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Chapter 1  

General introduction 

 

Biosynthesis of biofuels, diverse chemicals and sustainable synthesis of several 

chemicals has attracted much attention due to the potential depletion of petroleum. 

Natural organisms often produce target metabolites at low yields, and it is difficult to 

improve bio-products since the information about metabolic system and genetic 

manipulation tools of the organisms are generally limited. 

Metabolic engineering is the key solution broadly used to redirect existing 

metabolic pathways and/or to incorporate heterologous pathways into well-

characterized hosts, including Escherichia coli, Saccharomyces cerevisiae, and so 

forth, for improvement of the productions of native and/or nonnative metabolites. 

However, it is still difficult to know and answer the following questions; How does 

the global metabolism of a microbial cell respond to changes in its environment? 

How do we get the feasible heterologous pathways and genes to improve the 

productivity from huge number of possible pathways/genes? Which host is suitable 

for a target production? To answer these questions, an appropriate computational 

method/in silico platform focusing on metabolic design is desirable. 

This chapter, the importance of bio-based process and the reason for the 

development of in silico platform will be discussed. Then, several pathway design 

methods previously reported will be explained and key features comparing with this 
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thesis are summarized. In this study, flux balance analysis (FBA) was used to estimate 

fluxes of the metabolic system. In the third part of this chapter, a process for 

constructing a model of the metabolic system and how to use FBA technique for 

analyzing the metabolic fluxes will be presented. Finally, the objective and outline of 

this thesis will be summarized. 

 

1.1 Importance of bio-based process for valuable chemicals 

 

The demand of crude oil is gradually increasing as shown in Fig. 1.1 as well as 

increasing in its prices. These data suggest that petroleum sources are unsustainable. 

It takes about hundred to million years to make oil by decomposition of dead 

organisms mostly zooplankton and algae. Fuels and chemicals are mainly produced 

by petroleum-based process from crude oil. Moreover, the petroleum-based process 

has a negative impact on earth by releasing pollutants and generating hazardous 

wastes. Thus alternative energy resources, such as solar, wind, hydroelectric and 

biomass, which are renewable and sustainable, have been increasingly used in order 

to preserve fossil resources and to reduce CO2-emissions. Among renewable energies, 

biomass shares the most consumption in 2010 (Fig. 1.2). Biomass can be converted 

into three main types of products, i.e., electrical/heat energy, transport fuels, and 

chemical feedstocks (McKendry, 2002) by using microorganism via bio-based 

processes.   

In addition, biomass is available as renewable resources either as natural 

processes (wood, pulp) or as by-products and/or wastes of human activities 
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(molasses, rice straw, corn stover). Therefore, bio-based process by using 

microorganisms as cell factories to convert biomass into valuable products is 

becoming an attractive way. In many years ago, bio-based process mainly focused on 

improving the production of native metabolites (found in a host cell) widely used in 

food and beverage industry, for example, amino acids produced by E. coli and 

ethanol produced by yeast. Nowadays, trend of bio-based process for useful 

products has moved to produce nonnative metabolites (not found in the host cell) 

basically important as chemicals used for many industrial purposes such as polymers, 

pharmaceuticals, fuels, solvents, and so forth. Currently, those of useful native and 

nonnative metabolites are able to be produced by microorganisms (Dugar and 

Stephanopoulos, 2011; J. W. Lee et al., 2011; S. K. Lee et al., 2008; Papini et al., 2010; 

Schneider and Wendisch, 2011). The examples of such compounds and global 

demand are shown in Table 1.1. Some of bio-fermentation products, for instance, 

ethanol and higher alcohols are usually being used as fuels and solvents (Wang et al., 

2012). 1,3-propanediol forms the basis of polymers such as polytrimethylene 

terephathalate (PTT) (H. Liu et al., 2010), while isoprene is an intermediate 

metabolite in the production of cis-1,4-polyisoprene, a synthetic version of natural 

rubber (Ohya and Koyama, 2005).  

As shown in Fig. 1.3, the sales of chemicals made by bio-based process in 2010 

were $118 billion. It is forecasted to increase to $296 and $668 billion by 2015 and 

2020, respectively. These data suggest the importance of industrial chemicals made 

by using bio-based process. The bio-based process for chemicals would be an 

efficient route for reducing wastes and CO2 emissions, and preserving fossil fuels 

comparing with petroleum-based process. 
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FIG. 1.1 Crude oil consumption and price from 1990-2011 

(Source: U.S. Energy Information Administration available at 

http://www.eia.gov/) 

 

FIG. 1.2 World total and energy consumption by source, 2010 

(Source: U.S. Energy Information Administration available at 

http://www.eia.gov/) 
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FIG. 1.3 Trends in production of bio-based chemicals. 2015 and 2020 data are 

projections based on 2010 data (Adapted from (Festel et al., 2012))  
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Table 1.1 Bio-based products and global demand 

Compound Host cell factory Reference 
Global market size* 

(million ton/year) 

Industrial 

application 

1,3-propanediol 

Escherichia coli (H. Liu et al., 2010)  

0.1-0.5 
Co-polymers to 

produce PTT for 

plastics 
Saccharomyces 

cerevisiae 
(Rao et al., 2008) 

1,4-butanediol Escherichia coli (Yim et al., 2011) 1.7 Polymers, solvents 

1-butanol 

Escherichia coli (Shen et al., 2011) 

3.0 
Polymers, plastics, 

solvents Synechococcus 

elongatus PCC7942 
(Lan and Liao, 2012) 

2,3-butanediol 

Escherichia coli (S. Lee et al., 2012) 

0.06 
Chemical, food, fuel 

fibers, plastics 
Bacillus subtilis (Biswas et al., 2012) 

3-hydroxypropanoic 

acid 
Escherichia coli 

(Rathnasingh et al., 

2012) 
0.5 

Contact lenses, 

polymers for diapers, 

carpet fibers 

Cadaverine 

Corynebacterium 

glutamicum 

(Kind and Wittmann, 

2011) 
0.1 Polyamides for plastics 

Escherichia coli 
(Z.-G. Qian et al., 

2011) 

Ethanol 

Saccharomyces 

cerevisiae 

(Guadalupe Medina et 

al., 2010) 
60 

Biofuel, food 

beverages, solvents 
Escherichia coli (Woodruff et al., 2013) 

Glucaric acid Escherichia coli (Moon et al., 2009) 0.06 Solvents, nylons 

Glutamic acid 
Corynebacterium 

glutamicum 

(Becker and Wittmann, 

2012) 
2.5 

Monomers for polyester 

and polyamides 

Isoprene Escherichia coli (Lv et al., 2012) 0.1-0.5 
Natural rubber, 

thermoplastics 

Itaconic acid Aspergillus terreus (Kuenz et al., 2012) 0.08 Polymers, fibers 

Lactic acid 

Escherichia coli 
(Mazumdar et al., 

2013) 

0.3-0.5 
Polymers, plastics, 

fibers 

Saccharomyces 

cerevisiae 
(Pacheco et al., 2012) 

Synnechocystis sp. 

PCC6803 

(Angermayr et al., 

2012) 

Malic acid Escherichia coli (Zhang et al., 2011) 0.06 
Acidulent in food 

industry 

Muconic acid 

Saccharomyces 

cerevisiae 
(Curran et al., 2013) 

2.30 Polymers, plastics 

Escherichia coli (Niu et al., 2002) 

Succinic acid 

Corynebacterium 

glutamicum 
(Litsanov et al., 2012) 

0.1 
Feed additives, fuel 

additives, fibers, 

polymers 

Escherichia coli (Hoefel et al., 2012) 

Saccharomyces 

cerevisiae 
(Otero et al., 2013) 

*Data retrieved from (Vennestrøm et al., 2011) and IEA Bioenergy (source: 

www.ieabioenergy.com/) . 
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1.2 Importance of computational methods for metabolic 

pathway design 

 

Several approaches leading to the production of valuable products generally use 

engineered microbes in which native metabolic networks of microorganisms are 

artificially modified to produce target products. One such standard strategy 

employed for producing target metabolites is the incorporation of heterologous 

pathways into well-characterized hosts such as B. subtilis, C. glutamicum, E. coli, and 

S. cerevisiae as shown in Table 1.1. Nevertheless, the selection of suitable 

heterologous metabolic pathways for host organisms is often difficult due to the 

metabolic network complexity. Besides, huge amount of information on metabolic 

reactions have been found in literature, and are available on public databases such as 

KEGG (Kanehisa et al., 2008), BRENDA (Chang et al., 2009), ENZYME (Bairoch, 2000), 

MetaCyc (Caspi et al., 2008), and BKM-react (Lang et al., 2011) as shown in Fig. 1.4. 

There are 8,507, 8,244, and 9,096 metabolic reactions available on BRENDA, KEGG, 

and MetaCyc, respectively, and the integration database, BKM-react, contains 18,172 

unique metabolic reactions combining from the 3 databases, BRENDA, KEGG and 

MetaCyc. Thus, to find appropriate heterologous pathways for target production 

generally requires massive calculations. For example, to search for heterologous 

pathway for producing target nonnative metabolite, it requires users to search the 

heterologous reactions which are able to connect nonnative metabolite to the target 

host metabolism. As you can see in Fig. 1.5, there are 11 possible 

routes/heterologous pathways containing 4 heterologous reactions to connect 

nonnative metabolite to the host’s metabolic network. Since the complexity of 
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metabolic network available on database, it is difficult to manually check and search 

for all possible heterologous pathways. In addition, the substrate-product conversion 

should be primitively estimated as a reference value to be compared with 

experimental outcome, and could be used to evaluate the feasibility of heterologous 

pathways. 

In Fig. 1.6, a toy metabolic network demonstrates 7 biochemical reactions (2 

intracellular and 5 transport reactions) and contains 5 intracellular metabolites (A-E) 

and 5 extracellular metabolites (Aext, Cext, Dext, Eext, and Biomass). If biomass is a 

target from this network, theoretical yield can be calculated from reaction 

stoichiometry between reactants and products. Therefore, 1 mole of A, D, and C will 

be converted to 2 mole of Biomass and 1 mole of E as a by-product as shown in Fig. 

1.7. This toy metabolic network is simple and contains only 7 reactions, so it is 

possible to calculate by hand. However, the real host cell such as E. coli contains 931 

internal and 143 transport reactions (Reed et al., 2003), it may be impossible to 

manually calculate theoretical yield of target product and find feasible pathways of 

targets. 

 

FIG. 1.4 Distribution of the unique metabolic reactions between BRENDA, KEGG, and 

MetaCyc databases (Lang et al., 2011) 
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FIG. 1.5 Heterologous pathway design by human to search for possible heterologous 

reactions to connect nonnative metabolite to the host metabolism 

 

FIG. 1.6 Toy metabolic network map consists of 5 intracellular metabolites (A-E) and 

5 extracellular metabolites (Aext, Cext, Dext, Eext, and Biomass), 2 intracellular reactions 

(v1-v2) and 5 transport reactions (b1-b5) and biochemical reactions present on right-

hand side. 
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FIG. 1.7 Theoretical yield calculation based on reaction stoichiometry 

Without using the computational method, it is difficult and tight to handle 

numerous reactions in host’s metabolic network and to search heterologous 

reactions for the production of nonnative metabolites from databases. Additionally, 

to find the feasible heterologous pathway and to check whether one target 

nonnative metabolites produced by the host cell, are time-consuming tasks, when 

these tasks depend only on the researcher’s knowledge and manual screen of 

information. From these reasons, a computational method is required to help 

researchers for finding the feasible heterologous pathway of target nonnative 

metabolite. 

Recently, numerous in silico heterologous pathway search methods have been 

proposed and used in target metabolites productions (Cho et al., 2010; Dogrusoz et 

al., 2009; Finley et al., 2009; Flórez et al., 2011; Handorf et al., 2005; Li et al., 2004; 

McShan et al., 2003; Moriya et al., 2010; Pey et al., 2011; Pharkya et al., 2004; 

Rodrigo et al., 2008; Yousofshahi et al., 2011). Comparison of key points among those 

methods is shown in Table 1.2. The key points are composed of: 
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1. There is no requirement of background information for searching pathway, 

for example, rules of enzyme transformation between substrate to product. 

2. The calculation time of the method is fast when search for the optimized 

pathway with maximum theoretical yield of target. 

3. New/alternative pathways of target can be generated. 

4. New reaction(s) not existing in the available databases can be generated. 

5. The information of new reaction such as gene, sequence, protein is available. 

6. The heterologous pathway is generated for specific host cells. 

7. The information of heterologous genes corresponding to a heterologous 

pathway is available and specific for the target host cell. 

8. All possible nonnative metabolites and heterologous pathways information 

are available as a catalog for each target host cell.  

In Table 1.2, all approaches are able to screen the new pathway for target 

production. However, only PathMiner (McShan et al., 2003), Pathway generation (C. 

Li et al., 2004), PathPred (Moriya et al., 2010), BNICE (Finley et al., 2009), and 

Prioritization (Cho et al., 2010). These methods can generate new metabolic 

reactions since it used the concept of generalize enzyme activity based on third-level 

of enzyme classification, which is recommended by International Union of Pure and 

Applied Chemistry and International Union of Biochemistry and Molecular Biology 

(IUPAC-IUBMB) (NC-IUBMB, 1999). Each enzyme is assigned a four-digit (EC i.j.k.l) 

Enzyme Commission (EC) number. Enzyme-catalyzed reactions based on the third-

level enzyme classification, EC i.j.k, are not substrate specific, and thus, these 

described the transformation of functional groups. With this concept, those methods 

create rules of enzyme transformation to search for possible reactions catalyzed by 
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the third-level enzyme. Even those methods are capable to create new metabolic 

reactions, but the information of gene and protein for further study is unavailable. 

Thus, the rule-based methods are high risk as predicted chemicals may not be 

possible in real experiments. 

PathMiner, Pathway generation, PathPred, BNICE, and Prioritization methods 

require background information are categorized as the rules-based methods, while 

OptStrain (Pharkya et al., 2004), Network expansion (Handorf et al., 2005), 

DESHARKY (Rodrigo et al., 2008), Graph-based pathway (Dogrusoz et al., 2009), Path 

finding (Pey et al., 2011), Probabilistic (Yousofshahi et al., 2011), SPABBATS (Flórez et 

al., 2011), and ArtPathDesign (this thesis) (Chatsurachai et al., 2013) are categorized 

as the graph-based methods. The graph-based methods are capable to generate 

pathways of target without using any background information of enzyme activity. 

The rule-based methods require much time to search for the optimized pathway due 

to a huge number of possible pathways from rules and atomic balances, while most 

of graph-based methods are fast to calculate based on reaction stoichiometry. 

However, the OptStrain, Network expansion, and DESHARKY applied alternative 

ways/scores to rank and select the optimized pathways. For example, OptStrain used 

OptKnock (Burgard et al., 2003) algorithm for further improving yield of target by 

knockout genes in the host network. DESHARKY used earlier experimental data of 

RNA polymerase activity as a score to find the optimized pathway, which required 

more calculation time as well as prior information. 

Among key features in Table 1.2, most of earlier methods have not yet been 

developed to provide specific heterologous pathways and heterologous genes for the 
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host cell in addition to the catalog of nonnative metabolite especially for the target 

host cell. These features are significant for researchers in order to improve and /or 

produce the desire of industrial nonnative metabolites, because expression of 

heterologous pathways may be low/not active. The main reasons are sometimes 

occurred by heterologous genes show low/no expression in the target host cell since 

diversity of species and cofactor balances such as NAD+/NADH and NADP+/NADPH. 

Hence, in this thesis I have developed the in silico method according to the 

purposes (Fig. 1.8), to search for feasible heterologous pathways, suggest rational 

heterologous genes particular for each host, and provide the catalog of nonnative 

metabolites, which are able to be produced by the host cell. This system was named 

as ArtPathDesign (Artificial heterologous Pathway Design) and could overcome the 

problems about host-specific heterologous pathways and genes, as well as the 

catalog of nonnative metabolites (Table 1.2). In addition, this computational method 

greatly reduces times and costs for data analysis and also experiments.  
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FIG. 1.8 The schematic of the computational method developed in this thesis, named as “ArtPathDesign”. 

Host metabolic network and metabolic reactions collected in an in-house database were used as input data for screening heterologous pathways of nonnative 
metabolites. In parallel, Codon Adaptation Index (CAI) scores of all genes retrieving from the available databases was calculated and used to select candidate genes. 
FBA simulation was performed to select heterologous pathways. Finally, list of nonnative metabolites and heterologous genes particular for a target host will be listed 
as the output result in html-format easily opened by web browser such as Google Chrome, Firefox, etc. 
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Table 1.2 Comparison of computational metabolic pathway search methods 

Method 

name 
Reference 

Key points of method 

No 
requirement 

of Background 

Optimized 
pathway 

search 
(fast) 

New 
pathway 

New 
reaction 

Information of 
new reaction 

(enzyme/gene) 

Host-
specific 

pathway 

Host-specific 
heterologous 

gene(s) 

Catalog of 
nonnative 

metabolites 
(host-specific) 

PathMiner 
McShan et al. 

(2003) 
✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ 

Pathways 
generation 

Li et al. (2004) ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ 

OptStrain 
Pharkya et al. 

(2004) 
✔ ✖ ✔ ✖ ✖ ✔ ✖ ✖ 

Network 
expansion 

Handorf et al. 
(2005) 

✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ 

DESHARKY 
Rodrigo et al. 

(2008) 
✔ ✖ ✔ ✖ ✖ ✔ ✔ ✖ 

Graph-
based 

pathway 

Dogrusoz et al. 
(2009) 

✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖ 

PathPred 
Moriya et al. 

(2010) 
✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ 
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Table 1.2 (Continued) 

Method 
name 

Reference 

Key points of method 

No 
requirement 

of Background 

Optimized 
pathway 

search 
(fast) 

New 
pathway 

New 
reaction 

Information of 
new reaction 

(enzyme/gene) 

Host-
specific 

pathway 

Host-specific 
heterologous 

gene(s) 

Catalog of 
nonnative 

metabolites 
(host-specific) 

BNICE 
Finley et al. 

(2009) 
✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ 

Prioritization 
Cho et al. 

(2010) 
✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ 

Path finding 
Pey et al. 

(2011) 
✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖ 

Probabilistic 
Yousofshahi 
et al. (2011) 

✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖ 

SPABBATS 
Flórez et al. 

(2011) 
✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖ 

ArtPathDesig
n 

(this thesis) 

Chatsurachai 
et al. (2013) 

✔ ✔ ✔ ✖ ✖ ✔ ✔ ✔ 
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1.3 Modeling and analysis of genome-scale metabolic 

networks 

 

Generally, a model is created to simulate a process or a set of processes observed 

in the experiment in order to better understand mechanisms of process and to 

predict outcomes for a given set of specific input parameters. Therefore, to gain 

insight into cellular metabolism, a genome-scale metabolic network model has been 

an important tool. The genome-scale metabolic network is reconstructed from 

genome sequence annotation and biochemical reactions mining from databases 

(Table 1.3) and literatures. The construction of metabolic network is an iterative 

decision-making and time-consuming process and it could take up to one month to 

several months to complete a comprehensive model of a genome-scale metabolic 

network. In addition, an accurate model could be done by using experimental data 

retrieved from literatures. E. coli (Reed et al., 2003), S. cerevisiae (Mo et al., 2009), B. 

subtilis (Oh et al., 2007) and C. glutamicum (Shinfuku et al., 2009) models are the 

examples of accurate models predicting cellular phenotypes under various conditions. 

Table 1.3 Database useful for pathway mining and curation 

Database URL 

KEGG http://www.genome.jp/kegg/pathway.html 

MetaCyc http://metacyc.org/ 

BRENDA http://www.brenda-enzymes.org/ 

BKM-react http://bkm-react.tu-bs.de/ 

BiGG http://bigg.ucsd.edu/ 

CyanoBase http://genome.microbedb.jp/cyanobase 

Biochemical Pathway Maps http://web.expasy.org/pathways/ 
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Several modeling techniques (Raman et al., 2006) are available to analyze and to 

simulate cellular mechanism/response such metabolic flow when metabolic pathway 

or environment altered. Among these techniques, flux balance analysis (FBA) is the 

most commonly used. FBA can provide estimations of the metabolic fluxes on the 

genome-scale metabolic network, thereby making it possible to predict the growth 

rate of an organism or the rate of target production (Orth et al., 2010).  

Theory of flux balance analysis (FBA) 

FBA assumes that metabolic fluxes will reach a steady state constrained by the 

stoichiometry (Kauffman et al., 2003). The stoichiometric constraints lead to an 

underdetermined system; however, a bounded solution space of all feasible fluxes 

can be identified. This solution space can be further restricted by specifying 

maximum and minimum fluxes through any particular reaction and by specifying 

other physiochemical constraints. Here, the metabolic fluxes are estimated by these 

constraints, and the constraints can be refined by adding experimental data. 

When the solution space that describes the capability of the organism is defined, 

the metabolic network’s behavior can be studied by optimizing the steady-state 

behavior with respect to some objective function. The simulation results can then be 

experimentally verified and used to further strengthen the model. Finally, the 

iterative model refinement procedure can result in predictive models of cellular 

metabolism (Mo et al., 2009; Oh et al., 2007; Reed et al., 2003; Shinfuku et al., 2009). 

To better understand how to formulate a FBA problem, the steps are explained in 

detail and demonstrated through the toy metabolic network (Fig. 1.6). 
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FBA model formulation contains 4 steps. (Adapted from (Kauffman et al., 2003; 

Raman and Chandra, 2009)) 

Step I. System definition 

Development of a flux balance model requires the definition of all the metabolic 

reactions and metabolites. Fig. 1.6 shows the toy metabolic network, which contains 

2 intracellular and 5 transport reactions. There are 5 intracellular metabolites (A-E) 

and 5 extracellular metabolites (Aext, Cext, Dext, Eext, and Biomass).   

The biochemical reactions of the network are listed here. 

Aextracellular  A 

A + D  B + E 

C  B 

Cextracellular  C 

Dextracellular  D 

E  Eextracellular 

 

Step II. Mass balance 

Once all reactions and transport mechanism of the system are identified, a dynamic 

mass balance is derived for all intracellular metabolites in the metabolic network 

shown here (equation 1.1a-e). 

�[�]

��
= �� − ��																						(1.1�) 

�[�]

��
= �� + �� − ��													(1.1�) 
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�[�]

��
= �� − ��																								(1.1�) 

�[�]

��
= �� − ��																								(1.1�) 

�[�]

��
= �� − ��																								(1.1�) 

The mass balance is defined in terms of the flux through each reaction and the 

stoichiometry of that reaction, thus, a set of ordinary differential equations is 

obtained (equation 1.2a-1.2e). In this analysis, the steady state of the system is 

assumed, and corresponds to the case that input fluxes are equal to output fluxes, as 

follows. 

�[�]

��
= �� − �� = 0																					(1.2�) 

�[�]

��
= �� + �� − �� = 0												(1.2�) 

�[�]

��
= �� − �� = 0																						(1.2�) 

�[�]

��
= �� − �� = 0																						(1.2�) 

�[�]

��
= �� − �� = 0																							(1.2�) 

 

The differential equations can be represented using a matrix notation, where "�" 

is the stoichiometric matrix and "�" is the vector of the fluxes. The goal of FBA is to 

identify the metabolic fluxes under steady-state condition of the metabolic network.  
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At steady-state condition, the different equations of all metabolites can display in 

matrix form shown in Fig. 1.9 below. 

 

FIG. 1.9 Matrix notations of differential equations under steady-state condition  

 

Step III. Defining measurable fluxes and/or range of fluxes 

In general, there are more reactions (or fluxes) than the number of metabolites, 

and thus the steady-state solution for the metabolic fluxes is underdetermined. 
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Therefore, additional constraints are required to uniquely determine the steady-

state flux distribution. One way to get the additional constraints for the metabolic 

network is measuring metabolic fluxes experimentally. In linear algebra, to solve the 

problem, the number of variables should be equal to the number of equations, that 

is, the measurement of fluxes such as substrates uptake, by-products formation rate 

should be used as additional constraints. For example, the toy metabolic system 

contains 5 equations and 7 variables; it requires at least 2 measured fluxes of 

substrate uptake or production rate to find the unique solution of this problem. The 

exact flux values are commonly not defined, but rather a range of allowable flux 

values. The ranges of flux values are either retrieved from experiments or literature, 

which are used as additional constraints. 

The examples of additional constraints for the toy metabolic network are 

demonstrated below. Here, ��, ��	���	��	represent substrate uptake rates (equation 

1.3 h-j) that can be observed from experiments. 

0 ≤ �� ≤ 10							(1.3�) 

0 ≤ �� ≤ 10							(1.3�) 

0 ≤ �� ≤ 10							(1.3�) 

0 ≤ �� ≤ 10							(1.3�) 

0 ≤ �� ≤ 10							(1.3�) 

0 ≤ �� ≤ 10							(1.3�) 

0 ≤ �� ≤ 10							(1.3�) 
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�� = 4.2															(1.3ℎ) 

�� = 5.5														(1.3�) 

�� = 3.2													(1.3�) 

Step IV. Optimization 

A genome-scale metabolic network always has more reactions (fluxes) in the 

system than the number of metabolites corresponding to the underdetermined 

system, thus there are allowable solution spaces/flux distributions (Fig. 1.10). To find 

the unique/optimal solution, an optimization technique is commonly applied for 

measuring the internal fluxes in the metabolic network. Fig. 1.10 shows the flux 

distribution of the toy metabolic network predicted by using the optimization 

technique with the objective function to maximize Biomass production (the flux of 

b2).  

Using the optimization technique, the metabolic network is assumed to be 

optimized with respect to a target objective function. This allows the 

underdetermined system to be formulated as the optimization problem. The 

objective functions such as maximization of biomass, minimization of substrate 

uptake, maximization of ATP production, etc. are widely used to estimate cellular 

metabolisms and to provide predictions which can be verified by experimental data 

(Mo et al., 2009; Oh et al., 2007; Reed et al., 2003; Schuetz, Kuepfer, & Sauer, 2007; 

Shinfuku et al., 2009).  The optimization problem of the genome-scale metabolic 

network is formulated below. 
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Problem: 

Maximize/Minimize       ∑ �� ∙ ��
�
� 													(�������	1)               

Subject to.  

1. ∑ ���
�
� ∙ �� = 	0, ∀� ∈ �	���	∀� ∈ �										(mass balance constraints) 

2. Linear inequality or equality constraints   (additional constraints) 

where, 

�	 is a number of reactions (fluxes) in the system or cell. 

� is a number of metabolites in the system or cell. 

�� represents weight of the individual flux of the ��� reaction that contributed 

to the objective function. 

��	 represents metabolic fluxes of the ��� reaction. 

��� represents the stoichiometric coefficient indicating the amount of the ��� 

metabolite produced per unit of flux of the ��� reaction. 

The aim of FBA is to maximize or minimize the objective function (Problem 1) that is 

subject to mass balance and additional constraints. The output of this problem is a 

particular flux distribution of vector,	�, which maximizes/minimizes the objective 

function (Orth et al., 2010).  
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In general, for the genome-scale metabolic network of the host, the biomass 

equation is generated based on the ratios of cellular components such as amino acids, 

RNA, DNA, etc., which are either estimated from experiments and/or genome 

information. Here is the example of the E. coli’s biomass reaction (equation 1.4) 

retrieved from (Reed et al., 2003): 
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FIG. 1.10 Optimization of the system with the objective function to maximize the flux 

of b2. The b2 is the biomass production of the toy network (see in Fig. 1.5), which is 

applied to obtain one optimal solution represented as red dot. The flux distribution 

of the optimal point is labeled in red on the toy metabolic network map. 
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1.4 Microorganisms used as industrial cell factories 

 

Since the sequencing of the first complete microbial genome of Haemophilus 

influenza (Fleischmann et al., 1995), a hundred of microbial genomes have been 

sequenced and archived for public research in GenBank database (Benson et al., 

2009). This availability of data provides the scientists to make a genome-scale 

metabolic model for discovering new information for better understanding cellular 

properties and processes. In last decade, a genome-scale metabolic model, which is a 

mathematical model to represent cellular metabolism in linear algebra form, has 

been used for metabolic engineering by integration of laboratory data such as 

genome, transcriptome, proteome, metabolome and so forth. Generally, a genome-

scale metabolic model was constructed by using genome information such as gene, 

protein, and metabolic network. As shown in Fig. 1.11, the rapid proliferation of 

genome sequencing projects over the last decade has resulted in an exponential 

growth in the amount of genomic DNA sequences and information available for 

reconstructing genome-scale metabolic models.  

The complete genome sequence for a number of microorganisms has been 

established. Thus, the genome information is available to construct the model that  

helps for the novel metabolic engineering strategies. Well-characterized hosts would 

be used as cell factories to yield value-added products because of the availability of 

genome information and genetic manipulation tools. The examples of these famous 

host models widely used as cell factories for industrial production are briefly 

summarized as follows.  
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FIG. 1.11 Statistical information of genome projects from GOLD database until 

October, 2011, Total projects are 10,031 projects (Pagani et al., 2012). 

Escherichia coli  

E. coli is an aerobic, gram-negative, rod shaped bacteria that can be commonly found 

in animal feces, lower intestines of mammals, and even on the edge of hot springs. 

The complete genome sequence of E. coli strain K-12 was finished in 1997 (Blattner 

et al., 1997). Its genome sequence contains about 4.6 Mbps and 4,288 protein-coding 

genes. The main reasons why E. coli becomes famous host for numerous of products 

are easy for cultivation and fast growth. Currently, E. coli has been engineered to 

produce valuable compounds such as 1,3-propanediol, 1-butanol, lactic and so forth 

( in Table 1.1). In order to analyze, interpret, and predict cellular behavior, a genome-

scale model of E. coli was constructed (Reed et al., 2003).  This model, named as 

iJR904, constructed based on E. coli K-12 genome annotation data, and showed well 

predictive simulation comparing with experimental data. 
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Saccharomyces cerevisiae 

A budding yeast S. cerevisiae is a eukaryote model for producing alcohols and organic 

acids such as lactic acid and succinic acid (Table 1.1). The genome sequence of the 

yeast S. cerevisiae was completed in 1996 (Goffeau et al., 1996) and contains about 

12 Mbps and defines 5,885 protein-coding genes. Besides, the genome metabolic 

model of yeast S. cerevisiae is also available (Mo et al., 2009). This model named as 

iMM904 predicted intracellular flux changes consistent with published 

measurements. 

Corynebacterium glutamicum 

C. glutamicum , a gram-positive microorganism, is one of the most important 

bacteria in industrial biotechnology with an annual production of more than 2 million 

tons of amino acids mainly, L- glutamate, L-serine and L-lysine (Becker and Wittmann, 

2012). The C. glutamicum genome consists of a single circular chromosome with 3.3 

Mbps in size and comprises 3,002 protein-coding genes (Kalinowski et al., 2003). 

Additionally, its genome-scale metabolic model was constructed and demonstrated 

metabolic profiles that correponding with experimental data (Shinfuku et al., 2009). 

Bacillus subtilis 

B. subtilis, a rod-shaped gram-positive bacterium naturally found in soil and plants, is 

well-recognized as a producer of enzymes such as proteases and amylases (Zweers et 

al., 2008). In addition, industrial compound like 2,3-butanediol and isobutanol have 

also been produced by B. subtilis (Biswas et al., 2012; Jia et al., 2012). Its genome is 

about 4.2 Mbps and comprises 4,100 protein-coding genes (Kunst et al., 1997). 
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Genome-scale metabolic model of B. subtilis was published in 2007 and this in silico 

model could predict growth phenotypes of knock-out strains that found to be quite 

consistent with experimental observations (Oh et al., 2007). 

The microorganisms mentioned above are ideal hosts for bioengineered products 

such as industrial chemicals, since they exhibit high growth activity under various 

conditions as well as easy to genetically manipulated (Christina, 2010). Moreover, the 

genome-scale metabolic models of these microorganisms are available for scientists 

to use as the tools to identify metabolic engineering strategies such as gene 

amplification and deletion for strain improvements. For example, target genes to 

improve lycopene production in E. coli were successfully identified using in silico 

simulation and corresponding to enhance the lycopene production in in vivo 

experiment (Choi et al., 2010). Another example is gene knockout simulation to guide 

target genes for improving L-valine in E. coli (Park et al., 2007).  

 

1.5 Objectives of the work 

 

The current demands of fuels and chemical feedstocks are critically increased, 

while petroleum resources are limited and unsustainable. Moreover, fuels and 

industrial chemicals by petroleum-based process show negative impacts on 

environment. The alternative route to produce energy and valuable chemicals using 

microorganisms becomes an attractive way. However, some microorganisms are not 

easy to cultivate and produce high level of target products. In addition, the very large 

amount of possible heterologous pathways is generated without any background in 
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formation and impossible to handle by human. Therefore, a computational or in silico 

platform to design and select such suitable heterologous pathways is required. 

Several pathway design methods had been reported (Table 1.2), however, it still 

lacked of the method that can provide host-specific heterologous pathways, host-

specific heterologous genes as well as a catalog of nonnative metabolites particular 

for each host.  

Since the in silico platform to design and select suitable heterologous pathways 

into particular hosts is still not developed, the goal of this thesis is to develop the 

system aiming to provide necessary information to scientists for producing target 

metabolites in cell factories hosts such as B. subtilis, C. glutamicum, E. coli and S. 

cerevisiae. The algorithm to screen heterologous pathways for the specific host was 

developed. This algorithm can provide all possible pathways for the production of 

nonnative metabolites that are non-existent in the host. Then, parameters used for 

selection of heterologous genes were applied to select feasible pathways for the 

production of nonnative metabolites. Thus, a rational heterologous pathway design 

system named as “ArtPathDesign” (Artificial heterologous Pathways Design) was 

proposed for an efficient production of nonnative metabolites. 
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1.6 Outline of the thesis 

 

The thesis consists of 4 chapters, and a schematic outline of the thesis is shown in 

Fig. 1.12. 

Chapter 1 deals with the background and motivation of this thesis. Literature review 

of metabolic pathway design methods is summarized, and comparison of those 

methods is demonstrated. The objectives and schematic of this thesis are also 

described. 

Chapter 2 deals with data collection, an in-house database construction and the 

development of the algorithm for screening heterologous pathways of nonnative 

metabolites in 3 host cell factories, E. coli, C. glutamicum, and S. cerevisiae as 

templates. In this chapter, the ��  value is applied in order to select candidate 

heterologous genes based on enzyme-substrate affinity corresponding to the 

heterologous pathway. However, the information of ��  value is depending on 

experimental data and several enzymes show no information of �� values. Besides, 

to obtain or improve the production of nonnative metabolites, host-specific 

heterologous pathways and host-specific heterologous genes are important features. 

Thus, a new selection parameter could be applied for selection of suitable 

heterologous pathways and genes. 

Chapter 3 deals with the new score that used for selection of candidate heterologous 

pathways and genes which are specific for each host. Codon Adaptation Index (CAI) is 

accepted as a measurement of synonymous codon usage bias, which is one of the 

most important factors effecting on heterologous enzymes expression. Thus, CAI was 
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applied in this study. With the CAI as the selection score, the host-specific pathways 

and host-specific genes features are included in the improved in silico system, 

ArtPathDesign. Furthermore, a catalog of nonnative metabolites especially for the 

target host is improved and available as html file that is well-formed representations.  

Chapter 4 deals with the general conclusion and future perspective of this research. 
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FIG. 1.12 Outline of the thesis



Chapter 2  

Development of an algorithm to design heterologous  

pathway 

 

2.1 Introduction 

 

Recognizing the potential depletion of petroleum resources, researchers have 

become increasingly interested in production of fuels and industrial chemicals by 

microorganisms (Dugar and Stephanopoulos, 2011; S. K. Lee et al., 2008; Schneider 

and Wendisch, 2011). Such biosynthesized materials include fuels, plastics, polymers, 

solvents and drugs (Becker and Wittmann, 2012; J. W. Lee et al., 2011; Papini et al., 

2010; B.-W. Wang et al., 2012). To produce such industrially useful materials, 

modifications of host’s metabolic networks are generally required. Target 

metabolites are frequently produced by incorporating heterologous metabolic 

pathways into well-characterized host microorganisms, such as E. coli, S. cerevisiae, 

and so on, that I mentioned in previous chapter.  However, the selection of suitable 

heterologous metabolic pathways for host organisms is often difficult due to the 

complexity of metabolic network. Although copious data on metabolic reactions and 

enzymes have been available in the literature and available databases such as KEGG, 

ENZYME, and BRENDA,  constructing a target production pathway using a host’s 

metabolic network with satisfying the metabolic balances requires a scientist’ s 

experience and intuition. Thus, the development of an appropriate in silico platform 



C h a p t e r  2                                                      P a g e  | 36 

 

can facilitate industry-focused metabolic network design by providing possible 

heterologous pathways for target metabolite production. 

Currently, several in silico pathway search methods have been developed and 

used to produce target metabolites (Cho et al., 2010; Dogrusoz et al., 2009; Finley et 

al., 2009; Flórez et al., 2011; Handorf et al., 2005; C. Li et al., 2004; McShan et al., 

2003; Moriya et al., 2010; Pey et al., 2011; Pharkya et al., 2004; Rodrigo et al., 2008; 

Yousofshahi et al., 2011). In previous chapter, the comparison of these methods is 

summarized. Even numerous methods are available for screening heterologous 

pathways of target metabolites, there still remains a lack of agreement on how to 

choose heterologous pathways and host microorganisms for target production. 

In this chapter, I first developed a novel pathway search algorithm that identifies 

the shortest pathway between a host’s metabolic network and target metabolites 

when heterologous reactions are added to the host’s metabolic network. Using this 

algorithm, all producible target metabolites listed in databases were screened. In 

addition, to select candidate heterologous enzymes, ��  value was utilized as a 

selection score. That is, among the heterologous genes that coding enzyme having 

minimum 	�� value was selected for the construction of heterologous pathways. 

Then, for all producible target metabolites, the production yields were estimated by 

using flux balance analysis (FBA), assuming the steady-state conditions and the 

maximization of target or biomass production rate. By analyzing the entire list of 

producible target metabolites in several different hosts, a set of rational 

heterologous pathways and host microorganisms that will likely produce desired 

targets were selected. 
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2.2 Methods 

 

2.2.1 Construction of an in-house database of metabolic reactions 

 All known metabolic reactions were considered as candidate heterologous 

reactions that could be added to the host metabolic network. First, an in-house 

database of metabolic reactions was constructed based on data stored in KEGG 

ligand section (Kanehisa et al., 2008) and BRENDA (Chang et al., 2009) databases. 

All metabolic reaction information regarding genes, enzymes, pathways, and 

organisms in the KEGG database was collected into the database, which was 

developed using PostgreSQL 9.0 (The PostgreSQL Global Development Group). 

The Michaelis-Menten constants (��) of the enzymatic reaction data were 

retrieved from BRENDA. 

2.2.2 Genome-scale metabolic model of host microorganisms 

 In this chapter, 3  well-characterized and industry-used microorganisms, 

namely, E. coli, C. glutamicum, and S. cerevisiae were adopted as host 

microorganisms to be engineered for the target metabolite productions. E. coli 

has been exploited for such industrially valuable compounds as L-phenylalanine, 

L-tyrosine, 1-butanol, and 1,2-propanediol (Clomburg and Gonzalez, 2011; 

Juminaga et al., 2012; Shen et al., 2011). C. glutamicum is widely used in amino 

acid production (Becker and Wittmann, 2012). S. cerevisiae is an important 

producer of alcohols and organic acids such as lactate (Hong and Nielsen, 2012). 

These 3 organisms are widely used for bioengineering since they exhibit high 

growth activity under several conditions and are easily genetically manipulated 
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(Christina, 2010). Genome-scale metabolic models of E. coli (iJR904)(Reed et al., 

2003), S. cerevisiae (iMM904) (Mo et al., 2009), and C. glutamicum (Shinfuku et 

al., 2009),based on earlier metabolic constructions with slight modification were 

used in this study. Because the pathway search algorithm developed in this 

chapter uses the heterologous reactions listed in the KEGG database, all 

metabolite IDs in the earlier genome-scale metabolic models were converted to 

the KEGG compound ID format using metabolite name matching and manually 

checking. 

2.2.3 Heterologous pathway identification for target production 

 An algorithm to identify heterologous reaction(s) producing a target 

metabolite within a host microorganism was developed. The algorithm expands 

the host’s metabolic network by sequentially adding heterologous metabolic 

reactions from the constructed in-house database. The concept of the 

heterologous pathway identification is shown in Fig. 2.1, and the procedure is as 

follows: 

1. A set of metabolites �� and a set of metabolic reactions ���� are defined 

as those present in the genome-scale metabolic network of the host 

microorganism. 

2. From the in-house database, heterologous reactions that satisfy the 

following conditions are collected: 

i. The reaction does not exist in ����, and  

ii. It can produce metabolites that do not exist in ��  from a 

metabolite in 	��. A set of these heterologous reactions is defined 
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as ����, and a set of metabolites produced by reactions in ���� is 

defined as ��. 

3. In the same way, ����  is the set of reactions not present in 

{����, ����, … , ����} which can produce metabolites not existing in 

{��,��, … ,��} from metabolites included in those sets. This expansion 

procedure is iterated until no further reaction is connectable to the 

expanded metabolic network. 

 

FIG. 2.1 The concept of the algorithm to identify heterologous pathways. By 

sequentially adding heterologous reactions, all nonnative metabolites are 

able to connect to native/host metabolites will be obtained. The process will 

stop when no further reactions could connect nonnative metabolite to the 

previous expanded network. 

If a target metabolite is included in a nonnative metabolite set	��, a set of 

heterologous reactions that are necessary to produce the target metabolite can 

be identified. For simplicity, all metabolic reactions in the database were 

assumed to be reversible. Of course some reactions are known to be irreversible, 

such as the carboxylation and decarboxylation reactions classified by 
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Nomenclature Committee of the international Union of Biochemistry and 

Molecular Biology (NC-IUBMB, 1999). However, for the majority of reactions in 

the database, directional information is limited and thus the reversibility of the 

reactions is difficult to judge. To avoid the risk of missing important heterologous 

pathways due to misjudgment of their reaction reversibility, all reactions are 

assumed to be reversible. This strategy here is to initially screen all possible 

heterologous pathways regardless of reaction irreversibility, then decide whether 

the predicted pathway is plausible based on physiological knowledge of the 

reaction irreversibility. 

2.2.4 Flux balance analysis (FBA) 

 FBA is based on a genome-scale metabolic model and optimization of a 

specific objective flux by linear programming (Kauffman et al., 2003; Orth et al., 

2010). FBA was used to estimate the metabolic flux profile of metabolic networks 

expanded with heterologous reactions. A pseudo steady-state is assumed, that is, 

the net sum of all production and consumption fluxes for each internal 

metabolite is zero. In matrix notation, this condition is represented as	S ∙ v = 0, 

where S is the stoichiometric matrix representing the stoichiometry of metabolic 

reactions in the network and v is the vector of metabolic fluxes. In FBA, the flux 

profile (constrained by steady-state) is determined by optimizing a specific 

objective function. The biomass production flux is one of several widely used 

objective functions that can be maximized. The flux profiles obtained by 

maximizing biomass production fluxes are known to be well correlated with those 
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obtained experimentally (Mo et al., 2009; Schuetz et al., 2007; Shinfuku et al., 

2009). 

 For simulation, the coefficients of metabolites representing biomass 

production flux were extracted from earlier studies (Mo et al., 2009; Reed et al., 

2003; Shinfuku et al., 2009). Another objective function, the production flux of 

the target metabolite, was applied to judge whether the target metabolite was 

producible by the metabolic network. In all of the FBA simulations, glucose was 

chosen as the sole carbon source and the following external metabolites were 

allowed to freely transport through the cell membrane: CO2, H2O, SO4 or SO3, and 

NH3. All calculations were performed using MATLAB 2009b (MathWorks Inc., 

Natick, MA). The linear programming problem was solved using GLPK 4.34 (GNU 

Linear Programming Kit) via MATLAB interface. 

 

2.3 Results and discussion 

 

2.3.1 Identification of heterologous pathway(s) 

 Table 2.1 shows information of metabolic reactions and metabolites obtained 

from 1,139 species were collected from KEGG database and deposited in the 

constructed in-house database (published as the Additional file 1 of (Chatsurachai 

et al., 2012) ). To screen the target metabolites that are producible by the host 

microorganisms S. cerevisiae, E. coli, and C. glutamicum, the host’s metabolic 

network was iteratively expanded by adding heterologous metabolic reactions as 

described in the method section. 
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Table 2.1 Statistics of the constructed in-house database used in this study 

 In-house database 

(version 1.0) 

Source database KEGG 

No. of reactions 7,769 

No. of compounds 6,635 

No. of reversible reactions 7,769 

No. of irreversible reactions 0 

 

Fig. 2.2 displays the number of nonnative metabolites connected to the host’s 

metabolic network as a function of the number of heterologous reactions. Fewer 

than 33 heterologous reactions are required to connect 3,154, 3,244, and 3,112 

nonnative metabolites to the host’s metabolic networks of S. cerevisiae, E. coli, 

and C. glutamicum respectively. The list of metabolites connected to the host’s 

metabolic networks is presented in the Additional files 2, 3, 4 provided at 

supplementary section of the publication (Chatsurachai et al., 2012). To this list, 

the �� values of heterologous enzymes were added. Knowing the �� assists in 

deciding which heterologous enzymes originating from various organisms in the 

BRENDA database displaying minimum �� of the corresponding heterologous 

enzymes are also listed, since the enzyme from this organism is expected to have 

highest affinity among the orthologous enzymes to the corresponding substrate. 

Importantly, these identified heterologous reactions of nonnative metabolite 

production agreed well with those widely used in metabolic engineering and 

which are important to the industry (Table 2.2), such as isoprene, -farnesene, 

poly--hydroxybutyrate (PHB), and cadaverine. 
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FIG. 2.2 Number of connected nonnative metabolites produced by heterologous 

reactions in 3 host microorganisms. The first vertical axis (solid line) shows the 

number of connected metabolites in each iteration, while the second vertical axis 

(dotted line) shows the cumulative number of the connected metabolites. 

 As an example, the production pathway of 1,3-propanediol (C02457) by E. coli 

and S. cerevisiae, which were adopted in earlier studies (Cameron et al., 1998; 

Nakamura and Whited, 2003), are shown in Fig. 2.3. In previous studies, C02457 

production proceeded via conversion of glycerol to 3-hydroxypropanal using 

glycerol dehydratase (encoded by dhaB1-B3). 1,3-Propanediol was then produced, 

aided by 1,3-propanediol oxidoreductase (encoded by dhaT). In this study, the 

screened heterologous pathways for C02457 production exactly matched those 

of earlier studies. In E. coli, the screened production pathways of isoprene, -

farnesene, and PHB derived by this algorithm were also identical to those of the 
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earlier studies, while similar heterologous genes introduced to the alternative 

hosts (C. glutamicum and S. cerevisiae) additionally produced these targets (see 

Table 2.2). Moreover, both reported and alternative production pathways were 

screened by the proposed algorithm. For instance, It was found that E. coli cells 

can produce (R)-propane-1,2-diol when methylglyoxal reductase and 

lactaldehyde reductase are added to the metabolic network, which has not been 

reported so far. Similar alternative pathways were found for the production of 

itaconate, cis,cis-muconate, 2,3-dihydroxybenzoate, and so forth. These results 

suggest that the developed algorithm successfully identified the metabolic 

reactions necessary for the target productions and could assist in screening for 

heterologous pathways of target productions. 

 Next, I investigated whether these connectable metabolites are producible 

from glucose as a sole carbon source, by using FBA simulations. In this simulation, 

the production flux of each nonnative metabolite was used as an objective 

function to be maximized under the steady-state assumption. When the 

maximum production flux of a nonnative metabolite is zero, this metabolite is 

non-producible under the given condition. The maximum production fluxes of all 

connectable nonnative metabolites were calculated. 28% of the connectable 

nonnative metabolites of E. coli could not be produced using glucose as a sole 

carbon source. Similarly, 33% of the connectable nonnative metabolites of S. 

cerevisiae and 16% of the connectable nonnative metabolites of C. glutamicum 

were non-producible under this condition. These metabolites could not be 

produced since they are disconnected from glycolysis. In E. coli, these 
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metabolites included trans-aconitase (C02341), butyrate (C00246), acetoacetate 

(C00164), and L-lactaldehyde (C00424). 

 

FIG. 2.3 Heterologous pathways for 1,3-propanediol production: (a) the 

production pathway described in earlier studies, in E. coli (Cameron et al., 1998; 

Nakamura and Whited, 2003); (b) the pathway identified by my algorithm in 

either E. coli or S. cerevisiae as the host. 

2.3.2 Evaluation of production feasibility 

 To evaluate the feasibility of nonnative target metabolite production, FBA 

simulations were performed under conditions of maximizing biomass production 

following heterologous reaction expansion of the genome-scale metabolic model. 

Metabolic flux profiles calculated by maximization of biomass production rates 

have been shown to closely represent those in real microorganisms (Edwards and 

Palsson, 2000a; Edwards et al., 2001; Feist and Palsson, 2010; Schuetz et al., 
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2007; Varma and Palsson, 1994). Such agreement can be explained by the growth 

optimization of microorganisms through evolutionary dynamics (Fong et al., 

2003). Furthermore, for the mutant strains constructed in the laboratory, the 

cells could achieve the near-optimal metabolic state calculated by the FBA 

simulation after long-term cultivation (Cornelius et al., 2011; Edwards and 

Palsson, 2000b; Gerdes et al., 2003; Soyer and Pfeiffer, 2010), via the selection of 

faster growing cells. Thus, it is expected that if a nonnative target metabolite is 

produced in the FBA simulation under maximized biomass production, that target 

may be feasibly manufactured.  

 In Fig. 2.4, the number of target metabolites produced under maximized 

biomass production was plot, versus the number of heterologous reactions 

necessary for metabolite production. A threshold yield (1%) was set to identify 

the produced metabolites because the production yields of some metabolites 

were positive but extremely small. Sometimes the FBA simulation was 

underdetermined under biomass maximization conditions; that is, the solution 

was not unique. In such cases, following the maximization of biomass production, 

the production flux of the target metabolites was further maximized with fixing 

the maximized biomass production, to obtain a unique flux profile that would 

produce the target. In the simulations, a micro-aerobic condition was used to 

screen the target metabolites produced under the biomass maximization 

condition, in which significantly a larger number of target metabolites were 

produced than under anaerobic conditions, and at the same time all 

anaerobically produced metabolites were included. 
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 Table 2.3 shows the representative target metabolites produced under 

biomass maximization, together with their corresponding heterologous reactions. 

The mechanisms involved in these reactions can be classified into two categories. 

One is based on the production of oxygen as a by-product of the targets. Since 

the simulations were performed under the micro-aerobic condition, oxygen 

supply increased the biomass production by activating the electron transfer 

system and facilitating adenosine triphosphate production. Therefore, if the 

heterologous reactions used to produce the target are accompanied by oxygen 

production, the target can be produced under minimum biomass production flux. 

For example, pentane-2,4-dione was produced by introducing a single 

heterologous reaction into E. coli and S. cerevisiae, whereas two heterologous 

reactions were necessary to produce this metabolite in C. glutamicum. Vanillin 

can be produced under the same mechanism by introducing 4 heterologous 

reactions into the E. coli and C. glutamicum metabolic networks. 

 Another mechanism is associated with NADH oxidation. Under micro-aerobic 

condition, the cellular growth of microorganisms can be limited by NAD 

regeneration, which is necessary for glycolysis activity, and which occurs through 

NADH oxidization. Thus, when the heterologous reactions producing the targets 

are associated with NADH oxidization, these heterologous reactions are activated 

when the biomass production is maximized. This phenomenon occurs, for 

example, in the production of (R)-propane-1,2-diol and 2-propyn-1-al. 

 It is found that some metabolites are produced only by E. coli under 

conditions of maximum biomass production, such as (R)-propane-1,2-diol and 
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adipate semialdehyde. Unlike S. cerevisiae and C. glutamicum, E. coli possesses 

NAD transhydrogenase, which can convert NADP and NADH to NADPH and NAD 

respectively (and vice versa). In E. coli cells, the excess NADH is converted to 

NADPH which can then enter the target production pathway. 

 

 

FIG. 2.4 The number of metabolites producible under biomass maximization 

conditions with the addition of < 10 heterologous reactions. 
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Table 2.2 Examples of nonnative metabolites for which my algorithm detected heterologous reactions matching those of previous studies 

Compound 
(synonym separated by 
a semicolon) 

KEGG ID Heterologous reaction(s) from the literature Reference Evaluation of in silico design 
 

Isoprene; 
2-methyl-1,3-butadiene 

C16521 Introduced ispS gene from Populus nigra to 
Escherichia coli 

(Zhao et al., 2011) Identical reaction found in E. coli and in 
Saccharomyces cerevisiae and Cerevisiae 
glutamicum as the host 

α-Farnesene C09665 Introduced farnesene synthase from plant to E. 
coli 

(C. Wang et al., 
2011) 

Identical reaction found in E. coli and in S. 
cerevisiae and C. glutamicum as the host 

Poly-β-hydroxybutyrate; 
PHB 

C06143 Introduced phbC and phbB from Streptomyces 
aureofaciens to E. coli 

(Mahishi et al., 
2003) 

Identical reaction found in E. coli and in S. 
cerevisiae and C. glutamicum as the host 

Cadaverine; 
1,5-pentanediamine; 
1,5-diaminopentane 

C01672 Introduced ldcC from E. coli to C. glutamicum (Becker and 
Wittmann, 2012; 
Kind et al., 2010) 

Identical reaction found in C. glutamicum 
and in S. cerevisiae as the host 

Amorpha-4,11-diene C16028 Introduced AMS1 from the plant Artemisia annua 
L. to E. coli 

(Lindahl et al., 2006; 
Wallaart et al., 

2001) 

Identical reaction found in E. coli and S. 
cerevisiae and in C. glutamicum as the 
host 

Propane-1,3-diol; 
1,3propanediol; 
trimethylene glycol 

C02457 Introduced glycerol dehydratase and 1,3-
propanediol oxidoreductase from Klebsiella 
pneumoniae to E. coli. 

(Cameron et al., 
1998; Nakamura 

and Whited, 2003) 

Identical reaction found in E. coli and in S. 
cerevisiae as the host 

Ethanol; 
ethyl alcohol; 
methylcarbinol 

C00469 Introduced pyruvate decarboxylase and alcohol 
dehydrogenase genes from Zymomonas mobilis 
to C. glutamicum 

(Inui et al., 2004) Identical reaction found in C. glutamicum 
as the host 

(R,R)-Butane-2,3-diol; 
(R,R)-2,3-Butanediol; 
(R,R)-2,3-Butylene glycol 

C03044 Introduced acetolactate decarboxylase and 
butanediol dehydrogenase genes to E. coli 

(Nielsen et al., 
2010) 

Identical reaction found in E. coli as the 
host 
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Table 2.2 (Continued) 

(R)-Propane-1,2-diol; 
(R)-1,2-propanediol; 
(R)-propylene glycol 

C02912 Introduced glycerol dehydrogenase gene from 
Klebsiella pneumoniae and used aldehyde 
dehydrogenase to produce product in E. coli 

(Altaras and 
Cameron, 1999) 

Alternative pathway found to produce 
target by adding methylglyoxal reductase 
and lactaldehyde reductase to E. coli 

  Introduced glycerol dehydrogenase and 
methylglyoxal synthase genes from E. coli to S. 
cerevisiae 

(W. Lee and 
Dasilva, 2006) 

Alternative pathway found to produce 
target by adding methylglyoxal reductase 
and lactaldehyde reductase to S. 
cerevisiae 

Itaconate; 
itaconic acid; 
methylenesuccinic acid 

C00490 No information No information EC 4.2.1.4-citrate dehydratase and EC 
4.1.1.6-aconitate decarboxylase were 
found to be added to E. coli as the host. 

cis,cis-Muconate; 
cis,cis-hexadienedioate; 
cis,cis-2,4-
hexadienedioic acid 

C02480 Introduced aroZ, aroY, and catA to E. coli (Niu et al., 2002) Alternative pathways from antharnilate or 
2,3-dihydroxybenzoate to produce 
catechol, which is a substrate for cis,cis-
muconate production 

Adipate; 
adipic acid; 
hexanedioate; 
hexan-1,6-dicarboxylate 

C06104 Introduced aroZ, aroY, and catA to E. coli for 
producing cis,cis-muconate and then convert to 
adipic acid by chemical synthesis 

(Niu et al., 2002) Alternative pathway found to produce the 
target by adding 5 heterologous reactions 
to E. coli or C. glutamicum as the hosts 
(see Additional files 4 and 5 in 
(Chatsurachai et al., 2012) for enzyme 
information)  
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Table 2.3 Examples of producible nonnative metabolites under conditions of maximized biomass production 

Nonnative 
metabolites 

Host network By-product No. of 
reaction(s) 

Heterologous reaction(s) EC number 

Pentane-2,4-dione E. coli, S. 
cerevisiae 

Oxygen 1 Pentane-2,4-dione + oxygen ↔ acetate + methylglyoxal 1.13.11.50 

 

 C. glutamicum Oxygen 2 Glycerone phosphate ↔ methylglyoxal + orthophosphate 

Pentane-2,4-dione + oxygen ↔ acetate + methylglyoxal 

4.2.3.3 

1.13.11.50 

Vanillin 

(4-hydroxy-3-
methoxy-

benzaldehyde) 

E. coli, C. 
glutamicum 

Oxygen, 
NADH 

4 Formaldehyde + NAD+ + H2O ↔ formate + NADH + H
+
 

3-Dehydroshikimate ↔ 3,4-dihydroxybenzoate + H2O 

Vanillate + oxygen + NADH + H
+
 ↔ 3,4-dihydroxybenzoate + NAD+ + H2O + 

formaldehyde 

Vanillate + NAD+ + H2O ↔ 4-hydroxy-3-methoxy-benzaldehyde + oxygen + 
NADH + H

+
 

1.2.1.46 

4.2.1.118 

1.14.13.82 

1.2.3.9 

(R)-Propane-1,2-diol E. coli NAD
+
 2 (R)-Lactaldehyde + NAD

+
 + H2O ↔ (R)-lactate + NADH + H

+
 

(R)-Propane-1,2-diol + NAD
+
 ↔ (R)-lactaldehyde + NADH + H

+
 

1.2.1.23 

1.1.1.77 

2-Propyn-1-al S. cerevisiae NAD
+
 3 3-Oxopropanoate ↔ acetaldehyde + CO2 

3-Oxopropanoate ↔ propynoate + H2O 

2-Propyn-1-al + NAD
+
 + H2O ↔ propynoate + NADH + H

+
 

4.1.1.- 

4.2.1.27 

1.2.1.3 
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Table 2.3 (Continued) 

Adipate 
semialdehyde 

E. coli NADP+ 6 Succinyl-CoA + acetyl-CoA ↔ CoA + 3-oxoadipyl-CoA 

(3S)-3-Hydroxyadipyl-CoA + NAD
+
 ↔ 3-Oxoadipyl-CoA + NADH + H

+
 

5-Carboxy-2-pentenoyl-CoA + H2O ↔ (3S)-3-hydroxyadipyl-CoA 

Adipyl-CoA + FAD ↔ 5-carboxy-2-pentenoyl-CoA + FADH2 

Adipate + CoA + ATP ↔ Adipyl-CoA + AMP + diphosphate 

Adipate semialdehyde + NADP+ + H2O ↔ adipate + NADPH + H
+
 

2.3.1.174 

1.1.1.35 

4.2.1.17 

1.3.99.- 

6.2.1.- 

1.2.1.4 
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2.3.3 Differences in target production capacity among host microorganisms 

 While screening for heterologous pathways to produce the target metabolites 

discussed earlier, differences in production capacity between the 3 host 

microorganisms emerged; for example, a group of metabolites was producible by 

the addition of heterologous reactions to one of the hosts, but was not produced 

by the other hosts. To characterize the differences in target production capacity, 

the producible metabolites (the Additional files 5, 6, 7 of supplementary of  the 

publication (Chatsurachai et al., 2012)) were categorized using the KEGG 

Orthology database (Kanehisa et al., 2008). A chi-square statistical analysis was 

then performed to identify the categories in which the frequency of producible 

metabolites is significantly higher than expected. Fig. 2.5 shows the 10 categories 

that demonstrated significant differences (P<0.001). As shown in the figure, 

metabolites belonging to 5 categories, namely, “tyrosine metabolism”, “dioxin 

degradation”, “benzoate degradation”, “chlorocyclohexane and chlorobenzene 

degradation”, and “xylene degradation”, tended to be producible by S. cerevisiae 

and C. glutamicum, but were non-producible in E. coli cells. 

 Similarly, the metabolites in “flavonoid biosynthesis”, “phenylpropanoid 

biosynthesis”, and “nicotinate and nicotinamide metaoblism” were preferentially 

generated by E. coli and C. glutamicum. Metabolites assigned to “porphyrin and 

chlorophyll metabolism” also tended to be produced in C. glutamicum cells. 

Likewise, the metabolites assigned to “biosynthesis of 12-, 14-, and 16-

membered macrolides” were produced preferentially in E. coli cells. Such 

differences in production capabilities result from the different metabolic 
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pathways by which the hosts produce necessary substrates, and from cellular 

compartmentalization in the yeast strain (which is absent in the bacterial strains). 

 In yeast cells, the compartments present barriers to metabolite transport. For 

instance, mitochondrial/cytoplasmic interfaces prohibit the production of certain 

target metabolites when sugar is used as a carbon source. Similarly, the 

production of metabolites in the “flavonoid biosynthesis” category was inhibited 

in yeast cells because the transportation of 4-coumarate between the 

mitochondria and the cytosol is not permitted; therefore, the yeast strain could 

not produce p-coumaroyl-CoA (required for making chalconoid, an important 

ingredient in flavonoid biosynthesis). The genome-scale metabolic model used in 

this study does not account for transportation capabilities between 

compartments, which are currently unclear for many metabolites, and which 

might influence the production capacities of target metabolites in real cell 

systems. 
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FIG. 2.5 The number of producible and non-producible metabolites in functional categories that exhibit significant differences between 

host microorganisms. The blue and red bars represent the non-produced and produced metabolites respectively, under conditions of 

maximized target production. 



C h a p t e r  2                                                   P a g e  |  5 6  

 

2.4 Summary 

 

In this chapter, the in silico pathway search algorithm for target production was 

developed, in which iterative additions of heterologous metabolic reactions to host’s 

metabolic networks enable target productions. Biosynthetic capabilities are also 

evaluated by pathway design and metabolic flux calculations. The 3 industrial host 

cell factories, E. coli, S. cerevisiae, and C. glutamicum were used as templates. The 

screened heterologous pathways by using the developed algorithm were validated. 

The results were consistent with earlier reports. In addition, alternative heterologous 

pathways that are no reports so far were also suggested, including the production 

pathways of itaconate, cis,cis-muconate, adipic acid, and so on. Since these 

compounds are important in industrial chemicals (Table 1.1), these alternative 

pathways could be options of metabolic engineering strategies in order to 

produce/improve industrial metabolites by bio-based process.  

The computational platform developed in this chapter has included the features 

which are host-specific heterologous pathways and selection of heterologous genes 

by using ��  value and provides a catalog of nonnative metabolites including 

industrial chemicals for specific host cell. However, �� values are generally obtained 

from experiments and many enzymes have no information on ��	in the database. 

Furthermore, in some cases, the heterologous genes are not expressed or low 

expressed, which can result low production rate of target metabolites. In addition, 

the catalog of nonnative metabolites in this chapter is available as a table in 

Microsoft Excel, which is difficult to search for the information of heterologous 

genes.  
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In chapter 3, I will deal with these problems for improving the selection scores of 

heterologous genes particular for each host cell and improving the catalog of 

nonnative metabolites into well-format to provide heterologous genes and 

compounds information. 



Chapter 3  

Selection of heterologous genes using CAI score 

 

3.1 Introduction 

 

The production of industrial compounds using microorganisms as cell factories 

has presently become attractive due to the potential depletion of petroleum 

resources. Metabolic engineering to incorporate heterologous pathways to host cell 

factories is one major way to produce and improve target chemicals and fuels via 

bio-fermentation process. In chapter 2, the development of the computational 

platform are presented, which enables to screen heterologous pathways of 

nonnative metabolites and used �� as a parameter to select heterologous genes 

corresponding to heterologous pathways. Still, a large number of enzymes has no 

information on �� values, thus a new and efficient parameter is desirable to select 

candidate heterologous genes from among numerous of orthologous enzymes with 

similar enzymatic activities. In addition, the inefficient target production by the 

introduced heterologous genes could be caused by a low or lack of expression of 

heterologous enzymes in the host cell. To overcome this problem, heterologous 

enzymes which have the potential to be highly expressed should be chosen from the 

screened candidates. It has been established that several factors namely, genome GC 

content, codon usage, and mRNA secondary structures influence the expression of 

heterologous enzymes. Amongst these factors, codon usage is known to cause a 
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relatively high impact on the enzymatic expression levels. In fact, it is demonstrated 

there is the bias of codon used in high and low expressed genes in several organisms 

(Gupta et al., 2004; G. Liu et al., 2010; Sharp et al., 1986). In addition, Botzman and 

Margalit discovered that the global extent of codon usage bias of an organism plays a 

crucial role in the adaptation of prokaryotes to their environments (Botzman and 

Margalit, 2011). A few species such as E. coli (M.-S. Lee et al., 2011) and S. cerevisiae 

(Norkiene and Gedvilaite, 2012) exhibited enhanced heterologous protein 

expressions when the codons usage of heterologous genes were replaced with a set 

of more suitable host codons. Several methods for analyzing codon usage bias have 

been developed in order to study molecular evolution and heterologous 

gene/protein expression (Ingvarsson, 2008; Olivares-Hernández et al., 2011; W. Qian 

et al., 2012; Sharp and Li, 1987; Tao et al., 2009). Codon Adaptation Index (CAI) 

(Sharp and Li, 1987) is one of the most widely used to estimate the extent of codon 

usage bias in genes (Martín-Galiano et al., 2004; Nayak, 2012) and proteins (Futcher 

et al., 1999; Washburn et al., 2001) based on their expression levels. Previous reports 

employed CAI for optimizing DNA vaccines (Mani et al., 2011), enhancing and altering 

exogenous and endogenous protein expressions (W. Li et al., 2011; Redemann et al., 

2011). These studies suggested that CAI can be used for the selection of 

heterologous enzymes which is expected to be highly expressed in the host 

microorganisms. 

In this chapter, the computational platform for heterologous pathway search is 

expanded by incorporating the CAI measure of heterologous genes to select 

appropriate heterologous enzymes, whose introduction into host microorganisms 
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would enable efficient target metabolite production. Furthermore, I design the 

optimized gene sequences for such enzymes by substituting the most frequent 

codons found in host’s highly expressed genes. By integrating the simple in silico 

screening platform (for identifying feasible heterologous pathways developed in 

chapter 2) with the selected heterologous genes as well as the optimized gene 

sequences, based on a target host’s preferable codons, a rational heterologous 

pathway design system named “ArtPathDesign” (Artificial heterologous Pathway 

Design) is proposed for an efficient production of nonnative metabolites. The 

ArtPathDesign system applied to 3 hosts E. coli, S. cerevisiae and B. subtilis which are 

recognized as industrial host producers. Using this system, all producible nonnative 

metabolites of E. coli, S. cerevisiae, and B. subtilis were obtained along with specific 

information regarding the feasible heterologous enzymes. Furthermore, the catalog 

of nonnative metabolites which can be produced by each host is improved from 

Microsoft Excel-format to Hyper Text Markup Language (HTML)-format that is a 

well-demonstration of heterologous pathway, gene, and compound information. 

 

3.2 Materials and methods 

 

3.2.1 Constructing an in-house database of metabolic reactions 

 All known metabolic reactions were considered as candidate heterologous 

reactions that could be added to the host’s metabolic network. An in-house 

database of metabolic reactions was firstly constructed from data stored in BKM-

react (Lang et al., 2011), which is an integrated database resulting from a 
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combination of database namely, BRENDA (Chang et al., 2009), KEGG (Kanehisa 

et al., 2008), and MetaCyc (Caspi et al., 2008). This in-house database is the 

update version of previously constructed that used metabolic reactions from 

retrieved only from KEGG database. All metabolic reaction information regarding 

genes, enzymes, pathways, and organisms in the KEGG and the EMBL (Kulikova et 

al., 2004) databases were collected into the new version of the in-house database 

developed using PostgreSQL 9.0 (The PostgreSQL Global Development Group). 

3.2.2 Screening for artificial heterologous pathways involved in the production of 

targets 

 Genome-scale metabolic models of E. coli (iJR904)(Reed et al., 2003), S. 

cerevisiae (iMM904) (Mo et al., 2009), and B. subtilis (Oh et al., 2007), were used 

based on earlier metabolic reconstructions with slight modifications. In order to 

incorporate known metabolic pathways listed in BKM-react database, all 

metabolite IDs in the earlier genome-scale metabolic models were converted to 

the KEGG compound ID and MetaCyc compound ID format using metabolic name 

matching using python scripts and manually search. In this study, the algorithm 

presented in chapter 2 was applied in order to search heterologous reaction(s) 

that produce target metabolites within a host microorganism. 

3.2.3 Codon Adaptation Index (CAI) 

 CAI was proposed by Sharp and Li as a measure of synonymous codon bias 

calculated based on the codon preference of highly expressed proteins, such as 

ribosomal proteins, and elongation factors (Sharp and Li, 1987). CAI score of a 



C h a p t e r  3                                                   P a g e  |  6 2  

 
 

gene is a measure of favorable codons or optimal codons, which are frequently 

used by the highly expressed proteins in a given genome, which takes a value 

from 0 to 1. CAI for a gene with L-amino acids is formulated as follows: 

��� = 	����

�

���

�

�/�

 

�� =
��

���(��)
						 

where, ��  denotes the frequency of ��� codon among other synonymous codons 

coding the same amino acids in the set of highly expressing genes. The relative 

adaptiveness 	�� is defined by the ratio between the frequency of ��� codon and 

that of the most frequently used codon for the amino acid. CAI of a protein is 

defined as the geometric mean of the relative adaptiveness of all the codons in 

the coding sequence. For the calculation of CAI, a set of highly expressed genes in 

the hosts, E. coli, S. cerevisiae, and B. subtilis was collected from literature (Das et 

al., 2009) and database (Puigbò et al., 2008). The 	�� table was created for each 

host by using sequence of highly expressed genes in the corresponding host 

strain (see in Table B.1 in Appendix B). The CAI score of orthologous genes of all 

organisms in KEGG and EMBL database was then calculated. The overall strategy 

of the computational platform integrating a new selection score, named as 

ArtPathDesign, developed in this thesis is summarized in Fig. 3.1. 
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FIG. 3.1 The schematic representation of ArtPathDesign platform.  

Host metabolic network and metabolic reactions collected in the in-house database were used as input data for screening heterologous pathways of 
nonnative metabolites. In parallel, CAI scores of all genes retrieving from the available databases was calculated and used to select candidate genes. 
Finally, the catalog of nonnative metabolites will be generated and available in html-format.
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3.3 Results and discussion 

 

3.3.1 Identification of heterologous pathways 

 Statistics of the updated version of the in-house database is shown in Table 

3.1. The updated in-house database contains 17,488 known metabolic reactions, 

17,617 metabolites of 2,056 organisms retrieved from BKM-react (shown in Table 

S1 of supplementary data). All supplementary data (Table S1-S4) in this chapter 

are available on the web site below. 

http://www-shimizu.ist.osaka-u.ac.jp/supplementaryData_artpathdesign.zip 

 Necessary information  regarding genes, enzymes, nucleotide sequences, 

organisms as well as the reversibility data from KEGG, BRENDA, and EMBL 

databases were parsed and stored in a version 2.0 of the in-house database.  

Table 3.1 Statistics of the in-house database version 1.0 (chapter 2) and version 

2.0 constructed in this chapter 

 In-house database 

(version 1.0) 

In-house database 

(version 2.0) 

Source database KEGG BKM-react 

No. of reactions 7,769 17,488 

No. of reactions 
(no EC number) 

1,274 0 

No. of compounds 6,635 17,617 

No. of reversible reactions 7,769 17,488 

 

 To archive nonnative production in E. coli, S. cerevisiae, and B. subtilis as the 

hosts, the algorithm developed in chapter 2, was used to screen heterologous 
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pathways from the metabolic reactions collected in the in-house database. In 

brief, by employing this algorithm the host’s metabolic network were iteratively 

expanded by adding heterologous reactions step-by-step in order to link 

nonnative metabolites. The host’s metabolic network expanded until no further 

nonnative metabolites could connect to it. Fewer than 32 heterologous reactions 

were required to connect 3,226, 3,298, and 3,211 nonnative metabolites to the 

host’s metabolic networks of E. coli, S. cerevisiae, and B. subtilis respectively. 

Comparison of results between version 1.0 and 2.0 of the in-house databases are 

shown in Table 3.2. From this table, it was found in all hosts excluding E. coli, the 

update version of the in-house database was improved as for the number of 

connectable metabolites. The total number of connectable metabolites when E. 

coli as the host decreased from 3,244 to 3,226 because, removing metabolic 

reactions, which are no information of EC number, previously used to connect to 

E. coli’s metabolic network in chapter 2. Those metabolites included D-Ribulose 

(C00309), Hyaluronate (C00518), etc. If no EC number information, it is not 

possible to select heterologous genes. Therefore, the in-house database version 

2.0 contains only metabolic reactions that have information of EC number. The 

list of metabolites connected to the host’s metabolic networks by using the new 

version in-house database is shown in Table S2 of supplementary data.  
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Table 3.2 Comparison of total connectable nonnative metabolites between 2 

versions of the in-house databases 

Host cell In-house database 

(version 1.0) 

In-house database 

(version 2.0) 

E. coli  3,244 3,226 

S. cerevisiae  3,154 3,298 

C. glutamicum  3,112 3,321 

B. subtilis 3,063 3,211 

 

3.3.2 Relationship between CAI score and protein abundance 

 To analyze the relationship between CAI scores and protein expression levels, 

protein abundance data were obtained from PaxDb (M. Wang et al., 2012), which 

is a repository containing information from different proteome experiments of 

several organisms. 1,560 coding gene sequences (CDSs) of E. coli were obtained 

from KEGG database. Likewise, 5,004 CDSs of S. cerevisiae and protein abundance 

were collected for correlation analysis. CAI scores of genes were then computed 

and compared them with the protein abundance data as shown in Fig. 3.2. A 

statistically significant correlation was observed between CAI scores and log 

(protein abundance values) (correlation coefficient r=0.60 in E. coli and r=0.65 in 

S. cerevisiae). The observed positive correlation of CAI and protein abundances 

suggested that the CAI could be used as the index representing potential protein 

expression levels in host organisms. 
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FIG. 3.2 The relationship between the normalized log protein abundance data 

(ppm: part per million) and CAI scores in (A) E. coli (B) S. cerevisiae. CAI scores of 

1,560 genes in E. coli and 5,004 genes in S. cerevisiae from PaxDb (Protein 

Abundance Across Organisms) database are shown. Protein abundance in “ppm” 

essentially refers to each protein with reference to the complete proteome 

expression. In other words, it implies the amount of each protein relative to all 

other protein molecules present in the sample. 

3.3.3 Screening of heterologous genes with higher CAI scores 

 The expression levels of heterologous enzymes are often low (Kleber-Janke 

and Becker, 2000; Lakey et al., 2000), probably due to the differences in the 

codon usage between the source and the host organisms. However, based on the 

positive correlation obtained between CAI scores and protein abundance values 

(Fig. 3.2), it can be inferred that, amongst the multiple candidate heterologous 

enzymes involved in the production of a target metabolite, selecting the one 
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whose corresponding gene sequence has a higher CAI score would result in an 

enhanced expression of the heterologous enzyme. 

 In this chapter, potentially highly expressed genes that could enhance the 

expression level of the corresponding encoded enzymes were identified, and 

thereby result in a higher productivity of the target metabolites. The process 

involved determining the CAI scores for all the screened candidate heterologous 

genes which could lead to the production of all possible target metabolites, and 

subsequently selecting the candidate heterologous genes with higher CAI scores. 

Expectedly, for all host microorganisms used in this study, the distributions of CAI 

scores of the native genes were found to be higher when compared to those of 

the heterologous genes from other organisms (Fig. 3.3).  

 It was reported that human genes selected to express in E. coli as the host 

showed low expression (Dai et al., 2013; Gvritishvili et al., 2010; Q. Wang et al., 

2012). Thus, I collected the wide type coding sequences of human kallistatin, 

human Pigment epithelium-derived factor (PEDF), and human cystatin from the 

previous reports, and calculated CAI scores of these genes. As results, CAI scores 

of the 3 human genes selected to be expressed in E. coli are 0.37, 0.32, and 0.45, 

respectively. These data suggests that the human genes show low expression due 

to low CAI scores. In addition, these previous reports also successfully improved 

the production of proteins by replacing the human genes with the codons that 

suitable for host E. coli without changing amino acids. 

 In Fig. 3.3, the dashed line represents the distribution of CAI scores of 

different native genes that originally exist in the host, while the solid line 
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corresponds to the CAI scores of all possible heterologous genes which could be 

utilized for the production of the target metabolite. The dotted line represents 

the CAI scores of the selected heterologous genes. It was observed that the 

highest CAI scores correspond to the set of heterologous genes which encode 

enzymes having same functions. As evident, a significant increase in CAI scores 

was achieved by repeated selection process, thus demonstrating that this 

approach can overcome the problem of low expression of heterologous enzymes 

which occur due to differences in the codon usage. The selected heterologous 

genes required for the production of all possible target metabolites are 

presented in Table S3 of supplementary data. 

 Fig. 3.4 illustrates 2 different heterologous pathways where the higher CAI 

score selection technique was applied for choosing suitable heterologous genes. 

The production of 1,3-propanediol by S. cerevisiae (Rao et al., 2008) is generally 

achieved by introducing dhaB (glycerol dehydratase) from Klebsiella pneumoniae 

and yqhD (an alcohol dehydrogenase possessing the activity of 1,3-propanediol 

dehydrogenase) from E. coli. As shown in Fig. 3.4A, the CAI scores of dhaB and 

yqhD in S. cerevisiae is relatively low in comparison with the native genes, which 

might result in low expression levels of these heterologous genes. However, this 

screening platform demonstrated that the productivity of 1,3-propanediol by the 

host S. cerevisiae could be enhanced by introduction of dhaB and dhaT from 

Clostridium perfringens and Lactobacillus reuteri, respectively instead of dhaB 

and yqhD from K. pneumoniae and E. coli, respectively since they have relatively 

high CAI scores. Another classical example is the heterologous pathway for (R,R)-

2,3-butanediol in a host E. coli, which has been shown to utilize heterologous 
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genes from B. subtilis (Yan et al., 2009). In this case, the in silico system suggested 

that alsS from Pseudomonas putida, alsD from Enterobacter cloacae and bdh 

from Klebsiella oxytoca were comparatively better in terms of CAI, shown in Fig. 

3.4B. Although other enzymatic characteristics such as �� value could influence 

the production of target metabolites, the expression level of a particular 

heterologous enzyme is crucial for the activation of a specific heterologous 

pathway in order to achieve a higher productivity of the desired target. Therefore, 

these findings highlight that the selection of heterologous genes with higher CAI 

scores is an effective approach to enhance the productivity of the target 

metabolites. 

 In addition, the distributions in Fig. 3.3 reveal that in spite of selecting 

heterologous genes with the highest CAI scores (shown in dotted line) from many 

organisms, some heterologous genes still exhibit relatively low CAI scores which 

could result in a low expression level due to the mismatch of codon usage. One 

possible strategy to overcome this is to calculate an optimized gene sequence 

encoding a specific heterologous enzyme which has preferable codon usage in 

the host microorganism (i.e., CAI = 1), and subsequently synthesize this artificial 

gene experimentally for its introduction into the host. With the growing 

availability of low-cost de novo gene synthesis (e.g., $300/1kb in 2012), such 

optimized gene sequences could be easily employed for bio-production. Fig. 3.5 

shows the example of optimized gene sequence comparing with the original gene 

sequence encoding for catechol 1,2-dioxygenase (catA).The optimized sequences 

encoding all the heterologous enzymes that are required for the production of 

target metabolites in the 3 host microorganism are given in Table S4 of 



C h a p t e r  3                                                      P a g e  | 71 

 

supplementary data. Collectively, these data suggest that artificial gene 

sequences when considered in combination with optimal CAI are valuable, only 

when the artificial gene synthesis technique is applied to the expansion of the 

host’s metabolic network for the production of targets. 

 

FIG. 3.3 Distribution of CAI scores for each organism (A) E. coli, (B) S. cerevisiae, 

and (C) B. subtilis as the hosts. Solid line denotes the CAI score distribution of all 

possible heterologous genes that can be used for nonnative metabolite 

productions. Dotted line represents the CAI score distribution of all selected 

heterologous genes with the highest CAI score encoding enzymes having the 



C h a p t e r  3                                                      P a g e  | 72 

 

same enzymatic function. Dashed line denotes the CAI score distribution of native 

genes originally from the host microorganism. 

 

FIG. 3.4 (A) Heterologous pathway for the production of 1,3-propanediol in S. 

cerevisiae (Rao et al., 2008) as well as CAI scores of orthologous genes. The 

heterologous genes from different organism with the higher CAI scores (shown in 

box) were selected by employing the improved computational system. (B) 

Heterologous pathway for the production of (R,R)-2,3-butanediol in E. coli (Yan et 

al., 2009) as well as CAI scores of orthologous gens. The heterologous genes from 

different organism with the higher CAI scores (shown in box) were selected by 

employing the improved system. alsD encodes acetolactate decarboxylase, alsS 

encodes acetolactate synthase, and bdh encodes butanediol dehydrogenase.  
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FIG. 3.5 The catA sequence (ORF ID: Psest_2692) from Pseudomonas stutzeri 

RCH2 was replaced with the host’s favorable codons, for example codon “act” 

was replace with “acc” coding for threonine. The GC content of original sequence 

is 64.65%, while GC content of optimized sequence is 57.64%. 

 Finally, FBA was performed to investigate whether all connected nonnative 

metabolites are producible by using glucose as a sole carbon source. The 

maximum fluxes of all connectable nonnative metabolites corresponding to each 

host were calculated. It was observed that 11% of the connectable nonnative 

metabolites of E. coli could not be produced using glucose as the sole carbon 

source. Likewise, 27% and 11% of connectable nonnative metabolites of S. 

cerevisiae and B. subtilis respectively could not be produced under this condition. 

3.3.4 Examples of results in hyper-text based user interface 

 HTML (Hyper Text Markup Language) is a language for describing web pages, 

thus outputs in html-format easily open by using web browser such as Google 

Chrome and Firefox. Python script function was created in order to provide 
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information of heterologous pathways of nonnative metabolites in html-based 

format. The hyper-text is automatically generated by these programs and output 

results are summarized in the file named “index.html” found in archive file 

available at: http://www-shimizu.ist.osaka-u.ac.jp/APD.zip 

 In order to search for target metabolite, the index.html can be opened via 

web browser for example Google Chrome as shown in Fig. 3.6. In this figure, how 

to find heterologous pathway(s) for the production of 1,3-propanediol using 

search function (Ctrl+F) of Google Chrome is shown. By typing compound name 

or ID, the possible pathways will be found as shown in Step 3 of Fig. 3.6. By 

clicking target pathway (for example Pathway-1), the detail of the heterologous 

pathway will be displayed as shown in Step 4 of Fig. 3.6. Additional example of 

(R,R)-2,3-butanediol is shown in Fig. 3.7. By using this computational system, the 

list of all possible metabolites able to connect to host’s metabolic network will be 

provided as a catalogue for user to search for target production as well as 

necessary information such as candidate genes, open reading frame ID, and 

organisms. 
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FIG. 3.6 The output result of heterologous pathways for the production of 1,3-

propanediol in E. coli is provided in html-format. To search for target metabolite, 

4 steps are required and shown here. Step 1 shows “index.html”, which is the 

summarized results of ArtPathDesign (the html file can be easily opened using 

Google Chrome and Firefox). In this example, the index.html was open by using 

Google Chrome. Step 2 shows how to search target metabolite using Ctrl+F 

(search function of Google Chrome) and type compound name or compound ID 

of target. Step 3 shows the result of target search and two heterologous 

pathways are available for 1,3-propanediol. Step 4 shows result page of the first 

candidate pathway in the new page including a structure of compound and detail 

information of heterologous pathway that are reactions, genes, open reading 

frame ID, and organisms. 
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FIG. 3.6 (Continued)
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FIG. 3.6 (Continued)
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FIG. 3.7 Heterologous pathway for the production of (R,R)-2,3-butanediol shown as html-format
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3.3.5 Examples of new heterologous pathways for the production of nonnative 

metabolites in the specific host 

 In previous part, the evaluation of the ArtPathDesign system has been done, 

thus, this part will demonstrate the advantage of this system that could identify a 

new heterologous pathway of nonnative metabolites in the target host cell. For 

example, muconic acid (C02480) previously reported to produce in E. coli by 

adding 3 heterologous reactions by enzymes 3-dehydroshikimate dehydratase, 

protocatechuic acid decarboxylase, and catechol 1,2-dioxygenase encoded by 

heterologous genes aroZ, aroY and catA, respectively (Niu et al., 2002). The new 

heterologous pathway was suggested by ArtPathDesign. This pathway contained 

2 heterologous reactions by enzymes anthranilate 1,2-dioxygenase (EC number: 

1.14.12.1) and catechol 1,2-dioxygenase (EC number: 1.13.11.1) encoded by 

heterologous genes antABC and catA, respectively. In addition, the new 

heterologous pathway of muconic acid was just reported by Sun et al., 2013 and 

it is identical with the new pathway suggested by ArtPathDesign. Sun and 

colleagues successfully produced muconic acid in E. coli by introducing the new 

pathway containing antABC and catA from Pseudomonas aeruginosa and 

Pseudomonas putida KT2440 (Sun et al., 2013). As the result, it is confirmed that 

ArtPathDesign successfully identified the new heterologous pathway for muconic 

acid and validated by the recently reported experiment (Sun et al., 2013). 

 Another example is Isomultiflorenol production by using E. coli as the host 

(Fig. 3.8). Isomultiflorenol (Hayashi et al., 2001) is a triterpene showed similar 

structure with -Amyrin and -Amyrin (Fig. 3.9). In addition, -Amyrin and -
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Amyrin (Liliana et al., 2012) have various pharmacological activities in vitro and in 

vivo conditions against various health-related conditions, including conditions 

such as anti-inflammation, antimicrobial, antifungal and antiviral infections. By 

using the ArtPathDesign system, it was demonstrated that 3 heterologous 

reactions are required to produce isomultiflorenol from trans,trans-Farnesyl 

diphosphate and 3 heterologous genes encoding 3 enzymes have activities of EC 

2.5.1.21, EC 1.14.13.132, and EC 5.4.99.36. The candidate heterologous genes 

and open reading frame (ORF) ID are also suggested. 

 One more typical example is heterologous pathway for vanillin production in 

E. coli (Fig. 3.10). Vanillin is recognized as one of the most widely used flavoring 

agents in the world (Kaur and Chakraborty, 2013) which is extracted from the 

orchid Vanilla planifolia, Vanilla tahitiensis, and Vanilla pompona. In addition, 

pure vanillin used in food and beverage industry and also as a bio-preservative 

agent since its antimicrobial and antioxidant properties. According to vanillin 

properties, previous studies had design the heterologous pathway to incorporate 

into well-characterized hosts, E. coli, S. cerevisiae, etc. (Kaur and Chakraborty, 

2013). By using the ArtPathDesign system, the new heterologous pathway and 

heterologous genes for E. coli as the host, which has no report today, are 

suggested. This heterologous pathway contains 4 heterologous reactions and 4 

heterologous enzymes that have enzyme activities according to the following EC 

numbers: EC 1.14.13.33, EC 1.2.1.46, EC 1.14.13.82, and EC 1.2.1.67. The 

information of heterologous genes is shown below. Top substrates of this 

heterologous pathway are formate (C00058) and 4-hydroxybenzoate (C00156) 

which are able to be produced from the central metabolic pathway of E. coli.  
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FIG. 3.8 Heterologous pathway for Isomultiflorenol (C19801) production in E. coli 

was produced via trans,trans-Farnesyl diphosphate (C00448). 
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FIG. 3.9 Compound structures between -Amyrin, -Amyrin and Isomultiflorenol 

(compound structures retrieved from KEGG database) 
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 FIG. 3.10 Heterologous pathway for vanillin production in E. coli 
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3.4 Summary 

 

 An improved computational or in silico platform, named as ArtPathDesign, 

was developed to screen heterologous pathways suitable for the production of 

nonnative metabolites particular for host cell factories such as E. coli, S. cerevisiae, 

and B. subtilis. Owing to the presence of a vast number of candidate genes encoding 

similar enzymes and problem of low/no heterologous enzyme expression, the 

selection of suitable heterologous genes particular for the target host become 

difficult. Therefore, the applicability of the previously designed platform in chapter 2 

was extended to select suitable candidate heterologous genes encoding enzymes. 

CAI score was used to screen the target genes whose introduction to host 

microorganisms would enable efficient target metabolite production. This 

ArtPathDesign system was improved to overcome the problems about host-specific 

heterologous pathways, host-specific heterologous genes, and enables to provide a 

catalog of nonnative metabolites in the specific host. Besides, the ArtPathDesign 

system could suggest the new heterologous pathways, for example Isomultiflorenol, 

vanillin, and so on. Furthermore, optimized nucleotide sequences of heterologous 

enzymes consisting of only the most preferred codons of hosts were calculated and 

these optimized heterologous genes may improve the production of metabolites if all 

optimized gene sequences applied for the corresponding heterologous pathway. It is 

expected that the in silico platform, ArtPathDesign, is proved as a valuable tool by 

providing essential information for improving cell factories. This aids researchers in 

developing strategies for strain improvement and facilitates the rational design of 
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metabolic pathways for the production of value-added chemicals by host 

microorganisms. 



Chapter 4  

4.1 General conclusion and discussion 

 

Nowadays, the demands of fuels and chemical feedstocks are largely increased, 

while petroleum resources are limited and unsustainable. In addition, petroleum-

based process for energy and industrial chemicals shows negative impacts on 

environment. The alternative route to produce fuels and valuable chemicals using 

microorganisms becomes a striking way. However, some microorganisms are not 

easy to cultivate and produce high level of target products, and lack of metabolic 

information and genetic manipulation tools. 

Metabolic engineering is one of the most widely used techniques to modify 

and/or integrate heterologous pathways into the well-developed hosts, such as E. 

coli, S. cerevisiae, etc. for producing and/or improving target compounds. It is 

difficult for scientists to search for the feasible heterologous to produce target 

metabolites since the following reasons. There are a huge number of metabolic 

reactions available from databases and literature, and the complexity of host’s 

metabolic network. To search for heterologous pathways connecting to the host’s 

metabolism is tough and time-consuming tasks, and it is difficult to handle by human. 

Accordingly, the computational or in silico system is required to solve those 

problems. In previous studies, several pathway design approaches (Cho et al., 2010; 

Dogrusoz et al., 2009; Finley et al., 2009; Flórez et al., 2011; Handorf et al., 2005; Li et 
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al., 2004; McShan et al., 2003; Moriya et al., 2010; Pey et al., 2011; Pharkya et al., 

2004; Rodrigo et al., 2008; Yousofshahi et al., 2011) for the production of target 

metabolites have been developed (comparison of among methods are summarized 

in Table 1.2 in chapter 1). Nevertheless, there is no consensus or general approach to 

select heterologous pathways and genes especially for target host cells.  

Therefore, the aim of this thesis was to develop the in silico method, named as 

the ArtPathDesign (Artificial heterologous Pathway Design), for screening host-

specific heterologous pathways, host-specific heterologous genes and providing a 

catalog of nonnative metabolites of each host. These key features are important for 

producing/improving target compound in a specific host cell and still not yet be 

developed by the earlier reports.   

In chapter 2, in order to produce target nonnative metabolites in the well-

characterized hosts, E. coli, S. cerevisiae, and C. glutamicum, the algorithm to search 

for heterologous pathways was developed. With this algorithm, all possible 

nonnative metabolites that are able to connect to the 3 hosts were screened as well 

as information of heterologous reactions. Still, it was found that numerous 

orthologous genes encoding enzymes with similar function are available. Thus, a 

minimum of �� value was applied with the expectation to have the highest affinity 

among orthologous genes to select candidate heterologous genes corresponding to 

heterologous pathway for the production of nonnative metabolites. Combining with 

the ��  selection score, the identical heterologous reactions of nonnative 

metabolites agreed well with widely used in metabolic engineering of industrial 

products were successfully screened (Table 2.2 and 2.3). The examples of those 
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nonnative metabolites are isoprene, -farnesene, poly--hydroxybutyrate (PHB), and 

cadaverine. Furthermore, by comparing the number of producible nonnative 

metabolites among host microorganisms, it was found that yeast (S. cerevisiae) cell 

has several compartments presenting barriers to metabolite transport. For instance, 

mitochondrial/cytoplasmic interfaces prohibit the production of certain target 

metabolites when sugar is used as a carbon source. In addition, the genome-scale 

metabolic model used in this thesis does not account for transportation capabilities 

between compartments, which are currently unclear for many metabolites, and 

which might influence the production capacities of target metabolites in the real cell 

systems. By using the screening algorithm and 	�� as the selection score, times and 

costs for searching suitable heterologous pathways agreed well with previous reports 

were reduced when comparing with the possible heterologous pathways generated 

without any background information. In addition, this computational method is 

applicable for any genome-scale metabolic models.   

Although 	�� value was used as the score for selection of candidate heterologous 

genes among numerous orthologous genes, the ��	information is limited since it 

required in vitro experiments to observe kinetic of enzymes and activities itself 

depending on substrate concentration. However, the expression level of a particular 

heterologous enzyme is crucial for the activation of a specific heterologous pathway 

to yield a higher productivity of the desired target metabolite. 

In chapter 3, the improvement of the in silico platform was developed to 

facilitate the screening of host-specific pathways and genes by applying a new 

selection score. Firstly, the in-house database was updated from version 1.0 to 2.0 by 
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using the newest metabolic reaction database called BKM-react (Lang et al., 2011). 

The alternative score namely Codon Adaptation Index (CAI) was applied to be used as 

a selection score for finding candidate heterologous genes. The CAI score of a gene is 

calculated based on the preference codons found in the highly expressed genes of 

the host. It is expected that a higher CAI score resulting in a high expression level of 

the enzyme which could increase the production of target metabolite. With the CAI 

score as the selection score, the alternative heterologous genes were screened that 

could improve the productivity of nonnative metabolites such as 1, 3-propanediol in 

S. cerevisiae as the host. The heterologous pathway for (R, R)-2, 3 -butanediol in E. 

coli was identified and alternative heterologous genes were suggested. This in silico 

system, named as ArtPathDesign, is successfully identified the new heterologous 

pathways and genes of useful compounds such as cis,cis muconic acid, vanillin, 

Isomultiflorenol, etc. and could open the new biotransformation route to produce 

nonnative  metabolites in the target host such as E. coli, S. cerevisiae, B. subtilis, etc. 

In case of cis,cis muconic acid, Sun and colleagues (Sun et al., 2013) was just reported 

the novel heterologous pathway which is the identical heterologous pathway 

suggested by the in silico system developed in this thesis. This example shows the 

proof of the algorithm successfully identified the new heterologous pathway that can 

be used to produce useful chemical in E. coli cell. 

In conclusion, the computational platform, ArtPathDesign, was developed as a 

metabolic engineering tool in order to provide strategies for producing target 

metabolites in specific host cell factories, E. coli, S. cerevisiae, C. glutamicum, and B. 

subtilis. The ArtPathDesign platform is applicable for any genome-scale metabolic 

models. The strategy of current ArtPathDesign is shown in Fig. 4.1. Host’s metabolic 
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networks and metabolic reactions from available databases were parsed into an in-

house database, which will be used as the input data for generating all possible 

heterologous pathways. To select and rank heterologous genes for those possible 

heterologous pathways, the Codon Adaptation Index (CAI) was calculated for all 

orthologous genes retrieved from KEGG and EMBL databases and the optimized gene 

sequences were created by replacing original codons with favorable codons from the 

host’s highly expressed genes without changing amino acid. Then, the rank of 

candidate heterologous genes and optimized gene sequences were included into the 

in-house database. Once all possible heterologous pathways were generated for the 

host cell, flux balance analysis (FBA) simulation was performed by including 

constraints that are glucose as a carbon source and mass balance. FBA was applied to 

observe capacity of the nonnative metabolites after introduction of heterologous 

pathway to the host metabolism under specific constraints. The heterologous 

pathway of the nonnative metabolite, which can produce more than 1% mol-

product/mol-glucose, was selected and the heterologous genes corresponding to 

those heterologous pathways were ranked by using CAI score. Finally, list of 

nonnative metabolites, heterologous pathways, and genes was obtained to provide 

necessary information to users for conducting trial experiments. However, this 

platform was not included such factors thermodynamics of heterologous reactions, 

toxicity of products on the host cell, those features will be developed in the future as 

expansion features for suggesting more rational heterologous pathways. 

The ArtPathDesign platform successfully identified host-specific heterologous 

pathways, host-specific heterologous genes, and provided the catalog of all 

nonnative metabolites are able to be produced by each host. Also, the new 
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heterologous pathways and genes were also suggested from this platform which 

would be a new route to engineer the host strain for target productions. Finally, the 

optimized gene sequences, which substituted original coding sequences with the 

preferable codons from highly expressed genes of each host, were also included. As 

mentioned in chapter 3, the cost for the artificial gene synthesis is gradually 

decreased. It is possible to improve the productivity of target metabolites by 

including optimized heterologous genes into the target host cell. 

 

FIG. 4.1 Overall strategy of heterologous pathway identification and selection 

(current version of ArtPathDesign system) 
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4.2 Future perspective 

 

The current version of ArtPathDesign generates all possible heterologous 

pathways by assuming all known metabolic reactions to be reversible. However, 

there are a few class of reactions such as carboxylation/decarboxylation reaction, 

ATP consuming reactions (controlled by kinases), which are thermodynamically 

irreversible. In order to identify a more rational heterologous pathway, 

thermodynamics of heterologous reactions should be included to judge and select 

heterologous pathway for the production of nonnative metabolites. However, to 

manually incorporate all information on the reaction irreversibility is a hard task and 

it will be an expansion feature (shown in Fig. 4.2). Thermodynamics of metabolic 

reactions is calculated by using kinetic parameters retrieving from experiments, 

which are limitation. Several computational methods have been developed to 

estimate Gibbs free energy for biochemical reactions(Jankowski et al., 2008; Noor et 

al., 2012; Rother et al., 2010; Sabatini et al., 2012). One of these methods called 

group contribution is widely used. This group contribution method is demonstrated 

to be capable of estimating Gibbs free energy for the majority of the biochemical 

compounds and reactions found in E. coli’s metabolic network (Jankowski et al., 

2008). Therefore, the reversibility of heterologous reactions will be calculated using 

this group contribution method and can be used to select more reasonable 

heterologous pathways. The thermodynamics feature should further develop for 

integrating with the current version of ArtPathDesign, and will help to improve the 

performance for selection of heterologous pathways. 
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The current version of ArtPathDesign platform was developed based on 

metabolic reactions data from available databases such as KEGG, BRENDA, BKM-

react and so on. However, the input data for ArtPathDesign is depending on 

metabolic reactions from databases. Generating new metabolic reactions (non-

existent in any databases) is a desire feature of heterologous pathway design. 

Therefore, to complete the ArtPathDesign system it requires a strategy to find new 

metabolic reactions, including information of enzymes/proteins and genes. Thus, 

another expansion feature is to create new heterologous reactions (Fig. 4.2 shown in 

red dashed box). 

It was reported that several enzymes in E. coli (about 37% of enzymatic enzymes) 

that found to be generalist enzymes that promiscuously catalyze reactions on a 

variety of substrates (Nam et al., 2012). The idea of generalist enzymes leads to the 

possibility to create the novel metabolic reaction since these enzymes can bind to 

multi-substrates. Therefore, the design of novel metabolic reactions based on 

substrate similarity of generalist enzymes will be added to the ArtPathDesign as 

shown in Fig. 4.2 (red dashed box). Tanimoto or Jaccard coefficient is one of the most 

popular scores used to measure similarity between chemical structures represented 

by means of fingerprints (Willett et al., 1998). By using compound similarity score 

such as Tanimoto coefficient, the substrate-like compound will be screened. The 

possible new metabolic reaction will suggest from the substrate-like compound used 

as the alternative substrate in that metabolic reaction. The schematic of novel 

metabolic reaction deign is shown in Fig. 4.3. 
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All metabolic enzymes and reactions from several databases such as KEGG, 

BRENDA, EMBL, ENZYMES, PDB, etc. will be compiled. Next, an enzyme that is able to 

catalyzed more than one reaction will be classified as generalists. Then, all substrate 

compounds of those generalist enzymes will be collected. Structures of those 

compounds can be retrieved from MetaCyc and KEGG databases. Consequently, 

Tanimoto coefficient will be calculated between the substrates of generalist enzymes 

and other compounds from available databases. If the similarity scores of such 

compounds can pass the threshold of the substrate-like compound, the compound 

will be used as the target for next step. After that, molecular docking technique will 

be used for observing enzyme-substrate affinity and a binding score will be 

calculated. Several docking tools (Yuriev and Ramsland, 2013) are available and 

successfully used for screening drug targets based on free energy binding and 

inhibition constant. In order to do enzyme-compound docking, target enzyme 

structures can be downloaded from PDB database. Finally, enzyme-binding scores 

between the substrate-like compound and target enzyme will be calculate by using 

tools such as AutoDock (Morris et al., 2009), GOLD (Jones et al., 1997), Glide 

(Friesner et al., 2004; Halgren et al., 2004), etc. However, the most important 

parameters are thresholds of substrate-like compounds and enzyme-compound 

binding scores; it required a computational system to repeat the process until finding 

a well-represented score which fits to some experimental data. Finally, new 

heterologous reactions will be identified and will be integrated to the ArtPathDesign 

system. Thus, to further complete ArtPathDesign system, the thermodynamics of 

heterologous reactions and the computational methods to design the new 

heterologous reaction(s) features will integrate to the current version of 



C h a p t e r  4                                                   P a g e  |  9 5  

 

ArtPathDesign. The complete version of ArtPathDesign would be the useful tool that 

enables the scientists for improvement of target metabolites in their target hosts by 

providing alternative metabolic engineering strategies. 
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FIG. 4.2 The schematic of the complete ArtPathDesign integrated with the expansion features.  
Thermodynamics of heterologous reactions will be expanded to improve the current version for selection of heterologous pathways. Red dashed box represents 
another expansion feature will be developed for creation of new heterologous reactions based on compound similarity and enzyme-substrate binding scores.  
(An image of protein structure was retrieved from http://www.rcsb.org/pdb/images/2yow_bio_r_500.jpg)

http://www.rcsb.org/pdb/images/2yow_bio_r_500.jpg
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FIG. 4.3 The schematic of strategy to design new heterologous reactions 
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Appendix A 

Source code 

A.1 Heterologous pathways detection by Python 

A.1.1 Main script “runningScript.py” 

############################################################## 
### Runing script by using this file with IDLE 
### Before run the script, you need to change the path of input file that 
you want to obtain all possible connected metabolites 
### kegg_metabolic_reaction2010mar.csv -> is the reference reactions from  
KEGG ligand database 
### host_metabolites.txt -> contains all metabolites in terms of KEGG ID if 
available ( you can get this list fromn the supplementary of Genome-scale 
metabolic model  
### nonNativeMetabolites.txt -> contains all metabolites (retriving from 
reference reactions that are not in the host metabolic network) 
###  
############################################################# 
 
import sys,pickle,re,os,csv,glob 
from heterologousReactionDetection import * 
from addInfoOutput import * 
from createIndexFile import * 
 
## current directory  
cur_dir = os.getcwd()  
 
### Three input files are neccesary for running the script   ############ 
### Please see the format of input files in the input folder ########## 
bkm_rn_file = 
os.path.join(cur_dir,"input/bkm_metabolic_reactions_2012.csv")## KEGG 
reaction in tab delimited format  
gemMet_file = os.path.join(cur_dir,"input/eco_nativeMetbolites.csv")## host 
metabolites if no KEGG ID used the original ID  

nonNative_file = 
os.path.join(cur_dir,"input/eco_nonNativeMetabolites.csv")## nonnative 
metabolites ( not found in host metabolic network) 
##################################################################### 
 
### list of metabolites from host metabolic model  
gemMetList = [line.upper().rstrip() for line in open(gemMet_file)] 
 
### list of nonnative metabolites (found in KEGG reference reactions, but 
not found in host network) 
nonNativeMetList = [line.upper().rstrip() for line in open(nonNative_file)] 
 
 
##### Creating Dictionary of KEGG reactions ############# 
result = Reaction(bkm_rn_file)## class KEGG metabolic reaction with 
reaction ID, left metabolites, right metabolite  
bkm_rns ={} 
for item in result.getReaction(): 
    rec = 
[item.rx_id,item.leftMet,item.rightMet,item.equation,item.orgEquation,item.
direction] 
    bkm_rns[item.rx_id] = rec  
 
##################################################################### 
 
### Input the number of iteration that you want to observe  
numOfiteration = raw_input("Please input total iterations (such as 10,20, 
or 30) and then press Enter = ") 
 
### To write pre-results that contain the possible reaction to be used  
maxIteration = 
writePreResult(numOfiteration,nonNativeMetList,bkm_rns,gemMetList) 
 
### To write all heterolgous reactions (equation in term of KEGG compound 
ID [Cxxxxx]) for each nonnative metabolites in each iteration 
writeAllHeterologousPathwayToFile(maxIteration,bkm_rns) 
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print "Finished searching !!!!!!! for the current host organism .........." 
 
 
## To remove preResult file ( *.csv ) 
removePreResultFile() 
 
 
## To generate output files in html-format #### 
input_dir = os.path.join(cur_dir,"input") 
 
bkmReactDict = 
getBKMreaction(os.path.join(input_dir,"bkm_metabolic_reactions_2012.csv")) 
keggDict = getKEGGcompound(os.path.join(input_dir,"kegg_compounds.csv")) 
metaCycDict = 
getMetaCycCompound(os.path.join(input_dir,"metacyc_compounds.csv")) 
ecGenesDict = 
getOptGenes(os.path.join(input_dir,"2012_optGenes_ecoHost_bothDB.txt")) 
 
print "Still writing all results in output folder (html-file) !!!!!" 
 
writeResultFiles(maxIteration,bkmReactDict,keggDict,metaCycDict,ecGenesDict
) 
print "Finished all nonnative metabolites and Heterologous reactions in 
output folder !!!!!!!!" 
 
#### To create index.html file that summarized all connectable nonnative 
metabolites ##### 
 
output_dir = os.path.join(cur_dir,"output") 
writeIndexFile(output_dir,keggDict,metaCycDict) 
print"#######################==End==################################" 
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A.1.2 “heterologousReactionDetection.py” 

#!/usr/bin/env python 
# Author:  Sunisa Chatsurachai  
# Purpose: For finding all additional reactions (Heterologous pathway) for 
each non-native metabolite 
# Created: 11/26/2010 
 
import sys,pickle,re,os,csv,glob 
from candidateReaction import * 
from createHeterologousPathwayFile import writeAllHeterologousPathwayToFile 
 
######################################################################## 
class Record: 
    """Blank class""" 
    pass 
 
######################################################################## 
 
class Reaction(): 
    """""" 
 
    #---------------------------------------------------------------------- 
    def __init__(self,reaction_file): 
        """ 
        reaction_file = "finalBKM_ir.csv" 
        EX: 
        R00004 2.3.1.48 BS407080 acetyl-CoA + c-Myc <=> CoA + acetylated c-
Myc 1 C00024 + 1 c-Myc  <=>  1 C00010 + 1 acetylated c-Myc brenda_r 
        """ 
        self.reaction_file = open(reaction_file) 
        self.data =[]  
        self.process() 
    def getReaction(self): 
        """ 
        get each reaction from file 
        """ 
        return self.data 
     
    def checkGlycanReaction(self,list_equation_item,default = "No glycan"): 
        for item in list_equation_item: 
            if item.startswith("G"): 
##                print "found Glycan" 

                default = None 
                break 
        return default 
     
    def checkMetabolite(self,item): 
        """ 
        Check if it is metabolite or not 
        if not return  None 
        """ 
        if item in ["<=>","<-->","<=","<--","=>","-->","+"]: 
            return None 
         
        elif re.findall(r'[a-z]|[A-Z]',item) == []:## found only numeric 
            return None 
        elif item != "": 
            return None 
     
        else: 
            return item 
     
    def getMetabolitesFromEquation(self,equation):  
        """ 
        input equation 
        return [leftmets,rightmets]  
        """ 
        result = [] 
        pattern = re.search(r'(\<\=\>)|(\=\>)|(\<\-\-\>)|(\-\-
\>)',equation) 
         
        if pattern is not None: 
            #print pattern.group() 
            data = equation.split(pattern.group()) 
            leftMet = data[0] 
            rightMet = data[1] 
            #print leftMet,rightMet 
         
            result.append(leftMet) 
            result.append(rightMet) 
             
        else: 
            print "not found direction" 
        return result 
 
    def getLeftMetabolite(self,leftMets): 
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        result = [] 
        metItem = leftMets.lstrip().rstrip().split(" + ") 
         
        for m in metItem: 
            m_item = m.split() 
             
            if self.checkMetabolite(m_item[0]) is None and 
re.findall(r'^[1-9]$|^[1-9][0-9]$|^[1-9][0-9][0-9]$',m_item[0]) != []: 
                #print m_item[0],"##"," ".join(m_item[1:]) 
                stoi = m_item[0] 
                met = " ".join(m_item[1:]) 
            else: 
                if re.findall(r'^n$|^m$|^\(n\+[1-9]\)$|^\(n\+m\)|^\(m\+[1-
9]\)$',m_item[0]) !=[]: 
                    #print m_item[0], "##"," ".join(m_item[1:]) 
                    stoi = '1' 
                    met = " ".join(m_item[1:]) 
                elif re.findall(r'^[2-9]n$|^[2-9]m$|^[1-9][0-9]n$|^[1-9][0-
9]m$',m_item[0]) != []: 
                    stoiData = m_item[0] 
                    if len(stoiData) >= 2: 
                        stoi = stoiData[:-1] 
                        met = " ".join(m_item[1:]) 
                else: 
                    stoi = '1' 
                    met = " ".join(m_item[:]) 
            #print stoi,met 
            result.append(met) 
        return result 
 
    def getRigthMetabolite(self,rightMets): 
        result = [] 
        metItem = rightMets.lstrip().rstrip().split(" + ") 
         
        for m in metItem: 
            m_item = m.split() 
            if self.checkMetabolite(m_item[0]) is None and 
re.findall(r'^[1-9]$|^[1-9][0-9]$|^[1-9][0-9][0-9]$',m_item[0]) != []: 
                #print m_item[0],"##"," ".join(m_item[1:]) 
                stoi = m_item[0] 
                met = " ".join(m_item[1:]) 
            else: 

                if re.findall(r'^n$|^m$|^\(n\+[1-9]\)$|^\(n\+m\)|^\(m\+[1-
9]\)$',m_item[0]) !=[]: 
                    #print m_item[0], "##"," ".join(m_item[1:]) 
                    stoi = '1' 
                    met = " ".join(m_item[1:]) 
                     
                elif re.findall(r'^[2-9]n$|^[2-9]m$|^[1-9][0-9]n$|^[1-9][0-
9]m$',m_item[0]) != []: 
                    stoiData = m_item[0] 
                    if len(stoiData) >= 2: 
                        stoi = stoiData[:-1] 
                        met = " ".join(m_item[1:]) 
                
                else: 
                    stoi = '1' 
                    met = " ".join(m_item[:]) 
            result.append(met) 
        return result 
 
     
    def process(self): 
        for rx_id,ecnumbers,bkm_id,org_equation,equation_used,revDatabase 
in csv.reader(self.reaction_file,delimiter="\t"): 
            if self.checkGlycanReaction(equation_used.split()) == None:## 
No process if found glycan metabolite 
                continue 
            else: 
                 
                rRecord = Record() 
                rRecord.rx_id = rx_id 
                rRecord.enzyme = ecnumbers 
                rRecord.equation = equation_used 
                rRecord.orgEquation = org_equation 
                preLeft,preRight = 
self.getMetabolitesFromEquation(equation_used) 
                rRecord.leftMet = self.getLeftMetabolite(preLeft) 
                rRecord.rightMet = self.getRigthMetabolite(preRight) 
                preDirection = revDatabase.split("_")[-1] 
                if preDirection == "ir": 
                    rRecord.direction = "=>" 
                else: 
                    rRecord.direction = "<=>" 
                 
                self.data.append(rRecord) 



 

A
p

p
e

n
d

i
x

 A
                          

      
 

  
 

 P
a

g
e

 |
 1

1
4

             
 
def writePreResult(maxIt,nonNativeMetList,kegg_rns,gemMetList): 
    cur_dir = os.getcwd() 
    for it in range(1, int(maxIt)+1): 
 
        if it ==1: ## 1st searching 
            result = getSingleAddedRn(nonNativeMetList,kegg_rns,gemMetList) 
            set_r1 =[]## keep reaction used to connect to host GEM  
            set_c1 =[]## keep non native compound found connecting 
            f = 
open(os.path.join(cur_dir,"preResult_iteration_"+str(it)+'.csv'),'w') 
            for cpd, list_rn, min_rn in result: 
                set_r1.extend(list_rn) 
                set_c1.append(cpd) 
                write_result = createListOfAddedRns(cpd,list_rn,it) 
                for rec in write_result: 
                    f.write("\t".join(map(str,rec))) 
                    f.write("\n") 
            f.close() 
 
            pre_Rn = set_r1 
            pre_Cpd = set(set_c1) ## remove compound duplicate (for next 
iteration)  
             
            nextNonNativeMetList = 
list(set(nonNativeMetList).difference(pre_Cpd)) 
            print "Iteration = ",it,"\t","No. of connected metabolites = 
",len(pre_Cpd),"\t","No. of nonnative metabolties for next step = 
","\t",len(nextNonNativeMetList) 
 
             
        elif it==2: 
            second_result = 
getAddedRns(pre_Rn,list(pre_Cpd),gemMetList,nextNonNativeMetList,kegg_rns,i
t) 
         
            set_r2 = [] 
            set_c2 = [] 
            f = 
open(os.path.join(cur_dir,"preResult_iteration_"+str(it)+'.csv'),'w') 
            for cpd,list_rn,min_rn in second_result: 
                set_r2.extend(list_rn) 
                set_c2.append(cpd) 

                write_result = createListOfAddedRns(cpd,list_rn,it) 
                for rec in write_result: 
                    f.write("\t".join(map(str,rec))) 
                    f.write("\n") 
            f.close() 
            set_c2 = set(set_c2) 
  
            pre_Cpd = set(set_c2) 
            pre_Rn = set_r2 
            nextNonNativeMetList = 
list(set(nextNonNativeMetList).difference(pre_Cpd)) 
          
            print "Iteration = ",it,"\t","No. of connected metabolites = 
",len(pre_Cpd),"\t","No. of nonnative metabolties for next step = 
","\t",len(nextNonNativeMetList) 
 
              
        else: 
            next_result = 
getAddedRns(pre_Rn,list(pre_Cpd),gemMetList,nextNonNativeMetList,kegg_rns,i
t) 
            pre_Rn =[] 
            pre_Cpd =[] 
            f = 
open(os.path.join(cur_dir,"preResult_iteration_"+str(it)+'.csv'),'w') 
            for cpd,list_rn,min_rn in next_result: 
                pre_Rn.extend(list_rn) 
                pre_Cpd.append(cpd) 
                write_result = createListOfAddedRns(cpd,list_rn,it) 
                for rec in write_result: 
                    f.write("\t".join(map(str,rec))) 
                    f.write("\n") 
            f.close() 
 
            pre_Cpd = set(pre_Cpd) 
            nextNonNativeMetList = 
list(set(nextNonNativeMetList).difference(pre_Cpd)) 
            print "Iteration = ",it,"\t","No. of connected metabolites = 
",len(pre_Cpd),"\t","No. of nonnative metabolties for next step = 
","\t",len(nextNonNativeMetList) 
        if len(pre_Cpd) ==0: 
            break 
    return it-1 ## return maximum iteration that found connecting nonnative 
metabolite 
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def removePreResultFile(): 
    import glob 
    cur_dir = os.getcwd() 
    preResultFiles = glob.glob(os.path.join(cur_dir,"*.csv")) 
    for f in preResultFiles: 
        os.remove(f) 
     
     
def main(): 
    pass     
      
if __name__=='__main__':main() 

 

 

 

 

 

 

 

 

 

 

 

A.1.3 “candidateReaction.py” 

#!/usr/bin/env python 
# Author:  Sunisa Chatsurachai  
# Purpose: functions for finding candidate reaction(s) 
# Created: 11/26/2010 
 
import os,re,sys 
from glob import glob 
 
 
def allPrestepsMapping(preStepPath,can_rxn_metList): 
    ## preStepPath = 
"D:\\SUNISA_data\\2012_additional_reaction\\2012JUL_bkmReact\\2012JUL_addRe
action\\assume_r\\eco\\" 
    metNotFound = [] 
    connectMets = [] 
    metFound = [] 
    for met in can_rxn_metList: 
        list_csv = glob("*.csv")## list of preResult File 
        for f in list_csv: 
            for line in open(f,'r'): 
                if line.startswith(met) == True: 
                    metFound.append(met) 
                    break 
    metNotFound = set(can_rxn_metList).difference(set(metFound)) 
    return [list(metNotFound),metFound] 
             
def hostMetaboliteMaping(gemMetList,can_rn_metList): 
    """ 
    Comparing metabolite from candidate reaction with genome-scale 
model(GEM) metabolite list 
    and return list of metabolite does not found in GEM list 
    """ 
    met_not_found =[] 
    for item in can_rn_metList: 
        if item not in gemMetList: 
            met_not_found.append(item) 
    return list(set(met_not_found)) 
     
def findAllPossibleCandidateRn(kegg_rns,nonNativeMet,gemMetList): 
    """ 
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    kegg_rns (all metabolic reaction from KEGG (no glycan reaction here) 
Type is Dictionary 
    each record as  
    key -> item.rx_id 
    value list-> 
[item.rx_id,item.leftMet,item.rightMet,item.equation,item.equation_name,ite
m.direction] 
    """ 
    pre_candidate_rn = [] 
    for key,value in kegg_rns.iteritems(): 
        rx_id = value[0] 
        leftMet = value[1] 
        rightMet = value[2] 
        direction = value[-1] 
         
        if direction == "<=>": ## found reversible reaction 
            if nonNativeMet in leftMet: 
                rightMet = hostMetaboliteMaping(gemMetList,rightMet)## 
compare and return met not found in GEM 
                pre_candidate_rn.append([rx_id,rightMet]) 
            elif nonNativeMet in rightMet: 
                leftMet = hostMetaboliteMaping(gemMetList,leftMet) 
                pre_candidate_rn.append([rx_id,leftMet]) 
        else:## found irreversible reaction 
            if nonNativeMet in rightMet: 
                leftMet = hostMetaboliteMaping(gemMetList,leftMet) 
                pre_candidate_rn.append([rx_id,leftMet]) 
 
             
    result = {} 
    for k,m in pre_candidate_rn: 
        result[k] = m 
    return result 
 
 
def getSingleAddedRn(nonNativeMetList,kegg_rns,gemMetList): 
    """ 
    At 1st iteration -> finding non native metabolite which can connect to 
host by adding single reaction  
    """ 
    result ={} 
    final_result = [] 
    for nonNativeMet in nonNativeMetList: 

        eachNonNativeMet = 
findAllPossibleCandidateRn(kegg_rns,nonNativeMet,gemMetList) 
        if [] in eachNonNativeMet.itervalues():## [] found in possible 
pathway of connected metabolite 
            candidate_rn = [] 
            for key,val in eachNonNativeMet.iteritems(): 
                if val == []: ##all substrate found in GEM list  
                    candidate_rn.append(key) ## append reaction id  
            result[nonNativeMet] = candidate_rn 
    for k,v in result.iteritems(): 
        final_result.append([k,v,len(v)]) ## create list of all possible 
reaction 
    return final_result 
             
def 
getAddedRns(preStepRn,preStepMet,gemMetList,nonNativeMetList,kegg_rns,itera
tion):  
    """ 
    From 2nd iteration -> finding at least two reactions to be added to 
host for connecting non-native metabolite 
         3rd iteration -> finding at least three reactions to be added to 
host for connecting non-native metabolite 
         .... 
    """ 
    next_step_result = [] 
     
    for nonNativeMet in nonNativeMetList: 
        pre_rn = 
findAllPossibleCandidateRn(kegg_rns,nonNativeMet,gemMetList) 
        pre_result = {} 
        possible_rns = [] 
         
        for rx_id,met_not_found in pre_rn.iteritems(): 
            min_rn_found = 0+iteration ## at least start from iteration 
number ( to connect to host metabolite) 
             
            if len(met_not_found) == 1:## only on metabolite does not found 
in GEM list 
                if met_not_found[0] in preStepMet:### found in previous 
step added reaction (iteration -1) 
                    ## found connecting by adding one more reaction (from 
previous step) 
                    min_rn_found = min_rn_found 
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possible_rns.append([rx_id,met_not_found[0],min_rn_found])  
                else: 
                    
metNotFoundInAllPresteps,connectedMets=allPrestepsMapping(os.getcwd(),met_n
ot_found)     
                    if metNotFoundInAllPresteps == []:## all metabolite 
found in presteps 
                        min_rn_found = min_rn_found+len(met_not_found) 
                        preMets  =[] 
                        for cMet in connectedMets: 
                            cur_cMet = cMet.split("_")[0] 
                            listReaction = re.findall("R[0-9][0-9][0-9][0-
9][0-9]",cMet) 
                            preMets.append(cur_cMet) 
                        preMets = list(set(preMets)) 
                        
possible_rns.append([rx_id,preMets[0],min_rn_found]) 
            else:## more than one metabolite does not found in GEM list 
                met_found_in_preStep = [] 
                for i,m in enumerate(met_not_found): 
                    if m in preStepMet: 
                        met_found_in_preStep.append(m) 
                 
                cur_metNotFound = 
set(met_not_found).difference(set(met_found_in_preStep)) 
                cur_metNotFound = list(cur_metNotFound) 
                 
                if cur_metNotFound == []:## all metabolites already found 
in prestep metabolite 
                    min_rn_found = min_rn_found +len(met_not_found)## at 
least reaction should be added 
                    
possible_rns.append([rx_id,met_found_in_preStep,min_rn_found]) 
                     
                else: 
                     
                    
metNotFoundInAllPresteps,connectedMets=allPrestepsMapping(os.getcwd(),cur_m
etNotFound) 
               
                    if metNotFoundInAllPresteps == []:## all metabolite 
found in presteps 
                        min_rn_found = min_rn_found+len(met_not_found) 

                        preMets  =[] 
                        for cMet in connectedMets: 
                            cur_cMet = cMet.split("_")[0] 
                            listReaction = re.findall("R[0-9][0-9][0-9][0-
9][0-9]",cMet) 
                            preMets.append(cur_cMet) 
                             
                        for m in met_found_in_preStep: 
                            preMets.append(m) 
                            
                        preMets = list(set(preMets)) 
                        possible_rns.append([rx_id,preMets,min_rn_found]) 
      
                     
        pre_result[nonNativeMet] = possible_rns 
        if pre_result[nonNativeMet] != []: 
            
next_step_result.append([nonNativeMet,possible_rns,len(possible_rns)]) 
             
    return next_step_result 
 
def createListOfAddedRns(cpd_id,ListRns,iteration): 
    rec = [] 
    if iteration ==1: ## 1st iteration result 
        if len(ListRns) == 1: 
            rn = ListRns[0] 
            rec.append([cpd_id,rn,iteration]) 
        else: 
            for rn in ListRns: 
                rec.append([cpd_id,rn,iteration]) 
        return rec 
    else: 
        ## ListRns=[['R01424', 'C00180']] 
        if len(ListRns) == 1: 
            rn = ListRns[0][0] ## rx_id  
            if rn.find("##") != -1: 
                rn = rns.split('##') 
            else: 
                rn 
            cpd_pre = ListRns[0][1] ## compound id 
            min_rn_found = ListRns[0][2] 
             
            if type(cpd_pre) != list:## only one previous step metabolite 
(in iteration -1) 
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                rec.append([cpd_id,rn,iteration,cpd_pre,min_rn_found]) 
            else: 
                rec.append([cpd_id,rn,iteration,cpd_pre,min_rn_found]) 
                 
                 
                 
        else: 
         ## [['R07922', 'C16353'], ['R07921', 'C07481'], ['R07954', 
'C07481'], ['R07939', 'C07481'], ['R07943', 'C16358']] 
         ## [['R03186', ['C00072', 'C05422']], ['R00095', 'C00072']] 
            for r in ListRns: 
                rn = r[0] 
                if rn.find('##') != -1: 
                    rn = rn.split('##') 
                else: 
                    rn 
                     
                cpd_pre = r[1] 
                min_rn_found = r[-1] 
                 
                if type(cpd_pre) != list: 
                    rec.append([cpd_id,rn,iteration,cpd_pre,min_rn_found]) 
                else: 
                    rec.append([cpd_id,rn,iteration,cpd_pre,min_rn_found]) 
        return rec 
 
 
                     

 

 

 

 

 

 

A.1.4 “createHeterologousPathwayFile.py” 

#!/usr/bin/env python 
# Author:  Sunisa Chatsurachai 
# Purpose: Create additional pathway detection for simulation (txt-file) 
# Created: 11/29/2010 
 
import sys,os,csv,re 
from glob import glob 
 
 
def addCompartmentToMet(reaction,compartment="[c]"): 
    result = [] 
    reaction = reaction.upper().split() 
    for item in reaction: 
        if item not in ["<=>","<=","=>","+"] and re.findall(r'[0-
9]',item[0]) ==[]: ## only metabolite 
            item = item+compartment 
            result.append(item) 
        else: 
            result.append(item) 
             
    return result 
 
 
def addTargetMetOutputRn(nonNativeMet): 
    met_ext = nonNativeMet.upper()+"[e]" 
    sink_met_rn = " ".join([met_ext,'=>']) 
    return sink_met_rn 
 
 
def createTransportRn(nonNativeMet): 
    met_cytosol = nonNativeMet.upper()+"[c]" 
    met_extracellular = nonNativeMet.upper()+"[e]" 
    transport_rn = " ".join([met_cytosol,"=>",met_extracellular]) 
    return transport_rn 
     
def getPreviousStepRn(preMet,pre_it): 
    """ 
    get all reactions of previous metabolite 
    """ 
    cur_dir = os.getcwd() 
    for iteration in range(pre_it): 
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        targetDir = os.path.join(cur_dir,"iteration_"+str(iteration+1)) 
         
        fileList = glob(targetDir+"/*.txt") 
        results = [] 
        for fName in fileList: 
            file_name = fName.split("\\")[-1] 
            met_name = file_name.split("_")[0] 
            if met_name == preMet: 
                rns = [line.rstrip() for line in open(fName)] 
                previous_rns_name = rns[0] 
                list_rns = rns[1:-2] 
                results.append([previous_rns_name,list_rns]) 
        if results != []: 
            break 
    return results 
 
                 
def getAllPossiblePreviousStepRn(preMetList,cur_it): 
    """ 
    get all reaction of all previous metabolites(as list) 
    """ 
    preMetList_rns ={} 
    for preMet in preMetList: 
        rns = [] 
        pre_rn_set = getPreviousStepRn(preMet,cur_it) 
        if pre_rn_set != []: 
            if len(pre_rn_set) == 1:## one possible set of reaction 
                pre_cid_rid = pre_rn_set[0][0] 
                pre_list_rn = pre_rn_set[0][1][:] 
                rns.append([pre_cid_rid,pre_list_rn]) 
            else: 
                for pre_cid_rid, pre_list_rn in pre_rn_set: 
                    rns.append([pre_cid_rid,pre_list_rn]) 
        preMetList_rns[preMet] =rns 
    return preMetList_rns 
     
def changeFormatPreviousListMet(preMet): 
    ## nonNativeMet addedRn itearation  previousMets  minimum_rn 
    ##C16688 R03921 2 ['C02336', 'C00668'] 4## 
    preMetList = "" 
    for char in preMet: 
        if char not in ["[","]","'"," "]: 
            preMetList =preMetList +char 
    preMetList = sorted(preMetList.split(",")) 

    return preMetList 
 
 
def writeResultToTextFile(targetDirectory,iteration,List_result): 
    ## List_result = 
[cur_rn_name,pre_rn_name,cur_rn,pre_rn,cur_tran_rn,sink_met_rn,path_no] 
     
    if iteration > 2: 
 
        f = 
open(targetDirectory+str(iteration)+"/"+List_result[0]+"_"+str(List_result[
-1])+".txt","w") 
        f.write(List_result[0]+"_"+List_result[1]) 
        f.write("\n") 
        if len(List_result[3]) == 1: # only one heterologous pathway 
            f.write(List_result[3][0]) 
            f.write("\n") 
        else: 
            rns = List_result[3] 
            for r in rns: 
                f.write(r) 
                f.write("\n") 
        f.write("\n".join([List_result[2],List_result[4],List_result[5]])) 
        f.write("\n") 
         
    else: 
        f = 
open(targetDirectory+str(iteration)+"/"+List_result[0]+"_"+List_result[1]+"
.txt","w") 
        f.write(List_result[0]+"_"+List_result[1]) 
        f.write("\n") 
        if len(List_result[3]) == 1: # only one heterologous pathway 
            f.write(List_result[3][0]) 
            f.write("\n") 
        else: 
            rns = List_result[3] 
            for r in rns: 
                f.write(r) 
                f.write("\n") 
        f.write("\n".join([List_result[2],List_result[4],List_result[5]])) 
        f.write("\n") 
         
 
def writeAllHeterologousPathwayToFile(maxIt,kegg_rns): 
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    cur_dir = os.getcwd() 
    for iteration in range(1,maxIt+2): 
         
        if not 
os.path.exists(os.path.join(cur_dir,"iteration_"+str(iteration))): 
            os.mkdir(os.path.join(cur_dir,"iteration_"+str(iteration))) 
         
        if iteration ==1: 
            f = 
open(os.path.join(cur_dir,"preResult_iteration_"+str(iteration)+".csv"),"r"
) 
             
            for nonNativeMet,r_id,it in csv.reader(f,delimiter= "\t"): 
                if kegg_rns.has_key(r_id): 
                    eq_with_compartment = " 
".join(addCompartmentToMet(kegg_rns[r_id][3],"[c]")) 
                    add_rn = [nonNativeMet,r_id,eq_with_compartment] 
                    try: 
                        f1 = 
open(cur_dir+"/iteration_1/"+nonNativeMet+"_"+r_id+".txt",'w') 
                        fName = nonNativeMet+"_"+r_id 
                        
f1.write("\n".join([fName,eq_with_compartment,createTransportRn(nonNativeMe
t),addTargetMetOutputRn(nonNativeMet)])) 
                        f1.write("\n") 
                        f1.close() 
                         
                    except IOError: 
                        f1 = 
open(cur_dir+"/iteration_1/"+nonNativeMet+"_"+r_id+".txt",'w') 
                        fName = nonNativeMet+"_"+r_id 
                        
f1.write("\n".join([fName,eq_with_compartment,createTransportRn(nonNativeMe
t),addTargetMetOutputRn(nonNativeMet)])) 
                        f1.write("\n") 
                        f1.close() 
                         
        if iteration > 1 and iteration <= maxIt+2: 
             
            f = 
open(os.path.join(cur_dir,"preResult_iteration_"+str(iteration)+".csv"),"r"
) 
             

            for nonNativeMet,r_id,it,preMet,min_rn in 
csv.reader(f,delimiter="\t"): 
                path_no = 0 
                if int(min_rn) == iteration:## means -> connecting by one 
to one metabolite since other found in GEM List 
                    cur_rn_with_com = " 
".join(addCompartmentToMet(kegg_rns[r_id][3],"[c]")) 
                    cur_rn_name = nonNativeMet+"_"+r_id 
                    cur_trans_rn = createTransportRn(nonNativeMet) 
                    sink_met_rn = addTargetMetOutputRn(nonNativeMet) 
                    #pre_rn_set = 
getPreviousStepRn(preMet,cur_dir+"/iteration_"+str(iteration-1)) 
                    pre_rn_set = getPreviousStepRn(preMet,iteration-1) 
                  
                     
                    if len(pre_rn_set)==1: ## only one possible added 
pathway 
                        path_no = path_no+1 
                        pre_cid_rid = pre_rn_set[0][0] 
                        pre_list_rn = pre_rn_set[0][1][:] 
    
                        List_result 
=[cur_rn_name,pre_cid_rid,cur_rn_with_com,pre_list_rn,cur_trans_rn,sink_met
_rn,path_no] 
                        
writeResultToTextFile(cur_dir+"/iteration_",iteration,List_result) 
  
                    else: 
                        for pre_cid_rid,pre_list_rn in pre_rn_set: 
                            path_no = path_no+1 
                            List_result 
=[cur_rn_name,pre_cid_rid,cur_rn_with_com,pre_list_rn,cur_trans_rn,sink_met
_rn,path_no] 
                            
writeResultToTextFile(cur_dir+"/iteration_",iteration,List_result) 
                         
                             
                else: 
                    cur_rn_with_com = " 
".join(addCompartmentToMet(kegg_rns[r_id][3],"[c]")) 
                    cur_rn_name = nonNativeMet+"_"+r_id 
                    cur_trans_rn = createTransportRn(nonNativeMet) 
                    sink_met_rn = addTargetMetOutputRn(nonNativeMet) 
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                    pre_metList = changeFormatPreviousListMet(preMet) 
                    pre_metListRn = 
getAllPossiblePreviousStepRn(pre_metList,iteration-1) 
                     
                    first_substrate_rn = pre_metListRn[pre_metList[0]] 
                    del pre_metListRn[pre_metList[0]] ## update list of 
previous step metabolite  
                     
                    for p_rn in first_substrate_rn: 
                        pre_cid_rid = p_rn[0] 
                        pre_list_rn = p_rn[1][:] 
                         
                        for key,value  in pre_metListRn.iteritems(): 
                            if len(value)== 1: ##only one possible pathway 
                                ##key = C02557 
                                ##value = [['C02557_R05373', ['C02557[c] 
<=> C00100[c] + C00011[c]']]] 
                                path_no = path_no+1 
                                new_pre_list_rn = [] 
                                v_cid_rid = value[0][0] 
                                v_list_rn = value[0][1] 
                                new_pre_list_rn.extend(pre_list_rn) 
                                new_pre_list_rn.extend(v_list_rn) 
                            
                                List_result 
=[cur_rn_name,pre_cid_rid+"_"+v_cid_rid,cur_rn_with_com,new_pre_list_rn,cur
_trans_rn,sink_met_rn,path_no] 
                                
writeResultToTextFile(cur_dir+"/iteration_",iteration,List_result) 
                            else: 
                                for v_cid_rid,v_list_rn in value: 
                                    new_pre_list_rn = [] 
                                    path_no = path_no+1 
                                    new_pre_list_rn.extend(pre_list_rn) 
                                    new_pre_list_rn.extend(v_list_rn) 
                                    List_result 
=[cur_rn_name,pre_cid_rid+"_"+v_cid_rid,cur_rn_with_com,new_pre_list_rn,cur
_trans_rn,sink_met_rn,path_no] 
                                    
writeResultToTextFile(cur_dir+"/iteration_",iteration,List_result) 
 
def main(): 
    pass 
         

if __name__=='__main__':main() 
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A.1.5 “addInfoOutput.py” 

#!/usr/bin/env python 
# Author:  Sunisa Chatsurachai --<> 
# Purpose: To add more information of the output files 
# Created: 27-Feb-13 
 
import sys,os,re 
import glob 
from heterologousReactionDetection import * 
 
 
 
def getKEGGcompound(fName): 
    result = {} 
    for line in open(fName,'r'): 
        line = line.lstrip().rstrip().split('\t') 
        cpd_id = line[0] 
        cpd_syn = line[1] 
        cpd_common = line[2] 
        cpd_charge = line[3] 
        cpd_formula = line[4] 
        result[cpd_id] = [cpd_syn,cpd_formula] 
    return result 
 
def getMetaCycCompound(fName): 
    result = {} 
    for line in open(fName,'r'): 
        line = line.lstrip().rstrip().split('\t') 
        m_id = line[0] 
        k_id = line[1] 
        cpd_syn = "##".join([line[2],line[3]]) 
        cpd_charge = line[5] 
        cpd_formula = line[6] 
        result[m_id] = [cpd_syn,cpd_formula,k_id] 
    return result 
 
def getBKMreaction(fName): 
    result = {} 
    for line in open(fName,'r'): 
        line = line.lstrip().rstrip().split('\t') 
        r_id = line[0] 
        ec_num = line[1] 

        refID = line[2] 
        eq_name = line[3] 
        eq = line[4] 
        type_rxn = line[5] 
        result[r_id] =[eq_name,eq,ec_num,refID,type_rxn] 
    return result         
 
 
def getReactions(listReactions,bkmDict): 
    rxns = listReactions.split('##') 
    result = {} 
    for r in rxns: 
        eqName,eq,ec_id,refID,revData = bkmDict[r] 
        result[r] = eqName 
    return result 
     
     
def getOptGenes(fName): 
    result = {} 
    for line in open(fName,'r'): 
        line = line.lstrip().rstrip().split('\t') 
        ec = line[0] 
        #db = line[1] 
        #genes = line[2] 
        #orfList = line[3] 
        #org_id = line[4] 
        #org_name = line[5] 
        result[ec] = line[1:6] 
    return result 
 
def getCompoundName(target,keggDict,MetacycDict): 
    if keggDict.has_key(target): 
        cpd_syn,cpd_formula = keggDict[target] 
    elif MetacycDict.has_key(target): 
        cpd_syn,cpd_formula,k_id = MetacycDict[target] 
    else: 
        cpd_syn = "None" 
        cpd_formula = "None" 
    return [prepareCompoundName(cpd_syn),cpd_formula] 
 
def prepareCompoundName(cpdName): 
    cpdName = cpdName.split("##") 
    cpdName = set(cpdName) 
    cpdName = list(cpdName) 
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    if len(cpdName)==1: 
        met = cpdName[0] 
        if met.upper() == "NONE" or met.upper() == "NULL": 
            return "No information" 
        else: 
            return met 
    else: 
        data = [] 
        for m in cpdName: 
            if m.upper() != "NONE" and m.upper()!="NULL": 
                data.append(m) 
        return "||".join(data) 
         
def 
writeResultFiles(maxIteration,bkmReactDict,keggDict,metaCycDict,ecGenesDict
): 
    cur_dir = os.getcwd() 
     
    if os.path.exists(os.path.join(cur_dir,"output")) == False: 
        os.mkdir(os.path.join(cur_dir,"output")) 
         
    for it in range(1,maxIteration+1+1): 
        curRentPath = os.path.join(os.getcwd(),"iteration_"+str(it)) 
        listTextfiles = glob(curRentPath+"/*.txt") 
         
        outputDir = os.path.join(cur_dir,"output") 
         
        if os.path.exists(outputDir)== False: 
            os.mkdir(outputDir) 
         
        for f in listTextfiles: 
            f_op = open(f,'r') 
            line  = f_op.readline() 
            f_op.close() 
             
            foutName = f.split("\\")[-1][:-4] 
             
             
            connMet= line.lstrip().rstrip().split("_") 
            targetName,targetFormula = 
getCompoundName(connMet[0],keggDict,metaCycDict) 
             
            outputFile = os.path.join(outputDir,foutName+".html") 
             

            f_out = open(outputFile,'w') 
            f_out.write('<html>\n') 
            f_out.write('<body>\n') 
            f_out.write("<table border ='2'>\n") 
            f_out.write('<h1> Result </h1>\n') 
            f_out.write('<tr>\n') 
            f_out.write('<td> Target compound ID </td>\n') 
            f_out.write('<td>'+connMet[0]+'</td>\n') 
            f_out.write('</tr>\n') 
            
            f_out.write('<tr>\n') 
            f_out.write('<td> Target compound Name </td>\n') 
            f_out.write('<td>'+targetName+'</td>\n') 
            f_out.write('</tr>\n') 
             
            listRxns = re.findall(r'R[0-9][0-9][0-9][0-9][0-9]',line) 
             
            f_out.write('<tr>\n') 
            f_out.write('<td> List of Heterologous reaction(s) </td>\n') 
            f_out.write('<td>'+"||".join(listRxns)+'</td>\n') 
            f_out.write('</tr>\n') 
             
 
            for r_id in listRxns: 
                f_out.write('<tr>\n') 
                f_out.write('<td> Detail of heterologous reaction</td>\n') 
            
                r_data = bkmReactDict[r_id] 
                eq_name = r_data[0] 
                eq_id = r_data[1] 
                ec_id = r_data[2] 
                 
                f_out.write('<td>'+r_id+'<br>'+eq_name+'<br>'+eq_id+'<br>') 
                 
                listEC = ec_id.split("##") 
                if len(listEC) ==1: ## found only one EC number 
                     
                    try: 
                        e = listEC[0] 
                        data_hetGenes = ecGenesDict[e] 
                        db = data_hetGenes[0] 
                        geneSym = data_hetGenes[1] 
                        orfList = data_hetGenes[2] 
                        org_id = data_hetGenes[3] 
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                        org_name = data_hetGenes[4] 
                        f_out.write( "-------------------------------------
-----------------------------------------"+'<br>'+'Enzyme information:') 
                        f_out.write('<br>'+e+'<br>'+'Gene symbol:   
'+geneSym.replace("##",";")+'<br>'+"ORF:   "+orfList.replace("##","||")+'    
from database   '+db+'<br>'+'Organism:   '+org_name+'<br>') 
                        f_out.write('</td>\n') 
                         
                    except KeyError,err: 
                        f_out.write( "-------------------------------------
-----------------------------------------"+'<br>'+'Enzyme information:') 
                        f_out.write('<br>'+listEC[0]+'<br>'+'No information 
about genes') 
                        f_out.write('</td>\n') 
                         
                else: 
                    f_out.write( "-----------------------------------------
-------------------------------------"+'<br>'+'Enzyme information:') 
                    for e in listEC: 
                        
                        try: 
                             
                            data_hetGenes = ecGenesDict[e] 
                            db = data_hetGenes[0] 
                            geneSym = data_hetGenes[1] 
                            orfList = data_hetGenes[2] 
                            org_id = data_hetGenes[3] 
                            org_name = data_hetGenes[4] 
                            f_out.write('<br>'+e+'<br>'+'Gene symbol:   
'+geneSym.replace("##",";")+'<br>'+"ORF:   "+orfList.replace("##","||")+'    
from database   '+db+'<br>'+'Organism:   '+org_name+'<br>') 
                            
                        except KeyError,err: 
                            f_out.write('<br>'+e+'<br>'+'No information 
about genes'+'<br>') 
                        
f_out.write('_______________________________________') 
                             
                    f_out.write('</td>\n') 
                             
     
                f_out.write('</tr>\n') 
 
                 

            f_out.write('<footer>') 
            f_out.write('<p>Created by: Sunisa Chatsurachai</p>') 
            f_out.write('<p>Date: 2012-02-28</p>') 
            f_out.write('</footer>\n') 
            f_out.write('</table>\n') 
            f_out.write('</body>\n') 
            f_out.write('</html>\n') 
            f_out.close() 
     
 
def main(): 
     
    cur_dir = os.getcwd() 
    input_dir = os.path.join(cur_dir,"input") 
 
     
    bkmReactDict = 
getBKMreaction(os.path.join(input_dir,"bkm_metabolic_reactions_2012.csv")) 
    keggDict = 
getKEGGcompound(os.path.join(input_dir,"kegg_compounds.csv")) 
    metaCycDict = 
getMetaCycCompound(os.path.join(input_dir,"metacyc_compounds.csv")) 
    ecGenesDict = 
getOptGenes(os.path.join(input_dir,"2012_optGenes_ecoHost_bothDB.txt")) 
     
    maxIteration = 3 
    
writeResultFiles(maxIteration,bkmReactDict,keggDict,metaCycDict,ecGenesDict
) 
 
if __name__=='__main__':main() 
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A.1.6 “createIndexFile.py” 

#!/usr/bin/env python 
# Author: Sunisa Chatsurahcai   --<> 
# Purpose: To create index.html for link result of nonnative metabolites 
# Created: 28-Feb-13 
 
import sys,os,re 
 
 
def getKEGGcompound(fName): 
    result = {} 
    for line in open(fName,'r'): 
        line = line.lstrip().rstrip().split('\t') 
        cpd_id = line[0] 
        cpd_syn = line[1] 
        cpd_common = line[2] 
        cpd_charge = line[3] 
        cpd_formula = line[4] 
        result[cpd_id] = [cpd_syn,cpd_formula] 
    return result 
 
def getMetaCycCompound(fName): 
    result = {} 
    for line in open(fName,'r'): 
        line = line.lstrip().rstrip().split('\t') 
        m_id = line[0] 
        k_id = line[1] 
        cpd_syn = "##".join([line[2],line[3]]) 
        cpd_charge = line[5] 
        cpd_formula = line[6] 
        result[m_id] = [cpd_syn,cpd_formula,k_id] 
    return result 
 
def getCompoundName(target,keggDict,MetacycDict): 
    if keggDict.has_key(target): 
        cpd_syn,cpd_formula = keggDict[target] 
    elif MetacycDict.has_key(target): 
        cpd_syn,cpd_formula,k_id = MetacycDict[target] 
    else: 
        cpd_syn = "None" 
        cpd_formula = "None" 
    return [prepareCompoundName(cpd_syn),cpd_formula] 

 
def prepareCompoundName(cpdName): 
    cpdName = cpdName.split("##") 
    cpdName = set(cpdName) 
    cpdName = list(cpdName) 
    if len(cpdName)==1: 
        met = cpdName[0] 
        if met.upper() == "NONE" or met.upper() == "NULL": 
            return "No information" 
        else: 
            return met 
    else: 
        data = [] 
        for m in cpdName: 
            if m.upper() != "NONE" and m.upper()!="NULL": 
                data.append(m) 
        return "||".join(data) 
     
def getAllConnectedMetaboites(targetDir): 
    import glob 
    allHtmls = glob.glob(os.path.join(targetDir+"/*.html")) 
    allTargets = [] 
    for f in allHtmls: 
        target = f.split("\\")[-1] 
        target = target.split("_")[0] 
        allTargets.append(target) 
    return list(set(sorted(allTargets))) 
 
 
def getHtmlLinks(cpdId,targetDir):### limited to 5 possible way only ### 
    import glob,random 
    htmls = glob.glob(os.path.join(targetDir,"%s*.html"%cpdId)) 
 
    if len(htmls) < 5: 
        targetFiles = htmls[:] 
    else: 
        targetFiles = [] 
        targetFiles.append(random.choice(htmls)) 
        targetFiles.append(random.choice(htmls)) 
        targetFiles.append(random.choice(htmls)) 
        targetFiles.append(random.choice(htmls)) 
        targetFiles.append(random.choice(htmls)) 
    return targetFiles 
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def writeIndexFile(output_dir,keggDict,metaCycDict): 
    import os 
    cur_dir = os.getcwd() 
    allNonMets = getAllConnectedMetaboites(output_dir) 
    indexFile = os.path.join(cur_dir,"index.html") 
    fopen = open(indexFile,'w') 
    fopen.write('<html>\n') 
    fopen.write('<h1>'+'Index'+'</h1>\n') 
     
    fopen.write('<body>\n') 
    fopen.write("<table border='2'>\n") 
    fopen.write('<tr>\n') 
    fopen.write('<th>Nonnative metabolite </th>') 
    fopen.write('<th>Heterologous pathway(s)</th>') 
    fopen.write('</tr>\n') 
     
    for m in allNonMets[:]: 
         
        targetName,targetFormula = getCompoundName(m,keggDict,metaCycDict) 
        htmls = getHtmlLinks(m,output_dir) 
         
        
         
        fopen.write('<tr>\n') 
        fopen.write('<td>'+targetName+"||"+m+'</td>') 
       
        for i,htm in enumerate(htmls): 
         
            targetFile = htm.split("\\")[-1]### name of html file 
            fopen.write('<td>') 
            fopen.write('<a 
href='+"output\\"+targetFile+'>'+"Pathway_"+str(i+1)+'</a>'+'<br>')     
            fopen.write('</td>') 
            #<a href="filename.html">text that responds to link</a> 
            #fopen.write('<td></td>') 
        fopen.write('</tr>\n') 
             
         
   
     
    fopen.write('<footer>') 
    fopen.write('<p>Created by: Sunisa Chatsurachai</p>') 
    fopen.write('<p>Date generated: 2012-02-28</p>') 
    fopen.write('</footer>\n') 

    fopen.write("</table>\n") 
    fopen.write('</body>\n') 
    fopen.write('</html>\n') 
    fopen.close() 
 
 
 
 
 
def main(): 
     
    cur_dir = os.getcwd() 
    input_dir = os.path.join(cur_dir,"input") 
    keggDict = 
getKEGGcompound(os.path.join(input_dir,"kegg_compounds.csv")) 
    metaCycDict = 
getMetaCycCompound(os.path.join(input_dir,"metacyc_compounds.csv")) 
     
    output_dir = os.path.join(cur_dir,"output") 
    writeIndexFile(output_dir,keggDict,metaCycDict) 
 

if __name__=='__main__':main() 
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A.2 Codon Adaptation Index by Python and 

Biopython 

A.2.1 “ecoHost_cai.py” 

# Author:  SUNISA Chatsurachai --<> 
# Purpose: Calculate CAI when E. coli as the host 
# Created: 18-Nov-11 
 
import sys,os,re 
 
from Bio.Seq import Seq 
from Bio.SeqRecord import SeqRecord 
from Bio.SeqIO import * 
from Bio.SeqUtils.CodonUsage import * 
from Bio.SeqUtils.CodonUsageIndices import * 
from glob import glob 
aminoDict = {'ala':['GCA','GCC','GCG','GCT'], 
             'arg':['AGA','AGG','CGA','CGC','CGG','CGT'], 
             'asn':['AAC','AAT'], 
             'asp':['GAC','GAT'], 
             'cys':['TGC','TGT'], 
             'gln':['CAA','CAG'], 
             'glu':['GAA','GAG'], 
             'gly':['GGA','GGC','GGG','GGT'], 
             'his':['CAC','CAT'], 
             'ile':['ATA','ATC','ATT'], 
             'lys':['AAA','AAG'], 
             'met':['ATG'], 
             'phe':['TTC','TTT'], 
             'pro':['CCA','CCC','CCG','CCT'], 
             'ser':['AGC','AGT','TCA','TCC','TCG','TCT'], 
             'stop':['TAA','TAG','TGA'], 
             'thr':['ACA','ACC','ACG','ACT'], 
             'trp':['TGG'], 
             'tyr':['TAC','TAT'], 
             'val':['GTA','GTC','GTG','GTT'], 
             'leu':['CTA','CTC','CTG','CTT','TTA','TTG']} 
 
 
def findKOId(orf_desc): 
    orf_desc = orf_desc.split() 

    koID = [] 
    for item in orf_desc: 
        if item.startswith("K") and re.findall("^K[0-9][0-9][0-9][0-9][0-
9]$",item) != []: 
            koID.append(item) 
    if len(koID) >=1 and koID != []: 
        return koID 
    else: 
        return None 
 
def findGenes(orf_desc): 
    orf_desc = orf_desc.split(";")[0] 
    if orf_desc.find(",") != -1:#found gene information 
        print orf_desc 
 
    else: 
        pass 
def printListRecordsToFile(fName, records, delimiter='\t'): 
    f = open(fName,'a') 
    f.write(delimiter.join(map(str,records))) 
    f.write('\n') 
    f.close() 
 
 
def main(): 
     
    cur_dir = os.getcwd() 
     
    heg_ecoli = CodonAdaptationIndex() 
    heg_ecoli.generate_index(os.path.join(cur_dir,'heg_ecoli_seq.fasta')) 
## w value in Sharp's Method 
    ##heg_ecoli.print_index() 
    #for item,val in heg_ecoli.index.iteritems(): 
        #print item,val 
    #sys.exit() 
     
    kegg_seq_dir = 
"D:\\SUNISA_data\\2012_CAI_calculation\\KEGG_cds\\2012JUNE_kegg_cds\\" 
    list_seq_file = glob(kegg_seq_dir+"*.csv") 
   
    for fName in list_seq_file: 
        org_id = fName.split("\\")[-1].split("_")[0] 
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        for s in parse(fName,'fasta'): 
            
            orf_id = s.id[4:] 
            orf_desc = s.description 
            seq = str(s.seq) 
            outputFile = 
os.path.join(cur_dir,"output/"+org_id+"_ecoHost.csv") 
             
            if seq[:3].upper() in ['ATG','GTG','TTG'] and seq[-3:].upper() 
in ['TAA','TAG','TGA']: 
                try: 
                    s_cai = heg_ecoli.cai_for_gene(seq) 
                except TypeError,e: 
                    print e 
                    s_cai = "None" 
         
            else: 
                print 'NOT CDS',orf_id 
                s_cai = "None" 
                 
            resultGenes = findGenes(orf_desc) 
            resultKO = findKOId(orf_desc) 
             
             
            if resultKO != None: 
                if len(resultKO) == 1:## only one KO id for this orf 
                    record = [orf_id,orf_desc,len(s.seq),s_cai,org_id] 
                    ko_id = resultKO[0] 
                    record.append(ko_id) 
                    #print record 
                    printListRecordsToFile(outputFile,record,"\t") 
                else: 
                    for ko_id in resultKO:## one orf has more than one KO 
id 
                        record = [orf_id,orf_desc,len(s.seq),s_cai,org_id] 
                        record.append(ko_id) 
                        #print record 
                        printListRecordsToFile(outputFile,record,"\t") 
                     
            else: 
                record = [orf_id,orf_desc,len(s.seq),s_cai,org_id] 
                record.append("None") 
                printListRecordsToFile(outputFile,record,"\t") 
         

    print "Finished calculation!!!!!!!!!!!!!" 
   
if __name__=='__main__':main() 
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A.2.2 “maxCAIscoreECnumbers_ecoHost.py” 

# Author:  Sunisa Chatsurachai --<> 
# Purpose: To collecte maximum CAI score for each EC number -> suggest 
heterolgous gene(s) 
# Created: 17-May-12 
 
import sys,os,re 
import glob,time 
 
def printListToFile(fName,record,delimiter="\t"): 
    f = open(fName,'a') 
    f.write(delimiter.join(map(str,record))) 
    f.write("\n") 
    f.close() 
     
def getECDict(fName): 
    result = {} 
    for line in open(fName): 
        line = line.lstrip().rstrip().split("\t") 
        ec_id = line[0] 
        ko_ids = line[1].split("##") 
        gene_ids = line[2].split("##") 
        data = zip(ko_ids,gene_ids) 
        data = list(set(data)) 
        result[ec_id] = data 
         
    return result 
 
def checkNoCAI(cai_data): 
    if cai_data == "None": 
        return None 
    else: 
        return float(cai_data) 
 
def getAllGenesFromOrganisms(targetDir,cur_koId): 
    caiList = [] 
    orgList = [] 
    orfList = [] 
    for f in glob.glob(targetDir+'/*.csv'): 
        for line in open(f): 
            line = line.lstrip().rstrip().split("\t") 
            cai_data = line[-3] 

            org_id = line[-2] 
            ko_id = line[-1] 
            orf_id = line[0] 
             
            if ko_id == cur_koId: 
                if checkNoCAI(cai_data) != None: 
                    cur_cai = cai_data 
                else: 
                    cur_cai = 0.00 
                caiList.append(cur_cai) 
                orgList.append(org_id) 
                orfList.append(orf_id) 
                 
    return sorted(set(zip(caiList,orgList,orfList))) 
 
 
def getCAIFromAllSubunit(caiDict): 
    allKK = [] 
    allCai = [] 
    allGene = [] 
    for kk,vv in caiDict.iteritems(): 
        keggID = kk 
        caiTuples = vv[0] 
        keggGene = vv[1] 
        allKK.append(keggID) 
        allGene.append(keggGene) 
        allCai.extend(caiTuples) 
         
    orgDict = {} 
    for i,v,k in allCai: 
        cai = float(i) 
        orgID = v 
        orfID = k 
        if orgDict.has_key(orgID):## already have this organism 
            caiData,listOrf = orgDict[orgID] 
            caiData.append(cai) 
            listOrf.append(orfID) 
            orgDict[orgID] =[caiData,listOrf] 
             
        else: 
            orgDict[orgID] = [[cai],[orfID]] 
    result = [] 
    for o, caiOrgs in orgDict.iteritems(): 
        oId = o 
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        caiOrf = "##".join(caiOrgs[1]) 
     
        avg_cai = sum(caiOrgs[0],0.0)/len(caiOrgs[0]) 
        #print oId,avg_cai,caiOrf,"##".join(allKK),"##".join(allGene) 
        rec = (avg_cai,oId,caiOrf,"##".join(allKK),"##".join(allGene)) 
        result.append(rec) 
    return list(sorted(set(result))) 
 
def getOrgDict(fName): 
    result = {} 
    for line in open(fName): 
        line = line.lstrip().rstrip().split("\t") 
        org_id = line[0] 
        org_name = line[1] 
        result[org_id] = org_name 
    return result 
 
def main(): 
    start = time.clock() 
    cur_dir = os.getcwd() 
    targetDir = os.path.join(cur_dir,"output") 
    orgNameDict = getOrgDict(os.path.join(cur_dir,"input/orgName.csv")) 
    ecDict = getECDict(os.path.join(cur_dir,"input/ecLinkKOIDs.csv")) 
    outputFile = os.path.join(cur_dir,"2012OCT_maxCAI_ecoHost_kegg.csv") 
    for k,v in ecDict.iteritems(): 
        ec_number = k 
        if len(v) == 1:## found only one KO id -> 1 EC number  
            ko_id, gene = v[0] 
            #print k,ko_id,gene 
            caiScores = getAllGenesFromOrganisms(targetDir,ko_id) 
            if caiScores != []: 
                maxCai,oId,ORFid = caiScores[-1] 
                orgName = orgNameDict[oId] 
                rec =  
[ec_number,'KEGG',gene,maxCai,ORFid,oId,orgName,ko_id] 
                printListToFile(outputFile,rec,"\t") 
             
            else: 
                print "Empty CAI not Found!!!!!!!!!","\t",ec_number 
            
 
        else:## found more than one KO id -> 1 EC number 
            caiDict = {} 
            for kdata in v: 

                ko_id, gene = kdata 
                #print k,ko_id,gene 
                caiScores = getAllGenesFromOrganisms(targetDir,ko_id) 
                caiDict[ko_id] = [caiScores,gene] 
            allResults = 
getCAIFromAllSubunit(caiDict)##(avg_cai,oId,caiOrf,"##".join(allKK),"##".jo
in(allGene)) 
             
            if allResults != []: 
                 
                result = allResults[-1] 
                maxCai = result[0] 
                oId = result[1] 
                ORFids = result[2] 
                koIDs = result[3] 
                genes = result[4] 
                orgName = orgNameDict[oId] 
     
                rec = 
[ec_number,'KEGG',genes,maxCai,ORFids,oId,orgName,koIDs] 
                printListToFile(outputFile,rec,"\t") 
            else: 
                print "Empty CAI not Found!!!!!!!!!","\t",ec_number 
                 
    end = time.clock() 
    print "Time elapsed = ", (end - start)/3600, "hrs" 
if __name__=='__main__':main() 
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A.3 Model simulations by MATLAB 

A.3.1 Main script “iJR904_maxTarget_r_glpk_par.m” 

clear 
clc 
recycle('on'); 
curr_path= pwd; 
cd(curr_path); 
funct_folder = addpath(strcat(curr_path,'\function')); 
start_time = clock; 
 
%%% clock returns a 6-element date vector containing the current date and 
time in decimal form: 
%%% [year month day hour minute seconds] 
 
 
%%%%%%%%% In put files for simulation %%%%%%%%%%%% 
rxn_ext_file_nh3 = fullfile(curr_path,'\input\iJR904_reaction_ext.xls');%% 
external reaction ( substrate uptake and product secretion 
rxn_c_nh3_file = fullfile(curr_path,'\input\iJR904_reaction_cyt.xls'); %% 
cytosol reaction including Biomass equation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%%%%%% Case Basic condition %%%%%%%%%%%% 
% lb(v.glucose,1)= -20; 
% ub(v.glucose,1) = -20; 
%  
% lb(v.atpm,1) = 7.6; 
% ub(v.atpm,1) = 7.6; 
%  
% lb(v.o2,1)= -20; 
% ub(v.o2,1) = 0; 
%  
% lb(v.nh3,1) = -100; 
% ub(v.nh3,1) = 0; 
%  
% lb(v.so3,1) = -100; 
% ub(v.so3,1) = 0; 
%  
% lb(v.pi,1) =  -100; 

% ub(v.pi,1) = 0; 
%%%%%%%%%%%%%%%% END%%%%%%%%%%%%%%%%%%%%%% 
 
[wt ,v] = createLPMatrixBasicCon(rxn_c_nh3_file,rxn_ext_file_nh3); 
save wt_data_basic_condition.mat wt; 
 
% [wt ,v] = createLPMatrixMicroaerobic(rxn_c_nh3_file,rxn_ext_file_nh3); 
% save wt_eco_microaerobic_condition.mat wt; 
 
 
%%%%%%%%% Write simulation flux of wild type to text file %%%%%%%%%% 
% fid = fopen('iJR904_wt_flux_microaerobic.txt','w'); 
% for aa =1:1:size(wt.reaction_id,1); 
%     if iscell(wt.reaction_id{aa,1}) ==0 || iscell(wt.reaction_id{aa,2})== 
0; 
%         rxn_data = wt.reaction_id{aa,1}; 
%         rxn_id = wt.reaction_id{aa,2}; 
%         rxn_no = wt.reaction_id{aa,3}; 
%         rxn_flux = num2str(wt_flux(aa)); 
%     else 
%         rxn_data = wt.reaction_id{aa,1}{:}; 
%         rxn_id = wt.reaction_id{aa,2}{:}; 
%         rxn_no = wt.reaction_id{aa,3}; 
%         rxn_flux = num2str(wt_flux(aa)); 
%     end 
%     fprintf(fid,rxn_data()); 
%     fprintf(fid,'\t'); 
%     fprintf(fid,rxn_id()); 
%     fprintf(fid,'\t'); 
%     fprintf(fid,num2str(rxn_no)); 
%     fprintf(fid,'\t'); 
%     fprintf(fid,rxn_flux); 
%     fprintf(fid,'\n'); 
%          
% end 
% fclose(fid); 
%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
totalIteration = 23; 
matlabpool open 12 
timeCals=zeros(totalIteration,3); 
for iteration=1:totalIteration; 
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 if 
exist(strcat(curr_path,'iteration_',num2str(iteration)),'dir')==0;%% if no 
Directory, make directory for data 
   mkdir(curr_path, 
strcat('iteration_',num2str(iteration))); 
 end 
 nonNativeMetPath = 
strcat('C:\Users\sunisa\Desktop\sunisa\2012SEP_BKM_react\addReactions\assum
e_r\eco_add\iteration_',num2str(iteration)); 
 listAllFiles = dir(fullfile(nonNativeMetPath,'*.txt')); 
 each_iteration_result = 
fullfile(strcat('iJR904_maxTarget_producible_basicCon_r_',num2str(iteration
),'.csv')); 
 load wt_data_basic_condition.mat; 
    tic; 
 parfor fName=1:length(listAllFiles); 
    % parfor fName=1:10; 
        targetFnamePath = 
fullfile(nonNativeMetPath,listAllFiles(fName).name); 
        curFname = listAllFiles(fName).name; 
        rxn_data = textread(targetFnamePath,'%s'); 
        canRxnName = rxn_data(1); 
        addRxns = 
getAdditionalBKMrxn_mod(targetFnamePath,size(wt.reaction_matrix_ce,1)); 
        mutant_reaction_id = [wt.reaction_id;addRxns]; 
         
        canRxns = cellstr(rxn_data((2:end),1));%% first line shows the 
information of connectable metabolites (BKM-react ID) 
        [mutant_rxns,mutant_metabolites,met_row] = 
convertStoiAsNumber(canRxns,size(wt.metabolites,1),wt.metabolites); 
        [reactionMatrixExpand,lb,ub,~] = 
reactionMatrix(mutant_rxns,size(wt.reaction_matrix_ce,1)+1,wt.lb,wt.ub,wt.r
eaction_matrix_ce); 
         
        %%% add lower and upper of target reaction %%% 
        lb(size(reactionMatrixExpand,1),1) =0.0; 
        ub(size(reactionMatrixExpand,1),1)=1000.0; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
        %%% Maximize biomass first %%%% 
        biomass_rxn = wt.biomass_rn; 
        mutant_metabolites = unique(mutant_metabolites); 
        mutant_lb = lb; 
        mutant_ub = ub; 

        targetReaction  = size(reactionMatrixExpand,1);%% target reaction 
of nonNative metabolite 
         
        [LP_matrixExpand] = 
makeLPMatrix_mod(reactionMatrixExpand,mutant_metabolites); 
        [s,t] = size(LP_matrixExpand); %% s = no of metabolites, t = no of 
reactions; 
        b = zeros(s,1); 
        c = zeros(1,t); 
        c(1,v.biomass+1) = 1; %% determine objective function 
        objType = -1 %% for gurobi solver -> 1 = minimize, -1 = maximize 
obj function 
        conType = repmat('S',1,s); 
        varType = repmat('C',1,t); 
%         [mt_flux,mt_fval,mt_exitflag,mt_output,mt_lambda] = 
gurobi_mex(c',objType,LP_matrixExpand,b,conType,mutant_lb,mutant_ub,varType
); 
         
        [mt_flux,mt_fval, mt_status, mt_extra] =glpk (c, LP_matrixExpand, b, 
mutant_lb,mutant_ub, conType, varType, objType); 
        mt_growth = num2str(mt_flux(v.biomass,1)); 
        disp(['Expand model maximize E. coli growth (assume r) =  ' 
mt_growth 'solution status if 2 , unique ==  ' num2str(mt_status)]) 
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
         
         
        %%% Maximize Target production of mutant without fixing 
growth %%%%%%%%%%%%%%%%%%%% 
        mt_lb = mutant_lb; 
        mt_ub = mutant_ub; 
        mt_lb(v.biomass+1,1) = 0; 
        mt_ub(v.biomass+1,1) = mt_flux(v.biomass+1,1); 
         
        v_carbon = mt_flux(v.glucose,1); 
        [lpMatrixExpand] = 
makeLPMatrix_mod(reactionMatrixExpand,mutant_metabolites); 
        [m,n] = size(lpMatrixExpand); 
        b_target = zeros(m,1); 
        c_target = zeros(1,n); 
        c_target(1,targetReaction) = 1; %% Target reaction 
        objType_target = -1; %% to maximize targer reaction flux 
        conType_target = repmat('S',1,m); 
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        varType_target = repmat('C',1,n); 
%         [mt2_flux,mt2_fval,mt2_exitflag,mt2_output,mt2_lambda] = 
gurobi_mex(c_target',objType_target,lpMatrixExpand,b_target,conType_target,
mt_lb,mt_ub,varType_target); 
        [mt2_flux,mt2_fval, mt2_status, mt2_extra] =glpk 
(c_target,lpMatrixExpand, b_target, mt_lb,mt_ub, conType_target, 
varType_target, objType_target); 
         
        disp(['Expand model maximize target of E. coli growth (r)=   ' 
num2str(mt2_flux(v.biomass)) 'At iteration =   ' num2str(iteration) 
'Solution status if 2, unique ==  ' num2str(mt2_status)]) 
        disp(['Expand model maximize target of E. coli taget  (r)=   ' 
num2str(mt2_flux(targetReaction)) 'At iteration =   ' num2str(iteration) 
'Solution station if 2, unique ==  ' num2str(mt2_status)]) 
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
        %% check target production higher than 1% of carbon source%% 
        if mt2_status ==5 && mt2_flux(targetReaction) > 0.00; 
            t_flux = num2str(mt2_flux(targetReaction)); 
            t_growth = num2str(mt2_flux(v.biomass)); 
             
            wfile= fopen(each_iteration_result,'a'); 
            fprintf(wfile,'%s\t%s\t%s\t%s\n',curFname(1:end-
4),t_flux,t_growth,num2str(iteration)); 
            fclose(wfile); 
             
        end 
        outputFile = 
strcat(curr_path,'\iteration_',num2str(iteration),'\',listAllFiles(fName).n
ame(1:end-4),'_Flux.txt'); 
        writeOutputFluxToFile_par(outputFile,mutant_reaction_id,mt2_flux); 
    
    end 
     
    timeCals(iteration,1) = iteration; 
    timeCals(iteration,2) = length(listAllFiles); 
    % timeCals(iteration,2) = 10; 
    timeCals(iteration,3) = toc; 
     
    fTime = fopen('eco_maxTarget_r_glpk_time.txt','a'); 
    
fprintf(fTime,'%s\t\%s\t%s\n',num2str(iteration),num2str(length(listAllFile
s)),num2str(toc)); 

    fclose(fTime); 
     
     
end 
matlabpool close 
xlswrite('eco_maxTarget_r_glpk.xls',timeCals); 
disp('Finised calculation !!!! E. coli  assume r BY GLPK solver ') 
 
%% clock ==> [year month day hour minute seconds] %% 
 %% start_time(1,1) = year 
 %% start_time (1,2) = month 
 %% start_time (1,3) = day 
 %% start_time (1,4 ) = hour 
 %% start_time (1,5)  = minute 
 %% start_time(1,6) = seconds 
  
end_time = clock; 
s_year = start_time(1,1); 
s_month = start_time(1,2); 
s_day = start_time(1,3); 
s_hour = start_time(1,4); 
s_min = start_time(1,5); 
 
e_year = end_time(1,1); 
e_month = end_time(1,2); 
e_day = end_time(1,3); 
e_hour = end_time(1,4); 
e_min = end_time(1,5); 
 
disp(['starting time Year Month Day Hour Minute = ' num2str(s_year) 
num2str(s_month) num2str(s_day) num2str(s_hour) num2str(s_min)]) 
disp(['End time Year Month Day Hour Minute = ' num2str(e_year) 
num2str(e_month) num2str(e_day) num2str(e_hour) num2str(e_min)]) 
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A.3.2  “createLPMatrixBasicCon.m” 

function [wt,v] =createLPMatrixBasicCon(rxn_c_nh3_file,rxn_ext_file_nh3) 
 
 
[reaction_cytosol_data,reaction.cytosol_id] = getReactions(rxn_c_nh3_file); 
 
[reaction_c.eq,reaction_c.metabolite,m_row]=convertStoiAsNumber(reaction_cy
tosol_data,0,[]); 
[reaction_matrix_cytosol, lower_bound, upper_bound, ~] = 
reactionMatrix(reaction_c.eq,1,[],[],{}); 
 
 
[~,rxn_extracellular] = xlsread(rxn_ext_file_nh3); 
 
[reaction_matrix_withEXT,reaction_ext_id,lb,ub] = 
addExtReaction(rxn_extracellular,reaction_matrix_cytosol,lower_bound,upper_
bound); 
met_ext = reaction_ext_id(1:end,1); 
wt.cytosolRxns = reaction.cytosol_id; 
wt.reaction_matrix_ce = reaction_matrix_withEXT; 
wt.metabolite_ext = met_ext; 
wt.reaction_id =[reaction.cytosol_id;reaction_ext_id]; 
wt.metabolite_c = reaction_c.metabolite; 
 
 
wt.metabolites = unique([ reaction_c.metabolite;met_ext]); 
 
[~,cc_rns] = xlsread(rxn_ext_file_nh3); 
[~,v]=keepTransportRn(wt.reaction_id,cc_rns); 
 
[LP_matrix_original] = 
makeLPMatrix_mod(reaction_matrix_withEXT,wt.metabolites); 
 
%%%%%% Case Basic condition %%%%%%%%%%%% 
 
lb(v.glucose,1)= -20; 
ub(v.glucose,1) = -20; 
 
lb(v.o2,1)= -20; 
ub(v.o2,1) = 0; 
 
lb(v.nh3,1) = -20; 

ub(v.nh3,1) = 0; 
 
lb(v.so3,1) = -20; 
ub(v.so3,1) = 0; 
 
lb(v.pi,1) =  -20; 
ub(v.pi,1) = 0; 
 
%%%%%%%%%%%%%%%% END%%%%%%%%%%%%%%%%%%%%%% 
 
 
wt.lpMatrix = LP_matrix_original; 
wt.biomass_rn =v.biomass; 
wt.lb = lb; 
wt.ub = ub; 
 
end 
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A.3.3 “getReactions.m” 

function [rn_eq,rn_tag]= getReactions(target_file) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% To collect all strings of metabolic reaction  %% 
%%% and keep all strings in one column            %% 
%%% outputs are rn_eq(n,1) and rn_tag (keep reaction ID) %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%% First to keep reaction tag in which to identify what target reaction 
%%% is? 
%%% Reacation data was read and keep in reaction_set variable: 
%%% reaction_set(1,1) = reaction_id 
%%% reaction_set(1,2) = reaction_palsson_id 
%%% reaction_set(1,3) = reaction_kegg_id 
[~,reaction_set] = xlsread(target_file); 
rxns =cell(size(reaction_set),3); 
for v=1:size(reaction_set,1); 
    rxns{v,1}= reaction_set(v,3); 
    rxns{v,2} = reaction_set(v,1); 
    rxns{v,3} = v; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%%Second to keep metabolic information by split text data into cellstr data  
%%by using space as delimiter. 
%% Ex: 
%% 
{'FADH2_TCA[c]';'+';'VITAMIN_K_{2}[c]';'+';'2.0';'C00080[e]';'=>';'FAD_TCA[
c]';'+';'REDUCED-MENAQUINONE[c]';'+';'2.0';'C00080[c]';} 
 
for k=1:size(rxns,1);%% loop for number of reaction in rxns 
    if k==1; 
        remain = rxns{1,1}; %% start from first or stoichometry coefficient 
in first reaction. 
        position = 0; 
        kk= 0; 
        while kk < k; 
            %% token = strtok('str',delimiter) returns the first token in 
            %% the text string str, that is, the first set of characters 
before a delimiter is encountered.  

            %%The vector delimiter contains valid delimiter characters. Any 
leading delimiters are ignored. 
            [str,remain] = strtok(remain);   
            if strcmp(str,{''}); 
                kk=2;%% update kk cause no more string in this reaction 
            end 
            position = position+1; 
            result{position,1} = str; %% update position for collecting str 
found in each reaction 
             
        end 
    elseif k>1;%% not first reaction  
        remain = rxns{k,1}; 
        kkk = 0;  
        while kkk ==0; 
            [str,remain] = strtok(remain); 
            if strcmp(str,{''}); 
                kkk = 1;%% update kkk cause no more string in this reaction 
            else 
                result{position,1} = str; 
                position = position+1; 
            end 
        end 
         
         
    end % if k==1 
end % for k=1:size(rxns,1) 
rn_eq = result; 
rn_tag = rxns; 

end 
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A.3.4 “convertStoiAsNumber.m” 

function [reaction metabolite met_rows] = 
convertStoiAsNumber(rxn_cytosol,m_rows, metabolite_list) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% From getReactions function,  
%%% all data is in string type as well as  
%%% stoichiometry coefficient.                                         
%%% To covert the stoichiometry coefficient to number (n,1) 
%%% and collect metabolite ID   
%%% outputs are reaction array (n,1) and metabolites (m,1) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% To convert stoichiometry as a number 
for i=1:size(rxn_cytosol,1); % size of rxn_cytosol equal to a member of 
array 
     
    if iscell(rxn_cytosol{i,1});%%% convert cell to char for comparing with 
string 
%         rxn_cytosol{i,1} = char(rxn_cytosol{i,1}{:}); 
        temp = char(rxn_cytosol{i,1}{:}); 
 
        if str2num(temp) ~= 0;%% if temp is numeric: 
            temp = str2num(temp); 
            rxn_cytosol{i,1} = temp; 
        else 
            pat = '\w+\[+[a-z]+\]'; %% find pattern of compartment such 
as[c], [m] .. 
            if regexp(temp, pat) ~= 0; %% found metabolites from the 
compartment 
                m_rows = m_rows+1; %% set position of metabolite in array 
                metabolite_list{m_rows,1} = temp; 
                rxn_cytosol{i,1} = temp; 
            else 
                temp = temp; 
                rxn_cytosol{i,1} = temp; 
            end 
             
 
        end 
    else 
        temp = rxn_cytosol{i,1}; 
 

        if str2num(temp) ~= 0;%% if temp is numeric: 
            temp = str2num(temp); 
            rxn_cytosol{i,1} = temp; 
        else 
            pat = '\w+\[+[a-z]+\]'; %% find pattern of compartment such 
as[c], [m] .. 
            if regexp(temp, pat) ~= 0; %% found metabolites from the 
compartment 
                m_rows = m_rows+1; %% set position of metabolite in array 
                metabolite_list{m_rows,1} = temp; 
                rxn_cytosol{i,1} = temp; 
            else 
                temp = temp; 
                rxn_cytosol{i,1} = temp; 
            end 
             
 
        end 
    end 
 
 
end 
metabolite = metabolite_list; 
reaction = rxn_cytosol; 
met_rows = m_rows; 
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A.3.5 “reactionMatrix.m” 

function [matrix, lb, ub, row] = 
reactionMatrix(rxn_cytosol,rows,lower_bound,upper_bound,reaction_matrix) 
  
% create reaction matrix 
% input reaction in cytosol 
% retrun reaction matrix, lowerbound, upperbound and row of reaction 
 
% reaction_matrix = {}; 
% rows = 1; 
% lower_bound = []; 
% upper_bound = []; 
columns = 1; 
% Making reaction matrix %%% 
 
for i=1:size(rxn_cytosol,1)-1;%% minus one because last metabolite 
determine at line 61  
    reaction_matrix{rows,columns} = rxn_cytosol{i}; 
    if isnumeric(rxn_cytosol{i}) ==1; 
        rows = rows; % found stoichiometry so row number not increase 
         
    elseif strcmp(rxn_cytosol{i},'+') == 1 | strcmp(rxn_cytosol{i},'=>') 
== 1 | strcmp(rxn_cytosol{i},'<=>') == 1; 
        rows = rows; 
         
        if strcmp(rxn_cytosol{i},'=>') == 1; 
 
            lower_bound(rows,1)= 0.00; 
            upper_bound(rows,1) = 1000.0; 
   
             
        elseif strcmp(rxn_cytosol{i},'<=>') == 1; 
 
            lower_bound(rows,1)=(-1)*(1000.0); 
            upper_bound(rows,1) = 1000.0; 
 
        end 
   
    elseif isnumeric(rxn_cytosol{i}) == 0 & strcmp(rxn_cytosol{i},'+') == 
0 & strcmp(rxn_cytosol{i},'=>') == 0 ... 
        & strcmp(rxn_cytosol{i},'<=>')== 0; 
        %%% final metabolite name (cpd_id) from previous reaction %%% 

         
        if ~isnumeric(rxn_cytosol{i+1}) & ~strcmp(rxn_cytosol{i+1},'+') & 
~strcmp(rxn_cytosol{i+1},'=>') & ~strcmp(rxn_cytosol{i+1},'<=>'); 
            %% Next array should be metabolite (next reaction) so increase 
            %% row (number of reaction increase) 
            rows = rows+1; 
            columns = 0; 
        elseif isnumeric(rxn_cytosol{i+1}) == 1 %% only stoichiometry 
before the first metabolite of this reaction  
            %% next array must be metabolite for starting reaction 
            if ~isnumeric(rxn_cytosol{i+2}) & ~strcmp(rxn_cytosol{i+2},'+') 
& ~strcmp(rxn_cytosol{i+2},'=>') & ~strcmp(rxn_cytosol{i+2},'<=>'); 
                rows = rows+1; 
                columns = 0; 
 
            end 
        end 
    end 
    columns = columns+1; %% if not metabolite have to extend column for 
equal size of all reaction 
     
end 
 
reaction_matrix {rows, columns} = rxn_cytosol{size(rxn_cytosol,1)}; %% 
determine the last metabolite of reaction  
rows = rows+1; % adding one row for starting next reaction from external 
reaction 
matrix = reaction_matrix; 
lb = lower_bound; 
ub = upper_bound; 
row = rows; 
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A.3.6 “makeLPMatrix_mod.m” 

function [LP_matrix] = 
makeLPMatrix_mod(reaction_matrix_withEXT,Allmetabolites) 
 
%%%% Making LP matrix %%%%%% 
 
[m,n] = size(reaction_matrix_withEXT); 
LP_matrix =sparse(length(Allmetabolites),m); 
 
%%% construct stoi matrix %%%%% 
nonMetsList = {'<=','=>','<=>'}; 
for i =1:m 
    oneRxn = reaction_matrix_withEXT(i,1:end); 
    for sign=1:3 
        pos = find(strcmp(nonMetsList(sign),oneRxn)); 
        if (~isempty(pos)) 
            sign_pos = pos; 
        end 
    end 
     
    reactant_mets = reaction_matrix_withEXT(i,1:sign_pos-1); 
    product_mets = reaction_matrix_withEXT(i,sign_pos+1:end); 
     
    for k=1:length(reactant_mets); 
        item = reactant_mets{1,k}; 
        m_pos = find(strcmpi(item,Allmetabolites)); 
         
        if (~isempty(m_pos)) && k==1; %% found start metabolite %% 
         
            LP_matrix(m_pos,i) = -1; 
         
        elseif (~isempty(m_pos)) && k > 1; %% found metabolite %% 
          
            if isempty(reactant_mets{1,k-1})||(strcmp(reactant_mets{1,k-
1},'+'))==1; 
                LP_matrix(m_pos,i) = -1; 
            elseif isnumeric(reactant_mets{1,k-1}); 
                LP_matrix(m_pos,i) = (-1)*(reactant_mets{1,k-1}); 
            end 
       
        end 
  

    end 
       
    for k=1:length(product_mets); 
        item = product_mets{1,k}; 
        m_pos = find(strcmpi(item,Allmetabolites)); 
         
        if (~isempty(m_pos)) && k==1; %% first of product 
            LP_matrix(m_pos,i) = 1; 
      
        elseif (~isempty(m_pos)) && k >1; 
 
            if isempty(product_mets{1,k-1})||(strcmp(product_mets{1,k-
1},'+'))==1; 
                LP_matrix(m_pos,i) = 1; 
            elseif isnumeric(product_mets{1,k-1}); 
                LP_matrix(m_pos,i) = (1)*(product_mets{1,k-1}); 
            end 
        end 
         
    end 
     
end 
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A.3.7 “addExtReaction.m” 
 
function [reaction_matrix_withEXT,reaction_ext_id,lower_bound,upper_bound] 
= addExtReaction(rxn_ext_item,reaction_matrix,lb,ub) 
 
%% add extracellular reaction %%% 
%% rxn_ext_item(1,1:end) = {'[e]12ppd-S','C02917','=>';} 
 
reaction_ext_id = cell(size(rxn_ext_item,1),2); 
rows = size(reaction_matrix,1); 
rows = rows+1; 
columns = 1; 
 
for i=1:size(rxn_ext_item,1); 
     
    reaction_ext_id{i,1} = strcat(rxn_ext_item{i,2},'[e]');%% metabolite 
    reaction_ext_id{i,2} = rxn_ext_item{i,1};%% reaction id 
    reaction_ext_id{i,3} = rows;%% no_reaction in reaction_matrix 
     
    reaction_matrix{rows,columns} =strcat(rxn_ext_item{i,2},'[e]');%% 
external metabolite in KEGG ID 
     
    if strcmp(rxn_ext_item{i,3},'=>')==1; 
        lb(rows,1) = 0.0; 
        ub(rows,1) = 1000.0; 
        columns = columns+1; 
        reaction_matrix{rows,columns} = rxn_ext_item{i,3}; 
    elseif strcmp(rxn_ext_item{i,3},'<=>')==1; 
        lb(rows,1) = -1000.0; 
        ub(rows,1) = 1000.0; 
 
        columns = columns+1; 
        reaction_matrix{rows,columns} = rxn_ext_item{i,3}; 
    end 
    rows = rows+1; 
    columns=1; 
lower_bound = lb; 
upper_bound = ub; 
reaction_matrix_withEXT = reaction_matrix; 
      
end 

 

A.3.8 “getAdditionalBKMrxn_mod.m” 

function no_add_rxns = 
getAdditionalBKMrxn_mod(target_fName_path,original_reaction_no) 
f_target = fopen(target_fName_path,'r'); 
tLine = fgetl(f_target); 
fLine = tLine; 
findRxnPos = regexpi(fLine,'R[0-9][0-9][0-9][0-9][0-9]'); 
rxnsList = cell(size(findRxnPos,2),1); 
 
for item=1:size(findRxnPos,2); 
    rn_id = fLine(findRxnPos(item):findRxnPos(item)+5); 
    rxnsList{item} = rn_id; 
end 
 
rxnsList = unique(rxnsList); 
rxnsList = [rxnsList;'addRxn1';'addRxn2'];%% add transporter reactions (by 
diffusion) 
no_add_rxns = cell(length(rxnsList),3); 
 
pos = 0; 
while pos < length(no_add_rxns); 
    pos = pos+1; 
    tLine = fgetl(f_target); 
    no_add_rxns{pos,1} = tLine; 
    no_add_rxns{pos,2} = rxnsList{pos}; 
    no_add_rxns{pos,3} = original_reaction_no+pos; 
     
end 
fclose(f_target); 
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A.3.9 “keepTransportRn.m” 
 
function [central_reaction,v ]= keepTransportRn(reaction_id,t_reaction) 
central_reaction = cell(size(t_reaction,1),4); 
for vv=1:size(t_reaction,1); 
    target_rnID = t_reaction(vv,1); 
 
    for k=1:size(reaction_id,1); 
        x= reaction_id(k,2); 
        r_id = x{:}; 
         
        if strcmpi(r_id,target_rnID) ==1; 
            central_reaction{vv,1} =reaction_id{k,3}; 
            central_reaction{vv,2} = t_reaction(vv,1);%% rn_id 
            central_reaction{vv,3} = t_reaction(vv,2);%% ec_id 
            central_reaction{vv,4} = t_reaction(vv,3);%% pathway name 
            
        end 
         
        if strcmp(r_id,'BIOMASS_TRANS')==1; 
            v.biomass =reaction_id{k,3}; 
             
       
        elseif strcmp(r_id, '[e]etoh')==1; 
            v.eth = reaction_id{k,3}; 
             
        elseif strcmp(r_id,'[e]glc-D')==1; 
            v.glucose = reaction_id{k,3}; 
             
        elseif strcmp(r_id,'[e]o2')==1; 
            v.o2 =reaction_id{k,3}; 
             
        elseif strcmp(r_id,'[e]ac')==1; 
            v.acetate =reaction_id{k,3}; 
             
        elseif strcmp(r_id,'[e]lac-D')==1; 
            v.lactate =reaction_id{k,3}; 
             
        elseif strcmp(r_id,'[e]succ')==1; 
            v.succ =reaction_id{k,3}; 
             
        elseif strcmpi(r_id,'[e]co2')==1; 

            v.co2=reaction_id{k,3}; 
             
        elseif strcmp(r_id,'[e]nh3')==1; 
            v.nh3=reaction_id{k,3}; 
             
        elseif strcmp(r_id,'[e]pi')==1; 
            v.pi =reaction_id{k,3}; 
             
        elseif strcmp(r_id,'[e]so4')==1; 
            v.so3 =reaction_id{k,3}; 
             
        elseif strcmp(r_id,'[e]h2o')==1; 
            v.h2o =reaction_id{k,3}; 
        elseif strcmp(r_id, 'ATPM') == 1; 
            v.atpm = reaction_id{k,3}; 
             
            
             
        end 
    end 
 
           
end 
   
    
end 
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A.3.10 “writeOutputFluxToFile.m” 

 
 
function 
writeOutputFluxToFile_par(fileName,mutant_reaction_id,mutant_maxTargetFlux) 
 
f_flux = fopen(fileName,'w'); 
flux = mutant_maxTargetFlux; 
parfor aa =1:1:size(mutant_reaction_id,1); 
    if iscell(mutant_reaction_id{aa,1}) ==0 || 
iscell(mutant_reaction_id{aa,2})== 0; 
        rxn_data = mutant_reaction_id{aa,1}; 
        rxn_id = mutant_reaction_id{aa,2}; 
        rxn_no = mutant_reaction_id{aa,3}; 
        rxn_flux = num2str(flux(aa)); 
    else 
        rxn_data = mutant_reaction_id{aa,1}{:}; 
        rxn_id = mutant_reaction_id{aa,2}{:}; 
        rxn_no = mutant_reaction_id{aa,3}; 
        rxn_flux = num2str(flux(aa)); 
    end 
    fprintf(f_flux,rxn_data()); 
    fprintf(f_flux,'\t'); 
    fprintf(f_flux,rxn_id()); 
    fprintf(f_flux,'\t'); 
    fprintf(f_flux,num2str(rxn_no)); 
    fprintf(f_flux,'\t'); 
    fprintf(f_flux,rxn_flux); 
    fprintf(f_flux,'\n'); 
end 
fclose(f_flux); 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



Appendix B  

Table B.1 Values of relative adaptiveness (w) of codon generated from highly 

expressed genes of B. subtilis, E. coli, and S. cerevisiae. 
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