software systems should have different characteristics compared

to open source software systems.

Clone detection

This study adopted a block-based clone detection technique. The block-based

approach enables CTEC to find clones rapidly. However, the block-based detec-

tor should miss clones that detectors based on other approaches can find. Our

first experiment, which validates the accuracy of clone tracking with the proposed

technique, never be affected by this factor because it did not use information of

code clones: it only uses links of blocks. However, the experiment on investigat-

ing why clones are gone will be affected by this factor. That is, using different

clone detectors should introduce different results. However, it is difficult to use

other fine-grained clone detectors such as text-based or token-based techniques in

the experiment because the experiment forces the detectors to run a few thousand

times.

4.7 Summary

This study proposed a technique for tracking clones in software evolution. The

proposed technique is an enhanced version of the CRD-based clone tracking. The

102

proposed technique includes incremental hash-based clone detection for realizing

rapid clone tracking. We conducted experiments on open source systems and con-

firmed the followings.

• The proposed technique tracked many clones that were not tracked by a con-

ventional technique. The correctness of tracking such clones was 91%.

• In the experiment, many clones were not tracked by even the proposed tech-

nique. The untracking correctness for such clones was 92%.

Moreover, we investigated why clones are gone with the proposed technique.

We revealed that refactoring, different evolution, and unintended inconsistencies

are major factors of clone disappearing. Interestingly, some of the refactorings

were not intended for removing duplicate code but shortening long methods or

simplifying complicated methods.

103

Chapter 5

Analyzing Clone Genealogies
with the Enhanced Clone
Tracking

5.1 Motivation

As discussed in Chapter 4, the research area of code clones still has some open

issues even though many researchers have analyzed code clones to reveal charac-

teristics of them. Concretely, the following questions have not been revealed even

though they play fundamental roles on effecient management of clones.

• How many clones have negative impacts on software evolution?

• Do long-lived clones tend to be modified more frequently than short-lived

ones?

• Are there any characteristics when clones are modified in their lifetime?

To answer the first question is quite important to decide how many costs we

should pay to manage code clones. If there are many negative clones, software

systems should require many costs to manage code clones. On the other hand, if

there are few negative clones, paying too much attention on clones might be not

cost-effective.

The answer to the second question should be useful to consider negative clones.

If it is the case that long-lived clones tend to be modified more frequently than

short-lived ones, it will be efficient to focus on long-lived clones. However, it will

not be enough to detect long-lived clones if the above theory does not hold. This is

105

because clones will not require much attention if they are stable regardless of the

length of their lifetimes.

Answering the third question will guide when we should start management

of clones. If clones tend to be modified in the earlier periods of their lifetimes,

managing clones in the earlier periods will be necessary. In addition, if clones tend

to become more stable in the latter period, it is not cost-effective to manage clones

after a certain period of time elapsed from their creation.

To reveal the above open questions, we conduct an empirical study on six open

source software systems. The experiment analyzes clone genealogies detected with

the enhanced CRD-based clone tracking, which is described in Chapter 4, to track

code clones across version histories of code. Using the enhanced technique enables

to overcome shortcomings of existing clone tracking techniques.

The empirical study that this chapter presents mainly has the following two

contributions.

Revisiting Common Findings on Clone Evolution
Many researchers have analyzed evolution of clones, which offers many in-

teresting findings. However, existing studies used their own techniques to

track clones. As discussed above, these clone tracking techniques have some

issues, and so it is not obvious that their findings still hold with more intelli-

gent ways to track clones. Therefore, this study revisits the common findings

on clone evolution with the enhanced CRD-based tracking. We select two

findings as our revisiting target, both of the two have great influences on the

research area of clones.

Answering Open Issues
This study analyzes clone genealogies detected with the enhanced technique

to answer the above questions. The experimental results offer answers to the

questions, and it also shows how important selecting clones to be managed

carefully is.

5.2 Research Questions

The study that this chapter presents has two objectives as follows.

• Revisiting common findings on characteristics of clones with a clone track-

ing technique that has a high change-tolerance.

• Revealing some open issues about lifetime and the number of modifications

of clones.

106

We investigate the following five research questions to achieve the above ob-

jectives.

RQ1: Does the finding ‘most of clones are short-lived’ hold as well as Kim et al.

reported in the literature [78]?

RQ2: Does the finding ‘there is a few clones that are modified multiple times’

hold as well as Göde and Koschke reported in the literature [35]?

RQ3: Are there many long-lived clones that are modified multiple times?

RQ4: Is there a positive correlation between the length of clones’ lifetime and the

number of modifications applied to them?

RQ5: Do clones tend to be modified more frequently in the former half of their

lifetimes than the latter one?

5.3 Detecing Clone Genealogies

This section describes definitions of code clone and clone genealogy in this

study at first. Explanations of some terms relating to clone genealogies and an

example of clone genealogies follow the definitions.

5.3.1 Detection of Code Clones

This study selects a block-based clone detector among a variety of clone detec-

tors for its clone detection. The reason of this is that this study needs high scalabil-

ity for its clone detection because it imposes its clone detectors on running every

revision of the target software systems. In addition to that, block-based clones are

compatible with our CRD-based clone tracking because CRDs are calculated on

blocks.

More concretely, this study uses the clone detection technique described in

section 4.2 in Chapter 4. This detector finds clones by comparing hash values

created from string representations of blocks after normalized.

5.3.2 Definition of Clone Genealogy

This subsection offers the definition of clone genealogy in this study. The

following explanations assume that every revision has a unique number (revision

number) for its identification. In addition, they also assume that the revision num-

bers of contiguous revisions are also contiguous.

At the beginning, we define clone sets in formal.

107

Definition 5.3.1 (Clone Set). Let Br be a set of blocks in revision r, and hash(b)
be the hash value of the given block b. If a set of blocks c satisfies both of the

following two forumlae (5.1) and (5.2), c is defined as a clone set.

∀bα, bβ ∈ c[hash(bα) = hash(bβ)] (5.1)

∀bα ∈ c, ∀bβ ∈ Br[(hash(bα) = hash(bβ)) → bβ ∈ c] (5.2)

The remainder of this section represents a set of all the clone sets in revision r
as Cr.

The next defines correspondence relationships of blocks and clone sets between

two contiguous revisions

Definition 5.3.2 (Correpondence Relationship of Blocks). Let br and br+1 be blocks

in revision r and revision r + 1, respectively. This study regards that br and br+1

are under a correspondence relationship of blocks if they are linked with the en-

hanced CRD-based clone tracking. The remainder of this section uses the symbol

↔ to represent the correspondence relationship of blocks. For instance, br ↔ br+1

means that br and br+1 are under a correspondence relationship of blocks.

Definition 5.3.3 (Correspondence Relationship of Clone Sets). Consider two clone

sets cr and cr+1, and assume that cr is in revision r and cr+1 is in revision r + 1.

This study regards that cr and cr+1 are under a correspondence relationship of

clone sets if the following formula (5.3) holds.

∃br ∈ cr, ∃br+1 ∈ cr+1[br ↔ br+1] (5.3)

The remainder of this section uses the symbol ⇔ to represent the correspon-

dence relationship of clone sets, as well as those of blocks.

Using these definitions, a clone genealogy is defined as follows.

Definition 5.3.4 (Clone Genealogy). Let CALL be a set consisting of all the clone

sets that are detected in the revisions under the target period. This study calls a

set of clone sets g as a clone genealogy if it satisfies both of the following two

formulae (5.4) and (5.5).

∀ci ∈ g, ∀cj ∈ CALL[(ci ⇔ cj) → (cj ∈ g)] (5.4)

∀ci ∈ g ∃cj ∈ g[ci ⇔ cj] (5.5)

108

5.3.3 Definitions of Terms Related to Clone Genealogy

Lifetime of Clone Genealogy

For each clone genealogy g, its start revision, end revision, and lifetime are

defined as follows. All the following definitions refer a set consisting of all the

target revisions as T .

Definition 5.3.5 (Start Revision). The revision first ∈ T is defined as the start

revision of g if it satisfies the following formula (5.6).

∃cfirst ∈ Cfirst [cfirst ∈ g] ∧ ∀l ∈ T [l < first → ∀cl ∈ Cl(cl /∈ g)] (5.6)

Definition 5.3.6 (End Revision). The revision last ∈ T is defined as the end revi-

sion of g if it satisfies the following formula (5.7).

∃clast ∈ Clast [clast ∈ g] ∧ ∀l ∈ T [last < l → ∀cl ∈ Cl(cl /∈ g)] (5.7)

Definition 5.3.7 (Lifetime). Let first and last be the start revision and the end

revision of the given clone genealogy g. Then, the lifetime of g refered as R is

defined in the following formula (5.8).

R = {r ∈ T |first ≤ r ≤ last} (5.8)

Modifications Applied on Clone Genealogy

This study defines modifications applied on a clone genealogy g as follows.

Definition 5.3.8 (Modifications). Let g be a clone genealogy, and r be a revision

that are included in the lifetime of g. This study says “g was modified at the

revision r” if at least one of the following two formulae (5.9) and (5.10) hold.

∃cr ∈ Cr[cr ∈ g ∧ ∃br ∈ cr, ∃br+1 ∈ Br+1

[br ↔ br+1 ∧ hash(br) �= hash(br+1)]] (5.9)

∃cr ∈ Cr[cr ∈ g ∧ ∃br ∈ cr, ∀br+1 ∈ Br+1[(br �↔ br+1)

∨ (br ↔ br+1 ∧ ∀cr+1 ∈ Cr+1[br+1 /∈ cr+1])]] (5.10)

109

The formula (5.9) refers the case that the hash value of a block in revision r
was changed bacause of modifications on the block. On the other hand, the formula

(5.10) refers another case of modifications that a block in revision r disappeared in

the next revision r + 1, or the block is no longer a member of any of clone sets in

the revision r + 1.

In addition, genealogies should disappear if they do not exist in the latest re-

vision of target revisions. In this case, it is natural to regard these genealogies as

modified in their end revisions and these modifications made the genealogies dis-

appear. In formal, let T be a set consisting of all the target revisions and lastg be

the end revision of a clone genealogy g, then g is regarded as modified in the revi-

sion lastg if the following formula (5.11) holds. The remainder of this chapter calls

modifications that satisfy the formula (5.11) “modification for disappearance”.

∃r ∈ T [lastg < r] (5.11)

Furthermore, the number of modifications applied to a clone genealogy g as

defined as follows.

Definition 5.3.9 (The Number of Modifications). This study regards the number of

revisions that the given clone genealogy g as the number of modifications applied

to the clone genealogy.

5.3.4 Example of Clone Genealogy

Figure 5.1 shows an example of clone genealogies. This example has a clone

genealogy consisting of six clone sets, A, B, C, D, E, and F.

In revision r, there exists a clone set A consisting of two blocks. The two

blocks included in clone set A were modified in revision r, which results changes

of hash values of the two blocks. Hence, this genealogy is regarded as modified in

revision r because of the formula (5.9).

Clone set B that exists in revision r + 1 recieved a new member in the next

revision r + 2. The genealogy, however, is not regarded as modified in revision

r + 1 because this study is not interested in addition of cloned blocks.

The genealogy was branched by the modification from revision r+2 to revision

r + 3. The formula (5.9) holds in the case that the genealogy was branched, hence

the genealogy is regarded as modified in revision r + 2.

Both of the two blocks of clone set D that exists in revision r+3 have no corre-

spondents in the next revision r+4. In other words, the two blocks disappeared by

modifications between revisions r+3 and r+4. Hence, the genealogy is regarded

as modified in revision r + 3 because of the formula (5.10) even though the other

clone set E was not modified between the two revisions.

110

10

10

20

30

40

20

30

40

40

40

30

40

40

50

50

50

50

40

r r+1 r+2 r+3 r+4

n A Block Whose
Hash Value is n A Clone Set A Modified Clone Set

Correspondence
Relationship of Blocks

Correspondence
Relationship of Clone Sets

A B C D

E F

Figure 5.1: An Example of Clone Genealogies

In summary, it is regarded that the clone genealogy was modified three times in

revisions r, r+2, and r+3. Note that there is no way to know the start revision and

the end revision of the genealogy only from this figure because revisions before r
and after r + 4 are omitted in the figure.

5.4 Experimental Setup

The experiment uses the enhanced CTEC to be able to detect clone genealogies.

The experimental targets are five open source software systems and CTEC itself.

Table 5.1 shows an overview of target software systems. Table 5.1(a) shows

directories of the experimental target. Note that we narrowed the target directo-

ries on almost all of the target systems to eliminate uninterested code duplications,

including test code or branches. Table 5.1(b) describes target revisions for every

experimental targets. Herein, the number of revisions (the right most column) con-

siders revisions that at least one source file in the target directories was modified.

Table 5.1(c) shows LOCs and the number of detected genealogies of each target

111

Table 5.1: Target Software Systems

(a) Target Directories

Name Target Directory

Ant /ant/core/trunk/src/main/

ArgoUML /trunk/src/

CTEC /

Carol /trunk/carol/src/

DNSJava /trunk/org/xbill/DNS/

JabRef /trunk/jabref/src/java/net/

(b) Target Revisions

Name
First Revision Latest Revision

of Revisions
(Date) (Date)

Ant
268,623 909,962

5,154
(2001/2/9) (2010/2/14)

ArgoUML
1 19,893

3,918
(1998/1/27) (2012/7/10)

CTEC
1 419

152
(2012/6/19) (2013/5/3)

Carol
9 1,335

250
(2002/8/6) (2007/10/22)

DNSJava
2 1,670

1,285
(1998/9/6) (2012/10/26)

JabRef
6 3,718

1,489
(2003/10/17) (2011/11/11)

(c) LOCs and Numbers of Genealogies

Name LOC (in the Latest Revision) # of Genealogies

Ant 211,958 668

ArgoUML 362,783 2,710

CTEC 22,872 63

Carol 17,251 233

DNSJava 22,512 386

JabRef 113,277 682

112

system.

Every of our experimental targets is written in Java, and managed with Subver-
sion. The reason why we chose these software systems as follows.

• Ant and ArgoUML have long histories of development, and they are widely

used.

• CTEC has been developed by our own hands, and so we can deeply analyze

it.

• Carol and DNSJava were used in the previous research conducted by Kim

et al. [78].

• JabRef was used in the previous research conducted by Göde and Koschke

[35].

5.5 Experimental Results

This section describes our experimental results for each of our research ques-

tions, and then offers the answers to them.

RQ1: Does the finding ‘most of clones are short-lived’ hold as well as Kim et al.
reported in the literature [78]?

Figures 5.2 and 5.3 show the length of lifetimes of clone genealogies in each

of the experimental targets. The x-axes of the graphs indicate the length of clone

genealogies, which are the numbers of revisions in Figure 5.2 and the numbers of

days in Figure 5.3, respectively. The y-axes indicate the cumulative frequencies

of clone genealogies in percentage whose lifetimes are less than the number of

revisions or days specified in the x-axes. For instance, we can see it from Figure

5.3 that approximately 40% of all the genealogies of Ant survived for less than 400

days.

All of the graphs have a common characteristic that they drastically grow in

the left of the graphs. This means that most of genealogies have short lifetimes.

This tendency is the most remarkable in DNSJava. That is, approximately 80% of

genealogies in DNSJava are alive in less than 100 revisions and 250 days, which

are less than 10% of its development period.

However, it is unclear from these graphs whether clone genealogies are short-

lived or not. This is because these graphs take genealogies that are alive in the

latest revisions of each software system into count. There is no way to know how

long clone genealogies will survive if they are alive in the latest revisions.

113

0
10
20
30
40
50
60
70
80
90

100

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00
22

50
25

00
27

50
30

00
32

50
35

00
37

50
40

00
42

50
45

00
47

50
50

00

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of alive revisions

(a) Ant

0
10
20
30
40
50
60
70
80
90

100

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)
of alive days

(b) ArgoUML

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of alive revisions

(c) CTEC

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of alive revisions

(d) Carol

0
10
20
30
40
50
60
70
80
90

100

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of alive revisions

(e) DNSJava

0
10
20
30
40
50
60
70
80
90

100

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of alive revisions

(f) JabRef

Figure 5.2: The Length of Lifetime (Revisions)

114

0
10
20
30
40
50
60
70
80
90

100
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of alive days

(a) Ant

0
10
20
30
40
50
60
70
80
90

100

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of alive days

(b) ArgoUML

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of alive days

(c) CTEC

0
10
20
30
40
50
60
70
80
90

100

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of alive days

(d) Carol

0
10
20
30
40
50
60
70
80
90

100

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00
22

50
25

00
27

50
30

00
32

50
35

00
37

50
40

00
42

50
45

00
47

50

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of alive days

(e) DNSJava

0
10
20
30
40
50
60
70
80
90

100

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of alive days

(f) JabRef

Figure 5.3: The Length of Lifetime (Days)

115

To investigate how long genealogies survived, this experiment uses some ad-

ditional terms, all of which are used in the research conducted by Kim et al. [78].

The followings are the definitions of the terms.

Definition 5.5.1 (Dead Genealogy). A genealogy g is regarded as a dead genealogy

if the end revision of g is not the latest revision of the software.

Definition 5.5.2 (k-volatile Genealogy). Let k indicate the number of revisions.

For given k, it is defined that a dead genealogy gdead is a k-volatile genealogy if

the following formula (5.12) holds for gdead .

0 ≤ |Rgdead | ≤ k (5.12)

,where Rgdead indicates the lifetime of gdead .

Definition 5.5.3 (CDF (k)). Let fdead (k) be the number of k-volatile genealogies.

CDF (k) is a cumulative distribution function of f(k), whose definition is given as

follows.

CDF (k) =

∑k
i=0 fdead (k)∑n
i=0 fdead (k)

(5.13)

, where n means the maximum value of k in the software.

Definition 5.5.4 (R(k)). Let f(k) be the number of all the genealogies whose

lifetimes are less than k revisions, and fdead (k) be the number of k-volatile ge-

nealogies. R(k) is defined by the following formula (5.14), which indicates the

ratio of k-volatile genealogies among all the genealogies in the system.

R(k) =

∑k
i=0 fdead (k)∑m

i=0 f(k)
(5.14)

, where m indicates the maximum value of the length of the lifetimes among

all the genealogies in the system.

The values of CDF (k) and R(k) tell us how many genealogies are short-lived.

We calculate these values with k is being changed and plot them as graphs.

Figure 5.4 shows the graphs for every of the target systems. For all the graphs,

the x-axes show the values of k, and the y-axes indicate the values of CDF (k)
and R(k) in percentage. The values of CDF (k) and R(k) are shown with differ-

ent types of lines, the solid ones show CDF (k) and the broken ones show R(k),
respectively.

As we can see from the graphs, all the solid lines drastically grow in the left

of the graphs, which means that most of dead genealogies are short-lived. The

116

0
10
20
30
40
50
60
70
80
90

100
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

44
00

46
00

48
00

%

k (# of alive revisions)

CDF(k) R(k)

(a) Ant

0
10
20
30
40
50
60
70
80
90

100

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

%

k (# of alive revisions)

CDF(k) R(k)

(b) ArgoUML

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

%

k (# of alive revisions)

CDF(k) R(k)

(c) CTEC

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

%

k (# of alive revisions)

CDF(k) R(k)

(d) Carol

0
10
20
30
40
50
60
70
80
90

100

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

%

of alive days

CDF(k) R(k)

(e) DNSJava

0
10
20
30
40
50
60
70
80
90

100

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

%

k (# of alive revisions)

CDF(k) R(k)

(f) JabRef

Figure 5.4: CDF(k) and R(k)

117

broken lines also drastically grow in the left side with an exception of CTEC.

ArgoUML and DNSJava have remarkable tendencies, which means that most of

genealogies in the two systems are short-lived. Compared to the two systems, the

degree of growth is not so high in the case of Carol even though it has a high

ratio of dead genealogies in the maximum value of k. However, approximately

70% of genealogies died within 125 revisions, which is the half of target revisions

of Carol. In the cases of Ant and JabRef, the maximum values of R(k) are not

high compared to ArgoUML, Carol, and DNSJava. This means that there exists a

number of genealogies that are alive in the latest revisions of the systems. However,

approximately 40% of genealogies in Ant and 50% in JabRef died within the half

of the target revisions. In summary, we can say that most of genealogies are short-

lived.

CTEC, however, has a different characteristic compared to the other five sys-

tems. That is, it has a low ratio of dead genealogies among all the genealogies.

This means that genealogies in CTEC is not short-lived. A possible reason for the

different characteristic of CTEC is that it has been developed by us, researchers of

code clones. This might result in the less amount of dead genealogies.

In summary of our experimental results for RQ1, it is revealed that most of

clone genealogies have short lifetimes and are short-lived. This finding supports the

findings reported by Kim et al. in the literature [78]. Therefore, our experimental

results give Yes as the answer to RQ1.

RQ2: Does the finding ‘there is a few clones that are modified multiple times’ hold
as well as Göde and Koschke reported in the literature [35]?

Figure 5.5 shows the number of modifications on clone genealogies in each

target system. The x-axes indicate the number of modifications, and “5 -” indicates

that the number of modifications are greater than or equal to five. The gray bars

indicate the number of genealogies that is modified the times specified in the x-

axes, and the values are shown in the y-axes in the left. The lines show cumulative

frequencies with the y-axes in the right.

For all the experimental targets, over 70% of genealogies are modified at most

once. This is the most remarkable in the case of CTEC, over 90% of whose ge-

nealogies are modified at most once. In addition, “0” shows the highest value in

the case of CTEC, whereas “1” shows the highest values in the case of the other

five systems.

In summary, these graphs tell us that most of genealogies are never modified

or modified only once in their lifetimes. In other words, our experimental results

support the finding reported by Göde and Koschke in the literature [35]. Therefore,

we can answer Yes for RQ2.

118

0

20

40

60

80

100

0
50

100
150
200
250
300
350
400

0 1 2 3 4 5 -

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of

 g
en

ea
lo

gi
es

of modifications

(a) Ant

0

20

40

60

80

100

0

500

1000

1500

2000

0 1 2 3 4 5 -

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of

 g
en

ea
lo

gi
es

of modifications

(b) ArgoUML

0

20

40

60

80

100

0

10

20

30

40

50

60

0 1 2 3 4 5 -

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of

 g
en

ea
lo

gi
es

of modifications

(c) CTEC

0

20

40

60

80

100

0
20
40
60
80

100
120
140
160

0 1 2 3 4 5 -

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of

 g
en

ea
lo

gi
es

of modifications

(d) Carol

0

20

40

60

80

100

0

50

100

150

200

250

0 1 2 3 4 5 -

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of

 g
en

ea
lo

gi
es

of modifications

(e) DNSJava

0

20

40

60

80

100

0
50

100
150
200
250
300
350
400

0 1 2 3 4 5 -

cu
m

ul
at

iv
e

fr
eq

ue
nc

y
(%

)

of

 g
en

ea
lo

gi
es

of modifications

(f) JabRef

Figure 5.5: The Number of Modifications

RQ3: Are there many long-lived clones that are modified multiple times?

To answer RQ3, we investigate how many genealogies are long-lived and mod-

ified multiple times. Herein, a genealogy is regarded as “long-lived” if it survive

more than the half of target revisions of the software system. This criterion was

also used in the research conducted by Kim et al. [78].

Table 5.2 shows the numbers and ratios of long-lived genealogies which are

modified multiple times. The ratio of Carol is the highest among all the experi-

mental targets, and Ant also has a high ratio compared to other four systems. In

other words, Carol and Ant have more genealogies that developers or maintainers

119

should look out for than other systems.

In total, the ratio of genealogies that are long-lived and modified multiple times

is approximately 3.0% among all the genealogies detected from the six software

systems. Hence, the answer to RQ3 is No.

RQ4: Is there a positive correlation between the length of clones’ lifetime and the
number of modifications applied on them?

Figure 5.6 shows the numbers of modifications on each of clone genealogies.

The x-axes indicate genealogies in the descending order of the length of their life-

times, and the y-axes show the numbers of modifications. Each bar means the

number of modifications on each genealogy. Note that the red and black bars indi-

cate modifications for disappearance and the other modifications respectively, with

the red bars putted on the black bars.

These graphs show that there exists a number of modifications for disappear-

ance, but they do not show any obvious correlations between the length of clones’

life time and the number of modifications. We calculated, therefore, Spearman’s

rank correlation coefficients to statistically judge whether there is any correlations

or not.

Table 5.3 shows Spearman’s rank correlation coefficients for all the experi-

mental targets. For Ant, CTEC, and DNSJava, there exists no correlations be-

tween the length of clones’ lifetimes and the number of modifications. On the other

hand, there are correlations between them for the other three systems, ArgoUML,

JabRef, and Carol. The correlations are positive in the case of Carol, and negative

in the cases of ArgoUML and JabRef. Therefore, we cannot say that there exists

positive or negative correlations between the length of clones’ lifetimes and the

number of modifications because there is no common tendencies of correlations.

In addition, the ρ values are not so high in all the experimental targets.

Table 5.2: Long-Lived Genealogies which are Modified Multiple Times

Software # of genealogies ratio among all the genealogies

Ant 42 6.29%

ArgoUML 49 1.81%

CTEC 2 3.17%

Carol 29 12.45%

DNSJava 4 1.04%

JabRef 21 2.08%

Total 147 3.10%

120

0
1
2
3
4
5
6
7

0 50 100 150 200 250 300 350 400 450 500 550 600 650

of

 m
od

ifi
ca

tio
ns

genealogies
(in the descending order of # of alive revisions)

other modifications modifications for disappearance

(a) Ant

0

2

4

6

8

10

0 250 500 750 1000125015001750200022502500

of

 m
od

ifi
ca

tio
ns

genealogies
(in the descending order of # of alive revisions)

other modifications modifications for disappearance

(b) ArgoUML

0
1
2
3
4
5
6
7

0 5 10 15 20 25 30 35 40 45 50 55 60

of

 m
od

ifi
ca

tio
ns

genealogies
(in the descending order of # of alive revisions)

other modifications modifications for disappearance

(c) CTEC

0
1
2
3
4
5
6
7

0 20 40 60 80 100 120 140 160 180 200 220

of
 m

od
ifi

ca
tio

ns
genealogies

(in the descending order of # of alive revisions)

other modifications modifications for disappearance

(d) Carol

0
2
4
6
8

10
12
14

0 50 100 150 200 250 300 350

of

 m
od

ifi
ca

tio
ns

genealogies
(in the descending order of # of alive revisions)

other modifications modifications for disappearance

(e) DNSJava

0

5

10

15

20

0 50 100 150 200 250 300 350 400 450 500 550 600 650

of

 m
od

ifi
ca

tio
ns

genealogies
(in the descending order of # of alive revisions)

other modifications modifications for disappearance

(f) JabRef

Figure 5.6: Modifications on Each Genealogy

These findings indicate that there is no obvious correlations between the length

of clones’ lifetimes and the number of modifications applied on them. Hence, the

answer to RQ4 is No.

121

RQ5: Do clones tend to be modified more frequently in the former half of their
lifetimes than the latter one?

Figure 5.7 shows the timing when each of clone genealogies was modified.

The x-axes list clone genealogies in the descending order of the length of their

lifetimes. The y-axes indicate normalized lifetime of each genealogy, with every

lifetime of genealogies normalized from 0 to 100. Each dot means a modification

that was applied at the timing specified with the y-axes. If a modifications was

applied shortly after the modified clone genealogy was born, a dot will be plotted

near 0 of y-axes. Note that these graphs do not consider any of modifications

for disappearance because they are interested only in modifications applied during

lifetimes of clones.

We cannot find any obvious tendencies of timings when clone genealogies were

modified. That is, clone genealogies tend to be evenly modified among their life-

times.

To reveal characteristics of timigs of modifications on clone genealogies, we

calculated the number of modifications for every of quartered periods of lifetimes.

Table 5.4 summarizes the results. As shown in the table, the first periods of all

Table 5.3: Spearman’s Rank Correlation Coefficients

Software ρ p-value

Ant -0.03350 0.3873

ArgoUML -0.4529 under 2.2e−16

CTEC -0.03290 0.798

Carol 0.3292 2.724e−7

DNSJava 0.06206 0.2238

JabRef -0.1901 5.694e−07

Table 5.4: Timing of Modifications on Quartered Periods

Software
1st period 2nd period 3rd period 4th period

Total
0 - 25 25 - 50 50 - 75 75 - 100

Ant 65 37 41 39 182

ArgoUML 152 279 138 115 684

CTEC 8 3 5 1 17

Carol 49 23 28 21 121

DNSJava 124 50 92 21 287

JabRef 67 40 38 35 180

Total 465 432 342 232 1471

122

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600

no
rm

al
ize

d
lif

et
im

e

genealogies
(in descending order of # of alive revisions)

(a) Ant

0
10
20
30
40
50
60
70
80
90

100

0 500 1000 1500 2000 2500

no
rm

al
ize

d
lif

et
im

e

genealogies
(in descending order of # of alive revisions)

(b) ArgoUML

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60

no
rm

al
ize

d
lif

et
im

e

genealogies
(in descending order of # of alive revisions)

(c) CTEC

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200
no

rm
al

ize
d

lif
et

im
e

genealogies
(in descending order of # of alive revisions)

(d) Carol

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300

no
rm

al
ize

d
lif

et
im

e

genealogies (in descending order of # of alive
revisions)

(e) DNSJava

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600

no
rm

al
ize

d
lif

et
im

e

genealogies
(in the descending order of # of alive revisions)

(f) JabRef

Figure 5.7: Timing of Modifications on Individual Clone Genealogies

the software systems except for ArgoUML have the highest numbers of modifica-

tions, and the second period of ArgoUML has the highest value. From the table,

modifications seem to tend to be applied in the earlier periods of lifetimes of clone

genealogies.

We further performed a statistical testing, which is the chi-square (χ2) test, to

reveal whether these tendencies have statistical meanings or not. Table 5.5 shows

the results of chi-square tests. As the table shows, there exists a strong significant

difference between the numbers of modifications on the former and latter halves

123

…
9: public class FinallyBlockInfo extends BlockInfo {

…
15: public FinallyBlockInfo(String core, List<String> types) {
16: super(BlockType.FINALLY, core);
17: this.types = new LinkedList<String>();
18: this.types.addAll(types);
19: StringBuilder builder = new StringBuilder();
20: for (String type : types) {
21: builder.append(type + “ “);
22: }
23: this.concatenatedTypes = builder.toString();
24: this.crdElement = new BlockCRD(bType);
25: }

…
40: }

public FinallyBlockInfo(String core, List<String> types) {
 super(BlockType.FINALLY, core);
 this.types = new LinkedList<String>();
 this.types.addAll(types);
 StringBuilder builder = new StringBuilder();
 for (String type : types) {
 builder.append(type + “ “);
 }
 this.concatenatedTypes = builder.toString();
 this.crdElement = new BlockCRD(bType);
}

Figure 5.8: An Instance of Long-Lived and Frequently Modified Clones

in the case of ArgoUML, and there exists a weak one in DNSJava. For the other

systems, there are no significant differences between them. The numbers of mod-

ifications on the former half, however, are greater than those on the latter half for

all the six experimental targets. A possible reason why there are no significant dif-

ferences in four systems is that the numbers of modifications on the four systems

are less than those of ArgoUML and DNSJava. Therefore, it has a high possibility

that the differences between the numbers of modifications on the former half and

the latter half will become larger if the four systems further evolve.

Hence, it can be said that these experimental results answer Yes for RQ5.

Table 5.5: The Results of Chi-Square Test

Software The Former Half The Latter Half χ2 p-value

Ant 102 80 1.1029 0.2963

ArgoUML 431 253 23.0332 1.592e−6

CTEC 11 6 0.2706 0.603

Carol 72 49 1.8389 0.1751

DNSJava 174 113 6.1337 0.01326

JabRef 107 73 2.87 0.09024

124

5.6 Discussion

5.6.1 Long-Lived and Frequently Modified Code Clones

In this experiment, we stood a basis that we need to pay attention on code

clones that are long-lived and modified multiple times. The experimental results

revealed that approximately 3% of clones were instances of such negative clones.

Figure 5.8 shows an instance of such clones. This instance was found in Clone-
Tracker. It was introduced into the software in the third revision, and it is still alive

in the latest revision. This clone was modified six times in revisions, 17, 19, 24,

121, 234, 244, respectively. Although this clone has been completely consistent

across its lifetime, such a long-lived and frequently modified clone has a high risk

to suffer inconsistencies of modifications. Dealing with such a code clone in the

earlier stage of its lifetime should be effective to prevent such unintended inconsis-

tencies.

5.6.2 Threats to Validity

Target Software Systems

This study analyzed only software systems written in Java, and so more inves-

tigations are necessary to genelarize our findings on software systms written in any

other programming languages. In addition, none of the exprimental targets of this

study is industrial software system. Therefore, it is possible to gain another finding

if further analysis is performed on industrial software systems.

Detection of Code Clones

Clone detection in this study is a block-based detection. Such a fast detection

of code clones is necessary for this study because it need to run a clone detector

for all the target revisions, which is quite time-consuming. Therefore, further in-

vestigations with other clone detectors may report other different results because

different clone detectors should find different clones in the same source code. In

addition, the clone detection used in this study normalizes source code, including

replacing sub blocks with special strings. Hence, changing the way of normaliza-

tion will result another experimental findings.

Clone Tracking

This study used a new technique described in Chapter 4 to track clones across

version histories. It has a high accuracy for the traditional clone tracking based on

125

CRD, but it is possible some linkes of clones were missed even with the enhance-

ment technique. If a more intelligent technique is available, a further investigation

with such a technique will offer different experimental results.

5.7 Summary

This chapter presented an empirical study on clone genealogies. This study

used a clone tracking technique desribed in the previous chapter to detect clone

genealogies. The purposes of this study are twohold. One is to revisit common

findings on clone evolution with a new clone tracking technique having a high

change-tolerance, and the other one is to answer some open questions that previous

research did not reveal.

The experimenal results supported two major common findings on clone evo-

lution. That is, they revealed that most of clones have short lifetimes, and most

of clones are modified at most once through their lifetimes. Furthermore, the re-

sults revealed the following findings on clone evolution, all of which have not been

addressed yet.

• Approximately 3% of all the code clones survived over the halves of experi-

mental periods and were modified two or more times.

• There is no correlation between the length of lifetimes and the number of

modificaions of clone genealogies.

• Clones tend to be modified more frequently in the former halves of their

lifetimes than in the latter halves of them.

In summary, these findings indicate that managing all the clones equally is not a

suitable way to cope with code clones. This is because approximately 97% of code

clones did not require much attention of developers or maintainers because they

disappeared in a short time period or they were not frequently modified. Hence, it is

necessary to carefully select code clones that you pay any attention for achieving an

effective code clone management. In addition, one of our findings, clones tend to
be modified more frequently in the former halves of their lifetimes than in the latter
halves of them, indicates that it should be effective to start dealing with harmful

code clones as soon as possible. However, we cannot say that it is not a good way

to pay attentions on clones that have survived a certain period. The reason of this

is that clones were also modified in the latter halves of their lifetime even though

the number of modifications on the period will be less than the former ones.

126

Chapter 6

Clone Removal with Form
Template Method Refactoring

6.1 Background

One of the ways to prevent the influence of harmful code clones is removing

them by refactorings. Refactorings can improve software maintainability without

changing external behaviors of software. However, a fully manual refactoring is a

difficult task for software maintainers. That is, it is quite difficult for maintainers to

apply refactorings manually without introducing any human errors [118]. In other

words, fully manual refactorings have high risks to introduce new bugs. Apply-

ing manual refactorings is not only complicated but also costly. This is because

maintainers need to detect where they should refactor, consider how the candidates

are refactored, and confirm that the refactorings do not change the behavior of the

target software. Because of these factors, it is almost necessary to support main-

tainers with tools or techniques for applying refactorings. Tool supports enable

maintainers to apply refactorings easily and safely. These needs encourage many

researchers in recent years and they produce many tools and techniques [111].

It is quite natural that refactorings requiring complex procedures are more risky

and more costly than ones requiring simple procedures. This implies that the for-

mer requires more supports than the latter. From the point of clone removal, clones

having some gaps require more complex procedures to be removed than exact

clones. Therefore, for the purpose of effective clone management, tool supports

are required to remove clones having gaps. The majority of clone removal tech-

niques, however, cannot handle gaps included in clones because they are based on

“Extract Method” or “Pull-Up Method”.

Using “Form Template Method” can overcome this issue. Form Template

127

Method refactorings pull the common statements between similar methods into a

common base class, and leave gaps between target methods in the original classes.

Form Template Method is a hybrid of Extract Method and Pull-Up Method.

This implies that Form Template Method requires much effort and attention than

Extract Method and Pull-Up Method.

Some researchers have proposed techniques to support refactorings with Form
Template Method [55,66,107]. However, these techniques cannot support remov-

ing code clones if they include the following differences even if these differences

have no impacts on the behavior of the program:

• Different order of code fragments and

• Different implementation styles (such as for- and while- loops).

Moreover, the existing techniques can handle only pairs of methods though

Form Template Method refactoring can be applied to groups consisting of three

or more similar methods.

This study proposes a new technique to support applying Form Template
Method with program dependence graphs, which allows us to resolve the first

issue. We also extend the proposed method to be able to handle groups of three or

more similar methods.

6.2 Motivation

6.2.1 Issues of Previous Studies

As described in Chapter 2, there are some studies to support Form Template
Method refactoring application. However, they still have some issues as follows.

• They cannot handle trivial differences that have no impact on the behavior

of programs.

• They cannot handle groups of three or more similar methods in spite of that

Form Template Method itself can be applied to them.

The following subsections describe these issues in detail.

Issue of Trivial Differences

In previous studies, all the differences between target methods are regarded

as unique processing even if some of them do not affect the meaning of program.

The following situations may be instances of the differences that do not affect the

behavior of program.

128

• The order of code statements is different in target methods. However, the

behavior of the program is preserved even if they are reordered.

• Iterations are implemented with for statements in a method of target meth-

ods, meanwhile they are implemented with while statements in another method

of target methods. However, the semantics of the iterations are exactly the

same.

Figure 6.1 shows an example of our motivating example for this issue. In this

example, there is a difference of the order of code statements, and there is also a

difference of the implementation style of loop statements. However, these differ-

ences do not influence the meaning of the program. The only meaningful difference

of these two methods is the ways of calculations of variable points. Nevertheless

the methods described in previous studies regard these trivial differences as gaps

between the two methods. Therefore, they can suggest only four lines as duplicate

statements in the two methods (shown in Figure 6.1(a)). This study aims to im-

prove this issue by using PDGs, and it will suggest 11 lines except the calculations

of variable points as duplicate statements (shown in Figure 6.1(b)).

Issue of Groups of Three or More Methods

Form Template Method can be applied to a group of three or more similar

methods. Nevertheless, the previous methods can handle only a pair of similar

methods. Supporting Form Template Method application on only a pair of similar

methods is not sufficient for clone removal. This is because code clones should

remain after a refactoring with Form Template Method on a pair of methods if

there are three or more similar methods.

In the example shown in Figure 6.2, there are four similar methods in four

different classes, and these four classes have the same base class. If we apply

Form Template Method refactoring on the pair of method() in ClassA and

method() in ClassB, we get source code shown in Figure 6.2(b). As the figure

shows, there are still code clones between method() in ClassC and method()
in ClassD because we did not modify these two methods. Also, there are code

clones between the template method and method() in ClassC and ClassD.

Moreover, it is difficult to remove code clones from the source code of Figure

6.2(b) with Form Template Method refactoring. That is because a conflict of two

template methods should occur if we apply Form Template Method on a pair

of method() in ClassC and method() in ClassD. However, we can apply

Form Template Method on all the four similar methods at a time. If we do so, we

get the source code shown in Figure 6.2(c). As the figure shows, code clones are

completely removed by the refactoring.

129

Duplicated
Statements

public int calc() {
int result = 0;

int dc = getDC(getRegion());
result += dc;

int sum = 0;
int points = 0;
for (int i = 0; i < getList().size(); i++) {

Item item = getList().get(i);
sum += item.getPrice();
points++;

}
result += sum * TAX_RATE;
addPoints(points);

return result;
}

public int calc() {
int result = 0;
int s = 0;
int points = 0;

int i = 0;
while (i < getList().size()) {

Item item = getList().get(i);
s += item.getPrice();
points += item.getPoints();
i++;

}
addPoints(points);
int dc = getDC(getRegion());
result += dc;
result += s * TAX_RATE;

return result;
}

gaps

(a) The Method Proposed by Juillerat et al. [66]

Duplicated
Statements

public int calc() {
int result = 0;

int dc = getDC(getRegion());
result += dc;

int sum = 0;
int points = 0;
for (int i = 0; i < getList().size(); i++) {

Item item = getList().get(i);
sum += item.getPrice();
points++;

}
result += sum * TAX_RATE;
addPoints(points);

return result;
}

public int calc() {
int result = 0;
int s = 0;
int points = 0;

int i = 0;
while (i < getList().size()) {

Item item = getList().get(i);
s += item.getPrice();
points += item.getPoints();
i++;

}
addPoints(points);
int dc = getDC(getRegion());
result += dc;
result += s * TAX_RATE;

return result;
}

gaps

(b) The Proposed Method

Figure 6.1: Motivating Example 1

130

method2()method()
ClassA

method()
ClassB

method()
ClassC

method()
ClassD

SuperClass

Code Clones

(a) before refactoring

method2()newMethod()
ClassA

newMethod()
ClassB

method()
ClassC

method()
ClassD

SuperClass
method()

Code Clones

(b) after refactoring on two methods

method2()newMethod()
ClassA

newMethod()
ClassB

newMethod()
ClassC

newMethod()
ClassD

SuperClass
method()

(c) after refactoring on all the four methods

Figure 6.2: Motivating Example 2

131

Moreover, some researchers reported that the quality of software systems after

some refactorings is affected by the order of the refactorings [94, 165]. In the

case that refactorings on only a pair of methods are supported, the number of the

candidates (pairs of methods) of Form Template Method refactorings is equal to

the number of 2-combinations from a set of all the target methods. It is too difficult

to detect the most appropriate order of refactorings from such a huge number of

candidates. In the example of Figure 6.2, there are six pairs of methods that can be

refactored with Form Template Method. However, it is difficult to decide which

pair is most suitable to be refactored.

For these reasons, it is necessary to handle three or more methods at a time for

effective clone removal with Form Template Method refactoring pattern. In this

study, therefore, we propose a refactoring support technique on pairs of methods

to be able to handle groups of three or more methods.

6.2.2 Objective of This Study

This study proposes a new refactoring support technique with Form Template
Method refactoring pattern. We aim to resolve the first issue of previous studies

(described in Section 6.2.1), and we aim to resolve the second issue described in

Section 6.2.1 by expanding the proposed method on pairs of methods to be able to

handle groups of three or more methods.

Moreover, we aim to assist users in detecting refactoring candidates with Form
Template Method. Users need to specify a refactoring candidate (which means

a pair of methods) for using the previous techniques for Form Template Method
application assistance. The approach of previous studies is useful for actual mod-

ifications in source code associated with refactoring activities. However, it is not

possible to reduce effort required for identifying opportunities on which users want

to apply Form Template Method refactorings in this approach. Because software

systems become larger and more complex, it is difficult to comprehend structures

of software systems appropriately. Hence, it is difficult to identify suitable clone

removal candidates. This is the reason why we aim to support the detection of

refactoring candidates.

To reduce efforts for identifying refactoring candidates, the proposed method

detects refactoring candidates automatically, and suggests all the candidates to its

users. Consequently, the proposed method can suggest refactoring candidates of

which users are not aware. In addition, the proposed method also suggests common

processing and unique processing in each of refactoring candidate to reduce efforts

required for modifying source code to apply Form Template Method refactoring

pattern.

Note that the proposed method aims to suggest candidates that can be refac-

132

tored, not should be refactored. The reason is that there is not strict and generic

standard to judge whether code clones should be removed. Also, there does not ex-

ist a strict and generic standard to judge whether Form Template Method should

be used to remove code clones. Accordingly, the proposed method leaves such de-

cisions to its users whether they need to apply refactorings on each candidate that

the proposed method suggests.

6.3 Outline of the Proposed Method

6.3.1 Inputs and Outputs

The proposed method takes source code of target software systems as its input.

Then, the proposed method detects all the candidates of Form Template Method
refactoring, and it suggests them to users. For each of the refactoring candidates,

the proposed method suggests program statements that can be merged into the base

class as the common processes, and program statements that should be remained in

each derived class as the unique processes. Additionally, for the unique processes,

the proposed method suggests the following information.

• Sets of program statements that should be extracted as a single method.

• Relationships of new methods created by extracting the unique processes

between the derived classes. This relationship means that the new methods

under this relationship can be extracted as methods whose signatures are the

same to each other.

Figure 6.3 shows the output information of the proposed method. In this ex-

ample, there are two similar methods named validate, and the owner classes

of these two methods have the same base class. The proposed method detects the

common and unique processes between these methods. Herein, the hatched pro-

gram statements are the common processes that should be merged into the base

class. Program statements that are not included in the common processes are re-

garded as the unique processes in each derived classes. For the unique processes,

the proposed method detects sets of program statements that can be extracted as a

single method. In this case, we get three sets of program statements (labeled with

‘A’, ‘B’ and ‘C’ in the figure). The proposed method also detects relationships

of new methods created by extracting the unique processes. In this example, the

proposed method detects a relationship between ’A’ and ‘B’, which means that the

new methods created by extracting ‘A’ and ‘B’ should have the same signature to

each other. Here, there is no correspondence of ‘C’. In this case, we have to write

an empty method that has the same signature of the method created from ‘C’ in the

owner class of the left method.

133

Common
Processes

Unique
Processes

Code fragments
surrounded

by a rectangle are
to be extracted

as a single method

A B

C

To be extracted as same
signature methods

public void validate() {

verifySettings();

dieOnCircularReference();

String errmsg = getError();
if (errmsg != null) {

throw new BuildException(errmsg);
}

Enumeration e = selectorElements();
while (e.hasMoreElements()) {

Object o = e.nextElement();
((BaseSelector) o).validate();

}
}

public void validate() {

if (isReference()) {
getCheckedRef().validate();

}

dieOnCircularReference();

Enumeration e = selectorElements();
while (e.hasMoreElements()) {

Object o = e.nextElement();
((BaseSelector) o).validate();

}
}

Figure 6.3: The Output of the Proposed Method

6.3.2 Specialization of PDGs

Definition of Traditional PDG

As metioned in 2.4.5, a PDG (Program Dependence Graph) is a directed graph

that represents dependencies between the elements of the program [31, 153]. A

node in a PDG indicates an element of a program (such as a statement and a con-

ditional predicate), and an edge in a PDG indicates a dependence between two

elements. PDG is created based on flows of data and controls. Therefore, we get

the same PDGs from two programs if their flows of data and controls are same,

though the programming styles are not equal.

There are the following two types of dependencies in PDG.

Data Dependence: There is a data dependence from element s to element t, if a

value is assigned to variable x in s, and t references x without changing the

value of x.

Control Dependence: There is a control dependence from element s to element

t, if s is a conditional predicate and it directly determines whether t is exe-

cuted or not.

Figure 6.4 shows an example of PDG. In this example, there are three data

dependencies from the 2nd, 3rd, and 5th lines to the 4th line because variables y and

z are referenced in the 4th line. On the other hand, there is a control dependence

from the 4th line to the 5th line because the conditional predicate in the 4th line

directly controls the execution of the 5th line. In addition, there is a node labeled

134

<1>

Data Dependence Edge

Control Dependence Edge

method
enter

<4>

1: x = 0;
2: y = 0;
3: z = MAX;
4: while (y < z) {
5: y = x + 1;
6: }
7: println(y);

<3> <2>

<5> <7>

Figure 6.4: An Example of PDG

with “method enter” that means the enter node of the method. In general, PDG

contains a method enter node, and there are control dependencies from the enter

node to all nodes that are directly contained by the method. Note that we regard a

node n as being directly contained by the method if s has no control dependencies

from any other nodes in the PDG.

Specialization

PDGs used in this study is specialized for code clones detection and refac-

toring. The major differences of a traditional PDG and a specialized PDG are as

follows:

• having execute dependences and

• tracing state changes of objects.

Execute Dependence

PDGs used in this study have an additional dependence called “execute depen-

dence”. The definition of execute dependence is as follows.

Execute Dependence: There is an execute dependence from element s to element

t, if t can be executed in the next that s is executed.

Figure 6.5 shows an example of PDG with execute dependence edges. We can

detect more code clones with PDGs having execute dependence than with tradi-

tional PDGs. This is because the range of program slicing is expanded by intro-

ducing this dependence.

135

<1>

Data Dependence Edge

Control Dependence Edge

method
enter

<4>

1: x = 0;
2: y = 0;
3: z = MAX;
4: while (y < z) {
5: y = x + 1;
6: }
7: println(y);

<3> <2>

<5> <7>

Execute Dependence Edge

Figure 6.5: An Example of PDG with Execute Dependence Edges

Tracing State Changes of Objects

In this study, we create data dependence edges with considering state changes

of objects caused by method calls. Concretely, we regard that there is a data de-

pendence from a method call statement s to other statement t, if the state of any

objects is changed in s and t references the objects without redefining them.

Figure 6.6 compares a traditional PDG and a specialized PDG created from

the same source code. This figure omits control and execute dependences and the

method enter node. In this example, the state of an object builder is changed in

the 2nd, 3rd, and 4th lines by calling a method append. In the traditional PDG,

all the elements that reference builder have data dependences from the 1st line.

This is because the object builder does not re-defined or re-assigned until the

end of the method. However, the specialized PDG used in this study considers state

changes of objects. Therefore, we get the PDG shown in Figure 6.6(c) from the

source code.

Note that it is regarded that states of objects are changed by a method call if

the values of any fields in the objects are changed by the method [146].

6.3.3 Processing Flow

The processing of the proposed method can be separated into one for method-

pairs and one for method-groups. The processing for method-groups is imple-

mented as an extended version of method-pairs one.

The processing flow of the proposed method on pairs of methods is shown

below.

136

1: StringBuilder builder = new StringBuilder();
2: builder.append(“A”);
3: builder.append(“B”);
4: builder.append(“C”);
5: return builder.toString();

(a) Source Code

1

2
3

4
5

(b) Traditional

1

2

3

4

5

(c) Specialized

Figure 6.6: Data Dependence Considering State Changes of Objects

STEP-P1: Analyze target source code, and create PDGs.

STEP-P2: Detect code clones with PDGs.

STEP-P3: Identify pairs of methods on which Form Template Method can be

applied.

STEP-P4: Detect common processes and unique processes for each of method

pairs.

STEP-P5: Detect sets of statements included in unique processes that should be

extracted as a single method.

STEP-P6: Detect pairwise relationships between new methods created by ex-

tracting unique processes.

STEP-P7: Show all the analysis results.

137

A

B C D

E F

e1 e2
e3

e4
e5 e6

e7

e8

Figure 6.7: A Directed Graph

The processing for method-groups uses the results of the method-pairs version.

Therefore, processing steps from STEP-S1 to STEP-S6 are exactly identical to the

processing steps from STEP-P1 to STEP-P6. The processing flow of the proposed

method on method groups after STEP-S6 is shown below.

STEP-S7: Detect groups of methods on which Form Template Method can be

applied with the information about pairs of methods.

STEP-S8: Detect common processes and unique processes for each of method

groups.

STEP-S9: Detect relationships between new methods created by extracting unique

processes.

STEP-S10: Show all the analysis results.

We describe each step in detail in Sections 6.4 and 6.5.

6.3.4 Definitions

Here, we describe definitions of terms referenced in the following explanations.

A Directed Graph

A directed graph G is represented as G = (f, V,E), where, V is a set of

nodes, E is a set of edges, and f is a map from edges to ordered pairs of nodes

(f : E → V × V). The remainder of this chapter writes the set of nodes in G as

VG, the set of edges in G as EG, and the map between edges and ordered pairs of

nodes in G as fG, respectively.

138

Figure 6.7 shows an example of directed graphs. Given that the graph of the

figure is G, VG, EG, and fG become as follows.

VG = {A,B,C,D,E, F}
EG = {e1, e2, e3, e4, e5, e6, e7, e8}
fG(e1) = (A,B), fG(e2) = (A,C), fG(e3) = (A,D), fG(e4) = (B,E)

fG(e5) = (E,C), fG(e6) = (C,F), fG(e7) = (F,D), fG(e8) = (E,F)

We define a tail of an edge e ∈ EG as tail(e) and a head of e as head(e). The

definitions are as follows.

Definition 6.3.1 (tail(e), head(e)). We define tail(e) as the first element of fG(e),
and head(e) as the last element of fG(e). In other words, tail(e) := u and

head(e) := v, where fG(e) = (u, v).

For example, for an edge e1 in the graph of Figure 6.7, tail(e1) = A and

head(e1) = B.

In the next, we define sets of edges BackwardEdges(v) and ForwardEdges(v)
for v ∈ VG. BackwardEdges(v) is a set of edges whose head is v (defined in the

formula (6.1)), and ForwardEdges(v) is a set of edges whose tail is v (defined in

the formula(6.2)).

Definition 6.3.2 (BackwardEdges(v), ForwardEdges(v)).

BackwardEdges(v) := {e ∈ EG | head(e) = v} (6.1)

ForwardEdges(v) := {e ∈ EG | tail(e) = v} (6.2)

For a node C in the graph of Figure 6.7, BackwardEdges(C) and ForwardEdges(C)
become as follows.

BackwardEdges(C) = {e2, e5}
ForwardEdges(C) = {e6}

PDG

A PDG is one of the directed graphs. Given a PDG G = (f, V,E), a node

of G corresponds to an element of programs, and an edge of G corresponds to a

dependence between two elements. In this study, an element of programs indicates

a statement of programs. Note that we build a PDG in each of methods, therefore

every method has a corresponding PDG.

139

A

B C D

E F

e1 e2
e3

e4
e5 e6

e7

e8
Data Dependence Control Dependence

x

y
y

x

z

x

Figure 6.8: A PDG

As described above, there are three types of dependencies in PDGs used in this

sutdy.

Definition 6.3.3 (Dependencies in PDG). This study represents data dependen-

cies as data, control dependencies as control, and execute dependencies as ex-
ecute, respectively. It uses a term type to represent a map from edges to the

types of dependences that the edges represent (type : E → EdgeType), where

EdgeType = {data, control , execute}. In addition, a data dependence edge has

the information about the variable that the edge represents. We define var(ed) as

the represented variable by a data dependence edge ed.

In the PDG of Figure 6.8, type and var become as follows.

type(e1) = data, type(e2) = data, type(e3) = data, type(e4) = data,

type(e5) = control , type(e6) = control , type(e7) = data, type(e8) = data,

var(e1) = x, var(e2) = x, var(e3) = x,

var(e4) = y, var(e7) = z, var(e8) = y

Clone Pairs

In the proposed method, code clones are detected with PDGs. PDG-based

clone detectors regard isomorphic subgraphs of PDGs as code clones. Here, we

define ClonePairs(G1, G2) as a set of isomorphic subgraphs between PDGs G1

and G2.

140

A

B C

D

E

F G

I

J

H

1

2 3

4

5

6 7

8
9

10G1 G2

Cloned Node

Non-Cloned Node

G’1 G’2

G’’1 G’’2

Figure 6.9: ClonePairs(G1, G2)

Definition 6.3.4 (ClonePairs(G1, G2) and a clone pair). ClonePairs(G1, G2) is

defined in the formula (6.3), and we call every element of ClonePairs(G1, G2) a

clone pair.

ClonePairs(G1, G2) := {(G′
1, G

′
2) | G′

1 ⊂ G1 ∧G′
2 ⊂ G2 ∧G′

1
∼= G′

2} (6.3)

where, G1 and G2 are PDGs given as input data, G′ ⊂ G indicates G′ is a

subgraph of G, and G′ ∼= G′′ indicates G′ and G′′ are isomorphic subgraphs to

each other.

In the example of Figure 6.9, there are two isomorphic subgraphs between G1

and G2. Therefore, ClonePairs(G1, G2) become as follows.

ClonePairs(G1, G2) = {(G′
1, G

′
2), (G

′′
1, G

′′
2)}

where, VG′
1

= {A,B,C,D}, VG′
2

= {1, 2, 3, 4}, VG′′
1

= {E,F,G}, and

VG′′
2
= {5, 6, 7}.

We also define duplicate relationships on nodes of PDGs as follows.

Definition 6.3.5 (Duplication of nodes). The two nodes v1 ∈ VG1 and v2 ∈ VG2

are duplicated to each other if and only if they satisfy the formula (6.4). This

chapter uses a symbol ∼ to represent a node duplication. For instance, v1 ∼ v2
means that v1 and v2 are duplicated to each other.

∃(G′
1, G

′
2) ∈ ClonePairs(G1, G2)[v1 ∈ VG′

1
∧ v2 ∈ VG′

2
∧ ϕ(v1) = v2] (6.4)

where, G1 and G2 are PDGs, and ϕ indicates the isomorphism between G′
1 and

G′
2 (G′

1
∼= G′

2).

141

In the example of Figure 6.9, the binary relation ∼ becomes as follows.

∼= {(A, 1), (B, 2), (C, 3), (D, 4), (E, 5), (F, 6), (G, 7)}

6.4 Supporting for Method Pairs

6.4.1 STEP-P1: Create PDGs

The proposed method internally uses an existing PDG-based clone detector,

Scorpio [139], to detect code clones. In addition, Scorpio internally uses a source

code analysis tool, MASU [108], to create PDGs. The first step of the proposed

method is covered with MASU.

In PDGs created by MASU, a node corresponds to a statement of program. Ad-

ditionally, PDGs created by MASU have another dependence, “execution depen-

dence”, in addition of traditional two dependences, data and control dependences.

Execution dependences indicate execution-next links.

Note that PDGs used in the proposed method need not to be always created

by MASU. Any tools or techniques that are able to create PDGs can take place of

MASU.

6.4.2 STEP-P2: Detect Code Clones

As described above, the proposed method uses Scorpio to detect code clones.

Therefore, the second step of the proposed method is fully covered with Scorpio.

Here, we describe the clone detection algorithm used in Scorpio briefly.

First, Scorpio calculates hash values for every node of PDGs. The hash val-

ues are calculated with information about the structure of the statement that every

node represents. Scorpio replace variables’ names or literals by their types, which

enables to detect code clones with different variables’ names or literals. Next, Scor-
pio classifies every node with its hash value. Nodes having the same hash value are

classified as an equivalence class. Then, every pair (r1, r2) of nodes are selected

from every equivalence class, and two isomorphic subgraphs that include r1 and r2
are identified. Both forward and backward slices are used to identify isomorphic

subgraphs.

Algorithms of each slicing are shown in Algorithm 6.1 and Algorithm 6.2,

respectively. Suppose G1 and G2 are the target PDGs. The algorithm to detect

isomorphic subgraphs between G1 and G2 with the forward slice is shown in Al-

gorithm 6.1. Note that R1 and R2 must be initialized as empty sets to run this

algorithm. In Scorpio, hash values are used to compare two nodes. Therefore,

142

Algorithm 6.1 ForwardSlice(G1, G2, r1, r2, R1, R2)

Require: G1, G2, r1, r2, R1, R2, r1 = r2
Ensure: R1

∼= R2

1: R1 ←+ r1
2: R2 ←+ r2
3: for all e1 ∈ ForwardEdges(r1) do
4: for all e2 ∈ ForwardEdges(r2) do
5: r′1 ← head(e1)
6: r′2 ← head(e2)
7: if r′1 �= r′2 then
8: continue

9: end if
10: if r′1 ∈ R1 or r′2 ∈ R2 then
11: continue

12: end if
13: if r′1 ∈ R2 or r′2 ∈ R1 then
14: continue

15: end if
16: ForwardSlice(G1, G2, r

′
1, r

′
2, R1, R2)

17: end for
18: end for

Algorithm 6.2 BackwardSlice(G1, G2, r1, r2, R1, R2)

Require: G1, G2, r1, r2, R1, R2, r1 = r2
Ensure: R1

∼= R2

1: R1 ←+ r1
2: R2 ←+ r2
3: for all e1 ∈ BackwardEdges(r1) do
4: for all e2 ∈ BackwardEdges(r2) do
5: r′1 ← tail(e1)
6: r′2 ← tail(e2)
7: if r′1 �= r′2 then
8: continue

9: end if
10: if r′1 ∈ R1 or r′2 ∈ R2 then
11: continue

12: end if
13: if r′1 ∈ R2 or r′2 ∈ R1 then
14: continue

15: end if
16: BackwardSlice(G1, G2, r

′
1, r

′
2, R1, R2)

17: end for
18: end for

143

r1 = r2 indicates that the hash value of r1 is equal to that of r2. Also, the algo-

rithm with the backward slice is shown in Algorithm 6.2. Both of the forward and

backward slices are used to detect code clones in Scorpio.

Isomorphic subgraphs detected in this step is regarded as a clone pair. We set

a minimal size of each isomorphic subgraph to six nodes to be detected as code

clones. In the next step, Scorpio removes uninteresting clone pairs. The algorithm

is that if a clone pair (s1, s2) is subsumed by another clone pair (s′1, s′2), it is

removed from the set of clone pairs. Finally, clone sets are generated from clone

pairs sharing the same isomorphic subgraphs.

Note that it is not necessary to detect code clones with this way to use the pro-

posed method. The proposed method only needs ClonePairs(Gm1 , Gm2) for any

pair of methods (m1,m2) contained in the target program, where Gmi indicates a

PDG of method mi. The proposed method does not care how they are identified.

6.4.3 STEP-P3: Identify Method Pairs

This step detects pairs of methods on which Form Template Method can be

applied with the information about code clones detected by Scorpio. The proposed

method regards a pair of methods as a refactoring candidate if it satisfies following

requirements.

Requirement A: The two methods in the method pair are defined in different

classes.

Requirement B: The owner classes of the two methods have the same base class.

Requirement C: There is at least one clone pair between the method pair.

The followings discuss these requirements in detail.

Requirement A

Form Template Method cannot be applied on methods defined in the same

class because it uses the inheritance relationships and the polymorphism. Thus,

the method pair that the proposed method targets has to be defined in different

classes.

Requirement B

Form Template Method targets similar methods whose owner classes have

the same base class. It is possible that we apply Form Template Method on

methods whose owner classes do not have the same base class. The way is that we

144

insert a new class into class hierarchy and make the owner classes inheriting the

new class. However, refactorings with this way may decay the quality of program

design because two non-related classes are forced to be jointed in the class hierar-

chy. For this reason, the target method pairs are limited to having the same base

class.

Requirement C

If there is no duplicate statement, Form Template Method cannot be applied

on such a method pairs because no statement is pulled up into the base class. There-

fore, we make a requirement that there is at least one clone pair between the two

methods of every target method pair.

Suppose that Gm1 and Gm2 are PDGs of methods m1 and m2. If there is no

clone pair between a method pair (m1,m2), ClonePairs(Gm1 , Gm2) is empty.

Therefore, we can check whether there is at least one clone by checking whether

ClonePairs(Gm1 , Gm2) is empty or not. In other words, the method pair (m1,m2)
must satisfy the formula (6.5).

ClonePairs(Gm1 , Gm2) �= ∅ (6.5)

6.4.4 STEP-P4: Detect Common and Unique Processes

In this step, the proposed method detects common and unique processes in each

method pair. Suppose that a method pair of m1 and m2 is the given method pair,

and Gm1(2)
is the PDG of method m1(2).

The proposed method regards statements as common processes if and only

if they are included in code clones existing between the two methods of the given

method pair. We define CommonNodes(Gm1(2)
) as a set of nodes in Gm1(2)

whose

representing statements form common processes. The formula (6.6) represents the

definition, where Gm1(2)
indicates the PDG of method m1(2).

CommonNodes(Gm1(2)
) := {v ∈ VGm1(2)

| ∃w ∈ VGm2(1)
[v ∼ w]} (6.6)

However, a node in Gm1(2)
can be duplicated between two or more nodes in

Gm2(1)
. In other words, the formula (6.7) can be satisfied in some cases, consider-

ing the two clone pairs (G′
m1

, G′
m2

), (G′′
m1

, G′′
m2

) ∈ ClonePairs(Gm1 , Gm2).

∃v ∈ VG′
m1(2)

[v ∈ VG′′
m1(2)

] (6.7)

145

Algorithm 6.3 Removing Redundant Clone Pairs

Require: ClonePairs(Gm1 , Gm2)
Ensure: ClonePairs(Gm1 , Gm2) after repaired

1: CopyOfClonePairs = ∅
2: CopyOfClonePairs ←+ ClonePairs(Gm1 , Gm2)
3: for all (G′

m1
, G′

m2
) ∈ CopyOfClonePairs do

4: for all (G′′
m1

, G′′
m2

) ∈ CopyOfClonePairs do
5: if (∃v1 ∈ G′

m1
[v1 ∈ G′′

m1
])&(G′

m1
�= G′′

m1
) then

6: if |G′
m1

| < |G′′
m1

| then
7: ClonePairs(Gm1 , Gm2) ←-

(G′
m1

, G′
m2

)
8: else
9: ClonePairs(Gm1 , Gm2) ←-

(G′′
m1

, G′′
m2

)
10: end if
11: end if
12: if (∃v2 ∈ G′

m2
[v2 ∈ G′′

m2
])&(G′

m2
�= G′′

m2
) then

13: if |G′
m2

| < |G′′
m2

| then
14: ClonePairs(Gm1 , Gm2) ←-

(G′
m1

, G′
m2

)
15: else
16: ClonePairs(Gm1 , Gm2) ←-

(G′′
m1

, G′′
m2

)
17: end if
18: end if
19: end for
20: end for

In this case, we cannot merge all the nodes that are duplicate to other nodes in

the other method. We remove some clone pairs from ClonePairs(Gm1 , Gm2) to

resolve this problem. Algorithm 6.3 shows the algorithm for removing clone pairs.

Note that |R| means the number of elements in a set R and R ←-
r means the

process to remove an element r from R.

This algorithm ensures that there is at most one duplicate node in the other

method for all nodes in method m1 and m2. Nodes should be pulled up into the

base class if they are contained in CommonNodes(Gm1(2)
) after this processing.

Figure 6.10 shows an instance of method pairs that contain redundant clone

pairs. There are two clone pairs; one is labeled with ‘α’, and another one is labeled

with ‘β’. The clone pair α consists of ({a, b, c, d, e}, {A,B,C,D,E}), and the

clone pair β consists of ({a, b, d, e}, {F,G,H, I}). In this case, the algorithm

selects α as the remaining clone pair, and removes β from ClonePairs(Gm1 , Gm2)
because the number of elements of α is larger than those of β. As a result, the

common statements that the proposed method detects in this method pair (m1,m2)
become as follows.

146

a

b c d

e

A

B C D

E

F

G H

I

f J
β

α

method m1 method m2

Figure 6.10: An example of Method Pairs Including Redundant Clone Pairs

CommonNodes(Gm1) = {a, b, c, d, e}
CommonNodes(Gm2) = {A,B,C,D,E}

On the other hand, the proposed method regards that program statements form

unique processes in a given method pair if they are not included in the common

processes. We define DiffNodes(Gm1(2)
) as a set of nodes in Gm1(2)

that need

to remain in the derived class that has method m1(2). Formula (6.8) shows the

definition of DiffNodes(Gm1(2)
).

DiffNodes(Gm1(2)
) := {v ∈ VGm1(2)

| v /∈ CommonNodes(Gm1(2)
)} (6.8)

In the method pair (m1,m2) shown in Figure 6.10, DiffNodes(Gm1(2)
) be-

comes as follows.

DiffNodes(Gm1) = {f}
DiffNodes(Gm2) = {F,G,H, I, J}

6.4.5 STEP-P5: Detect Sets of Statements Extracted as a Single Method

In this step, the proposed method detects sets of statements that can be extracted

as a single method in the unique processes. For applying Form Template Method

147

a

g

e

g

d

j
i

f h

b

m

k
l

c a

g

e

g

d

j
i

f h

b

m

k
l

c

Nodes contained in CommonNodes An ENS

Figure 6.11: An example of the Detection of ENSs

refactorings, it is necessary that nodes remaining in derived classes are extracted

as new methods. Therefore, we have to detect sets of program statements included

in DiffNodes(Gm1(2)
), each of which can be extracted as a single method. The

reminder of this chapter represents a set of nodes that should be extracted as a

single method as an Extract Node Set (in short, ENS).

Definition of the Extract Node Set

The proposed method regards nodes included DiffNodes(Gm1(2)
) as an ENS

if there is at least one path that does not include nodes in CommonNodes(Gm1(2)
)

for any pairs of the nodes in it ignoring directions of each edges. In other words,

we regard a set of nodes Sm1(2)
⊂ VGm1(2)

as an ENS if there is at least one path

that satisfies the formula (6.9) for any two nodes v1, vn(v1 �= vn) in Sm1(2)
.

∀i ∈ {1 . . . n}[vi ∈ DiffNodes(Gm1(2)
)] (6.9)

In the example shown in Figure 6.11 we can find two ENSs; one consists of

{d, g} and the other consists of {b, c, h, k, l}. As shown in this example, each of

methods in refactoring candidates can contain multiple ENSs. This study uses a

term DiffNodeSets(Gm1(2)
) to represent a family of ENSs in method m1(2). Sup-

pose that m1 indicates the name of the method shown in the figure, and Gm1 indi-

cates its PDG, then, in the example of Figure 6.11, DiffNodeSets(Gm1) becomes

as follows.

148

1: double width = triangle.getWidth();
2: double height = triangle.getHeight();
3: double area = width * height / 2:
4: System.out.println(“The area is “ + area);

1 2

3

4

width height

area

Before

1: double width = triangle.getWidth();
2: double height = triangle.getHeight();
3: double area = calcArea(width, height):
4: System.out.println(“The area is “ + area);

After

: Cloned Statements

: An ENS

e1 e2

e3

Figure 6.12: An Example of Inputs and Outputs of ENSs

DiffNodeSets(Gm1) = {{d, g}, {b, c, h, k, l}}
Note that any of nodes in DiffNodes(Gm1(2)

) must be included in at least and

at most one ENS in DiffNodeSets(Gm1(2)
) (forumla (6.10)).

∀v ∈ DiffNodes(Gm1(2)
) ∃S ∈ DiffNodeSets(Gm1(2)

)[v ∈ S] (6.10)

Parameters of ENSs

Parameters of the method created by extracting an ENS S can be defined as

variables represented by data dependence edges whose heads are included in S
and whose tails are not included in S. Assume that G indicates a PDG, and

S indicates an ENS of G. Under these assumptions, we define a set of data

dependence edges whose tails are not included in S and whose heads are in-

cluded in S as InputDataEdges(G,S). Formula (6.11) shows the definition of

InputDataEdges(G,S).

InputDataEdges(G,S) :=

{e ∈ EG | (tail(e) /∈ S) ∧ (head(e) /∈ S) ∧ (type(e) = data)} (6.11)

Here, we define a set of variables to represent parameters of the method created

by extracting S consist as InputVariables(S) in forumla (6.12).

149

InputVariables(G,S) :=

{p | ∃e ∈ InputDataEdges(G,S)[var(e) = p]} (6.12)

In the example of Figure 6.12, there is an ENS consisting of the 3rd line. In

this case, InputDataEdges(G,S) and InputVariables(G,S) become as follows

InputDataEdges(G,S) = {e1, e2}
InputVariables(G,S) = {width, height}

Thus, a method created by extracting the ENS needs two parameters, one is

width , and the other is height .

Output of ENSs

Suppose that G indicates a PDG of a method, and S indicates an ENS of G.

The output values of the method created by extracting S are defined as variables

that are represented by data dependence edges whose heads are not included in S
and whose tails are included in S.

First, we define OutputDataEdges(G,S) as a set of data dependence edges

whose tails are included in S and whose heads are not included in S. The definition

is shown in formula (6.13).

OutputDataEdges(G,S) :=

{e ∈ EG | tail(e) ∈ S ∧ head(e) /∈ S ∧ type(e) = data} (6.13)

Herein, we can define a set of output variables of S with this definition. We

define it as OutputVariables(G,S) in the formula (6.14).

OutputVariables(G,S) :=

{p | ∃e ∈ OutputDataEdges(G,S)[p = var(e)]} (6.14)

In the example of Figure 6.12, OutputDataEdges(G,S) and OutputVariables(G,S)
become as follows.

OutputDataEdges(G,S) = {e3}
OutputVariables(G,S) = {area}

Therefore, a method created from the ENS needs to return a value of double.

150

Conditions for Call

The conditions to call methods created by extracting ENSs are represented by

control dependence edges. For example, if there are control dependences from a

conditional predicate of if statement to all the nodes included in an ENS S, a

method created from S should be called in the case that the conditional predicate

is satisfied.

First, we define InputControlEdges(G,S) as a set of control dependence

edges whose tails are not included in S and whose heads are included in S in

the formula (6.15), where G is a PDG of a method and S is an ENS of G.

InputControlEdges(G,S) :=

{e ∈ EG | tail(e) /∈ S ∧ head(e) ∈ S ∧ type(e) = control} (6.15)

In the next, we define nodes that have control dependences to nodes included

in S as InputControlNodes(G,S). The definition is shown in formula (6.16).

InputControlNodes(G,S) :=

{v ∈ VG | ∃ec ∈ InputControlEdges(G,S)[v = tail(ec)]} (6.16)

As described above, a PDG has a method enter node, and there are control de-

pendencies from the node to all the nodes that are directly contained by the method.

In addition, nodes contained in conditional blocks have control dependence from

the conditional predicates of the blocks. In this case, there is no control dependence

from the method enter node to nodes contained in conditional blocks because these

nodes are not directly contained by the method. Therefore, all the nodes except

the method enter node have at least and at most one control dependence from other

nodes.

Requirements for ENSs to be Extracted as a Single Method

In some cases, we cannot extract each of ENSs as a single method. Concretely,

we cannot extract an ENS S as a single method if it satisfies the following condi-

tions.

• There are multiple return values in the method created from S.

• S includes a part of nodes in a block statement, and it also includes some

nodes out of the block statement.

151

Multiple Return Values

It is necessary that an ENS S has at most one return value to be extracted as

a method. Therefore, if there are two or more return values of S, it cannot be

extracted as is.

To resolve this problem, we divide S into multiple ENSs satisfying the condi-

tion. Here, we describe the algorithm.

First, we define a set of nodes in S that locate at boundary of data dependences

between S and out of S as BoundaryNodes(G,S). Formula (6.17) is its definition.

BoundaryNodes(G,S) :=

{v ∈ VG | ∃e ∈ OutputDataEdges(G,S)[tail(e) = v]} (6.17)

Then, we divide S with the Algorithms 6.4, 6.5, and 6.6. Note that R ←+ r
means adding an element r into a set R. Besides, detect(v, S) and parse(S,R)
indicates the following processing, respectively.

detect(v, S): Return an ENS S′ satisfying the condition that BoundaryNodes(G,S′) =
{v} by dividing the original ENS S.

parse(S,R): Return a node set R′ created by adding some nodes into the spec-

ified node set R. The added nodes must be reached from a node in R by

tracing an edge in the reverse direction. Moreover, the addition of nodes

must preserve the condition that |BoundaryNodes(G,R)| = 1.

Here, we describe the behavior of the algorithm with the example shown in

Figure 6.13.

In the beginning, BoundaryNodes(G,S) = {n, o}. Here we consider the case

that detect(n, S) is called in the 3rd line in Algorithm 6.4.

In detect(n, S), a node set R is initialized with n, then R is expanded by trace

edges in the reverse direction. Obviously, |BoundaryNodes(G,R)| = 1.

In the next, parse(S,R) is called. At first, we reach a node k and we need to

judge whether it can be added into R or not. In this case, k has no dependences

to nodes except n, therefore we judge that it can be included in R. In the next,

we reach another node f . The node f has two dependences whose tail is f ; one is

to k, and the other is to another node i. Herein, the node i are not included in R.

Consequently, if we add f into R, BoundaryNodes(G,R) becomes {f, n}. Thus

we judge that we cannot add f into R. parse(S,R) stops here because there is no

nodes that can be a candidate of expansion, and it returns R′ = {k, n}.

152

Algorithm 6.4 Division of an ENS

Require: G,S
Ensure: SeparetedNodeSets

1: while S �= ∅ do
2: for all v ∈ BoundaryNodes(G,S) do
3: SeparetedNodeSets ←+ detect(v, S)
4: end for
5: for all T ∈ SeparetedNodeSets do
6: for all v′ ∈ T do
7: S ←-

v′

8: end for
9: end for

10: end while

Algorithm 6.5 detect(v, S)

Require: v, S
Ensure: R

1: R ← {v}
2: while |R| �= |parse(S,R)| do
3: for all v′ ∈ parse(S,R) do
4: R ←+ v′

5: end for
6: end while

Algorithm 6.6 parse(S, R)

Require: S,R
Ensure: R′

1: R′ = R
2: for all v ∈ R do
3: for all e ∈ BackwardEdges(v) do
4: if tail(e) ∈ S ∧ tail(e) /∈ R then
5: if ∀ed ∈ ForwardDataEdges(tail(e))[head(ed) ∈ R] then
6: R′ ←+ tail(e)
7: end if
8: end if
9: end for

10: end for

153

a

b c d e

j
f g h i

mlk

n o

p q
r

i

i
i

x

y

y

z z

z w

zy

x y S

a

b c d e

j
f g h i

mlk

n o

p q
r

i

i
i

x

y

y

z z

z w

zy

x y SySx

Si

After Resolved

Figure 6.13: Behavior of Algorithm 6.4

1: if (x > 0) {
2: y = x;
3: z = x * 2;
4: }
5: w = x + y + z;

S

Figure 6.14: An Instance of Segmentalization of Block Statements

Then the algorithm backs to the 3rd line in Algorithm 6.4. Here, detect(o,R)
is called, and it returns R′ = {d, e, g, h, i, l,m, o}.

Then the algorithm goes to the 5th line in Algorithm 6.4. Here, nodes included

in any element in SeparetedNodeSets are removed from the original ENS S. In this

case, SeparetedNodeSets = {{k, n}, {d, e, g, h, i, l,m, o}}, therefore S becomes

S = {f, c}.

The algorithm repeats this process until S �= ∅. Finally, we get 3 ENSs Sx, Sy,

and Si from the original ENS S, and all of them have to return only a single value

x, y, and i, respectively.

154

Segmentalization of Block Statements

Suppose that Nodes(b) indicates a set of nodes that are included in the given

block statement b. If an ENS S satisfies all the following formulae (6.18) and

(6.19), we cannot extract it as a single method.

∃v ∈ Nodes(b)(v ∈ S) ∧ ∃u ∈ Nodes(b)(u /∈ S) (6.18)

∃v ∈ S(v ∈ Nodes(b)) ∧ ∃u ∈ S(u /∈ Nodes(b)) (6.19)

Figure 6.14 shows an instance of ENSs that satisfy these formulae. As this

figure shows, we cannot extract S as is. This is because one node in S is included

in if statement, and the other node is not included in the statement. To resolve

this problem, we restrict nodes in each of ENSs to be in the same block statement.

By this restriction, the 3rd line and the 5th line in Figure 6.14 can be included in

the same ENS. Therefore, we get two ENSs in this example, and each of them can

be extracted as a single method.

6.4.6 STEP-P6: Detect Pairwise Relationships

In this step, we detect pairwise relationships of ENSs in a given method pair.

In other words, assuming that � indicates the pairwise relationships and Sm1(2)
is

an ENS of method m1(2), for each of Sm1(2)
∈ DiffNodeSets(Gm1(2)

) we detect

whether Sm2(1)
∈ DiffNodeSets(Gm2(1)

) satisfies Sm1 � Sm2 exists or not. Note

that Sm1 � Sm2 indicates that Sm1 and Sm2 can be extracted as methods whose

signatures are the same as each other. If an ENS S has no correspondent in the

other method, we have to make an empty method whose signature is the same as S
in the derived class that does not have S.

We regard a pair of ENSs Sm1 and Sm2 as Sm1 � Sm2 if they satisfy the

following two requirements.

Requirement P6-1: The types of return values of Sm1 and Sm2 are the same as

each other.

Requirement P6-2: The conditions to call the new methods created by extracting

Sm1 and Sm2 are the same as each other.

The following subsections describe these requirements in detail. Herein, EM Sm1(2)

means the method created by extracting the ENS Sm1(2)
.

155

Requirement P6-1: Requirement the Type of the Return Value

To make EM Sm1
and EM Sm2

have the same signature, it is necessary that the

types of return values of EM Sm1
and EM Sm2

are same to each other.

As described in 6.4.5, the return values of EM Sm1(2)
are defined as

OutputVariables(Gm1(2)
, Sm1(2)

) (formula (6.14)). In addition, the number of el-

ements in OutputVariables(Gm1(2)
, Sm1(2)

) is at most one because of the process-

ing described in 6.4.5.

We define that EM Sm1
and EM Sm2

have the same type of the return value if

they satisfy formula (6.20).

(|OutputVariables(Gm1 , Sm1)| = |OutputVariables(Gm2 , Sm2)|)
∧ (∀p ∈ OutputVariables(Gm1 , Sm1)∃q ∈ OutputVariables(Gm2 , Sm2)

[varType(p) = varType(q)]) (6.20)

Note that we do not consider parameters of EM Sm1
and EM Sm2

to detect

the pairwise relationships. This is because we can make them having the same

signature by adding non-used parameters in the case that the parameters of EM Sm1

and EM Sm2
are different. For example, suppose that EM Sm1

needs one parameter

whose type is integer and EM Sm2
needs one parameter whose type is string. In

this case, we can match the signatures of EM Sm1
and EM Sm2

by adding a string

parameter in EM Sm1
and an integer parameter EM Sm2

.

Requirement P6-2: Requirement about Conditions for Call

To extract EM Sm1
and EM Sm2

as same signature methods, it is necessary that

EM Sm1
and EM Sm2

are called under the same conditions.

Figure 6.15 shows an example of wrong correspondence of ENSs. This is

caused by not considering the conditions for call of each ENSs. In this example,

there are two ENSs A1 and A2 in methodA, and there are also two ENSs B1 and

B2 in methodB. All of the ENSs are in if statements, which means that methods

created by extracting these ENSs are called if the conditional predicates of the cor-

responding if statements are satisfied. However, the pairwise relationships shown

in the figure do not consider the conditions, therefore the behavior of methodB is

changed after the refactoring.

As described in 6.4.5, the conditions to call EM Sm1(2)
are represented by con-

trol dependence edges, and all the nodes always have one control dependence from

other nodes. In addition, all the nodes in an ENS are contained by a single block

statement or contained by their owner method directly by the process described in

156

if (x == 0) {
System.out.println(“2nd line”);

}

if (y == 1) {
System.out.println(“6th line”);

}

if (x == 0) {
System.out.println(“2nd”);

}

if (y == 1) {
System.out.println(“6th”);

}

method A method B

if (x == 0) {
process2ndLine();

}

if (y == 1) {
process6thLine();

}

System.out.println
(“2nd line”);

System.out.println
(“6th line”);

System.out.println
(“2nd”);

System.out.println
(“6th”);

behavior is changed

A1

A2 B2

B1

Figure 6.15: An Example of Wrong Pairwise Relationships Caused by not Consid-

ering Conditions for Call

6.4.5. Consequently, all the control dependence edges to S have the same tail node.

In other words, the formula (6.21) is always satisfied for every ENS S.

|InputControlNodes(G,S)| = 1 (6.21)

Here, we define ICN S as the unique element in InputControlNodes(G,S).
We regard a pair of ENSs (Sm1 , Sm2) as having same conditions for call if and

only if they satisfy the formula (6.22).

(ICN Sm1
∼ ICN Sm2

)∨
(∃S′

1 ∈ DiffNodeSets(Gm1)∃S′
2 ∈ DiffNodeSets(Gm2)

[S′
1 � S′

2 ∧ ICN Sm1
∈ S′

1 ∧ ICN Sm2
∈ S′

2]) (6.22)

157

a

b c

d e

i

method
m1

f

hg

x(int)

str(String)
α

A

B C

D

I

FE

G

Hi(int)
text(String)

β

γ

method
m2

α β γ δ

Satisfy Requirement P6-1 Satisfy Requirement P6-2

c C

α γ β δ

Input Control Node

α β γ δ

* c * C

δ

String Stringint int

: Clone Nodes : Non-Clone Nodes

: Data Dependence : Control Dependence

“*” means
Method Enter

Node

Figure 6.16: An Example of Pairwise Relationships

An Example of Pairwise Relationships Detection

Figure 6.16 shows an example of pairwise relationships detection. Note that

this figure ommits method enter nodes and control dependence.

In this example, there are two ENSs α and β in method m1, and there are also

two ENSs γ and δ in method m2. Return values of EMα and EMγ are integer

values, and return values of EMβ and EMδ are string values. Consequently, two

pairs of ENSs (α, γ) and (β, δ) satisfy Requirement P6-1.

Then, the proposed method checks the correspondence of call conditions. In

this example, ICN α and ICN γ are the method enter nodes, which means that a

158

pair of ENSs (α, γ) satisfies Requirement P6-2. In the case of (β, δ), ICN β is c,
and ICN δ is C. Consequently, the pair of ENS (β, δ) satisfies Requirement P6-2

because c ∼ C.

As a result, we get two pairs of ENSs (α, γ) and (β, δ) in this example.

6.5 Supporting for Method Groups

In this section, we describe the steps of the proposed technique for method

groups. As described in 6.3.3, we use method pair information calculated in STEP-

P1 to STEP-P6, therefore the steps from STEP-S1 to STEP-S6 are identical to

from STEP-P1 to STEP-P6. Therefore, we describe the steps after STEP-S6 in the

following subsections.

6.5.1 STEP-S7: Identify Method Groups

This step detects groups of methods on which Form Template Method can be

applied. In the reminder of this chapter, suppose that m1
.
= m2 indicates that a pair

of methods m1 and m2 is a refactoring candidate detected in the process described

in 6.4.3.

Obviously, the binary relation
.
= is a symmetric relation (m1

.
= m2 ⇒ m2

.
=

m1). However, it is not a transitive relation. Assume that there are three methods

m1, m2 and m3, and m1
.
= m2, m2

.
= m3. In this case, there is at least one clone

pair between m1 and m2, and between m2 and m3 because of the definitions of
.
=.

However, there is no clone pair between m1 and m3 if all the clone pairs between

m1 and m2 are not overlapped by any of clone pairs between m2 and m3. If there

is no clone pair between m1 and m3, m1 � .= m3 because of its definitions.

However, the proposed method temporarily regards a group of methods as a

candidate method group if it satisfies the formula (6.23).

∀m ∈ MS , ∃m′ ∈ MS (m
.
= m′) (6.23)

Under this definition, if m1
.
= m2 and m2

.
= m3 are satisfied, a group of

methods m1, m2, and m3 is regarded as a candidate method group regardless of

whether m1
.
= m3 is satisfied or not. If there is no clone pairs between m1 and

m3, the proposed method omits the method group from candidate method groups

in the next step.

6.5.2 STEP-S8: Detect Common and Unique Processes

In this step, the proposed method detects common processes and unique pro-

cesses in every method group. Suppose that MS indicates a method group and Gmi

159

a

b c

d e

g

i

f

h

A

B C

D E

F

H

G

1

2 3

4

6

8

5

7

d e

g

4

6

8

7

A

B C

E

F

H

G
D

a

b c

i

f

h

1

2 3

5

method
m1

method
m2

method
m2

method
m3

method
m3

method
m1

a

b c

d e

g

i

f

h

A

B C

D E

F

H

G

1

2 3

4

6

8

5

7

method
m1

method
m2

method
m3

: Common Nodes

: Unique Nodes

Figure 6.17: An Example of Method Group

means the PDG of method mi.

Statements must be duplicated between all the methods in the method group

to be pulled up into a base class as a template method. We use the representation

CommonNodesgroup(Gmi) for a group of nodes in VGmi
that are pulled up into a

base class. The definition is shown in formula (6.24).

CommonNodesgroup(Gmi) :=

{vi ∈ VGmi
| ∀mj ∈ MS , ∃vj ∈ VGmj

[vi ∼ vj]} (6.24)

We define DiffNodesgroup(Gmi) as a group of nodes that need to remain in the

derived class that has method mi. The definition is shown in the formula (6.25).

DiffNodesgroup(Gmi) :=

{vi ∈ VGmi
| vi /∈ CommonNodesgroup(Gmi)} (6.25)

Figure 6.17 shows an example of method group. In this example, there are

three methods (m1, m2, and m3) and all the pairs of them are detected as can-

didate method pairs, in other words m1
.
= m2, m2

.
= m3, and m1

.
= m3. In

this example, CommonNodesgroup(Gm1) and DiffNodesgroup(Gm1) become as

follows.

160

CommonNodesgroup(Gm1) = {a, b, c, i}
DiffNodesgroup(Gm1) = {d, e, f, g, h}

In some cases, some nodes included in CommonNodes(Gmi) are omitted to

make CommonNodesgroup(Gm1). Consequently, the amount of common pro-

cesses on method groups might be quite smaller than that on method pairs. As

a result, the number of elements in CommonNodes(Gmi) might be less than the

threshold of minimum code clone size that is specified by users. Therefore, the pro-

posed method omits method groups if the number of their common nodes is less

than the minimum clone size. Consequently, in the case that m1
.
= m2, m2

.
= m3,

and m1 � .= m3, the proposed method omit the method group that consists of m1,

m2, and m3.

In the next, the proposed method detects ENSs for every method in MS . There

is no difference in the definitions of ENSs between method pairs and method

groups because the detection of ENSs is closed in each method.

6.5.3 STEP-S9: Detect Relationships on ENSs

In this step, the proposed method detects correspondences of ENSs between

methods in MS .

Likewise on method pairs, the correspondence relationship means that ENSs

in a correspondence relationship can be extracted as methods whose signatures are

the same. As described in 6.4.6, the proposed method regards a pair of ENSs Sm1

and Sm2 as Sm1 � Sm2 if they satisfy the requirements about their return values

and their call conditions. We can detect this relationship by expanding that on

method pairs.

Suppose that Sm1 , Sm2 , and Sm3 are ENSs in methods m1, m2, and m3, re-

spectively. In addition, assume that Sm1 � Sm2 and Sm2 � Sm3 . Moreover,

assume that EM S means a method created by extracting an ENS S. Under these

assumptions, the types of return values EM Sm1
and EM Sm2

are the same. More-

over, those of EM Sm2
and EM Sm3

are also the same. Therefore, the return values

of EM Sm1
and EM Sm3

are the same. Similarly, the call conditions for EM Sm1
,

EM Sm2
, and EM Sm3

are same to each other. Consequently, the binary relationship

� is a transitive relation (Sm1 � Sm2 ∧ Sm2 � Sm3 ⇒ Sm1 � Sm3).

Obviously, the binary relation � is a symmetric relation (Sm1 � Sm2 ⇒
Sm2 � Sm1). Moreover, it is also a reflexive relation (Sm1 � Sm1). Conse-

quently, the binary relation � is an equivalence relation.

Therefore, we can detect correspondence relationships between three or more

ENSs by detecting equivalent classes.

161

List of Method Pairs

Source Code of the Methods
in the Selected Method PairButton to Call Filtering Function

Figure 6.18: A Whole Snapshot of CRat (for Method Pairs)

6.6 Implementation

6.6.1 Overview

We have implemented the proposed method as a tool named CRat (Clone Re-
moval Assistant Tool) in Java. CRat can handle software systems written in Java,

because Scorpio, the clone detection tool used in CRat, can handle only Java. How-

ever, the proposed method can be applied to other programming languages if PDGs

can be built.

The LOC of CRat is 17,290 with comments and white lines. It becomes 11,125

without comments and white lines. Moreover, CRat consists of 136 source files. In

addition, it uses the external libraries except for Scorpio and MASU.

JUNG: JUNG (Java Universal Network/Graph Framework) is a framework that

provides software libraries for the modeling, analysis, and visualization of

data that can be represented as a graph or network [67]. CRat uses it to

visualize PDGs. JUNG is an open source project in SourceForge likewise

MASU.

CRat has two modes. One is for method pairs, and the other is for method

groups. We describe each of them in detail in the following subsections. Note that

CRat does not modify the source code by itself. Therefore, users need to perform

source code modification by their own effort.

6.6.2 Functionalities for Method Pairs

Figure 6.18 shows a snapshot of CRat for method pairs. The table shows all

the candidate method pairs that CRat detected. When users select a method pair

162

Common Statements

An ENS

To Be Extracted as the
Same Signature Method

Figure 6.19: A Snapshot of Source Code View

from the table, the source code of methods included in the pair is shown in the right

panel.

Figure 6.19 shows a snapshot of source code view. In the source code view,

common statements are highlighted with red. Statements highlighted by red mean

that they should be pulled up into the base class as a template method. On the

other hand, the other statements are unique processes in each method. Statements

surrounded by the same color rectangles make an ENS. In addition, if users click

statements that are not highlighted by red, an ENS that includes the statements is

highlighted. Moreover, if users click an ENS in one method, CRat also highlights

the corresponding ENS in the other method. ENSs highlighted by the same color

are under the correspondence relationship (Sm1 � Sm2), which indicates that the

methods created by extracting them have the same signature. Additionally, CRat
shows the signature of the method created from an ENS if users put cursor on the

ENS.

CRat also has a PDG view. Figure 6.20 shows a snapshot of PDG view. Each

circle indicates a node of PDG, and each line indicates an edge of PDG. Nodes col-

ored by red are nodes whose owner statements are included in common statements.

The blue lines indicate data dependence edges, and the black broken lines indicate

control dependence edges. The character string on each data dependence edge in-

dicates the name of the variable that the edge represents. Note that CRat omits

the method enter nodes and execute dependence edges in PDG view. To visualize

163

Data Dependence Edge

Control Dependence Edge Common Statements

Unique Statements

Figure 6.20: A Snapshot of PDG View

PDGs, CRat uses APIs provided by JUNG.

CRat can show both the source code view and PDG view at a time. Figure 6.21

shows the apposing view of source code view and PDG view. The functionalities

of the source code view and the PDG view in the apposing view are exactly same

to the original ones.

In addition, CRat has a filtering function of method pairs with some metrics.

All the metrics are calculated for each method pair. The metrics are as follows

under the assumption that m1 and m2 are methods in a method pair, and Gm is the

PDG of the method m.

SIM: The similarity between two methods of each method pair (defined in the

formula (6.26)).

SIM :=
|CommonNodes(Gm1)|+ |CommonNodes(Gm2)|

|VGm1
|+ |VGm2

| (6.26)

CN: The number of nodes whose owner statements are included in common state-

ments (defined in the formula (6.27)).

CN := |CommonNodes(Gm1(2)
)| (6.27)

DN+, DN-: The number of nodes whose owner statements are not included in

common statements. Note that the values of this metric are different between

164

Figure 6.21: A Snapshot of Apposing View of Source Code View and PDG View

each method. Therefore, we define DN+ as the larger one (formula (6.28)),

and DN- as the smaller one (formula (6.29)), respectively.

DN+ := max (|DiffNodes(Gm1)|, |DiffNodes(Gm2)|) (6.28)

DN− := min(|DiffNodes(Gm1)|, |DiffNodes(Gm2)|) (6.29)

LOC+, LOC-: The number of lines of each method. Obviously, the values of

this metric are different between each method. Likewise DN+ and DN-, we

define LOC+ as the larger one, and LOC- as the smaller one, respectively.

DG: The number of new methods that are created by extracting ENSs. DG is

defined in the formula (6.30), where N is the number of ENSs that have their

correspondents in the other method. Note that the ‘correspondent’ of an ENS

S1 is � (S1).

DG := |DiffNodeSets(Gm1)|+ |DiffNodeSets(Gm2)| −N (6.30)

165

BaseClass

SubClassA

SubClassC

SubClassB

StringBuilder builder = new StringBuilder();

builder.append(“A”);
builder.append(“B”);
builder.append(“C”);
builder.insert(1,”D”);
return builder.toString();

StringBuilder builder = new StringBuilder();
if (Setting.isVerbose()) {

System.out.println(“create a string”);
}
builder.append(“A”);
builder.append(“B”);
builder.append(“C”);
builder.reverse();
return builder.toString();

Common Statements

ENSs

Figure 6.22: An Example of Candidate Method Pair

DOI: The depth of inheritance from the common base class to the owner classes

of the two methods. If the value is different for each method, we choose the

larger one as the value of DOI.

Table 6.1 shows the values of metrics of the method pair shown in Figure 6.22.

Note that the values of inheritance depth from the common base class are different

for each class that has the target method, therefore the larger value ‘2’ is chosen as

the value of DOI in this example.

Users can make a short list of candidate method pairs with the filtering function.

The filtering function returns a list of method pairs whose metrics values are in the

range that users specified. To call the filtering function, users push the button on

the top of the table listing the method pairs.

Table 6.1: The Values of Metrics in the Method Pair of Figure 6.22

SIM CN DN+ DN- LOC+ LOC- DG DOI

0.769 5 3 1 9 6 2 2

166

Metrics Values

List of Method Pairs
that Pass the Filter

Metrics Graph

Figure 6.23: A Snapshot of Filtering View

The number of
selected method pairs / all the method pairs

Metrics

Each method pair corresponds to a single polygonal curve
the red one is in the range at all the metrics

the gray one is not in the range at some of metrics

The range of values
of each metric

Figure 6.24: A Metrics Graph

167

The Lower Limit The Upper Limit

Figure 6.25: View of the Metrics Values

A filtering view is launched when users push the button. Figure 6.23 shows a

snapshot of the filtering view. The filtering view consists of three parts: a metrics

graph, a list of metrics values, and a list of method pairs that pass the filtering.

Figure 6.24 shows a metrics graph. Users specify the thresholds of each metric by

dragging the graph. The area whose background color is gray indicates the range of

thresholds for every metric, and the area whose background color is white indicates

the outside of the range. In the metric graph, each polygonal curve corresponds to

a method pair. The polygonal curve becomes red if and only if all the metrics of

the method pair represented by the polygonal curve are in the specified threshold.

If any of the metrics is not in the threshold, the polygonal curve becomes gray. The

specified lower limit and the specified upper limit of each metric are shown in the

metrics values view (Figure 6.25). The list of selected method pairs is shown in the

right of the filtering view. Users can view the source code and the PDGs of method

pairs that are listed in the view. The functionalities of the source code view and the

PDG view in the filtering view are exactly same to the original ones.

6.6.3 Functionalities for Method Groups

Figure 6.26 shows a snapshot of CRat for method groups. The left table shows

all the candidate method groups that CRat detected. When users select a method

group from table A, all the methods in the selected method group are shown in

the tables B-1 and B-2. Note that the tables B-1 and B-2 show the same contents.

If users choose one of the methods in table B-1, the source code of the selected

method is shown in the source code view C-1. Similarly, if users choose one of the

methods in table B-2, its source code is shown in the source code view C-2. The

source code view and the PDG view are the same to those of described in 6.6.2.

6.7 Evaluation

In order to evaluate the proposed method, we conducted experiments on two

open source software systems. Table 6.2 shows the target software systems, their

scale, and the environment of the experiments. The following subsections describe

each of the experiments.

168

List of
Method Groups

List of Methods
in the Selected
Method Group

Source Code of the
Selected Methods

A

B-1

B-2

C-1 C-2

Figure 6.26: A Whole Snapshot of CRat (for Method Groups)

6.7.1 Evaluation of Supporting for Method Pairs

Table 6.3 shows the the number of detected candidates, and elapsed time to

execute CRat on each target software system. The numbers of candidate method

pairs are 226 and 45, so that it can be difficult for users to identify all the candidates

manually. In addition, CRat can detect all the candidates in a few minutes although

the target software systems have hundreds of source files.

Figure 6.27 shows a refactoring candidate in Ant detected by CRat and the

result of the refactoring. In this example, there is a base class, ClearCase,

Table 6.2: Target Software Systems

Name LOC # of Files Environment

Ant 212,401 829
CPU: Xeon 2.27GHz(8 core) RAM: 32GB

Synapse 58,418 383

Table 6.3: The Number of Detected Candidates and Elapsed Time on Method Pairs

Name # of Candidates Elapsed Time [s]

Ant 226 178

Synapse 45 66

169

CCCheckout

if (getPreserveTime()) {
…

}
…

if (getReserved()) {
…

} else {
…

}
…

checkOption(cmd)

CCCheckin

checkOption(cmd)

ClearCase ClearCase

checkOption(cmd)
checkOther(cmd)

CCCheckout

checkOther(cmd)

CCCheckin

checkOther(cmd)

if (getReserved()) {
cmd.createArgument().setValue(FLAG_RESERVED);

} else {
cmd.createArgument().setValue(FLAG_UNRESERVED);

}

…
if (getNoWarn()) {

cmd.createArgument().setValue(FLAG_NOCOMMENT);
}

if (getComment() != null) {
getCommentCommand(cmd);

} else {
if (getCommentFile() != null) {

getCommentFileCommand(cmd);
} else {

cmd.createArgument().setValue(FLAG_NOWARN);
}

}

cmd.createArgument().setValue(getViewPath());

pull up

: Code Clone

method : abstract method

extract

extract

A

B

C

A

B

C

if (getComment() != null) {
getCommentCommand(cmd);

} else {
if (getCommentFile() != null) {

getCommentFileCommand(cmd);
} else {

cmd.createArgument().setValue(FLAG_NOCOMMENT);
}

}

if (getNoWarn()) {
cmd.createArgument().setValue(FLAG_NOWARN);

}

if (getPreserveTime()) {
cmd.createArgument().setValue(FLAG_PRESERVETIME);

}

…
cmd.createArgument().setValue(getViewPath());

if (getComment() != null) {
…

} else {
…

}

if (getNoWarn()) {
…

}

checkOther(cmd);

cmd.createArgument().setValue(getViewPath());

Figure 6.27: An Example of Application of Form Template Method with the

Proposed Method

and there are two derived classes, CCCheckout and CCCheckin.There are also

similar methods in the derived classes, checkOption. By applying Form Tem-
plate Method to this target, duplicate statements are pulled up into in the method

checkOption defined in the base class and new methods checkOther are cre-

ated to implement the unique statements in each derived class. Note that there is a

difference of the order of code fragments in code clones: in CCCheckout the code

fragments labeled A, B, and C are executed in this order, however in CCCheckin
the order of code fragments is B-A-C. Therefore, this example is an instance that

the previous techniques cannot detect.

In addition, we applied Form Template Method refactoring to all the 45 can-

didates that the proposed method had suggested in sf Synapse in order to confirm

the adequacy and the efficiency of the proposed method as a technique to support

refactorings. In this experiment, we successfully refactored all the 45 candidates

detected with CRat in sf Synapse, and confirmed that the behavior of the program

is preserved by using test suites attached to the software system. Additionally, we

measured the time needed to each of the refactorings. Figure 6.28 shows the box-

plots of the time needed to apply refactorings. Because CRat suggests that all the

candidates can be refactored at a time, we run CRat at once and apply refactorings

170

0

500

1000

1500

2000

2500

3000

[sec] Elapsed Time to Refactor

Figure 6.28: The Box-Plot of the Time to Apply Form Template Method on

Synapse

using the output. The time to execute CRat to sf Synapse is 95 seconds as shown

in Table 6.3. As a result, we could apply refactorings in few minutes in average

nevertheless we are unfamiliar with the software.

6.7.2 Evaluation of Supporting for Method Groups

Table 6.4 shows the number of detected method groups, the number of them

that have three or more methods, and elapsed time to detect them on each target

software.

Likewise on method pairs, we applied Form Template Method refactoring to

all the six method groups that the proposed method had suggested in sf Synapse.

As a result, we successfully refactored all the candidates and confirmed that the

behavior is preserved by using test suites.

Table 6.4: The Number of Detected Candidates and Elapsed Time on Method

Groups

Name # of Candidates
of Candidates

Elapsed Time [s]
(3 or more methods)

Ant 48 18 195

Synapse 6 2 68

171

6.7.3 Experiment with Subjects

Overview of the Experiment

We conducted an experiment with seven subjects. All the subjects belong to

Graduate School of Information Science and Technology, Osaka University, or De-

partment of Information and Computer Sciences in School of Engineering Science,

Osaka University.

The objective of this experiment is to investigate the effectiveness of the pro-

posed method as refactoring support method. In this experiment, subjects applied

Form Template Method refactoring after a short introduction and practice, and we

measured elapsed time that they needed to finish the refactoring. All the subjects

refactored two method groups described in 6.7.3. Subjects applied refactorings to

one candidate method group with CRat, and they applied refactorings to the other

candidate with CCFinder.

Target Method Groups

As described above, subjects applied Form Template Method to two method

groups. We call the two method groups Candidate-A and Candidate-B, respec-

tively.

Figure 6.29 shows the source code and the outputs of CRat on each candidate.

The features of the two method groups are shown in Table 6.5.

Prodcedure of the Experiment

The procedure of the experiment consists of five steps as follows.

1. We give a brief introduction to subjects.

2. Subjects apply Form Template Method to a simple example.

3. We divide subjects into four groups. Table 6.6 shows the groups and assign-

ments of each subject.

4. Subjects apply refactorings to the assigned method group.

Table 6.5: The Features of Target Method Groups

Label # of Methods # of Common Nodes # of ENSs

Candidate-A 3 19 3

Candidate-B 12 9 5

172

: Common Statements : ENSs

public PlanarImage executeDrawOperation() {
BufferedImage bi = new BufferedImage(width, height,

BufferedImage.TYPE_4BYTE_ABGR_PRE);
Graphics2D graphics = (Graphics2D) bi.getGraphics();

if (!stroke.equals(“transparent”) {
BasicStroke bStroke = new BasicStroke(stroke_width);
graphics.setColor(ColorMapper.getColorByName(stroke));
graphics.setStroke(bStroke);
graphics.draw(new Ellipse2D.Double(0, 0, width, height);

{
if (!fill.equals(“transparent”)) {

graphics.setColor(ColorMapper.getColorByName(fill));
grahpics.fill(new Ellipse2D.Double(0, 0, width, height));

}
for (int i = 0; i < instructions.size(); i++) {

ImageOperation instr = ((ImageOperation) instructions.elementAt(i));
if (instr instanceof DrawOperation) {

PlanarImage img = ((DrawOperation) instr).executeDrawOperation();
graphics.drawImage(img.getAsBufferedImage(), null, 0, 0);

} else if (instr instanceof TransformOperation) {
graphics = (Graphics2D) bi.getGraphics();
PlanarImage image = ((TransformOperation) instr)

.executeTransformOperation(PlanarImage.wrapRenderedImage(bi));
bi = image.getAsBufferedImage();

}
}
return PlanarImage.wrapRenderedImage(bi);

}

(a) Candidate-A

: Common Statements : ENSs

public void execute throws BuildException {
Commandline commandline = new Commandline();
Project aProj = getProjcet();
int result = 0;

if (getViewPath() == null) {
setViewPath(aProj.getBaseDir().getPath());

}

commandLine.setExecutable(getClearToolCommand());
commandLine.createArgument().setValues(COMMAND_MKBL);

checkOption(commandLine);

if (!getFailOnErr()) {
getProject().log(“Ignoring any errors that occur for: “ +

getBaselineRootName(), Ptoject.MAG_VERBOSE);
}

result = run(commandline);
if (Execute.isFailure(reault) && getFailOnErr()) {

String msg = “Failed executing: “ + commandLine.toString();
throw new BuildException(msg.getLocation());

}
}

(b) Candidate-B

Figure 6.29: Candidate Method Groups

173

5. Subjects apply refactorings to the other method group.

Introduction to subjects

At first, we gave an introduction to subjects about the background of this study

and the experimental procedure. The introduction includes the following informa-

tion.

• Code clones and their removal techniques.

• Form Template Method refactoring pattern.

• How to apply Form Template Method.

• How to use CRat.

• The procedure of the experiment.

Practice

Second, we have subjects practice applying Form Template Method with a

simple method group. The target method group consists of two methods, and it

contains two ENSs (note that we count a pair of ENSs (S1, S2) as 1 ENS if S1 �
S2). The purposes of the practice are (1) to have subjects understand refactoring

steps of Form Template Method, and (2) to have subjects be familiar with the

tool.

Table 6.6: Groups of Subjects

Group ID Subjects First Second

1
Subject 1 Candidate-A Candidate-B

Subject 2 CRat CCFinder

2 Subject 5
Candidate-B Candidate-A

CRat CCFinder

3
Subject 6 Candidate-A Candidate-B

Subject 7 CCFinder CRat

4
Subject 3 Candidate-B Candidate-A

Subject 4 CCFinder CRat

174

Grouping

In the next, we divide subjects into four groups. Table 6.6 shows the groups of

subjects. As this table shows, the differences between each group are as follows:

• Which candidate do they refactor first?

• Which candidate do they use CRat?

Apply Refactoring

Subjects apply refactoring to the assigned target method group. For example,

subjects in Group 1 refactor candidate A with CRat. We measure the elapsed time

required to finish the refactoring for every subject.

Result

Table 6.7 shows the elapsed time to finish Form Template Method for every

subject. The numeric characters in this table ‘hh:mm:ss’ indicates that the subject

need hh hours and mm minutes and ss seconds to finish their refactoring tasks.

For example, Subject 1 had finished applying refactoring on Candidate-A in 22

minutes and 45 seconds. ‘N/A’ means that the subject cannot finish refactoring in

the case.

Table 6.7: Elapsed Time to Finish Form Template Method Application

Subjects Group ID Candidate-A Candidate-B

Subject 1 1

with CRat

0:22:45

with CCFinder

0:50:30

Subject 2 1 0:52:00 1:17:00

Subject 3 4 0:19:22 N/A

Subject 4 4 0:09:58 0:27:45

Subject 5 2

with CCFinder
0:12:04

with CRat
0:25:30

Subject 6 3 0:22:55 0:50:28

Subject 7 3 0:35:20 1:04:15

Table 6.8: The Average Time

Candidate-A Candidate-B Both

with CRat 0:28:14 0:46:44 0:34:54

with CCFinder 0:23:26 0:51:45 0:37:36

Both 0:25:50 0:49:15 0:36:09

175

As the table shows, the time required to finish refactoring tasks varies greatly

among subjects. There is also great variability among Candidate-A and Candidate-

B; all the subjects required much time on Candidate-B than Candidate-A. This is

because the degree of difficulty of Candidate-B is higher than that of Candidate-A.

Table 6.8 shows the average time to finish the refactorings. As the table shows,

the elapsed time with CRat is higher than that with CCFinder in Candidate-A,

meanwhile the opposite result is shown in Candidate-B. As a result, CRat cannot

reduce time required for the refactorings in the easier candidate, but it can reduse

time required for the refactorings in the more difficult candidate. Therefore, CRat
is useful in a case that the target method group is complex and it has a number of

the methods.

6.8 Discussion

6.8.1 PDG Creation

There are some other dependences except data, control, and execute depen-

dence that should be considered in PDGs. In the proposed method, dependence of

break and continue statements and dependence of exception are considered. How-

ever, the proposed method does not consider dependence caused by the following

factors.

• Library call.

• Alias.

• Presence of innner classes.

• Reflection.

Of these factors, we can consider dependence caused by library calls by giving

the source code of libraries as additional input of the proposed method. However,

it is quite difficult to give the source code of all the libraries that are used in the

target software systems as the input.

In the experiments of this study, we cannot find instances that suffer any prob-

lems by dependence that are not considered in the proposed method. However,

there is a risk that the proposed method suggests refactoring candidate incorrectly

by these dependence. Thus, it is necessary to consider these factors to make the

proposed method robust.

176

6.8.2 Detection of Common Statements

As described in 6.4.4, the proposed method omits clone pairs except the most

largest one in the case that there are duplications of clone pairs. The purpose of

this is to suggest more nodes as common statements. However, in some cases, this

selection may be not appropriate. We can avoid this problem by delegating the

selection to users. However, the proposed method does not have this function at

present.

6.8.3 Candidates that Need to be Tailored

As we described in Section 6.7.1, we applied Form Template Method refac-

toring to 45 method pairs detected in Synapse on method pairs. In some cases,

we had to make some modifications that CRat did not indicate, or we had to make

some tailoring to the output of CRat to apply the pattern. Table 6.9 shows the modi-

fications or adjustments needed to apply refactorings, and the number of candidates

that needed them. The definitions of the terms in the table are as follows: the term

“modify ENS” means the cases in which we had to modify ENSs or their pairwise

relationships between two methods that CRat suggests; the term “move methods

into base class or change their visibility” means the cases in which some methods

defined in derived classes are used in common processes and we had to move those

methods into the base class and/or change their visibilities; and the term “replace

field references to calls of getter methods” indicates the cases in which some fields

are used in duplicate statements and they are not visible from the base class and we

had to replace references of these fields to calls of getter methods of them.

Issues of Visibility

The proposed method does not consider the visibility of methods and fields

in the source code. Therefore, code fragments that should be pulled up into the

template method can call methods or reference fields that are not accessible from

the base class. In such cases, we need additional modifications on the source code

Table 6.9: The Candidates that Need some Modifications for CRat’s Outputs

of candidates that need no modifications 29

of candidates that need some modifications 16

modify ENS 12

move methods into base class and/or change their visibilities 4

replace field references to calls of getter methods 2

177

to apply Form Template Method. We can apply the pattern to such candidates

by changing the visibility of methods and fields. However, it is not desirable that

code clone removal requires increasing the visibility of methods or fields, because

such changes could cause vulnerability [106]. For fields, if fields have getters and

setters, we can resolve this problem by using them.

Issues of ENSs and their Relationships

The proposed method automatically detects ENSs and correspondence rela-

tionships of ENSs. However, the automatically detected ENSs or relationships of

ENSs may not fit with users’ sensibilities. Although the automatically detected

ENSs and their relationships do not always suitable, they can help users apply

refactoring.

6.8.4 Detection of Method Groups

The proposed method forms method groups from all the methods that satisfy

the requirements described in 6.4.3. However, it may be more suitable to form

method groups from a subset of the methods. We can improve this issue by dele-

gating the selection of methods that should be included in method groups to users.

However, the proposed method currently does not have this functionality.

6.8.5 Threats to Validity of the Experiment with Subjects

In the experiment with subjects, we confirmed that the proposed method re-

duces time to refactor in a case that the target is complex and there is a number of

methods in the target method group. However, we found the opposite result in a

case that the target is not complex. There might be bias of subjects’ abilities, so

that the result might occur. We may get another result with different grouping of

subjects.

6.9 Summary

Form Template Method enables maintainers to remove code clones with

some gaps. Because of its difficulty, there exists some techniques to support Form
Template Method applications. However, the existing techniques still remain

some issues.

This chapter proposed a new technique to assist developers to apply Form
Template Method refactorings to code clones. It detects refactoring candidates

automatically and suggests them to its users. It uses program dependence graphs as

178

its data structure, which enables to assist developers removing code clones having

trivial differences that have no impact on the meanings of the program. Moreover,

it can handle a group of three or more methods, which increases the practicality of

code clones removal.

We implemented the proposed method as a tool, and conducted an experiment

to evaluate the proposed method. We applied Form Template Method to all the

candidates that the tool suggests in an open source software, and confirmed that we

can refactor the candidates with preserving the behavior of the program.

179

Chapter 7

Conclusion

7.1 Contributions

The objective of the work presented in this dissertation is to promote efficien-

cies of development and maintenance of software systems. This dissertation fo-

cused on code clones to achieve the objective, and it presented some studies on

code clones. In summary, it contributes to the followings:

• A survey on research literatures that are related to code clone management.

• An empirical study on impacts of code clones on software evolution by com-

paring stabilities of cloned and non-cloned code.

• A new technique to track code clones across version histories of software

systems based on an enhancement of an existing clone tracking technique,

which is named CRD.

• An empirical investigation on clone genealogies to reveal characteristics of

harmful clones.

• A refactoring support for code clones with Form Template Method refac-

toring pattern.

There are many research papers relating to code clones because code clones

have recieved great attention and interests as a research topic on the field of soft-

ware engineering. This dissertation, therefore, presented a survey at first to look

down at the current state and open issues around code clones. The survey intro-

duced discussions on code clones, specifically on the perspectives of causes of

creation and harmfulness. After that, it introduced techniques, ideas, and findings

181

relating to code clones. The introduction of research achievements loosely classi-

fied them into five categories; detection, removal, prevention, analysis, and finding

bugs.

Based on the survey results, we conducted four studies to promote efficient

management of code clones.

An empirical study on impacts of code clones aimed to reveal whether code

clones are generally harmful or not. The study stood on a basis that code clones

are harmful if code clones are frequently modified than non-cloned code. The study

defined a metric, named modification frequency, to calculate frequencies of modifi-

cations on cloned and non-cloned code, and then it calculated values of the metrics

on 15 open source software systems with four clone detectors. As a result, it was

revealed that cloned code tends to be stable compared to non-cloned code. This

experimental finding indicates that clones do not have seriously negative impacts

on software evolution. However, our detail analysis on the finding revealed that

there existed some instances of code clones that were frequently modified. There-

fore, we can say that not all but a part of clones have negative impacts on software

evolution as a summary of the experimental results.

The dissertation presented the study result on an enhancement of CRD-based
clone tracking. Tracking clones across version histories plays an important role on

analyzing code clones. That is, it enables researchers to analyze evolution of code

clones. Analyzing clone evolution has a wide variety of applications, including

revealing characteristics of clones and finding inconsistencies of clones. Although

some techniques have been proposed to track code clones, they have still some

issues. The clone tracking technique proposed in this dissertation resolved issues

of the previous technqiues by enhancing an existing technique, named CRD. CRD

represents information of the location where a code fragment stands. The original

CRD-based technique to track clones realizes clone tracking with exact matches of

CRDs. On the other hand, the new clone tracking technique proposed in this dis-

sertation uses not only exact matches of CRDs but also similarities of CRDs. The

idea is quite simple, but it was confirmed that the simple idea improved accuracies

of clone tracking through the experimental results on two open source software

systems.

Analyzing clone genealogies with the new tracking technique followed the

enhancement of CRD-based clone tracking. Our first empirical study revealed that

a part of clones have negative impacts, but there still exists some questions on

harmfulness of clones. To reveal such questions, we detected and analyzed clone

genealogies that describe how individual clones evolved in version histories of soft-

ware systems. The detection of clone genealogies was based on the clone tracking

techniques proposed by this dissertation. First, this study revisited some common

findings on clone evolution with the new clone tracking technique, and the experi-

182

mental results supported the common findings. In the next, this study investigated

some open questions, including how many clones have negative impacts on soft-
ware evolution and there is any characteristics of timings when clones were modi-
fied across their lifetimes. As a result, it revealed that approximately 3% of clones

had negative impacts. Hence, this finding empirically supports our fingings that

not all but a part of clones are harmful. Furthermore, it was revealed that clones

tended to be modified more frequently in the former halves of their lifetimes than

the latter halves. This fact indicates an importance for start managing clones in the

earlier stage of their lifetimes.

Finally, we proposed a refactoring support for code clones with Form Tem-
plate Method. One of the ways to cope with harmful code clones is removing them

from source code. However, removing clones should be performed in a cautious

manner because it is quite challenging to complete refactorings on clones without

introducing any failures. This fact indicates a requirement for tool support. In ad-

dition, removing clones will become more difficult in the case they include some

gaps. Form Template Method is a refactoring technique that can be used for

removing clones including some gaps. However, applying the refactoring pattern

is a more complicated task compared to other refactoring applications because of

the complexity of the pattern. Hence, tool supports are strongly required to apply

Form Template Method refactroing pattern. For these reasons, this dissertation

proposed a refactoring support for Form Template Method to cope with harmful

clones after they are detected. The proposed technique automatically detects all the

refactoring candidates that can be refactored by Form Templete Method pattern.

The purpose of automatic detection of refactoring candidates is to reduce costs to

identify where to be refactored. Form Template Method is a complex pattern,

and so detecting candidates of the refactoring pattern is a costly task. Therefore,

supporting for identifications of refactoring candidates is necessary. Furthermore,

the technique shows how to refactor each of detected candidates to be refactored.

This function should reduce costs to apply refactorings. We have developed the

proposed technique as a software tool named CRat, and confirmed the usefulness

and effectiveness of the proposed method through two experiments.

7.2 Future Research Directions

This section discusses open issues and future research directions of the work

presented in this dissertation.

The empirical study presented in Chapter 3 targets 15 software systems with

four different clone detectors, and so we believe that the findings will have suffi-

cient generalities. However, the study has a limitation that the experimental targets

183

of it are only open source software systems. Industrial software systems should

have different characteristics from open source software systems, which makes it

difficult to generalize our findings to industrial software systems. One of the future

directions of this study is to reval characteristics of clones that are frequently mod-

ified. Revealing the characteristics of frequently modified clones should help us to

detect or predict harmful clones.

Clone tracking technique proposed in Chapter 4 has higher accuracy than the

original CRD based clone tracking. However, there exists some instances that

even the improved technique cannot track. These failures of clone tracking will

be resolved by relaxing the conditions for clones to be linked. On the other hand,

relaxed conditions have a risk to introduce more false positives. Therefore, one

of the important future work of this study is to seek more appropriate conditions

for linking clones that improve accuracy of clone tracking without introducing any

false positives.

The empirical study for clone genealogies presented in Chapter 5 has a similar

issue of the study presented in Chapter 3. That is, the study targets only open source

software systems. Hence, as well as the study in Chapter 3, it requires more ex-

periments on industrial software systems to generalize the findings. In addition, it

also has another limitation that it adopts only a block-based clone detector. It is re-

quired to use other clone detectors to generalize the findings although experiments

with other detectors should need much time. Furthermore, the block-based clone

detector used in this study can handle only Java. Therefore, more experiments are

necessary on other software systems written in other programming langauges.

One of the important future work for the refactoring support proposed in Chap-

ter 6 is automatic code transformation. Form Template Method refactoring is a

complex refactoring pattern, so manual refactorings with this pattern have a high

risk to introduce human errors. Automatic code transformation will contribute to

safe refactoring with Form Template Method, and so it is necessary to realize this

functionality to better refactoring support. Futhermore, combining this technique

and other refactoring support techniques for other refactoring patterns will be use-

ful to remove code clones. Form Template Method is nothing more than one of

the choises for clone removal. Therefore, not Form Template Method but other

refactoring patterns should be suited for some cases. Supporting multiple patterns

at a time will be helpful to choose the best solution for individual cases.

The most fundamental and important challenge of our future research is to de-

tect harmful clones. Our investigations on code clones are based on histories of

them, but our reserach does not reach detection of harmful clones. Our findings

suggested to manage a part of code clones, but they cannot answer the question

that what clones should be managed. Idengifying harmful clones must be a ba-

sis of efficient clone management because developers or maintainers need to pay

184

attention only for such harmful clones. For these reasons, we need to develop a

technique to detect harmful clones as a major future research direction.

One of the way to detect harmful clones is to learn characteristics of harmful

clones existed in previous revisions of the software system with machine learning

techniques. However, there is no generic definitions for the harmfulness of clones.

To detect harmful clones, it is necessary to reveal what clones are harmful. This

dissertation regarded clones as harmful if they are frequently modified, or they

are long-lived. However, there will exist some other definitions of harmful clones,

including clones are harmful if they cause any bugs. Hence, much more discussions

are required for harmfulness of clones.

185

Bibliography

[1] IEEE Standard 12207. Standard for Information Technology - Software Life
Cycle Processes, 1996.

[2] ISO/IEC 14764. Software Engineering - Software Maintenance, 1999.

[3] E. Adar and M. Kim. SoftGUESS: Visualization and Exploration of Code

Clones in Context. In Proceedings of the 29th International Conference on
Software Engineering (ICSE 2007), May 2007.

[4] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proceedings of
the 11th International Conference on Data Engineering (ICDE 1995), pages

3–14, Mar. 1995.

[5] L. Aversano, L. Cerulo, and M. Di Penta. How Clones are Maintained:

An Empirical Study. In Proceedings of the 11th European Conference on
Software Maintenance and Reengineering (CSMR 2007), pages 81–90, Mar.

2007.

[6] S. Baba, N. Yoshida, S. Kusumoto, and K. Inoue. Application of Code Clone

Information to Fault-Prone Module Prediction. IEICE Transactions on In-
formation and Systems, J91-D(10):2559–2561, Oct. 2008. (in Japanese).

[7] B. Baker. On Finding Duplication and Near-Duplication in Large Software

Systems. In Proceedings of the 2nd Working Conference on Reverse Engi-
neering (WCRE 1995), pages 86–95, July 1995.

[8] T. Bakota, R. Ferenc, and T. Gyim’othy. Clone Smells in Software Evo-

lution. In Proceedings of the 23rd International Conference on Software
Maintenance (ICSM 2007), pages 24–33, Oct. 2007.

[9] M. Balazinska, E. Merlo, M. Dagenais, and B. Lague. Advanced Clone-

Analysis to Support Object-Oriented System Refactoring. In Proceedings of

187

the 7th Working Conference on Reverse Engineering (WCRE 2000), pages

98–107, Nov. 2000.

[10] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogiannis.

Measuring clone based reengineering opportunities. In Proceedings of
the 6th International Software Symposium on Software Metrics (METRICS
1999), pages 292–303, Nov. 1999.

[11] H. Basit and S. Jarzabek. A Data Mining Approach for Detecting Higher-

Level Clones in Software. IEEE Transactions on Software Engineering,

35(4):497–514.

[12] H. A. Basit and S. Jarzabek. Detecting Higher-level Similarity Patterns in

Programs. In Proceedings of the 13th International Symposium on Foun-
dations of Software Engineering (ESEC/FSE 2005), pages 156–165, Sep.

2005.

[13] H. A. Basit, S. J. Puglisi, W. F. Smyth, A. Turpin, and S. Jarzabek. Efficient

Token Based Clone Detection with Flexible Tokenization. In Proceedings
of the 6th Joint Meeting of the European Software Engineering Conference
and the 15th International Symposium on the Foundations of Software En-
gineering (ESEC/FSE 2007), pages 513–516, Nov. 2007.

[14] S. Bassil and R. K. Keller. Software Visualization Tools: Survey and Anal-

ysis. In Proceedings of the 9th International Workshop on Program Com-
prehension (IWPC 2001), pages 7–17, May 2001.

[15] I. Baxter, A. Yahin, M. Anna L. Moura, and L. Bier. Clone Detection Using

Abstract Syntax Trees. In Proceedings of the 14th International Conference
on Software Maintenance (ICSM 1998), pages 368–377, Mar. 1998.

[16] S. Bellon, R. Koschke, G. Antniol, J. Krinke, and E. Merlo. Comparison

and Evaluation of Clone Detection Tools. IEEE Transactions on Software
Engineering, 31(10):804–818, Oct. 2007.

[17] K. H. Bennett and V. T. Rajlich. Software Maintenance and Evolution: A

Road Map. In Proceedings of the Conference on the Future of Software
Engineering in the 22nd International Conference on Software Engineering
(ICSE 2000), pages 73–87, June 2000.

[18] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams, Y. Zou, and A. E. Has-

san. An empirical study on inconsistent changes to code clones at the release

level. Science of Computer Programming, 77(6):760–776, June 2012.

188

[19] F. Brooks. The Mythical Man-Month. Addison-Wesley, 1975.

[20] E. Burd and J. Bailey. Evaluating Clone Detection Tools for Use during Pre-

ventative Maintenance. In Proceedings of the 2nd International Workshop
on Source Code Analysis and Manipulation (SCAM 2002), pages 36–43,

Oct. 2002.

[21] CCFinderX. available at <http://www.ccfinder.net/
ccfinderx-j.html>.

[22] E. Choi, N. Yoshida, and K. Inoue. What kind of and how clones are refac-

tored? : A case study of three OSS projects. In Proceedings of the 5th
Workshop on Refactoring Tools (WRT 2012), pages 1–7, June 2012.

[23] CloneDR. available at <http://www.semdesigns.com/
Products/Clone/>.

[24] R. Cottrell, J. J. Chang, R. J. Walker, and J. Denzinger. Determing Detailed

Structural Correspondence for Generalization Tasks. In Proceedings of the
6th Joint Meeting of the European Software Engineering Conference and the
15th International Symposium on the Foundations of Software Engineering
(ESEC/FSE 2007), pages 165–174, Nov. 2007.

[25] J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and A. Teterev. CRANE:

Failure Prediction, Change Analysis and Test Prioritization in Practice - Ex-

periences from Windows. In Proceedings of the 4th International Confer-
ence on Software Testing, Verification and Validation (ICST 2011), pages

357–366, Mar. 2011.

[26] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-Sensitive

Hashing Scheme Based on p-Stable Distributions. In Proceedings of the
12th Annual Symposium on Computational Geometry (SCG 2004), pages =
253-262, year = 2004, month = June.

[27] E. Duala-Ekoko and M. P. Robillard. Clone Region Descriptors: Repre-

senting and Tracking Duplication in Source Code. ACM Transactions on
Software Engineering and Methodology, 20(1):3:1–3:31, June 2010.

[28] S. Ducasse, M. Rieger, and S. Demeyer. A Language Independent Approach

for Detecting Duplicated Code. In Proceedings of the 15th International
Conference on Software Maintenance (ICSM 1999), pages 109–118, Aug.

1999.

189

[29] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus. Does Code

Decay? Assessing the Evidence from Change Management Data. IEEE
Transactions on Software Engineering, 27(1):1–12, Jan. 2001.

[30] R. Falke, P. Frenzel, and R. Koschke. Empirical Evaluation of Clone De-

tection Using Syntax Suffix Trees. Empirical Software Engineering, 13(6),

Dec. 2008.

[31] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program Dependence

Graph and Its Use in Optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319–349, 1987.

[32] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Im-
proving the Design of Existing Code. Addison-Wesley Professional, 1999.

[33] N. Göde. Evolution of Type-1 Clones. In Proceedings of the 9th IEEE In-
ternational Working Conference on Source Code Analysis and Manipulation
(SCAM 2009), pages 77–86, Sep. 2009.

[34] N. Göde and J. Harder. Clone Stability. In Proceedings of the 15th Eu-
ropean Conference on Software Maintenance and Reengineering (CSMR
2011), pages 65–74, Mar. 2011.

[35] N. Göde and R. Koschke. Frequency and Risks of Changes to Clones. In

Proceedings of the 33rd International Conference on Software Engineering
(ICSE 2011), pages 311–320, May 2011.

[36] N. Göde and R. Kosheke. Incremental Clone Detection. In Proceedings of
the 13th European Conference on Software Maintenance and Reengineering
(CSMR 2009), pages 219–228, Mar. 2009.

[37] A. Goto, N. Yoshida, M. Ioka, E. Choi, and K. Inoue. How to Extract Differ-

ences from Similar Programs? A Cohesion Metric Approach. In Proceed-
ings of the 7th International Workshop on Software Clones (IWSC 2013),

pages 23–29, May 2013.

[38] J. Harder and N. Göde. Cloned code: stable code. Journal of Software :
Evolution and Process, Mar. 2012. doi: 10.1002/smr.1551.

[39] H. Hata, Y. Higo, and S. Kusumoto. Code Clone Version Control System

for Mining Rich Clone Histories. IPSJ Journal, 54(2):894–902, Feb. 2013.

(in Japanese).

190

[40] B. Hauptmann, V. Bauer, and M. Junker. Using Edge Bundle Views for

Clone Visualization. In Proceedings of the 6th International Workshop on
Software Clones (IWSC 2012), pages 86–87, June 2012.

[41] Y. Hayase, Y. Yong Lee, and K. Inoue. A Criterion for Filtering Code

Clone Related Bugs. In Proceedings of International Workshop on Defects
in Large Software (DEFECTS 2008).

[42] Y. Higo and S. Kusumoto. Code Clone Detection on Specialized PDGs with

Heuristics. In Proceedings of the 15th European Conference on Software
Maintenance and Reengineering (CSMR 2011), pages 75–84, Mar. 2011.

[43] Y. Higo, S. Kusumoto, and K. Inoue. A Survey of Code Clone Detection and

Its Related Techniques. IEICE Transactions on Information and Systems,

91-D(6):1465–1481, June 2008. (in Japanese).

[44] Y. Higo, S. Kusumoto, and K. Inoue. Identifying Refactoring Opportunities

for Removing Code Clones with A Metrics-based Approach. In K. Cai,

editor, Java in Academia and Research, chapter 3, pages 57–82. Concept

Press Ltd., 2011.

[45] Y. Higo, K. Sawa, and S. Kusumoto. Problematic Code Clones Identifi-

cation using Multiple Detection Results. In Proceedings of the 16th Asia-
Pacific Software Engineering Conference (APSEC 2009), pages 365–372,

Dec. 2009.

[46] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue. Simultaneous Modification

Support based on Code Clone Analysis. In Proceedings of the 14th Asia-
Pacific Software Engineering Conference (APSEC 2007), pages 262–269,

Dec. 2007.

[47] Y. Higo, Y. Ueda, M. Nishino, and S. Kusumoto. Incremental Code Clone

Detection: A PDG-based Approach. In Proceedings of the 18th Working
Conference on Reverse Engineering (WCRE 2011), pages 3–12, Oct. 2011.

[48] Y. Higo and N. Yoshida. An Introduction to Code Clone Refactoring. Com-
puter Software, 28(4):42–56, 2011. (in Japanese).

[49] D. Holten. Hierarchical Edge Bundles: Visualization of Adjacency Rela-

tions in Hierarchical Data. IEEE Transactions on Visualization and Com-
puter Graphics, 12(5):741–748, Sep. 2006.

191

[50] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an Environment for the

Proactive Management of Copy-and-Paste Programming. In Proceedings
of the 17th International Conference on Program Comprehension (ICPC
2009), pages 238–242, May 2009.

[51] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-Based

Code Clone Detection: Incremental, Distributed, Scalable. In Proceed-
ings of the 26th International Conference on Software Maintenance (ICSM
2010), pages 1–9, Sep. 2010.

[52] The Japan Patent Office in the Ministry of Economy, Trade, and In-

dustry in Japan. http://www.jpo.go.jp/shiryou/toushin/
kenkyukai/jyouhou_iinkai.htm (in Japanese).

[53] K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W. Park, and

E. Lee. Experience of Finding Inconsistently-Changed Bugs in Code Clones

of Mobile Software. In Proceedings of the 6th International Workshop on
Software Clones (IWSC 2012), pages 94–95, June 2012.

[54] K. Inoue, T. Kamiya, and S. Kusumoto. Code-Clone Detection Methods.

Computer Software, 18(5):529–536, 2001. (in Japanese).

[55] M. Ioka, N. Yoshida, T. Masai, Y. Higo, and K. Inoue. A Tool Support to

Merge Similar Methods with a Cohesion Metric COB. In Proceedings of the
3rd International Workshop on Empirical Software Engineering in Practice
(IWESEP 2011), pages 23–24, Nov. 2011.

[56] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Inter-Project

Functional Clone Detection toward Building Libraries - An Empirical Study

on 13,000 Projects. In Proceedings of the 19th Working Conference on Re-
verse Engineering (WCRE 2012), pages 387–391, Oct. 2012.

[57] P. Jablonski and D. Hou. CReN: A Tool for Tracking Copy-and-Paste Code

Clones and Renaming Identifiers Consistently in the IDE. In Proceedings of
the OOPSLA Workshop on Eclipse Technology eXchange (ETX 2007), pages

16–20, Oct. 2007.

[58] F. Jacob, D. Hou, and P. Jablonski. Actively Comparing Clones Inside The

Clone Editor. In Proceedings of the 4th International Workshop on Software
Clones (IWSC 2010), pages 9–16, May 2010.

[59] K. Jalbert and J. S. Brandbury. Using Clone Detection to Identify Bugs in

Concurrent Software. In Proceedings of the 26th International Conference
on Software Maintenance (ICSM 2010), pages 1–5, Sep. 2010.

192

[60] Java Development Tools. available at <http://www.eclipse.org/
jdt/>.

[61] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD : Scalable and

Accurate Tree-based Detection of Code Clones. In Proceedings of the 29th
International Conference on Software Engineering (ICSE 2007), May 2007.

[62] L. Jiang, Z. Su, and E. Chiu. Context-Based Detection of Clone-Related

Bugs. In Proceedings of the 6th Joint Meeting of the European Software En-
gineering Conference and the 15th International Symposium on the Foun-
dations of Software Engineering (ESEC/FSE 2007), pages 147–156, Nov.

2007.

[63] Z. M. Jiang and A. E. Hassan. A Framework for Studying Clones In Large

Software Systems. In Proceedings of the 7th Working Conference on Source
Code Analysis and Manipulation (SCAM 2007), pages 203–212, Oct. 2007.

[64] J.H. Johnson. Substring Matching for Clone Detection and Change Track-

ing. In Proceedings of the 10th International Conference on Software Main-
tenance (ICSM 1994), pages 120–126, Sep. 1994.

[65] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do Code Clones

Matter? In Proceedings of the 31st International Conference on Software
Engineering (ICSE 2009), pages 485–495, June 2009.

[66] N. Juillerat and B. Hirsbrunner. Toward an Implementation of the “Form

Template Method” Refactoring. In Proceedings of the 7th International
Working Conference on Source Code Analysis and Manipulation (SCAM
2007), pages 81–90, Sep. 2007.

[67] JUNG. avilable at <http://jung.sourceforge.net/>.

[68] Y. Kamei, H. Sato, A. Monden, S. Kawaguchi, H. Uwano, M. Nagura, and

K. Matsumoto. An Empirical Study of Fault Prediction with Code Clone

Metrics. In Proceedings of the Joint Conference of International Workshop
on Software Measurement and International Conference on Software Pro-
cess and Product Measurement (IWSM/Mensura 2011), pages 55–61, Nov.

2011.

[69] T. Kamiya. Classifying Code Clones with Configuration. In Proceedings
of the 4th International Workshop on Software Clones (IWSC 2010), pages

75–76, May 2010.

193

[70] T. Kamiya. Conte*t Clones or Re-thinking Clone on a Call Graph. In

Proceedings of the 6th International Workshop on Software Clones (IWSC
2012), pages 74–75, June 2012.

[71] T. Kamiya, Y. Higo, and N. Yoshida. Evolving and Hot Topics on Code

Clone Detection Techniques. Journal of Computer Software, 28(3):28–42,

Aug. 2011. (in Japanese).

[72] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multi-Linguistic

Token-based Code Clone Detection System for Large Scale Source Code.

IEEE Transactions on Software Engineering, 28(7):654–670, July 2002.

[73] C. Kapser and M. W. Godfrey. Aiding Comprehension of Cloning Through

Categorization. In Proceedings of the 7th International Workshop on Prin-
ciples of Software Evolution (IWPSE 2004), pages 85–94, Sep. 2004.

[74] C. J. Kapser and M. W. Godfrey. “Cloning considered harmful” considered

harmful: patterns of cloning in software. Empirical Software Enginieering,

13(6):645–692, Dec. 2008.

[75] S. Kawaguchi, T. Yamashita, H. Uwano, K. Fushida, Y. Kamei, M. Nagura,

and H. Iida. SHINOBI: A Tool for Automatic Code Clone Detection in the

IDE. In Proceedings of the 16th Working Conference on Reverse Engineer-
ing (WCRE 2009), pages 313–314, Oct. 2009.

[76] M. Kim, L. Bergman, T. Lau, and D. Notokin. An Ethnographic Study of

Copy and Paste Programming Practices in OOPL. In Proceedings of the 3rd
International Symposium on Empirical Software Engineering (ISESE 2004),

pages 83–92, Aug. 2004.

[77] M. Kim and D. Notokin. Using a Clone Genealogy Extractor for Under-

standing and Supporting Evolution of Code Clones. In Proceedings of the
2nd International Workshop on Mining Software Repositories (MSR 2005),

pages 1–5, May 2005.

[78] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An Empirical Study

of Code Clone Genealogies. In Proceedings of the 13th International Sym-
posium on Foundations of Software Engineering (ESEC/FSE 2005), pages

187–196, Sep. 2005.

[79] E. Kodhai, S. Kanmani, A. Kamatchi, R. Radhika, and B. V. Saranya. Detec-

tion of Type-1 and Type-2 Code Clones Using Textual Analysis and Metrics.

194

In Proceedings of 2010 International Conference on Recent Trends in In-
formation, Telecommunication and Computing (ITC 2010), pages 241–243,

Mar. 2010.

[80] R. Komondoor and S. Horwitz. Semantics-Preserving Procedure Extrac-

tion. In Proceedings of the 27th Symposium on Principles of Programming
Language (POPL 2000), pages 155–169, Jan. 2000.

[81] R. Komondoor and S. Horwitz. Using Slicing to Identify Duplication in

Source Code. In Proceedings of the 8th International Symposium on Static
Analysis (SAS 2001), pages 40–56, July 2001.

[82] K. Kontogiannis. Evaluation experiments on the detection of programming

patterns using software metrics. In Proceedings of the 4th Working Confer-
ence on Reverse Engineering (WCRE 1997), pages 44–54, Oct. 1997.

[83] R. Koschke. Survey of Research on Software Clones. In Duplication, Re-
dundancy, and Similarity in Software, Dagstuhl Seminar, July 2006.

[84] R. Koschke. Frontiers on Software Clone Management. In Proceedings of
the Frontiers of Software Maintenance in the 24th International Conference
on Software Maintenance (ICSM 2008), pages 119–128, Oct. 2008.

[85] R. Koschke, R. Falke, and P. Frenzel. Clone Detection Using Abstract Syn-

tax Suffix Trees. In Proceedings of the 13th Working Conference on Reverse
Engineering (WCRE 2006), pages 253–262, Oct. 2006.

[86] J. Krinke. Identifying Similar Code with Program Dependence Graphs. In

Proceedings the 8th Working conference on Reverse Engineering (WCRE
2001), pages 301–309, Oct. 2001.

[87] J. Krinke. A Study of Consistent and Inconsistent Changes to Code Clones.

In Proceedings of the 14th Working Conference on Reverse Engineering
(WCRE 2007), pages 170–178, Oct. 2007.

[88] J. Krinke. Is Cloned Code More Stable than Non-cloned Code? In Proceed-
ings of the 8th International Working Conference on Source Code Analysis
and Manipulation (SCAM 2008), pages 57–66, Sep. 2008.

[89] J. Krinke. Is Cloned Code older than Non-Cloned Code? In Proceedings
of the 5th International Workshop on Software Clones (IWSC 2011), pages

28–33, May 2011.

195

[90] B. Laguë, D. Proulx, J. Mayrand, E. M. Merlo, and J. P. Hudepohl. As-

sessing the Benefits of Incorporating Function Clone Detection in a Devel-

opment Process. In Proceedings of the 13th International Conference on
Software Maintenance (ICSM 1997), pages 314–321, Oct. 1997.

[91] F. Lanubile and T. Mallardo. Finding Function Clones in Web Applications.

In Proceedings of the 7th European Conference on Software Maintenance
and Reengineering (CSMR 2003), pages 379–386, Mar. 2003.

[92] M. Lanza and S. Ducasse. Polymetric Views - A Lightweight Visual Ap-

proach to Reverse Engineering. IEEE Transactions on Software Engineer-
ing, 29(9):782–795, Sep. 2003.

[93] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining Mental Models: A

Study of Developer Work Habits. In Proceedings of the 28th International
Conference on Software Engineering (ICSE 2006), May 2006.

[94] S. Lee, G. Bae, H. S. Chae, D. Bae, and Y. R. Kwon. Automated Scheduling

for Clone-based Refactoring Using a Competent GA. Software: Practice
and Experience, 41(5):521–550, Apr. 2010.

[95] S. Lee and I. Jeong. SDD: High Performance Code Clone Detection Sys-

tem for Large Scale Source Code. In Proceedings of the Object Oriented
Programming Systems Languages and Applications Companion to the 20th
annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA 2005), pages 140–141, Oct.

2005.

[96] H. Li and S. Thompson. Clone Detection and Removal for Erlang/OTP

within a Refactoring Environment. In Proceedings of the 2009 ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipulation (PEPM
2009), pages 169–178, Jan. 2009.

[97] J. Li and M. D. Ernst. CBCD: Cloned Buggy Code Detector. In Proceedings
of the 34th International Conference on Software Engineering (ICSE 2012),

pages 310–320, June 2012.

[98] Z. Li, S. Myagmar, S. Lu, and Y.Zhou. CP-Miner: Finding Copy-Paste

and Related Bugs in Large-Scale Software Code. IEEE Transcations on
Software Engineering, 32(3):176–192, Mar. 2006.

[99] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Very-Large Scale Code

Clone Analysis and Visualization of Open Source Programs Using Dis-

196

tributed CCFinder: D-CCFinder. In Proceedings of the 29th International
Conference on Software Engineering (ICSE 2007), May 2007.

[100] A. Lozano and M. Wermelinger. Evaluating the Harmfulness of Cloning: A

Change Based Experiment. In Proceedings of the 4th International Work-
shop on Mining Software Repositories (MSR 2007), May 2007.

[101] A. Lozano and M. Wermelinger. Assessing the Effect of Clones on Change-

ability. In Proceedings of the 24th International Conference on Software
Maintenance (ICSM 2008), pages 227–236, Sep. 2008.

[102] A. Lozano and M. Wermelinger. Tracking clones’ imprint. In Proceedings
of the 4th International Workshop on Software Clones (IWSC 2010), pages

65–72, May 2010.

[103] A. Lozano, M. Wermelinger, and B. Nuseibeh. Evaluating the Relation be-

tween Changeability Decay and the Characteristics of Clones and Methods.

In Proceedings of the 23rd International Conference on Automated Software
Engineering (ASE 2008), pages 100–109, Sep. 2008.

[104] Lucia, D. Lo, L. Jiang, and A. Budi. Active Refinement of Clone Anomaly

Reports. In Proceedings of the 34th International Conference on Software
Engineering (ICSE 2012), pages 397–407, June 2012.

[105] K. Maeda. Syntax Sensitive and Language Independent Detection of Code

Clones. World Academy of Science, Engineering and Technology, (36):350–

354.

[106] K. Maruyama and T. Omori. A Security-Aware Refactoring Tool for Java

Programs. In Proceedings of the 4th Workshop on Refactoring Tools (WRT
2011), pages 22–28, May 2011.

[107] T. Masai, N. Yoshida, M. Matsushita, and K. Inoue. Supporting Difference

Extraction for Merging Similar Methods. In IEICE Technical Report, pages

45–50, May 2010. (in Japanese).

[108] MASU. avilable at <http://sourceforge.net/projects/
masu/>.

[109] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the Automatic Detec-

tion of Function Clones in a Software System Using Metrics. In Proceed-
ings of the 12th International Conference on Software Maintenance (ICSM
1996), pages 244–253, Nov. 1996.

197

[110] T. J. McCabe. A Complexity Measure. IEEE Transactions on Software
Engineering, SE-2(4):308–320, Dec. 1976.

[111] T. Mens and T. Tourwé. A Survey of Software Refactoring. IEEE Transac-
tions on Software Engineering, 30(2):126–139, Feb. 2004.

[112] E. Merlo and T. Lavoie. Computing Structural Types of Clone Syntactic

Blocks. In Proceedings of the 16th Working Conference on Reverse Engi-
neering (WCRE 2009), pages 274–278, Oct. 2009.

[113] H. Miyazaki, Y. Higo, and K. Inoue. Increasing Code Clone Analysis Effi-

ciency Using Itemset Mining. In Technical Report of IEICE (SIGSS), vol-

ume 108, pages 31–36, July 2008. (in Japanese).

[114] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, and K. A.

Schneider. Comparative Stability of Cloned and Non-cloned Code: An

Empirical Study. In Proceedings of the 27th Annual ACM Symposium on
Applied Computing (SAC 2012), pages 1227–1234, Mar. 2012.

[115] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software

Quality Analysis by Code Clones in Industrial Legacy Software. In Proceed-
ings of the 8th IEEE Internaitional Software Metrics Symposium (METRICS
2002), pages 87–94, June 2002.

[116] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Folding Re-

peated Instructions for Improving Token-Based Code Clone Detection. In

Proceedings of the 12th International Working Conference on Source Code
Analysis and Manipulation (SCAM 2012), pages 64–73, Sep. 2012.

[117] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Gapped Code

Clone Detection with Lightweight Source Code Analysis. In Proceedings
of the 21st International Conference on Program Comprehension (ICPC
2013), pages 93–102, May 2013.

[118] E. Murphy-Hill and A. P. Black. Breaking the Barriers to Successful Refac-

toring. In Proceedings of the 30th International Conference on Software
Engineering (ICSE 2008), pages 421–430, May 2008.

[119] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N. Nguyen.

Clone Management for Evoluving Software. IEEE Transactions on Software
Engineering, 38(5):1008–1026, Sep. 2012.

198

[120] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.

Nguyen. ClemanX: Incremental Clone Detection Tool for Evoluving Soft-

ware. In Proceedings of the 31st International Conference on Software En-
gineering (ICSE 2009), pages 437–438, June 2009.

[121] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.

Nguyen. Clone-aware Configuration Management. In Proceedings of the
24th International Conference on Automated Software Engineering (ASE
2009), pages 123–134, Nov. 2009.

[122] NiCad3 Clone Detector. available at <http://www.txl.ca/
nicaddownload.html>.

[123] T. Omori, K. Maruyama, S. Hayashi, and A. Sawada. A Literature Review

on Software Evolution Research. Computer Software, 29(3):3–28, Aug.

2012. (in Japanese).

[124] W. F. Opdyke. Refactoring: A Program Restructuring Aid in Designing
Object-Oriented Application Frameworks. PhD thesis, University of Illi-

nois, 1992.

[125] J. Ossher, H. Sajnani, and C. Lopes. File Cloning in Open Source Java

Projects: The Good, The Bad, and The Ugly. In Proceedings of the 27th In-
ternational Conference on Software Maintenance (ICSM 2011), pages 283–

292, Sep. 2011.

[126] K. J. Ottenstein. An Algorithmic Approach to the Detection and Prevention

of Plagiarism. ACM SIGCSE Bulletin, 8(4):30–41, Dec. 1976.

[127] J. Pearl. Probablistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, 1988.

[128] F. Rahman, C. Bird, and P. Devanbu. Clones: What is that Smell? In Pro-
ceedings of the 7th IEEE Working Conference on Mining Software Reposi-
tories (MSR 2010), pages 72–81, May 2010.

[129] D. Rattan, R. Bhatia, and M. Singh. Software clone detection: A systematic

review. Information and Software Technology, 55(7):1165–1199, July 2013.

[130] M. Rieger, S. Ducasse, and M. Lanza. Insights into System-Wide Code

Duplication. In Proceedings of the 11th Working Conference on Reverse
Engineering (WCRE 2004), pages 100–109, Nov. 2004.

199

[131] C. K. Roy and J. R. Cordy. A Survey on Software Clone Detection Research.

School of Computing Technical Report 2007-541, Queen’s University, 115,

2007.

[132] C. K. Roy and J. R. Cordy. NICAD: Accurate Detection of Near-Miss In-

tentional Clons Using Flexible Pretty-Printing and Code Normalization. In

Proceedings of the 16th International Conference on Program Comprehen-
sion (ICPC 2008), pages 172–181, June 2008.

[133] C. K. Roy and J. R. Cordy. A Mutation / Injection-based Automatic Frame-

work for Ecaluating Code Clone Detection Tools. In Proceedings of the
International Conference on Software Testing, Verification, and Validation
Workshops (ICSTW 2009), pages 157–166, Apr. 2009.

[134] F. V. Rysselberghe and S. Demeyer. Evaluating Clone Detection Techniques

from a Refactoring Perspective. In Proceedings of the 19th International
Conference on Automated Software Engineering (ASE 2004), pages 336–

339, Sep. 2004.

[135] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. K. Roy, and K. A. Schneider.

Evaluating Code Clone Genealogies at Release Level: An Empirical Study.

In Proceedings of the 10th Working Conference on Source Code Analysis
and Manipulation (SCAM 2010), pages 87–96, Sep. 2010.

[136] R. K. Saha, C. K. Roy, and K. A. Schneider. Visualizing the Evolution of

Code Clones. In Proceedings of the 5th International Workshop on Software
Clones (IWSC 2011), pages 71–72, May 2011.

[137] T. Sasaki, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. A Code Clone

Information Supplement Tool to Support Program Change. IEICE Journal,
J87-D-I(9):868–870, Sep. 2004. (in Japanese).

[138] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue. Finding File Clones in

FreeBSD Ports Collection. In Proceedings of the 7th IEEE Working Con-
ference on Mining Software Repositories (MSR 2010), pages 102–105, May

2010.

[139] Scorpio. available at <http://www-sdl.ist.osaka-u.ac.jp/

˜higo/cgi-bin/moin.cgi/scorpio>.

[140] Simian. available at <http://www.redhillconsulting.com.
au/products/simian/>.

200

[141] T. F. Smith and M. S. Waterman. Identification of Common Molecular Sub-

sequences. Journal of Molecular Biology, 147(1):195–197, 1981.

[142] R. Tairas and J. Gray. An Information Retrieval Process to Aid in the Anal-

ysis of Code Clones. Empirical Software Engineering, 14(1):33–56, Feb.

2009.

[143] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta. An empir-

ical study on the maintenance of source code clones. Empirical Software
Engineering, 15(1):1–34, Feb. 2010.

[144] R. Tiarks, R.Koshcke, and R. Falke. An Assessment of Type-3 Clones as

Detected by State-of-the-Art Tools. In Proceedings of the 9th IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation
(SCAM 2009), pages 67–76, Sep. 2009.

[145] M. Toomim, A. Begel, and S. L. Graham. Managing Duplicated Code with

Linked Editing. In Proceedings of the 2004 Symposium on Visual Languages
and Human Centric Computing (VL-HCC 2004), pages 173–180, Sep. 2004.

[146] N. Tsantalis and A. Chatzigeorgiou. Identification of Extract Method Refac-

toring Opportunities for the Decomposition of Methods. Journal of Systems
and Software, 84(10):1757–1782, Oct. 2011.

[147] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Maintenance

Support Environment Based on Code Clone Analysis. In Proceedings of
the 8th IEEE Internaitional Software Metrics Symposium (METRICS 2002),

pages 67–76, June 2002.

[148] R. D. Venkatasubramanyam, H. K. Singh, and K. Ravikanth. A Method

for Proactive Moderation of Code Clones in IDEs. In Proceedings of the
6th International Workshop on Software Clones (IWSC 2012), pages 62–66,

June 2012.

[149] H. V. Vliet. Software Engineering: Principles and Practices. John Wiley &

Sons, 2008.

[150] W. Wang and M. W. Godfrey. We Have All of the Clones, Now What?

Toward Integrating Clone Analysis into Software Quality Assessment. In

Proceedings of the 6th International Workshop on Software Clones (IWSC
2012), pages 88–89, June 2012.

201

[151] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and H. Mei. Can I Clone

This Piece of Code Here? In Proceedings of the 27th International Confer-
ence on Automated Software Engineering (ASE 2012), pages 170–179, Sep.

2012.

[152] M. Wattenberg. Arc Diagrams: Visualizing Structure in String. In Proceed-
ings of the IEEE Symposium on Information Visualization (InfoVis 2002),

pages 110–116, Oct. 2002.

[153] M. Weiser. Program Slicing. In Proceedings of the 5th International Con-
ference on Software Enginieering (ICSE 1981), pages 439–449, Mar. 1981.

[154] R. Wettel and R. Marinescu. Archeology of Code Duplication: Recovering

Duplication Chains From Small Duplication Fragments. In Proceedings of
the 7th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC 2005), Sep. 2005.

[155] M. D. Wit, A. Zaidman, and A. V. Deursen. Managing Code Clones Using

Dynamic Change Tracking and Resolution. In Proceedings of the 24th In-
ternational Conference on Software Maintenance (ICSM 2009), pages 169–

178, Sep. 2009.

[156] Z. Xing, Y. Xue, and S. Jarzabek. CloneDifferentiator: Analyzing Clones

by Differentiation. In Proceedings of the 26th International Conference on
Automated Software Engineering (ASE 2011), pages 576–579, Nov. 2011.

[157] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T. Sano. Industrial Appli-

cation of Clone Change Management System. In Proceedings of the 6th In-
ternational Workshop on Software Clones (IWSC 2012), pages 67–71, June

2012.

[158] J. Yang, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Filtering Clones

for Individual User Based on Machine Leraning Analysis. In Proceedings
of the 6th International Workshop on Software Clones (IWSC 2012), pages

76–77, June 2012.

[159] J. Yang, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. A Method for

Identifying Useful Code Clones with Machine Learning Techniques Based

on Similarity Between Clones. IPSJ Journal, 54(2):807–819, Feb. 2013. (in

Japanese).

[160] N. Yoshida, T. Hattori, Y. Hayase, and K. Inoue. Retrieving Similar

Code Fragments Based on Synonymous Word Identification. IPSJ Journal,
50(5):1506–1509, May 2009. (in Japanese).

202

[161] N. Yoshida, T. Ishio, M. Katsushita, and K. Inoue. Retrieving Similar Code

Fragments based on Identifier Similarity for Defect Detection. In Proceed-
ings of International Workshop on Defects in Large Software (DEFECTS
2008), pages 41–42, July 2008.

[162] K. Yoshimura and R. Mibe. Visualizing Code Clone Outbreak: An Industrial

Case Study. In Proceedings of the 6th International Workshop on Software
Clones (IWSC 2012), pages 96–97, June 2012.

[163] G. Zhang, X. Peng, and Z. Xing W. Zhao. Cloning Practices: Why Devel-

opers Clone and What can be Changed. In Proceedings of the 28th Interna-
tional Conference on Software Maintenance (ICSM 2012), pages 285–294,

Sep. 2012.

[164] Y. Zhang, H. A. Basit, S. Jarzabek, D. Anh, and M. Low. Query-based Fil-

tering and Graphical View Generation for Clone Analysis. In Proceedings of
the 23rd International Conference on Software Maintenance (ICSM 2008),

pages 376–385, Oct. 2008.

[165] M. F. Zibran and C. K. Roy. A Constraint Programming Approach to

Conflict-aware Optimal Scheduling of Prioritized Code Clone Refactoring.

In Proceedings of the 11th International Working Conference on Source
Code Analysis and Manipulation (SCAM 2011), pages 105–114, Sep. 2011.

203

