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Fig. 1.1 Typical deformation modes calculated by FEM .
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Fig. 1.2 Example of optimal design, deformed shape and improved load displacement curve®.
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Fig. 1.3 Sensitivity analysis model and design change pattern®®,
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Fig. 1.4 Energy absorption characteristics of tapered thin-shell structured column®?.

“Reprinted with permission from SAE Paper No. 2008-01-0242 © 2008SAE International. Further use or distribution is not permitted without permission from SAE.”
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Fig. 1.5 Impact load velocity dependency of buckling mode®”.
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(a) Example of maximum deformed crash mode of ODB (Offset Deformable Barrier)
regulation

(b) Example of maximum deformed crash mode of Full-lap regulation
Fig. 2.1 Typical vehicle crash mode of regulation.
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Fig. 2.2 Target deceleration for new vehicle development compared with current vehicle.
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Fig. 2.3 Deceleration Displacement chart.
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Fig. 2.4 Major structure of engine room portion.
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(b) Deformed mode comparison in upper view (FE result, Test A, Test B)
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(c) Enlarged view of Fig. 2.5(b)
Fig. 2.5 Difference of two test result and simulation result.
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(c) Material scattering definition for each area
Fig. 2.7 Simplified F/S/M and Fr Bumper assembly model and separation of different
material definition.

Table 2.1 Material combination of 6 models : Yield stress (MPa)
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Maxamum reaction of F/S/M
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(a) Reaction scattering calculated of 6 typical models

(b) Deformation mode scattering calculated of 6 typical models
Fig. 2.8 Scattering result of calculated reaction and deformation modes.
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Karman (%, KEOAFFEHEES 3 30 L 72 2 5D S5kl Jt & ML Eima X — A2 Lz
MR A D L, DAEREOAEMRE VW OMEEEEL, M5 R THE
FER L7, ERRITIE, Wrimicin > TR EEBGICELT 50, ZhEBZMEE VD
RO AT EZZ TR, ZOMOEK CIIRIERBESERNWELE (K292
MO . A 2 MR L72RRE T, mAVEALZ X210 () ZRET DL, Mimd w
D DN BN — T DEINTIE A = X b FBETX, Wumd w B3 —K & 72 o
72 2w DMEOFARDOHANETERIE &35 Z EAHKD. Zo%a (21) iR
NeRD.

En? [a'x , % o' o%x
12(1-v¥) lay?  oy?ar? at)  oy? (2.1)

mAENZA (22) &Bx, X 21 TRALEHTD L, X (23) &85,

X = XnSin 2 sin nz

— 70 ﬂ F (2.2)
o _ n2h? b +12
E 12(1-v2)l4w? b (2.3)

olE i/ IMEZRD D122, HlZEDIZHOWVWTHS L0 &< L, b=2w 23 5F b5
5. e (23) ITRAEEL, 2w k5 LK (24) L7025,

oW = xn’E \/hz
12(1-v?) | ocr (2.4)

ZIZT, WITAERE, oo XBRFIES (—RRICIZBIRG D E LTERY R D), hITRE,
K IIETEE— RICIKET ATERTH S, IROMEN T DOENSAHBK 2.10 (a) DOERT
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k=40, (b) DI k=17 &700, ZHAUIMKET 2 HIEEEREO RO AL E— R
IZ& 5. Thbb, X210 (@) (FAEMEwW ONRIOEN %27 T > 75 ﬁkﬁm#é
DIZxtL, X210 (b) IZAZEwNELERICOAT 2 ERET DH. iz, KI5
m,mﬁ%%ﬁ@EW%%@%ﬁﬁkfé.%@k@,ﬁ%@@@ﬁwm,%%mm
¥ 2.10 DR L R —TiXReWD, 22 TIX4EOFER TR (2.4) 2ELRIAIICEKSL
THERETHZ LY, EEREOETE Py 1Tk & 70 5.

_ _/mz
Py =4x2Woh=2 v V)h (2.5)

P2 P2
Z

w b

w

i

Y

\
e

Fig. 2.9 Effective length of w where reaction is assumed to be supported®.

w w

w w

Fig. 2.10 Two kinds of assumed out-of-plane deformations; (a) case of x=4.0, (b) case of x
=1.79.

DX, Euler O far B E T LAY 70 MR FERIZEE DWW H O T, IR a, B b,

WIE h O BEMSCR R TR, JEMIS T o=—1E DMERT %Y ;owf%zé

Vv

-
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(X211 2/, x, y HROISTIER L), Z o, DA TR O @EARERE D
JEE JR AR B P 1ZR IS L W R 5 5 @),

2 2
Qr:4mu%r:4m%—f—5—{hjkw

12-v?)la (2.6)

2T, BEEARE ker 13,

ma )’ b\
Ker = (Tj +2+(m—aj 27

(Y

j—
[ —
— 9
[ —
[ —

&

v

o

O
Fig. 2.11 Boundary condition of Euler buckling of a simply supported rectangle.

ARG & F DG IBT D JEIEERE ke DEALZF~D . A RDET VT 3 ETEE
L<ER4 528, b=300mm —& & L, M az 20mm 75 200 mm £ L ESE7-854
D ke 23RO 5. Euler FEJERAEREOETEE— R, £771%, R SFAE T2 Euler J#&
R L7 WA IR KK ERTOERE— K (X FIEM A ER L, JRKEM T
EHLLTWD) %X 212 (27r9. a=36 mm LA F CIlEBIfE7: Euler JEE S HEFR T & 72
WZ &, a=40 mm LA ETiX Euler ODEEJEE— F2Am=2 205 8 £ THEIZ L > TE{LL T
WBHZ ENDND. EIERE ke 1E (27) LV X213D X 51272 5. a=20mm 25
200 mm T, FEJRAREL ker 13 4.000 26 4.340 OfEAZHELD. 5 F T L <R 2 23, Euler
O JEJE AT EAME D e KN B %2 R AE+ D133 L% a=65mm LLF T, ke 13 4.000 7>
5 4.034 DIEEILD. Z DE, ke=4.0 LTI L7256 OB KIRZET 0.9%FRE L 72 0,
FERRR PR E R ET DRI k=40 EEEIL TH REREELZELRNVES X
5.
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Normalized
% dlsplauement

33333
33333
-----
-----
33333
-----

00000
a=25 a=36 a=40 a=50 a=62.5 a=75 a=100 a=150 a=200

Fig. 2.12 Buckling modes along the column length for various widths.

4.30

4.20

4.00

Fig. 2.13 Change of buckling coefficient k. according to width a.

AR OB CTHRERK S 4L 2 W EFE I EAR AT EZ2MER T 25 A 122V To—fil 2R
TSGR (BATET VICE L UL 3 ETRER T D) &, A 1mis (k3.6
km/h) THIERE S 72856 O ORFHISE, B XOWHIRRE (t=0ms), mHAXMEIE
AR (tE1ms), IS EE LZRE (210 ms) OEE— R EFYPEHEOT A ¢, 57
i (0.2%LL BTV 7 B TFRR) 21X 214 17T, 2D —ATIE, HIHNICHER KRR
24T kN 7R LTct%, WA OMITE & HITERZU TICKAPME T T 5. ZOHRKK
DL X, MYEEOTHRONHER LEERKN DML X1, AL
T R 72 Ik D A PEARIG J1IZ 2 LT, W —FRIZ Mﬁfﬁ_ibthﬁ
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(400 KN) D 62 NFRIE DI R TI LG LI TN ERbnb., 2O Lk,
ARG R ORHE A2 EMEICHEE LW E SMEHRGT 5 &, VERKON 5105
BN L, PHILTWEAERE— RIZRLRNnW by, BENOEREEZH AT
REMER S 5.

p

0.00200
0.00187
000173
0.00160
000147
_ 000133
— 0100120
— 000107
_ 000093
. (0.00080
— 000087
L 000053
0.00040
N 000027

[ 0.00013
0.00300

o

“
e

Nﬁm

Reaction (kN)

Time (ms)

Fig. 2.14 Time evolution of reaction of a rectangular thin-shell column at V=1 m/s and
deformation modes at some representative times®.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”

2.14 TR U 72 i &R 12D\ C, Karman OF 2RI 35 < fif 88 & Euler D&
JEfTEZ RO L. X (24) T Karman OFELZ KD, X (25) NoOMELZFHET S
&, k=4.0 DEA 145 kN, k=1.7 DFE 945KN & 72 5. —J7, Euler D LT fif 1% (2.6)
& (2.7 1T, B— FR¥m=3, v 7% E=206 GPa, N7 >t v =0.3, 1iE a=100 mm
5 & b=300 mm, HRJE h=1.2 mm ZfXAT % & kg=4.0 &£ 72V, Pe=4ahoy=51.5 kN &K
bhd (M215H). ZbOMEE, FHEERLIVEONTZKT 24TKN LT REL
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B s bbb, EWrmE SRR L7285E D7) 400 kN & Karman D fEIZ X 5 K1) 94.5
KN~145 kN Oz, ASEIOMNBRFELTND Z Exbnbd.

H2e 2 MR @io&@%ﬁﬁ% WKL, MBS L DM EK N IEBET D 0E
D50, B TdH 5 Karman OF 20EEREE, 6 O Euler o B i B 5 C I3 HLM
CTHE & TR 27202 e,

x-disp (mm)
0817
0.708
0599
0490
0.381
0272
0.163
0055
0054
-0.163
-0.272
-0.381
0490
-0.599
-0.708
081%

]| —

z

A

X ¥

o

Fig. 2.15 Contour maps of out-of-plane displacements at x-direction at Euler buckling (m=3).

2.2.2 EWHFT~DER

X 2.4 @ FISIM O X 1R 2 a9 2 720 oWrm RG] (X 2.4 Wrim A-A) %X 2.16
T (KO SHRE 100 mm By FOHBIRTH ). ZolrmtE® GBIk, RE,
B > 0 il i R D 2T T BRIR R OO [ D, Karman O Zhiig % 35 18, U 7= 51 72 Wt 1
N ENRRDHND. BIEOHIETIE, AT (X7 MLORREN) ORI % 5
Hhe —ETHZLIRNFEAERLS, (MENOF—A L FRFRAL, B2 130T %248
ELTWTHHITEEREIC/RD E Vo F@#ERT I ENRE.
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Uniform plastic ‘Uniform plastic

reaction : 65kN reaction : 80kN

Euler Euler

buckling:39kN  buckling:61kN
Section shape of right side F/S/M i Section shape of E1ef’[ side F/S'M

Fig. 2.16 Cross section shape of front side member (Fig. 2.4 Section A-A) and maximum
reaction and Euler’s buckling force estimation

SR IS A SR D BR D, IR O EE IR EM ~ DT — A AT &R
fifi L7212 X 2.17 (Zosd. B A CIXIEE#ErZE o A J5m & Epf om &, £z,
T AUEETHDL I ENHET—A PANTHTHMONERELRDTZOTHS.

Moment

NAAAA

Fig. 2.17 Bending moment diagram around body side structure at frontal crash input.
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K217 %26 &2, 72 hET—ORFETHED, ASJE—A N EMIIE—A
v hEE U7 2 X 2,18 1R T M0 — A o MRKIDSFEBRIZ 04 LTV D DI
RO A THEEZED 720, WEOZEAL, EELOIBM, LD 7 & D5 Tﬁ
NPT HZ LT LD, ZNBIZ X0 &EM, SAOEROE— R ENEFZEET
5. LT, BEOHAL LY DK EHWND Z & T, FISIM DT
FNX—RIE, 7ar NET—LDRENRT R EEREL 5.

Moment
A — Input moment

Fig. 2.18 Bending moment diagram and reaction moment plan

INHORFHIL Y CAD 7T —Z BERK S, ZTOEHRE S &2 FEET ABER S
5. BlxiE, X240 3EHBIZOWTRSRINO K SIFHENK 219 D X HI2HFE LD
DT, HLEMFTOFRER L LMREEN TE 5. EEORITRTE T H O EE M L DT
BERAERNOZEEZRT. ok, T oMM B OEALO KSR T SRR &L 0 Gl
TERWVWOT, +RIEEEOH DL FEET A THDHZ ENFIHEE R D.
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H'L F/S/M Susp/M
Y7171 HEREE HEME
HERR R R Y
z R (AL ¢ | Ul |
. { 4 | | >~ IHE ¢ | U |
3 LA T i
2 PANETS L L N
) 1 ' ( Th T VU T 7 T
R ¢-~y——_J : b;l I/ A\
1 W ' 1 \ | | I :
s aEEREE. Y= ' ?‘\ s — . 'r[ :
T T TR T
1 'l ! S ..P’ [ 1
time (ms) time (ms) time (ms)

Fig. 2.19 Transmission force time chart of each load pass

FEMTRE SR D4R, X220 1277 L9 RERK THROLEEE— LDk (JRHR
IXEBREOEIIR) SO 2.3 O X 5 e fl 2R ORBGERE OB X 0 RGET 5.
L0 mREE 22 TRNCIE, B 2 ER R ORI & TEREIC R 5 T 7 U EEAO Ly, X
221 T L 9 e EHGR O RO JEIE ONT O 2, RIERD) % EfEICEET
HMLENDH D, ZOHEFTIE, LLORBERET VEHW FE BT ORE, FISIM O
M BAER S % TRV, Z Ok REEMEREE L CHEMEZER TE TN &
AVEIBA L7, 2 AU, HJE h=1.6 mm, mﬁ@$£%1Mmmm0mn|&ﬁmﬁki%
600MPa D354, Karman DA ZNMEIL 35 mm~52 mm Toh 5 = & & f) W mk % 5
BWTEELTWRWI ERERDO—2EEZLND.

Engme room deformation mode
m plan view
Fig. 2.20 Comparison of simulation result and test result of front side member deformation

mode.

Right side F/S/M deformation mode m side view
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Shell; Max, piastic strain over thickness
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lOLDI22
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ID.‘IIEQ
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Shell: Max. plastic strain over thickness
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0.3000
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Fig. 2.21 Plastic strain distribution of F/S/M at stamped.
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8%

#ETHERL 2T DI, 1E#EBE (NCAP : New Car Assessment Program) 773l
TR, BA, BN, KENCEBT D IERAROEAED—FIZ OV
TRALBLUR AT, @, HRAAITERLY b LORETITPDS
EHZ% . NCAP Tl atERe DRl 2 5~6 BFSICKIL, * DI TEHLT S, (IHS

ElhEnTWa.

GBS
Table A.1 Japanese and European NCAP
A A RN
44 Bk NCAP Euro-NCAP
FE Tt BE E LA E FhkRe o 2 — e ELE R, FIA (ERSA#hEE) %
BT 55km/h 1 il %2, 64km/h 47ty Ml 5% 64km/h 7ty MEZE |, 55km/h | i 24
e 55km/h {52 BATE R R
([oEsSiAs .
—
— — —HEEE
NYT7E 300mm
& B EEE 2 FLZ 6 B PSR & HIAE, RBEFMEZ I 5 B
fiif 22 (w797 A7y MAlE ORAFEM AL L, | FEE (477 MEZE & A mE 22 O S 7E
) R TERAS, B T 138 & OFH) il JE RS B TS b G
wlil *~ 4 FeFe ko o~ 4 HeHe ek
J ik
WATHE R INCAP % 03 F-E /5 52 WTHERE OBRITHEEMZ I
Zofth | fi#,CRS #Fli (& E#lER) INCAP ¢ 32 3 BEFEREAL 02 FE7> & Bl 1A
it %~ %k k
7INiEF- B O Web Site TAFE
NFIEHE \ " Web Site T2
NFIEH ANl eb Site TAF MERE(What Can) <4
INFHAE F1REAFR 4 RH) AR IC AR (FE2~3[A)
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Table A.2 US NCAP and IIHS (Institute of Insurance Highway Safety)

b/ SES|
4 B NCAP IIHS TEST
FE Tt R NHTSA Gl & 1 A8 22 42 R)) IHS (&S 22 2R 2T EHT)
i A0MPH(64km/h) 47 b i i {7 22
) 35MPH(56km/h) 1F i 22 o .
il 38. 5MPI—(|(62km/f)1) 1 1; v BT
= 50kph /" 71 i 7%
o i— - — o - _’_: _
|- =1 B
(eSS -~ [
> LIE—E . [TX T T
N NYFE 450mm
B & BRI, B RN, B GE
O R E (B A KT 5 B " . 554 Ef Tﬁg fi
fif2e (I 52 & 22 o EAm it el T
L . (Good,Acceptable,Marginal,Poor 3%
R Bl 2 12 FR) .
FIA Fe~ %k %k e Fe ek -
. N VTZEV =710 % FRat R
Fiik
NN R
£ DAt CRS FEAf(GEH) st & (& H O R HHE LR
(Good,Acceptable,Marginal,Poor 3% 71%)
JINI 2 O Web Site TAFR
INFRIEHE \ \ Web Site T2
NFIEH MERE(The Car Book) | 55 /IMiEF- K TOY Web Site TAZE
INFRBAE AR (54 1)) 1I2AFR RBR 2 AR
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3.1 BB ETILEMEBETETIL

TE 2R O = 7L — IR & FICH D SR L LT, =Y v — ANORIE S

FICEE Sivz, =Py, AR v a Vi BRI 58 “FR SIDE MEMBER”
(2 TR L= FISIM) 230, Zh 21l LIS 2 i ox 4 & 15,

AR CHEAELTLEF AL LT, M3LITRET LS RUATKO 2 WA L 12 a=100
mm, S b=300mm, AUE h=1.2 mm OERILAFEEZRY LTS, HEOFRERES
v (FEET V) OERSENTIEFRH 4,800, Hin# 4880 ThH5.

HEobE a 1%, EEEOHEM O FIS/IM OWri 238540 80 mm~120 mm, £iZJ 120 mm~160
mm ThHdZ ENn, HHEHBEOHATIEZVERE LIZ< W (BET D7 —X,
LW —2OR G EHEL, BBA N =X LE20T5720) /AEOOWREFZIR L
LT100mm Z@&RN L=, Fio, HEOKRE b X, FISIMOkimnbrr v~y s b
72 & OIS £ TORE 75 200 mm~400 mm TH 5 Z L 25 Ho 300 mm & L7-.
HOCLHEHE, TFEZH SN T LMDk 2 BE L, ¥ /3% 206 GPa, w7 Y
VA 0.3, FIHIREIRIG ) A 833 MPa, AE{LAFM: & LT n ik R TUrfll L 72 0 Cag1t,
A n=007 L35 (32 OIEABEOTHMRBH) . ZO5s, 2Wims—
(CRRRIE TN IE L7 BB OFAMEIT 400 kN & 72225, E7z, MTEALOREZ B
D=2, M3.2 0k 517, BEIRIE ) 833 MPa DMFERMMET LIV 5. 7233,
MELO OF Bl BRI, YA RA K & < R T 2 Bl O 28815 ClIEE /2 4F
MTHB0, A (3.1) 12757 Cowper-Symonds DAY & W TEET % (25 4ELL 1
EHECHEASN, EREFOREEEZELTND. op: BIST, o HHIE T, i
MO R, D, f:MBEAOEH). LirL, RBFFETIE, #9BIEPRERA
B E TORITHIEL CTH 5720, VR ORNETH DM ELO O o BRI S
B LTV,

£,V
ol
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Mesh size:
(5 mm constant)

h=1.2 mm

a=100 mm 100 mum

y «——1Loading rate J:constant

—Contact region:1 mm

5=300 mm

<~(ontact region:1 mm
Fixed boundarv

Fig. 3.1 Specifications of FEM model of thin-shell structured column®.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”

1.2

1 - e ¥+
= 08 .4:/-—; = = "
<]
5
= 04 - = n=0.07
]
Z 02 - -&-Perfect plastic

0

0 0.2 0.4 0.6 0.8 1
Plasticstrain

Fig. 3.2 True stress versus plastic strain curves of two kinds of hardening®.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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3.2 BHMBAEOBMELERODERNER

fiftrix, WWHATREZEE 225 5 PAM_CRASH (Ver.2009) Z W T1T9.
PAM_CRASH %3 U & § 2 B9 A TREEFR1E 2 FIO T B ARAT 13, SAME, KON 7,
Peff]E 72 & DL BRI L B AT KRB IRGH R & 72 203, IFFEDa v B a—4
— D MERRIZ X 0 MR R CRITAIRE L 7o o 72, BB E T, SEIOMENT
KT H HME 100 mm, K S 300 mm O &R I ARHEEE V=1.0 m/s D& - % 1
Je T, AR A E CICE LI AR RIZ »— R 7 =7 Dell Precision M2400,
Intel (R) Core (TM) 2DuoP87002.53GHz THI 100 CTH 5. k7T 2572, Zok
D TR FEAT TE I B R] & SRR AL B3 2 720, Al OB WG EITF R
BRI R 72 % (B 213 V=102 m/s TiE, RN 1,000 ).

Z OBARERIEE, ARSI @S A & O F £ O CEEER 5
AR < FIE, T b bEEREEMEZH W TR Y, HREEOFHEICE L TV,
LIRS, BRI BARE, B X OMEERE S EZEOME ISV TR 5.

3.2.1 EEREIEDELBAEE

A CILE R 1 & BRI DWW TRk 359, 9, BRI 5 Tl
Do EE) TR A A (32) IR T
2
M d—U+Cd—U+Q =F
dt? dt
(3.2)

2T, MIFEE~ RN w7 X, CIFEE~Y N v 7 X, QIINIXZ FL, Fidt
JIXT v, URENRT MLV THD. WY bV QIUIEHIME~ FY v 7 X% K &3
e, Q=KU TEHHETE 5. WEMETIZE— FEREDOEIETHIT 52, IEEIEM
BT QMNENL U DEREE L 72D -0 — RERGDOEEMEZ 2. 22T, KK

(3.2) OEEh TR A BRI T AICFE S L CRE< . 2 O BEHER RIS BTN
O RAREEE % VB L 5 [afifis: (Implicit method) &, KAFRIEEZ MLEE L LW
fi#i%  (Explicit method) (2431 Hi 5.

PRI CIEIGL t £ COLENL, W, IEENBEMTHD & LT, Bkl t+4t TOW
232 L 912, BEZ t+40 281 5K (3.2) oEB) XA L 90 12fig<.
ZO7D, QILQ=KU IZEEZ#Z b, Mt~ MY v 7 ZDfERLE, FHIZ X 5K
FEL723#NT 1 TR RO RMBEAEN VT L 70 5. REORFW 72fRiE L LT,
Wilson-6 #, Newmark-g #, Houbolt i#E£723&1F 5@, Z i S O FEIT T4 HpRIE
WX LTSN DO THY, MM, KOTHAZF L CHEARMELZ & A I ERAET
DIGTERIBEIT X LTI, B~ R YU v 27 RO E 21T & B KR 208N 1 k5
BRORMHFICE KRN 00D, 0, BROBMENE Anbhs.
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BREARECIE, W)t TOERN TR LI t+ A OfF 2RI EE T 5. [afE
ED XD 70 N, RO KMBEMEZ1TDT, X 32 220 FM. B<HWLR
BDHILESCIES fRIE A AR T 5. B t+At, B t— At TOENLE 2 RIEE TH
& L7-BEZ t I2B 95 Taylor BBA L, £ 2 D7 & Fh HEREZ t 1I281F D3R & nE
ERRAD LI ITROBEND.

du
d—tt:(UHAt ~U_g )] 241
(3.3)
d?U, )
2 =Uia 20 +Uy_g )1 At
t (3.4)
ZO2 X RERZItIZBIT AR (3.2) ITRAL, BEHT L ERKERD.
M., < Upog = F—Qp + (U ~Ut 4)M | CUy 4
At? 241 At? 2t (3.5)

IREY, FOREEMTHL L EEETSE, bLEDLD () AAMAITIITSH
PUTHATH % kb 2 B 2 488 & 83, S HRRR AT ICEAL Uy RO D 2 &
WNTX L. @, BRECITETEEITIEZ AV, BEITERT 20, SR TS
WL CHAlbZEERHT 20T, K (35) OENTBERAMHES LERRY. 2L, B
BATH) & AT 2 5B &4 5 LI L 5 BRr 2R3 R E OIR F 2 2 L
Th, WTHEFEOBKARHEAROHE NS XY v h2EELTVWIDTHD.
BB, HEBERT~OMLE LT, AREZEDOA v 2y g X/ &< L, BESY
1, WESHOBRMEAED D72 Y, HaxOE EoTRICEY, BRETOERE
FEITFEMIC e L % L o T D.

BfiEElE, Bl L0, AHE L CTEERD D720 At ZHH/NEL L SRV EED
LEVEDHERE T & 220, BARAYIC b/ N S R B 2 8 (S R o6] TS k) 2
CHET A L /& LD Lk b, 2% Courant 5V & =5, @%, Wk
SR O 00% % IV % 2 L%V, —fFlé LT, MftEERo e EEL, it
WK 3.3 D X D e = AEOBAW ZEH SHGAICOVWTE XD, ZOMEESR
B R DIERIE L i LTRSS 3.4 Th D, 7 HIAARL L INEE & b1, i
D TEVEE T T 5.
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Fig. 3.3 Thin-shell structured beam transient calculation model.
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Fig. 3.4 Calculated result comparison between implicit and explicit.
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AR TH - EHR THEFRITE U ThNTezd, o7y Rz ik THED ORE
EREIETT S, MAT, BRICKEIROPANPAE L DMEE, THEE LD EHEBIS
DL, BRBEHBEHETITFENLE LW L, FFR0 k5 RRBRE S EEN
ZHIN TN,

MU BT shell 235 % [X] 3.5 127~ 9. N H AT 1 D A FE 57 5 (1% 3.5 D H gL L)
EHTHERTHD. BT shell EHED L 5 K BR OGS, BENOHED T 5
BRICIX 3.6 DXL 9D G EWT LA BAET DRSS, X7V —27F
AE—FK, HHWVEFErFU—F— REEEINL TS, T7h2b5, HiaNK 3612
AT EIREMELTYH, BEORTIEOT A, e blz0icy, BRAEOOT
HIT RN —N0 DIREEL 12D Z LD b5,

® ® Node

Integration
point

@ o
Fig. 3.5 Quadrilateral shell element with one integration point (BT shell).

Fig. 3.6 Hourglass mode.

FEE DO WE RN 2 FATT 5720120, ZOT7 T —7 7 AE— &[T 5 2 &R

VETHD. BRI, ITOFREFEMT 52 & TEMNRITEEN GO D.
(1) ETFTVOEFRMNE (MR, AU ZEO—BRNRFHIELE) HNE< T 5.

(2)  Stiffness based method using the plastic modulus with improved orthogonality to rigid
body motion & FE(XAV %, BSEMIMEIZ BEE U 72 i s IE 247 O Hilif 2 fF 5 .

(3) MHEFOEFET— RFEEHRTEHIDOICHH/NSWEETA XI5, S0,
PRSI OB P RS 10 mm R L 725728, 5mm DA > v =t A X TH4
ANCYARE CI[ Ry
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F7o, BROWREFTROESBIZOWTIE, LTORFORBRICLD 788 Lz,
F 1k U 72 | R 0 SR 18 ORI S BN Z Bk 9~ 5 T L 2 X 3.7 1R T. I x
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EHWS.

(b) Deformation mode
Fig. 3.7 Model for the study of number of thickness integration point.
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Fig. 3.8 Contact force — displacement curve comparison for several integration points.
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3.3 AmKHLEREH

BLITART L O, HORMEIITAE Liz—EEE V (m/s) % FF ORI E {1
IZ ko TENZ 5 2, FEO FoEIZLL FIZR R 2 Efhfank 2/ U CHAR TR s
TW5o. Aff & B3 K OWE T & MIUARR ORI, BUEMAT O %2 eV %
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F L, WK EAE T immm i OBEMERIC8AET 2 NER T LTRD D, ok, Bl
AT DR IT NI, BRI 1=0.2 DEERZZE LT-.

T LAY X LENCAEHE R B O E L FHRICOWTRHIBIT 5. HiRA B 2 i Hefih
THGEEME LEMHEELZZ 2 5. Eiisnsm (BEROHm THEKIND) &
Master Segment & FEOR, i L T < 5 i % Slave Nodes & FES ([X] 3.9 &2R) . X 512,
oI oE T A N L T DHEIROKM TR A E R Z X 3.10 IR
Z Z T, Hitting Slave Node & (Z3E-DW T X 72 BFEDHi A, Closest Master Node & 1345/l
Ensbtv 7 A2 b BT, &b Hitting Slave Node (23T A4S, Defense Node & i3 Hitting
Slave Node Zt 7 A > b B LI ACiE IARABAIICE - 728 0T, Hitting L T< %
iR ORAZBI < (Defense) Him T 5. Hfrf#r)72BARIL, Closest Master Node 7>
© Hitting Slave Node #5527 hLv& g & L, &2 A2 h® Closest Master Node T?D
BT R7 Mz et T5 8, W TERINDHNYZ MLsBELILS.
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ZZ T, e3 02]:,
. (i xCi41)
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Slave nodes

Master segments

Fig. 3.9 Node to segment correspondence search.

Contact
segment s

Connected
nodei

Fig. 3.10 Node to segment correspondence search®®.

Hitting Slave Node 232 27 A > MR A L7202 E D L, LTFTOXTHETE 5.
o=n-(t-r)<0 (3.8)

I, ERAT P TR es LEWVTH RV, EEMICITELTORIC X S,
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or ar

os ot (3.9)

(8r ar)/
n=
os ot
ZIT, s tiENZ Rbs, tOHAEICIR > TZHEEORE S TH .

LB BH O DI, &;éﬁiﬁﬂﬁg (Contact Thickness) % &3 L 7ZFFDR A&

(penetration : §), #fiic 77X~ k)L (Contact force vector) %X 3.11 (27~ § 72112
ALTzEE, UTORIZ LN T ERAESYE, BABILEZXD.

F=ks (3.10)

T, kI D 1 BHE AR - BEAROER RN RO LB,

(Y
(Y

dt? W

Ml Hitting slave

node

Contact
segment

ng

Fig. 3.11 Contact stiffness k , related nodes and masses®.

Hitting slave node D& & & 2\ &% My, Xi, Defense node DE & & BN &% My, Xo &
L, —EHEBELINIZZ O 2 DOFLEPESNe & EITHET DK ITONNFREERZE K &
T 5. M IZHEiA/E &, M, Contact segment Z#&R% 3 % Him OB & 2 TR B CHTF
LBl TH L. 2 (B11) 1T, x=xe'' ZRA L2 &

—0’M; +k —k

Xg=0
K — ™My k| (3.12)
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L0, FEHHMBAEST-OIIIITIIRN0 25, LER-ST, o2t xE[ET5H
&,

4 MM,

k =
At2 My +M,

(3.13)

Z ORI X0 HEAEIYE K IFE SN D0, BT 5 2 SOWIROREIZ XL Y, FER
BELRNZ ENDH D, FTEO 2 SOMENHOLE, 4% 1301 FE L T5 LEHE
INEZTE L, MO 2R T Z ENARETH D Z L BREBRMIZ 2> T D
NREHK ZRE ST IEE 2 LM I0NEK E 720 BEF R O RZEEN T

—F, NESPVBED LRADKE L R VITRBEME N5, Lo, K

(3.13) ZHARL LAND, RIICE > Tk ZHIETEZZENMEL 2D, BT, M
E My DR REWGAEIE, N (3.13) TERT A AR TIIAEEGDEL 55650
2\, K312 ICBANE S, HEMARIE ho 27, F7z, K313 ICE AR 6 & #fib ) R
DR Z T, K (3.13) (TR HEARIIME K 18I D £ £ BEARE hy £ TR KR
T5. LrL, M & Mo DR REWGES (Blx X, >— 7 via s efofiho
i 7e ENIAE e r— 2) 1, ZOEMK I TIFEALTLEY ZERTFREIND

—7J7, MIEOE FHMEINEEZ B D LHENRRELE L D720, wKE L TIEREN
REERTDHIEDRDD.

* Contact Force Contact Force
1 - O b i
Contact Thickness | Vector Vector v

o (Penetration)

Master Segment

Fig. 3.12 Contact search area®.
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Fig. 3.13 The relation between Penetration and Reaction.
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Fig. 4.1 Loading rate dependence of maximum reaction of rectangular thin-shell structured
column®,

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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TIFEAERAELRY) EIFEH LY. 2oL, UFTOZENEZ5.
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4.3 IREFEEEBICHIT2EMEEKREFENE

BRHEEE 102 mls D & XD, AR 267 1L.4mm (t=140 ms) T4 U AR AKX (129
KN) T TCOEE— R&X 4.2 123, ARGEEDO+75/N S 70 RN & A7 E 558
T, HEOETHAIC—EDETRERIIREE L2 5| & Z 3 Euler OJEREE— R
(ZHERL U= B JE N E T B
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Fig. 4.2 Out-of-plane deformation modes of three cross sections at t=140 ms (1.4 mm) with
V=107 m/s®.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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4.2 @ Plane-B |28 % b-b #f LW T MEN %2, ARAENIZIEC TR LEZDOA
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BV, Karman B3FHE E LTS HEMRFHIGEVWER B 2615, AT, Karman
DREEIC N k24.0 & k=17 DRI OEICS B OFHTFE RN A > TWD Z &b, FED
il EAE AT O RIK T OHEEIZIE, 2 E TEANZRRE CTHY ST E 7= Karman
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Fig. 4.3 Distributions of out-of-plane displacements at b-b line of Plane-B in Fig. 4.2 for
several loading point displacements, where dashed lines indicate the curves after buckling®.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”

4.2 ® Plane-B Wi @ b-b # L g5 (y=0) T U 2R KmEIINEN ORFREIGE,
F L UN=140, 150 ms TO AN 5340 D% @K & X 4.4 12~ mANVENLITREZ] t=29
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Fig. 4.4 Time history of maximum out-of-plane displacement at y=0 in Fig. 6 and displacement
distributions at t=140, 150 ms®®.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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Fig. 4.5 Time history of reaction at V=102 m/s®.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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Fig. 4.6 Out-of-plane displacement inx direction with V=10 m/s®.
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Fig. 4.7 Reaction at the starting point of out-of-plane deformation and converging to Euler
buckling®.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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Fig. 4.8 Effect of work hardening on reaction over the value at uniform plastic state (400 kN)
at V=30 m/s®.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”

EYEN OFBIZOWTHFTT 5. ARHEE 10 m/s, 30 m/s (IZOWT, T
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nx49m» (@ & (b) THD.

Fo(t)=> m.a,(t) (4.1)
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Fig. 4.9 Reaction modified by inertial force®.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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Fig. 4.10 Partitioned energy map dependent to Loading rate®.

15 layers for equivalent stress 0-0.833GPa
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15 layers for equivalent stress 0-0.833GPa
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15 layers for equivalent stress 0-0.833GPa
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Fig. 4.11 Evolutions of equivalent stress distributions for loading rates of V=30 m/s, 10 m/s
and 10" m/s, where the pink colored area indicates the stress over yielding®.
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Fig. 5.1 Three mechanism-based regions of loading rate dependence on maximum reaction.
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Fig. 5.2 Geometric changes of cross section of thin-shell structured column. Variation of
width a.
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Fig. 5.3 Loading rate dependence of reactions for various column widths in comparison
with the reactions calculated from Karman’s solutions.
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Fig. 5.4 Maximum reactions at the quasi-static state for various column widths in
comparison with Karman’s solutions with x=1.7 and 4.0.

5.2.3 *h=XLIZEHT HEE

54 [TR ST RSO a ~DkAFEZ E &b+ 5 Z & T, X 0 EMle A 2hiE
ERNETRTHZENTED. 4ETIE, K450 A BFHETORRII IR A T1 =X
& LT, Euler DEEJEIZ XD —REREMEEEN O REERKOMNAEENETEL D Z L,
Z LT, ZO®%EGHEIZIIT D — R TRV RER R BMEEER & & b 1SS 2R O MR
TEMEI R —ERET— RICBITL, ZOMREMARKNETORT Z & &Rz,

ZZTIE, £7 Euler OFEJRIZER L, X 5.4 DK OE a ~DELFEME & OBt
RIS, £, 212 &£ 213 £V, a=36 mm LA TliX Euler JEJE 7 A L Tz
WZ &, a=40 mm LA BT Euler OEEJEE— F2Am=2 7205 8 £ THEIZ L > TE{LL T
Wb Z BN D . Euler BEE O & FEEARE O (2.6), (2.7) XV, a=62.5mm D
BRED Euler OJEJEMEIL 825kN & 7210, Karman D x=1.7 DffE (=94.4kN) LV /X
SIRHN, TNnLk v bigar/hE< 725 L Euler DEJEREO TN RKEL 5. Bk L
728918, REEORELEZEE TIT Euler OFEJRN £ FRIBFHS S LTEL DD T,
Karman Ofi# & O K/NERD EZ 3 2% (@23 62.5mm LA T) (ZOWTHEZDH. ZD
P CIEREE— FIREII S L EE 720, JEIEAREL ke 121X 2.13 X0, a=36 mm 2> 5
62.5mm Tl 4.000 2>5 4.034 DfEL 72 5. LR - 7T, ke=4.0 LTI L7ZHATHH
KAZEIZ 0.9NRETHD. 2D EnD, ky=4.0 —E & U 7= K5 i fa7 5 % [R5 i 7
ELTHB54 IO LT=DMK 55 THDH (K55 OF MR . Z OFEJEMAEAFTR L
TR OMATD=ALTEESE, ETIIEEARIRIE L 72 5. IH a=36 mm, 40 mm,

76



Gl
ol
o
pii
e
ff
X

AP ST TTIREN R

50 mm DFEATHE 1L, 2 >0 Karman OfiE (X 5.5 FHDx=1.7 & 4.0 DEHR) ORINLE
4% Euler D FEJREMELRICIFIFRN ST fER L o TN A,

160

150 -

140 -

eee Karman’s soln. x=1.7

Reaction (kN)
o
[

----- Karman’s soln. «k=4.0

== \aximum reaction

100 «««+ Envelope of Euler’s soln.
lII...I...I....I.‘..I....I........l.........'..l".'.'lll.lll"
90
80 . .
0 20 40 60 80 100 120 140 160 180 200

Width @ (mm)

Fig. 5.5 Maximum reactions at the quasi-static state for various column widths in
comparison with Karman’s solutions with x=1.7 and 4.0, envelope of Euler’s solutions.
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FEE T MmN 5 AT O 45341 Karman OEGE L7c b D & #7e b, 56 O X HIZEa
(KAFT 22 L bnd. K57 DX 91T, BEa=50mm & 200 mm OAEE— KT
Karman O E L7 AP L TWD Z EnD, Ean/hSWEE k=17 DRI, K
TWIELE k=4.0 DFRIZHHET 2 Z Lo 5s.

79



55 % AR RIE T TR R

Displacement_X

min=-0.614 at NODE 6955

meace=0.620 at NODE 3517
0820
0711
0602
0493
0384

= 03275

& 0186

— D057

— 005
-0.160
-0.269
-0.378
-0 487
-0.596
-0.705
-0.814

FEM sol.

Digplacement mode tor 4=1.7

(a) a=50 mm

Displacement_¥
mir=-6.014 of NODE 109151

mncsE (18wt NODE 109223 10

6018 i

5.216
4414
ag2

= 2810
— 2008
o 1305
— 0403
= -0399
g -120
-2003
-2805
-3607
-4.409
-5212
-6014

(b) a=200 mm

Fig. 5.7 Out-of-plane displacement distributions at maximum reactions for a=50 mm and
a=200 mm.
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Fig. 5.8 Modified Karman’s solution in comparison with Maximum reactions at the
quasi-static state for various column widths.
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Fig. 5.9 Geometric changes of cross section and length of thin-shell structured columns.
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Fig. 5.10 Loading rate dependence of reactions for various column lengths in comparison
with the reactions calculated from Karman’s solution.
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Fig. 5.11 Time histories of reactions for various column lengths at v=1.0 m/s.
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Fig. 5.12 Line-wise distribution where stress components are measured.
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Fig. 5.13 Stress distributions along the line in Fig. 4.10 of thin-shell structured with b=300
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Fig. 5.14 Line-wise distributions where stress components are measured for thin-shell
structured columns with various lengths.
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Fig. 5.15 Time histories of stress distributions along the lines in Fig. 5.14 comparison.
b=100 mm, 200 mm.

88



5T AMEE KA T TR R

0-00E+00 =0 1115 T T
=0.1 ms
-1.00E-01 +——— , p—
1 =02ms |~
200E01 | 4=0-3-ms—— —
-3.00E-01 —£=0.4ms
_ ~— =0.5 ms —
£ -4.00E-01 ""'_'I:O 6 ms —
2 &“-——m_ - | ,f‘——’ﬁ
-5.00E-01 ™ — -
% 5 \'--.\\_-\ =0.7 IIliS //—-—-—’
:‘f -6.00E-01 \ "'-——--.I..: q —— /
-7.00E-01 NG 7
=0.8 /
-8.00E-01 - =09 ms\ /
-9.00E-01 P ——
-1.00E+00
-50 -40 30 -20 -10 0 10 20 30 40 50
v-coordinate (mm)
(c) b=300 mm
0.0 =0.2 ms
'0. 1 _l_ilr) 4‘ TIIS —
02 | —=koms —
1=0.8 ms
03 k loms —— 74
—_ =1.1ms
04 — — ,-’_j
] =1.2
% =05 \\ ms\--_ __-/ /%
T -0.6 N
[N \ \ 3ms // /
0.7 \ \\F // /
08 \ =132 .\\-______-—// /
\ T em—_—— /
=1.4 ms| — —
-1.0
-50 -40 -30 -20 -10 0 10 20 30 40 50

y-coordinate (mm)

(d) b=600 mm
Fig. 5.15 Time histories of stress distributions along the lines in Fig. 5.14 comparison.
b=300 mm, 600 mm.
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Fig. 5.16 Relationship between the stress parameter « and cycles of stress wave N.
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Fig. 5.17 Various cross sections of multi-angular thin-shell structured columns®.
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Fig. 5.18 Loading rate dependence of reaction for multi-angular cross sections in comparison
with Euler buckling force.
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Fig. 5.19 Loading rate dependence of reaction for multi-angular cross sections in comparison
with the reaction calculated from Karman’s effective length®.
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Fig. 5.20 Reaction modified by inertial forces of hexagonal and octagonal beams with loading rate
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Fig. 5.24 Cross-sectional shapes of examined model for various aspect ratios varied in 10
mm increments®.
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Fig. 5.25 Loading rate dependence of maximum reaction for various aspect ratios®.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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Fig. 5.26 Aspect ratio dependence of maximum reaction in the low loading rate region and
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“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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Fig. 5.27 Loading rate dependence of maximum reaction for various aspect ratios
(characteristic of long sides only) ©.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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Fig. 5.28 Aspect ratio dependence of maximum reaction in the low loading rate region and
relation to von Karman’s effective width solution (characteristic for long sides only) ©.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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Fig. 5.29 Loading rate dependence of maximum reaction for various aspect ratios
(characteristic of short sides only) ©.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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Fig. 5.30 Aspect ratio dependence of maximum reaction in the low loading rate region and
relation to von Karman’s effective width solution (characteristic for short sides only) ©.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”

MERELE plg DN/ E < 72D &, RIRICED D HEMBEOEIGNRKE 725 Z &5, Karman

DOffIX 1133 < . plg= 0.4 LT CIXADMREGR D DM 2523, R RKITORE S

REL 25,

UL EOFENTRE R A2 BT 2 &, e KR DA R EARAFEIZ DV T,

(1) EHEARIR T ORI & A S,

(2) (RHARTIR TORBEARFEEIIRE V., 2O EEAERIIED O SREET
b5, BRI ED D Karman OFMEOLLENEE L Tnb B2 b b,

(3) REHARMI TORL (q=100mm) D5 KK T DAl FEEARAFME O MERE LA A7
EH5. ZORIZONTIE, BBRTLHLAD=ALNEKNEEZEZBND.

(4) AREARTITORELL p D KIS DB AR DR LR A EITsR V. 2
AU EICEAORIEIZ ED 5 AMEDFIENKREL D LICLb.

101



AP ST TTIREN R

"
ol
ot
2
b
X

553 AANZXLIZEHT HER

(Rl B 1A ik C 32 (g=100mm) DOFEREELARIFIEIC DV TE LT 5 Kl Ak (10°
m/s) DI K BT D LT — RIZOWT, ZREI X FIEEN &y SN %
FNZNIK53LITRT. EHFERIC 3ROE— FTh o ZEIERE— NiL, plg=0.5
EFTIEIRDEETHH. plq=04 LLFIZ D & AROE— RIZE(LLTWVWDHZ Enb
M5, 2, Bz plg=04 O%E, HOOTFEINIERE— RFTIHFEORS L
U DOLNTE5: 1 THDHZ LMD T~8RDE— RNELIEAE LTV 2FEDX 2.13
£V, 75:1DHEND b=300 mm (2375 alL40mm & 720, Euler FEJELREL ker 23
sAMEZED DT 8 L7 5). —J7, Kid (q=100mm) O PR N HEEE— R,
FARIC 2 5K 213 1V 3k E72->TERY, 3RE— RBROLEEMIRET S, Z0
T— RRBOTEBEZ R (AE) TERASEDLZLIChD720, 4 IRE— ROMELMNIC
ELTEEBEZLND. ZOF— RREOEIZOWT, TR (A5 CTOERZiEM
ot 5.

3000
2600
2200
1.800
1400
1.000
0600
0200
-0.200
-0.600
-1.000
-1400
-1.800
-2.200
-2.600
30 z

I x=disp. y-disp. x=disp. y-disp. x=disp.

X v

S]] —

j.’-dlS]. x=disp. y-disp.

2/q=0.8 p/g=0.5 p/g=0.4 plg=0.2

Fig. 5.31 Comparison of out-of-plane deformation modes for various aspect ratios near the
maximum reaction at a loading rate of 10° m/s®.

“Reprinted with permission from SAE Paper No. 2012-01-0554 © 2012 SAE International. Further use or distribution is not permitted without permission from SAE.”
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Fig. 5.32 Distribution of out-of-plane displacement for Fig. 5.31 (normalized to maximum
displacement at a-a position in Fig. 4.2) ©.
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