

Title	In vivo病態モデル動物における主要評価項目とメタ ボライトの相関に関する研究
Author(s)	藤枝,裕介
Citation	大阪大学, 2013, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/26169
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

博士学位論文

In vivo 病態モデル動物における主要評価項目と メタボライトの相関に関する研究

藤枝 裕介

2013年6月

大阪大学大学院工学研究科

目 次

第1章 緒論	1
1-1. 医薬品研究開発の現状	1
1-2. 創薬におけるメタボロミクスの役割	5
1-3. In vivo 病態モデル動物へのメタボロミクス技術の活用とその現状	9
1-4. 本研究の目的	10
第2章 ザイモサン誘発腹膜炎モデルを用いた炎症収束に関与する新規ターゲット探索	12
2-1. 緒言	12
2-2. 実験方法	14
2-2-1. 試薬	14
2-2-2. 動物実験	14
2-2-3. ザイモサン誘発腹膜炎モデルにおける腹腔内白血球の経時的変化	14
2-2-4. ザイモサン誘発腹膜炎モデルにおける腹腔内洗浄液(PWF)及び血漿中のメ	タボ
ローム解析	15
ローム解析 2-2-5. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の測定	15 . 18
ローム解析 2-2-5. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の測定 2-2-6. 統計解析	15 . 18 19
ローム解析 2-2-5. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の測定 2-2-6. 統計解析 2-3. 結果	15 . 18 19 19
ローム解析 2-2-5. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の測定 2-2-6. 統計解析 2-3. 結果 2-3. 結果 2-3-1. ザイモサン誘発腹膜炎モデルにおける腹腔内白血球の経時的変化	15 . 18 19 19 19
ローム解析 2-2-5. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の測定 2-2-6. 統計解析 2-3. 結果 2-3. 結果 2-3-1. ザイモサン誘発腹膜炎モデルにおける腹腔内白血球の経時的変化 2-3-2. PWF 及び血漿中のサイトカイン及びケモカイン濃度の経時的変化	15 . 18 19 19 19 21
 ローム解析 2-2-5. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の測定 2-2-6. 統計解析 2-3. 結果 2-3. 結果 2-3-1. ザイモサン誘発腹膜炎モデルにおける腹腔内白血球の経時的変化 2-3-2. PWF 及び血漿中のサイトカイン及びケモカイン濃度の経時的変化 2-3-3. ザイモサン誘発腹膜炎後の PWF 中のメタボローム変化 	15 . 18 19 19 19 21 23
 ローム解析 2-2-5. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の測定 2-2-6. 統計解析 2-3. 結果 2-3.1. ザイモサン誘発腹膜炎モデルにおける腹腔内白血球の経時的変化 2-3-2. PWF 及び血漿中のサイトカイン及びケモカイン濃度の経時的変化 2-3-3. ザイモサン誘発腹膜炎後の PWF 中のメタボローム変化 2-3-4. ザイモサン誘発腹膜炎後の血漿中のメタボローム変化 	15 . 18 19 19 19 21 23 26
 ローム解研 2-2-5. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の測定 2-2-6. 統計解析 2-3. 結果 2-3.1. ザイモサン誘発腹膜炎モデルにおける腹腔内白血球の経時的変化 2-3-2. PWF 及び血漿中のサイトカイン及びケモカイン濃度の経時的変化 2-3-3. ザイモサン誘発腹膜炎後の PWF 中のメタボローム変化 2-3-4. ザイモサン誘発腹膜炎後の血漿中のメタボローム変化 2-3-5. PWF 中メタボライト濃度推移と IL-10 濃度推移の相関 	15 . 18 19 19 19 21 23 26 28
 ローム解研 2-2-5. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の測定 2-2-6. 統計解析 2-3. 結果 2-3.1. ザイモサン誘発腹膜炎モデルにおける腹腔内白血球の経時的変化 2-3-2. PWF 及び血漿中のサイトカイン及びケモカイン濃度の経時的変化 2-3-3. ザイモサン誘発腹膜炎後の PWF 中のメタボローム変化 2-3-4. ザイモサン誘発腹膜炎後の血漿中のメタボローム変化 2-3-5. PWF 中メタボライト濃度推移とIL-10 濃度推移の相関 2-3-6. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の生成 	15 . 18 19 19 19 21 23 26 28 . 31
 ローム解析 2-2-5. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の測定 2-2-6. 統計解析 2-3. 結果 2-3.1. ザイモサン誘発腹膜炎モデルにおける腹腔内白血球の経時的変化 2-3-2. PWF 及び血漿中のサイトカイン及びケモカイン濃度の経時的変化 2-3-3. ザイモサン誘発腹膜炎後の PWF 中のメタボローム変化 2-3-4. ザイモサン誘発腹膜炎後の血漿中のメタボローム変化 2-3-5. PWF 中メタボライト濃度推移と IL-10 濃度推移の相関 2-3-6. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の生成 2-4. 考察 	15 . 18 19 19 19 21 23 26 28 . 31 32

第3章	ラット脊髄損傷モデルにおけるメタボローム解析 一神経行動学的評価とメタボライ	'ト
	の相関-	39
3-1.	緒言	39
3-2.	実験方法	10
3-2	2-1. 試薬	10
3-2	2-2. 実験動物	10
3-2	2-3. 脊髄損傷モデルラットにおける脊髄組織中のメタボローム解析	11
3-2	2-4. 脊髄損傷モデルラットにおける脊髄組織中の NAA 定量	13
3-2	2-5. 統計解析	14
3-3.	結果	15
3-:	3-1. 脊髄損傷後における脊髄組織中メタボライト組成の変化	15
3-:	3-2. 脊髄中メタボライト濃度と BBB スコアの相関	51
3-:	3-3. 脊髄中 NAA 濃度とBBB スコアの相関	56
3-4.	考察	58
3-5.	小括	54
第4章	結論と展望	3 5
4-1.	結論	3 5
4-2.	今後の展望	66
謝辞		71
補足デ	一夕	72
引用文	· 献	35
発表論	·-··· 文	32
""" "" "	★ ()	22
1 22 /5	~	-

第1章 緒論

1-1. 医薬品研究開発の現状

近年、医薬品開発における成功確度の低下が問題視されており、1年あたりの新規医 薬品承認数は、1990年代に比べ2000年代では低下傾向にある。図 1-1 に、1996年か ら2010年までに米国食品医薬品局(FDA)が承認した新規医薬品及び新規生物製剤医 薬品の品目数の推移を示すが¹、2000年代では承認医薬品の品目数が少なくなっており、 新薬がなかなか上市されない現状を示している。

Year

図 1-1 FDA における新規承認医薬品の品目数推移

毎年の FDA の Center for Drug Evaluation and Research (CDER)によって承認された 新規医薬品(合計と生物製剤)数。 (Osborn, R., *Nat Biotechnol.* 31(3):100-103, 2013(引用文献 1)中の Fig. 1 引用)。

製薬企業は新薬の研究開発(R&D)に毎年多額の費用を掛けているものの、承認された 新薬数は上述のように横ばいであり、R&D における生産性の低下は世界的な問題となっている²。新薬承認数が増加しない点に関しては FDA も問題視しており、FDA 主導 で「クリティカルパスイニシアティブ」 (http://www.fda.gov/ScienceResearch/ SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/ucm077262.htm)を 2004 年より立ち上げ、2006 年に「クリティカルパスオポチュニティリスト」 (http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPa thOpportunitiesReports/UCM077258.pdf)を発表したものの、一新薬あたり研究開発コス トは指数関数的に年々増加しており(図 1-2 参照)³、最近では医薬品一品目あたりの 研究開発にかかる費用は平均で約 10 億ドルを超えている³。臨床試験の大規模化がその 原因の一つとして挙げられるが、活発な研究開発にもかかわらず、開発途中で中止せざ るをない状況に直面し、医薬品として承認に至らないケースも多いと考えられる。

医薬品の研究開発は大きく研究段階と開発段階の2つに分けられる。研究段階では、 細胞や実験動物を用いて新規ターゲット探索・同定、薬効や安全性の研究を行い、ヒト で薬効を発揮しかつ副作用が少ないと予想される候補物質を選抜する。開発段階では、 ヒトを対象とした臨床試験を行い、疾患に対して有効性を発揮し、治療効果が認められ ること、重篤な副作用が発現しないことを確認する。その後、各国審査当局に医薬品の 承認申請を行い、厳正な審査を受けた後、医薬品として認可される。図 1-3 に製薬企 業で行われている医薬品の一般的な研究開発スキームを示す。ターゲットの同定、バリ デーションを行った後、スクリーニング等で候補物質を見出し、いくつかの段階を経て、 ヒトで薬効が期待され、副作用が出ないと予想される数物質まで候補物質を絞り込む², ⁴。その後3段階の臨床試験を実施し、ヒトにおける有効性・安全性の確認や他剤との 比較を実施するが、臨床開発段階の成功率は平均でわずか10%程度との報告もある⁵。 つまり、大部分の医薬品候補物質は、臨床試験段階でその開発が断念されているのが現 状である。

図 1-3 医薬品の研究開発スキーム

低分子化合物の標準的な開発スキーム。ターゲットの同定、バリデーションを行った 後、スクリーニング等で候補物質を見出し、ヒトで薬効が期待され、副作用が出ない と予想される数化合物までまで候補物質を絞り込む。前臨床段階では GLP 対応の 毒性試験を実施し、臨床試験実施に問題がないことの最終確認を行う。臨床試験は 一般的に、主に副作用や体内動態を確認する Phase I 試験、ヒトにおける薬効を確 認する比較的小規模の Phase II 試験及びプラセボや対照薬との比較を行う大規模 な Phase II 試験の 3 段階に分けられる。

最も成功確率 p(TS)が低いのは、臨床での薬効確認が主な目的の Phase II 試験であり、平均的な成功確率は 1/3 と極端に低い。

(Paul, S. M. et al. *Nature Rev. Drug Discovery* 9, 203-214, 2010(引用文献 4)中のFig. 2 引用)

製薬企業の低い R&D 生産性の原因解明に関しては、企業や規制当局の研究者らが複数の分析を実施しており、研究開発の最大のボトルネックは Phase II 試験であるとの分析結果は共通している^{4,6}。実際、Phase II 試験の平均的な成功確率は、およそ 1/3 であり極端に低い(図 1-3)⁴。Phase II 試験は臨床での有効性確認が主な目的であることか

ら、この低い成功率は臨床での有効性予測が難しいことを示しており、実際 Phase II 試 験の失敗原因は半分以上が有効性に起因することが報告されている(図 1-4 a 参照)^{6,7}。 また開発段階の費用の大部分を占める Phase III 試験においても、試験に失敗した候補物 質に関してその原因の約 2/3 が薬効に起因することが報告されている(図 1-4 b 参照) ^{7,8}。ヒトにおける薬効・有効性をいかに早期に精度良く予測するかが、新薬の研究開発 における最大の課題である。

図 1-4 Phase I 及び Phase II 段階における医薬品開発の中止理由

(Allison, M. R. *Nature Biotechnology* 30, 41-49, 2012 (引用文献 7)中の Fig. 1 引用)

a) Phase II 試験 b) Phase II 試験 c おける中止理由。

開発中止の原因の大半は Efficacy、つまり薬効・有効性が証明できなかったためである。

臨床段階において薬効・有効性が大きな開発中断理由となっていることの背景には、 新薬候補物質のヒトにおける有効性が、前臨床段階やスクリーニング段階で充分に予測 できていないことが挙げられる。ヒトにおける有効性予測が困難な理由として、病態モ デル動物とヒト病態・疾患の相違、種差、*in vitro*と*in vivo*の差、ヒトにおける多様性 の大きさなど様々な理由が考えられるが、より正確にヒトにおける有効性を予測するた めに、新しい手法を取り入れるなどして、既存の評価方法の根本的な改革が求められて いる。

1-2. 創薬におけるメタボロミクスの役割

前述のように、停滞する医薬品開発に歯止めをかける目的で、米国 FDA は 2004 年に 「クリティカルパス・イニシアティブ」を、2006 年に「クリティカルパス・オポチュ ニティリスト」を発表した。クリティカルパス・オポチュニティリストには医薬品の研 究開発プロセスを改革し、より早く、より低コストで医薬品を開発するための施策が提 案されており、新規医薬品の開発における効率性、予測性及び生産性の向上に寄与し、 緊急性が高く、対応可能な事項が列記されている(表 1-1 参照)。

表 1-1 FDA クリティカルパス・オポチュニティリスト

分類	内容
トピック1 :	より優れた評価手段-新しいバイオマーカーと疾患モデルの開発
トピック2 :	臨床試験の効率化
トピック3 :	生物情報科学(Bioinformatics)の活用
トピック4 :	21世紀型の製造への転換
トピック5 :	公衆衛生上の緊急の必要性に対応するための製品の開発
トピック 6:	リスク集団としての小児

トピック1として挙げられている「新しいバイオマーカーと疾患モデルの開発」は医 薬品開発の成功確度向上のための最重要分野の一つであると述べられており、バイオマ ーカー開発の強力な手段として、オミクス技術が挙げられている。

オミクス技術とは、ゲノミクス、プロテオミクス、メタボロミクスなどを総称した呼称であり、総体を解析する技術のことである。遺伝子の総体であるゲノムを網羅的に研究することをゲノミクス、ゲノム DNA から転写される mRNA の総体であるトランスクリプトームを網羅的に研究することをトランスクリプトミクス、タンパク質の総体であるプロテオームを網羅的に研究することをプロテオミクス、代謝産物(メタボライト)の総体であるメタボロームを網羅的に研究することをメタボロミクスと呼ぶ⁹。ゲノミクス、トランスクリプトミクス、プロテオミクス及びメタボロミクスの関係を図 1-5 に示す¹⁰。

図 1-5 ゲノミクス、トランスクリプトミクス、プロテオミクス及びメタボロミクスの関係 (Kaddurah-Daouk, R. et. al., Neuropsychopharmacology REVIEWS 34, 173–186 2009 (引用文献 10)中の Fig. 1 引用)

メタボロミクスは、比較的新しいオミクス研究分野の一つで、細胞の活動によって生 じる特異的なメタボライトを網羅的に解析する技術である。メタボロミクスの最終的な 目的としては、代謝に関する包括的な理解を得ること、内的要因(遺伝、変異など)及 び外的要因(環境変化など)に対する生体の代謝反応を捉えることである¹¹。他のオミ クス技術と比較した場合、メタボロミクスの特徴としては、表現系(フェノタイプ)に 近いこと、大部分のメタボライトは種を超えて共通であること、対象となるメタボライ トの数が比較的少ないこと、生化学的かつ定量的な情報が再現性良く得られる点が挙げ られる。一方で測定対象のメタボライトが様々な物性を有することから、単一の測定プ ラットフォームで全てのメタボライトを網羅することが現時点では不可能なことが最 大の問題点である。現状ではそれぞれの分析機器によって得られたメタボライトプロフ ァイル情報の範囲内で種々の応用研究が行われており、複数の分析機器を組み合わせて 補完的に使用することで、メタボライトを網羅していく方向性にある。メタボライト分 析における物質の分離手段としては、主にガスクロマトグラフィ(GC)、液体クロマトグ ラフィ(LC)及びキャピラリ電気泳動(CE)が、検出機器としては、主に核磁気共鳴分光分 析装置(NMR)と質量分析装置(MS)が用いられている^{11,12}。表 1-2 にメタボロミクスに用 いられている分析機器の長所及び短所を示す。近年の MS の劇的な性能向上により、 MS ベースのメタボロミクスは大きな進歩が見られている。

表 1-2 メタボロミクスに用いられている分析機器のまとめ 長所(√)及び短所(x)

(Wei, R. *Current Drug Metabolism* 12, 345–358, 2011 (引用文献 11)中の Table 1 を改変)

コアテクノロジー	フロントエンドでの分離	プラットフォーム
MS (分子レベルの検出)	LC (極性ベース)	LC-MS GC-MS CE-MS
✔高い感度	✓極性から非極性化合物の測定、不揮発性物	✔ 全タイプのメタボライト測定
✔高い選択性	質や熱に不安定な物質の測定	✔高い感度
✔汎用性	✔様々な手法による分離と多種類のカラム	✔複数のプラットフォームを組み合わ
✔ ハイスループット測定	✔ 簡便な前処理、または前処理なしでの測定	せることにより、分離能の向上が期待
✔LC/GC/CEとの組み合わせ	✓短い分析時間(1サンプル数分~)	できる
✔ 比較的単純なスペクトル	x 比較的低い分解能とピークキャパシティ	✓フロントエンド分離の多重化により、
✔費用対効果に優れる	GC (極性ベース)	スループット改善が期待できる(主に
x 構造情報取得に限界	✓熱に安定な揮発性化合物の測定	LC-MS)
X 破壊測定	✓ 高い分離能とピークキャパシティ	✔最大同時測定数:数百~数千
	x 前処理に時間が掛かる(誘導体化)	
	x 分析時間がLCに比べ長い	
	GC (極性ベース)	
	✓ 高い分離能とピークキャパシティ	
	✓ サンプル消費量が少ない	
	x 再現性が悪い	
	x 移動相のMSとの相性が悪い	
	x 分析時間がLCに比べ長い	
NMR (官能基ベースの検出)	LC(極性ベース)	LC-NMR
✓非破壊測定	上記を参照	✓複雑なサンプルの分離能向上
✔構造情報が多く取得できる		x NMRの検出速度が、LCでの分離に
✔定量性がある		追いつかない
x低い感度		
× 組み合わせに限りがある		
x 複雑なスペクトル		
x 費用対効果が低い		

医学領域へのメタボロミクスの期待は高く、人間の健康や病気の理解を進めるとともに、疾患の予防、診断及び治療の目的での個別化医療の発展をサポートする大きな潜在力を有している¹¹。Kaddurah-Daouk らは創薬におけるメタボロミクスの役割について、

以下の5つを提唱している¹⁰。

(1) Added information about mechanisms of disease;

疾患のメカニズムに関する情報を取得する。

- Identification of prognostic, diagnostic, and surrogate markers for a disease state;
 病気の予後や診断、サロゲートとなるマーカーを同定する。
- (3) The ability to subclassify disease based on metabolic profiles;

メタボライトのプロファイルにより、疾患を細分類する。

(4) Identification biomarkers for drug response phenotypes and for development of metabolic side effects (pharmacometabolomics);

薬剤反応性のバイオマーカー同定や副作用バイオマーカーの開発。

(5) Added tools in the process of drug discovery and drug development; 創薬開発の過程で必要となる評価ツールを得る。

メタボロミクスでは、プロテオミクスやトランスクリプトミクスでは適用が難しい尿 や血液を測定できること、種を超えて共通のものが多い、定量的な情報が再現性良く得 られるという特徴から、疾患や薬効、副作用を定量的に評価できるバイオマーカー探索 の有用な手段として期待されてきた。FDAはバイオマーカーを、「通常の生物学的過程、 病理学的過程、もしくは治療的介入に対する薬理学的応答の指標として、客観的に測定 され評価される特性」と定義している¹³。実際、前立腺がん¹⁴や大腸がん¹⁵の診断マー カーや肝毒性の副作用マーカー¹⁶の発見等に、メタボロミクスの技術が適用され、多数 の成果が得られている。またメタボロミクスは、バイオマーカー探索だけではなく、新 規評価基準の探索及び応用、創薬ターゲットのバリデーション、細胞または動物モデル の特性評価、薬剤の作用機序解明などへの応用も期待されている¹¹。

1-3. In vivo 病態モデル動物へのメタボロミクス技術の活用とその現状

1-1 項で、新薬候補物質のヒトにおける有効性が、前臨床段階において充分に予測で きていないことを挙げ、既存の評価方法の根本的な改革が必要だと述べた。前臨床段階 における有効性予測向上の鍵は、適切なターゲットの取得及び選択、そして臨床で応用 可能なバイオマーカーの探索にあると考える。

新薬の研究開発では、通常、動物またはヒトの細胞や組織を用いた in vitro の検討、 そして病態モデル動物を用いた in vivo の検討を実施し、ヒトにおいて有効性が得られ ると期待される候補物質を最終的に臨床試験で評価する¹⁷。各種 in vivo 病態モデルを用 いた評価は、新薬候補物質のヒトにおける有効性・安全性の予測のみならず、新規創薬 ターゲットの取得やバリデーション^{18,19}、バイオマーカー探索^{20,21}においても極めて重 要で、創薬における必須の評価項目である。ただ in vivo 病態モデルと臨床ヒト病態の 間には、種差やモデルの妥当性、評価方法の違いなど問題点も多く、実験動物で得られ た結果が必ずしもそのままヒトへ適用できるわけではない。これら問題点が積み重なり、 臨床試験での失敗につながっていると考えられる。

本研究では、評価法改革の一環として、in vivo 病態モデル動物におけるメタボロミクスの適用に焦点を当てることとした。前項で述べたように、メタボロミクスの特徴としては、フェノタイプに近いこと、大部分のメタボライトが種を超えて共通であること、 生化学的かつ定量的な情報が再現性良く得られる点が挙げられる。メタボロミクスを in vivo 病態モデル動物に適用することにより、モデルの妥当性検証や、種を超えた共通の 生化学的な指標の取得などが期待される。

メタボロミクスのような網羅的な測定ではないが、生体内のメタボライトを病態マー カーや有効性の評価基準として用いてきた歴史は古く、例えば血糖値や尿中クレアチニ ンなどが代表例として挙げられる。またメタボロミクスの *in vivo* 病態モデル評価への 適用に関しても、比較的早い段階からその有用性が唱えられており²²、実際に複数の実 施例が報告されている^{23,24}。一例として Shiomi らは、硫酸デキストラン(DSS) 誘発大 腸炎モデルに GC-MS ベースのメタボロミクスを適用し、DSS 誘発大腸炎モデルマウス

9

の大腸組織及び血漿中のグルタミンが顕著に低下していることを確認した²⁵。また、同 モデルマウスにグルタミンを供給することで大腸炎症状が改善することを示した(図 1-6 参照)。

図 1-6 DSS モデルマウスにおけるグルタミン投与による大腸炎症状の改善 (Shiomi, Y. et al., *Inflammatory Bowel Diseases* 17, 2261-2274, 2011 (引用文 献 25)中の Fig.3 引用)

また Ganti らは、腎臓癌のマウス xenograft モデルにおいて LC-MS 及び GC-MS を用 いたメタボロミクスを適用し、cinnamoylglycin や nicotinamide、cysteine-glutathione disulfide などが、血清と癌組織両方で有意に変化していることを確認し、これらメタボ ライトがバイオマーカーとして有用である可能性を示した²⁶。

これら *in vivo* 病態モデル動物を用いた報告は、新規創薬ターゲットの発見やバイオ マーカーの探索にメタボロミクスが有用であることを示しており、メタボロミクスは既 存の評価方法を根本的に変える可能性がある。メタボロミクスの特徴を生かすことによ り、*in vivo* 病態モデルとヒト病態・疾患を橋渡しすることが可能となり、ヒトにおける 有効性の予測向上に大きな役割を果たすと考える。

1-4. 本研究の目的

前項で述べたように、in vivo 病態モデル動物へのメタボロミクス技術の適用は、既存

の評価法を大きく変える可能性がある。メタボロミクスによるメタボライトプロファイ リングは、創薬の初期段階の新規創薬ターゲットの探索から、前臨床・臨床段階のバイ オマーカー同定まで、新薬開発の幅広い範囲で活用できると考えられる。本研究の最大 の目的は、in vivo 病態モデル動物にメタボロミクスを適用し、新規創薬ターゲットの取 得や臨床で応用可能なバイオマーカー探索におけるメタボロミクスの可能性を検討す ることである。本論文では、第2章でマウス in vivo ザイモサン誘発腹膜炎モデルにメ タボロミクスを適用し、炎症の活性化及び収束に関与する重要なプロセスを探索した例 を紹介する。また第3章で、ラット in vivo 脊髄損傷モデルにメタボロミクスを適用し、 メタボロームが神経行動学的スコアと高い相関を示し、神経行動学的症状の重篤度を反 映するバイオマーカー候補物質を見出した事例を紹介する。なお両検討においては、in vivo 病態モデルの主要評価項目とメタボライトの相関に着目し、高い相関を示すメタボ ライトから、炎症の活性化及び収束に関与する重要なプロセスを発見し、脊髄損傷にお けるバイオマーカー候補を取得した。フェノタイプに近いことがメタボロミクスの特徴、 長所の一つであり、in vivo 病態モデル動物の主要評価項目とメタボライトの相関を利用 するのは、多数のメタボライトの中から新規創薬ターゲットやバイオマーカーにつなが る候補物質を選択する際に有用と考えられる。本論文ではその有用性に関しても議論し たい。

第2章 ザイモサン誘発腹膜炎モデルを用いた炎症収束に関与する 新規ターゲット探索

2-1. 緒言

炎症は、病原菌や傷害を受けた細胞、各種刺激性物質などの有害な刺激から生体を防 御する基本的な応答である。通常、刺激物等が除去されると炎症反応は低下するが、炎 症が終了しなかった場合、組織に傷害を与える慢性炎症につながってくる²⁷。炎症の慢 性化を避けるため、生物は炎症反応を減弱させる"炎症の収束"と言われるメカニズム を発達させてきた。図 2-1 に炎症の収束過程を模式的に示した²⁸。炎症の収束過程にお いては、炎症部位でアポトーシス細胞や組織屑がマクロファージによって取り込まれク リアランスされる。さらに、異物を貪食した細胞および浮腫は、リンパ管を介したドレ ナージによって炎症組織から除去される^{28,29}。これまで収束過程は単に起炎反応の減弱 化と考えられていたため、その分子機構はほとんど解析されてこなかった。しかしなが ら最近の検討において、炎症の収束過程は受動的なプロセスというよりむしろ能動的な プロセスで、メディエータと呼ばれる化学物質により調節されていることが明らかとな ってきた³⁰。また interluekin 10 (IL-10)といった抑制性のサイトカインが、各種炎症の収 束に重要な役割を果たしているという報告もある^{31,32}。慢性炎症は、癌や生活習慣病、 免疫・神経疾患など多くの疾患の病態に関与することも明らかになっており、炎症の収 束に関わる因子を制御することにより、炎症の収束を促進することができれば、これら 疾患に対する有効な治療法となる可能性がある。

炎症収束を研究する動物モデルの一つとして、マウスを用いた無菌的かつ炎症の収束 過程が観察できるザイモサン誘発腹膜炎モデルが挙げられる。ザイモサンは酵母細胞壁 由来の多糖、β-1,3-Dグルカンであり、トル様受容体の一種である TLR-2 のリガンドと して作用する。低用量のザイモサンをマウスの腹腔内に投与すると、好中球の腹腔内浸 潤からマクロファージによる好中球の除去といった無菌性かつ一過性の炎症が生じる ³³。一方、高用量のザイモサン投与は、より激しい長期にわたる炎症を引き起こす³³。

12

第1章にも述べたように、メタボロミクスでは、特定の疾患や傷害によって引き起こ されるメタボライトの上昇や低下を、網羅的に測定可能である。メタボライトのプロフ アイル変化を捉え、代謝パスウェイにどのような影響を与えるのかを検討することによ って、病態やストレス応答に対する情報を得ることができる^{9,34}。代表的な炎症収束モ デルであるザイモサン誘発腹膜炎モデルにメタボロームの技術を適用した例はいくつ か報告されており^{29,35}、炎症収束のメカニズム解明や新規抗炎症性物質の発見に大きく 貢献している。ただ、これらの検討における測定対象は主に脂質メディエータやその関 連物質であり、水溶性メタボライトやリン脂質などは測定していない。そこで本検討で は、新たな炎症収束のメカニズムや炎症収束に影響する重要なプロセスの発見を目的に、 質量分析装置を用いたメタボロミクスの技術を本モデルに適用し、脂質メディエータ以 外のメタボライト組成の変化を検討した。

図 2-1 急性炎症収束プロセスの模式図

Phase I では炎症刺激に応じ、マクロファージがサイトカイン/ケモカインを産生する。 Phase II でサイトカイン/ケモカインに応答し、好中球が及び炎症性の単球浸潤が起 こる。いわゆる炎症の収束期は、Phase III 及び IV で、マクロファージがさらなる好中 球の浸潤を抑制するとともに、抗炎症性のメディエータ産生も起こり、好中球を捕食、 炎症は収束に向かう。(Oliver Soehnlein & Lennart Lindbom, Nature Reviews Immunology 10, 427-439, 2010 (引用文献 28)中の Fig.1 引用)

2-2. 実験方法

2-2-1. 試薬

Zymosan-AはSIGMA-Aldlich (St. Louis, MO)から購入した。イソフルランはマイラン製薬(日本)より、*N*-Methyl-*N*-trimethylsilyl-trifluoroacetamide (MSTFA)はGLサイエンス (日本)より購入した。他の試薬、材料は全て特級または分析グレードのものを用いた。

2-2-2. 動物実験

今回実施した動物実験は、アスビオファーマ株式会社の動物実験倫理委員会の承認を 得ており、「研究機関等における動物実験等の実施に関する基本指針」(文部科学省告示 第71号、平成18年6月)に従って実施した。動物は、温度23℃±2℃、相対湿度50%±20%、 明期/暗期それぞれ12時間のサイクルに設定された動物室で、1週間以上順化させた後、 外観上異常を認めなかった個体のみを実験に用いた。飼料はCRF-1ペレット(オリエン タル酵母、日本)を用い、摂水は順化及び実験期間中、自由に摂取させた。全ての手術 はイソフルランによる吸入麻酔下で実施し、動物の苦痛を最小化させるよう努力した。

2-2-3. ザイモサン誘発腹膜炎モデルにおける腹腔内白血球の経時的変化

まず炎症収束に伴い起こる細胞レベルでの変化を明らかにするため、フローサイトメ ーターを用いてザイモサン誘発腹膜炎後の腹腔内浸出液中における白血球の経時的変 化を検討した。動物は、日本チャールスリバー株式会社(日本)から購入した7週齢の 雄性C57/BL6Jマウスを用いた。腹膜炎はマウスの腹腔内にザイモサン(Zymosan-A)を1 mg/miceまたは10 mg/mice投与することにより誘発した³⁶。サンプリング時間は、0h(ザ イモサン投与なし)、6h、24h、48h、72h、7 days、9 daysの群を設定した(各群n=3)。 各サンプル採取時間にマウスを安楽死させ、5 mLのリン酸緩衝生理食塩水(PBS)で腹腔 内を洗浄することにより、腹腔内浸出細胞を回収した。ザイモサンを投与していない動 物からも同様に腹腔内浸出細胞を回収し、0 hのサンプルとした。群設定を表 2-1に示

14

表 2-1 腹腔内白血球の経時的変化解析における群設定

群名	ザイモサン投与量	サンプリング時間
Zymsan-Low	1 mg/mice, i.p.	0 h ¹⁾ , 6 h, 24 h, 48 h, 72 h, 7days, 9days
Zymosan-High	10 mg/mice, i.p.	0 h ¹⁾ , 6 h, 24 h, 48 h, 72 h, 7days, 9days
各サンプリングポイン	ント n=3、合計39匹	
		_

1): ザイモサン投与なしの個体。両群で共通。

腹腔内浸出細胞の総細胞数は血球計により算出した。細胞の構成を決定するため、浸 潤した白血球はanti-mouse CD16/32 blocking 抗体 (93; eBioscience, San Diego, CA)で5分 間ブロックし、either PE-conjugated anti-mouse Gr-1 抗体 (RB6-8C5; BD Biosciences, San Jose, CA)、APC-conjugated anti-mouse CD115 抗体 (AFS98; eBioscience, San Diego, CA)、 PE-conjugated anti-mouse Siglec-F 抗体 (E50-2440; BD Phaxxrmingen) または FITC-conjugated anti-mouse CCR3 抗体 (83101; R&D Systems, Minneapolis, MN)で20分間 染色した。細胞の構成はフローサイトメーター (fluorescence-activated cell sorter; FACS) を用いて測定した。FACS解析では、測定機器としてFACSAria (BD Biosciences, San Jose, CA) を用い、FACSDiva (BD Biosciences) にて解析した。

CD115⁻ Gr-1⁺ の細胞を多核好中球として、CD115⁺Gr-1⁻ の細胞をマクロファージとして、CCR3⁺Siglec-F⁺ の細胞を好酸球として、それぞれ分類した。0h(ザイモサン投与なし)及びザイモサン投与後6hにおける好酸球数は測定しなかったため、ザイモサン投与後24、48、72h、7 day及び9 dayのデータを用いた。

2-2-4. ザイモサン誘発腹膜炎モデルにおける腹腔内洗浄液(PWF)及び血漿中のメタボ ローム解析

前項と同様、動物は日本チャールスリバー株式会社から購入した7週齢の雄性 C57/BL6Jマウスを用いた。腹膜炎は前項と同様、マウスの腹腔内にザイモサン (Zymosan-A)を1 mg/miceまたは10 mg/mice投与することにより誘発した。溶媒投与 (Vehicle)、ザイモサン低用量(1 mg/mice)、ザイモサン高用量(10 mg/mice)の3投与条件を
 設定し、それぞれサンプリング時間6 h、24 h、48 h、72 hの群を作成、合計12群に分けた(各群n=5)。

表 2-2に示す。マウスは各サンプリング時間にイソフルランで深麻酔を施し、心臓からヘパリン処理をしたシリンジで採血した。血液は遠心分離後、血漿を採取した。その後直ちに、腹腔内を氷冷したPBS 3 mLで洗浄し、腹腔内洗浄液(peritoneal wash fluid; PWF)を遠心分離により得た。PWFは、全ての個体で洗浄液量(3 mL)とほぼ同量が回収された。得られた血漿及びPWFサンプルは、測定まで-80℃に設定したディープフリーザーで保管した。

表 2-2 ザイモサン誘発腹膜炎モデルメタボローム解析における群設定

群名	ザイモサン投与量	サンプリング時間(ザイモサン投与後)
Vehicle	溶媒投与, i.p.	6 h, 24 h, 48 h, 72 h
Zymsan-Low	1 mg/mice, i.p.	6 h, 24 h, 48 h, 72 h
Zymosan-High	10 mg/mice, i.p.	6 h, 24 h, 48 h, 72 h

各サンプリングポイント n=5、合計60匹

PWF及び血漿中のサイトカイン/ケモカイン濃度は、Bio-Plex mouse cytokine 23-plex assay (M60-009RDPD; Bio-Rad, Hercules, CA)を用いて測定した。測定には、Luminex Bio-Plex 200 システム (Bio-Rad)を用い、Bio-Plex Manager 6.1 ソフトウェア (Bio-Rad) を用いて解析した。血漿サンプルのうち2例 (ザイモサン1 mg投与群:投与6時間後及び 24時間後の1例ずつ) は、サンプル量が少なかったため、サイトカイン/ケモカイン濃度 を測定できなかった。

PWF中のメタボライト測定は、Metabolon社(Durham, NC)に委託した。メタボロン社 におけるメタボライト測定に関しては、すでに論文化されているが^{37, 38}、詳細な測定手 順を以下に示す。300 µLのPWFサンプルを氷上で溶解後に終夜凍結乾燥させ、100 µLの H₂Oで再溶解した後、-80℃設定のディープフリーザーで保管した。メタボライトの抽出 は、本溶液に、回収率補正用の内標準物質を含有するメタノール450 µLを添加し、2分 間撹拌した。サンプルは遠心分離し、上清を分取した後、蒸発乾固(TurboVap[®]; Zymark, Hopkinton, MA)させた。メタボロン社におけるメタボローム測定は、超高速液体クロマ トグラフ(UHPLC)にタンデム型質量分析装置(MS/MS)を組み合わせたUHPLC-MS/MSの ポジティブイオン検出、UHPLC-MS/MSのネガティブイオン検出、ガスクロマトグラフ ィー質量分析装置(GC-MS)の3つの異なるプラットフォームで構成されており³⁷、同じサ ンプルを3種のプラットフォームで測定した。UHPLC-MSのシステムは、UHPLCとして Waters Acquity UPLC system (Waters, Milford, MA)、MSとしてThermo-Finnigan LTQ mass spectrometer (Thermo-Fisher Scientific; Waltham, MA)で構成されており、エ レクトロスプレーイオン化質量分析(ESI)とリニアイオントラップ(LIT)検出器で測定 した。遠心濃縮残渣を、8種類の内標準物質を含むUHPLC移動相(水相)で再溶解させ、 測定に用いた。カラムはUPLC BEHカラム(C18-2.1 × 100 mm, 1.7 μm; Waters)を用い、酸 性物質測定では、H₂O-95%メタノール(それぞれ0.1%ギ酸含有)のグラジエント溶出、 塩基性物質測定では、H2O-95%メタノール(それぞれ6.5 mM炭酸水素アンモニウム含 有)のグラジエント溶出で測定した。GC-MS測定では、遠心濃縮後のサンプルを最低 18時間、窒素気流下で乾燥させた後、bistrimethyl-silyl-trifluoroacetamide (BSTFA)により 誘導体化した。GCカラムには5% phenyl dimethyl siliconeカラムを用い、60℃から340℃ へ17分間昇温させて測定した。全サンプルを、Trace DSQ四重極型質量検出器 (Thermo-Fisher Scientific)を用いて、電子衝撃イオン化法により測定した。各サンプル中 のメタボライトは、メタボロン社が独自に保有しているライブラリ(標品をそれぞれ測 定して作成)の保持時間とMSフラグメント情報から同定した。標品では確認されなか ったピークでも、特有の保持時間及びイオン特性を示すものに関しては、未知メタボラ イトとして解析対象のメタボライトに加えた。なお回収されたPWF量に個体間での差が ほとんどなかったため、液量によるメタボライト相対濃度の補正は実施しなかった。

血漿サンプル中のメタボライトは、GC-MSを用いて過去に報告されている手順³⁹に従 い測定した。50 μLの血漿サンプルに、内標準溶液(Ribitol 50 μM水溶液)を50 μL添加

17

し、さらに950 μLの混合溶媒(MeOH:H₂O:CHCl₃=2.5:1:1 [v/v],)を添加した。溶媒を添 加したサンプルは、37℃で30分間インキュベートし、遠心分離した。上清を900 µLチュ ーブへ分注し、400 μLのH₂Oを添加、撹拌後に遠心し、2層に分けた。水相(上層)を 900 µL採取し、遠心濃縮(3時間)及び凍結乾燥(終夜)で溶媒を乾固させた。残渣に はメトキシアミン塩酸塩(20 mg/mL)-ピリジン溶液を50 µLを加え、30℃で90分間イン キュベートすることによりオキシム化した。MSTFAを50 µL添加、37℃で30分間インキ ュベートすることにより、メタボライトをトリメチルシリル(TMS)誘導体化し、GC-MS 測定に供した。GC-MS装置としてGCMS-QP2010 Ultra(島津製作所、日本)を用いて、 血漿中のメタボライトを測定した。測定条件は過去の論文と同じ条件³⁹を用いた。カラ ムは長さ30 m, 内径0.25 mmの融解石英カラムに、0.25 µm CP-SIL 8 CB low bleed/MS (Agilent Technologies, Santa Clara, CA)をコートしたものを用いた。フロントインレット の温度は230℃に設定し、ヘリウムガスを1 mL/minの流速で流した。カラム温度は80℃ を2分間保持した後、80℃から330℃へ15℃/分の速度で温度を上昇させ、330℃で6分間 維持して測定した。ピーク検出から同定のプロセスも論文報告⁴⁰に沿って実施した。具 体的には、ピーク検出とアライメントはMetAlign ソフトウェア(Wageningen UR, Netherlands, freely available at http://www.pri.wur.nl/UK/ products/MetAlign/)⁴¹を用い、CSV フォーマットで出力したデータをAloutputソフトウェア³⁹で解析することにより、ピー ク同定し、各ピークの相対濃度(ピーク面積)を抽出した。

2-2-5. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の測定

高用量のザイモサン腹腔内投与後のケトン体、3-ヒドロキシ酪酸(3-HB)の上昇が、どの組織または細胞に由来するかを検討する目的で、ザイモサンをマウスに投与し、腹腔 内浸潤細胞、肝臓、PWF及び血漿を採取する追加実験を実施した。動物は日本チャール スリバー株式会社から購入した7週齢の雄性C57/BL6Jマウスを用いた。腹膜炎はマウス の腹腔内にザイモサン(Zymosan-A)を10 mg/mice投与することにより誘発した。溶媒投 与(Vehicle)、ザイモサン高用量(10 mg/mice)の2投与条件を設定し、それぞれサンプリン グ時間24 h、48 hの群を設定し、合計4群に分けた(各群n=5)。マウスは各サンプリング 時間にイソフルランで深麻酔を施し、心臓からヘパリン処理をしたシリンジで採血した。 血液は遠心分離後、血漿を採取した。その後直ちに、腹腔内を氷冷したPBS 3 mLで洗 浄し、PWF及び腹腔内浸潤細胞を遠心分離により得た。ケトン体生成の主要臓器といわ れている肝臓も採取し、その湿重量を測定した。腹腔内浸出細胞の総細胞数は、血球計 により算出した。全てのサンプルは液体窒素を用いて、直ちに凍結し、-80℃設定のデ ィープフリーザーで保管した。測定に際し、肝臓サンプルは氷冷したPBSで10倍希釈 (w/v)し、腹腔内浸出細胞サンプルには氷冷したPBSを1 mL加えた後、ホモジネートを調 製した。肝臓及び腹腔内浸潤細胞ホモジネートは、遠心分離した後、上清を測定に用い た。各サンプル中の3-HB濃度測定には、EnzyChrom ketone body assay kit (Catalog No. EKBD-100; BioAssay Systems, Hayward, CA)を用い、説明書手順に従い、3-HB濃度を定 量した。5 μLの腹腔内浸潤細胞ホモジネート、20 μLの肝臓ホモジネート、20 μLの血漿、 80 μLのPWFサンプルを測定に用いた。各サンプルの340 nmの吸光度をマイクロプレー トリーダー(SPECTRAmax Plus 384; Molecular Devices, Sunnyvale, CA)を用いて測定し、 3-HB濃度を算出した。

2-2-6. 統計解析

統計解析として、ダネットの両側検定及びスチューデントのt検定を用いた。解析ソフトはJMP10(SAS Institute Inc., Cary, NC)を用い、P値が<.05の場合、群間の平均値に有意差があると判断した。主成分分析(PCA)にはSIMCA-P ソフトウェア Ver.12.0 (Umetrics Inc, Sweden)を用い、Unit Varianceスケーリングで解析した。

2-3. 結果

2-3-1. ザイモサン誘発腹膜炎モデルにおける腹腔内白血球の経時的変化

低用量(1 mg/mice, ip)のザイモサン投与群では、投与後腹腔内の総白血球数の上昇が

見られ、投与6時間後に最高値を示した(図 2-2 A)。投与6時間後における主要な白 血球は、CD115⁻Gr-1⁺で分類される多核好中球 (PMN)であった(図 2-2 B)。時間が経 過するにつれ多核好中球が減少する一方、投与24~48時間後には、CD115⁺Gr-1⁻で分類 されるマクロファージが徐々に増加した(図 2-2 C)。また投与 24~48時間後には、 CCR3⁺Siglec-F⁺の細胞、すなわち好酸球の増加も観察された(図 2-2 D)。

一方、高用量(10 mg/mice, ip)のザイモサン投与群では低用量群とは異なる変化を示 し、総白血球数は投与72時間後まで上昇が続いた(図 2-2 A)。投与24~48時間後で は、多核好中球数が高値を示し、マクロファージや好酸球は比較的少なかった。投与 72時間後においては、多核好中球数が高い値を維持する一方、マクロファージや好酸 球も増加が観察された(図 2-2 B, C, D)。増加した腹腔内浸潤総白血球数及び多核好中 球数は、ザイモサン投与7日後以降には正常レベルまで低下した。今回得られたザイモ サン誘発腹膜炎モデルにおける腹腔内白血球の経時的変化は、これまでの報告例とよく 一致する^{29,33}。

図 2-2 ザイモサン誘発腹膜炎モデルにおける腹腔内浸潤白血球の経時的推移 A:総細胞数、B:多核好中球(PMNs)、C:マクロファージ、D:好酸球 0 h(ザイモサン投与なし)及びザイモサン投与後 6 h における好酸球数は、測 定していない。各ポイント n=3, 平均±標準誤差。

2-3-2. PWF 及び血漿中のサイトカイン及びケモカイン濃度の経時的変化

PWF、血漿中にそれぞれ 22 種のケモカイン/サイトカインが検出された。表 2-3 に PWF 及び血漿中サイトカイン/ケモカイン濃度の平均値を示す。PWF 中では定量限界以 下のポイントが多かったものの、多くのサイトカイン/ケモカインが、ザイモサン投与 6 または 24 時間後に上昇していた。血漿中においても、同様のサイトカイン/ケモカイン 上昇が観察された。図 2-3 に代表的なサイトカイン/ケモカインである IL-1β、INF-γ、 TNF-α及び MIP-1αの PWF 中濃度推移を示す。これらサイトカイン/ケモカインの濃度 は、ザイモサン投与 6 時間後においては、低用量群、高用量群ともに溶媒投与群より高 値を示した。ザイモサン投与 24 及び 48 時間後においては、高用量においては高濃度が 維持されていた一方、低用量群では溶媒投与群と同程度まで低下していた。これらの結 果は、ザイモサン高用量は低用量より重篤な炎症を引き起こし、炎症の収束が遅れてい ることを示している。

表 2-3 ザイモサン投与後の PWF 及び血漿中のケモカイン/サイトカイン濃度の経時的変化 Vehicle:溶媒投与群、1 mg:低用量投与群、10 mg:高用量投与群 各ポイント n=5、平均値 LLOQ:定量下限値以下、ULOQ:定量上限値以上。

Peritoneal Wash Fluid (PWF)												
Cytokines/		6 h			24 h			48 h			72 h	
Chemokines (pg/mL)	Vehicle	1 mg	10 mg	Vehicle	1 mg	10 mg	Vehicle	1 mg	10 mg	Vehicle	1 mg	10 mg
IL-1α	LLOQ	8.72	54.51	LLOQ	0.54	38.92	LLOQ	LLOQ	18.21	LLOQ	LLOQ	1.21
IL-1β	4.8	108.9	124.6	5.7	9.3	125.5	LLOQ	LLOQ	60.1	LLOQ	LLOQ	20.5
IL-2	LLOQ	LLOQ	2.38	LLOQ	LLOQ	0.96	LLOQ	LLOQ	LLOQ	LLOQ	LLOQ	LLOQ
L-3	LLOQ	LLOQ	0.18	LLOQ	LLOQ	0.36	LLOQ	LLOQ	LLOQ	LLOQ	LLOQ	LLOQ
IL-4	LLOQ	1.00	1.52	LLOQ	LLOQ	2.19	LLOQ	LLOQ	LLOQ	LLOQ	LLOQ	LLOQ
IL-5	0.29	99.80	47.98	0.66	11.56	21.71	LLOQ	2.85	4.58	LLOQ	2.85	52.05
IL-6	LLOQ	960.5	1740.2	0.4	1.9	1720.1	LLOQ	2.9	148.1	LLOQ	4.0	13.3
IL-9	LLOQ	69.6	92.6	LLOQ	42.9	111.4	LLOQ	LLOQ	255.9	LLOQ	LLOQ	LLOQ
IL-10	LLOQ	45.05	204.62	LLOQ	9.77	150.03	LLOQ	19.22	111.41	LLOQ	0.93	34.72
IL-12(p40)	15.8	100.0	167.7	20.5	40.9	166.8	14.2	19.0	113.9	15.3	19.5	28.6
IL-12(p70)	LLOQ	10.4	44.3	LLOQ	LLOQ	39.9	LLOQ	LLOQ	8.3	LLOQ	LLOQ	LLOQ
IL-13	8.59	67.09	106.42	10.89	13.96	100.25	1.86	10.34	55.06	5.22	LLOQ	13.06
IL-17	LLOQ	LLOQ	80.4	LLOQ	LLOQ	83.9	LLOQ	LLOQ	LLOQ	LLOQ	LLOQ	LLOQ
Eotaxin	LLOQ	LLOQ	LLOQ	LLOQ	LLOQ	795	LLOQ	LLOQ	383	LLOQ	LLOQ	LLOQ
G-CSF	LLOQ	2168.5	6501.5	LLOQ	171.0	ULOQ	LLOQ	18.5	10363.6	0.8	28.4	405.8
GM-CSF	12.7	49.8	67.8	18.1	LLOQ	78.0	LLOQ	LLOQ	37.4	LLOQ	LLOQ	LLOQ
IFN-γ	2.35	12.99	28.23	2.37	LLOQ	25.01	LLOQ	LLOQ	7.40	LLOQ	LLOQ	LLOQ
KC	2.5	5140.5	ULOQ	4.8	48.9	17080.6	LLOQ	8.0	1306.6	2.3	13.3	125.3
MCP-1	LLOQ	10513.9	ULOQ	26.12	779.6	ULOQ	LLOQ	18.3	8898.3	LLOQ	21.4	1631.9
MIP-1α	LLOQ	309.6	724.1	LLOQ	33.1	1234.1	LLOQ	LLOQ	510.4	LLOQ	LLOQ	87.3
MIP-1β	3.1	1056.6	1246.7	7.1	230.1	1793.2	LLOQ	25.1	1265.2	LLOQ	14.1	526.2
RANTES	LLOQ	99.01	806.72	LLOQ	13.09	322.03	LLOQ	1.60	71.02	LLOQ	0.64	13.42
TNF-α	LLOQ	214.0	330.7	4.5	40.0	466.8	LLOQ	9.9	149.5	LLOQ	LLOQ	44.1
Plasma												
Plasma Cytokines/		6 h	1		24 h			48 h			72 h	
Plasma Cytokines/ Chemokines (pg/mL)	Vehicle	6 h 1 mg	10 mg	Vehicle	24 h 1 mg	10 mg	Vehicle	48 h 1 mg	10 mg	Vehicle	72 h 1 mg	10 mg
Plasma Cytokines/ Chemokines (pg/mL) IL-1α	Vehicle 12.9	6 h 1 mg 41.1	10 mg 42.6	Vehicle 11.9	24 h 1 mg 25.6	10 mg 54.4	Vehicle 7.1	48 h 1 mg 12.5	10 mg 52.6	Vehicle 10.2	72 h 1 mg 8.8	10 mg 34.4
Plasma Cytokines/ Chemokines (pg/mL) IL-1α IL-1β	Vehicle 12.9 261	6 h 1 mg 41.1 430	10 mg 42.6 641	Vehicle 11.9 418	24 h 1 mg 25.6 377	10 mg 54.4 361	Vehicle 7.1 180	48 h 1 mg 12.5 290	10 mg 52.6 295	Vehicle 10.2 262	72 h 1 mg 8.8 226	10 mg 34.4 289
Plasma Cytokines/ Chemokines (pg/mL) IL-1α IL-1β IL-2	Vehicle 12.9 261 54.5	6 h 1 mg 41.1 430 76.8	10 mg 42.6 641 41.8	Vehicle 11.9 418 50.9	24 h 1 mg 25.6 377 50.0	10 mg 54.4 361 45.4	Vehicle 7.1 180 25.0	48 h 1 mg 12.5 290 50.0	10 mg 52.6 295 31.3	Vehicle 10.2 262 53.5	72 h 1 mg 8.8 226 39.3	10 mg 34.4 289 65.2
Plasma Cytokines/ Chemokines (pg/mL) IL-1α IL-1β IL-2 IL-3	Vehicle 12.9 261 54.5 2.43	6 h 1 mg 41.1 430 76.8 5.11	10 mg 42.6 641 41.8 3.27	Vehicle 11.9 418 50.9 3.01	24 h 1 mg 25.6 377 50.0 2.75	10 mg 54.4 361 45.4 3.80	Vehicle 7.1 180 25.0 1.14	48 h 1 mg 12.5 290 50.0 2.53	10 mg 52.6 295 31.3 1.27	Vehicle 10.2 262 53.5 2.26	72 h 1 mg 8.8 226 39.3 1.61	10 mg 34.4 289 65.2 3.38
Plasma Cytokines/ Chemokines (pg/mL) IL-1α IL-1β IL-2 IL-3 IL-4	Vehicle 12.9 261 54.5 2.43 2.11	6 h 1 mg 41.1 430 76.8 5.11 6.35	10 mg 42.6 641 41.8 3.27 5.52	Vehicle 11.9 418 50.9 3.01 2.54	24 h 1 mg 25.6 377 50.0 2.75 3.92	10 mg 54.4 361 45.4 3.80 4.36	Vehicle 7.1 180 25.0 1.14 LLOQ	48 h 1 mg 12.5 290 50.0 2.53 2.87	10 mg 52.6 295 31.3 1.27 0.65	Vehicle 10.2 262 53.5 2.26 1.86	72 h 1 mg 8.8 226 39.3 1.61 LLOQ	10 mg 34.4 289 65.2 3.38 4.78
Plasma Cytokines/ Chemokines (pg/mL) L-1α L-1β L-2 L-3 L-3 L-4 L-4 L-5	Vehicle 12.9 261 54.5 2.43 2.11 65.1	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5	10 mg 42.6 641 41.8 3.27 5.52 132.4	Vehicle 11.9 418 50.9 3.01 2.54 45.8	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9	10 mg 54.4 361 45.4 3.80 4.36 38.8	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9	10 mg 52.6 295 31.3 1.27 0.65 22.1	Vehicle 10.2 262 53.5 2.26 1.86 37.4	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1	10 mg 34.4 289 65.2 3.38 4.78 90.2
Plasma Cytokines/ Chemokines (pg/mL) IL-1α IL-1β IL-2 IL-3 IL-4 IL-4 IL-5 IL-6	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9	10 mg 54.4 361 45.4 3.80 4.36 38.8 593.8	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8
Plasma Cytokines/ Chemokines (pg/mL) L-1α L-1β L-2 L-3 L-4 L-5 L-6 L-9	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 233.7	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6	10 mg 54.4 361 45.4 3.80 4.36 38.8 593.8 83.0	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ
Plasma Cytokines/ Chemokines (pg/mL) L-1α L-1β L-2 L-3 L-4 L-5 L-6 L-9 L-10	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 233.7 68.6	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 136.5	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2	10 mg 54.4 361 45.4 3.80 4.36 38.8 593.8 83.0 108.8	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6 49.0	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ 83.0
Plasma Cytokines/ Chemokines (pg/mL) L-1α L-1β L-2 L-3 L-4 L-5 L-6 L-9 L-10 L-12(p40)	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 233.7 68.6 152.5	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9 1260.8	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 136.5 222.2	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8	10 mg 54.4 361 45.4 3.80 4.36 38.8 593.8 83.0 108.8 134.5	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1 98.9	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0 118.8	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6 49.0 97.9	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ 83.0 69.6
Plasma Cytokines/ Chemokines (pg/mL) IL-1α IL-1β IL-2 IL-3 IL-4 IL-5 IL-6 IL-6 IL-9 IL-10 IL-12(p40) IL-12(p70)	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 233.7 68.6 152.5 69.2	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0 152.8	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9 1260.8 193.6	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 136.5 222.2 97.8	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8 78.0	10 mg 54.4 361 45.4 3.80 4.36 38.8 593.8 83.0 108.8 134.5 109.1	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1 98.9 41.8	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6 71.9	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9 27.6	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0 118.8 64.8	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6 49.0 97.9 50.5	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ 83.0 69.6 85.2
Plasma Cytokines/ Chemokines (pg/mL) L-1α L-1β L-2 L-3 L-4 L-5 L-6 L-9 L-12(p40) L-12(p70) L-13	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 233.7 68.6 152.5 69.2 307	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0 309.0 152.8 613	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9 1260.8 193.6 369	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 136.5 222.2 97.8 494	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8 78.0 403	10 mg 54.4 361 45.4 3.80 4.36 38.8 593.8 83.0 108.8 134.5 109.1 478	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1 98.9 41.8 195	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6 71.9 379	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9 27.6 192	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0 1118.8 64.8 322	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6 49.0 97.9 50.5 262	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ 83.0 69.6 85.2 529
Plasma Cytokines/ Chemokines (pg/mL) L-1α L-1β L-2 L-3 L-4 L-5 L-6 L-9 L-10 L-12(p40) L-13 L-17	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 2.33.7 68.6 152.5 69.2 307 60.8	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0 152.8 613 95.8	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9 1260.8 193.6 369 60.2	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 136.5 222.2 97.8 494 494	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8 78.0 403 62.2	10 mg 54.4 361 45.4 3.80 4.36 38.8 593.8 83.0 108.8 134.5 109.1 478 100.8	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1 98.9 41.8 195 38.2	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6 77.9 379 379	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9 27.6 44.8 192 42.0	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0 118.8 64.8 322 52.9	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6 49.0 97.9 50.5 262 45.8	10 mg 34.4 289 65.2 3.38 3.38 4.78 90.2 25.8 LLOQ 83.0 69.6 85.2 529 73.4
Plasma Cytokines/ Chemokines (pg/mL) L-1α L-1β L-2 L-3 L-4 L-5 L-6 L-9 L-10 L-12(p40) L-13 L-17 Eotaxin	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 5.1 13.6 5.1 13.6 5.1 152.5 69.2 307 60.8 547	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0 152.8 613 95.8 745	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9 1260.8 193.6 369 60.2 427	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 61.6 61.6 136.5 222.2 97.8 494 494 59.2 344	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8 78.0 403 62.2 324	10 mg 54.4 361 45.4 3.80 4.36 38.8 593.8 83.0 108.8 134.5 109.1 478 100.8 744	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1 98.9 41.8 195 38.2 116	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6 71.9 379 55.7 287	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9 27.6 192 42.0 295	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0 118.8 64.8 322 52.9 236	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6 49.0 97.9 50.5 262 45.8 171	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ 83.0 69.6 85.2 529 73.4 386
Plasma Cytokines/ Chemokines (pg/mL) L-1α L-1β L-2 L-3 L-4 L-5 L-6 L-9 L-10 L-12(p40) L-12(p70) L-13 L-17 Eotaxin G-CSF	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 233.7 68.6 152.5 69.2 307 60.8 547 193	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0 152.8 613 95.8 613 95.8 745 ULQQ	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9 1260.8 193.6 369 60.2 427 ULOQ	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 61.6 61.6 51.2 222.2 97.8 494 59.2 344 39 39	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8 78.0 403 62.2 324 4941	10 mg 54.4 361 45.4 3.80 38.8 593.8 83.0 108.8 134.5 109.1 478 100.8 744 ULOQ	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1 98.9 41.8 195 38.2 116 67	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6 77.9 379 55.7 287 287 292	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9 27.6 192 42.0 295 ULOQ	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 42.7 42.7 42.7 42.7 2.26 37.4 5.3 42.7 2.26 4.8 322 52.9 226 41	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6 49.0 97.9 50.5 262 45.8 171 60	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ 83.0 69.6 85.2 529 73.4 386 ULOQ
Plasma Cytokines/ Chemokines (pg/mL) L-1α L-1β L-2 L-3 L-4 L-5 L-6 L-9 L-12(p40) L-12(p40) L-12(P70) L-13 L-17 Eotaxin G-CSF GM-CSF	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 233.7 68.6 152.5 69.2 307 60.8 547 193 82.2	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0 152.8 613 95.8 745 0LOQ 121.1	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9 1260.8 193.6 369 60.2 427 ULOQ 99.1	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 136.5 222.2 97.8 494 59.2 222.2 97.8 494 59.2 344 39 91.6	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8 78.0 403 62.2 324 4941 79.8	10 mg 54.4 361 45.4 3.80 4.36 38.8 593.8 83.0 108.8 134.5 109.1 478 100.8 744 ULOQ 111.6	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1 98.9 41.8 195 38.2 116 67 47.8	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6 71.9 379 55.7 287 292 74.0	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9 27.6 192 42.0 295 ULOQ 50.7	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0 118.8 64.8 322 52.9 236 41 65.8	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6 49.0 97.9 50.5 262 45.8 171 60 40.2	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ 83.0 69.6 85.2 529 73.4 529 73.4 85.2 529 73.4 85.2 529 73.4 84.0 84.0
Plasma Cytokines/ Chemokines (pg/mL) Ll-1α L-1β Ll-2 L-3 L-4 L-5 L-6 L-9 L-10 L-12(p40) L-17 Eotaxin G-CSF GM-CSF IFN-γ	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 5.1 233.7 68.6 152.5 69.2 307 60.8 547 193 307 60.8 547 193 82.2 17.2	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0 152.8 613 95.8 745 ULOQ 121.1 32.4	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9 1260.8 193.6 60.2 427 ULOQ 99.1 24.7	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 136.5 222.2 97.8 494 59.2 344 99.6 91.6 26.7	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8 78.0 403 62.2 324 4941 79.8 18.8	10 mg 54.4 361 45.4 3.80 4.36 38.8 593.8 83.0 108.8 134.5 109.1 478 100.8 744 ULOQ 111.6 30.9	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1 98.9 41.8 195 38.2 116 67 47.8 11.1	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6 77.9 95.6 71.9 379 55.7 287 287 287 287 274.0 18.1	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9 27.6 42.0 295 42.0 295 ULOQ 50.7 12.9	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0 118.8 64.8 322 52.9 236 41 65.8 15.1	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6 49.0 97.9 50.5 262 45.8 171 60 40.2 13.3	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ 83.0 69.6 85.2 529 73.4 386 ULOQ 84.0 24.4
Plasma Cytokines/ Chemokines (pg/mL) L-1α L-1β L-2 L-3 L-4 L-5 L-6 L-9 L-10 L-12(p40) L-17 Eotaxin G-CSF GM-CSF IFN-γ KC	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 5.1 233.7 68.6 152.5 69.2 307 60.8 547 193 82.2 17.2 83.0	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0 152.8 613 95.8 745 ULOQ 121.1 32.4 3138.7	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9 1260.8 193.6 369 60.2 427 ULOQ 99.1 24.7 427.7 4724.6	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 136.5 222.2 97.8 494 494 59.2 344 39 91.6 26.7 40.8	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8 78.0 403 62.2 324 4941 79.8 18.8 53.2	10 mg 54.4 361 45.4 3.80 4.36 38.8 33.0 108.8 134.5 109.1 478 100.8 744 ULOQ 111.6 30.9 8910.6	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 51.1 98.9 41.8 195 38.2 116 67 47.8 11.1 53.1	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6 71.9 379 379 379 35.7 287 292 74.0 18.1 48.4	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9 27.6 192 27.6 192 295 ULOQ 50.7 12.9 391.3	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0 118.8 64.8 322 52.9 236 41 65.8 15.1 43.6	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6 49.0 97.9 50.5 262 45.8 171 60 40.2 13.3 39.3 39.3	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ 83.0 69.6 85.2 529 73.4 386 ULOQ 84.0 84.0 24.4 88.4
Plasma Cytokines/ Chemokines (pg/mL) Ll-1α Ll-1β L-2 Ll-3 L-4 L-9 L-10 L-9 L-10 L-12(p40) L-12(p70) L-13 L-17 Eotaxin G-CSF GM-CSF IFN-γ KC MCP-1	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 63.6 152.5 69.2 307 60.8 547 193 82.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 1	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0 152.8 613 95.8 745 ULOQ 121.1 32.4 3138.7 1243	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9 1260.8 193.6 369 60.2 427 ULOQ 99.1 24.7 4724.6 ULOQ	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 61.6 61.6 51.2 222.2 97.8 494 494 59.2 344 39 91.6 26.7 40.8 144	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8 78.0 403 62.2 324 4941 79.8 18.8 18.8 18.8 19	10 mg 54.4 361 45.4 3.80 4.36 38.8 593.8 83.0 108.8 134.5 109.1 478 100.8 744 ULOQ 111.6 30.9 8910.6 2259	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1 98.9 41.8 195 38.2 116 67 47.8 11.1 53.1 76	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6 77.0 95.6 77.9 379 55.7 287 292 74.0 18.1 48.4 133	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9 27.6 192 42.0 295 ULOQ 295 ULOQ 50.7 12.9 391.3 200	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0 118.8 64.8 322 52.9 236 41 65.8 15.1 43.6 101	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 49.0 97.9 50.5 262 45.8 171 60 40.2 13.3 39.3 92	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ 83.0 69.6 85.2 529 73.4 386 ULOQ 84.0 24.4 88.4 208
Plasma Cytokines/ Chemokines (pg/mL) L-1α L-1β L-2 L-3 L-4 L-5 L-6 L-9 L-12(p40) L-12(p40) L-12(P40) L-12(SF) GotSF GM-CSF GM-CSF IFN-γ KC MIP-1α vm	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 233.7 68.6 152.5 69.2 307 60.8 547 193 82.2 17.2 83.0 131 11.5	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0 152.8 613 95.8 745 613 95.8 745 ULOQ 121.1 32.4 3138.4 74243 68.0	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9 1260.8 193.6 369 60.2 427 ULOQ 99.1 24.7 ULOQ 99.1 24.7 4724.6 ULOQ 323.5	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 61.6 136.5 222.2 97.8 494 59.2 97.8 494 394 91.6 26.7 344 39 91.6 26.7 40.8 40.8 40.8 41.4 41.8 50.9 50.9 50.9 50.9 50.9 50.9 50.9 50.9	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8 78.0 403 62.2 324 4941 79.8 18.8 53.2 156 19.7 19.7 19.7 19.7 10.	10 mg 54.4 361 45.4 3.80 38.8 593.8 33.8 108.8 134.5 109.1 478 100.8 744 ULOQ 111.6 30.9 2259 136.9 2259	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1 98.9 41.8 195 38.2 116 67 47.8 11.1 53.1 76 6.0	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6 71.9 379 55.7 287 292 74.0 18.1 48.4 133 9.1	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9 27.6 192 42.0 295 ULOQ 50.7 12.9 391.3 200 60.9	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0 118.8 64.8 322 52.9 236 41 65.8 15.1 43.6 101 8.7	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 49.0 97.9 50.5 262 45.8 171 60 40.2 13.3 39.3 39.2 7.4	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ 83.0 69.6 85.2 529 73.4 85.2 529 73.4 386 ULOQ 84.0 24.4 88.4 208 27.3
Plasma Cytokines/ Chemokines (pg/mL) L-1α L-1β L-2 L-3 L-4 L-5 L-6 L-9 L-100 L-12(p40) L-12(p40) L-12 L-13 L-17 Eotaxin G-CSF GM-CSF IFN-γ KC MIP-1α MIP-1β	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 5.1 233.7 68.6 152.5 69.2 307 60.8 547 193 307 60.8 547 193 82.2 17.2 83.0 131 11.5 60.2	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0 152.8 745 ULOQ 121.1 32.4 3138.7 124.3 32.4 3138.7 124.3 32.4 32.6 32.5 32.4 32.6 32.5 32.7 32.4 32.6 32.7 32.6 32.7 32.6 32.7 32.6 32.7 32.6 32.7 32.7 32.7 32.4 32.6 32.7 32.4 32.6 32.7 32.4 32.6 32.7 32.4 32.6 32.7 32.4 32.6 32.7 32.4 32.6 32.7 32.4 32.6 32.7 32.4 32.4 32.6 32.4 32.6 32.7 32.4 32.6 32.7 32.4 32.6 32.7 32.4 32.8 32.7 32.4 32.8 32.7 32.4 32.8 32.7 32.4 32.7 32.4 32.4 32.7 32.4 32.7 32.4 32.7 32.4 32.7 32.4 32.7 32.4 32.7 32	10 mg 42.6 641 41.8 3.27 5.52 132.4 382.9 127.0 214.9 127.0 214.9 1260.8 193.6 369 60.2 427 ULOQ 99.1 24.7 4724.6 ULOQ 99.1 24.7 4724.6 323.5 3350.7	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 136.5 222.2 97.8 459.2 344 59.2 344 59.2 344 59.2 344 12.7 83.5	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8 78.0 403 62.2 324 4931 62.2 324 4931 18.8 53.2 19.8 18.8 53.2 19.7 76.0	10 mg 54.4 361 45.4 3.80 4.36 38.8 593.8 83.0 108.8 134.5 109.1 108.8 134.5 109.1 478 100.8 744 ULOQ 1111.6 30.9 8910.6 2259 136.9 474.0	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1 98.9 41.8 195 38.2 116 67 71.8 11.1 53.1 76 6.0 37.2	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6 77.9 95.6 77.9 95.7 287 287 287 287 287 287 287 28	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9 27.6 4.8 67.9 27.6 192 42.0 295 0.7 12.9 391.3 200 60.9 73.9	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0 118.8 64.8 322 52.9 236 41 45.8 15.1 43.6 101 8.7 55.8	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6 49.0 97.9 50.5 262 45.8 171 60 40.2 13.3 39.3 92 7.4 44.5	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 LLOQ 83.0 69.6 85.2 529 73.4 386 ULOQ 84.0 24.4 88.4 208 84.0 24.4
Plasma Cytokines/ Chemokines (pg/mL) Ll-1α Ll-1β Ll-2 Ll-3 L-4 L-5 L-6 L-9 L-10 L-12(p40) L-17 Eotaxin G-CSF GM-CSF IFN-γ KC MIP-1β RANTES	Vehicle 12.9 261 54.5 2.43 2.11 65.1 13.6 5.1 233.7 68.6 152.5 69.2 307 60.8 547 193 82.2 17.2 83.0 131 11.5 60.2 54.7	6 h 1 mg 41.1 430 76.8 5.11 6.35 159.5 1313.4 39.6 135.0 309.0 152.8 613 95.8 745 ULOQ 121.1 32.4 3138.7 1243 68.0 232.5 138.2	10 mg 42.6 641 41.8 3.27 5.52 132.4 3829 127.0 214.9 1260.8 193.6 369 60.2 427 ULOQ 99.1 24.7 4724.6 ULOQ 323.5 3350.7 653.8	Vehicle 11.9 418 50.9 3.01 2.54 45.8 8.6 61.6 136.5 222.2 97.8 494 59.2 344 59.2 344 39 91.6 26.7 40.8 144 12.7 40.8 144 12.5 38.7	24 h 1 mg 25.6 377 50.0 2.75 3.92 64.9 12.9 52.6 73.2 114.8 78.0 403 62.2 324 4941 79.8 18.8 53.2 156 19.7 76.0 37.9	10 mg 54.4 361 45.4 3.80 4.36 38.8 83.0 108.8 134.5 109.1 478 100.8 744 ULOQ 111.6 30.9 8910.6 2259 136.9 36.9 474.0 281.5	Vehicle 7.1 180 25.0 1.14 LLOQ 23.5 4.0 10.5 51.1 98.9 41.8 195 38.2 116 67 47.8 11.1 53.1 76 6.0 37.2 32.9	48 h 1 mg 12.5 290 50.0 2.53 2.87 43.9 14.6 59.5 77.0 95.6 71.9 95.6 71.9 95.6 71.9 95.7 287 287 287 287 287 287 287 18.1 48.4 13.3 9.1 66.2 45.5	10 mg 52.6 295 31.3 1.27 0.65 22.1 71.2 30.5 64.8 67.9 27.6 42.0 295 ULOQ 50.7 12.9 391.3 200 60.9 73.9 25.1	Vehicle 10.2 262 53.5 2.26 1.86 37.4 5.3 42.7 63.0 118.8 64.8 322 236 41 65.8 15.1 43.6 101 8.7 55.8 46.1	72 h 1 mg 8.8 226 39.3 1.61 LLOQ 34.1 6.4 39.6 49.0 97.9 50.5 262 45.8 171 60 40.2 13.3 39.3 92 7.4 44.5 38.4	10 mg 34.4 289 65.2 3.38 4.78 90.2 25.8 ULOQ 83.0 69.6 85.2 73.4 386 ULOQ 84.0 24.4 88.4 208 27.3 97.5 35.4

LLOQ: Lower limit of quantification, ULOQ: Upper limit of quantification

図 2-3 ザイモサン投与後の PWF 中における IL-1β(A)、INF-γ(B)、TNF-α(C)及び MIP-1α(D)濃度推移 平均値±標準誤差(n=5)、LLOQ:定量下限値以下。

2-3-3. ザイモサン誘発腹膜炎後の PWF 中のメタボローム変化

炎症とその収束過程のメタボロームへの影響を検討する目的で、マウスザイモサン誘 発腹膜炎モデルにメタボローム解析を適用した。PWF 中には合計 302 のメタボライト が検出され、そのうち 196 がライブラリデータと一致する既知のメタボライトであった。 PWF 中に検出された既知メタボライトの一覧、各群におけるその相対濃度及びダネッ ト法による有意差検定の結果は、巻末に補足データ(表 S2-1)としてまとめて示す。

腹膜炎は PWF 中のメタボライト組成に顕著な影響を及ぼし、ザイモサン投与 6 時間 後においては、既知メタボライトの 50%以上が溶媒投与群に比べ有意に変化していた。 図 2-4 に PWF 中におけるメタボライトの主成分分析(PCA)スコアプロットの経時的変化 を示す。投与 6 時間後においては、PCA スコアプロット上で、ザイモサン低用量、高 用量群の各個体は溶媒投与群の個体と離れた領域にプロットされ、これはザイモサン投 与群における PWF 中のメタボライト組成が、溶媒投与群と大きく異なっていることを 意味している。低用量群ではメタボライト組成の変化が時間とともに徐々に小さくなり、 投与 48 時間後の個体では溶媒投与群とほとんど同じ領域にプロットされた。これは低 用量群のメタボライト組成変化が、投与 48 時間後にほぼ回復したことを意味している。 一方高用量群の個体は、投与 72 時間においても PCA スコアプロット上で溶媒投与群の 個体と離れた領域にプロットされており、PWF 中メタボライト組成変化の回復が遅れ ていることを示している。

図 2-4 PWF 中のメタボロミクス主成分分析(PCA)スコアプロットの経時的変化
 黒:溶媒投与群、赤:ザイモサン低用量群、青:ザイモサン高用量群
 図中の楕円(黒細線)は Hotelling の 95%信頼区間を示す。

炎症初期のザイモサン投与6時間後においては、PWF中の大半のメタボライトは、 溶媒投与群に比べ高い値を示していた。多価不飽和脂肪酸(PUFA)やリゾリン脂質の顕著 な上昇は(表 2-4)、既に報告されているザイモサン投与の影響とよく一致する³⁶。さ らにグルタチオン新生及び生合成の増加、プリン塩基代謝の変化もザイモサン投与群に おいて見られた(表 2-4)。低用量群においては、これらメタボライトの変化は投与48 時間から72時間後までにほとんど回復していたが、高用量群では最終測定ポイントの 投与72時間後まで持続していた。

表 2-4 ザイモサン投与群において変化が見られた主な PWF 中メタボライト

	Zyn	nosan 1 m	ng vs. Veh	nicle	Zymosan 10 mg vs. Vehicle			
Metabolite		Fold c	hange			Fold c	hange	
Polyunsaturated fatty acids (PUFAs)	6 h	24 h	48 h	72 h	6 h	24 h	48 h	72 h
Arachidonate (20:4n6)	7.85	2.44	1.78	1.50	10.35	6.32	4.39	2.70
Docosahexaenoate (DHA; 22:6n3)	16.84	2.55	1.79	1.93	23.05	11.16	7.49	4.68
Docosapentaenoate (DPA; 22:5n3)	4.38	1.73	1.15	1.53	5.14	4.68	3.03	2.15
Eicosapentaenoate (EPA; 20:5n3)	2.71	1.25	1.10	0.92	3.44	2.56	2.55	1.34
l ve olipide								
1-Arachidonovl-GPC (20:4)	6.21	1.64	2.56	2.18	6.66	2.51	1.77	1.14
1-Docosahexaenovl-GPC (22:6)	4.75	2.77	1.62	1.41	6.19	4.89	2.17	1.55
1-OleovI-GPC (18:1)	4.39	2.27	3.91	0.85	5 47	7.69	3.81	1.09
1-Oleovi-GPE (18:1)	3.54	1.94	1.26	1.25	2.48	3 42	3.64	1.89
1-Palmitovl-GPC (16:0)	3 31	2.96	5 52	1.08	4 15	12 93	11 32	1 92
1-Stearovl-GPC (18:0)	4.36	6.22	5.32	1.56	5.56	20.95	22.26	3.91
Tryptophan metabolism								
Tryptophan	2.88	2.07	1.43	1.00	3.19	3.35	2.79	2.23
Kynurenin	2.41	1.78	0.83	1.24	2.34	4.47	3.87	2.18
Nicotinamide	2.03	1.28	1.16	0.74	2.06	0.68	1.66	1.25
Glutathione Synthesis and Turnover								
Glutathione, oxidized (GSSG)	4.60	1.79	0.90	0.66	2.63	1.74	1.42	0.93
Cysteine-glutathione disulfide	2.85	1.99	1.05	0.92	2.16	2.63	2.18	1.75
Cysteine	1.25	1.03	1.27	1.21	2.07	2.52	3.65	1.68
5-Oxoproline	2.93	1.79	1.25	1.06	2.95	2.36	3.31	1.37
2-Aminobutyrate	1.86	0.82	1.07	1.06	1.78	1.43	2.68	1.44
	2 60	2.05	2 00	1.04	0.49	0.20	1.25	2 77
Adapasina	0.10	0.15	2.09	0.40	0.40	0.29	0.14	2.77
Inosino	0.10	0.15	1.09	0.19	0.12	0.00	0.14	0.09
	3 23	1 20	1.00	0.29	0.05 2 74	2 24	3 54	1.36
Urale	5.25	1.23	1.20	0.00	2.74	2.24	5.54	1.50
Carnitines								
2-Methylbutyroylcarnitine (C5)	1.96	1.29	1.03	0.97	2.18	1.69	1.34	1.28
3-Dehydrocarnitine	2.03	1.38	1.10	0.94	1.82	1.55	2.07	1.59
3-Methylglutaroylcarnitine (C6)	3.73	1.72	1.49	0.74	3.56	6.36	9.55	1.01
Acetylcarnitine (C2)	2.60	1.46	0.92	0.78	2.44	1.88	2.37	1.25
Butyrylcarnitine (C4)	3.34	1.40	0.99	1.07	2.30	1.29	1.31	1.11
Carnitine	1.65	1.19	1.06	0.97	1.22	0.80	1.48	1.46
Deoxycarnitine	1.69	1.72	1.09	0.75	1.99	1.19	1.39	1.84
Hexanoylcarnitine (C6)	2.47	1.43	0.98	1.29	3.01	2.19	3.10	1.48
lsobutyrylcarnitine (C4)	1.76	1.70	1.05	0.71	1.89	1.98	1.65	1.35
Isovalerylcarnitine (C5)	1.65	1.48	1.12	0.94	2.10	3.05	2.96	2.01
Propionylcarnitine (C3)	1.73	1.45	1.25	0.83	1.56	1.01	1.65	1.86

溶媒投与群(Vehicle)に対する比を示す。太字は有意差あり(P<.05、ダネット法)。

2-3-4. ザイモサン誘発腹膜炎後の血漿中のメタボローム変化

血漿中には合計 99 のメタボライトが GC-MS 測定により検出され、そのうち 76 がラ イブラリデータと一致する既知のメタボライトであった。血漿中に検出された既知メタ ボライトの一覧、各群におけるその相対濃度及びダネット法による有意差検定の結果は、 巻末に補足データ(表 S2-2)としてまとめて示す。

腹膜炎は血漿中のメタボライト組成にも顕著な影響を及ぼし、ザイモサン投与6時間 後においては、既知メタボライトの50%以上が溶媒投与群に比べ有意に変化していた。 図 2-5 に血漿中メタボライトの主成分分析(PCA)スコアプロットの経時的変化を示す。 PWF と同様、投与6時間後においては、PCAスコアプロット上で、ザイモサン低用量、 高用量群の各個体は溶媒投与群の個体と離れた領域にプロットされ、これはザイモサン 投与群における血漿中のメタボライト組成が、溶媒投与群と大きく異なっていることを 意味している。低用量群では、投与48時間後にメタボライト組成の変化がほぼ回復し ていた一方、高用量群では、観察期間中の血漿中メタボライト組成変化は回復しておら ず、PCAスコアプロットはPWFと類似した推移を示した。

図 2-5 血漿中のメタボロミクス主成分分析(PCA)スコアプロットの経時的変化 黒:溶媒投与群、赤:ザイモサン低用量群、青:ザイモサン高用量群 図中の楕円(黒細線)は Hotelling の 95%信頼区間を示す。

血漿中のメタボライト変化は PWF と少し異なっており、ザイモサン投与後に減少し たメタボライトも多数見られた。顕著な変化として、エネルギー代謝関連のメタボライ トが挙げられる。表 2-5 に血漿中における中心代謝系(解糖系及び TCA 回路)メタボ ライトの結果をまとめた。グルコースを含む大半の中心代謝系メタボライトは、ザイモ サン投与後の炎症期に顕著な低下が見られた。これらメタボライトの低下は、低用量群 では投与 48 及び 72 時間後には回復していたが、高用量群では投与 72 時間後まで持続 していた。

表 2-5 ザイモサン投与後の血漿中における中心代謝系(解糖系及び TCA 回路)メタボライ トまとめ

	Zymosan 1 mg vs. Vehicle					osan 10 r	ng vs. Ve	<u>hicle</u>
Metabolite		Fold c	hange			Fold c	hange	
Glycolysis	6 h	24 h	48 h	72 h	6 h	24 h	48 h	72 h
Glucose	0.80	0.76	0.93	0.95	0.56	0.29	0.61	0.53
Pyruvate + Oxalacetate	0.97	0.75	1.03	0.90	0.73	0.45	0.71	0.52
Lactate	0.82	0.91	0.98	0.96	0.65	0.74	0.80	0.91
TCA cycle								
Citriate + Isocitrate	0.71	0.65	0.96	0.84	0.72	0.30	0.19	0.39
Alpha-Ketoglutarte	0.44	0.22	0.59	0.33	0.32	0.19	0.08	0.09
Fumarate	0.44	0.38	1.04	0.67	0.40	0.43	0.24	0.32
Malate	0.42	0.37	0.98	0.70	0.36	0.39	0.20	0.28

溶媒投与群(Vehicle)に対する比を示す。太字は有意差あり(P<.05、ダネット法)。

2-3-5. PWF 中メタボライト濃度推移と IL-10 濃度推移の相関

本検討では、炎症収束のメカニズム解明及び炎症収束に影響する新規な重要プロセス 発見を目的に、炎症抑制性因子とメタボライトの相関を解析した。主な炎症抑制因子と しては、インターロイキン-10(IL-10)が挙げられる。そこで、炎症が起こっている部 位である PWF における IL-10の濃度推移を本検討における主要評価項目として設定し、 PWF 中の IL-10 濃度とメタボライトの相対濃度の相関を検討した。なお PWF 中のメタ ボライト推移において、投与6時間後においては血管透過性亢進に伴うと推定される全 体的なメタボライト上昇が見られたため(2.4 項 考察参照)、投与6時間後のデータは 除外した。

表 2-6 に PWF 中 IL-10 濃度推移と高い相関係数を示すメタボライトをまとめた。相関係数が上位のメタボライトはほとんどが正の相関を示した。相関係数の高かったメタ ボライトとしては、炎症により上昇すると考えられる脂肪酸やリゾリン脂質が多かった が、ケトン体である 3-ヒドロキシ酪酸(3-HB)、その類似物質 2-ヒドロキシ酪酸(2-HB)、 短鎖アシルカルニチンなども高い相関を示した。図 2-7 に PWF 中の 3-HB 濃度と、IL-10 濃度の相関を示す。相関係数は 0.87 であり、高い相関を示した。

表 2-6 ザイモサン誘発腹膜炎モデルにおける PWF 中 IL-10 濃度推移と高い相関係数を示した PWF 中メタボライト

Metabolites	R (correlation coefficient)
4-methyl-2-oxopentanoate	0.921
palmitoyl sphingomyelin	0.910
2-hydroxybutyric acid	0.899
3-methyl-2-oxovalerate	0.897
3-methyl-2-oxobutyrate	0.893
3-methylglutaroylcarnitine (C6)	0.885
3-(4-hydroxyphenyl)lactate	0.882
3-hydroxybutyric acid	0.874
myristoleate (14:1n5)	0.870
pantothenate (Vitamin B5)	0.855
alpha-hydroxyisovalerate	0.839
creatine	0.833
p-cresol sulfate	0.829
2'-deoxyuridine	0.829
linoleate (18:2n6)	0.827
2-stearoyl-GPC (18:0)	0.824
isoleucine	0.821
palmitoleate (16:1n7)	0.818
1-palmitoylplasmenylethanolamine	0.816
myristate (14:0)	0.815
hexadecanedioate (C16)	0.815
eicosapentaenoate (EPA; 20:5n3)	0.814
1-stearoyl-GPC (18:0)	0.808
N-acetyltryptophan	0.806
1-palmitoyl-GPC (16:0)	0.804
1-oleoyl-GPE (18:1)	0.803
2-palmitoyl-GPC* (16:0)	0.803
leucine	0.803
linolenate (18:3n3 or 3n6)	0.799
hexanoylcarnitine (C6)	0.795

*は、MS 測定の情報からその構造を推定したメタボライトを示す。

図 2-6 ザイモサン誘発腹膜炎モデルにおける PWF 中の 3-HB 相対濃度とIL-10 濃度の相 関

PWF 中の 3-HB の濃度推移は、特にザイモサン高用量群では、投与 24 時間後から顕 著な上昇が見られ、特徴的な推移を示した(図 2-5 A)。またそれに伴い、短鎖アシル カルニチンやアセチルカルニチンの上昇も見られた(表 2-4)。ケトン体は脂肪酸β酸化 の副生成物であることから^{42,43}、高用量で見られたこれらメタボライトの変化は、脂肪 酸の利用とβ酸化の亢進を示唆している。また PWF と同様、血漿中においても、ザイモ サン高用量群では、ケトン体の 3-HB の顕著な上昇が投与 24 時間後から観察された(図 2-5 B)。

図 2-5 ザイモサン腹腔内投与後における PWF 及び血漿中の 3-HB 相対濃度の経時的変 化

平均値±標準誤差(n=5)。溶媒投与群に対し、**:P<.01, *:P<.05(ダネット法)。

2-3-6. ザイモサン投与後の肝臓中及び腹腔内浸潤細胞中におけるケトン体の生成

表 2-7 に高用量ザイモサン(10 mg)腹腔内投与後の腹腔内浸潤細胞、PWF 及び血漿中 の 3-HB 濃度を示す。肝臓ホモジネート中の 3-HB 濃度は測定できなかった(検出限界; 約 0.1 µmol/g tissue)。ザイモサン投与 24 及び 48 時間後の PWF 及び血漿中の 3-HB 濃度 の上昇が確認され、メタボロミクス検討時の結果が再現できた。腹腔内への浸潤細胞に 関しては、浸潤細胞数はザイモサン投与により上昇が確認され、2-3-1 項の結果が再現 できた(図 2-2 A 参照)。腹腔内浸潤細胞の 3-HB 産生は、総 3-HB 濃度、細胞当たりの 3-HB 濃度ともに、ザイモサン投与群で有意に高い値を示した。

表 2-7 ザイモサン高用量(10 mg)投与後の腹腔内浸潤細胞、PWF 及び血漿中における 3-HB 濃度

平均値±標準誤差(n=5)。溶媒投与群に対し、**:*P<.01*, *:*P<.05*(t 検定)。 溶媒投与群の PWF 中濃度は検出限界(約 0.001 mM)以下であったため、PWF の 統計解析は実施していない。

Cells that infiltrated into the peritoneal cavity

-		-	
	Time	Vehicle	Zymosan (10 mg)
Total calls (1×10^6)	24 h	2.24 ± 0.25	6.37±0.72 **
	48 h	2.28 ± 0.28	14.21±5.02 *
3-hydroxybutyric acid	24 h	0.49 ± 0.08	4.74±0.59 **
(µmol/total cells)	48 h	0.29 ± 0.06	9.15±1.27 **
3-hydroxybutyric acid	24 h	0.22 ± 0.03	0.79±0.14 **
(μ mol/1 x 10 ⁶ cells)	48 h	0.15 ± 0.06	1.06±0.33 *

PWF

	Time	Vehicle	Zymosan (10 mg)
3-hydroxybutyric acid (mM)	24 h	ND	0.036 ± 0.009
	48 h	ND	0.118 ± 0.056

Plasma

	Time	Vehicle	Zymosan (10 mg)
3-hydroxybutyric acid (mM)	24 h	0.55 ± 0.07	1.16±0.13 **
	48 h	0.29 ± 0.07	1.63±0.44 *

2-4. 考察

ザイモサン誘発腹膜炎モデルのような急性炎症では、浮腫形成の後、多核好中球 (PMN)の急速な浸潤が観察されるのが特徴的である。炎症の収束期においては、PMN はアポトーシスを起こし、マクロファージなどに捕食され、そのマクロファージは炎症 部位からリンパ節へ回収される⁴⁴。図 2-2 に示した腹膜炎後の腹腔内における好中球の 濃度推移から、ザイモサン低用量群(1 mg)では投与 24 から 48 時間後にかけて炎症が収 束している一方、高用量群(10 mg)では投与 72 時間後まで炎症が収束していないと考え
られる。ただ高用量群においても、ザイモサン投与7日後及び9日後では、腹腔内の総 細胞数、PMN 数とも、コントロール(投与前)レベルまで低下しており、高用量群に おいても最終的には炎症が収束することを意味している。

本研究ではザイモサン誘発腹膜炎に伴うメタボライトの全体的な変化を評価する目 的で、メタボローム解析を適用した。本モデルにメタボロームの技術を適用した例はい くつか報告されているものの^{29,35}、それら研究のほとんどは炎症収束のメカニズム解明 や新規抗炎症性物質発見を目的としたもので、測定対象は主に脂質メディエータとその 関連物質であった。本研究は、調査した限りにおいては、ザイモサン誘発腹膜炎モデル における水溶性メタボライトを含む全体的なメタボロミクスを検討した最初の報告で ある。ザイモサン投与6時間後からのメタボライト変化は、炎症性サイトカインやケモ カインである IL-1βや TNF-αの濃度推移と高い相関が見られたことから、炎症による変 化を反映していると考えられる。PWF、血漿ともに、ザイモサン低用量ではメタボライ ト組成が投与48時間後までには正常化している一方、高用量群では投与72時間後まで メタボライト組成の正常化は見られず、炎症とその収束の経時的変化とよく一致してい る。

PWF 中のメタボライトは、ザイモサン投与 6 時間後においては、検出されたメタボ ライトの大部分で濃度の上昇が見られた。局所的な炎症反応は、脂質メディエータの放 出と炎症部位を活性化させる様々なタイプの白血球集積により特徴付けられる²⁸。炎症 急性期における PWF 中の様々なメタボライトの上昇は、腹腔内への血漿の漏出⁴⁵が原 因である可能性が考えられる。PWF 中のメタボライトのうち、特にザイモサン投与 6 及び 24 時間後において、アラキドン酸、エイコサペンタエン酸(EPA)、ドコサヘキサエ ン酸(DHA)といった PUFA の顕著な上昇が確認され、これは過去の報告と一致する⁴⁶。 これら PUFA は炎症性または抗炎症性の各種脂質メディエータの前駆体となることか ら、今回確認された PUFA の上昇は、炎症の活性化及びその収束に重要であると考えら れる。ザイモサン投与群の PWF においては、PUFA 濃度上昇のほかにも、1 位に脂肪酸 を有する sn-1 型リゾリン脂質の顕著な濃度上昇も見られた。細胞にザイモサンのよう

な刺激が加わることにより、細胞内のホスホリパーゼ A2、C、D などが活性化されるこ とが知られている⁴⁷。ホスホリパーゼ A2 (PLA2)はリン脂質の 2 位の脂肪酸を加水分解 し、sn-1 型リゾリン脂質を生成する酵素である。炎症性または抗炎症性の各種脂質メデ ィエータの前駆体であるアラキドン酸、EPA、DHA といった PUFA は、一般的にリン 脂質の 2 位に結合することから、PLA2 活性の変化が炎症反応の制御に関与している可 能性が高い。

ザイモサン投与の血漿中メタボライト組成も炎症時に大きく変化したが、その変化は PWF の変化と異なっていた。特徴的な変化の一つとして、グルコースを含む中心代謝 系(解糖系及び TCA 回路)メタボライトの低下が挙げられる(表 2-5)。血漿中におけ る TCA 回路メタボライトの低下は、デキストラン硫酸ナトリウム(DSS)誘発のマウス大 腸炎モデルにおいて報告されているが²⁵、今回の検討のように炎症発症後ごく短時間で、 血漿中の中心代謝系メタボライトが顕著に低下しているという報告はこれまでになか った。後述するケトン体 3-HB の PWF 及び血漿中濃度上昇を考慮すると、中心代謝系 メタボライトの低下は炎症時における生体内エネルギー消費の亢進と、それに伴うエネ ルギー供給の不足を示していると考える。なお PWF 中の中心代謝系メタボライトに関 しては、ザイモサン投与6時間後に腹腔内への血漿の漏出と考えられる一過性の上昇が 見られた後、高用量群においてglucose や citrate など一部のメタボライトが有意に低下 していた(表 S2-1)。ザイモサン高用量では、腹腔内においてもエネルギー消費の亢進 と、それに伴うエネルギー供給の不足を示唆する結果と考える。

本検討の目的の一つは、炎症収束に影響する新規な重要プロセス発見であり、多数の メタボライトから炎症収束に関係するメタボライトを選択する手法として、炎症抑制性 因子とメタボライトに相関に着目した。炎症抑制因子とメタボライトに何らかの相関が あれば、炎症収束に関わる新規プロセス発見につながる可能性もある。主な炎症抑制因 子としては、インターロイキン-10(IL-10)が挙げられる。IL-10は主に2型ヘルパーT(Th2) 細胞より産生されるサイトカインであり、その生物活性は多岐にわたるが、他のサイト カインと異なる特徴として、抑制性活性が中心となっていることにある。IL-10は主に 単球系細胞に作用して炎症性サイトカインの産生を始めとする免疫機能を抑制性に制 御する他、リンパ球に対しても間接的に抑制作用を示すことが知られている^{32,48}。PWF 中の IL-10 濃度推移と高い相関係数を示すメタボライトは、表 2-6 に示すように脂肪酸 やリゾリン脂質が多かったが、これら脂肪酸やリゾリン脂質の高い相関は、前述のよう に炎症性または抗炎症性脂質メディエータの産生という面で、炎症とその収束に関与し ている可能性が考えられる。一方、3-HB やその類似物質 2-HB、一部の短鎖アシルカル ニチンなども高い相関を示した。3-HB はザイモサン高用量において投与 24 時間後から 急激な上昇が見られるのが特徴で、3-HB 濃度の上昇は PWF と血漿で共通して見られた (図 2-5)。3-HB は脂肪酸β酸化により生成するケトン体の一つで、末梢組織に輸送さ

れエネルギー源として利用される。また短鎖カルニチンは、脂肪酸がエネルギー源とし て利用される際に産生される。3-HB やアシルカルニチン類の上昇は、いずれも脂肪酸 のβ酸化亢進を示していると考える。

最近、マウス敗血症モデルを用いた検討で、炎症の急性反応期において生体内のエネ ルギー供給源が糖(グルコース)から脂肪酸に変化しているとの報告がなされた⁴⁹。ヒ トにおいては、急性炎症時におけるケトン体生成亢進の報告は、われわれの知る限りで は見つからなかったものの、インフルエンザ感染時にケトアシドーシスが起こるといっ た報告がなされている^{50,51}。今回のメタボロミクス検討結果は、おそらく急性炎症期に おけるエネルギー消費に起因すると思われる脂肪酸β酸化の亢進を、メタボライトの変 動から初めて実証した事例である。マウスザイモサン誘発腹膜炎モデルにおける遺伝子 変動に関しては、Stables らが収束期におけるマクロファージの DNA アレイ解析を既に 実施している。データベースから得られた遺伝子発現を解析した結果、Fabp3 や Acly といった脂肪酸β酸化関連の遺伝子や中心代謝系遺伝子の発現が大きく変動しているこ とが判明した。これら遺伝子発現データは、本モデルにおける脂肪酸β酸化の亢進をサ ポートするものである⁵²。

追加実験により、高用量のザイモサン腹腔内投与後のケトン体上昇が、どの組織また は細胞に由来するかを検討したが、肝臓中の 3-HB 濃度はいずれも検出限界以下であり、

ザイモサン投与による 3-HB 産生亢進も検出されなかった。肝臓は脂肪酸β酸化を担う 主要臓器であるが、肝臓中の 3-HB はモノカルボン酸トランスポーター-1(MCT-1)のよう なトランスポーターによって、速やかに細胞外に排泄されるのかもしれない⁵³。一方で ザイモサン高用量投与群では、PWF 及び血漿の 3-HB 濃度上昇だけでなく、腹腔内浸潤 細胞においても 3-HB の産生亢進が認められた(表 2-7)。循環血漿中の 3-HB 濃度上昇 は、その大部分が肝臓またはその他組織における脂肪酸β酸化の亢進に起因すると考え られる。炎症部位である腹腔内における 3-HB 濃度上昇は、今回の結果から、少なくと も一部は腹腔内に浸潤してきた細胞による 3-HB 産生亢進に起因する可能性が高いと考 える。

一連の検討で、ケトン体の産生、すなわち脂肪酸β酸化の亢進が、抗炎症性サイトカ イン IL-10 産生と相関する可能性が示唆された。脂肪酸β酸化の亢進は、炎症収束に影 響する新規な重要プロセスの一つである可能性が考えられる。腹腔内における脂肪酸ß 酸化の亢進は、炎症収束を促進させるのだろうか? Ureido- fibrate-5 や GW7647 とい った Peroxisome proliferator-activated receptor alpha (PPARa) アゴニストは、肝臓や筋肉組 織において脂肪酸β酸化を促進させることが知られているが^{54,55}、PPARαアゴニストが マウス DSS 誘発大腸炎 56 や心臓虚血再還流モデル 57 などのモデルにおいて、抗炎症作 用を示すことが実証されている ⁵⁸。PPAR α のリガンドは nuclear factor κ -B (NF- κ B) p65 サブユニットのトランスロケーションを阻害することにより、IL-1や TNF- α 、inducible nitric oxide synthase (iNOS)の産生を低下させるとの報告があるが⁵⁹、抗炎症作用の正確 な作用メカニズムは未だ不明である。炎症収束の促進に、脂肪酸B酸化亢進が寄与する 想定メカニズムの一つとして、炎症期におけるエネルギー供給が挙げられる。 ザイモサ ン誘発腹膜炎におけるメタボローム解析の結果は、炎症期における顕著なエネルギー消 費と脂肪酸B酸化の亢進を示しており、脂肪酸B酸化を亢進させることにより十分なエネ ルギーが供給できれば、炎症収束が促進される可能性が考えられる。もう一つ想定され るメカニズムとしては、3-HB 産生亢進による GPR109A の活性化が挙げられる。G タン パク質共役受容体(GPCR)の一つ GPR109A (GPR109A/HM74A)は、ナイアシンの抗脂肪

分解作用を媒介する GPCR として見出されたが⁶⁰、3-HB が GPR109A の内因性リガンド となることが判明している⁶¹。最近、いくつかの論文で、GPR109A アゴニストの抗炎 症作用が報告されている。Gambhir らは、ヒト及びマウスの培養網膜色素上皮細胞を用 いて、3-HB の抗炎症作用を検討し、3-HB が GPR109A 依存的に TNF-αにより誘発され る炎症性ケモカイン IL-6 や炎症性サイトカイン Ccl2 の産生を強力に抑制することを証 明した⁶²。また Digby らは、ヒト単球を用いて、GPR109A リガンドであるニコチン酸 の抗炎症作用が、GPR109A によるものであることを明らかにした⁶³。ザイモサン高用 量投与後の腹腔内浸潤細胞サンプルの 3-HB 産生や PWF 中の 3-HB 濃度は比較的高く、 産生された 3-HB が GPR109A を介し、抗炎症作用を促進する可能性があると考える。

以上、炎症期における脂肪酸β酸化の亢進が、炎症の収束過程に重要な役割を示し炎 症性疾患治療薬の新規創薬ターゲットとなる可能性を提示した。脂肪酸β酸化の亢進と 関連が想定される遺伝子やタンパク発現が、本モデルや他の炎症モデルなどにおいて確 認されれば、それらが新規の創薬ターゲットとなるかもしれない。また、対象疾患とし ては、エネルギー消費が過度に増大するような敗血症などの急性炎症性疾患が考えられ る。今後の研究の進展が期待される。

2-5. 小括

本章では、炎症の収束過程の分子メカニズム解明及び炎症収束に影響する新規な重要 プロセス発見を目的に、炎症の収束過程が観察できるマウスザイモサン誘発腹膜炎モデ ルにメタボロミクスを適用した。腹膜炎誘発後に PWF 及び血漿中において、かなりの 割合のメタボライトが大きく変動することが判明し、そのメタボライト組成は経時的に 変化することも確認された。これらメタボライトの変動は、炎症性のケモカインやサイ トカインの産生と高い相関を示した。PWF 中では、多数のメタボライトがザイモサン 投与後に増加し、メタボライトの変化は炎症やエネルギー需要の増大を示唆するもので あった。一方血漿中では、中心代謝系(解糖系、TCA 回路)のほとんどのメタボライ トが、ザイモサン投与後に顕著に低下した。また、炎症抑制性因子とメタボライトに関 係に着目し、PWF 中の IL-10 産生を主要評価項目に設定し、IL-10 と高い相関を示すメ タボライトを探索した。その結果、ケトン体である 3-HB やその類似物質 2-HB 鎖アシ ルカルニチンなどが高い相関を示すことを確認した。3-HB 濃度の上昇は、高用量のザ イモサン投与後に PWF 及び血漿で共通して見られた変化で、PWF 中のアシルカルニチ ン類上昇も考えると、これらの変化はエネルギー代謝が、脂肪酸B酸化へ変化している ものと判断する。高用量のザイモサン投与後の腹腔内浸潤細胞においても、3-HB の産 生亢進が認められており、腹腔内における 3-HB の上昇は、少なくとも一部は、浸潤し てきた骨髄系細胞の 3-HB 産生亢進に由来する可能性が高い。炎症期における脂肪酸B 酸化の亢進が、炎症の収束過程に重要な役割を示し、炎症性疾患治療薬の新規創薬ター ゲットとなる可能性が考えられる。

第3章 ラット脊髄損傷モデルにおけるメタボローム解析 一神経 行動学的評価とメタボライトの相関ー

3-6. 緒言

脊髄損傷(Spinal cord injury, SCI)は、交通事故や転落、スポーツ等によって脊髄に損傷 を受ける傷害で、永久的な神経機能不全により、しばしば重篤な障害を引き起こす。発 生率は 100 万人当たり年 10~80 件程度で、30%以上の患者において四肢の麻痺が生じ る^{64,65}。急性脊髄損傷の患者の平均余命は、損傷の強度や神経機能不全の程度により短 くなることが知られている⁶⁶。脊髄損傷に対して有効な治療法はほとんどないのが現状 であり⁶⁴、脊髄損傷は患者の生活の質を著しく落とし、患者本人や周辺に対し多大な経 済的または社会的コストを強いることから、大きな問題となっている⁶⁵。

脊髄に対する機械的な傷害は、様々な病態生理学的な変化を同時に引き起こす⁶⁷⁻⁶⁹。 傷害の初期においては、軸索が破壊され、神経細胞死が起こる。また血管も障害を受け 出血し、それが更なる虚血性の神経障害を引き起こす。続くフェーズでは、壊死性の細 胞死や電解質の変化、浮腫形成などが生じる。細胞障害性を有する組織片や神経伝達物 質、活性酸素種なども産生し、炎症反応が亢進される。一方で、限定的な自己治癒に基 づく組織局所での組織再形成、神経保護や再生も始まる。

脊髄損傷動物モデルを用いた神経行動学機能の正確な評価は、新薬の治療効果を評価 するための重要な指標となっている。特にげっ歯類の脊髄損傷モデルにおける Basso-Beattie-Bresnahan (BBB) スコア⁷⁰は、神経行動学的な評価手法として広く用いられてい る。この評価法では、後肢関節の動き、体重の支え、前後肢の協調運動を経験豊富な評 価者が21ポイントの BBB スコアとして判断する。しかしながら、多くの研究室で適用 可能でかつ脊髄損傷の状態を定量的にチェックできる簡便で信頼性の高い評価法は、現 在のところ開発されていない。また傷害の重篤度や神経機能回復の診断に役立つバイオ マーカーの発見も、脊髄損傷のケアにおける問題点の一つとなっている^{71,72}。ヒトにお ける診断も現在のところ神経行動学的な評価が中心で、信頼性、定量性が高い低侵襲性 のバイオマーカーの発見は、治療可能な方法の選択において、医療関係者や患者に有用 であると考えられる。

これまでも述べてきたように、メタボロミクスは比較的新しい研究領域であり、特定 の疾患や傷害によって引き起こされるメタボライトの上昇や低下を、網羅的に測定可能 である。メタボライトのプロファイル変化を捉え、代謝パスウェイにどのような影響を 与えるのかを検討することによって、病態やストレス応答に対する情報を得ることがで きる^{9,34}。そこで本検討では、脊髄損傷がどのようにメタボライト組成へ影響を与える かを検討する目的で、また脊髄損傷の行動学的評価を予測することのできるメタボライ トを探索する目的で、質量分析装置を用いたメタボロミクスの技術をラット脊髄損傷モ デルに適用した。

3-7. 実験方法

3-7-1. 試薬

N-アセチルアスパラギン酸(NAA)は和光純薬(日本)から、NAA-1,2,3,4-¹³C4体 (NAA-¹³C4) は SIGMA-Aldlich からそれぞれ購入した。*N*-Methyl-*N*-trimethylsilyl-trifluoroacetamide (MSTFA) はGLサイエンス(日本)より購入した。他の試薬、材料は 全て特級または分析グレードのものを用いた。

3-7-2. 実験動物

今回実施した動物実験は、アスビオファーマ株式会社の動物実験倫理委員会の承認を 得ており、「研究機関等における動物実験等の実施に関する基本指針」(文部科学省告示 第七十一号、平成十八年六月)に厳密に従って実施した。全ての手術はペントバルビタ ールナトリウムによる麻酔下で実施し、動物の苦痛を最小化させるよう努力した。

3-7-3. 脊髄損傷モデルラットにおける脊髄組織中のメタボローム解析

動物は日本チャールスリバー株式会社から購入した8週齢の雌性SDラットを用いた。 使用時におけるラットの体重は、169gから212gであった。ラットを無作為に6群に分け、 非脊髄損傷群(Sham手術群)と脊髄損傷群(SCI群)の2条件を設定し、それぞれ損傷2 日後、損傷11日後及び損傷30日後にサンプリングする群を作成した。群設定を表 3-1に 示す。解析除外例を除き、最終的な動物数は各群7-8匹となった。脊髄損傷手術はペン トバルビタール麻酔下(50 mg/kg, i.p.)で実施し、胸椎9番付近の背部を切開し、脊髄を露 出させた後、Infinite Horizon Impactor (Precision Systems and Instrumentation, LLC, Lexington, KY)を用いて、胸椎9番に200 kdynの力を加え損傷させた。脊髄損傷による後 肢の持続的進展も確認した。なおSham手術群では、背部切開及び脊髄露出までSCI群と 同様の処置をし、脊髄は損傷させなかった。動物は保温したケージで回復させ、0.1% のBactramin (バクテラミン注, Trimethoprim (16 mg/mL)及びSulfamethoxazole (80 mg/mL) の混合溶液、中外製薬、日本)を飲水に混合し、10日間摂取させた。傷害ラットについ ては、1日1回の強制排尿を10日間実施した。傷害翌日に下肢の完全麻痺(BBBスコア=0) が確認された個体のみを実験に使用した。

Group	Sampling	Operation	n
Sham, Day2	Dev/2	Sham	8
SCI, Day2	Dayz	SCI	8
Sham, Day11	Dov/11	Sham	8
SCI, Day11	Dayri	SCI	7
Sham, Day30	Dov/20	Sham	8
SCI, Day30	Daysu	SCI	8

表 3-1 動物実験の群構成 メタボローム解析

下肢の運動機能評価は、day11及びday30の個体のみ、Basso-Beattie-Bresnahanの歩行運動基準⁷⁰(BBBスコア)に従ってサンプリングの直前に評価した。BBBスコアは完全麻痺(スコア0)から正常(スコア21)までの22段階ある。各スコアと下肢運動機能の関係を表 3-2に示す。2人の評価者が左後肢及び右後肢の運動機能を評価し、評価者2人の

合意の上で、左右の平均値を各個体のスコアとして算出した。

表 3-2 BBBスコアシステム

BBBスコアと下肢運動機能の相関。引用文献70を改変。

0:股関節・膝関節・足関節を全く動かせない。 2:1関節のみ進展できる。 4:3関節全てをわずかに動かせる。 6:1関節をわずかに動かせ、2関節は進展できる 8:体重までは支えられないが、足底部を地に着き、違	1:1~2関節をわずかに動かせる。 3:2関節のみ進展できる。 5:2関節をわずかに動かせ、1関節は進展できる 7:3関節全て進展できる。 言うことができる。
9:時に下肢で体重を支え、這ったり歩いたりする。 10:ときどき(5-50%)体重を支えて歩くことができるが 11:しばしば(50-100%)体重を支えて歩くことができる	、上下肢の協調性はない。 が、上下肢の協調性はない。
12:ときどき(5-50%)体重を支えて歩きことができ、と 13:しばしば(50-100%)体重を支えて歩きことができ、 14:しばしば足底部で体重を支え、上下肢の協調性を または、常に足底部で体重を支えるが、両足の向 15:上下肢の協調性を認め、ときどき(5-50%)さっと聞 16:上下肢の協調性を認め、しばしば(50-100%)さっ 17:上下肢の協調性を認め、しばしば(50-100%)さっ 18:上下肢の協調性を認め、こっと踵を上げて歩く。 19:上下肢の協調性を認め、さっと踵を上げて歩く。 20:上下肢の協調性を認め、さっと踵を上げて歩く。 21:上下肢の協調性を認め、さっと踵を上げて歩く。 えることができる。	きどき(5-50%)上下肢の協調性を認める。 、しばしば(50-100%) 上下肢の協調性を認める。 を認める。 きは外転している(筋力が弱いため)。 重を上げて歩く。ただし足首は外転している。 と踵を上げて歩く。ときに足の位置は中間位。 と踵を上げて歩く。足の位置は中間位。 この位置は中間位。 この位置は中間位。尻尾は下ろしている。 この位置は中間位。尻尾をあげて、かつ体重を支

行動学的評価の後、ラットにペントバルビタールを投与して深麻酔を施し、脊髄の傷 害部位周辺(Sham群ではそれに相当する部位)を約2.5 cm切除し、脊髄サンプルを採取 した。ラットはその後直ちに、安楽死処分した。脊髄サンプルを採取したチューブを、 直ちに液体窒素に付け瞬間凍結させ、測定まで-70℃以下で保管した。

ラット脊髄中のメタボライト測定は、Metabolon社 (Durham, NC, USA)に委託した。 脊髄サンプルに4倍量(w/v)のH₂Oを添加し、GenoGlinder 2000を用いたビーズ法により脊 髄組織ホモジネートを調製した。メタボライトは100 μLのホモジネートに冷メタノール を添加することにより抽出し、抽出上清を4等分し、窒素気流下及び遠心濃縮により乾 燥させた。乾燥残渣を再溶解し、GC-MS、LC-MS/MS(ネガティブモード)、LC-MS/MS (ホジティブモード)の3種のプラットフォームで測定した。メタボロン社における網 羅的メタボローム測定に関しては、論文化されており^{37,38}、詳細は前章に述べたことか ら割愛する。各サンプル中のメタボライトは、メタボロン社が独自に保有しているライ ブラリの保持時間とMSフラグメント情報から同定した。標品では確認されなかったピ ークでも、特有の保持時間及びイオン特性を示すものに関しては、未知メタボライトと して解析対象に加えた。

3-7-4. 脊髄損傷モデルラットにおける脊髄組織中の NAA 定量

動物は日本チャールスリバー株式会社から購入した8週齢の雌性SDラットを用いた。 使用時におけるラットの体重は、178 gから209 gであった。本検討では、BBBスコアの ばらつきを大きくするため、3種類の強度で脊髄を損傷させた。ラットを無作為に4群に 分け、非脊髄損傷群(Sham手術群、n=2)、100 kdyn脊髄損傷群(n=6)、150 kdyn脊髄損傷 群(n=6)及び200 kdyn脊髄損傷群(n=6)の計4条件を設定した。群設定を表 3-3に示す。脊 髄損傷手術は前項と同じ手順で実施し、詳細は前項に示しているが、脊髄損傷時の損傷 強度を100 kdyn、150 kdyn、200 kdynの3強度の群に分けた。脊髄損傷動物のうち、傷害 翌日に下肢の完全麻痺(BBBスコア=0)が確認された個体のみを実験に使用した。後肢 の運動機能は、経時的に記録し、機能回復がほぼプラトーに達したと考えられる傷害後 32-34日後に運動機能を評価した後、ペントバルビタール深麻酔下で脊髄組織を採取し た。脊髄組織は前項と同様に、脊髄の傷害部位周辺(Sham群ではそれに相当する部位) を約2.5 cm切除し採取した。ラットはその後直ちに安楽死処分した。脊髄サンプルを採 取したチューブは、直ちに液体窒素に付け瞬間凍結させ、測定まで-70℃以下で保管し た。なお100 kdyn群の1例は、BBBスコアが全く改善しなかったため、解析から除外し た。また死亡例も除外したため、最終的な動物数は、Sham手術群:n=2、100 kdyn脊髄 損傷群:n=4、150 kdyn脊髄損傷群:n=5、200 kdyn脊髄損傷群:n=5となった。

	animal number			
impact force	operation	sampling	sampling	sampling tissue
Sham	2	2		
100 kdyn	6	4	Day 20. 24	animal and
150 kdyn	6	5	Day 32-34	spinal cord
200 kdyn	6	5		

表3-3 動物実験の群構成 脊髄中NAA定量

118-187 mgの脊髄組織サンプルに9倍量(w/v)の、H₂Oを添加し、脊髄組織ホモジネートを調製した。脊髄ホモジネートから、一部改良したBrigh & Dyer法により、水溶性画分を抽出し⁷³、ガスクロマトグラフートリプル四重極型質量分析装置(GC-MS/MS)による測定に供した。サンプル中には、内標準物質としてNAAの安定同位体であるNAA-¹³Cを添加し、MSTFAによる誘導体化の後、GC-MS/MSで測定した。GC-MS/MSとして、アジレント社のAgilent7000システムを用い、脊髄中のNAA濃度を定量した。multiple-reaction monitoring (MRM)の検出イオンは、NAAは274>184に、NAA-¹³Cは277>187に設定した。

3-7-5. 統計解析

メタボローム解析では、各サンプル採取日(day2, day11, day30)について、SCI群とSham 群間でウェルチのt検定により、有意差を検定した。P値が<.05の場合、群間の平均値に 有意差があると判断した。相関係数の算出には、Excel(Microsoft)を用いた。主成分分析 (PCA)及び部分最小二乗法(PLS)解析にはSIMCA-P ソフトウェア Ver.12.0を用い、Unit Variance スケーリングで解析した。PLS解析では、BBBスコアを従属変数yに、脊髄中 メタボライトの相対濃度を行列Xを構成する独立変数xnに用いた。

【参考】

PLSは多変量検量法の一つとしてケモメトリクスの分野で広く使われている回帰法

である。本解析法では行列で表される2組の変数XとYを、部分最小二乗法を用いた回帰 分析により関連付けることで、行列Xを構成する独立変数xnを同時に用いた従属変数y の定量化を行なう。この過程で関連情報を抽出し次元を減らすために、多変量解析法を 用いて計算した潜在変数と呼ばれる新たな変数に、元の変数を集約させる。潜在変数は 元データの線形和であり、互いに直行する。その後、高次元空間に表された情報をいく つかの潜在変数で定義された低次元空間上に射影し、それに基づいて線形回帰を行なう。 PLSで作成されたモデルの質の評価については、直線性は回帰係数R²で、予測力はクロ スバリデーションの過程で算出されるR²を表す値Q²で行なわれる。クロスバリデーショ ンは一部のデータを除いた状態でモデル作成を行なった後、除いたデータを作成された モデルに当てはめ、この時に得られる値を実際の値と比較することで行なわれる。

3-8. 結果

3-8-1. 脊髄損傷後における脊髄組織中メタボライト組成の変化

脊髄中には合計405のメタボライトが検出され、そのうち283がメタボロン社独自のラ イブラリデータと一致する既知のメタボライトであった。既知メタボライトの一覧、各 群におけるその相対濃度及びウェルチのt検定によるSCI群とSham群での有意差検定 の結果は、巻末に補足データ(表S3-1)としてまとめて示す。

脊髄損傷後の病態生理学的な変化は、急性期、回復期、定常期の3つのフェーズに大きく分けることができる。そこで今回の試験では、それぞれのフェーズに相当する期間 (急性期:day2、回復期:day11、定常期:day30)にサンプルを採取した。

脊髄損傷は脊髄中のメタボライト組成に劇的な変化を与え、いずれのフェーズにおい ても25%以上のメタボライトが有意に変化していた。図3-1に全サンプルの測定結果を 用いた主成分分析(PCA)スコアプロットを示す。また図 3-2にPCAローディングプロッ トを示す。PCAスコアプロット上で、Sham群とSCI群は明確に区別され、脊髄損傷によ る脊髄中メタボライト組成の顕著な変化を示している。また、SCI群では経時的にメタ ボライト組成が変化している傾向も確認された。PCAスコアプロット上の分離に関与していると考えられるメタボライトの一部を、表3-4に示す。

図 3-1 脊髄損傷(SCI)ラット及び偽手術(Sham)ラットにおける脊髄中メタボライト PCA ス コアプロット

シンボル右横は動物番号を示す。またスコアプロット上の楕円(黒細線)は、Hotelling の 95%信頼区間を示す。

アウトライアーと考えられる個体が 2 個体(GK4 及び VK6)確認され、そのうち day11 の VK6 の BBB スコアは低い値であった。

図 3-2 SCI ラット及び Sham ラットにおける脊髄中メタボライト PCA ローディングプロット PC1 値が高いメタボライトとしては神経伝達物質やヌクレオチドなどが、PC1 値が低い メタボライトととしてはアミノ酸、遊離脂肪酸、リン脂質などが多い。PC2 値が低いメタボ ライトには、炎症時に増加が見られるメタボライトが多く含まれていた。

表 3-4 SCI ラット及び Sham ラット間で変化が見られた代表的なメタボライト

太字:ウェルチの*t*検定で有意差あり(P<.05)。

Early metbolic phase	SCI vs. Sham					
Metabolite	Fold change p-value					
Lipid Mediator	Day 2	Day 11	Day 30	Day 2	Day 11	Day 30
oleic ethanolamide	7.86	1.15	1.06	0.00	0.32	0.51
palmitoyl ethanolamide	7.09	1.06	1.04	< 0.01	0.69	0.70
prostaglandin E2	1.32	1.08	NA	0.04	0.18	-
Polvamine						
ornithine	1.77	0.96	0.79	0.02	0.60	0.30
putrescine	2.39	2.21	1.31	< 0.01	< 0.01	0.14
spermidine	0.94	1.04	0.96	0.44	0.78	0.63
5-methylthioadenosine	0.92	0.95	0.87	0.37	0.53	0.10
Neurotransmitters						
glutamate	0.78	0.90	0.87	< 0.01	0.01	< 0.01
glutamine	0.94	1.04	1.10	0.05	0.32	0.02
N-acetyl-aspartyl-glutamate	0.86	0.80	0.74	0.06	< 0.01	< 0.01
gamma-aminobutyrate	0.86	0.90	0.78	0.06	0.44	0.01
aspartate	0.65	0.85	0.91	0.00	0.00	0.04
N-acetylaspartate	0.83	0.63	0.54	0.31	0.00	< 0.01

Secondary metabolic phas

SCI vs. Sham

Metabolite	F	old chang	e		p-value	
Membrane remodeling	Day 2	Day 11	Day 30	Day 2	Day 11	Day 30
linolenate (18:3n3 or 6)	1.45	1.87	1.21	0.01	0.24	0.12
dihomo-linolenate (20:3n3 or n6)	0.91	1.60	1.74	0.37	0.00	< 0.01
eicosapentaenoate (20:5n3)	1.41	2.25	2.47	0.01	< 0.01	< 0.01
docosapentaenoate (22:5n3)	1.94	3.02	2.87	< 0.01	< 0.01	< 0.01
docosapentaenoate (22:5n6)	1.61	2.84	4.95	0.00	0.00	< 0.01
docosahexaenoate (22:6n3)	1.89	2.00	2.19	0.01	< 0.01	< 0.01
glycerophosphorylcholine	0.92	1.71	1.79	0.39	< 0.01	< 0.01
docosadienoate (22:2n6)	1.28	2.31	2.14	0.04	< 0.01	< 0.01
docosatrienoate (22:3n3)	1.79	3.34	2.79	0.00	< 0.01	< 0.01
adrenate (22:4n6)	1.25	2.01	1.94	0.03	< 0.01	< 0.01
1-palmitoyl-GPI	1.00	1.37	1.57	0.95	0.00	< 0.01
1-stearoyl-GPI	1.12	1.19	1.28	0.39	0.05	< 0.01
1-arachidonoyl-GPI	1.04	1.84	1.66	0.68	0.01	0.02
1-oleoyl-GPS	2.24	2.24	2.76	< 0.01	< 0.01	< 0.01
2-oleoyl-GPS	1.20	1.72	2.11	0.25	0.02	< 0.01
ethanolamine	0.97	1.71	1.17	0.60	0.02	0.23
phosphoethanolamine	0.79	1.79	1.38	0.05	< 0.01	< 0.01
Antioxidant defense						
ascorbate	0.61	1.42	1.11	< 0.01	0.01	0.19
glutathione, (GSSG)	0.85	3.79	1.68	0.77	0.00	0.20
alpha-tocopherol	1.02	1.30	1.29	0.72	0.02	0.03
ergothioneine	1.07	1.42	1.25	0.34	< 0.01	0.01

GPI: glycerophosphoinositol, GPS: glycerophosphoserine

PCAローディングプロットから、第1主成分軸では正方向にあるメタボライトとして、 神経伝達物質やヌクレオチドが、負方向にあるメタボライトとして、アミノ酸、遊離脂 肪酸、リン脂質などが挙げられる。第2主成分軸では負方向にあるメタボライトとして、 炎症時に上昇が見られるメタボライトが挙げられる。脊髄損傷後の代表的な脊髄中メタ ボライトの経時的な変動を図3-3及び3-4に示す。

S-Adenosylhomocystein (SAH)

図 3-3 SCI ラット及び Sham ラットにおける脊髄中メタボライトの経時的変化(減少したメタ ボライト)

n=7-8, 平均値±標準誤差(**:P<.01, *:P<.05, ウェルチの t 検定)。

図 3-4 SCI ラット及び Sham ラットにおける脊髄中メタボライトの経時的変化(増加したメタ ボライト)

n=7-8, 平均値±標準誤差(**:P<.01, *:P<.05, ウェルチの t 検定)。

SCI 群で低下したメタボライトには大きく分けて3つのパターンが見られた。Flavin adenine dinucleotide (FAD)は SCI 初期のみに低下が見られ、同様のパターンを示したメ タボライトとしては、Ascorbate などが挙げられる。N-Acetyl-aspartyl-glutamate (NAAG) は傷害後の比較的早期から低下が見られ、day30まで回復は見られなかった。同様のパ ターンを示したメタボライトとしては、N-Acetyl-aspartate (NAA)や Guanosine などが挙 げられる。S-Adenosyl-homocystein (SAH)は、時間とともに低下の度合いが大きくなって いた。SCI 群では増加したメタボライトのほうが多く見られ、大きく分けて5つのパタ ーンが見られた。Putescine は SCI 初期の上昇が激しく、徐々に Sham 群レベルまで低下 しており、同様のパターンを示したメタボライトとしては、Prostaglandin E2 (PGE₂)、 Oleic ethanolamide (OEA)、Palmitoyl ethanolamide (PEA)といった脂質メディエータや Pipeconate などが挙げられる。Glucose-6-phosphate (G-6-P)は、時間とともに増加し Sham 群との差が広がっており、Dihydrobiopterinや Eicosapentaenoate (EPA) などが同様のパタ ーンを示した。Hypotaurine、Citrate、Malateといったメタボライトは、傷害2日後及び 11 日後に顕著な増加が見られたものの、30 日後では回復傾向が見られた。 Docosapentaenoate (n3 DPA)は傷害 11 日後以降にその増加が顕著になっており、リゾリ ン脂質や遊離脂肪酸の多くがこのパターンを示した。Lysine は傷害後 11 日後の増加が 顕著な一方で、30日後ではやや低下しており、アミノ酸の一部や Sorbitol などが同様の パターンを示した。

3-8-2. 脊髄中メタボライト濃度と BBB スコアの相関

Basso, Beattie 及び Bresnahan により開発された 21 ポイントの BBB スコアは、げっ歯 類における SCI モデルにおける運動機能の回復を評価する評価法として広く用いられ ている。本検討では、 200 kdyn の力を加えるという比較的重篤な傷害を起こした後、 傷害 11 日後及び傷害 30 日後採取群で BBB スコアを評価している。各動物における試 料採取直前の BBB スコアを表 3-5 に示すが、今回の BBB スコア測定結果は、重篤な運 動機能が失われた後ある程度 BBB スコアが自発的に回復するという、過去の報告結果

表 3-5 SCI ラットのメタボロミクス検討時における試料採取直前の BBB スコア

PCA スコアプロット(図 3-1)において見られたアウトライアーの個体(個体番号:VK6) の BBB スコアは低値であった。

SCI, uay I

SCI, day30

	BBB Score at day11			
Animal No.	Left	Right	Mean	
R3	4	6	5.0	
R4	5	6	5.5	
GR3	8	6	7.0	
GR4	11	11	11.0	
GR5	8	5	6.5	
VK6	1	1	1.0	
VR3	2	1	1.5	
MEAN	5.6	5.1	5.4	
SE	1.4	1.3	3.4	

ooi, aayoo			
	BBB Score at day30		
Animal No.	Left	Right	Mean
B2	6	6	6.0
B3	6	5	5.5
GB2	11	9	10.0
GB3	6	5	5.5
VR4	6	6	6.0
VR9	6	6	6.0
VB1	14	14	14.0
VB6	10	9	9.5
MEAN	8.1	7.5	7.8
SE	3.1	3.1	3.1

脊髄局所における SCI の結果として観察されたメタボライトの変化は、各動物におけ る運動機能を反映している可能性が考えられる。そこで、各個体における BBB スコア を従属変数 y に、脊髄中メタボライトの相対濃度を行列 X を構成する独立変数 xn に設 定し、PLS 法により BBB スコアを予測する式を構築した。図 3-5 に BBB スコアの実測 値とメタボライト濃度から予測された予測値との相関を示す。なお Sham 群は全ての個 体が正常であったため、以降の解析では Sham 群の個体の BBB スコアは全てフルスコ アである 21 に設定した。

図 3-5 BBB スコアの実測値と PLS 解析により得られた BBB 予測式の相関 BBB 予測式は脊髄中メタボローム相対濃度から構築。Sham 群は全個体が正常な 運動機能を示したことから、BBB スコアは満点の 21 に設定した。

予測式の回帰係数 R²は 0.9783(相関係数 R: 0.989)、クロスバリデーションの過程で 算出される R²を表す値 Q²は 0.9204 と高い値であり、予測式の信頼性及び予測力は高い と判断する。個々のメタボライトで解析しても BBB スコアと高い相関を示すメタボラ イトが多数見出された。表 3-6 に BBB スコアと高い相関を示すメタボライトをまとめ た。また特に相関が高い既知メタボライトに関して、BBB スコアと脊髄中相対濃度の 関係を図 3-6 に示す。

表 3-6 BBB スコアと高い相関を示したメタボライトと相関係数(R)及びその絶対値(|R|)

相関係数の絶対値 0.8 以上の値を示すメタボライト。相関係数算出には day11 及び day30 のデータを使用。Sham 群の BBB スコアは全個体 21 に設定。

Metabolite	correlation coefficient (R)	R
docosahexaenoate (DHA; 22:6n3)	-0.92	0.92
N-acetyl-aspartyl-glutamate (NAAG)	0.92	0.92
docosapentaenoate (n3 DPA; 22:5n3)	-0.91	0.91
10-nonadecenoate (19:1n9)	-0.90	0.90
N-acetyl-methionine	-0.89	0.89
nonadecanoate (19:0)	-0.88	0.88
X - 12854	-0.88	0.88
X - 13418	-0.87	0.87
N-acetyl-aspartate (NAA)	0.87	0.87
margarate (17:0)	-0.87	0.87
tyrosine	-0.86	0.86
mannose	-0.86	0.86
sphingosine	-0.86	0.86
valine	-0.86	0.86
phosphoethanolamine	-0.85	0.85
docosatrienoate (22:3n3)	-0.85	0.85
eicosapentaenoate (EPA; 20:5n3)	-0.84	0.84
1-oleoylglycerophosphoserine	-0.84	0.84
docosadienoate (22:2n6)	-0.84	0.84
guanosine	0.84	0.84
N-acetyl-glutamate	0.84	0.84
dihomo-linolenate (20:3n3 or n6)	-0.83	0.83
adrenate (22:4n6)	-0.83	0.83
hypotaurine	-0.83	0.83
dihomo-linoleate (20:2n6)	-0.83	0.83
X - 15163	-0.82	0.82
galactose	-0.82	0.82
gamma-glutamylleucine	-0.82	0.82
lysine	-0.82	0.82
leucine	-0.82	0.82
glucose	-0.81	0.81
docosapentaenoate (n6 DPA; 22:5n6)	-0.81	0.81
X - 12748_201	-0.81	0.81
xanthosine	-0.81	0.81
glutamate	0.80	0.80
X - 12627	-0.80	0.80

X-xxxxx は未知メタボライトを示す

図 3-6 BBB スコアと特に高い相関を示したメタボライトーBBB スコアと脊髄中相対濃度 の相関

相関係数の絶対値が最も高い8種のメタボライトを選択。

- ●:SCI 群 day11 (n=7), O:Sham 群 day11 (n=8),
- ■:SCI群 day30 (n=8), □:Sham 群 day30 (n=8)。

BBB スコアと高い相関を示したメタボライトには、神経伝達物質や遊離脂肪酸が含まれていた(図 3-6)。NAA と NAAG といった神経伝達物質が BBB スコアと正の相関を示す(SCI 群で低値)一方、DHA や n3 DPA といった脂肪酸のいくつかは、SCI 群で高値となり、BBB スコアと負の相関を示した。

3-8-3. 脊髄中 NAA 濃度と BBB スコアの相関

前項で見出された BBB スコアと高い相関を示すメタボライトのうち、われわれは NAA に着目した。NAA は中枢組織に大量に含まれるメタボライトで、SCI 動物モデル において、プロトン核磁気共鳴スペクトロスコピー(proton magnetic spectroscopy, ¹H-MRS)という手法を用いて、その脊髄中濃度変化が検討されている^{74,75}。またヒトに おける脊髄中の NAA 濃度も、¹H-MRS により非侵襲的な方法で相対的に定量可能であ ることも報告されている^{76,77}。ラット SCI モデルにおいて、単一のメタボライト NAA が BBB スコアと相関することが再現できれば、NAA が SCI 後のヒトにおける運動機能 を診断可能なバイオマーカーとなる可能性がある。そこで、ラット SCI モデルにおける BBB スコアと NAA の相関の再現性を検討する試験を追加で実施した。なお追加試験で は、BBB スコアのばらつきを大きくするため、3 種類の強度で脊髄を損傷させた。ラッ トを無作為に4 群に分け、Sham 手術群、100 kdyn 脊髄損傷群、150 kdyn 脊髄損傷群及 び 200 kdyn 脊髄損傷群の計4条件を設定した。

図 3-7 に各群における BBB スコアの経時的な変化を示す。脊髄損傷翌日は全個体の BBB スコアが 0 であったが、徐々に回復が見られた。ただ傷害 21 日後にはほぼプラト ーに達し、その後はあまり改善が見られなかった。200 kdyn 群は比較的症状が重篤な個 体が多かった。100 kdyn 群と 150 kdyn 群では、平均 BBB スコアの逆転が見られたもの の、ばらつきの範囲内であると考える。今回の BBB スコア測定結果は、傷害直後に運 動機能が完全に失われた後、ある程度 BBB スコアが自発的に回復するという、過去の 報告結果と一致する⁶⁹。採取直前の BBB スコアは、全 14 個体のうち 6 個体がほぼ同じ

BBB スコア (スコア 4.5-5.5) を示し、高い BBB スコア、つまり状態が比較的良い個体 や、極端に低い BBB スコア、つまり症状が重篤な個体のデータがあまり得られなかった。

図 3-7 追加試験における SCI 後の BBB スコア経時的変化 ▲:100 kdyn 傷害群、●:150 kdyn 傷害群、■:200 kdyn 傷害群 平均値±標準誤差(n=4-5)。

図 3-8 に、各個体における脊髄損傷 32-34 日後の BBB スコアと脊髄中の NAA 濃度 の相関を示す。SCI 動物の脊髄中 NAA 濃度は Sham 処置の個体より明らかに低く、脊 髄中 NAA 濃度は、BBB スコアと極めて高い相関(相関係数 0.9 以上)を示した。脊髄 中 NAA 濃度と BBB スコアの高い相関は、前項のメタボローム解析結果においても得 られており、本結果からその再現性が確認された。

 図 3-8 脊髄損傷 32~34 日後における脊髄中 NAA 絶対濃度とBBB スコアの相関 脊髄損傷は 100, 150, 200 kdyn の 3 種の強度で与えた。
Sham 動物は 2 例とも正常な運動機能を示したことから、BBB スコアは満点の 21
に設定した。

3-9. 考察

本章では、脊髄損傷がどのようにメタボライト組成へ影響を与えるかを検討する目的 で、また脊髄損傷の行動学的評価と相関を示すメタボライトを探索する目的で、MS を 用いたメタボロミクスの技術を、ラット脊髄損傷モデルに適用した。我々が調査した限 りでは、本研究は脊髄損傷後の傷害部位付近におけるメタボロームの変動を検討した初 めての研究である。なお予備検討として同実験で得られた血漿を用いて、GC-MS によ る水溶性メタボライトの測定を実施したが、SCI による変化はほとんど認められなかっ た(結果は示さず)。脊髄における傷害部位は限られており、脊髄中におけるメタボロ ームの変化が全身へ影響しなかったと考えられる。

脊髄損傷後の脊髄組織中では、顕著なメタボライト組成の変化が観察された、大きく

2 つのフェーズに分けられた。初期は傷害2日後に相当し、脂質メディエータ、ポリア ミンや神経伝達物質関連物質などが、大きく変化した。脂質メディエータに関しては2 日後において PGE2、OEA、PEA の上昇が観察された。これらの上昇は、傷害 11 日後以 降に Sham 群と同程度まで回復していたことから、傷害による急性の炎症反応に由来す る変化と考える。PGE2は炎症性のメディエータで、SCI後の神経因性疼痛に関与して いるかもしれない^{78,79}。これに対し PEA は抗炎症作用を有することが示唆されており、 PEA の産生亢進は、過剰な炎症反応や組織破壊を回避するため、複数のシグナル経路が 活性化された可能性が考えられる⁸⁰。Putrescine や Spermidine といったポリアミンも大 きく影響を受け、メディエータと同様傷害 11 日後以降に回復傾向が見られた。ポリア ミン類の変動は、ポリアミン生合成系の律速酵素であるオルニチン脱炭酸酵素発現がス トレス反応で顕著に亢進するとの報告と一致する^{81,82}。この過程の活性化が、初期に続 く2次的な変化や神経保護的な作用に寄与しているのかもしれない。神経伝達物質とそ の関連物質(NAA, NAAG, Aspartate 及び Glutamate)は、SCI 後からずっと低下したま まで、少なくとも傷害 30 日後までこれらメタボライトの低下は回復しなかった。NAA や NAAG、Glutamate は、神経細胞に大量に含まれるメタボライトで、これらメタボラ イトの低下は SCI 後の神経細胞死と神経伝達物質の生合成能低下を反映しているもの と考えられる⁸³。また、神経細胞に直接ダメージを与える大量の Glutamate や神経伝達 物質関連物質の急速な放出も、SCI後に観察されている^{84,85}。これら物質の本来の濃度 が維持できていないということは、SCI 後の神経細胞再生が限定されていることを示唆 している。

2次的な変化は傷害 11 日後及び 30 日後に相当し、細胞膜リモデリングや抗酸化反応 に関与するメタボライトが大きく変化していた(表 3-4)。グリセロホスホコリン、リ ゾリン脂質、遊離脂肪酸などリン脂質分解物の上昇が観察され、上昇が見られた遊離脂 肪酸のうち、Dihomo-limonate や n3DPA、Docosahexaenoate (DHA)は炎症性あるいは抗炎 症性メディエータの前駆体である。なお、n3DPA、DHA、arachidonic acid といった多く の多価不飽和脂肪酸(PUFA)が同様の推移を示している。また 11 日後から観察された

Etanolamine や Phosphoetanolamine などリン脂質生合成の中間体濃度の上昇は、リン脂質 生合成経路の活性化を示している。上記パスウェイの活性化は、炎症反応により傷害後 の脊髄中からの死細胞等の残骸が除去され、修復反応が始まっていることを示唆してい る。なお、PUFA やリン脂質の上昇は、第2章で検討したザイモサン誘発腹膜炎におけ るメタボローム解析においても、炎症部位である PWF サンプル中で認められている。 これら脂質メタボライトの上昇は、炎症反応に共通して見られる変化であると考えられ る。酸化ストレスも傷害後の脊髄において生じる 2 次的な影響として、組織のダメージ を引き起こすと考えられている。SCI 後の Ergothionine やα-Tocopherol、Glutathione、 Ascorbate といった抗酸化物質の増加も 11 日後から見られており (表 3-4)、これら変化 も様々な生体防御反応が活性化されていることを示している。

上記に示すメタボロームの変化は、SCI後に起こる炎症、組織傷害、死細胞の除去そ してリモデリングといった、病態生理学的な変化を反映していると考えられ、これまで の報告と一致するものである⁶⁷⁻⁶⁹。ラット SCI モデルにおけるアレイ解析やプロテオミ クスの検討は、既にいくつか行われており、SCI後の遺伝子またはタンパク発現の変化 が明らかになっている。Carmelらは、傷害初期において神経細胞の喪失と炎症反応を 示唆する遺伝子発現の変化を捉えている⁸⁶。Resnickらは SCI後の中長期的な遺伝子発 現の変化を検討しており、脊髄組織中で組織修復を示唆する結果を報告している⁸⁷。Yan らは挫傷型の SCI モデルにおけるタンパク発現の経時的変化を検討しており、アポトー シスや代謝、細胞骨格構成に関連するタンパクの発現変動を確認している⁸⁸。今回報告 した SCI後の脊髄中メタボライトの変化は、上記に示す他のオミックスで得られた結果 と一致するものである。

今回の検討では、SCI後に顕著な濃度変化が見られた複数のメタボライトが、本モデ ルにおいて標準的な評価手法として確立されている BBB スコアと高い相関を示すこと を証明した。以前 Kwo らが、脊髄中のカリウム及びカルシウム濃度が脊髄損傷の重篤 度と相関することを報告しているものの⁸⁹、我々の知る限り、本検討結果は、げっ歯類 の SCI モデルにおける標準的な神経行動学的評価指標である BBB スコアと、メタボラ イトの変化が相関することを示した最初の報告である。BBB スコアシステムは、SCI 後における後肢運動機能の回復を評価できる詳細かつ連続的な 21 スケールの評価基準 である。BBB スコア評価においては、低スコア (スコア: 0-7) では主に関節の動きを、 中間的なスコア(スコア:7-12)では足裏による体重の支えを、高スコア側(スコア: 13-21) では前後肢の協調運動を評価しており⁷⁰、スコアにより評価する内容が変化す るのが特徴である。今回 BBB スコアと最も高い相関が見られたメタボライト群は、神 経伝達物質関連物質や遊離脂肪酸であり、これらメタボライト濃度の変化は、SCI 後の 生化学的変化の過程と強く相関している。神経伝達物質またはその関連物質である NAAG 及び NAA は、BBB スコアと高い正の相関を示した。これは神経行動学的機能が 悪い個体ほど、脊髄組織中の濃度が低いことを示している。NAAG は哺乳類の神経系に 最も多く含まれる神経伝達物質であり、神経細胞のバイアビリティを示すマーカーであ るが、今回の検討において、BBB スコアと最も高い相関を示した。NAA は NAAG の前 駆体または分解物であり (図 3-9)、中枢組織に大量に含まれている。 中枢組織中の NAA 濃度は神経機能に強く関連すると言われており⁹⁰、ラット SCI 後にその脊髄中濃度が急 速に低下することが確認されている⁹¹。中枢組織おける NAA 濃度の低下は、アルツハ イマー病、筋萎縮性側索硬化症、パーキンソン病といった各種神経変性疾患においても 報告されている⁹²⁻⁹⁴。Blamire らは、ヒト多発性硬化症におけるニューロン及び軸索の 機能不全と、NAA 濃度低下に高い相関関係があることを報告している ⁹⁵。SCI では、そ の初期において神経細胞傷害が起こり、それに続く神経機能の回復は十分ではない。SCI 後の NAAG 及び NAA 濃度の低下は、脊髄組織におけるこれらメタボライトの産生能が 低下していることを示している。

図 3-9 NAAGとNAAの関係 NAAG はグルタミン酸カルボキシペプチダーゼ II (GCP II) により分解され、NAA とグル タミン酸を生成する。

神経伝達物質関連物質とは逆に、いくつかの脂肪酸は BBB スコアと高い負の相関を 示した。これは神経行動学的機能が悪い個体ほど、脊髄組織中の脂肪酸濃度が高いこと を示している。これら脂肪酸の多くは、細胞膜を構成するリン脂質の主要構成成分であ り、SCIによる濃度上昇は脊髄神経細胞の細胞膜のダメージ、または細胞膜の修復を反 映していると考えられる。DHA や n3 DPA はω-3 系 PUFA であるが、両メタボライトは SCI 後の脊髄組織において顕著な上昇が見られ、BBB スコアとは強い負の相関を示した。 これらω-3 系 PUFA は、特に脳などの中枢組織にリン脂質の一部として豊富に含まれて おり、中枢の神経学的な機能維持にも深く関与しているといわれている⁹⁶。SCIによる これらω-3系 PUFA の上昇は、おそらく脊髄組織中の細胞のダメージを反映していると 思われる。一方、別の論文では、ω-3 系 PUFA や DHA が二次的な神経変性につながる いくつかのプロセスを調整し、SCIからの回復を促進するとも報告されている^{97,98}。ま たあらかじめ高い濃度の DHA が存在すれば、Resolvin 類や Neuroprotectin D1 などの DHA 由来の抗炎症性メディエータ産生上昇を介して、SCI による炎症反応を軽減させ る可能性も考えられる⁹⁹。加えてω-3 系 PUFA に含まれる多数の二重結合は、神経毒性 発現につながる脂質過酸化反応のターゲットとなることから、ω-3 系 PUFA の上昇は、 SCI に伴う神経組織の酸化ストレスを軽減するためのフリーラジカルのスカベンジャ ーとして機能しているかもしれない。以上に示したメタボライトと BBB スコアの強い

相関関係は、BBB スコアが神経細胞のダメージや修復、そして炎症などに伴う代謝の 変動と密接に関係していることを示唆している。一連の結果は、BBB スコアに生化学 な根拠を与えるとともに、これらメタボライトが SCI 後の運動機能を予測できるバイオ マーカーとなりえる可能性を示している。

メタボローム解析で見出した BBB スコアの強い相関を示すメタボライトのうち、 我々は NAA に着目して追加試験を実施した。追加試験では、高い BBB スコア、すな わち状態が比較的良い個体や、極端に低い BBB スコア、すなわち症状が重篤な個体の データがあまり得られなかったため、幅広い BBB スコアの範囲で NAA 濃度との高い 相関が維持されるかどうかは今回の結果からは証明できないが、相関係数自体は 0.9 以 上と高い値であり、単一のメタボライト NAA が SCI 後の運動機能をある程度予測でき ることを示している。NAA はアミノ酸の1種であり、その存在はほぼニューロンと軸 索に限局される。またプロトン核磁気共鳴スペクトロスコピー(¹H-MRS)という手法を用 いて、その脊髄中相対濃度が測定できることが報告されている^{74,75}。Qian らは、¹H-MRS を用いてラット SCI モデルにおける NAA 濃度を測定しており、脊髄中 NAA 濃度は傷 害後速やかに低下し、その低下は傷害56日後まで持続していることを報告している⁷⁵。 また傷害部位だけでなく、その上部または下部の脊髄組織においても NAA 濃度の低下 がみられることも報告している ⁷⁵。これら結果の一部は、本検討において得られた知見 と一致している。今回の検討から、脊髄中の傷害部位付近の NAA 濃度を測定すること により、SCI 後の神経行動学的機能が予測できることが示唆された。ヒトにおける脊髄 中の NAA 相対濃度は、¹H-MRS により非侵襲的に測定できることが報告されている^{76,77}。 脊髄損傷患者における脊髄中 NAA 濃度は、傷害の重症度や神経機能の回復をより正確 に診断できる有用なバイオマーカーとなる可能性がある。実際の臨床においては、治療 介入前及び治療開始後経時的に¹H-MRSによる NAA 相対濃度を測定し、神経行動学的 機能の回復度と比較するといった方法が想定される。特に新薬の臨床試験において、科 学的な根拠を得る目的の比較的小規模な臨床試験での応用が、まず期待される。

3-10. 小括

本章では、脊髄損傷がどのようにメタボライト組成へ影響を与えるかを検討する目的 で、また脊髄損傷後の行動学的評価とメタボライトの相関を検討する目的で、MS を用 いたメタボロミクスの技術をラット脊髄損傷モデルに適用した。ラットに脊髄損傷を与 え、脊髄組織中のメタボライトを経時的に測定した結果、脊髄損傷後のメタボライト変 化は、病態生理学的な変化と同様、大きく2つのフェーズに分けられることが判明した。 初期のメタボローム変化では、神経伝達やストレス、炎症関連のメタボライトが顕著に 変化した。Prostaglandin E2 や Palmitoyl ethanolamide といった炎症性脂質メディエータや、 炎症性または抗炎症性の多価不飽和脂肪酸の顕著な変動が検出された。また N-Acetylaspartylglutamate (NAAG)や N-Acetylaspartate (NAA)といった神経伝達物質関連 メタボライトも、傷害後の比較的早期から有意な低下が見られ、脊髄損傷後の神経細胞 死を反映していると考える。初期の変化に続き、二次的なメタボローム変化も観測され、 細胞膜の再生や抗酸化反応を示唆する変化であった。これらメタボロームの変化は、脊 髄損傷後の病理学や病態進展と一致するものであった。NAAG や NAA、ω-3 系多価不 飽和脂肪酸である Docosapentanoate (n3DPA)や Docosahexanoate (DHA)など複数のメタボ ライトの脊髄中濃度は、本実験系の標準的な神経行動学的評価法である Basso-Beattie-Bresnahan (BBB) スコアと極めて高い相関を示した。今回我々が新たに見出した 知見は、神経行動学的評価である BBB スコアに生化学な根拠を与えるとともに、メタ ボライトが神経行動機能と相関していることを示している。特に脊髄中のNAA 濃度は、 ヒトにおいて脊髄中の相対濃度が非侵襲的に測定できることから、傷害の重症度や神経 機能の回復をより正確に診断できる有用なバイオマーカーとなる可能性があり、臨床で の応用が期待される。

第4章 結論と展望

4-11. 結論

本研究の最大の目的は、in vivo 病態モデル動物にメタボロミクスを適用し、新規創薬 ターゲットの取得や臨床で応用可能なバイオマーカー探索におけるメタボロミクスの 可能性を検討することである。本論文は、マウス in vivo ザイモサン誘発腹膜炎モデル 及びラット in vivo 脊髄損傷モデルにメタボロミクスを適用し、in vivo モデルの主要評価 項目とメタボロームの相関から、新規創薬ターゲットやバイオマーカー候補を探索した 結果についてまとめたものである。

第2章では、自発的な炎症の収束過程が観察できるマウス in vivo ザイモサン誘発腹 膜炎モデルにメタボロミクスを適用し、炎症の収束過程の分子メカニズム解明及び炎症 の活性化及び収束に関与する重要なプロセスを探索した例を紹介した。本実験により、 腹膜炎誘発後に腹腔内洗浄液(PWF)及び血漿中において、多数のメタボライトが大きく 変動することが判明し、メタボライト組成は経時的に変化することが確認された。これ らメタボライトの変動は、炎症性のケモカインやサイトカインの産生と高い相関を示し た。PWF 中では、多数のメタボライトがザイモサン投与後に増加し、メタボライトの 変化は炎症やエネルギー需要の増大を示唆するものであった。一方血漿中では、中心代 謝系(解糖系、TCA 回路)のほとんどのメタボライトが、ザイモサン投与後に顕著に 低下した。また、炎症抑制性因子とメタボライトに関係に着目し、PWF 中のインター ロイキン 10 (IL-10)産生を主要評価項目に設定し、IL-10 と高い相関を示すメタボライト を探索した。その結果、3-ヒドロキシ酪酸(3-HB)やその類似物質 2-ヒドロキシ酪酸、短 鎖アシルカルニチンなどが高い相関を示すことを確認した。ケトン体である 3-HB の上 昇は、高用量のザイモサン投与後に PWF 及び血漿で共通して見られた変化で、PWF 中 のアシルカルニチン類上昇も考えると、これらの変化はエネルギー代謝が、脂肪酸β酸 化へ変化しているものと判断する。炎症期における脂肪酸B酸化の亢進が、炎症の収束 過程に重要な役割を示し、炎症性疾患治療薬の新規創薬ターゲットとなる可能性が考え られる。

本検討では、新薬の研究開発段階の比較的初期において in vivo 病態モデル動物にメ タボロミクスを適用し、主要評価項目とメタボライトの相関を利用することにより、特 定の現象における重要プロセス及び新規創薬ターゲット候補を発見することができた。 創薬初期段階においては、新規創薬ターゲット発見、作用メカニズムの解明、病態発症 機序解明などでメタボロミクスの技術は有用と考える。

第3章では、ラット in vivo 脊髄損傷モデルにメタボロミクスを適用し、メタボライ トが神経行動学的スコアと高い相関を示し、神経行動学的症状の重篤度を反映するバイ オマーカー候補物質を見出した事例を紹介した。ラットに脊髄損傷を与え、脊髄組織中 のメタボライトを経時的に測定した結果、脊髄損傷後のメタボライト変化は、病態生理 学的な変化と同様、大きく2つのフェーズに分けられることが判明した。初期のメタボ ローム変化では、神経伝達やストレス、炎症関連のメタボライトが顕著に変化し、炎症 性脂質メディエータや、炎症性または抗炎症性の多価不飽和脂肪酸の顕著な変動が傷害 初期に検出された。また N-acetylaspartylglutamate (NAAG)や N-acetylaspartate (NAA)とい った神経伝達物質関連メタボライトも、傷害後の比較的早期から有意な低下が見られ、 脊髄損傷後の神経細胞死を反映していると推定した。初期の変化に続き、二次的なメタ ボローム変化も観測され、細胞膜の再生や抗酸化反応を示唆する変化であった。これら メタボロームの変化全体は、脊髄損傷後の病理学や病態進展と一致するものであった。 NAAG や NAA、ω-3 系多価不飽和脂肪酸など複数のメタボライトの脊髄中濃度が、本 実験系の標準的な神経行動学的評価法である Basso-Beattie-Bresnahan (BBB) スコアと極 めて高い相関を示した。今回我々が新たに見出した知見は、神経行動学的評価である BBB スコアに生化学な根拠を与えるとともに、メタボライトが神経行動学的機能と相 関していることを示している。特に脊髄中の NAA 濃度は、ヒトにおいて脊髄中の相対 濃度が非侵襲的に測定できることから、傷害の重症度や神経機能の回復をより正確に診 断できる有用なバイオマーカーとなる可能性があり、臨床での応用が期待される。

本検討では、新薬の研究開発段階の研究後期、いわゆる前臨床段階において in vivo 病態モデル動物にメタボロミクスを適用した。その結果、主要評価項目とメタボライト の相関を利用して、メタボライトの変動が評価項目として応用できる可能性を示し、新 規バイオマーカーの候補を発見することができた。創薬の前臨床段階においては、治療 の有効性や回復性の評価項目としてのメタボライト利用、病態の診断マーカー発見、臨 床バイオマーカー探索などでメタボロミクスの技術は有用と考える。

ー連の結果から、*in vivo* 病態モデル動物にメタボロミクスを適用することにより、特 定の現象における重要プロセス及び新規創薬ターゲット候補を発見し、新規バイオマー カーの候補を発見することができた。本研究の目的であった、新規創薬ターゲットの取 得や臨床で応用可能なバイオマーカー探索におけるメタボロミクスの可能性を示すこ とができたと考える。図 4-1 に、*in vivo* 病態モデル動物においてメタボロミクスに期待 される役割を示した。メタボロミクスは、その特徴であるフェノタイプに近いこと、大 部分のメタボライトが種を超えて共通であること、生化学的かつ定量的な情報が再現性 良く得られる点を生かすことにより、新規創薬ターゲット発見、作用機序の解明、新規 評価ツール開発、臨床バイオマーカー探索などの面で有用と考える。メタボロミクスが、 *in vivo* 病態モデルとヒト病態・疾患を橋渡しをすることにより、今後の新薬の研究開発 を変え、その生産性向上に寄与することを期待する。

図 4-1 In vivo 病態モデル評価においてメタボロミクスに期待される役割

4-12. 今後の展望

本論文では、質量分析装置を用いたメタボロミクス技術を、新薬の研究開発段階の創 薬初期段階及び研究後期段階の *in vivo* 病態モデル動物に適用した 2 つの事例を紹介し た。両事例では、いずれも主要評価項目とメタボライトの相関を利用し、所期の目的を 達成することができた。

メタボロミクスは各種評価に定量的かつ生化学的な根拠を与え、フェノタイプと近い という特徴がある。創薬の過程では、動物実験は必須であり、新薬開発に重要な役割を 担っている。また本論文では述べていないが、ヒト由来の細胞など in vitro 評価系も、 創薬段階での種評価に汎用されている。様々な in vivo や in vitro 評価系が新薬の研究開 発で用いられており、これら評価系の主要評価項目とメタボライトの相関を利用したア プローチが期待される。メタボロミクスは各種 in vivo 病態モデルや in vitro 評価系とヒ ト病態・疾患を橋渡しし、ヒトにおける有効性の予測向上に大きな役割を果たすことが 可能であると考える。かつて DNA マイクロアレイを用いた網羅的遺伝子発現解析が、 創薬評価のプロセスを大きく変え一般化したように^{100,101}、メタボロミクスが既存の創 薬プロセスの変革、そして医薬品研究開発の生産性向上に寄与することが期待される。

現時点におけるメタボロミクスの課題の一つとして、医療に直接影響を与えるような 具体的な成果があまり得られていないことが挙げられる。メタボロミクスにより疾患特 異的なバイオマーカーや薬剤反応性マーカー、毒性バイオマーカーを見出したという報 告は複数あるものの^{14,16,102}、比較的新しい研究領域ということもあり、医療を変えるよ うな新薬ターゲットの発見、診断基準の根本的な変革などにメタボロミクスが貢献した 例は、現時点ではほとんど報告されていない。今後、ヒト組織の積極的な利用、探索的 な臨床試験の応用など、早期から臨床を意識したメタボロミクスの適用が重要と考える。

第1章で述べたように、医薬品開発の成功確度向上のための重要な手段として、オミ クス技術の応用が挙げられている。メタボライトの総体であるメタボロームを網羅的に 研究するメタボロミクスは、遺伝子の総体であるゲノムを網羅的に研究するゲノミクス、 ゲノム DNA から転写される mRNA の総体であるトランスクリプトームを網羅的に研究
するトランスクリプトミクス、タンパク質の総体であるプロテオームを網羅的に研究す るプロテオミクスとともに、オミクス技術の一つである。メタボロミクス単独では困難 であった包括的な事象の解析も、これらオミクス技術を併用することにより可能となる と考えられる。最近では、ゲノムワイド関連解析(Genome Wide Association Study, GWAS) にメタボロミクスを応用し、疾患関連遺伝子候補を発見した例^{103,104}や、いわゆるマル チオミックス解析を創薬ターゲット発見に活用する例^{105,106}も報告されている。疾患や 病態のメカニズム解明や新規バイオマーカー開発には、メタボロミクスだけでなく、他 のオミクス技術も有効に活用し、生体を総合的に理解するアプローチが今後重要になっ てくると考える。

図 4-2 治療満足度(2010 年)別にみた新薬の開発状況(2011 年 6 月時点) 引用文献 107 図3より引用。出所:HS 財団による調査結果及び各社公表情報をも とに作成。

これまで各種疾患に対し数多くの薬剤が開発されており、医薬品は医療の進展に大きな役割を果たしてきた。現在、製薬企業各社は新薬の研究開発における生産性低下に苦

しんでいるが、一方で図 4-2 に示すように、治療の満足度、薬剤の貢献度がともに低い、 新薬の登場が待たれているアンメットメディカルニーズが多数存在するのも事実である¹⁰⁷。今後メタボロミクスが、創薬プロセス改革と新薬のR&Dの生産性向上に寄与し、 医療の発展へ貢献することを期待している。

謝辞

本研究を遂行し、学位論文をまとめるにあたり、格別なるご指導とご高配を賜りまし た大阪大学大学院工学研究科 福崎英一郎教授に謹んで感謝の意を表します。

本論文の審査において、貴重なご指導とご助言を賜りました大阪大学大学院工学研究 科 福井希一教授、大阪大学大学院工学研究科 渡邉肇教授に心から厚く感謝申し上げ ます。

本研究を進めるにあたり、具体的な研究の方向性を示し、日頃から貴重なご助言と励 ましの言葉を頂きました大阪大学大学院工学研究科 馬場健史准教授に心から深く感 謝申し上げます。

本研究を遂行するにあたり、研究環境の整備や実験サポートの面で貴重なご尽力を頂 きました大阪大学工学研究科 小野比佐好助教に深く感謝申し上げます。

本研究を進めるにあたり、実験結果の解釈や論文投稿において有用なご助言とご指導 を頂きました東京大学大学院薬学研究科 有田誠准教授に心から厚く感謝申し上げま す。

博士課程への進学にあたり、温かいご支援を頂きましたアスビオファーマ株式会社 南竹義春取締役、小笠原裕之ファカルティ長、緒方淳人ファカルティ長に深く感謝申し 上げます。またモデルでの検討やサンプル採取、論文作成等に貴重な時間を割いてご協 力頂きました、アスビオファーマ株式会社 上野新也博士、萬野篤博士、林靖浩博士、 葛城涼子研究員、黒田真理子研究員に心から感謝申し上げます。加えて試験計画立案や 測定、データ解析、論文作成にご協力いただきました Metabolon Inc. の Lining Guo 博士、 Nelson Rhode 博士、Thomas J. Jönsson 博士に厚く感謝申し上げます。

本研究を行うに際し、大阪大学大学院工学研究科 福崎研究室の諸先輩方、学生諸氏、 事務の方々、アスビオファーマ株式会社の研究員の皆様に心から感謝の意を表します。

最後に、これまで応援し続けてくれた多くの友人、そして常に支えてくれた家族に深 い感謝の意を表して謝辞と致します。

71

補足データ

		-								
	Vehicle, 6 h	Zymosan 1 m	g/kg, 6 h	Zymosan 10 m	ng/kg, 6 h	Vehicle, 24 h	Zymosan 1 mg	g/kg, 24 h	Zymosan 10 m	g/kg, 24 h
BIOCHEMICAL	MEAN	MEAN	р	MEAN	р	MEAN	MEAN	р	MEAN	р
1,2-propanediol	1.93.E+07	5.50.E+07	0.000	4.43.E+07	0.006	2.62.E+07	4.10.E+07	0.090	5.14.E+07	0.006
1,5-anhydroglucitol (1,5-AG)	4.61.E+05	1.18.E+06	0.002	9.60.E+05	0.019	4.61.E+05	8.30.E+05	0.014	9.59.E+05	0.002
10-heptadecenoate (17:1n7)	6.75.E+04	1.24.E+05	0.001	1.20.E+05	0.001	7.72.E+04	9.91.E+04	0.312	1.91.E+05	<.0001
12-dehydrocholate	3.68.E+03	3.40.E+03	0.999	1.71.E+04	0.142	9.49.E+03	5.83.E+03	0.209	2.49.E+03	0.015
13-HODE + 9-HODE	3.35.E+04	3.53.E+04	0.966	3.59.E+04	0.943	3.96.E+04	1.82.E+04	0.252	3.77.E+04	0.986
13-methylmyristic acid	1.92.E+05	2.77.E+05	0.004	2.67.E+05	0.009	1.96.E+05	2.44.E+05	0.025	2.71.E+05	0.001
1-arachidonoyl-GPC (20:4)	1.83.E+04	1.14.E+05	0.013	1.22.E+05	800.0	3.01.E+04	4.93.E+04	0.199	7.55.E+04	0.003
1-arachidonoyl-GPE (20:4)	4.60.E+03	2.12.E+04	0.001	1.67.E+04	800.0	4.60.E+03	1.44.E+04	0.021	2.12.E+04	0.001
1-arachidonoyl-GPI (20:4)	2.26.E+03	5.72.E+04	0.016	2.40.E+04	0.388	2.26.E+03	5.41.E+03	0.772	2.83.E+04	0.001
1-docosahexaenoyl-GPC (22:6)	2.21.E+04	1.05.E+05	0.084	1.37.E+05	0.018	1.87.E+04	5.18.E+04	0.126	9.15.E+04	0.002
1-eicosatrienoyl-GPC(20:3)	2.94.E+04	5.19.E+04	0.180	5.91.E+04	0.070	2.01.E+04	3.78.E+04	0.114	4.23.E+04	0.045
1-linoleoyl-GPC (18:2)	1.93.E+05	4.08.E+05	0.303	5.62.E+05	0.058	1.40.E+05	2.66.E+05	0.350	3.95.E+05	0.039
1-methyladenosine	1.71.E+04	6.29.E+04	<.0001	5.47.E+04	0.000	2.07.E+04	3.00.E+04	0.273	4.23.E+04	0.009
1-oleoyl-GPC (18:1)	4.47.E+04	1.97.E+05	0.116	2.45.E+05	0.037	2.20.E+04	5.00.E+04	0.800	1.69.E+05	0.022
1-oleoyl-GPE (18:1)	4.16.E+03	1.47.E+04	0.002	1.03.E+04	0.055	4.16.E+03	8.06.E+03	0.173	1.42.E+04	0.001
1-palmitoyl-GPC (16:0)	2.08.E+05	6.90.E+05	0.187	8.65.E+05	0.064	8.70.E+04	2.57.E+05	0.824	1.12.E+06	0.014
1-palmitoyl-GPE (16:0)	6.05.E+03	3.39.E+04	0.002	2.63.E+04	0.018	5.45.E+03	1.86.E+04	0.342	4.22.E+04	0.006
1-palmitoylplasmenylethanolamine	2.68.E+03	8.87.E+03	0.003	8.37.E+03	0.006	2.60.E+03	5.25.E+03	0.504	1.77.E+04	0.000
1-stearoyl-GPC (18:0)	6.36.E+04	2.77.E+05	0.172	3.53.E+05	0.058	2.54.E+04	1.58.E+05	0.504	5.32.E+05	0.004
1-stearoyl-GPE (18:0)	1.16.E+04	4.02.E+04	0.001	3.61.E+04	0.002	1.19.E+04	2.71.E+04	0.150	6.54.E+04	<.0001
2-aminoadipate	3.95.E+04	8.99.E+04	0.001	6.83.E+04	0.025	4.80.E+04	7.86.E+04	0.349	1.08.E+05	0.045
2-aminobutyrate	4.35.E+04	8.09.E+04	0.012	7.74.E+04	0.020	7.40.E+04	6.08.E+04	0.686	1.06.E+05	0.166
2'-deoxycytidine	3.01.E+04	8.14.E+04	0.001	7.62.E+04	0.002	2.97.E+04	1.19.E+05	0.001	1.18.E+05	0.001
2'-deoxyuridine	3.61.E+04	9.86.E+04	0.001	9.47.E+04	0.001	5.03.E+04	7.04.E+04	0.216	1.22.E+05	0.000
2-ethylhexanoate (isobar with 2-propylpentanoate)	1.20.E+04	1.11.E+05	0.001	1.18.E+05	0.000	8.24.E+03	5.68.E+04	0.127	1.12.E+05	0.002
2-hydroxy-3-methylvalerate	2.09.E+03	2.71.E+03	0.711	3.52.E+03	0.219	2.45.E+03	3.81.E+03	0.829	1.62.E+04	0.000
2-hydroxybutyric acid	2.23.E+05	5.15.E+05	0.030	8.96.E+05	<.0001	3.08.E+05	4.35.E+05	0.971	3.24.E+06	0.001
2-hydroxyglutarate	1.65.E+04	3.53.E+04	0.079	3.51.E+04	0.081	2.44.E+04	2.66.E+04	0.940	4.18.E+04	0.069
2-hydroxyisobutyrate	1.28.E+05	4.66.E+05	0.019	3.64.E+05	0.097	1.95.E+05	2.07.E+05	0.958	3.22.E+05	0.052
2-linoleoyl-GPC (18:2)	2.66.E+04	2.53.E+04	0.994	4.23.E+04	0.496	1.86.E+04	4.54.E+04	0.192	3.50.E+04	0.492
2-methylbutyroylcarnitine (C5)	2.05.E+04	4.01.E+04	0.027	4.47.E+04	0.008	2.16.E+04	2.79.E+04	0.445	3.64.E+04	0.039
2-oleoyl-GPC (18:1)	1.90.E+04	3.33.E+04	0.356	4.50.E+04	0.065	1.66.E+04	1.84.E+04	0.953	3.06.E+04	0.120
2-palmitoyl-GPC(16:0)	2.53.E+04	4.98.E+04	0.558	7.38.E+04	0.150	1.46.E+04	2.81.E+04	0.864	9.72.E+04	0.031
2-stearoyl-GPC (18:0)	1.62.E+04	2.43.E+04	0.628	3.61.E+04	0.112	1.40.E+04	1.95.E+04	0.806	4.55.E+04	0.015
3-(4-hydroxyphenyl)lactate (HPLA)	1.01.E+04	1.65.E+04	0.165	2.09.E+04	0.018	9.99.E+03	1.34.E+04	0.732	3.54.E+04	0.001
3-dehydrocarnitine	3.96.E+05	8.03.E+05	0.000	7.23.E+05	0.003	4.64.E+05	6.42.E+05	0.165	7.20.E+05	0.042
3-hydroxybutyric acid	1.08.E+06	3.56.E+06	0.050	5.05.E+06	0.003	2.34.E+06	4.12.E+06	0.923	2.97.E+07	0.001
3-hydroxyisobutyric acid	1.34.E+05	2.28.E+05	0.070	2.59.E+05	0.018	1.05.E+05	1.33.E+05	0.823	3.11.E+05	0.004
3-indoxyl sulfate	1.59.E+04	2.52.E+04	0.121	2.06.E+04	0.514	1.77.E+04	2.51.E+04	0.439	2.65.E+04	0.334
3-methyl-2-oxobutyrate	1.80.E+04	4.61.E+04	0.001	4.16.E+04	0.004	2.32.E+04	2.48.E+04	0.960	5.21.E+04	0.002
3-methyl-2-oxovalerate	1.68.E+04	4.29.E+04	0.007	4.13.E+04	0.011	2.42.E+04	2.72.E+04	0.947	7.32.E+04	0.001
3-methylglutaroylcarnitine (C6)	7.71.E+03	2.87.E+04	0.002	2.74.E+04	0.003	7.43.E+03	1.28.E+04	0.762	4.73.E+04	0.001
3-phenylpropionate (hydrocinnamate)	4.60.E+03	5.73.E+03	0.652	3.62.E+03	0.722	4.53.E+03	7.12.E+03	0.001	3.19.E+03	0.061
3-ureidopropionate	8.49.E+04	1.65.E+05	0.089	1.79.E+05	0.047	7.08.E+04	7.66.E+04	0.974	1.59.E+05	0.027
4-methyl-2-oxopentanoate	2.55.E+04	5.82.E+04	0.007	6.31.E+04	0.003	3.20.E+04	3.65.E+04	0.883	9.33.E+04	0.000
5-methylthioadenosine (MTA)	1.50.E+04	4.37.E+04	0.000	4.31.E+04	0.000	1.75.E+04	4.12.E+04	0.004	5.42.E+04	0.000
5-oxoproline	1.10.E+04	3.24.E+04	0.005	3.25.E+04	0.005	1.25.E+04	2.23.E+04	0.031	2.94.E+04	0.001
7-HOCA	3.82.E+03	6.41.E+03	0.303	1.01.E+04	0.010	4.58.E+03	8.17.E+03	0.151	1.55.E+04	0.000
7-methylguanine	9.93.E+04	1.45.E+05	0.378	1.15.E+05	0.875	7.72.E+04	9.60.E+04	0.680	9.57.E+04	0.690
acetylcarnitine (C2)	8.87.E+05	2.31.E+06	<.0001	2.17.E+06	<.0001	1.30.E+06	1.89.E+06	0.141	2.43.E+06	0.006
adenosine	1.42.E+05	2.62.E+04	<.0001	1.67.E+04	<.0001	1.40.E+05	2.10.E+04	0.001	8.35.E+03	0.000
alanine	2.42.E+07	1.98.E+07	0.157	1.81.E+07	0.044	2.21.E+07	2.35.E+07	0.890	2.63.E+07	0.402
allantoin	1.92.E+05	4.54.E+05	0.027	3.85.E+05	0.102	1.82.E+05	1.76.E+05	0.984	2.82.E+05	0.061
alpha-hydroxyisovalerate	2.36.E+04	4.65.E+04	0.002	4.31.E+04	0.007	2.28.E+04	2.76.E+04	0.872	9.62.E+04	<.0001
alpha-muricholate	7.40.E+03	1.48.E+04	0.961	7.05.E+04	0.119	1.37.E+04	1.14.E+04	0.772	7.48.E+03	0.197
alpha-tocopherol	3.91.E+03	2.19.E+04	0.070	1.27.E+04	0.444	3.38.E+03	1.29.E+04	0.269	1.98.E+04	0.045
AMP	9.90.E+03	3.64.E+04	0.001	4.77.E+03	0.566	1.63.E+04	6.26.E+04	0.012	4.77.E+03	0.636
arabinose	2.81.E+04	4.28.E+04	0.429	2.91.E+04	0.995	2.13.E+04	2.98.E+04	0.100	1.98.E+04	0.903
arachidonate (20:4n6)	2.64.E+04	2.07.E+05	0.000	2.73.E+05	<.0001	3.28.E+04	8.00.E+04	0.047	2.07.E+05	<.0001
arginine	6.95.E+04	1.21.E+05	0.001	1.15.E+05	0.002	5.98.E+04	1.07.E+05	0.002	1.04.E+05	0.003
ascorbate (Vitamin C)	4.62.E+05	1.49.E+06	0.000	8.58.E+05	0.104	6.65.E+05	7.73.E+05	0.607	7.72.E+05	0.615
asparagine	8.59.E+03	2.10.E+05	0.002	1.79.E+05	0.006	8.59.E+03	6.18.E+04	0.427	1.08.E+05	0.089
benzoate	1.93.E+06	5.16.E+06	<.0001	4.07.E+06	0.001	2.73.E+06	4.01.E+06	0.003	4.19.E+06	0.001
betaine	5.48.E+05	7.59.E+05	0.100	8.46.E+05	0.021	5.79.E+05	6.83.E+05	0.108	6.46.E+05	0.341
bradykinin	3.35.E+03	3.71.E+04	0.107	3.35.E+03	1.000	4.92.E+03	1.05.E+04	0.113	3.35.E+03	0.796
butyrylcarnitine (C4)	8.70.E+04	2.91.E+05	<.0001	2.00.E+05	0.001	1.04.E+05	1.45.E+05	0.030	1.34.E+05	0.110
caprate (10:0)	6.89.E+04	9.92.E+04	0.375	9.17.E+04	0.552	6.64.E+04	8.07.E+04	0.587	1.19.E+05	0.011
caproate (6:0)	6.11.E+03	1.56.E+04	0.015	1.48.E+04	0.025	3.54.E+03	1.22.E+04	0.172	2.24.E+04	0.004
caprylate (8:0)	1.53.E+04	4.07.E+04	0.051	4.26.E+04	0.037	1.03.E+04	2.88.E+04	0.125	5.14.E+04	0.002
carnitine	5.03.E+05	8.30.E+05	0.001	6.15.E+05	0.201	5.75.E+05	6.82.E+05	0.036	4.62.E+05	0.028

表 S2-1 ザイモサン投与後の PWF 中メタボライト平均値(1) 投与 6 及び 24 時間データ (n=5, 平均値)、太字は Vehicle 群との比較で有意差あり(ダネット法、*P<.05*)。

表 S2-1 ザイモサン投与後の PWF 中メタボライト平均値(2) 投与 6 及び 24 時間データ

	Vehicle, 6 h	Zymosan 1 m	g/kg, 6 h	Zymosan 10 n	ng/kg, 6 h	Vehicle, 24 h	Zymosan 1 mg	g/kg, 24 h	Zymosan 10 m	ıg/kg, 24 h
BIOCHEMICAL	MEAN	MEAN	р	MEAN	p	MEAN	MEAN	р	MEAN	р
catechol sulfate	1.94.E+04	1.62.E+04	0.879	6.06.E+03	0.183	2.11.E+04	4.59.E+04	0.002	3.28.E+03	0.015
C-glycosyltryptophan	5.49.E+03	1.27.E+04	0.073	1.06.E+04	0.230	4.66.E+03	9.15.E+03	0.117	1.42.E+04	0.002
chiro-inositol	5.26.E+04	1.34.E+04	0.022	1.34.E+04	0.022	3.65.E+04	5.43.E+04	0.379	1.34.E+04	0.224
cholate	7.37.E+03	1.52.E+04	0.948	7.20.E+04	0.081	1.27.E+04	1.64.E+04	0.759	1.03.E+04	0.885
choline	2.67.E+05	5.05.E+05	0.006	4.87.E+05	0.010	2.79.E+05	3.42.E+05	0.366	4.95.E+05	0.002
cinnamoylglycine	5.13.E+03	5.74.E+03	0.915	3.90.E+03	0.714	6.01.E+03	7.87.E+03	0.466	4.66.E+03	0.653
cis-aconitate	3.64.E+04	7.03.E+04	0.001	6.46.E+04	0.004	4.34.E+04	5.02.E+04	0.479	6.01.E+04	0.040
cis-urocanate	5.63.E+05	5.91.E+05	0.980	5.57.E+05	0.999	6.38.E+05	6.15.E+05	0.980	7.87.E+05	0.473
citrate	1.82.E+06	5.31.E+06	0.002	4.52.E+06	0.010	2.66.E+06	2.72.E+06	0.981	2.12.E+06	0.369
corticosterone	4.83.E+04	9.43.E+04	0.335	2.71.E+05	<.0001	4.21.E+04	4.39.E+04	0.999	3.73.E+05	<.0001
creatine	1.43.E+06	2.75.E+06	<.0001	2.53.E+06	0.000	1.34.E+06	1.53.E+06	0.635	2.49.E+06	0.001
cysteine	2.78.E+04	3.49.E+04	0.854	5.74.E+04	0.125	4.02.E+04	4.15.E+04	0.993	1.01.E+05	0.001
cysteine-glutathione disulfide	5.07.E+04	1.44.E+05	0.000	1.10.E+05	0.009	5.75.E+04	1.15.E+05	0.095	1.51.E+05	0.008
cytidine	3.43.E+04	2.18.E+05	0.000	2.19.E+05	0.000	5.18.E+04	6.90.E+04	0.710	1.48.E+05	0.004
deoxycarnitine	5.07.E+04	8.56.E+04	0.033	1.01.E+05	0.004	6.70.E+04	1.15.E+05	0.001	7.98.E+04	0.329
deoxycholate	1.11.E+04	1.61.E+04	0.707	3.54.E+04	0.010	1.03.E+04	1.33.E+04	0.537	1.09.E+04	0.979
dihomolinoleate (20:2n6)	2.97.E+04	1.05.E+05	0.010	1.36.E+05	0.001	4.30.E+04	7.16.E+04	0.366	1.68.E+05	0.000
dihomolinolenate (20:3n3 or 3n6)	1.01.E+04	7.69.E+04	0.003	9.19.E+04	0.001	1.35.E+04	2.46.E+04	0.399	6.13.E+04	0.000
dimethylarginine (ADMA + SDMA)	9.91.E+04	2.46.E+05	0.020	2.29.E+05	0.037	1.36.E+05	1.39.E+05	0.997	1.45.E+05	0.959
docosahexaenoate (DHA; 22:6n3)	2.17.E+04	3.66.E+05	0.000	5.01.E+05	<.0001	3.51.E+04	8.97.E+04	0.597	3.92.E+05	0.000
docosapentaenoate (DPA; 22:5n3)	1.85.E+04	8.12.E+04	0.001	9.51.E+04	<.0001	1.89.E+04	3.27.E+04	0.197	8.84.E+04	<.0001
eicosapentaenoate (EPA; 20:5n3)	4.90.E+04	1.33.E+05	0.004	1.69.E+05	0.000	4.76.E+04	5.94.E+04	0.702	1.22.E+05	0.001
eicosenoate (20:1n9 or 1n11)	4.60.E+04	1.48.E+05	0.009	2.20.E+05	0.000	6.89.E+04	8.42.E+04	0.845	2.22.E+05	0.001
equol sulfate	9.75.E+03	2.81.E+04	0.003	3.62.E+04	0.000	1.19.E+04	2.35.E+04	<.0001	4.51.E+03	0.000
erythritol	4.55.E+04	1.09.E+05	0.009	5.64.E+04	0.781	3.44.E+04	4.88.E+04	0.206	4.14.E+04	0.637
erythronate	1.80.E+04	7.12.E+04	0.000	5.40.E+04	0.005	2.42.E+04	2.96.E+04	0.624	2.79.E+04	0.792
fructose	5.57.E+05	2.05.E+06	0.002	1.15.E+06	0.189	5.62.E+05	9.85.E+05	0.053	5.36.E+05	0.982
fumarate	8.31.E+04	1.48.E+05	0.017	8.97.E+04	0.932	1.16.E+05	9.12.E+04	0.446	1.08.E+05	0.905
gamma-glutamylglutamine	5.04.E+04	1.47.E+05	<.0001	1.30.E+05	<.0001	5.61.E+04	7.65.E+04	0.214	7.77.E+04	0.183
gamma-glutamylisoleucine	1.45.E+04	2.54.E+04	0.025	2.07.E+04	0.214	1.56.E+04	1.76.E+04	0.749	2.56.E+04	0.014
gamma-glutamylleucine	5.90.E+04	1.23.E+05	0.008	1.13.E+05	0.023	4.38.E+04	6.56.E+04	0.276	1.34.E+05	<.0001
gamma-glutamylmethionine	6.81.E+04	4.46.E+04	0.051	4.16.E+04	0.029	5.87.E+04	5.50.E+04	0.940	4.44.E+04	0.436
gamma-glutamylphenylalanine	4.65.E+04	9.28.E+04	0.038	1.17.E+05	0.003	4.94.E+04	6.45.E+04	0.358	8.65.E+04	0.015
gamma-glutamyltyrosine	3.84.E+04	5.39.E+04	0.059	6.31.E+04	0.004	3.69.E+04	4.33.E+04	0.674	5.89.E+04	0.042
gamma-glutamylvaline	3.06.E+04	6.33.E+04	0.007	5.92.E+04	0.016	2.71.E+04	2.91.E+04	0.907	4.24.E+04	0.030
glucose	6.00.E+07	1.26.E+08	0.006	6.41.E+07	0.965	8.97.E+07	7.71.E+07	0.441	3.67.E+07	0.001
glutamate	2.35.E+05	2.08.E+05	0.751	2.97.E+05	0.297	2.32.E+05	5.95.E+05	0.005	6.84.E+05	0.001
glutamine	1.83.E+05	4.77.E+05	<.0001	3.86.E+05	0.000	1.89.E+05	2.83.E+05	0.031	4.01.E+05	<.0001
glutathione, oxidized (GSSG)	3.46.E+04	1.59.E+05	<.0001	9.10.E+04	0.002	5.15.E+04	9.21.E+04	0.033	8.97.E+04	0.044
glycerol	3.41.E+07	4.44.E+07	0.006	4.32.E+07	0.012	4.23.E+07	4.11.E+07	0.856	4.34.E+07	0.872
glycerol 3-phosphate (G3P)	6.87.E+04	2.90.E+05	0.002	2.48.E+05	0.010	7.93.E+04	1.42.E+05	0.033	2.35.E+05	<.0001
glycine	6.14.E+06	3.59.E+06	0.000	4.37.E+06	0.007	5.70.E+06	5.43.E+06	0.926	4.49.E+06	0.281
glycolate (hydroxyacetate)	1.40.E+05	2.32.E+05	0.063	2.26.E+05	0.082	1.48.E+05	2.04.E+05	0.096	1.73.E+05	0.551
gulono-1,4-lactone	4.31.E+04	2.22.E+05	0.012	1.47.E+05	0.140	7.68.E+04	8.00.E+04	0.976	9.34.E+04	0.551
heptanoate (7:0)	2.69.E+03	8.23.E+03	0.011	5.84.E+03	0.141	2.16.E+03	5.41.E+03	0.226	8.03.E+03	0.024
hexadecanedioate (C16)	2.19.E+03	1.06.E+04	0.001	1.72.E+04	<.0001	2.28.E+03	5.77.E+03	0.045	1.85.E+04	<.0001
hexanoylcarnitine (C6)	2.22.E+04	5.49.E+04	0.007	6.70.E+04	0.001	3.45.E+04	4.94.E+04	0.496	7.58.E+04	0.025
hexanoylglycine (C6)	3.02.E+04	1.67.E+05	0.006	1.15.E+05	0.075	8.18.E+04	7.15.E+04	0.941	2.39.E+05	0.002
hippurate	2.95.E+05	7.34.E+05	0.005	2.93.E+05	1.000	3.59.E+05	4.80.E+05	0.570	4.15.E+05	0.878
histidine	1.35.E+04	4.22.E+04	0.001	4.01.E+04	0.001	1.23.E+04	2.16.E+04	0.098	3.36.E+04	0.001
homostachydrine	9.31.E+04	1.27.E+05	0.122	1.28.E+05	0.111	7.93.E+04	7.45.E+04	0.782	2.57.E+04	<.0001
inosine	6.14.E+03	4.03.E+03	0.238	3.99.E+03	0.227	8.99.E+03	2.88.E+03	<.0001	2.47.E+03	<.0001
isobutyrylcarnitine (C4)	3.07.E+04	5.42.E+04	0.046	5.79.E+04	0.022	2.86.E+04	4.85.E+04	0.056	5.65.E+04	0.010
isoleucine	2.53.E+06	4.39.E+06	0.067	3.84.E+06	0.214	2.34.E+06	3.50.E+06	0.199	6.94.E+06	<.0001
isovalerylcarnitine (C5)	3.27.E+04	5.39.E+04	0.135	6.88.E+04	0.012	2.33.E+04	3.45.E+04	0.269	7.10.E+04	<.0001
kynurenine	1.84.E+04	4.43.E+04	0.001	4.29.E+04	0.001	2.10.E+04	3.74.E+04	0.340	9.37.E+04	0.000
lactate	1.60.E+08	2.81.E+08	0.012	1.64.E+08	0.992	2.10.E+08	2.20.E+08	0.891	1.79.E+08	0.396
laurate (12:0)	4.03.E+05	5.61.E+05	0.062	5.50.E+05	0.083	3.93.E+05	5.17.E+05	0.082	6.52.E+05	0.001
leucine	4.01.E+06	7.16.E+06	0.033	6.77.E+06	0.060	3.48.E+06	5.79.E+06	0.092	1.20.E+07	<.0001
levulinate (4-oxovalerate)	4.15.E+04	4.82.E+04	0.857	4.68.E+04	0.909	3.24.E+04	4.15.E+04	0.589	6.85.E+04	0.007
linoleamide (18:2n6)	1.28.E+05	1.28.E+05	1.000	1.50.E+05	0.856	6.40.E+04	1.08.E+05	0.829	2.57.E+05	0.076
linoleate (18:2n6)	8.72.E+05	3.81.E+06	0.019	5.42.E+06	0.001	1.41.E+06	3.03.E+06	0.470	8.67.E+06	0.001
linolenate (18:3n3 or 3n6)	7.04.E+04	3.76.E+05	0.063	6.15.E+05	0.002	1.15.E+05	2.60.E+05	0.692	9.19.E+05	0.003
lysine	5.15.E+05	1.88.E+05	0.004	3.12.E+05	0.056	4.69.E+05	5.01.E+05	0.974	7.16.E+05	0.284
malate	2.27.E+05	3.58.E+05	0.062	2.34.E+05	0.988	2.62.E+05	2.43.E+05	0.948	3.03.E+05	0.767
maltose	3.53.E+04	1.62.E+05	0.033	3.53.E+04	1.000	3.53.E+04	4.60.E+04	0.223	3.97.E+04	0.737
mannose	8.02.E+05	3.26.E+06	0.000	1.92.E+06	0.052	1.81.E+06	2.09.E+06	0.629	2.35.E+06	0.242
methionine	1.43.E+06	1.17.E+06	0.160	1.03.E+06	0.031	9.59.E+05	1.44.E+06	0.002	1.29.E+06	0.024
methyl-beta-glucopyranoside	4.70.E+05	1.11.E+06	<.0001	8.74.E+05	0.001	4.72.E+05	7.23.E+05	0.114	8.67.E+05	0.014
myo-inositol	1.35.E+06	2.90.E+06	0.013	1.80.E+06	0.565	1.27.E+06	1.42.E+06	0.735	1.63.E+06	0.217
he contract of the second s	-	-		-		-	-			

表 S2-1 ザイモサン投与後の PWF 中メタボライト平均値(3) 投与 6 及び 24 時間データ

Vetros, 6 n. Jornan, Trayle, 5 n. Jornan, Trayle, 7 n. <thjornan, 7="" n.<="" th="" trayle,=""> Jornan, Trayle, 7</thjornan,>	. ,		-								
BLACHANCO BADE-AGE COUNT	DIGOLIENIOAL	Vehicle, 6 h	Zymosan 1 m	g/kg, 6 h	Zymosan 10 n	ng/kg, 6 h	Vehicle, 24 h	Zymosan 1 mg	/kg, 24 h	Zymosan 10 m	ig/kg, 24 h
my matheme (1410) 6. 15.15-16. 3.28.24.09 (2007) 1.56.24.09 (2007) 2.42.57.64 (2007) 1.54.57.69 (2007) 1.54.57.69 (2007) 1.54.57.69 (2007) 1.54.57.69 (2007) 1.55.57.69 (2007)	BIOCHEMICAL	MEAN	MEAN	р	MEAN	p	MEAN	MEAN	<i>p</i>	MEAN	p
myradaeta (141n5) 5.11±401 8.442±04 0.003 1.00±405 0.000 4.22±104 0.174 1.445±46 0.0001 Nacedynhumhomin 7.20±104 0.174 1.445±46 0.0001 4.22±104 0.224 1.245±66 0.0001 Nacedynhumhomin 7.20±104 0.124 1.245±64 0.000 5.54±104 0.202 0.245±64 0.0001 Nacedynhumhomin 7.20±104 0.245±103 0.245±10	myristate (14:0)	8.15.E+05	1.39.E+06	<.0001	1.50.E+06	<.0001	9.02.E+05	1.24.E+06	0.079	1.84.E+06	0.000
Naceshgenerisonine 4.98.E+04 0.007 4.88.E+04 0.007 7.91.E+03 0.201 0.201 0.007 Naceshythernplan 0.027 1.72.E+03 0.001 7.91.E+04 0.005 7.91.E+04 0.005 0.007 2.91.E+03 0.006 0.007 0.001 2.91.E+03 0.001 0.98.E+03 0.005 0.98.E+03 0.005 0.98.E+03 0.001 0.98.E+04 0.001 0.91.E+04 0.98.E+03 0.001 0.91.E+04 0.98.E+04 0.007 0.92.E+06 0.010 2.01.E+04 0.98.E+06 0.001 0.011 0.80.E+06 0.011 3.23.E+04 0.020 0.93.E+04 0.020 0.93.E+06 0.001 0.80.E+06 0.017 0.80.E+06 0.021 0.80.E+06 0.021 0.80.E+06 0.021 0.80.E+06 0.021 0.80.E+06 0.021	myristoleate (14:1n5)	5.11.E+04	8.44.E+04	0.003	1.00.E+05	0.000	4.92.E+04	7.37.E+04	0.174	1.46.E+05	<.0001
Nacadymembrane 1,92:e1-03 1,402:e0 1,40	N-acetylleucine	4.98.E+04	9.13.E+04	0.012	7.66.E+04	0.097	4.86.E+04	5.92.E+04	0.702	1.29.E+05	0.000
Nacelypterryllamine (1.02 + 103 + 103 + 174 E+ 66 (0.00 170 E+ 66 (0.00 7) 1.4 E+ 164 (0.005 1.25 + 164 (0.010 1.25 + 16	N-acetylmethionine	7.50.E+03	1.40.E+04	0.049	1.63.E+04	0.009	5.54.E+03	8.25.E+03	0.204	9.77.E+03	0.041
Nacestypterysleame 6.28.E+03 2.34.E+04 0.206 5.75.E+04 0.007 1.81.E+03 0.802 2.05.E+04 0.001 Nacestyptyptorien 3.07.E+03 1.52.E+04 0.004 1.13.E+03 2.84.E+03 0.805 9.88.E+03 0.050 Nacestyptyptorien 3.07.E+03 1.52.E+04 0.004 2.23.E+04 0.26.E+03 0.955 9.88.E+03 0.52.E Conductamedotarie (C18) 5.25.E+06 0.004 4.24.E+06 0.004 2.55.E+03 0.024 0.021 1.04.E+04 0.030 Conductamedotarie (C18) 5.05.E+04 0.021 2.52.E+06 0.001 2.52.E+06 0.002 2.21.E+06 0.024 2.02.E+06 0.024 1.04.E+04 0.005 0.001 5.02.E+06 0.001 5.02.E+06 0.001 5.02.E+06 0.002 2.21.E+06 0.004 1.10.E+07 0.007 7.02.E+06 0.001 5.02.E+06 0.001 5.02.E+06 0.001 5.02.E+06 0.001 5.02.E+06 0.001 5.02.E+06 0.001 5.02.E+06	N-acetylornithine	1.09.E+05	1.74.E+05	0.005	1.70.E+05	0.008	7.91.E+04	1.26.E+05	0.063	1.25.E+05	0.067
Nacedyprophan 1.02.2403 8.33.E.90 0.007 1.44.E.90 2.081.47.03 0.281.47.03 <td>N-acetylphenylalanine</td> <td>6.29.E+03</td> <td>2.34.E+04</td> <td>0.206</td> <td>5.75.E+04</td> <td>0.001</td> <td>5.85.E+03</td> <td>7.31.E+03</td> <td>0.920</td> <td>2.05.E+04</td> <td>0.010</td>	N-acetylphenylalanine	6.29.E+03	2.34.E+04	0.206	5.75.E+04	0.001	5.85.E+03	7.31.E+03	0.920	2.05.E+04	0.010
Nacctyprovincin 3.07.E+03 1.52.E+04 0.304 3.13.E+04 0.305 9.88.E+03 0.055 institution 0.355 0.88.E+03 0.055 institution 0.36.E+03 0.055 0.85.E+03 0.055 0.85.E+03 0.055	N-acetyltryptophan	1.92.E+03	8.33.E+03	0.007	1.44.E+04	<.0001	2.13.E+03	2.84.E+03	0.861	8.26.E+03	0.004
n-budy lotele 2.17.E+04 0.36E+04 0.206 2.20.E+04 0.208 1.38.E+04 0.001 4.58.E+03 0.004 3.86.E+03 8.05.E+03 0.001 1.38.E+04 0.001 3.58.E+03 0.001 3.58.E+03 0.001 4.36.E+05 0.004 3.86.E+03 0.001 2.35.E+03 0.001 6.35.E+03 0.001 6.35.E+03 0.001 6.35.E+03 0.001 6.35.E+03 0.001 6.35.E+03 0.001 2.05.E+03 0.002 2.23.E+03 0.001 0.35.E+03 0.001 6.35.E+03 0.001 6.35.E+03 0.001 6.35.E+03 0.001 0.35.E+03 0.001 0.35.E+03 0.001 0.35.E+03 0.001 0.35.E+03 0.001	N-acetyltyrosine	3.97.E+03	1.52.E+04	0.034	3.13.E+04	<.0001	2.91.E+03	3.26.E+03	0.955	9.88.E+03	0.001
Inicitary 3.14E+05 0.004 4.7E+05 0.004 4.85E+05 0.0221 2.21E+05 0.015 Catadecancelosite (C18) 0.22E+08 8.55E+00 0.003 1.32E+04 0.010 4.45E+03 0.006 4.45E+04 0.002 2.74E+04 0.022 8.80E+04 0.000 collate (18:1n0) 0.05E+06 1.86E+06 0.007 2.32E+06 0.001 2.32E+05 0.001 2.32E+06 0.000 0.001 6.87E+05 0.134 4.32E+05 0.000 palmitate (16:0) 5.4E+06 0.001 6.87E+06 0.001 6.87E+06 0.001 6.87E+04 1.15E+06 0.001 6.87E+04 1.15E+06 0.001 6.87E+04 1.15E+05 0.48E+05 0.047 2.02E+05 0.001 2.82E+06 0.001 2.82E+04 0.016 1.85E+03 0.022 2.81E+05 0.001 2.82E+06 0.001 0.82E+04 0.001 0.82E+04 0.001 0.82E+04 0.001 0.82E+04 0.001 0.82E+04 0.001 0.82E+04 0.001 <td>n-butyl oleate</td> <td>2.17.E+04</td> <td>1.35.E+04</td> <td>0.443</td> <td>2.12.E+04</td> <td>0.996</td> <td>2.23.E+04</td> <td>2.09.E+04</td> <td>0.981</td> <td>1.39.E+04</td> <td>0.526</td>	n-butyl oleate	2.17.E+04	1.35.E+04	0.443	2.12.E+04	0.996	2.23.E+04	2.09.E+04	0.981	1.39.E+04	0.526
conductacendate (C16) 5.28 E+03 8.00.21 1.18 E+04 0.001 2.05 E+03 0.007 1.10 E+04 0.000 clearning 2.05 E+06 4.08 E+06 0.007 5.05 E+06 0.001 2.05 E+06 0.001 2.03 E+06 4.44 E+06 0.000 2.03 E+06 4.44 E+06 0.001 6.03 E+06 3.02 E+05 3.02 E+05 3.02 E+06 0.001 6.03 E+06 3.07 E+06 0.061 6.03 E+06 0.001 0.001 0.05 E+04 0.001 0.001 6.05 E+04 0.001 0.001 6.05 E+03 0.001 </td <td>nicotinamide</td> <td>3.14.E+05</td> <td>6.37.E+05</td> <td>0.004</td> <td>6.47.E+05</td> <td>0.004</td> <td>3.86.E+05</td> <td>4.95.E+05</td> <td>0.221</td> <td>2.61.E+05</td> <td>0.154</td>	nicotinamide	3.14.E+05	6.37.E+05	0.004	6.47.E+05	0.004	3.86.E+05	4.95.E+05	0.221	2.61.E+05	0.154
oldamide 1.48.E+04 7.46.E+04 0.000 7.50.E+06 2.01.E+04 2.74.E+04 0.289 6.80.E+06 0.000 ornthine 5.02.E+06 1.28.E+05 0.000 1.238.E+05 4.00.E+05 0.134 4.32.E+05 0.007 palmilate (15:1n7) 4.70.E+05 1.42.E+06 0.000 1.58.E+06 0.007 6.58.E+05 0.287 3.33.E+06 <.0001	octadecanedioate (C18)	5.29.E+03	8.55.E+03	0.033	1.13.E+04	0.001	4.55.E+03	8.00.E+03	0.071	1.40.E+04	<.0001
olatae (15:ng) 2.05:E+06 4.06E+06 0.001 5.02E+05 2.02E+05 2.02E+05 2.02E+05 2.02E+05 0.000 2.22E+06 0.001 2.22E+05 0.001 2.22E+05 0.000 2.22E+05 0.001 0.02E+05 0.027E 3.22E+05 0.000 0.02E+05 0.027E 3.22E+05 0.000 palmikolase (16:n7) 4.70E+05 1.42E+06 0.000 4.57E+06 0.000 6.57E+04 0.027E+05 0.27E 7.43E+05 0.000 pantohenate (17:n7) 4.70E+05 0.001 5.7EE+04 0.016 5.7EE+04 0.046 2.61E+05 0.001 6.75E+04 0.046 2.01E+05 0.010 6.75E+04 0.045 0.011 0.15E+05 0.012 2.7E+05 0.001 9.8EE+05 0.002 2.51E+04 0.15E+04 0.45E 0.012 3.7E+05 <0.001 9.8EE+05 0.002 2.51E+05 0.012 3.7E+05 <0.001 9.8EE+05 0.002 2.51E+05 0.013 2.52E+06 0.013 2.52E+06 0.013 2.51E	oleamide	1.48.E+04	7.46.E+04	0.009	7.32.E+04	0.010	2.10.E+04	2.74.E+04	0.829	8.80.E+04	0.000
ornthine 5.02 E+06 1.28 E+05 0.000 2.23 E+05 4.00 E+05 0.134 4.32 E+05 0.075 palmilate (15:1) 5.94 E+06 8.07 E+06 0.000 1.65 E+06 0.57 E+04 0.55 1.65 E+05 0.278 3.33 E+06 <.0001	oleate (18:1n9)	2.05.E+06	4.86.E+06	0.007	5.60.E+06	0.001	2.93.E+06	4.44.E+06	0.349	9.68.E+06	0.000
palmikalea (16:0) 6.91E-06 8.47.E-06 0.001 8.82.E-06 0.001 6.81.E-06 8.37.E-06 0.054 1.10.E-07 0.000 palmikoj spingomyelin 6.11.E+04 7.7.E+05 0.0001 4.87.E+06 0.000 5.70.E+04 3.07.E+05 0.057 7.48.E+05 0.0002 partoshate (1/main BS) 6.87.E+04 1.07.E+05 0.000 1.99.E+04 1.05.E+04 1.05.E+05 0.496 2.82.E+04 0.010 partoshate (1/main BS) 6.87.E+04 1.07.E+05 0.000 1.99.E+04 1.05.E+03 0.047 7.48.E+05 0.0002 p-creso sulfate 3.54.E+03 2.10.E+04 0.041 2.47.E+04 0.011 5.5.E+03 2.04.E+03 0.999 5.82.E+04 0.010 pertasolaranea (0:0) 8.90.E+04 1.06.E+05 0.001 1.95.E+04 1.06.E+05 0.017 2.77.E+06 0.001 pertasolaranea (15:0) 2.30.E+06 3.27.E+05 0.001 2.26.E+06 0.003 2.51.E+06 3.18.E+05 0.012 3.77.E+06 0.005 phenol sulfate 5.51.E+04 1.02.E+05 0.001 2.26.E+04 0.396 6.53.E+04 5.82.E+04 0.036 2.54.E+04 0.035 phenol sulfate 5.51.E+04 1.02.E+05 0.001 2.26.E+04 0.396 6.53.E+04 5.82.E+04 0.038 2.62.E+04 0.036 phenol sulfate 2.54.E+08 2.37.E+06 0.010 1.35.E+04 0.222 2.84.E+08 2.52.E+09 0.011 1.80.E+04 0.038 phenol sulfate 2.54.E+02 2.37.E+05 0.011 3.52.E+05 0.122 2.84.E+08 2.52.E+09 0.011 1.80.E+04 0.038 phenolautine 2.54.E+04 2.37.E+05 0.010 1.35.E+05 0.42.E+05 0.370 3.82.E+04 0.070 pipeclate 8.14.E+04 2.12.E+05 0.010 1.35.E+05 0.402 2.26.E+06 0.012 2.28.E+06 0.012 2.38.E+04 0.019 projonlycamine (3.34.E+04 1.01.E+05 0.010 2.20.E+04 0.027 1.40.E+05 0.370 3.82.E+04 0.039 pseudoridine 7.19.E+03 2.37.E+04 0.002 2.20.E+05 0.070 1.47.E+03 1.37.E+04 0.149 1.50.E+04 0.039 pseudoridine 2.72.E+05 3.23.E+05 0.002 2.20.E+05 0.070 1.47.E+03 1.37.E+04 0.149 1.50.E+04 0.039 pseudoridine 3.38.E+04 4.11.E+05 0.010 5.87.E+04 0.007 4.77.E+03 1.07.E+04 0.149 1.50.E+04 0.009 pseudoridine 2.72.E+05 3.23.E+05 0.000 4.37.E+05 0.44.E+05 0.016 4.48.E+05 0.003 stachydrine 3.38.E+04 3.38.E+03 0.098 4.20.E+05 0.007 4.43.E+05 0.44.E+05 0.001 4.37.E+04 0.499 pseudoridine 2.72.E+05 3.23.E+05 0.000 4.37.E+04 0.408 4.14.E+05 0.000 4.37.E+04 0.409 0.001 4.37.E+04 0.014 starvarcholate 2.34.E+04 3.33.E+04 0.001 4.35.E+05 0.002 4.37.E+04 0.404 0.001 4.37.E+0	ornithine	5.02.E+05	1.26.E+05	<.0001	2.32.E+05	0.000	2.23.E+05	4.00.E+05	0.134	4.32.E+05	0.075
palmikojashijos (h1:n7) 4.70.E+05 1.42.E+06 0.004 1.87.E+06 0.000 6.58.E+05 1.25.E+06 0.278 1.23.E+06 c.0001 partothenate (Marin B5) 6.87.E+04 1.87.E+05 0.000 1.26.7.E+04 0.076 1.55.E+04 1.15.E+05 0.057 1.48.E+05 0.000 1.27.E+04 0.015 1.55.E+04 1.15.E+05 0.078 1.26.E+05 0.000 1.27.E+04 0.015 1.55.E+04 1.40.E+05 0.047 2.40.E+05 0.000 1.20.E+04 0.015 1.55.E+04 1.40.E+05 0.047 2.40.E+05 0.000 1.20.E+04 0.010 1.25.E+04 0.015 1.55.E+04 1.40.E+05 0.047 2.40.E+05 0.000 1.20.E+04 0.010 1.20.E+05 0.017 2.20.E+05 0.000 1.20.E+04 0.010 1.20.E+05 0.017 2.20.E+05 0.000 1.20.E+04 0.055 0.001 2.25.E+04 0.055 0.001 2.25.E+04 0.056 0.002 2.55.E+04 0.613 0.20.E+04 0.065 0.001 1.25.E+04 0.013 0.20.E+04 0.055 0.001 1.25.E+04 0.013 0.20.E+04 0.055 0.001 1.25.E+04 0.013 0.25.E+04 0.010 0.25.E+04 0.014 0.25.E+04 0.020 0.001 0.20.E+04 0.020 0.002 0.00+04 0.000 0.20.E+04 0.000 0.20.E+05 0.003 0.20.E+05 0.000 0.20.E+05 0.000 0.20.E+05 0.003 0.2	palmitate (16:0)	5.94.E+06	8.47.E+06	0.001	8.62.E+06	0.001	6.61.E+06	8.37.E+06	0.054	1.10.E+07	0.000
patnikni sphingomyelin 5.11.E-04 2.71.E-05 c.0001 5.70.E-04 3.07.E+05 0.007 7.48.E-05 c.0007 p-cress sulfate 3.57.E+04 1.07.E+05 0.001 5.75.E+04 1.05.E+03 2.04.E+03 0.099 5.82.E+04 0.001 p-cress sulfate 3.56.E+03 2.04.E+03 0.099 5.82.E+04 0.001 pertaso sulfate 3.56.E+04 1.002.F+05 0.201 2.55.E+04 1.005.E+05 0.001 2.55.E+04 0.006 0.022.E+05 0.001 2.55.E+04 0.033 2.66.E+06 0.005 2.65.E+04 0.033 2.66.E+06 0.033 2.66.E+06 0.001 3.82.E+04 0.033 2.66.E+06 0.001 1.80.E+04 0.001 1.80.E+04 0.001 1.80.E+04 0.001 1.80.E+04 0.001 1.80.E+04 0.014 0.75.E+05 0.221 2.84.E+04 0.221 2.84.E	palmitoleate (16:1n7)	4.70.E+05	1.42.E+06	0.004	1.87.E+06	0.000	6.58.E+05	1.25.E+06	0.278	3.23.E+06	<.0001
pantohenate (Vitamin B5) 6.87.E+04 1.87.E+05 0.001 6.75.E+04 1.15.E+05 0.449 2.87.E+05 0.001 perresol sulfate 3.54.E+03 2.10.E+04 0.011 2.75.E+04 0.015 5.55.E+03 2.0.E+05 0.001 perradoscanate (15:0) 2.30.E+06 3.27.E+05 0.012 2.25.E+06 3.18.E+05 0.012 2.25.E+06 0.18.E+06 0.013 6.75.E+04 0.68.E+04 0.056 6.33.E+04 0.68.E+04 0.056 6.33.E+04 0.68.E+04 0.061 0.25.E+06 0.011 3.52.E+06 0.011 3.52.E+06 0.011 3.52.E+06 0.011 3.52.E+06 0.017 1.95.E+05 0.14 3.28.E+06 0.001 phorplatame 3.02.F+06 6.44.E+06 0.011 7.57.E+06 0.032 7.33.E+06 0.017 1.95.E+04 0.011 1.92.E+06 0.011 1.92.E+06 0.011 1.92.E+06 0.011 1.92.E+06 0.012 1.92.E+06 0.012 1.92.E+06 0.012 1.92.E+06 0.002 1.92.E+06	palmitoyl sphingomyelin	5.11.E+04	2.71.E+05	<.0001	2.47.E+05	0.000	5.70.E+04	3.07.E+05	0.057	7.49.E+05	<.0001
p-creaso ulatie 3.64.E-03 2.04.E+04 0.041 2.47.E+04 0.015 1.55.E+03 2.04.E+03 0.099 5.82.E+04 0.001 pertagrance (15:0) 2.30.E+06 3.27.E+05 <.0001	pantothenate (Vitamin B5)	6.87.E+04	1.67.E+05	0.000	1.59.E+05	0.001	6.75.E+04	1.15.E+05	0.496	2.61.E+05	0.002
pelargonate (9:0) 8.90.E+04 160.E+05 0.211 7.56.E+04 1.40.E+05 0.047 2.00.E+05 0.001 penardacenance (15:0) 2.20.E+05 0.201 9.25.E+04 0.382.E+04 0.633 6.53.E+04 0.613 6.23.E+04 0.0613 6.23.E+04 0.063 8.26.E+04 0.306 6.53.E+04 0.613 8.21.E+04 0.063 8.26.E+04 0.033 8.26.E+04 0.031 8.26.E+04 0.031 8.26.E+04 0.031 8.26.E+04 0.031 9.36.E+04 0.031 <t< td=""><td>p-cresol sulfate</td><td>3.54.E+03</td><td>2.10.E+04</td><td>0.041</td><td>2.47.E+04</td><td>0.015</td><td>1.55.E+03</td><td>2.04.E+03</td><td>0.999</td><td>5.82.E+04</td><td>0.010</td></t<>	p-cresol sulfate	3.54.E+03	2.10.E+04	0.041	2.47.E+04	0.015	1.55.E+03	2.04.E+03	0.999	5.82.E+04	0.010
pentadecanoate (15:0) 2.23E+05 3.27E+05 3.0001 2.36E+05 0.002 2.51E+04 0.38E 0.012 3.37E+05 s.0001 phenol sulfate 5.51E+04 1.42E+05 0.000 2.56E+04 0.156 6.53E+04 5.58E+04 0.453 2.51E+04 0.0453 2.51E+04 0.0453 2.52E+04 0.032 2.65E+06 4.77E+06 0.033 8.26E+06 0.001 1.95E+06 0.022 2.26E+09 0.027 2.84E+09 0.037 3.06E+06 0.037 9.36E+04 0.071 1.90E+06 0.001 pipeoclate 8.14E+04 2.12E+05 0.001 1.53E+05 0.141 8.35E+04 1.05E+06 0.370 1.54E+06 0.0305 1.48E+06 0.039 projonymore 1.32E+05 0.022 2.20E+04 0.075 2.23E+04 0.0305 1.48E+06 0.039 projonymore 1.70E+05 2.27E+04 0.0704 7.47E+03 1.07E+04 0.149 1.50E+06 0.033 projonymore 1.70E+05 2.28E+04	pelargonate (9:0)	8.90.E+04	1.60.E+05	0.140	1.51.E+05	0.211	7.56.E+04	1.40.E+05	0.047	2.00.E+05	0.001
phenol sulfate 55.1E+04 1.42E+05 0.040 9.52E+04 0.58E+04 5.68E+04 0.613 6.2.8E+04 0.045 2.2.8E+09 0.033 2.62E+06 0.773E+06 0.033 2.62E+06 0.033 2.62E+06 0.077 1.08E+04 0.051 2.2.8E+09 0.017 1.0.0E+09 0.007 phosphate 2.54E+09 2.3.7E+00 0.0051 3.58E+05 0.14E+01 1.05E+06 0.070 3.68E+04 0.773 prolen 1.18E+06 1.01E+05 0.072 3.68E+04 0.022 3.68E+06 0.073 3.68E+06 0.077 3.08E+06 0.028 0.076 1.07E+06 1.02E+06 0.078 3.28E+06 0.022 3.08E+04 0.028 0.076 1.47E+05 2.18E+05 0.038 1.08E+04 0.004 7.47E+05 2.18E+05 0.033 5.65E+05 0.022 7.65E+05 0.033 5.65E+05 0.022 7.65E+05 0.033 5.65E+05 0.122 7.65E+05 0.033 5.65E+	pentadecanoate (15:0)	2.30.E+05	3.27.E+05	<.0001	2.96.E+05	0.002	2.51.E+05	3.18.E+05	0.012	3.77.E+05	<.0001
phenyslasevjdykone 1:01.E+04 4.65.E+04 0.003 2.66.E+04 0.150 1:18.E+04 7.73.E+03 0.453 2.11.E+04 0.001 phenyslasnine 2.54.E+09 2.37.E+03 0.615 2.28.E+09 0.017 1.80.E+06 0.003 2.85.E+06 0.017 1.80.E+09 0.001 pipeoclate 8.14.E+04 2.12.E+05 0.001 1.55.E+05 0.37 9.36.E+04 0.77 proline 1.18.E+04 0.122.E+05 0.001 5.87.E+04 0.370 5.00.E+04 0.022 8.38.E+04 0.001 prolindydroxyproline 3.34.E+04 1.01.E+05 0.010 5.87.E+04 0.007 1.47.E+05 0.147 6.022 1.86.E+06 0.033 1.02.E+04 0.022 pyruxite 1.07.E+04 0.148 1.50.E+04 0.022 pyruxite 1.07.E+04 0.148 1.50.E+04 0.022 pyruxite 0.37.E+04 0.44.E+05 0.019 1.56.E+05 0.021 1.36.E+06 0.328 1.02.E+04 0.022 pyruxite 1.30.E+041	phenol sulfate	5.51.E+04	1.42.E+05	0.040	9.52.E+04	0.396	6.53.E+04	5.68.E+04	0.613	6.28.E+04	0.955
phenylalanine 330.E+06 6.44.E+06 0.019 7.77.E+06 0.003 2.265.E+06 4.77.E+06 0.033 8.26.E+06 -0.001 phosphate 2.56.E+09 2.37.E+00 0.515 2.28.E+00 0.277 2.24.E+00 0.017 1.90.E+00 0.001 proline 1.18.E+04 2.12.E+05 0.001 1.35.E+06 0.538 7.83.E+05 1.34.E+06 0.012 1.28.E+06 0.013 prolinydroxproline 3.34.E+04 1.01.E+05 0.010 5.87.E+04 0.375 5.00.E+04 0.024 0.025 8.98.E+04 0.038 1.48.E+05 0.038 1.48.E+05 0.033 1.48.E+05 0.999 prolynydroxproline 7.19.E+05 2.24.E+05 0.002 2.20.E+06 0.076 1.47.E+05 1.38.E+05 0.033 1.48.E+05 0.002 pyruvate 1.70.E+05 2.24.E+05 0.402 1.36.E+06 0.676 2.23.E+05 1.44.E+05 0.033 1.22.E+05 0.033 seprimcine 2.27.E+04 7.44.E+04 0.	phenylacetylglycine	1.01.E+04	4.65.E+04	0.003	2.66.E+04	0.150	1.18.E+04	7.73.E+03	0.453	2.11.E+04	0.048
phosphate 2.54.E+09 2.37.E+09 0.515 2.28.E+09 0.227 2.24.E+09 2.25.E+09 0.017 1.90.E+09 0.001 pipecolate 8.14.E+04 2.12.E+05 0.001 1.35.E+06 0.141 8.35.E+04 1.05.E+05 0.370 9.36.E+04 0.773 prolinydarrompoline 1.32.E+04 1.01.E+05 0.010 5.87.E+04 0.370 5.00.E+04 0.02.E+04 0.725 8.98.E+04 0.089 propolnydarritine(C3) 1.32.E+05 2.20.E+05 0.002 2.076.E+06 2.37.E+05 1.44.E+05 0.101 1.65.E+05 2.37.E+05 1.44.E+05 0.033 1.48.E+05 0.002 pruvate 1.70.E+03 2.27.E+04 0.004 2.44.E+05 0.011 1.65.E+05 0.23.E+05 0.42.E+05 0.202.E+05 0.024 1.44.E+05 0.021 1.44.E+05 0.024 1.44.E+05 0.024 1.44.E+05 0.024 1.42.E+05 0.41.E+05 0.41.E+05 0.41.E+05 0.41.E+05 0.41.E+05 0.41.E+05 0.41.E+05 0.024	phenylalanine	3.30.E+06	6.44.E+06	0.019	7.57.E+06	0.003	2.65.E+06	4.77.E+06	0.033	8.26.E+06	<.0001
pipecolate 8.14.E+04 2.12.E+05 0.001 1.35.E+06 0.141 8.35.E+04 1.07.73 prolim 1.19.E+06 1.18.E+06 0.995 1.06.E+06 0.538 7.83.E+05 1.34.E+06 0.012 1.29.E+06 0.013 projonydramitine (C3) 1.32.E+05 2.29.E+05 0.002 2.20.E+04 0.078 1.47.E+05 2.13.E+05 0.038 1.47.E+05 0.221 E-046 0.004 7.47.E+03 1.07.E+04 0.144 1.50.E+05 0.038 1.02.E+05 0.003 1.47.E+03 1.07.E+04 0.144 1.50.E+05 0.038 1.02.E+05 0.003 1.47.E+03 1.37.E+04 0.003 1.47.E+03 1.37.E+04 0.003 1.47.E+03 1.37.E+05 0.001 3.57.E+05 0.013 spermidine 3.53.E+05 0.016 3.47.E+04 0.007 4.23.E+04 0.504 4.17.E+04 1.38.E+05 0.001 3.53.E+05 0.001 3.53.E+05 0.001 3.53.E+05 0.001 3.53.E+05 0.001 3.53.E+05 0.001 3.53.E+05	phosphate	2.54.E+09	2.37.E+09	0.515	2.28.E+09	0.227	2.84.E+09	2.25.E+09	0.017	1.90.E+09	0.001
proline 1.19.E+06 1.18.E+06 0.995 1.06.E+06 0.538 7.83.E+05 1.34.E+06 0.012 1.29.E+06 0.0038 prolyhydroxypoline 1.32.E+05 2.22.E+05 0.022 2.06.E+04 0.078 1.47.E+05 2.13.E+05 0.099 pseudourdine 7.19.E+03 2.27.E+04 0.000 2.20.E+05 0.078 1.47.E+05 1.32.E+05 0.003 pruvate 1.70.E+05 2.23.E+05 0.0402 1.36.E+05 0.675 2.23.E+05 1.48.E+05 0.003 serine 2.76.E+05 3.23.E+05 0.402 1.36.E+05 0.675 2.23.E+05 1.44.E+05 0.004 1.48.E+05 0.003 spermidine 4.21.E+04 7.14.E+04 0.055 5.44.E+04 0.593 2.97.E+05 3.60.E+05 0.014 1.48.E+05 0.001 succinate 2.77.E+04 7.49.E+04 0.007 4.23.E+04 0.356 1.47.E+05 1.36.E+05 0.660 1.19.E+05 1.000.1 taurocholate 2.97.E+03 3.75.E	pipecolate	8.14.E+04	2.12.E+05	0.001	1.35.E+05	0.141	8.35.E+04	1.05.E+05	0.370	9.36.E+04	0.773
probl/hydroxyproline 3.34 E+04 1.01E+05 0.010 5.87.E+04 0.302 5.00.E+04 6.022-104 0.035 1.48.E+05 0.038 propinytcarniline (C3) 1.32.E+05 2.29.E+04 0.000 2.20.E+04 0.000 1.47.E+05 2.13.E+05 0.035 1.48.E+05 0.039 pyruvate 1.70.E+04 2.27.E+04 0.000 2.23.E+05 1.44.E+05 0.038 1.02.E+05 0.003 serine 2.76.E+05 3.23.E+05 0.606 4.44.E+05 0.601 1.85.E+05 4.65.E+05 0.001 3.71.E+04 7.65.E+05 0.001 3.71.E+04 7.85.E+05 0.001 3.71.E+04 7.85.E+05 0.001 3.71.E+04 7.85.E+05 0.001 3.71.E+04 7.85.E+04 0.358 1.19.E+05 3.00.E+05 0.001 3.71.E+04 7.85.E+04 0.358 1.19.E+05 1.47.E+05 0.650 1.19.E+05 1.000 taucchalat 2.72.E+04 8.48.E+04 0.971 6.53.E+04 0.358 1.19.E+05 1.47.E+05 0.502 1.35.E	proline	1.19.E+06	1.18.E+06	0.995	1.06.E+06	0.538	7.83.E+05	1.34.E+06	0.012	1.29.E+06	0.019
propionylcarnitine (C3) 1.32.E+05 2.29.E+05 0.078 1.47.E+06 2.13.E+05 0.035 1.48.E+05 0.099 pseudourdine 7.19.E+03 2.87.E+04 0.004 7.47.E+03 1.07.E+04 0.104 1.50.E+04 0.003 serine 2.76.E+05 3.23.E+05 0.606 4.44.E+05 0.019 1.85.E+05 0.222 7.65.E+05 0.003 spermidine 4.21.E+04 7.14.E+04 0.055 5.44.E+04 0.504 4.17.E+04 1.35.E+05 0.004 1.48.E+05 0.001 stachydrine 3.53.E+04 0.111 3.45.E+05 0.932 3.72.E+06 0.0014 3.71.E+04 0.004 4.44.E+04 0.999 6.43.E+04 0.001 stachydrine 3.57.E+03 0.561 4.55.E+04 0.371 4.55.E+04 0.376 1.29.E+03 1.000 4.51.E+03 0.082 1.29.E+03 1.000 4.51.E+04 0.191 taurochendeoxycholate 1.29.E+04 5.38.E+04 0.995 4.70.E+04 0.052 2.37.E+03	prolylhydroxyproline	3.34.E+04	1.01.E+05	0.010	5.87.E+04	0.370	5.00.E+04	6.02.E+04	0.725	8.98.E+04	0.038
pseudouridine 7.19.E+03 2.87.E+04 0.000 2.20.E+04 0.004 7.47.E+03 1.07.E+04 0.149 1.50.E+04 0.002 pyruvate 1.70.E+05 2.24.E+05 0.402 1.38.E+05 0.675 2.23.E+05 1.44.E+05 0.033 1.02.E+05 0.003 spermidine 4.21.E+04 7.14.E+04 0.055 5.44.E+04 0.504 4.17.E+04 1.33.E+05 0.001 1.48.E+05 0.001 stachydrine 3.53.E+05 4.11.E+05 0.711 3.45.E+05 0.993 2.97.E+05 3.60.E+05 0.016 3.71.E+04 <.0001	propionylcarnitine (C3)	1.32.E+05	2.29.E+05	0.022	2.06.E+05	0.078	1.47.E+05	2.13.E+05	0.035	1.48.E+05	0.999
pyruvate 1.70.E+05 2.24.E+05 0.402 1.36.E+05 0.675 2.23.E+05 1.44.E+05 0.038 1.02.E+05 0.003 serine 2.76.E+05 3.23.E+05 0.606 4.44.E+04 0.055 5.44.E+04 5.04 4.53.E+05 0.022 7.65.E+05 0.001 stachydrine 3.53.E+05 4.11.E+05 0.711 3.45.E+05 0.993 2.97.E+05 3.60.E+05 0.016 3.71.E+04 <.0001	pseudouridine	7.19.E+03	2.87.E+04	0.000	2.20.E+04	0.004	7.47.E+03	1.07.E+04	0.149	1.50.E+04	0.002
serine 2.76.E+05 3.23.E+05 0.606 4.44.E+05 0.019 1.65.E+05 4.65.E+05 0.222 7.65.E+05 0.013 spermidine 4.21.E+04 7.14.E+04 0.055 5.44.E+04 0.504 4.17.E+04 1.33.E+05 0.001 1.48.E+05 0.001 stachydrine 3.53.E+05 4.11.E+05 0.711 3.45.E+05 0.993 2.97.E+05 3.60.E+05 0.001 3.71.E+04 4.0001 succinate 2.77.E+04 7.48.E+04 0.007 4.23.E+04 0.455 4.39.E+04 4.44.E+04 0.999 6.43.E+04 0.991 1.01.E+05 1.47.E+05 0.650 1.19.E+05 1.000 4.51.E+03 0.012 taurocholate 1.29.E+03 3.75.E+04 0.998 1.01.E+06 0.185 1.33.E+03 0.992 2.88.E+04 0.052 2.97.E+03 5.38.E+03 0.992 1.64.E+04 0.052 2.97.E+03 5.38.E+03 0.992 1.64.E+04 0.325 6.54.E+04 0.111 tauroursodeoxycholate 4.16.E+03 <td< td=""><td>pyruvate</td><td>1.70.E+05</td><td>2.24.E+05</td><td>0.402</td><td>1.36.E+05</td><td>0.675</td><td>2.23.E+05</td><td>1.44.E+05</td><td>0.038</td><td>1.02.E+05</td><td>0.003</td></td<>	pyruvate	1.70.E+05	2.24.E+05	0.402	1.36.E+05	0.675	2.23.E+05	1.44.E+05	0.038	1.02.E+05	0.003
spermidine 4.21.E+04 7.14.E+04 0.055 5.44.E+04 0.504 4.17.E+04 1.33.E+05 0.004 1.48.E+05 0.001 stachydrine 3.53.E+05 4.11.E+05 0.071 3.45.E+05 0.993 2.97.E+05 3.60.E+05 0.016 3.71.E+04 <.0001	serine	2.76.E+05	3.23.E+05	0.606	4.44.E+05	0.019	1.65.E+05	4.65.E+05	0.222	7.65.E+05	0.013
stachydrine 3.53.E+05 4.11.E+05 0.711 3.45.E+05 0.993 2.97.E+05 3.60.E+05 0.016 3.71.E+04 <.0001	spermidine	4.21.E+04	7.14.E+04	0.055	5.44.E+04	0.504	4.17.E+04	1.33.E+05	0.004	1.48.E+05	0.001
Succinate 2.77.E+04 7.49.E+04 0.007 4.23.E+04 0.455 4.39.E+04 4.44.E+04 0.999 6.43.E+04 0.191 taurine 8.19.E+04 8.45.E+04 0.971 6.53.E+04 0.358 1.19.E+05 1.47.E+05 0.650 1.19.E+03 1.000 4.51.E+03 0.012 taurocholate 2.24.E+04 5.48.E+04 0.999 2.88.E+04 0.070 1.29.E+03 1.29.E+03 0.012 taurocholate 2.24.E+04 5.48.E+04 0.998 1.01.E+06 0.185 1.33.E+03 0.792 1.64.E+04 0.014 taurocholate 4.16.E+03 4.88.E+03 0.998 2.22.E+04 0.315 4.16.E+03 4.38.E+04 0.390 tetradecanedicate (C14) 1.80.E+03 6.13.E+03 0.000 9.22.E+03 c.0001 2.75.E+05 5.18.E+05 0.000 1.42.E+04 3.85.E+04 0.636 1.25.E+05 0.005 threanine 4.01.E+05 2.74.E+05 0.073 2.93.E+05 0.002 1.58.E+04 0.636 <	stachydrine	3.53.E+05	4.11.E+05	0.711	3.45.E+05	0.993	2.97.E+05	3.60.E+05	0.016	3.71.E+04	<.0001
Construct Construct <thconstruct< th=""> <thconstruct< th=""> <thc< td=""><td>succinate</td><td>2 77 E+04</td><td>7.49 F+04</td><td>0.007</td><td>4 23 E+04</td><td>0.455</td><td>4.39 E+04</td><td>4 44 E+04</td><td>0.999</td><td>6 43 E+04</td><td>0 191</td></thc<></thconstruct<></thconstruct<>	succinate	2 77 E+04	7.49 F+04	0.007	4 23 E+04	0.455	4.39 E+04	4 44 E+04	0.999	6 43 E+04	0 191
Instruction	taurine	8 19 E+04	8 45 E+04	0.971	6.53 E+04	0.358	1 19 E+05	1 47 E+05	0.650	1 19 E+05	1 000
taurocholate 2.24.E+04 5.48.E+04 0.998 1.01.E+06 0.185 1.33.E+04 4.80.E+04 0.325 6.54.E+04 0.111 taurodeoxycholate 3.94.E+03 5.38.E+03 0.998 4.70.E+04 0.052 2.97.E+03 5.38.E+03 0.792 1.64.E+04 0.014 tauroursodeoxycholate 4.16.E+03 4.88.E+03 0.998 2.22.E+04 0.315 4.16.E+03 4.16.E+03 0.990 7.92.E+03 0.004 4.31.E+03 0.393 tetradecanedioate (C14) 1.80.E+03 6.13.E+03 0.000 9.29.E+03 <.0001	taurochenodeoxycholate	1.29.E+03	3.75.E+03	0.969	2.88.E+04	0.070	1.29.E+03	1.29.E+03	1.000	4.51.E+03	0.012
International 3.94.E+03 5.38.E+03 0.995 4.70.E+04 0.052 2.97.E+03 5.38.E+03 0.792 1.64.E+04 0.014 taurodexxycholate 4.16.E+03 4.88.E+03 0.995 4.70.E+04 0.052 2.97.E+03 5.38.E+03 0.792 1.64.E+04 0.033 tetradecanedioate (C14) 1.80.E+03 6.13.E+03 0.000 9.29.E+03 <.0001	taurocholate	2.24.E+04	5.48.E+04	0.998	1.01.E+06	0.185	1.33.E+04	4.80.E+04	0.325	6.54.E+04	0.111
taroursodeoxycholate 4.16.E+03 4.88.E+03 0.998 2.22.E+04 0.315 4.16.E+03 4.16.E+03 0.000 4.31.E+03 0.393 tetradecanedioate (C14) 1.80.E+03 6.13.E+03 0.000 9.29.E+03 c.0001 2.36.E+03 2.46.E+03 0.990 7.92.E+03 c.0001 threonate 2.14.E+04 1.55.E+05 0.003 1.57.E+05 0.002 1.42.E+04 3.85.E+04 0.636 1.25.E+05 0.003 threonine 4.01.E+05 2.74.E+05 0.173 2.99.E+05 0.300 2.75.E+05 5.18.E+05 0.004 8.84.E+05 0.001 thrans-uncoanate 1.48.E+04 5.69.E+04 0.004 6.06.E+04 0.002 1.58.E+04 0.572.8 5.45.E+04 0.84 trans-uncoanate 2.57.E+04 5.41.E+04 0.933 5.57.E+04 0.844 6.31.E+04 0.723 5.45.E+04 0.848 tryptophan 1.14.E+06 3.99.E+06 0.001 3.46.E+06 0.001 1.17.E+06 2.41.E+06 0.021 3.91.E+06 0.001 uraci 1.81.E+06 1.98.E+06 0.837<	taurodeoxycholate	3.94.E+03	5.38.E+03	0.995	4.70.E+04	0.052	2.97.E+03	5.38.E+03	0.792	1.64 F+04	0.014
tetradecanedioate (C14) 1.80.E+03 6.13.E+03 0.000 9.29.E+03 <.0001	tauroursodeoxycholate	4.16.E+03	4.88.E+03	0.998	2.22.E+04	0.315	4.16.E+03	4.16.E+03	1.000	4.31.E+03	0.393
Inscribe	tetradecanedioate (C14)	1.80 E+03	6 13 E+03	0.000	9 29 F±03	< 0001	2.36 E+03	2.46 E+03	0.990	7 92 E±03	< 0001
Internation 2.11:E104 1.00:E103 1.00:E103 1.00:E103 0.000 1.01:E105 0.000 1.00:E105 0.001 1.00:E101 0.001 1.00:E101 0.001 1.00:E101 0.011 1.00:E101 0.011 1.00:E101 0.011 1.00:E101 0.011 0.011 1.00:E	threenate	2 14 E+04	1.55 E+05	0.003	1 57 E±05	0.002	1.42 E+04	3.85 E+04	0.636	1 25 E±05	0.005
Internation 1.48.E100 2.17.1100 2.17.81.100 0.102.1100 0.004 1.005.E100 0.001 1.77.8104 0.328.E104 0.328.E104 0.232 2.45.E100 0.001 1.77.E106 2.41.E106 0.001 2.31.E106 0.001 1.77.E106 2.41.E106 0.019 2.31.E106 0.001 1.77.E106 2.41.E106 0.011 2.31.E106 0.001 1.77.E106 2.41.E106 0.021 3.73.E106 0.001 1.07.E106 2.41.E106 0.021 3.73.E106 0.001 <t< td=""><td>threenine</td><td>4.01 E+05</td><td>2 74 E+05</td><td>0.000</td><td>2 99 E+05</td><td>0.300</td><td>2 75 E+05</td><td>5.18 E±05</td><td>0.496</td><td>8 84 E±05</td><td>0.000</td></t<>	threenine	4.01 E+05	2 74 E+05	0.000	2 99 E+05	0.300	2 75 E+05	5.18 E±05	0.496	8 84 E±05	0.000
Instruction Instruction State Intervent State Intervent <td>thymiding</td> <td>1.48 E±04</td> <td>5.69 E+04</td> <td>0.004</td> <td>6.06 E+04</td> <td>0.000</td> <td>1.58 E±04</td> <td>4 56 E+04</td> <td>0.004</td> <td>1.05 E+05</td> <td>< 0001</td>	thymiding	1.48 E±04	5.69 E+04	0.004	6.06 E+04	0.000	1.58 E±04	4 56 E+04	0.004	1.05 E+05	< 0001
Interver 0.01/E+04 0.31/E+04 0.031/E+04 0.031/E+04 0.123 0.43/E+04 0.423 Itrans-urocante 2.57/E+04 0.457 3.23/E+04 0.464 1.32/E+04 0.428 tryptophan 1.14/E+06 3.29/E+06 <.0001	trans-4-budronu-L-proling	5.01 E+04	5.03.L+04	0.004	5.57 E 1.04	0.002	6.21 E+04	7.52 E + 04	0.004	5.45 E 104	0.946
Instructionate 2.07.12404 2.17.12404 0.220 0.201 1.77.1406 0.201 0.221 0.201 0.221 0.201 0.221 0.201 0.221 0.201 0.221 0.201 0.221 0.201 0.221 0.201 0.221 0.201 0.221 0.201 0.221 0.201 0.221 0.201 0.221 0.201 0.221 0.201 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.221 0.211 0.211 0.221 0.211 0.211 0.211 0.211 0.211 0.211 0.211 <th< td=""><td>trans-urocanato</td><td>2.57 E±04</td><td>2.11 E±04</td><td>0.930</td><td>3.23 E±04</td><td>0.004</td><td>3.83 E±04</td><td>3.48 E±04</td><td>0.723</td><td>2.65 E±04</td><td>0.040</td></th<>	trans-urocanato	2.57 E±04	2.11 E±04	0.930	3.23 E±04	0.004	3.83 E±04	3.48 E±04	0.723	2.65 E±04	0.040
Opposition 1.74E+00 3.33E+00 5.33E+06 0.017 2.71E+06 0.33E+06 0.000 Uprosine 1.8E+06 1.8E+06 0.837 2.45E+06 0.141 1.21E+06 1.78E+06 0.019 2.31E+06 0.000 undecanoate (11:0) 2.79E+04 3.96E+04 0.141 3.31E+04 5.03E+04 0.457 2.71E+04 5.03E+04 0.450 uracil 3.95E+04 1.86E+05 0.010 1.62E+05 0.026 7.31E+04 0.851 2.03E+05 <.0001	trustonban	2.37.E+04	2.11.L+04	< 0001	3.64 E+06	< 0001	1.17 E±06	2.41 E±06	0.021	2.03.L+04	< 0001
Control Control <t< td=""><td>tyrosine</td><td>1.81 E+06</td><td>1.98 E+06</td><td>0.837</td><td>2 45 E+06</td><td>0 141</td><td>1.21 E+06</td><td>1 78 E±06</td><td>0.021</td><td>2 31 F±06</td><td>0.000</td></t<>	tyrosine	1.81 E+06	1.98 E+06	0.837	2 45 E+06	0 141	1.21 E+06	1 78 E±06	0.021	2 31 F±06	0.000
Line Line <thline< th=""> Line Line <thl< td=""><td>undecanoate (11:0)</td><td>2 79 E+04</td><td>3.96 E+04</td><td>0.007</td><td>3.31 E+04</td><td>0.617</td><td>2 71 E+04</td><td>5.03 E±04</td><td>0.047</td><td>3.73 E+04</td><td>0.450</td></thl<></thline<>	undecanoate (11:0)	2 79 E+04	3.96 E+04	0.007	3.31 E+04	0.617	2 71 E+04	5.03 E±04	0.047	3.73 E+04	0.450
Jobs Jobs <th< td=""><td>uracil</td><td>3.95 E±04</td><td>1 86 E+05</td><td>0.010</td><td>1.62 E+05</td><td>0.026</td><td>7 31 E±04</td><td>8 28 E±04</td><td>0.851</td><td>2 03 E+05</td><td>< 0001</td></th<>	uracil	3.95 E±04	1 86 E+05	0.010	1.62 E+05	0.026	7 31 E±04	8 28 E±04	0.851	2 03 E+05	< 0001
Under 2.30L7 V4 7.42_E1V4 0.002 0.30L7 V4 0.302 3.30L7 V4 0.310 8.38_E1V4 0.002 urea 1.04_E107 2.33_E107 0.144 2.09_E107 0.250 1.00_E107 1.10_E107 0.853 7.80_E106 0.004 urdine 9.34_E103 3.99_E404 <.0001	urato	2 30 E±04	7.42 E+05	0.010	6 20 E . 04	0.020	3 88 E±04	5.01 E±04	0.510	2.03.E+03	0.002
Under 9.34.E+03 3.399.E+04 0.001 3.34.E+04 0.000 1.00.E+04 1.80.E+04 0.803 7.80.E+06 0.506 valine 3.44.E+06 5.63.E+06 0.057 4.87.E+06 0.233 2.79.E+06 4.22.E+06 0.097 8.08.E+04 0.004 valine 3.44.E+06 5.63.E+06 0.057 4.87.E+06 0.233 2.79.E+06 4.22.E+06 0.097 8.08.E+04 0.004 valine 3.275.E+03 2.47.E+04 0.029 1.82.E+04 0.139 3.03.E+03 1.17.E+04 0.020		1.04 E±07	2.33 E±07	0.000	2.00 E±07	0.002	1.00 E±07	1 10 E±07	0.310	7.80 E±09	0.502
Unitative 3.34.E+03 3.33.E+04 5.001 3.34.E+04 0.000 1.70.E+04 0.808 5.3.E+04 0.004 value 3.44.E+06 5.63.E+06 0.057 4.87.E+06 0.233 2.79.E+06 4.22.E+06 0.097 8.08.E+06 <.0001	uridipo	0.34 E±02	2.33.E+07	0.144	2.09.E+07	0.200	1 70 E±04	1.10.E+07	0.003	3 31 E+04	0.000
vermite 3.445,ET00 3.032,ET00 0.037 4.37,ET00 0.233 2.73,ET00 4.22,ET00 0.097 6.00,ET00 C.001 xylitol 4.27,E+03 2.47,E+04 0.037 1.32,ET00 1.48,E+04 0.034 1.17,E+04 0.120 xylitol 2.27,E+03 2.47,E+04 0.040 2.47,E+04 0.139 3.03,E+03 1.48,E+04 0.037 1.07,E+04 0.120	valino	3.34.E+03	5.63 E±04	0.057	1.87 E±09	0.000	2 70 E±04	1.00.E+04	0.900	8 08 E±04	< 0004
yymon 4.27.E+03 2.47.E+04 0.023 1.2.E+04 0.133 3.03.E+03 1.48.E+04 0.034 1.17.E+04 0.120	valite	4.27 E+02	3.03.E+00	0.007	1.07.07	0.233	2.79.00	1 49 5 .04	0.097	1 17 E 104	0.120
	Ayinoi		5.52 E+04	0.029	2.47 E+04	0.139	5.03.E+03	6.21 E 104	0.034	2.00 E+04	0.120

表 S2-1 ザイモサン投与後の PWF 中メタボライト平均値(4) 投与 48 及び 72 時間データ

	Vehicle, 48 h	Zymosan 1 m	/kg, 48 h	Zymosan 10 m	ng/kg, 48 h	Vehicle, 72 h	Zymosan 1 m	/kg, 72 h	Zymosan 10 m	g/kg, 72 h
BIOCHEMICAL	MEAN	MEAN	p	MEAN	p	MEAN	MEAN	p	MEAN	p
1,2-propanediol	1.71.E+07	3.02.E+07	0.227	5.96.E+07	0.000	2.38.E+07	2.02.E+07	0.907	3.34.E+07	0.537
1,5-anhydroglucitol (1,5-AG)	4.44.E+05	5.07.E+05	0.324	1.20.E+06	<.0001	4.05.E+05	4.36.E+05	0.913	9.31.E+05	0.000
10-heptadecenoate (17:1n7)	7.54.E+04	8.10.E+04	0.750	1.27.E+05	0.000	6.37.E+04	7.53.E+04	0.190	8.14.E+04	0.040
12-dehydrocholate	3.32.E+03	9.87.E+03	0.008	2.49.E+03	0.866	7.70.E+03	5.24.E+03	0.412	8.17.E+03	0.964
13-HODE + 9-HODE	2.41.E+04	1.17.E+04	0.087	1.67.E+04	0.353	2.57.E+04	9.01.E+03	0.062	1.22.E+04	0.136
13-methylmyristic acid	1.86.E+05	1.99.E+05	0.780	2.92.E+05	0.001	1.92.E+05	1.94.E+05	0.993	2.38.E+05	0.080
1-arachidonoyl-GPC (20:4)	1.65.E+04	4.22.E+04	0.001	2.92.E+04	0.066	1.86.E+04	4.06.E+04	0.002	2.12.E+04	0.832
1-arachidonoyi-GPE (20:4)	5.24.E+03	6.55.E+03	0.895	2.08.E+04	0.001	4.60.E+03	8.04.E+03	0.057	1.37.E+04	<.0001
1-arachidonoyi-GPI (20:4)	2.20.E+03	3.57.E+03	0.703	6.02 E+04	0.152	2.20.E+03	4.23.E+03	0.242	4.16.E+03	0.205
1-eicosatrianov/-GPC(20:3)	2.73.E+04	3 34 E+04	0.327	3.67 E+04	0.152	1.92 E+04	2 13 E+04	0.000	3.16 E+04	0.007
1-linoleovl-GPC (18:2)	1 17 E+05	2 73 E+05	0.434	2 79 E+05	0.204	1.32.E+04	2.13.E+04	0.818	2.02 E+05	0.030
1-methyladenosine	2.17.E+04	2.71.E+04	0.249	4.53 E+04	<.0001	1.95.E+04	2.54.E+04	0.137	3.89 E+04	<.0001
1-oleovi-GPC (18:1)	1.96.E+04	7.67.E+04	0.264	7.48.E+04	0.285	5.73.E+04	4.86.E+04	0.953	6.24.E+04	0.983
1-oleoyl-GPE (18:1)	4.30.E+03	5.41.E+03	0.744	1.57.E+04	<.0001	4.16.E+03	5.20.E+03	0.187	7.85.E+03	0.000
1-palmitoyl-GPC (16:0)	7.10.E+04	3.92.E+05	0.427	8.04.E+05	0.038	1.93.E+05	2.08.E+05	0.993	3.71.E+05	0.404
1-palmitoyl-GPE (16:0)	5.17.E+03	9.63.E+03	0.832	4.65.E+04	0.001	5.59.E+03	1.05.E+04	0.201	1.80.E+04	0.002
1-palmitoylplasmenylethanolamine	1.84.E+03	2.87.E+03	0.917	1.94.E+04	0.000	1.84.E+03	3.12.E+03	0.332	1.00.E+04	<.0001
1-stearoyl-GPC (18:0)	2.72.E+04	1.45.E+05	0.818	6.05.E+05	0.040	4.88.E+04	7.62.E+04	0.877	1.91.E+05	0.083
1-stearoyl-GPE (18:0)	8.62.E+03	1.88.E+04	0.139	7.39.E+04	<.0001	1.17.E+04	1.99.E+04	0.019	2.87.E+04	<.0001
2-aminoadipate	4.32.E+04	5.62.E+04	0.600	1.04.E+05	0.003	5.21.E+04	4.52.E+04	0.783	7.08.E+04	0.232
2-aminobutyrate	5.77.E+04	6.19.E+04	0.908	1.55.E+05	<.0001	5.71.E+04	6.03.E+04	0.956	8.22.E+04	0.130
2'-deoxycytidine	3.73.E+04	7.21.E+04	0.014	1.03.E+05	0.000	3.81.E+04	4.86.E+04	0.251	1.10.E+05	<.0001
2'-deoxyuridine	4.32.E+04	6.23.E+04	0.022	9.70.E+04	<.0001	5.06.E+04	4.97.E+04	0.986	5.38.E+04	0.819
2-ethylhexanoate (Isobar with 2-propylpentanoate)	1.15.E+04	1.34.E+04	0.968	8.69.E+04	<.0001	8.98.E+03	1.29.E+04	0.915	7.22.E+04	0.000
2-nydroxy-3-metnylvalerate	2.49.E+03	2.82.E+03	0.993	2.13.E+04	0.000	3.21.E+03	2.76.E+03	0.916	7.03.E+03	0.023
2-hydroxydutync acid	3.40.E+05	3.79.E+05	0.994	2.31.E+00	0.001	3.44.E+05	2.10.E+05	0.069	3.34.E+03	0.010
2-hydroxyglutarate	8 20 E±04	2.10.E+04	0.920	3.83 E±05	< 0001	2.85.E+04	1.72.E+04	0.117	3.90.E+04	0.144
2-linoleovI-GPC (18:2)	2.82 E+04	4.39 E+04	0.616	2 79 E+04	1 000	1.07.E+03	2 98 E+04	0.393	1.86 E+04	1 000
2-methylbutyrovlcarnitine (C5)	2.34.E+04	2.41.E+04	0.965	3.13.E+04	0.061	2.22.E+04	2.14.E+04	0.987	2.83.E+04	0.432
2-oleoyl-GPC (18:1)	1.66.E+04	2.10.E+04	0.943	4.66.E+04	0.125	2.86.E+04	1.85.E+04	0.247	1.87.E+04	0.262
2-palmitoyl-GPC(16:0)	1.46.E+04	3.43.E+04	0.714	7.53.E+04	0.092	2.64.E+04	2.09.E+04	0.883	3.48.E+04	0.752
2-stearoyl-GPC (18:0)	1.40.E+04	1.71.E+04	0.960	4.82.E+04	0.039	1.40.E+04	1.44.E+04	0.996	2.57.E+04	0.062
3-(4-hydroxyphenyl)lactate (HPLA)	1.12.E+04	1.27.E+04	0.500	2.43.E+04	<.0001	1.43.E+04	8.31.E+03	0.028	1.75.E+04	0.264
3-dehydrocarnitine	3.61.E+05	3.97.E+05	0.574	7.47.E+05	<.0001	3.77.E+05	3.55.E+05	0.896	5.99.E+05	0.004
3-hydroxybutyric acid	2.74.E+06	2.44.E+06	0.999	2.77.E+07	0.025	1.63.E+06	1.07.E+06	0.041	1.69.E+06	0.940
3-hydroxyisobutyric acid	1.56.E+05	2.00.E+05	0.332	2.38.E+05	0.053	1.64.E+05	1.21.E+05	0.373	2.03.E+05	0.435
3-indoxyl sulfate	2.19.E+04	3.09.E+04	0.251	2.30.E+04	0.974	2.06.E+04	2.56.E+04	0.305	2.20.E+04	0.899
3-methyl-2-oxobutyrate	2.32.E+04	2.33.E+04	0.999	4.08.E+04	<.0001	1.80.E+04	1.54.E+04	0.227	1.83.E+04	0.963
3-methylautorovlaerate	2.63.E+04	2.19.E+04	0.683	5.47.E+04	0.001	2.00.E+04	1.43.E+04	0.612	1.72.E+04	0.154
3-neuryigiularoyicarniline (Co)	8.67 E±03	7.31 E±03	0.930	1.02 E±03	0.000	7.82 E±03	5.47.E+03	0.617	6 14 E±03	0.780
3-ureidopropionate	8 32 E±04	1.03 E+05	0.720	1.18 F±05	0.000	9.75 E+04	8.07 E+04	0.595	7.40 E+04	0.700
4-methyl-2-oxopentanoate	3 47 E+04	3.37 E+04	0.986	7 74 F±04	0.000	2.53 E+04	1.89 E+04	0.000	2 89 E+04	0.000
5-methylthioadenosine (MTA)	2.11.E+04	2.44.E+04	0.571	5.29.E+04	<.0001	2.18.E+04	2.32.E+04	0.952	4.79.E+04	0.001
5-oxoproline	1.01.E+04	1.27.E+04	0.645	3.35.E+04	<.0001	1.82.E+04	1.93.E+04	0.985	2.49.E+04	0.620
7-HOCA	4.55.E+03	7.01.E+03	0.371	1.75.E+04	<.0001	4.24.E+03	5.31.E+03	0.642	1.15.E+04	0.000
7-methylguanine	1.24.E+05	1.16.E+05	0.938	1.27.E+05	0.993	1.22.E+05	1.31.E+05	0.947	1.18.E+05	0.990
acetylcarnitine (C2)	1.18.E+06	1.09.E+06	0.880	2.79.E+06	<.0001	1.04.E+06	8.13.E+05	0.012	1.30.E+06	0.005
adenosine	1.23.E+05	1.90.E+04	0.000	1.70.E+04	0.000	1.05.E+05	1.95.E+04	0.006	9.44.E+03	0.003
alanine	1.64.E+07	2.23.E+07	0.171	2.35.E+07	0.091	2.27.E+07	2.13.E+07	0.813	3.06.E+07	0.020
allantoin	1.37.E+05	1.77.E+05	0.488	2.60.E+05	0.014	1.99.E+05	1.64.E+05	0.312	2.04.E+05	0.965
alpha-hydroxyisovalerate	2.01.E+04	2.14.E+04	0.991	1.70.E+05	<.0001	2.02.E+04	2.31.E+04	0.451	5.07.E+04	<.0001
alpha-muricholate	8.47.E+03	1.49.E+04	0.043	5.75.E+03	0.467	1.72.E+04	1.32.E+04	0.646	1.42.E+04	0.772
alpha-tocopherol	3.38.E+03	3.38.E+03	1.000	1.35.E+04	0.124	3.38.E+03	4.73.E+03	0.360	3.90.E+03	0.841
AMP	2.24.E+04	6.47.E+04	0.017	2.80.E+04	0.886	1.74.E+04	3.38.E+04	0.113	4.83.E+04	0.005
arabinose	6.25.E+04	4.32.E+04	0.269	2.98.E+04	0.048	3.27.E+04	2.43.E+04	0.037	1.98.E+04	0.003
arachidonate (20:416)	2.07.E+04	4.75.E+04	0.030	1.17.E+05	<.0001	2.56.E+04	3.67.E+04	0.294	6.97.E+04	0.001
ascorbate (Vitamin C)	4 77 E+05	5.93 E±05	0.305	1.20.E+05	< 0001	6.21 E±05	5.22 E±05	0.022	9.09.E+04	0.000
asparagine	9.37 E±03	1.06 E+04	0.000	7.48 E±04	< 0001	9.56 E±03	8 59 E+03	0.447	1.10.E+00	0.000
benzoate	2.07.E+06	2.77.E+06	0.155	5.45 E+06	<.0001	2.59.E+06	2.24.E+06	0.610	4.73 E+06	0.000
betaine	4.11.E+05	4.82,E+05	0.359	5.74.E+05	0,022	5.47.E+05	4.63.E+05	0.228	5.83,E+05	0.722
bradykinin	5.79.E+03	1.12.E+04	0.178	3.35.E+03	0.652	3.35.E+03	3.35.E+03	NA	3.35.E+03	NA
butyrylcarnitine (C4)	1.14.E+05	1.13.E+05	0.998	1.49.E+05	0.068	1.23.E+05	1.32.E+05	0.802	1.37.E+05	0.573
caprate (10:0)	5.11.E+04	5.02.E+04	0.999	1.39.E+05	0.004	3.09.E+04	5.44.E+04	0.116	9.64.E+04	0.000
caproate (6:0)	3.76.E+03	3.23.E+03	0.986	2.40.E+04	0.000	3.23.E+03	3.42.E+03	0.994	1.58.E+04	<.0001
caprylate (8:0)	7.68.E+03	1.02.E+04	0.972	6.14.E+04	0.002	5.88.E+03	1.23.E+04	0.226	4.07.E+04	<.0001
carnitine	4.34.E+05	4.61.E+05	0.884	6.42.E+05	0.015	5.01.E+05	4.88.E+05	0.939	7.30.E+05	0.001

表 S2-1 ザイモサン投与後の PWF 中メタボライト平均値(5) 投与 48 及び 72 時間データ

	Vehicle, 48 h	Zymosan 1 mg	/kg, 48 h	Zymosan 10 m	g/kg, 48 h	Vehicle, 72 h	Zymosan 1 mg	/kg, 72 h	Zymosan 10 m	ıg/kg, 72 h
BIOCHEMICAL	MEAN	MEAN	р	MEAN	р	MEAN	MEAN	р	MEAN	р
catechol sulfate	4.84.E+04	3.39.E+04	0.106	7.65.E+03	0.000	2.31.E+04	2.62.E+04	0.920	5.95.E+04	0.004
C-glycosyltryptophan	4.85.E+03	7.01.E+03	0.548	1.27.E+04	0.009	5.53.E+03	5.21.E+03	0.976	1.09.E+04	0.019
chiro-inositol	7.21.E+04	2.67.E+04	0.049	1.69.E+04	0.019	4.22.E+04	3.32.E+04	0.811	1.25.E+05	0.001
cholate	1.24.E+04	1.99.E+04	0.286	1.00.E+04	0.858	1.43.E+04	1.11.E+04	0.917	4.19.E+04	0.020
choline	2.45.E+05	2.83.E+05	0.406	5.79.E+05	<.0001	3.21.E+05	2.98.E+05	0.852	5.75.E+05	0.000
cinnamoylglycine	1.05.E+04	1.16.E+04	0.901	3.12.E+03	0.038	6.97.E+03	4.94.E+03	0.154	3.21.E+03	0.009
cis-aconitate	4.28.E+04	5.42.E+04	0.135	6.04.E+04	0.022	4.09.E+04	3.44.E+04	0.338	4.47.E+04	0.659
cis-urocanate	5.33.E+05	6.36.E+05	0.779	8.29.E+05	0.194	4.72.E+05	5.84.E+05	0.621	5.95.E+05	0.570
citrate	2.54.E+06	2.95.E+06	0.096	1.52.E+06	0.000	2.71.E+06	2.26.E+06	0.444	2.29.E+06	0.490
corticosterone	4.73.E+04	3.99.E+04	0.871	1.09.E+05	0.006	4.30.E+04	3.79.E+04	0.834	3.61.E+04	0.719
creatine	1.22.E+06	1.10.E+06	0.597	2.39.E+06	<.0001	1.53.E+06	1.14.E+06	0.045	1.75.E+06	0.274
cysteine	2.84.E+04	3.60.E+04	0.929	1.04.E+05	0.016	3.21.E+04	3.89.E+04	0.895	5.39.E+04	0.372
cysteine-glutathione disulide	6.19.E+04	6.47.E+04	0.910	1.35.E+05	<.0001	6.46.E+04	5.96.E+04	0.679	1.13.E+05	0.003
departmentities	7.19 E 104	7.94 E+04	0.490	1.60.E+05	<.0001	6 94 E+04	4.03.E+04	0.037	1.47.E+05	0.017
deoxycarnitine	1.10.E+04	1.04.E+04	0.432	9.95.E+04	0.001	2.06 E+04	5.15.E+04	0.155	1.20.E+05	0.012
deoxycholate	1.12.E+04	1.39.E+04	0.732	2.35.E+04	0.020	2.06.E+04	1.25.E+04	0.010	1.19.E+04	0.012
dihomolinoleate (20.216)	1.17 E 1.04	1.62 E+04	0.133	5.47 E+03	<.0001	0.51 E+04	4.03.E+04	0.370	2.02 E . 04	0.002
dimotholinolenate (20:3n3 or 3n6)	1.17.E+04	1.02.E+04	0.740	5.47.E+04	<.0001	9.51.E+03	1.47.E+04	0.469	2.93.E+04	0.003
demonshavesnests (DHA: 22:6n2)	1.20.E+03	5.02 E+03	0.012	2 10 E · 05	0.049	2.29 E+04	1.21.E+03	0.574	1.07.2+05	0.722
docosanexaenoate (DRA; 22:013)	2.00.E+04	2.41 E+04	0.203	2.10.E+03	<.0001	2.30.E+04	4.59.E+04	0.349	1.12.E+03	0.005
docosapentaenoate (EPA; 20:5n3)	2.09.E+04	2.41.E+04	0.732	1.05 E . 05	< 0001	1.00.E+04	2.40.E+04	0.214	5.45.E+04	0.007
eicosapentaerioate (LFA, 20.313)	4.12.L+04	7.06 E±04	0.737	1.03.E+03	0.001	4.454 E±04	3.04 E±04	0.330	0.20 E±04	0.402
equal sulfate	2.08 E±04	2 22 E : 04	0.040	2 90 E . 02	0.001	4.54.E+04	3.34.L+04	0.008	1.48 E±04	0.254
equorsulate	2.00.L+04	5.49 E±04	0.307	3.00.E+03	0.000	1.32.E+04	4.15 E±04	0.000	794 E . 04	0.001
enythropate	4.30.L+04	2.34 E±04	0.501	3.60 E±04	0.000	2.25 E±04	2.80 E±04	0.335	5.26 E±04	0.001
fructoso	4.00 E±05	6.83 E±05	0.031	7.16 E±05	0.734	5.64 E±05	6.67 E±05	0.737	1.07 E±06	0.003
fumorate	9.70 E±04	1.12 E±05	0.632	7.10.E+03	0.333	1 32 E±05	6.82 E+04	0.003	8 72 E±04	0.003
aamma-alutamvlalutamine	6 30 E+04	6.33 E±04	1.000	8.05 E+04	0.440	5.76 E±04	6.09 E+04	0.842	6.11 E+04	0.024
gamma-glutamylisoleucine	1.84 E+04	1.61 E+04	0.711	2 49 E+04	0.117	1.99 E+04	2 21 E+04	0.798	1.58 E+04	0.488
gamma-glutamylleucine	7.53 E+04	7 22 E+04	0.948	1.00 E+05	0.081	8 44 E+04	6.99 E+04	0.535	7.09 E+04	0.575
gamma-glutamylmethionine	6.90 E+04	6 15 E+04	0.764	573 E+04	0.536	7 47 E+04	7.36 E+04	0.989	5.89 E+04	0.191
gamma-glutamylnetmonne	5.66 E+04	5.68 E+04	0.999	1.02 E+05	< 0001	6.05 E+04	5.92 E+04	0.988	7.38 E+04	0.322
gamma-glutamytyrosine	5.17 E+04	4 94 E+04	0.000	5 24 E+04	0.993	5.26 E+04	4 40 E+04	0.304	4 56 E+04	0.443
gamma-glutamylyaline	3.35 E+04	3.56 E+04	0.771	3.92 E+04	0.219	3.82 E+04	3 18 E+04	0.614	2 97 E+04	0.445
glucose	6.87.E+07	7.19.E+07	0.914	5.20.E+07	0.163	7.28.E+07	6.41.E+07	0.316	5.15.E+07	0.010
glucocc	2 79 E+05	4 14 E+05	0.402	8.71 E+05	0.000	3.05 E+05	2.82 E+05	0.950	8.62 E+05	< 0001
glutamine	1.41.E+05	1.95.E+05	0.012	3.96.E+05	<.0001	1.71.E+05	1.89.E+05	0.717	3.18.E+05	0.000
glutathione, oxidized (GSSG)	6.48.E+04	5.84.E+04	0.849	9.19.E+04	0.115	8.52.E+04	5.63.E+04	0.097	7.95.E+04	0.881
glycerol	3.53.E+07	4.05.E+07	0.133	3.92.E+07	0.287	4.17.E+07	3.53.E+07	0.147	3.40.E+07	0.074
glycerol 3-phosphate (G3P)	6.01.E+04	8.54.E+04	0.182	2.62.E+05	<.0001	8.53.E+04	7.57.E+04	0.947	1.69.E+05	0.059
glycine	4.94.E+06	5.27.E+06	0.789	4.30.E+06	0.431	5.93.E+06	6.11.E+06	0.960	4.90.E+06	0.316
glycolate (hydroxyacetate)	1.77.E+05	2.12.E+05	0.543	2.14.E+05	0.511	1.48.E+05	1.52.E+05	0.993	2.92.E+05	0.003
gulono-1,4-lactone	1.03.E+05	7.77.E+04	0.373	5.90.E+04	0.086	6.84.E+04	6.31.E+04	0.640	4.70.E+04	0.013
heptanoate (7:0)	2.16.E+03	2.16.E+03	1.000	9.57.E+03	0.000	2.16.E+03	2.16.E+03	1.000	6.54.E+03	<.0001
hexadecanedioate (C16)	2.76.E+03	5.34.E+03	0.121	1.06.E+04	0.000	2.97.E+03	3.88.E+03	0.320	6.65.E+03	0.000
hexanoylcarnitine (C6)	3.01.E+04	2.94.E+04	0.996	9.34.E+04	<.0001	2.51.E+04	3.23.E+04	0.546	3.70.E+04	0.234
hexanoylglycine (C6)	7.55.E+04	6.12.E+04	0.846	1.17.E+05	0.298	4.54.E+04	5.10.E+04	0.874	2.04.E+04	0.132
hippurate	2.68.E+05	2.76.E+05	0.971	3.88.E+05	0.021	3.10.E+05	1.73.E+05	0.016	3.91.E+05	0.156
histidine	1.20.E+04	1.61.E+04	0.128	2.92.E+04	<.0001	1.30.E+04	1.43.E+04	0.866	3.24.E+04	<.0001
homostachydrine	7.87.E+04	8.85.E+04	0.422	1.41.E+04	<.0001	1.00.E+05	8.62.E+04	0.222	8.90.E+04	0.358
inosine	7.01.E+03	7.57.E+03	0.931	5.26.E+03	0.527	1.46.E+04	4.31.E+03	0.009	3.48.E+03	0.006
isobutyrylcarnitine (C4)	3.51.E+04	3.70.E+04	0.916	5.80.E+04	0.002	3.88.E+04	2.74.E+04	0.088	5.26.E+04	0.039
isoleucine	2.36.E+06	2.95.E+06	0.378	6.14.E+06	<.0001	2.80.E+06	2.46.E+06	0.622	4.54.E+06	0.002
isovalerylcarnitine (C5)	2.66.E+04	2.99.E+04	0.892	7.86.E+04	<.0001	3.02.E+04	2.84.E+04	0.955	6.06.E+04	0.002
kynurenine	2.76.E+04	2.29.E+04	0.914	1.07.E+05	0.000	2.96.E+04	3.66.E+04	0.904	6.45.E+04	0.149
lactate	1.37.E+08	1.67.E+08	0.391	2.55.E+08	0.001	2.21.E+08	1.36.E+08	0.004	2.70.E+08	0.078
laurate (12:0)	3.64.E+05	3.68.E+05	0.987	6.21.E+05	<.0001	3.00.E+05	3.44.E+05	0.200	5.41.E+05	<.0001
leucine	3.68.E+06	4.98.E+06	0.208	1.03.E+07	<.0001	4.25.E+06	4.10.E+06	0.946	8.16.E+06	<.0001
levulinate (4-oxovalerate)	2.72.E+04	2.11.E+04	0.731	6.62.E+04	0.002	2.75.E+04	3.50.E+04	0.700	4.34.E+04	0.252
linoleamide (18:2n6)	5.59.E+04	1.08.E+05	0.123	1.16.E+05	0.072	8.95.E+04	9.31.E+04	0.990	1.26.E+05	0.410
linoleate (18:2n6)	1.37.E+06	1.93.E+06	0.491	5.54.E+06	<.0001	8.45.E+05	8.68.E+05	0.998	1.91.E+06	0.043
linolenate (18:3n3 or 3n6)	1.12.E+05	1.48.E+05	0.817	4.94.E+05	0.000	7.23.E+04	7.19.E+04	1.000	1.24.E+05	0.232
lysine	4.65.E+05	8.24.E+05	0.079	4.90.E+05	0.983	5.07.E+05	6.82.E+05	0.593	4.43.E+05	0.928
malate	1.93.E+05	2.53.E+05	0.168	2.20.E+05	0.645	3.57.E+05	1.22.E+05	0.007	2.35.E+05	0.149
maltose	3.53.E+04	4.41.E+04	0.605	1.73.E+05	<.0001	4.24.E+04	3.53.E+04	0.939	1.83.E+05	0.000
mannose	1.23.E+06	1.29.E+06	0.932	2.70.E+06	<.0001	1.11.E+06	9.85.E+05	0.699	1.01.E+06	0.803
methionine	9.32.E+05	1.15.E+06	0.405	1.57.E+06	0.009	1.23.E+06	1.23.E+06	1.000	2.00.E+06	0.000
methyl-beta-glucopyranoside	4.72.E+05	4.55.E+05	0.917	6.54.E+05	0.007	4.48.E+05	3.70.E+05	0.112	5.89.E+05	0.006
myo-inositol	1.17.E+06	1.37.E+06	0.585	1.81.E+06	0.025	1.54.E+06	1.27.E+06	0.363	2.13.E+06	0.030

表 S2-1 ザイモサン投与後の PWF 中メタボライト平均値(6) 投与 48 及び 72 時間データ

	Vehicle, 48 h	Zymosan 1 mg	/kg, 48 h	Zymosan 10 m	g/kg, 48 h	Vehicle, 72 h	Zymosan 1 mg	/kg, 72 h	Zymosan 10 m	g/kg, 72 h
BIOCHEMICAL	MEAN	MEAN	p	MEAN	p	MEAN	MEAN	p	MEAN	p
myristate (14:0)	9.34.E+05	1.00.E+06	0.578	1.58.E+06	<.0001	8.04.E+05	9.38.E+05	0.119	1.20.E+06	0.000
mvristoleate (14:1n5)	5.26.E+04	5.81.E+04	0.850	1.16.E+05	0.000	4.74.E+04	4.80.E+04	0.981	7.54.E+04	<.0001
N-acetylleucine	7.97.E+04	6.80.E+04	0.766	7.06.E+04	0.848	7.45.E+04	5.35.E+04	0.374	6.18.E+04	0.673
N-acetylmethionine	7.94.E+03	7.42.E+03	0.868	8.52.E+03	0.840	8.77.E+03	6.18.E+03	0.112	9.34.E+03	0.863
N-acetylornithine	1.00.E+05	1.08.E+05	0.814	7.98.E+04	0.268	9.30.E+04	9.79.E+04	0.935	1.73.E+05	0.001
N-acetylphenylalanine	6.82.E+03	7.15.E+03	0.962	2.00 F+04	<.0001	6.56.E+03	5.53.E+03	0.871	2.06 E+04	0.000
N-acetyltryptophan	2 67 E+03	2 50 E+03	0.941	4 49 F±03	0.016	2 00 E+03	2 07 E+03	0.983	4.06 E±03	0.003
N-acetyltyrosine	3 45 E+03	4.32 E+03	0.482	5.87 E+03	0.022	3 74 E+03	4 18 E+03	0.870	7.34 E+03	0.007
n-butyl oleate	2.35 E+04	2 41 E+04	0.990	1.51 E+04	0.216	1.59 E+04	2 17 E+04	0.517	1.93 E+04	0.789
nicotinamide	2.07.E+05	2.39.E+05	0.643	3.44.E+05	0.009	3.63.E+05	2.68.E+05	0.118	4.52.E+05	0.143
octadecanedioate (C18)	4.61 E+03	6.02 E+03	0.345	1.10 F+04	0.000	5.55 E+03	4 80 E+03	0.664	8.96 E+03	0.008
oleamide	5.45 E+03	2 13 E+04	0.084	3.88 F+04	0.001	1 75 E+04	2 49 E+04	0.793	3 14 E+04	0.471
oleate (18:1p9)	2.60 E+06	3 29 E+06	0.415	6 32 E±06	< 0001	1.80 E+06	2.06 E+06	0.710	2 82 E±06	0.031
ornithine	3 17 E+05	5.97 E+05	0.044	3.47 E+05	0.946	3.52 E+05	6.07 E+05	0.237	5.33 E+05	0.452
palmitate (16:0)	6.60 E+06	7.03 E+06	0.686	9 29 E±06	0.001	5.92 E+06	6.84 E+06	0.181	7.44 E±06	0.024
palmitate (16:0)	6.92 E+05	8 21 E+05	0.604	1 72 E±06	< 0001	5 29 E+05	5.49 E+05	0.952	6.67 E+05	0.021
palmitoidate (10.111)	6.61 E+04	1.89 E+05	0.342	8.66 E±05	< 0001	5.85 E+04	1 22 E+05	0.259	3 41 E±05	< 0001
pantothenate (Vitamin B5)	5.82 E+04	7 36 E+04	0.542	2.48 E±05	< 0001	7 29 E+04	5 16 E+04	0.200	1 22 E±05	0.001
p-crosol sulfate	1 32 E±03	1.50.E+03	1,000	5.66 E+04	< 0001	1.20.E104	3.44 E±03	0.000	3 37 E±03	0.200
polargonate (0:0)	5.80 E±04	5.50 E±04	0.002	2 32 E±05	0.001	3.42 E±04	7.02 E±04	0.270	1.53 E±05	< 0001
pentadecanaate (15:0)	3.00 E+05	2.58 E+05	0.332	3.44 E+05	0.001	2.11 E+05	3.09 E±05	0.000	3 34 E±05	0.028
phenol sulfate	7 73 E+04	6.51 E+04	0.420	3.40 E+04	0.002	9.06 E+04	5 78 E+04	0.013	5.34.E+03	0.001
phonylacatylalycing	8 18 E±03	1.28 E±04	0.004	2.24 E . 04	0.002	1.48 E±04	1.21 E±04	0.000	1.02 E+04	0.052
phonylalaning	2.81 E±06	3 77 E±06	0.404	0.10 E±06	< 0001	3.38 E±06	3.11 E±06	0.201	8 10 E+06	< 0001
phosphata	2.01.L+00	2.60 E±00	0.100	1 03 E±00	0.015	2.80 E±00	2.63 E±00	0.603	2 20 E±00	0.014
pinospilate	2.42.L+03	8 75 E±04	0.063	1.07 E±05	0.015	2.00.L+03	7.03.E+03	0.003	1.42 E±05	0.005
proline	0.47.L+04	111 E+04	0.303	1.67.2+05	0.100	0.02 E 1.05	1.02 E + 04	0.062	2.21 E.06	0.000
prohihe	2 71 E + 04	1.11.E+00	0.401	5.50 E . 04	0.004	3.33.L+03	2.25 E + 04	0.303	5 10 E 104	0.670
	3.71.E+04	4.39.E+04	0.279	2.27 E . 05	0.004	4.03.E+04	1 28 E±05	0.172	2 97 E . 05	0.070
propionylcamiline (C3)	7.96 E±03	0.33 E±03	0.403	2.37.E+03	< 0001	7.37 E±03	7.63 E±03	0.450	2.07.E+03	0.000
pyrupate	1.30.E+05	1.46 E±05	0.212	1.49.2+04	0.046	1.63 E±05	1.05.E+05	0.303	0.14 E . 04	0.000
pyruvale	2.22 E 105	2.17 E + 05	0.434	1.10.E+05	0.040	2.22 E L 05	2.01 E +05	0.094	9.14.E+04	0.100
aparmidina	2.32.L+03	5.17.L+03	0.000	3.94.E+05	± 0001	5.25.L+05	4.74 E+04	0.304	1 90 E - 05	0.103
ataabudrina	2.51 E 1.05	2.59 E 1.05	0.303	2.33.L+03	<.0001	2.62 E 1.05	2.51 E 1.05	0.000	4.72 E 1.05	0.000
	2.76 E+04	3.38.E+03	0.979	5.41 E + 04	0.051	5.55.E+05	3.31.E+03	0.990	4.72.E+03	0.000
taurino	2.70.E+04	2.70.E+04	0.990	1.57 E 1.05	0.001	1.00 E+04	2.02.E+04	0.222	0.14.E+04	0.900
taurochanodeoxycholate	9.14.E+04	1.52.E+03	0.122	1.37.E+03	0.094	1.09.E+03	1.18.E+03	1.000	1.81 E±04	0.760
taurocheliodeoxycriolate	3 23 E±04	4.33.E+03	0.300	5 17 E . 05	0.000	1.23.E+03	1.23.E+03	1.000	9 62 E . 05	0.004
taurocholate	2.28 E±03	3.54 E±03	0.570	1.27 E . 04	< 0001	3.36 E±03	2.28 E±03	0.617	4.85 E±03	0.000
tauroursodoowcholate	2.20.L+03	4.16 E±03	1.000	0.42 E . 02	0.004	4.16 E±03	4.16 E±03	1.000	4.03.E+03	0.410
tetradecanedicate (C14)	2.01 E±03	2.63 E±03	0.560	9.42.E+03	0.004	4.10.E+03	2.58 E±03	0.001	2.00 E+04	0.007
threenets	1 75 E + 04	2.03.2+03	0.000	4.09.E+03	0.000	1.50.2+03	2.30.L+03	0.031	3.09.E+03	0.007
threepine	2 79 E 105	2.04.E+04	0.970	6.09 E 1.05	0.062	1.59.E+04	2.31.2+04	0.600	9.91.E+04	0.000
thumidine	3.76.E+03	3.20.E+03	0.404	0.98.E+03	0.003	4.04.E+03	2.00.E+03	0.035	0.44.E+03	0.250
tropo 4 bydrow L proline	1.90.E+04	5.02.E+04	0.022	4.00 - 04	<.0001	2.41.E+04	2.27.E+04	0.795	2.90.E+04	0.003
	5.67.E+04	0.24.E+04	0.915	4.69.E+04	0.044	7.39.E+04	7.76.E+04	0.962	9.33.E+04	0.650
trustenbon	1.26 E + 06	4.57.E+04	0.030	2 00 E . 06	0.230	1.42 E+04	1.42 E+04	1.000	2.97.2+04	0.004
tryptoprian	1.30.E+00	1.94.E+00	0.113	3.60.E+00	<.0001	1.43.E+00	1.42.E+06	0.762	2.11 E . 06	<.0001
undecanoate (11:0)	2.83 =±04	287 =±04	0.007	4 39 E±04	0.007	2.01 =±04	2.62 E±04	0.702	364 5.04	0.001
uraci	1 40 E±04	7.52 E±04	0.485	2 76 E . 05	< 0001	1.27 E±05	6.82 E±04	0.100	J.04.E+04	0.001
urate		214 E+04	0.400	2./0.E+U5	<.0001	1.21.ETU0	2.12 E+04	0.007	4.10.E+U5	0.004
	2.40.E+04	1.59 E 1.07	0.000	1.22 E 1.07	0.761	4.74.ET04	9.62 E 100	0.270	1.44.E+04	0.247
ura	1.49.E+U/	1.30.E+U/	0.905	1.32.E+U/	0.001	1.31.E+U/ 2.38 E±04	0.02.E+U0	0.000	1.41.E+07	0.913
voline	2.00 E 100	1.00.E+04	0.324	5.40.E+04	0.001	2.30.E+04	2.42 E LOS	0.007	6 20 E . 05	0.002
valite	1 71 E 102	9.05 E 1.02	0.201	3.73.E+00	0.000	2.90 E+02	2.76 E 102	0.990	1.46 E . 04	0.002
Ayinon Wiloso	1./ I.E+05	0.03.E+03	0.000	2.03.E+04	<.0001	2.09.E+03	3.10.E+03	0.682	2 00 E±04	0.000

表 S2-2 ザイモサン投与後の血漿中メタボライト平均値(1) 投与 6 及び 24 時間データ

	Vehicle, 6 h	Zymosan 1 m	g/kg, 6 h	Zymosan 10 m	ng/kg, 6 h	Vehicle, 24 h	Zymosan 1 mg	/kg, 24 h	Zymosan 10 m	g/kg, 24 h
BIOCHEMICAL	MEAN	MEAN	р	MEAN	р	MEAN	MEAN	р	MEAN	р
1,5-anhydroglucitol (1,5-AG)	3.27.E+04	2.68.E+04	0.149	2.65.E+04	0.126	2.97.E+04	3.13.E+04	0.544	2.88.E+04	0.815
2-aminobutyrate	7.70.E+03	5.92.E+03	0.298	6.71.E+03	0.653	1.06.E+04	7.87.E+03	0.161	1.44.E+04	0.052
2-aminoethanol	3.26.E+04	3.51.E+04	0.882	5.02.E+04	0.022	2.95.E+04	2.83.E+04	0.785	5.31.E+04	<.0001
2-hydroxybutyric acid	1.40.E+04	1.33.E+04	0.959	2.89.E+04	0.001	1.50.E+04	1.62.E+04	0.993	9.71.E+04	<.0001
2-hydroxypyridine	4.64.E+04	4.54.E+04	0.942	4.39.E+04	0.670	4.68.E+04	4.40.E+04	0.463	4.41.E+04	0.493
2-isopropylmalic acid	1.67.E+03	1.10.E+03	0.327	1.10.E+03	0.327	1.78.E+03	1.03.E+03	0.104	1.07.E+03	0.126
3-hydroxybutyric acid	1.99.E+05	1.62.E+05	0.864	3.41.E+05	0.177	2.85.E+05	2.76.E+05	0.997	1.26.E+06	<.0001
4-aminobutyric acid	4.55.E+03	2.40.E+03	0.028	2.37.E+03	0.026	4.73.E+03	2.52.E+03	0.073	2.96.E+03	0.157
aconitate	2.14.E+03	1.60.E+03	0.849	9.51.E+02	0.486	9.57.E+02	1.42.E+03	0.413	8.95.E+02	0.981
alanine	1.02.E+06	5.55.E+05	0.009	5.51.E+05	0.009	7.27.E+05	6.78.E+05	0.817	4.40.E+05	0.016
allatoin	1.34.E+04	1.17.E+04	0.681	1.19.E+04	0.735	1.30.E+04	9.54.E+03	0.076	9.34.E+03	0.061
alpha-ketoglutarate	1.27.E+04	5.61.E+03	0.027	4.01.E+03	0.008	1.25.E+04	2.78.E+03	<.0001	2.34.E+03	<.0001
arabinose	3.44.E+03	2.45.E+03	0.150	1.46.E+03	0.005	2.22.E+03	2.90.E+03	0.477	8.32.E+02	0.087
asparagine	1.40.E+04	6.19.E+03	0.102	7.81.E+03	0.208	7.32.E+03	6.36.E+03	0.769	6.40.E+03	0.784
aspartate	6.36.E+03	3.75.E+03	0.043	5.10.E+03	0.383	5.55.E+03	6.45.E+03	0.367	5.57.E+03	0.999
beta-alanine	4.34.E+03	2.84.E+03	0.012	2.43.E+03	0.002	5.87.E+03	3.79.E+03	<.0001	2.44.E+03	<.0001
benzoic acid	7.98.E+04	5.72.E+04	0.000	5.14.E+04	<.0001	9.04.E+04	6.70.E+04	0.002	4.69.E+04	<.0001
citriate + isocitrate	2.31.E+05	1.64.E+05	0.001	1.65.E+05	0.001	2.86.E+05	1.87.E+05	<.0001	8.69.E+04	<.0001
citrulline	3.81.E+03	2.58.E+03	0.080	2.61.E+03	0.087	3.00.E+03	3.42.E+03	0.268	2.53.E+03	0.217
creatinine	3.24.E+03	4.10.E+03	0.635	4.48.E+03	0.412	1.55.E+03	1.34.E+03	0.946	2.93.E+03	0.176
cysteine+cystine	4.43.E+03	3.85.E+03	0.561	4.38.E+03	0.995	5.59.E+03	5.46.E+03	0.968	5.27.E+03	0.823
fructose	1.39.E+04	6.35.E+03	0,005	4.54.E+03	0,001	1.35.E+04	1.07.E+04	0.037	6.27.E+03	<,0001
fucose	9.95.F+03	1.10.F+04	0.530	1.04.F+04	0.883	1.12.F+04	8.10.F+03	0.001	9.38.F+03	0.029
fumarate	8.29.F+03	3.67.F+03	<.0001	3.28.F+03	<.0001	8.46.F+03	3.18.F+03	<.0001	3.64.F+03	<.0001
galacturonic acid	4 15 F+03	5.63 E+03	0.129	4 20 F+03	0.997	4 41 F+03	3 17 F±03	0.012	2 38 F±03	0,000
ducose	1 26 E±06	9 90 E-05	0.123	7 07 E+05	< 0001	1 35 E±06	1 03 E-06	0.001	3 95 E-05	< 0001
ducuronate	7.20.E+00	9.55.E+03	0.017	8.06 E±02	0.721	8 42 E±02	6 11 E . 02	0.001	1 18 E . 02	<.0001 0.000
dutamate	1.22.E+U3	1 25 E-04	0.124	1 70 E+03	0.731	1 02 5-04	1 80 E-04	0.012	1.67 E-04	0.000
dutamine	2 40 E - 0E	1.20.E+04	0.147	207 5.05	0.940	2 20 5 05	2.26 E . 05	0.990	2.02 E . 05	0.071
giutanine	2.40.E+05	3.10.E+03	0.494	2.97.E+03	0.016	2.29.E+03	2.20.E+03	0.990	2.03.E+03	0.033
giycerol	0.01.E+00	7.00.E+03	0.000	7.34.E+03	0.005	0.44.E+03	7.19.E+05	0.000	7.84.E+03	0.040
giycine	7.83.E+03	3.34.E+03	<.0001	4.32.E+03	0.001	6.22.E+03	3.40.E+03	0.034	3.05.E+03	0.000
giycolate	4.90.E+04	3.15.E+04	0.003	4.03.E+04	0.107	4.98.E+04	5.87.E+04	0.201	3.18.E+04	0.010
hippurate	5.81.E+04	5.54.E+04	0.996	3.54.E+04	0.456	6.40.E+04	5.31.E+04	0.971	2.47.E+04	0.067
nistidine	2.62.E+04	2.87.E+04	0.812	3.18.E+04	0.386	2.20.E+04	2.03.E+04	0.788	2.09.E+04	0.903
hydrocinnamate	2.91.E+03	5.10.E+02	0.002	4.77.E+02	0.002	3.14.E+03	2.96.E+03	0.943	2.28.E+02	0.001
hypotaurine	4.88.E+03	4.15.E+03	0.803	5.75.E+03	0.733	5.37.E+03	3.32.E+03	0.002	2.95.E+03	0.000
inositol	1.14.E+05	8.69.E+04	0.037	6.33.E+04	0.001	1.05.E+05	8.74.E+04	0.185	5.93.E+04	0.001
isobutylamine	1.95.E+03	1.84.E+03	0.795	1.76.E+03	0.540	1.78.E+03	1.72.E+03	0.925	1.53.E+03	0.271
isoleucine	1.90.E+05	9.98.E+04	0.016	1.35.E+05	0.143	1.52.E+05	1.37.E+05	0.461	2.09.E+05	0.003
ketoisoleucine	3.20.E+03	2.90.E+03	0.671	3.28.E+03	0.963	2.98.E+03	3.37.E+03	0.685	5.94.E+03	0.000
lactate	5.84.E+06	4.76.E+06	0.015	3.81.E+06	0.000	6.26.E+06	5.72.E+06	0.147	4.62.E+06	0.000
laurate (12:0)	9.88.E+03	9.59.E+03	0.811	1.02.E+04	0.785	1.05.E+04	8.86.E+03	0.106	9.92.E+03	0.692
leucine	3.30.E+05	1.84.E+05	0.025	2.66.E+05	0.372	2.28.E+05	2.32.E+05	0.970	4.25.E+05	<.0001
lysine	3.40.E+05	2.35.E+05	0.042	2.78.E+05	0.252	2.71.E+05	3.05.E+05	0.077	2.63.E+05	0.842
maleic acid	8.87.E+02	9.46.E+02	0.899	9.20.E+02	0.966	9.95.E+02	9.20.E+02	0.833	8.57.E+02	0.564
malate	8.23.E+04	3.47.E+04	<.0001	3.00.E+04	<.0001	8.17.E+04	3.00.E+04	<.0001	3.22.E+04	<.0001
mannose	5.32.E+04	7.94.E+04	0.003	6.35.E+04	0.231	8.85.E+04	8.41.E+04	0.814	7.21.E+04	0.112
meso-erythritol	3.71.E+03	2.71.E+03	0.002	2.22.E+03	<.0001	3.26.E+03	2.62.E+03	0.022	1.69.E+03	<.0001
methionine	8.96.E+04	2.50.E+04	0.000	2.89.E+04	0.001	4.35.E+04	5.10.E+04	0.132	3.18.E+04	0.020
N-acetyl-L-lysine	6.48.E+03	2.99.E+03	0.002	3.24.E+03	0.004	3.32.E+03	3.09.E+03	0.705	1.55.E+03	0.000
n-Butylamine	1.47.E+04	1.39.E+04	0.789	1.34.E+04	0.558	1.42.E+04	1.32.E+04	0.427	1.41.E+04	0.987
nonanoic acid(C9)	9.18.E+03	7.63.E+03	0.199	8.10.E+03	0.414	8.32.E+03	8.22.E+03	0.993	8.28.E+03	0.999
n-propylamine	3.93.E+04	3.67.E+04	0.802	3.64.E+04	0.758	3.81.E+04	3.57.E+04	0.610	3.61.E+04	0.700
O-phosphoethanolamine	2.49.E+03	2.64.E+03	0.886	2.92.E+03	0.410	2.25.E+03	2.24.E+03	0.999	3.74.E+03	0.004
ornithine	1.44.E+05	5.45.E+04	0.008	9.79.E+04	0.164	7.64.E+04	6.98.E+04	0.464	6.85.E+04	0.347
phenylalanine	6.89.E+04	4.95.E+04	0.197	7.96.E+04	0.562	4.74.E+04	5.72.E+04	0.155	8.06.E+04	<.0001
phosphate	1.05.E+06	1.29.E+06	0.015	1.10.E+06	0.684	1.20.E+06	1.10.E+06	0.151	1.16.E+06	0.706
proline	2.62.E+05	8.18.E+04	0.003	8.86.E+04	0.003	1.29.E+05	1.40.E+05	0.760	8.56.E+04	0.037
propyleneglycol	8.78.E+03	7.39.E+03	0.836	9.11.E+03	0.990	9.16.E+03	8.74.E+03	0.945	1.41.E+04	0.012
putrescine	2.48.E+03	2.44.E+03	0.993	3.03.E+03	0.296	2.51.E+03	2.91.E+03	0.330	5.15.E+03	<.0001
pyroglutamic acid	1.37.E+05	1.51.E+05	0.212	1.37.E+05	0.995	1.51.E+05	1.26.E+05	0.044	1.20.E+05	0.017
pyruvate+oxalacetate	1.46.E+05	1.42.E+05	0.943	1.07.E+05	0.024	1.60.E+05	1.20.E+05	0.015	7.25.E+04	<.0001
ribose	4.67.E+03	3.07.F+03	0.039	4.33,E+03	0,803	6.01.E+03	8.24.E+03	0.626	6.30.E+03	0,991
ribulose	2,35.E+03	1.74.E+03	0,053	1.68.F±03	0,034	3,23.E+03	2.87.E+03	0.311	2.42 F±03	0.017
serine	1.37 F+05	5.93.F+04	0.002	7.71.F±04	0.014	8.10 F+04	9.18 F+04	0.331	7.19 F+04	0.440
succinicate	2.94 F+04	3 28 F+04	0.903	2 25 F+04	0.681	3 41 F+04	1.95.F±04	0.015	3 49 F+04	0.982
threonate	1.64 F+04	1.37 F+04	0.236	1.69 F+04	0.930	1.37 E+04	1 11 F+04	0.242	8 63 F±03	0.018
threonine	8.65 F+04	3 75 F±04	0.001	4 69 F±04	0.005	5.32 E+04	6 69 F±04	0.037	5 28 F+04	0.994
trans-A-bydroxy L proling	3.01 E±04	1 40 5.04	0.005	1.51 E . 04	0.000	2 17 E+04	2.02 E+04	0.719	8 32 5.02	
tryptophan	1 00 E±04	2 46 5.04	0.000	3 90 5+04	0.374	3 /0 =+0/	5 36 E . 04	0.049	3.65 E±04	0.062
tyrosine	2 03 E±05	2.40.LT04	0.020	1 50 5.05	0.074	1.64 E±05	1 // E±05	0.040	1 /0 =+05	0.005
urodi	2.33.E+03	0.13.E+04	0.000	1.00.E+00	0.007	7.26 E. 02	3 31 E 00	0.120	1.40.E+00	0.000
	4.40.E+UZ	3.30.E+U2	0.020	4.30.E+U3	0.002	1.20.E+U2	3.51.E+UZ	0.000	4.75.E+03	0.003
urea urio poid	4.10.E+00	1.25 E . 0.4	0.041	3.03.E+00	0.000	3.07.E+00	3.32.E+00	0.047	3.04.E+00	0.000
valino	1.10.E+U4	1.33.E+04	0.000	1.70.E+04	0.004	1.02.E+04	1.00.E+04	0.997	2.44.E+U4	0.003
	4.01.E+U0	2.31.E+U5	0.007	3.37.E+U3	0.070	3.10.E+U3	3.10.E+03	0.942	4.40.E+05	0.002
xanunne	1.00.E+03	1.30.E+03	0.002	1.40.0+03	0.903	2.10.E+03	1.30.E+U3	0.200	1.33.E+03	0.223

表 S2-2 ザイモサン投与後の血漿中メタボライト平均値(2) 投与 48 及び 72 時間データ

	Vehicle, 48 h	Zymosan 1 mg	/kg, 48 h	Zymosan 10 m	g/kg, 48 h	Vehicle, 72 h	Zymosan 1 mg	/kg, 72 h	Zymosan 10 m	g/kg, 72 h
BIOCHEMICAL	MEAN	MEAN	D	MEAN	D D	MEAN	MEAN	D	MEAN	p D
1.5-anbydroglucitol (1.5-AG)	3 01 E+04	3 22 E+04	0.529	3 04 E+04	0.988	2 59 E+04	3.00 F+04	0.030	3.08.E+04	0.012
2-aminobutvrate	8 77 E+03	8 94 E+03	0.989	1 87 F±04	< 0001	8 36 E+03	8 43 E+03	0.996	8 59 E+03	0.961
2-aminoethanol	2.53 E±04	2.40 E+04	0.264	1.07.E104	< 0001	4.00 E+04	3 20 E+04	0.000	3 22 E+04	0.001
2-bydrowbutyric acid	2.30 E±04	2.33 E±04	1 000	7.59 E+04	0.003	1.00.E+04	1.58 E±04	0.022	2 10 E±04	0.521
2-hydroxyputytic dold	4.63 E+04	4.61 E+04	0.005	5.06 E±04	0.246	5 21 E+04	5.45 E+04	0.664	5.41 E+04	0.021
2-isopropylmalic acid	1.25 E±03	1.01.E+04	0.555	1 1/ E+03	0.881	2 34 E±03	1.67 E±03	0.385	1.16 E±03	0.087
3-bydrowbutyric acid	1.20.E+05	3.78 E±05	0.001	1.14.E+05	0.001	2.54.E+05	2 21 E±05	0.303	1.10.E+05	0.060
4 aminobutyric acid	5.00 E±03	3.70.E+03	0.333	2.61 E+00	0.001	4.50 E+03	5.97 E+03	0.413	2 79 E±02	0.000
aconitate	1.05 E±03	2.30.E+03	0.004	0.70 E+02	0.042	4.39.L+03	1.14 E+03	0.330	0.84 E±02	0.703
alapina	6 E0 E + 05	7.66 E + 05	0.301	3.70.L+02	0.000	7.95 E + 05	9.47 E + 05	0.730	3.04.L+02	0.947
alanine	0.30.E+03	7.00.E+03	0.401	4.03.E+03	0.130	7.65.E+05	0.47.E+03	0.762	7.34.E+03	0.939
	1.31.E+04	1.55.E+04	0.094	1.03.E+04	0.000	1.00.E+04	1.33.E+04	0.073	1.14.E+04	0.000
arpha-kelogiularale	1.40.E+04	6.55.E+03	0.009	1.14.E+03	<.0001	1.33.E+04	4.46.E+03	0.002	1.16.E+03	0.000
arabinose	9.58.E+03	4.57.E+03	0.011	1.33.E+03	0.000	4.58.E+03	2.76.E+03	0.078	1.61.E+03	0.006
asparagine	7.97.E+03	8.75.E+03	0.834	5.02.E+03	0.138	1.07.E+04	8.80.E+03	0.436	6.33.E+03	0.043
aspartate	5.58.E+03	8.59.E+03	0.004	6.49.E+03	0.421	8.01.E+03	8.14.E+03	0.994	1.30.E+04	0.010
beta-alanine	3.92.E+03	2.52.E+03	0.000	1.23.E+03	<.0001	8.20.E+03	6.29.E+03	0.011	3.31.E+03	<.0001
benzoic acid	9.17.E+04	8.31.E+04	0.115	4.26.E+04	<.0001	7.88.E+04	9.05.E+04	0.062	5.80.E+04	0.002
citriate + isocitrate	3.07.E+05	2.95.E+05	0.577	5.89.E+04	<.0001	2.96.E+05	2.47.E+05	0.007	1.15.E+05	<.0001
citrulline	4.04.E+03	4.45.E+03	0.450	2.09.E+03	0.000	3.98.E+03	4.64.E+03	0.055	3.85.E+03	0.857
creatinine	2.51.E+03	1.24.E+03	0.136	2.19.E+03	0.842	3.55.E+03	2.23.E+03	0.108	1./1.E+03	0.025
cysteine+cystine	6.59.E+03	5.35.E+03	0.254	5.05.E+03	0.140	4.95.E+03	4.43.E+03	0.531	3.24.E+03	0.014
tructose	7.40.E+03	8.51.E+03	0.540	5.10.E+03	0.120	1.96.E+04	1.83.E+04	0.589	1.58.E+04	0.045
fucose	7.90.E+03	1.00.E+04	0.407	1.05.E+04	0.277	1.08.E+04	9.18.E+03	0.313	8.69.E+03	0.166
fumarate	7.78.E+03	8.06.E+03	0.890	1.83.E+03	<.0001	1.04.E+04	6.98.E+03	0.039	3.28.E+03	0.000
galacturonic acid	5.62.E+03	4.03.E+03	0.035	1.97.E+03	<.0001	5.28.E+03	4.10.E+03	0.269	1.64.E+03	0.001
glucose	1.35.E+06	1.24.E+06	0.453	8.24.E+05	0.000	1.24.E+06	1.18.E+06	0.527	6.60.E+05	<.0001
glucuronate	7.32.E+03	7.61.E+03	0.972	4.52.E+03	0.143	8.21.E+03	7.12.E+03	0.193	4.96.E+03	0.001
glutamate	1.85.E+04	2.50.E+04	0.045	1.83.E+04	0.997	2.96.E+04	2.67.E+04	0.693	3.56.E+04	0.247
glutamine	2.10.E+05	2.30.E+05	0.815	2.11.E+05	1.000	2.23.E+05	2.25.E+05	0.998	2.29.E+05	0.986
glycerol	7.86.E+05	7.52.E+05	0.665	7.96.E+05	0.962	1.00.E+06	9.07.E+05	0.159	8.20.E+05	0.008
glycine	5.70.E+03	3.65.E+03	0.046	2.54.E+03	<.0001	5.44.E+03	6.72.E+03	0.385	3.81.E+03	0.045
glycolate	6.76.E+04	6.10.E+04	0.453	5.29.E+04	0.054	4.89.E+04	6.07.E+04	0.113	6.32.E+04	0.053
hippurate	4.76.E+04	5.17.E+04	0.037	2.63.E+04	0.014	5.03.E+04	4.31.E+04	0.410	2.47.E+04	0.009
nistidine	2.35.E+04	2.61.E+04	0.650	1.94.E+04	0.368	2.47.E+04	2.28.E+04	0.773	2.60.E+04	0.902
nydrocinnamate	6.48.E+03	3.93.E+03	0.007	2.42.E+02	<.0001	3.00.E+03	3.24.E+03	0.895	5.83.E+02	0.004
nypotaurine	5.82.E+03	5.13.E+03	0.355	1.92.E+03	<.0001	6.84.E+03	5.88.E+03	0.404	3.62.E+03	0.003
inositoi	1.16.E+05	1.18.E+05	0.958	1.06.E+05	0.494	1.29.E+05	1.10.E+05	0.201	1.47.E+05	0.200
isolougina	1.92.E+03	1.00.E+03	0.293	1.04.E+03	0.920	1.05.E+05	2.09.E+03	0.076	1.70.E+03	0.271
kotoisoloucino	2.02 E±03	2.05 E±02	0.000	1.02.E+03	0.004	2.04.E+03	1.00.E+00	0.052	1.41.2 =+03	0.012
lactato	5.02.L+03	5.19 E+06	0.990	4.00.L+03	0.245	Z.45.L+05	7.06 E±06	0.056	6.74 E±06	0.000
laurate (12:0)	0.45 E±02	0.15 E±02	0.973	4.20.L+00	0.039	1.03 E+04	1.06 E+04	0.550	0.74.2+00	0.149
	2 99 E±05	3.15.E+05	0.542	2 90 E±05	0.012	3 25 E±05	3.00 E±05	0.647	2.80 E±05	0.047
lysine	2.33.E+05	3.41 E±05	0.010	2.30.E+05	0.034	3.40 E±05	3.56 E±05	0.047	2.03.E+05	0.420
malaic acid	1 79 E±03	9.40 E±02	0.045	9.81 F±02	0.004	1.08 E±03	1 10 E±03	0.001	1 39 E±03	0.511
malate	7 70 E+04	7.51 E+04	0.959	1.55 E±04	< 0001	1.06 E+05	7.42 E+04	0.068	2 95 E±04	0.000
mannose	7.61 E+04	7.01.E104	0.874	1.13 E+05	0.001	6 20 E+04	5.73 E+04	0.000	4 19 E+04	0.000
meso-enutbritol	3 35 E±03	3.02 E±03	0.360	1.10.E+03	< 0001	4 19 E±03	4 37 E±03	0.900	3.88 E±03	0.617
methionine	5.50.E+03	6.06 E±04	0.300	3.45 E±04	0.030	6 79 E±04	6.84 E±04	0.000	5.61 E±04	0.373
N-acetyl-L-lysine	5.01 E±03	4.61 E±03	0.720	1.61 E+02	0.000	5.59 E±03	6.62 E±03	0.530	5.16 E±03	0.882
n-Butylamine	1.44 E±04	1.01.E+03	0.045	1.55 E+04	0.406	1.51 E±04	1.52 E±04	0.010	1.47 E±04	0.002
nonanoic acid(C9)	8 24 F±03	7 98 F±03	0.040	9.05 E±02	0.400	9 29 F±03	8 40 F±03	0.335	9 37 E±03	0.07
n-propylamine	3.98 F+04	3.64 F+04	0.320	4 06 F+04	0.948	3.87 F+04	3.86 F+04	0.996	3.65 E+04	0.419
O-phosphoethanolamine	2.25.E+03	2.82.E+03	0.303	4.27.E+03	0.001	2.00.E+03	2.13.E+03	0.900	3,22.E+03	0.006
ornithine	1.05.E+05	1.05.E+05	1.000	5.94.E+04	0.003	1.12.E+05	1.28.E+05	0.435	1.33.E+05	0.276
phenylalanine	5.54.E+04	7.11.E+04	0.079	7.85.E+04	0.012	6.81.E+04	5.53.E+04	0.244	8.58.E+04	0.095
phosphate	1.03.E+06	1.07.E+06	0.570	1.01.E+06	0.956	1.08.E+06	1.13.E+06	0.529	9.78.E+05	0.172
proline	1.61.E+05	1.94.E+05	0.408	9.37.E+04	0.059	2.03.E+05	2.28.E+05	0.598	1.83.E+05	0.714
propyleneglycol	1.18.E+04	1.38.E+04	0.704	1.61.E+04	0.249	1.13.E+04	1.25.E+04	0.855	1.38.E+04	0.524
putrescine	2.44.E+03	3.00.E+03	0.272	3.34.E+03	0.059	3.40.E+03	4.35.E+03	0.235	6.05.E+03	0.002
pyroglutamic acid	1.31.E+05	1.31.E+05	0.999	1.12.E+05	0.269	1.44.E+05	1.45.E+05	0.982	1.26.E+05	0.060
pyruvate+oxalacetate	1.21.E+05	1.24.E+05	0.976	8.55.E+04	0.170	1.39.E+05	1.25.E+05	0.541	7.26.E+04	0.001
ribose	5.17.E+03	5.24.E+03	0.999	1.55.E+03	0.283	5.63.E+03	7.51.E+03	0.921	2.96.E+04	0.002
ribulose	2.31.E+03	2.27.E+03	0.991	1.23.E+03	0.017	4.73.E+03	4.35.E+03	0.848	6.00.E+03	0.221
serine	8.77.E+04	9.12.E+04	0.909	6.33.E+04	0.041	1.06.E+05	1.02.E+05	0.915	1.01.E+05	0.871
succinicate	2.83.E+04	3.73.E+04	0.368	1.88.E+04	0.336	4.12.E+04	2.59.E+04	0.328	1.78.E+04	0.105
threonate	1.44.E+04	1.26.E+04	0.433	7.79.E+03	0.002	1.25.E+04	1.28.E+04	0.947	1.37.E+04	0.483
threonine	6.88.E+04	6.78.E+04	0.988	4.22.E+04	0.008	7.72.E+04	7.00.E+04	0.441	7.07.E+04	0.505
trans-4-hydroxy-L-proline	1.96.E+04	2.14.E+04	0.652	7.05.E+03	0.000	2.73.E+04	3.05.E+04	0.469	2.13.E+04	0.107
tryptophan	4.78.E+04	4.53.E+04	0.914	3.24.E+04	0.092	4.36.E+04	4.07.E+04	0.782	5.25.E+04	0.159
tyrosine	2.12.E+05	2.25.E+05	0.727	1.29.E+05	0.003	2.37.E+05	2.18.E+05	0.574	2.04.E+05	0.229
uracil	3.68.E+02	3.77.E+02	1.000	1.14.E+03	0.362	7.94.E+02	9.04.E+02	0.976	4.24.E+02	0.771
urea	4.62.E+06	4.28.E+06	0.104	3.50.E+06	<.0001	4.59.E+06	4.46.E+06	0.709	4.12.E+06	0.040
uric acid	1.22.E+04	1.32.E+04	0.730	1.80.E+04	0.005	2.26.E+04	1.95.E+04	0.753	4.89.E+04	0.000
valine	4.35.E+05	4.47.E+05	0.929	3.14.E+05	0.014	4.45.E+05	4.44.E+05	1.000	3.86.E+05	0.200
vanthing	1 65 E 1 02	2 20 E 102	0 5 2 7	1 25 5 02	0.061	1 62 E 02	2 0F E 1 02	0 077	4 42 E 102	0 425

表 S3-1 ラット脊髄損傷モデルにおける脊髄中メタボライトの変化(1)

Description Data (b)		Metabolite	Fold cl	nange SCI vs.	SHAM	Day 2	Day 11	Day 30
glycine 0.89 0.96 0.86 0.01 0.03 0.03 serice 0.95 1.38 1.29 0.42 0.03 0.001 3chrasphoarine 0.97 0.53 0.00 0.56 0.14 0.10 3chrasphoarine 1.49 1.34 1.04 0.04 0.25 0.03 Nacetylintronine 1.49 1.34 1.04 0.04 0.05 0.03 beta-selvine 1.07 1.36 1.32 0.16 0.01 <0.001 aspartation 0.62 1.52 1.24 0.19 0.06 0.35 sasparagine 0.82 1.52 1.24 0.19 0.06 0.34 asparagine 0.82 0.33 0.29 0.55 0.660 glutarrate 0.76 0.78 0.03 0.29 0.55 0.660 glutarrate 0.76 0.78 0.03 0.001 <0.001 <0.001 glutarrate 0.76 0.78<	JUFER FATHWAT	Wetabolite	Day 2	Day 11	Day 30	p-value	p-value	p-value
serine 0.85 1.38 1.29 0.42 0.03 0.001 horneserine 0.97 0.53 0.40 0.56 0.40 0.55 0.001 aphosphoserine 0.97 0.53 0.40 0.56 0.40 0.55 0.93 htresonine 1.49 1.34 1.04 0.04 0.05 0.93 betraine 1.26 1.36 1.32 0.04 0.05 0.36 Nacetylidarine 0.65 0.65 0.94 0.04 0.00 0.00 sparatine 0.65 0.65 0.94 0.04 0.00 0.00 0.00 oldarnine 0.26 0.03 0.00		glycine	0.89	0.96	0.86	0.01	0.49	0.01
homoserine 1.08 1.28 1.38 0.27 0.03 0.01 3-phosphospherine 0.93 1.15 1.14 0.18 0.02 0.03 Nacetyluhrennine 1.39 1.35 1.16 0.04 0.01 <0.001		serine	0.95	1.38	1.29	0.42	0.03	0.00
Aphosphosenine 0.97 0.53 0.40 0.668 0.14 0.168 0.02 0.03 hacetylihroonine 1.46 1.34 1.04 0.04 0.02 0.030 betoine 1.36 1.36 1.36 0.04 0.01 <0.001		homoserine	1.08	1.28	1.38	0.27	0.03	< 0.001
Herecnine 0.93 1.15 1.14 0.18 0.02 0.03 Nacesylthronine 1.36 1.36 1.36 0.04 0.25 0.90 alarine 1.20 1.36 1.32 0.16 0.04 0.03 0.03 Nacesyltanine 0.62 1.52 1.24 0.19 0.06 0.17 aspartable 0.65 0.65 0.65 0.61 0.04 0.00 0.00 0.00 aspartopice 0.83 0.63 0.54 0.31 0.02 0.001 0.01 0.001		3-phosphoserine	0.97	0.53	0.40	0.56	0.14	0.10
Nacesylthreonine 1.40 1.34 1.04 0.044 0.04 0.04 0.001 0.001 betrainne 1.20 1.36 1.30 0.66 0.061 0.001 betrainne 0.62 1.52 1.24 0.061 0.001 0.06 0.36 Nacetyltainne 0.62 1.52 1.24 0.031 0.00 0.04 Nacetyltainne 0.66 0.85 0.91 0.001 0.01 4.001 Nacetyltainne 1.26 1.03 0.33 0.23 0.021 0.021 0.021 0.021 0.001 0.01 4.001 glutamine 0.94 1.04 1.00 0.05 0.22 0.021 0.001 4.001 Nacetylightamate 0.86 0.80 0.74 0.06 0.001 4.001 Nacetylightamate 0.80 0.74 0.06 0.01 4.001 Varie 1.55 1.59 1.35 1.43 0.00 4.001		threonine	0.93	1.15	1.14	0.18	0.02	0.03
betaine 1.36 1.50 1.60 0.044 0.01 <0.001 alanno 1.07 1.36 1.32 0.66 0.53 0.60 0.35 Nacetyläanine 0.62 1.52 1.24 0.19 0.06 0.06 0.05 Nacetyläpartate 0.63 0.63 0.54 0.31 0.00 0.00 0.00 glutamite 0.76 0.90 0.37 0.06 0.44 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00		N-acetylthreonine	1.49	1.34	1.04	0.04	0.25	0.90
Amino 1.20 1.36 1.22 0.68 0.06 0.36 N-acetylsanine 0.82 1.52 1.24 0.19 0.66 0.36 N-acetylsanine 0.66 0.65 0.61 0.00 0.04 N-acetylsapariate 0.63 0.63 0.63 0.29 0.25 0.60 gluramie 1.26 1.03 0.33 0.02 0.04 0.04 0.04 0.05 0.02 0.021 0.01 0.001 0.01 0.001		betaine	1.36	1.50	1.60	0.04	0.01	< 0.001
heat-alanine 1.07 1.36 1.09 0.06 0.36 Nacetylasinie 0.85 0.95 0.91 0.00 0.01 aspartate 0.83 0.53 0.54 0.31 0.05 0.06 asparagine 1.26 1.03 0.54 0.31 0.02 0.55 0.60 glutamate 0.78 0.90 0.77 0.06 0.44 0.01 glutamate 0.78 0.90 0.78 0.06 0.001 0.001 Nacetylgutamate 0.86 0.90 0.74 0.06 0.001 0.001 Nacetylgutamate 0.98 1.42 1.45 0.78 0.03 0.001 0.001 Nacetylgutamate 0.96 1.42 1.45 0.77 0.86 0.80 0.41 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001		alanine	1.20	1.36	1.32	0.16	0.01	< 0.001
Artino acid 0.62 1.52 1.24 0.16 0.06 0.07 Nacetylaspartate 0.65 0.63 0.64 0.03 0.00 0.00 0.00 Nacetylaspartate 0.68 0.63 0.54 0.31 0.00 <0.001		beta-alanine	1.07	1.36	1.09	0.62	0.06	0.36
Anacetylaspartate 0.65 0.85 0.91 0.00 0.00 0.00 Nacetylaspartate 0.83 0.63 0.54 0.31 0.00 <0.001		N-acetylalanine	0.82	1.52	1.24	0.19	0.06	0.17
Arnino acid 0.83 0.63 0.54 0.31 0.00 < 0.001		aspartate	0.65	0.85	0.91	0.00	0.00	0.04
Arnino acid 1.26 1.03 0.93 0.29 0.55 0.60 glutamite 0.76 0.96 0.87 0.2001 0.001 0.001 glutamine 0.84 1.04 1.10 0.05 0.001 0.001 0.001 Nacetyl/aspartyl-glutamate 0.86 0.80 0.78 0.78 0.78 0.78 0.001 0.001 0.001 Nacetyl/aspartyl-glutamate 0.86 0.80 0.74 0.06 0.001 0.001 Vacetyl/aspartyl-glutamate 0.86 0.80 0.77 0.08 0.81 0.14 pipecolate 1.10 0.76 0.77 0.001 0.001 0.001 Vacetyl/spine 0.90 1.18 0.88 0.29 0.18 0.40 pherylacitylisic 0.90 1.18 0.88 0.37 0.01 0.00 Vacetylylycine 0.53 1.18 0.81 0.33 0.22 0.56 s/4-hydroxyphenylihyropionate 1.90 1		N-acetylaspartate	0.83	0.63	0.54	0.31	0.00	< 0.001
glutamine 0.76 0.90 0.87 1 0.01 0.001 0.001 gamma-aninobutyrate 0.86 0.09 0.78 0.06 0.02 0.021 Nacetylglutamite 1.08 0.06 0.78 0.06 0.001 <0.001		asparagine	1.26	1.03	0.93	0.29	0.55	0.60
plutarnine 0.94 1.04 1.00 0.05 0.32 0.02 Nacetyljdutarnate 0.86 0.96 0.78 0.08 0.001 <0.001		glutamate	0.78	0.90	0.87	< 0.001	0.01	< 0.001
garma-aminobutyrate 0.86 0.90 0.78 0.06 0.44 0.01 N-acetyljutamete 1.19 0.78 0.78 0.03 <0.001		glutamine	0.94	1.04	1.10	0.05	0.32	0.02
N-acetylglutamate 1.19 0.78 0.78 0.33 <0.001 <0.001 N-acetyl-aspartylglutamate 0.86 0.80 0.74 5 0.06 <0.001		gamma-aminobutyrate	0.86	0.90	0.78	0.06	0.44	0.01
N-acetyl-spartyl-glutamate 0.86 0.80 0.74 0.06 <0.011 <0.001 histidine 0.98 1.42 1.45 1.45 0.78 0.03 <0.001		N-acetylglutamate	1.19	0.78	0.78	0.03	< 0.001	< 0.001
histidine 0.98 1.42 1.45 0.78 0.03 <0.001 ysine 1.15 1.47 1.28 <0.001		N-acetyl-aspartyl-glutamate	0.86	0.80	0.74	0.06	< 0.001	< 0.001
Visine 1.15 1.47 1.28 0.21 <0.01 2-aminoadipate 1.10 0.75 0.77 0.86 0.18 0.41 pipecolate 2.15 1.39 1.47 <0.001		histidine	0.98	1.42	1.45	0.78	0.03	< 0.001
2-aminoadipate 1.10 0.75 0.77 0.86 0.18 0.14 pipecolate 2.15 1.39 1.47 <.001		lysine	1.15	1.47	1.28	0.21	< 0.001	0.01
pipecolate 2.15 1.39 1.47 < <0.001 0.09 0.07 N2-acetylysine 0.90 1.18 0.88 0.29 0.18 0.40 phenylelanine 0.92 1.36 1.28 0.37 0.01 0.00 3-(4-hydroxyphenyl)lactate 1.90 1.28 1.14 0.00 0.14 0.88 a-(3-hydroxyphenyl)propionate 1.10 NA NA 0.2 0.01 0.14 0.83 3-(3-hydroxyphenyl)propionate 1.10 NA NA 0.4 0.01 0.13 3-(3-hydroxyphenyl)propionate 0.66 1.29 1.13 0.24 0.27 0.51 kynurenate 0.66 3.10 0.56 0.01 0.02 0.03 0.82 c-glycosyltrytophan* 0.85 1.18 0.99 0.01 0.03 0.82 isoleucine 0.96 1.43 1.36 0.56 0.001 0.001 valine 3.00 1.17		2-aminoadipate	1.10	0.75	0.77	0.86	0.18	0.14
N2-acetyllysine 0.90 1.18 0.88 0.29 0.18 0.40 phenylalanine 0.93 1.36 1.28 0.37 0.01 0.00 yrosine 0.92 1.56 1.53 0.23 0.00 <0.001		pipecolate	2.15	1.39	1.47	< 0.001	0.09	0.07
phenytalanine 0.93 1.36 1.28 0.37 0.01 0.00 tyrosine 0.92 1.56 1.53 0.23 0.00 <0.001		N2-acetyllysine	0.90	1.18	0.88	0.29	0.18	0.40
tyrosine 0.92 1.56 1.53 0.23 0.00 <0.011 3-(4-hydroxyphenyl)lactate 1.90 1.28 1.14 0.00 0.14 0.08 phenylacetylglycine 1.10 NA NA 0.35 - - 3-(3-hydroxyphenyl)propionate NA NA NA 0.24 0.27 0.51 kynurenate 0.56 1.29 1.13 0.24 0.27 0.51 kynurenate 0.56 1.29 1.13 0.24 0.27 0.51 kynurenate 0.56 1.18 0.99 0.01 0.03 0.82 isoleucine 0.98 1.38 1.33 0.75 0.00 0.00 laure 1.06 1.43 1.42 0.55 0.00 <0.001		phenylalanine	0.93	1.36	1.28	0.37	0.01	0.00
Arnino acid - 0-(4-hydroxyphenyl)actate 1.90 1.28 1.14 0.00 0.14 0.08 Arnino acid phenylacetylglycine 1.10 NA NA NA 0.35 - - 3-(3-hydroxyphenyl)propionate NA NA NA NA 0.24 0.27 0.51 kynurenate 0.65 3.10 0.56 0.84 0.01 0.02 C-glycosyltryptophan* 0.85 1.18 0.33 0.75 0.00 0.00 leucine 0.95 1.43 1.42 0.55 0.00 <0.001		tyrosine	0.92	1.56	1.53	0.23	0.00	< 0.001
Amino acid Index NA NA NA NA NA NA Amino acid 3-(3-hydroxyphenyl)propionate NA NA <t< td=""><td></td><td>3-(4-hydroxyphenyl)lactate</td><td>1.90</td><td>1.28</td><td>1.14</td><td>0.00</td><td>0.14</td><td>0.08</td></t<>		3-(4-hydroxyphenyl)lactate	1.90	1.28	1.14	0.00	0.14	0.08
Arnino acid 3-(3-hydroxyphenyl)propionate NA		phenylacetylglycine	1.10	NA	NA	0.35	-	- 1
Amino acid Kynurenaite kynurenine 0.56 1.29 1.13 0.24 0.27 0.51 Kynurenine 0.65 3.10 0.56 0.84 0.01 0.13 tryptophan 0.96 1.31 1.22 0.65 0.01 0.02 C-glycosyltryptophan* 0.85 1.18 0.99 0.01 0.03 0.82 isoleucine 0.95 1.43 1.42 0.55 0.00 <0.001		3-(3-hydroxyphenyl)propionate	NA	NA	NA	-		
Armno acid kynurenine 0.65 3.10 0.56 0.84 0.01 0.13 tryptophan 0.96 1.31 1.22 0.65 0.01 0.02 C-glycosyltryptophan* 0.85 1.18 0.99 0.01 0.03 0.82 isoleucine 0.98 1.38 1.33 0.75 0.00 0.00 valine 1.06 1.43 1.42 0.55 0.00 <0.001		kynurenate	0.56	1.29	1.13	0.24	0.27	0.51
tryptophan 0.96 1.31 1.22 0.65 0.01 0.02 C-glycosyltryptophan* 0.85 1.18 0.99 0.01 0.03 0.82 isoleucine 0.98 1.38 1.33 0.75 0.00 0.00 leucine 0.95 1.43 1.32 0.55 0.00 <0.001 valine 1.06 1.43 1.36 0.56 <0.001 <0.001 3-hydroxyisobutyrate 3.00 1.17 1.01 <0.001 <0.01 0.01 isovalerylcarnitine 6.56 3.70 1.30 <0.001 <0.001 0.06 hydroxyisovaleroyl carnitine 1.19 1.97 1.09 0.07 <0.001 0.51 cysteine 0.62 0.63 0.64 0.67 <0.03 0.24 0.03 cystationine 3.20 0.36 0.40 0.03 0.24 0.001 <0.001 cystatine 1.65 0.61 0.70 0.07 0.25	Amino acid	kynurenine	0.65	3.10	0.56	0.84	0.01	0.13
C-glycosyltryptophan* 0.85 1.18 0.99 0.01 0.03 0.82 isoleucine 0.98 1.38 1.33 0.75 0.00 0.00 leucine 0.95 1.43 1.42 0.55 0.00 <0.001		tryptophan	0.96	1.31	1.22	0.65	0.01	0.02
isoleucine 0.98 1.38 1.33 0.75 0.00 0.00 leucine 0.95 1.43 1.42 0.55 0.00 <0.001		C-glycosyltryptophan*	0.85	1.18	0.99	0.01	0.03	0.82
leucine 0.95 1.43 1.42 0.55 0.00 <0.001 valine 1.06 1.43 1.36 0.56 <0.001		isoleucine	0.98	1.38	1.33	0.75	0.00	0.00
valine 1.06 1.43 1.36 0.56 < 0.001 < < 0.001 3-hydroxyisobutyrate 3.00 1.17 1.01 < 0.001		leucine	0.95	1.43	1.42	0.55	0.00	< 0.001
3-hydroxyisobutyrate 3.00 1.17 1.01 < 0.01 0.47 0.87 2-methylbutyroylcarnitine 3.62 2.59 1.44 < 0.001		valine	1.06	1.43	1.36	0.56	< 0.001	< 0.001
2-methylbutyroylcarnitine 3.62 2.59 1.44 < 0.001 < 0.001 0.10 isovalerylcarnitine 6.56 3.70 1.30 < 0.001		3-hydroxyisobutyrate	3.00	1.17	1.01	< 0.001	0.47	0.87
isovalery/carnitine 6.56 3.70 1.30 < 0.001 < 0.001 0.06 hydroxyisovaleroyl carnitine 1.19 1.97 1.09 0.07 < 0.001		2-methylbutyroylcarnitine	3.62	2.59	1.44	< 0.001	< 0.001	0.10
hydroxyisovaleroyl carnitine1.191.971.090.07<0.0010.51cysteine0.821.301.090.020.030.17cystine1.650.610.700.070.250.27cystathionine3.200.360.400.030.240.03hypotaurine2.292.771.96<0.001		isovalerylcarnitine	6.56	3.70	1.30	< 0.001	< 0.001	0.06
cysteine 0.82 1.30 1.09 0.02 0.03 0.17 cysteine 1.65 0.61 0.70 0.07 0.25 0.27 cystathionine 3.20 0.36 0.40 0.03 0.24 0.03 hypotaurine 2.29 2.77 1.96 <0.01		hydroxyisovaleroyl carnitine	1.19	1.97	1.09	0.07	< 0.001	0.51
cystine 1.65 0.61 0.70 0.07 0.25 0.27 cystathionine 3.20 0.36 0.40 0.03 0.24 0.03 hypotaurine 2.29 2.77 1.96 <0.001		cvsteine	0.82	1.30	1.09	0.02	0.03	0.17
cystathionine 3.20 0.36 0.40 0.03 0.24 0.03 hypotaurine 2.29 2.77 1.96 <0.001		cvstine	1.65	0.61	0.70	0.07	0.25	0.27
hypotaurine 2.29 2.77 1.96 <0.001 <0.001 <0.001 S-adenosylhomocysteine 1.06 0.86 0.69 0.54 0.07 <0.001		cvstathionine	3.20	0.36	0.40	0.03	0.24	0.03
Stadenosylhomocysteine 1.06 0.86 0.69 0.54 0.07 <0.001 methionine 0.91 1.27 1.31 0.30 0.02 0.00 N-acetylmethionine 1.12 1.45 1.71 0.22 <0.001		hypotaurine	2.29	2.77	1.96	< 0.001	< 0.001	< 0.001
methionine 0.91 1.27 1.31 0.30 0.02 0.001 N-acetylmethionine 1.12 1.45 1.71 0.22 <0.001		S-adenosylhomocysteine	1.06	0.86	0.69	0.54	0.07	< 0.001
N-acetylmethionine 1.12 1.45 1.71 0.22 <0.001 <0.001 2-hydroxybutyrate 3.26 1.34 0.89 <0.001		methionine	0.91	1.27	1.31	0.30	0.02	0.00
2-hydroxybutyrate 3.26 1.34 0.89 <0.001		N-acety/methionine	1.12	1.45	1.71	0.22	< 0.001	< 0.001
dimethylarginine 1.23 1.63 1.54 0.05 0.00 arginine 0.87 1.05 1.01 0.01 0.23 0.89 ornithine 1.77 0.96 0.79 0.02 0.60 0.30 urea 1.69 1.11 1.28 <0.001		2-hydroxybutyrate	3.26	1.34	0.89	< 0.001	0.23	0.60
arginine 0.87 1.05 1.01 0.01 0.23 0.89 ornithine 1.77 0.96 0.79 0.02 0.60 0.30 urea 1.69 1.11 1.28 <0.001		dimethylarginine	1,23	1.63	1.54	0.05	0.00	0.00
Instruct Instruct		arginine	0.87	1.05	1.01	0.01	0.23	0.89
urea 1.69 1.11 1.28 <0.01		ornithine	1.77	0.96	0.79	0.02	0.60	0.30
Intr Intr< Intr Intr< Intr Intr Intr		urea	1.69	1.11	1,28	< 0.001	0.87	0,16
5-aminovalerate 0.99 1.64 2.26 0.75 0.07 0.03 citrulline 1.64 1.91 2.10 0.03 0.00 < 0.001		proline	1.04	1.38	1.37	0.59	0.02	< 0.001
citrulline 1.64 1.91 2.10 0.03 0.00 <0.00 N-acetylornithine 1.29 0.67 1.23 0.10 0.05 0.49 trans-4-hydroxyproline 1.88 1.66 1.60 <0.001		5-aminovalerate	0.99	1.64	2.26	0.75	0.07	0.03
N-acetylornithine 1.29 0.67 1.23 0.10 0.05 0.001 trans-4-hydroxyproline 1.88 1.66 1.60 < 0.001		citrulline	1.64	1.91	2.10	0.03	0.00	< 0.001
trans-4-hydroxyproline 1.28 0.66 1.60 <0.00 0.49 argininosuccinate 0.86 0.95 0.95 0.01 0.02 0.04 stachydrine 173 137 170 0.03 0.01 <0.001		N-acetylornithine	1 29	0.67	1 23	0.10	0.05	0.49
argininosuccinate 0.86 0.95 0.95 0.01 0.72 0.44 stachydrine 173 137 170 0.03 0.01 < 0.001		trans-4-hydroxyproline	1.88	1.66	1.60	< 0.001	0.00	< 0.001
stachydrine 173 137 170 0.03 0.01 -0.01		argininosuccinate	0.86	0.95	0.95	0.01	0.72	0.44
		stachydrine	1 73	1 37	1 79	0.03	0.01	< 0.001

表 S3-1 ラット脊髄損傷モデルにおける脊髄中メタボライトの変化(2)

	Motabolita	Fold cl	nange SCI vs.	SHAM	Day 2	Day 11	Day 30
SUPER PATHWAT	Wetabolite	Day 2	Day 11	Day 30	p-value	p-value	p-value
	homostachydrine*	1.61	1.24	1.50	0.01	0.09	< 0.001
	creatine	0.89	0.98	0.95	0.07	0.73	0.12
	creatinine	0.85	0.90	0.98	0.05	0.20	0.85
	2-aminobutyrate	2.98	1.60	1.10	< 0.001	0.00	0.34
	5-methylthioadenosine (MTA)	0.92	0.95	0.87	0.37	0.53	0.10
Amino acid	putrescine	2.39	2.21	1.31	< 0.001	< 0.001	0.14
	spermidine	0.94	1.04	0.96	0.44	0.78	0.63
	4-guanidinobutanoate	1.23	0.99	1.12	0.03	0.91	0.11
	5-oxoproline	0.87	0.93	1.13	0.04	0.23	0.10
	glutathione, oxidized	0.85	3.79	1.68	0.77	0.00	0.20
	cysteine-glutathione disulfide	0.92	2.23	1.58	0.98	0.00	0.06
	glycylleucine	0.92	1.13	0.94	0.43	0.01	0.50
	leucylproline	1.14	0.91	0.87	0.34	0.42	0.61
	carnosine	0.98	0.74	0.61	0.77	0.16	0.02
	homocarnosine	0.75	0.92	0.89	0.01	0.13	0.04
	anserine	0.93	0.99	0.72	0.74	0.87	0.26
	gamma-glutamylvaline	1.34	1.21	0.95	0.15	0.21	0.80
	gamma-glutamylleucine	1.05	1.59	1.57	0.56	0.00	< 0.001
Dentido	gamma-glutamylglycine	1.58	0.78	0.64	0.09	0.56	0.29
Peplide	gamma-glutamyImethionine	0.99	1.00	1.00	0.73	0.95	0.80
	gamma-glutamylglutamate	0.77	1.02	0.90	0.00	0.69	0.28
	gamma-glutamylglutamine	1.16	1.29	1.24	0.09	0.07	0.04
	gamma-glutamylphenylalanine	0.89	1.25	1.33	0.23	0.06	0.05
	gamma-glutamyltyrosine	0.67	1.49	1.59	0.01	0.00	< 0.001
	gamma-glutamylthreonine*	1.09	1.08	1.00	0.12	0.27	0.93
	gamma-glutamylalanine	1.80	1.41	1.56	0.03	0.36	0.06
	ADTGTTSEFXEAGGDXR*	2.16	1.14	NA	0.00	0.36	-
	erythronate*	0.88	1.05	1.07	0.14	0.58	0.46
	N-acetylneuraminate	0.83	1.67	1.02	0.10	< 0.001	0.75
	fructose	1.21	1.67	1.21	0.04	0.01	0.04
	galactose	0.76	2.67	2.86	0.16	< 0.001	< 0.001
	maltose	4.48	1.34	1.78	< 0.001	0.25	0.00
	mannitol	1.05	1.50	1.88	0.94	0.01	0.14
	mannose	1.28	2.28	2.94	0.02	< 0.001	< 0.001
	mannose-6-phosphate	1.22	1.96	2.67	0.18	< 0.001	< 0.001
	sorbitol	1.22	1.94	1.21	0.16	< 0.001	0.18
	1,5-anhydroglucitol	1.24	1.31	0.89	0.00	0.00	0.31
	glycerate	1.80	1.35	1.78	0.06	0.41	0.01
	glucose-6-phosphate (G6P)	1.53	2.03	2.61	0.08	0.00	< 0.001
	glucose	1.64	2.33	2.78	0.01	< 0.001	< 0.001
	fructose-6-phosphate	1.16	1.85	2.66	0.29	< 0.001	< 0.001
Carbohydrate	fructose 1-phosphate	1.10	1.28	1.53	0.30	0.08	< 0.001
	fructose 1,6-diphosphate	0.94	1.26	0.93	0.47	0.09	0.46
	3-phosphoglycerate	0.97	1.04	0.94	0.63	0.58	0.77
	dihydroxyacetone phosphate	1.10	1.18	1.01	0.85	0.32	0.97
	1,3-dihydroxyacetone	1.05	0.92	1.79	0.95	0.51	0.00
	lactate	1.05	0.97	0.87	0.55	0.58	0.03
	arabitol	0.64	0.96	0.92	0.01	0.51	0.44
	ribitol	1.33	1.10	1.05	0.27	0.40	0.58
	sedoheptulose-7-phosphate	0.94	1.47	2.68	0.47	0.11	0.02
	ribose	1.01	1.20	1.67	0.87	0.35	< 0.001
	ribulose	0.92	1.26	1.74	0.42	0.09	< 0.001
	ribulose/xylulose 5-phosphate	1.08	1.30	1.36	0.86	0.00	0.00
	xylitol	1.22	1.49	2.21	0.70	0.25	0.01
	arabinose	0.73	0.93	0.90	0.02	0.48	0.46
	xylulose	1.14	1.46	1.91	0.38	0.03	< 0.001

表 S3-1 ラット脊髄損傷モデルにおける脊髄中メタボライトの変化(3)

	Matabalita	Fold ch	nange SCI vs.	SHAM	Day 2	Day 11	Day 30
SUPER PATHWAT	Metabolite	Day 2	Day 11	Day 30	p-value	p-value	p-value
	citrate	1.65	1.44	1.26	0.00	0.00	0.02
	succinylcarnitine	1.16	1.10	1.19	0.10	0.44	0.05
	fumarate	0.86	0.88	0.87	0.06	0.12	0.16
Energy	malate	1.17	1.06	1.03	0.00	0.18	0.64
	acetylphosphate	0.93	1.02	0.93	0.44	0.79	0.52
	phosphate	0.88	0.95	0.89	0.00	0.29	< 0.001
	pyrophosphate (PPi)	0.77	1.15	0.88	0.45	0.43	0.51
	linolenate (18:3n3 or 6)]	1.45	1.87	1.21	0.01	0.24	0.12
	dihomo-linolenate (20:3n3 or n6)	0.91	1.60	1.74	0.37	0.00	< 0.001
	eicosapentaenoate (EPA; 20:5n3)	1.41	2.25	2.47	0.01	< 0.001	< 0.001
	docosapentaenoate (n3 DPA; 22:5n3)	1.94	3.02	2.87	< 0.001	< 0.001	< 0.001
	docosapentaenoate (n6 DPA; 22:5n6)	1.61	2.84	4.95	0.00	0.00	< 0.001
	docosahexaenoate (DHA; 22:6n3)	1.89	2.00	2.19	0.01	< 0.001	< 0.001
	caprylate (8:0)	0.93	0.89	0.91	0.53	0.29	0.64
	pelargonate (9:0)	0.93	0.86	0.88	0.14	0.02	0.03
	caprate (10:0)	0.88	0.89	0.90	0.02	0.10	0.09
	laurate (12:0)	0.88	0.90	0.94	0.00	0.16	0.33
	myristate (14:0)	0.96	1.04	1.10	0.35	0.56	0.14
	myristoleate (14:1n5)	1.02	1.23	1.00	0.68	0.07	0.86
	palmitate (16:0)	0.98	1.13	1.21	0.67	0.06	0.01
	palmitoleate (16:1n7)	1.01	1.45	1.69	0.84	0.01	< 0.001
	margarate (17:0)	1.13	1.96	2.37	0.32	< 0.001	< 0.001
	10-heptadecenoate (17:1n7)	1.18	1.49	2.10	0.04	0.00	< 0.001
	stearate (18:0)	0.95	1.06	1.09	0.54	0.36	0.25
	oleate (18:1n9)	1.03	1.12	1.04	0.93	0.34	0.56
	cis-vaccenate (18:1n7)	1.08	0.92	1.06	0.68	0.57	0.55
	linoleate (18:2n6)	1.15	1.54	1.16	0.05	0.25	0.09
	stearidonate (18:4n3)	1.60	1.27	1.11	0.01	0.30	0.63
	nonadecanoate (19:0)	0.97	2.96	3.21	0.89	< 0.001	< 0.001
	10-nonadecenoate (19:1n9)	1.00	2.77	2.65	0.86	< 0.001	< 0.001
1.5-1.4	arachidate (20:0)	1.04	1.23	1.28	0.83	0.19	0.02
Цра	eicosenoate (20:1n9 or 11)	1.12	1.52	1.40	0.26	0.01	0.00
	dihomo-linoleate (20:2n6)	1.29	1.88	1.99	0.03	0.00	< 0.001
	arachidonate (20:4n6)	0.79	1.03	1.12	0.01	0.62	0.09
	behenate (22:0)	0.90	1.25	1.21	0.28	0.07	0.11
	erucate (22:1n9)	0.91	1.24	1.03	0.43	0.18	0.90
	docosadienoate (22:2n6)	1.28	2.31	2.14	0.04	< 0.001	< 0.001
	docosatrienoate (22:3n3)	1.79	3.34	2.79	0.00	< 0.001	< 0.001
	adrenate (22:4n6)	1.25	2.01	1.94	0.03	< 0.001	< 0.001
	tricosanoate (23:0)	2.30	1.55	1.75	0.02	0.18	0.12
	lignocerate (24:0)	0.82	1.16	1.37	0.08	0.22	0.02
	13-HODE + 9-HODE	0.92	1.54	1.04	0.46	0.17	0.64
	2-hydroxyglutarate	1.31	1.30	0.86	0.18	0.02	0.13
	13-methylmyristic acid	0.96	0.97	1.05	0.42	0.44	0.49
	prostaglandin E2	1.32	1.08	NA	0.04	0.18	-
	15-HETE	1.57	0.99	0.91	0.14	0.85	0.78
	oleic ethanolamide	7.86	1.15	1.06	0.00	0.32	0.51
	palmitoyl ethanolamide	7.09	1.06	1.04	< 0.001	0.69	0.70
	propionylcarnitine	1.00	1.68	1.16	0.87	0.01	0.85
	deoxycarnitine	1.24	1.70	1.12	0.06	< 0.001	0.22
	carnitine	1.30	1.55	1.25	< 0.001	< 0.001	< 0.001
	3-dehydrocarnitine*	0.99	1.42	1.22	0.85	0.03	0.37
	acetylcarnitine	2.04	2.81	1.38	< 0.001	< 0.001	0.00
	laurylcarnitine	2.22	3.45	1.04	0.16	0.01	0.63
	myristoylcarnitine	1.32	3.56	1.22	0.65	0.00	0.31

表 S3-1 ラット脊髄損傷モデルにおける脊髄中メタボライトの変化(4)

SLIPER PATHWAY	Metabolite	Fold ch	nange SCI vs.	SHAM	Day 2	Day 11	Day 30
	Wetabolite	Day 2	Day 11	Day 30	p-value	p-value	p-value
	palmitoylcarnitine	1.28	2.76	1.45	0.56	0.00	0.11
	stearoylcarnitine	1.35	2.27	1.10	0.64	0.01	0.52
	oleoylcarnitine	1.48	2.58	1.12	0.29	0.01	0.49
	1-octadecanol	1.02	0.95	1.10	0.93	0.16	0.05
	choline phosphate	0.65	1.03	1.02	0.00	0.43	0.67
	ethanolamine	0.97	1.71	1.17	0.60	0.02	0.23
	phosphoethanolamine	0.79	1.79	1.38	0.05	< 0.001	< 0.001
	diethanolamine	0.28	0.27	0.12	0.92	0.56	0.89
	alvcerol	0.92	1.02	1.00	0.02	0.49	0.93
	glycerol 3-phosphate (G3P)	0.94	1.06	1.03	0.38	0.72	0.62
	glycerophosphorylcholine (GPC)	0.92	1 71	1 79	0.30	< 0.001	< 0.001
	mvo-inositol	0.02	1 21	1 27	0.00	< 0.001	< 0.001
	chiro-inositol	0.05	1.50	1.05	0.66	0.001	0.66
	inositol 1-phosphate (I1P)	0.00	1.50	1 16	0.00	0.00	0.00
		0.04	1.10	1.10	0.11	0.14	0.01
		0.84	1.34	1.41	0.03	0.02	0.00
	1,2-propanedioi	0.39	1.69	0.93	0.02	0.30	0.63
	1-palmitoyl-GPE	1.63	1.31	1.54	0.01	0.22	0.01
	2-palmitoyl-GPE	1.06	0.91	0.88	0.83	0.84	0.53
	2-palmitoleoyI-GPE	1.27	1.55	1.10	0.95	0.27	0.80
	1-stearoyl-GPE	2.39	1.20	1.09	0.00	0.35	0.35
	1-oleoyl-GPE	1.34	1.67	2.78	0.05	0.00	< 0.001
	2-oleoyl-GPE	0.89	1.12	1.51	0.16	0.26	< 0.001
	2-linoleoyl-GPE	1.13	1.16	0.78	0.79	0.51	0.12
	1-arachidonoyl-GPE	1.37	1.34	2.60	0.08	0.03	< 0.001
	2-arachidonoyl-GPE	0.93	1.24	0.88	0.53	0.39	0.33
	2-docosapentaenoyI-GPE	1.03	1.23	0.67	0.59	0.66	0.09
	2-docosahexaenoyl-GPE	0.93	1.33	0.84	0.58	0.27	0.23
Lipid	1-stearoyl-GPG	1.03	1.12	1.21	0.82	0.52	0.21
црю	2-myristoyl-GPC	1.56	1.35	1.02	0.43	0.17	0.61
	1-palmitoyl-GPC	1.35	1.56	1.46	0.35	0.04	0.05
	2-palmitoyl-GPC	1.33	1.15	0.84	0.50	0.46	0.68
	2-palmitoleoyl-GPC	1.59	1.92	1.56	0.84	0.05	0.54
	1-heptadecanoyl-GPC	1.96	4.36	5.05	0.03	< 0.001	< 0.001
	1-stearoyl-GPC	1.85	1.64	1.44	0.05	0.06	0.07
	2-stearoyl-GPC	1.80	1.64	1.56	0.16	0.06	0.04
	1-oleoyl-GPC	1.40	1.45	1.30	0.50	0.10	0.34
	2-oleoyl-GPC	0.97	1.05	0.97	0.69	0.68	0.90
	1-linoleoyl-GPC	1.50	1.26	1.27	0.27	0.07	0.97
	2-linoleovI-GPC	1.50	1.33	1.14	0.81	0.41	0.56
	1-arachidovI-GPC	0.87	1.44	0.91	0.58	0.85	0.81
	2-arachidovI-GPC	1.44	1.11	0.83	0.42	0.61	0.92
	2-arachidonovI-GPC	1 25	1.82	1 18	0.77	0.09	0.85
	1-docosabezaenovLGPC	2.82	1.52	1 13	0.10	0.00	0.88
	2-docos abexaenovi-GPC	1.54	1.68	0.85	0.10	0.12	0.00
	1 polmitovi CPI	1.04	1.00	1.57	0.05	0.00	< 0.001
	1 storroyl GP	1.00	1.37	1.07	0.95	0.00	< 0.001
		0.01	1.19	1.28	0.39	0.05	< 0.001
	1-oleoyi-GPI	0.91	0.95	0.99	0.35	0.80	0.91
		1.04	1.84	1.00	80.0	0.01	0.02
		2.24	2.24	2.76	< 0.001	< 0.001	< 0.001
	2-oleoyi-GPS	1.20	1.72	2.11	0.25	0.02	< 0.001
		0.98	1.06	1.20	0.91	0.63	0.08
	2-paimitoylglycerol	1.03	1.25	1.29	0.81	0.42	0.20
	1-oleoylglycerol	1.12	1.66	1.34	0.31	0.15	0.12
	2-oleoylglycerol	1.01	1.45	1.57	0.91	0.34	0.09
	eicosenoylglycerol	0.87	2.17	0.80	0.85	0.14	0.62
	1,2-dipalmitoylglycerol	0.91	0.96	0.87	0.54	0.95	0.45

表 S3-1 ラット脊髄損傷モデルにおける脊髄中メタボライトの変化(5)

	Metabolite	Fold change SCI vs. SHAM			Day 2	Day 11	Day 30
		Day 2	Day 11	Day 30	p-value	p-value	p-value
	1,3-dipalmitoylglycerol	0.91	1.01	0.71	0.73	0.99	0.24
	sphinganine	1.26	1.98	1.70	0.72	0.02	0.05
Lipid	sphingosine	1.29	4.47	3.81	0.31	< 0.001	< 0.001
	3-hydroxy-3-methylglutarate	1.53	1.02	0.70	< 0.001	0.88	< 0.001
	lathosterol	0.92	0.74	0.73	0.29	0.01	0.00
	cholesterol	0.91	0.90	0.95	0.17	0.27	0.47
		0.72	0.70	1.06	0.17	0.08	0.51
	7 beta hydroxycholosterol	0.72	0.70	0.05	0.17	0.00	0.50
		0.78	0.87	0.95	0.01	0.35	0.59
	24(S)-nydroxycholesterol	0.93	0.77	0.94	0.44	0.06	0.43
	corticosterone	1.23	1.25	1.02	0.63	0.46	0.84
Nucleotide	xanthine	1.53	0.26	0.27	0.46	0.29	0.10
	xanthosine	1.94	1.81	1.86	0.00	< 0.001	< 0.001
	hypoxanthine	0.75	1.03	1.05	0.01	0.34	0.23
	inosine	0.85	0.88	0.91	0.18	0.06	0.02
	2'-deoxyinosine	1.02	1.85	NA	0.35	< 0.001	-
	adenine	1.04	0.69	0.75	0.97	0.02	0.11
	adenosine	0.74	0.57	0.58	0.11	0.02	0.00
	N1-methyladenosine	1.31	1.08	1.07	0.19	0.37	0.37
	adenosine 2'-monophosphate	0.98	1.46	1.29	0.70	< 0.001	0.01
	adenosine 3'-monophosphate	1.12	1.11	0.99	0.53	0.29	0.74
	adenosine 5'-monophosphate	0.90	0.91	0.87	0.15	0.07	0.14
	quanosine	0.65	0.56	0.43	0.06	< 0.001	< 0.001
	urate	3.07	1 32	1 31	0.01	0.65	0.66
	allantoin	1.03	0.87	0.75	0.00	0.00	0.06
	autidino	0.00	1 10	1.24	0.00	0.40	0.00
		0.99	1.19	1.34	0.92	0.09	0.00
	5-methylcytiaine	0.92	1.08	0.89	0.54	0.46	0.23
	cytidine 5-monophosphate	0.95	1.13	1.04	0.53	0.06	0.50
	cytidine-3'-monophosphate	1.34	1.18	0.93	0.06	0.25	0.56
	thymine	1.21	1.78	1.50	0.33	0.11	0.06
	uracil	0.90	1.34	1.34	0.14	0.01	< 0.001
	uridine	0.76	0.93	0.94	0.06	0.43	0.36
	pseudouridine	1.26	1.24	1.24	0.04	0.03	0.00
	methylphosphate	0.85	0.91	1.00	0.10	0.36	0.97
Cofactors and vitamins	ascorbate (Vitamin C)	0.61	1.42	1.11	0.00	0.01	0.19
	dehydroascorbate	0.93	1.73	1.30	0.55	0.01	0.29
	threonate	1.62	0.90	1.34	< 0.001	0.39	0.01
	dihydrobiopterin	0.67	2.39	3.01	0.02	< 0.001	< 0.001
	heme*	7.14	1.45	1.14	< 0.001	0.29	0.19
	biliverdin	1.39	1 19	0.90	0.22	0.33	0.80
	nicotinamide	0.88	0.98	1.03	0.32	0.80	0.72
		0.00	0.00	0.00	0.02	0.50	0.72
		0.78	0.97	0.99	0.00	0.55	0.04
	pantotnenate	1.21	1.08	1.30	0.18	0.45	< 0.001
	pnospnopantetneine	0.75	0.98	1.03	0.06	0.75	0.86
	coenzyme A	0.63	0.98	0.64	0.01	0.91	0.02
	3'-dephosphocoenzyme A	0.79	0.69	0.68	0.33	0.14	0.04
	pyridoxal	0.97	1.05	1.40	0.68	0.68	0.00
	flavin adenine dinucleotide	0.81	1.05	1.13	0.01	0.35	0.01
	riboflavin	1.02	1.24	1.38	0.84	0.12	0.01
	alpha-tocopherol	1.02	1.30	1.29	0.72	0.02	0.03
	pyridoxate	1.04	1.03	1.29	0.35	0.36	0.08
Xenobiotics	hippurate	1.08	1.10	1.23	0.28	0.75	0.15
	catechol sulfate	1.10	1.01	NA	0.30	0.36	-
	alvcerol 2-phosphate	0.94	1,20	1,25	0.97	0,36	0.09
	2-pyrrolidinone	0.49	0.69	0.60	< 0.001	0.19	0.03
	oxamate	1 28	0.96	1 29	0.33	0.76	0.10
	pentobarbital	0.77	1 22	1 1 2	0.07	0.02	0.10
	eracthiopeipe	1.07	1.02	1.10	0.07	× 0.02	0.00
		1.07	1.42	1.20	0.04	0.001	0.01
	eryunfitor	1.01	1.06	0.84	0.99	0.52	0.02

引用文献

- 1. Osborne, R. Fresh from the biotech pipeline--2012. *Nature biotechnology* **31**, 100-103 (2013).
- 2. Scannell, J.W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. *Nature reviews. drug discovery* **11**, 191-200 (2012).
- 3. Munos, B. Lessons from 60 years of pharmaceutical innovation. *Nature reviews. drug discovery* **8**, 959-968 (2009).
- 4. Paul, S.M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. *Nature reviews. drug discovery* **9**, 203-214 (2010).
- 5. van Gool, A.J., Henry, B. & Sprengers, E.D. From biomarker strategies to biomarker activities and back. *Drug discovery today* **15**, 121-126 (2010).
- 6. Arrowsmith, J. Trial watch: Phase II failures: 2008-2010. *Nature reviews. drug discovery* **10**, 328-329 (2011).
- 7. Allison, M. Reinventing clinical trials. *Nature biotechnology* **30**, 41-49 (2012).
- 8. Arrowsmith, J. Trial watch: phase III and submission failures: 2007-2010. *Nature reviews. drug discovery* **10**, 87 (2011).
- 9. Lindon, J.C., Holmes, E., Bollard, M.E., Stanley, E.G. & Nicholson, J.K. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. *Biomarkers* **9**, 1-31 (2004).
- Kaddurah-Daouk, R. & Krishnan, K.R. Metabolomics: a global biochemical approach to the study of central nervous system diseases. *Neuropsychopharmacology* 34, 173-186 (2009).
- 11. Wei, R. Metabolomics and its practical value in pharmaceutical industry. *Current drug metabolism* **12**, 345-358 (2011).
- Schlotterbeck, G., Ross, A., Dieterle, F. & Senn, H. Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. *Pharmacogenomics* 7, 1055-1075 (2006).
- 13. Katz, R. Biomarkers and surrogate markers: an FDA perspective. *NeuroRx : the journal of the American society for experimental neurotherapeutics* **1**, 189-195 (2004).
- 14. Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. *Nature* **457**, 910-914 (2009).
- 15. Nishiumi, S. et al. A novel serum metabolomics-based diagnostic approach for colorectal cancer. *PloS one* **7**, e40459 (2012).
- 16. Soga, T. et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. *The Journal of biological chemistry* **281**, 16768-16776 (2006).
- 17. Muller, P.Y. & Milton, M.N. The determination and interpretation of the therapeutic index in drug development. *Nature reviews. drug discovery* **11**, 751-761 (2012).

- Hewing, B. & Fisher, E.A. Preclinical mouse models and methods for the discovery of the causes and treatments of atherosclerosis. *Expert opinion on drug discovery* 7, 207-216 (2012).
- 19. Liu, C.J. & Bosch, X. Progranulin: a growth factor, a novel TNFR ligand and a drug target. *Pharmacology & therapeutics* **133**, 124-132 (2012).
- 20. Yokobori, S. et al. Biomarkers for spinal cord injury. *World neurosurgery* doi: 10.1016/j.wneu.2013.03.012 (2013).
- Ahmed, F. et al. Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. *Electrophoresis* 33, 3705-3711 (2012).
- 22. Watkins, S.M. & German, J.B. Metabolomics and biochemical profiling in drug discovery and development. *Current opinion in molecular therapeutics* **4**, 224-228 (2002).
- Zhao, S. & Iyengar, R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. *Annual review of pharmacology and toxicology* 52, 505-521 (2012).
- 24. Corona, G., Rizzolio, F., Giordano, A. & Toffoli, G. Pharmaco-metabolomics: an emerging "omics" tool for the personalization of anticancer treatments and identification of new valuable therapeutic targets. *Journal of cellular physiology* **227**, 2827-2831 (2012).
- 25. Shiomi, Y. et al. GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium. *Inflammatory bowel diseases* **17**, 2261-2274 (2011).
- 26. Ganti, S. et al. Kidney tumor biomarkers revealed by simultaneous multiple matrix metabolomics analysis. *Cancer research* **72**, 3471-3479 (2012).
- 27. Nathan, C. & Ding, A. Nonresolving inflammation. *Cell* 140, 871-882 (2010).
- 28. Soehnlein, O. & Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. *Nature reviews. immunology* **10**, 427-439 (2010).
- 29. Yamada, T. et al. Eosinophils promote resolution of acute peritonitis by producing proresolving mediators in mice. *FASEB journal* **25**, 561-568 (2011).
- 30. Serhan, C.N. et al. Resolution of inflammation: state of the art, definitions and terms. *FASEB journal* **21**, 325-332 (2007).
- 31. Iyer, S.S. & Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. *Critical reviews in immunology* **32**, 23-63 (2012).
- 32. Bode, J.G., Ehlting, C. & Haussinger, D. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. *Cellular signalling* **24**, 1185-1194 (2012).
- 33. Navarro-Xavier, R.A. et al. A new strategy for the identification of novel molecules with targeted proresolution of inflammation properties. *The Journal of immunology* **184**, 1516-1525 (2010).
- 34. Weckwerth, W. & Morgenthal, K. Metabolomics: from pattern recognition to biological interpretation. *Drug discov today* **10**, 1551-1558 (2005).

- 35. Serhan, C.N. et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. *The Journal of experimental medicine* **206**, 15-23 (2009).
- 36. Cash, J.L., White, G.E. & Greaves, D.R. Chapter 17. Zymosan-induced peritonitis as a simple experimental system for the study of inflammation. *Methods in enzymology* **461**, 379-396 (2009).
- 37. Evans, A.M., DeHaven, C.D., Barrett, T., Mitchell, M. & Milgram, E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. *Analytical chemistry* 81, 6656-6667 (2009).
- 38. Sha, W. et al. Metabolomic profiling can predict which humans will develop liver dysfunction when deprived of dietary choline. *FASEB journal* **24**, 2962-2975 (2010).
- 39. Tsugawa, H. et al. Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis. *Journal of bioscience and bioengineering* **112**, 292-298 (2011).
- 40. Tsugawa, H., Tsujimoto, Y., Arita, M., Bamba, T. & Fukusaki, E. GC/MS based metabolomics: development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA). *BMC bioinformatics* **12**, 131 (2011).
- 41. Lommen, A. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. *Analytical chemistry* **81**, 3079-3086 (2009).
- 42. Reid, B.N. et al. Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. *The Journal of biological chemistry* **283**, 13087-13099 (2008).
- 43. Wang, W., Wang, P. & Chaudry, I.H. Pentoxifylline increases gut ketogenesis following trauma and hemorrhagic shock. *Critical care medicine* **26**, 101-107 (1998).
- 44. Serhan, C.N., Chiang, N. & Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. *Nature reviews. immunology* **8**, 349-361 (2008).
- Hung, N.D., Kim, M.R. & Sok, D.E. Mechanisms for anti-inflammatory effects of 1-[15(S)-hydroxyeicosapentaenoyl] lysophosphatidylcholine, administered intraperitoneally, in zymosan A-induced peritonitis. *British journal of pharmacology* 162, 1119-1135 (2011).
- 46. Schwab, J.M., Chiang, N., Arita, M. & Serhan, C.N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. *Nature* **447**, 869-874 (2007).
- 47. Gijon, M.A. & Leslie, C.C. Regulation of arachidonic acid release and cytosolic phospholipase A2 activation. *Journal of leukocyte biology* **65**, 330-336 (1999).
- 48. Hofmann, S.R., Rosen-Wolff, A., Tsokos, G.C. & Hedrich, C.M. Biological properties

and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury. *Clinical immunology* **143**, 116-127 (2012).

- 49. Liu, T.F., Vachharajani, V.T., Yoza, B.K. & McCall, C.E. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. *The Journal of biological chemistry* **287**, 25758-25769 (2012).
- 50. Bouter, K.P. et al. Effect of epidemic influenza on ketoacidosis, pneumonia and death in diabetes mellitus: a hospital register survey of 1976-1979 in The Netherlands. *Diabetes research and clinical practice* **12**, 61-68 (1991).
- 51. Tan, H., Wang, C. & Yu, Y. H1N1 influenza: the trigger of diabetic ketoacidosis in a young woman with ketosis-prone diabetes. *The American journal of the medical sciences* **343**, 180-183 (2012).
- 52. Stables, M.J. et al. Transcriptomic analyses of murine resolution-phase macrophages. *Blood* **118**, e192-208 (2011).
- 53. Konig, B. et al. Monocarboxylate transporter (MCT)-1 is up-regulated by PPARalpha. *Biochimica et biophysica acta* **1780**, 899-904 (2008).
- 54. Minnich, A., Tian, N., Byan, L. & Bilder, G. A potent PPARalpha agonist stimulates mitochondrial fatty acid beta-oxidation in liver and skeletal muscle. *American journal of physiology. Endocrinology and metabolism* **280**, E270-279 (2001).
- 55. Muoio, D.M. et al. Peroxisome proliferator-activated receptor-alpha regulates fatty acid utilization in primary human skeletal muscle cells. *Diabetes* **51**, 901-909 (2002).
- 56. Azuma, Y.T. et al. PPARalpha contributes to colonic protection in mice with DSS-induced colitis. *International immunopharmacology* **10**, 1261-1267 (2010).
- 57. Yue, T.L. et al. Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury. *Circulation* **108**, 2393-2399 (2003).
- 58. Pyper, S.R., Viswakarma, N., Yu, S. & Reddy, J.K. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. *Nuclear receptor signaling* **8**, e002 (2010).
- Ramanan, S., Kooshki, M., Zhao, W., Hsu, F.C. & Robbins, M.E. PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways. *Free radical biology & medicine* 45, 1695-1704 (2008).
- 60. Guyton, J.R. Niacin in cardiovascular prevention: mechanisms, efficacy, and safety. *Current opinion in lipidology* **18**, 415-420 (2007).
- 61. Soudijn, W., van Wijngaarden, I. & Ijzerman, A.P. Nicotinic acid receptor subtypes and their ligands. *Medicinal research reviews* **27**, 417-433 (2007).
- 62. Gambhir, D. et al. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy. *Investigative ophthalmology & visual science* **53**, 2208-2217 (2012).
- 63. Digby, J.E. et al. Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms. *Arteriosclerosis, thrombosis, and vascular biology* **32**, 669-676 (2012).

- 64. McDonald, J.W. & Sadowsky, C. Spinal-cord injury. Lancet 359, 417-425 (2002).
- 65. Wyndaele, M. & Wyndaele, J.J. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? *Spinal cord* **44**, 523-529 (2006).
- 66. Hulsebosch, C.E. Recent advances in pathophysiology and treatment of spinal cord injury. *Advances in physiology education* **26**, 238-255 (2002).
- Fitch, M.T. & Silver, J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. *Experimental neurology* 209, 294-301 (2008).
- 68. Tator, C.H. Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury. *The journal of spinal cord medicine* **19**, 206-214 (1996).
- 69. Tator, C.H. Biology of neurological recovery and functional restoration after spinal cord injury. *Neurosurgery* **42**, 696-707; discussion 707-698 (1998).
- 70. Basso, D.M., Beattie, M.S. & Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. *Journal of neurotrauma* **12**, 1-21 (1995).
- 71. Pouw, M.H. et al. Biomarkers in spinal cord injury. *Spinal cord* 47, 519-525 (2009).
- 72. Lubieniecka, J.M. et al. Biomarkers for severity of spinal cord injury in the cerebrospinal fluid of rats. *PloS one* **6**, e19247 (2011).
- 73. Hayashi, S. et al. A novel application of metabolomics in vertebrate development. *Biochemical and biophysical research communications* **386**, 268-272 (2009).
- 74. Erschbamer, M. et al. 1H-MRS in spinal cord injury: acute and chronic metabolite alterations in rat brain and lumbar spinal cord. *The European journal of neuroscience* **33**, 678-688 (2011).
- 75. Qian, J., Herrera, J.J. & Narayana, P.A. Neuronal and axonal degeneration in experimental spinal cord injury: in vivo proton magnetic resonance spectroscopy and histology. *Journal of neurotrauma* **27**, 599-610 (2010).
- 76. Kendi, A.T. et al. MR spectroscopy of cervical spinal cord in patients with multiple sclerosis. *Neuroradiology* **46**, 764-769 (2004).
- 77. Marliani, A.F., Clementi, V., Albini-Riccioli, L., Agati, R. & Leonardi, M. Quantitative proton magnetic resonance spectroscopy of the human cervical spinal cord at 3 Tesla. *Magnetic resonance in medicine* 57, 160-163 (2007).
- 78. Abe, T. et al. Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain. *The European journal of neuroscience* **22**, 1445-1454 (2005).
- Ma, W., Chabot, J.G., Vercauteren, F. & Quirion, R. Injured nerve-derived COX2/PGE2 contributes to the maintenance of neuropathic pain in aged rats. *Neurobiology of aging* 31, 1227-1237 (2010).
- 80. Genovese, T. et al. Effects of palmitoylethanolamide on signaling pathways implicated in the development of spinal cord injury. *The Journal of pharmacology and experimental therapeutics* **326**, 12-23 (2008).
- 81. Mautes, A.E., Paschen, W., Rohn, G. & Nacimiento, A.C. Changes in ornithine

decarboxylase activity and putrescine concentrations after spinal cord compression injury in the rat. *Neuroscience letters* **264**, 153-156 (1999).

- Dienel, G.A. & Cruz, N.F. Induction of brain ornithine decarboxylase during recovery from metabolic, mechanical, thermal, or chemical injury. *Journal of neurochemistry* 42, 1053-1061 (1984).
- 83. Sager, T.N., Laursen, H. & Hansen, A.J. Changes in N-acetyl-aspartate content during focal and global brain ischemia of the rat. *Journal of cerebral blood flow and metabolism* **15**, 639-646 (1995).
- 84. Faden, A.I., Demediuk, P., Panter, S.S. & Vink, R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. *Science* **244**, 798-800 (1989).
- 85. Vera-Portocarrero, L.P. et al. Rapid changes in expression of glutamate transporters after spinal cord injury. *Brain research* **927**, 104-110 (2002).
- 86. Carmel, J.B. et al. Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. *Physiological genomics* **7**, 201-213 (2001).
- 87. Resnick, D.K. et al. Molecular evidence of repair and plasticity following spinal cord injury. *Neuroreport* **15**, 837-839 (2004).
- 88. Yan, X. et al. Proteomic profiling of proteins in rat spinal cord induced by contusion injury. *Neurochemistry international* **56**, 971-983 (2010).
- Kwo, S., Young, W. & Decrescito, V. Spinal cord sodium, potassium, calcium, and water concentration changes in rats after graded contusion injury. *Journal of neurotrauma* 6, 13-24 (1989).
- 90. Demougeot, C., Marie, C., Giroud, M. & Beley, A. N-acetylaspartate: a literature review of animal research on brain ischaemia. *Journal of neurochemistry* **90**, 776-783 (2004).
- Falconer, J.C., Liu, S.J., Abbe, R.A. & Narayana, P.A. Time dependence of N-acetyl-aspartate, lactate, and pyruvate concentrations following spinal cord injury. *Journal of neurochemistry* 66, 717-722 (1996).
- 92. Griffith, H.R. et al. Brain N-acetylaspartate is reduced in Parkinson disease with dementia. *Alzheimer disease and associated disorders* **22**, 54-60 (2008).
- Giroud, M. et al. Reduced brain N-acetyl-aspartate in frontal lobes suggests neuronal loss in patients with amyotrophic lateral sclerosis. *Neurological research* 18, 241-243 (1996).
- 94. Schott, J.M. et al. Short echo time proton magnetic resonance spectroscopy in Alzheimer's disease: a longitudinal multiple time point study. *Brain* **133**, 3315-3322 (2010).
- 95. Blamire, A.M., Cader, S., Lee, M., Palace, J. & Matthews, P.M. Axonal damage in the spinal cord of multiple sclerosis patients detected by magnetic resonance spectroscopy. *Magnetic resonance in medicine* 58, 880-885 (2007).
- 96. Su, H.M. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. *The Journal of nutritional biochemistry* **21**, 364-373

(2010).

- 97. King, V.R. et al. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. *The Journal of neuroscience* 26, 4672-4680 (2006).
- 98. Figueroa, J.D. et al. Docosahexaenoic acid pretreatment confers protection and functional improvements after acute spinal cord injury in adult rats. *Journal of neurotrauma* **29**, 551-566 (2012).
- Bazan, N.G. The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. *Cellular and molecular neurobiology* 26, 901-913 (2006).
- 100. Stratowa, C. & Wilgenbus, K.K. Gene expression profiling in drug discovery and development. *Current opinion in molecular therapeutics* **1**, 671-679 (1999).
- Obeidat, M. & Hall, I.P. Genetics of complex respiratory diseases: implications for pathophysiology and pharmacology studies. *British journal of pharmacology* 163, 96-105 (2011).
- 102. Vinaixa, M. et al. Metabolomics reveals reduction of metabolic oxidation in women with polycystic ovary syndrome after pioglitazone-flutamide-metformin polytherapy. *PloS one* 6, e29052 (2011).
- 103. Gieger, C. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. *PLoS genetics* **4**, e1000282 (2008).
- 104. Suhre, K. et al. A genome-wide association study of metabolic traits in human urine. *Nature genetics* **43**, 565-569 (2011).
- 105. Fischer, H.P. Towards quantitative biology: integration of biological information to elucidate disease pathways and to guide drug discovery. *Biotechnology annual review* 11, 1-68 (2005).
- 106. Leung, E.L., Cao, Z.W., Jiang, Z.H., Zhou, H. & Liu, L. Network-based drug discovery by integrating systems biology and computational technologies. *Briefings in bioinformatics* (2012).
- 107. 江口武志、大久保昌美「アンメット・メディカル・ニーズに対する医薬品の開発・承認状況」政策研ニュース No.34 (2010)

発表論文

本学位論文に関与する論文

- Yusuke Fujieda, Shinya Ueno, Ryoko Ogino, Mariko Kuroda, Thomas J. Jönsson, Lining Guo, Takeshi Bamba, Eiichiro Fukusaki, "Metabolite profiles correlate closely with neurobehavioral function in experimental spinal cord injury in rats", *PLoS one*, 7(8): e43152 (2012).
- <u>Yusuke Fujieda</u>, Atsushi Manno, Yasuhiro Hayashi, Nelson Rhodes, Lining Guo, Makoto Arita, Takeshi Bamba and Eiichiro Fukusaki, "Inflammation and resolution are associated with upregulation of fatty acid β-oxidation in zymosan-induced peritonitis", *PLoS one*, 8(6): e66270 (2013).

学会発表

- 藤枝裕介,上野新也,荻野涼子,黒田真理子,馬場健史,福崎英一郎 「ラット脊髄損傷モデルにおけるメタボロームと神経行動学的機能の相関」

 第6回 メタボロームシンポジウム、大阪、2011年10月
- <u>Yusuke Fujieda</u>, Shinya Ueno, Ryoko Ogino, Mariko Kuroda, Takeshi Bamba and Eiichiro Fukusaki

"Metabolite profiles correlate closely with neurobehavioral function in experimental spinal cord injury in rats."

第64回 日本生物工学会大会、神戸、2012年10月