
Title Development of computational method for
heterologous pathways design

Author(s) Chatsurachai, Sunisa

Citation 大阪大学, 2013, 博士論文

Version Type VoR

URL https://doi.org/10.18910/26195

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Doctoral Dissertation

Development of computational method

for heterologous pathways design

Sunisa Chatsurachai

July 2013

Department of Biotechnology

Graduate School of Engineering,

Osaka University

Table of Contents

Chapter 1 ... 1

General introduction ... 1

1.1 Importance of bio-based process for valuable chemicals 2

1.2 Importance of computational methods for metabolic pathway design 7

1.3 Modeling and analysis of genome-scale metabolic networks 17

1.4 Microorganisms used as industrial cell factories .. 27

1.5 Objectives of the work .. 30

1.6 Outline of the thesis .. 32

Chapter 2 ... 35

Development of an algorithm to design heterologous pathway ... 35

2.1 Introduction .. 35

2.2 Methods ... 37

 2.2.1 Construction of an in-house database of metabolic reactions 37

 2.2.2 Genome-scale metabolic model of host microorganisms 37

 2.2.3 Heterologous pathway identification for target production 38

 2.2.4 Flux balance analysis (FBA) .. 40

2.3 Results and discussion ... 41

 2.3.1 Identification of heterologous pathway(s) ... 41

P a g e | ii

 2.3.2 Evaluation of production feasibility ... 45

 2.3.3 Differences in target production capacity among host microorganisms 53

2.4 Summary ... 56

Chapter 3 .. 58

Selection of heterologous genes using CAI score ... 58

3.1 Introduction .. 58

3.2 Materials and methods ... 60

 3.2.1 Constructing an in-house database of metabolic reactions 60

 3.2.2 Screening for artificial heterologous pathways involved in the61

 production of targets

 3.2.3 Codon Adaptation Index (CAI) .. 61

3.3 Results and discussion ... 64

 3.3.1 Identification of heterologous pathways ... 64

 3.3.2 Relationship between CAI score and protein abundance 66

 3.3.3 Screening of heterologous genes with higher CAI scores 67

 3.3.4 Examples of results in hyper-text based user interface 73

 3.3.5 Examples of new heterologous pathways for the production of 79

 nonnative metabolites in the specific host

3.4 Summary ... 84

P a g e | iii

Chapter 4 .. 86

General conclusion and Future perspective ... 86

4.1 General conclusion and discussion ... 86

4.2 Future perspective ... 92

References .. 98

Appendix A source code .. 110

Appendix B ... 142

List of publications .. 143

Acknowledgements .. 144

Chapter 1

General introduction

Biosynthesis of biofuels, diverse chemicals and sustainable synthesis of several

chemicals has attracted much attention due to the potential depletion of petroleum.

Natural organisms often produce target metabolites at low yields, and it is difficult to

improve bio-products since the information about metabolic system and genetic

manipulation tools of the organisms are generally limited.

Metabolic engineering is the key solution broadly used to redirect existing

metabolic pathways and/or to incorporate heterologous pathways into well-

characterized hosts, including Escherichia coli, Saccharomyces cerevisiae, and so

forth, for improvement of the productions of native and/or nonnative metabolites.

However, it is still difficult to know and answer the following questions; How does

the global metabolism of a microbial cell respond to changes in its environment?

How do we get the feasible heterologous pathways and genes to improve the

productivity from huge number of possible pathways/genes? Which host is suitable

for a target production? To answer these questions, an appropriate computational

method/in silico platform focusing on metabolic design is desirable.

This chapter, the importance of bio-based process and the reason for the

development of in silico platform will be discussed. Then, several pathway design

methods previously reported will be explained and key features comparing with this

C h a p t e r 1 P a g e | 2

thesis are summarized. In this study, flux balance analysis (FBA) was used to estimate

fluxes of the metabolic system. In the third part of this chapter, a process for

constructing a model of the metabolic system and how to use FBA technique for

analyzing the metabolic fluxes will be presented. Finally, the objective and outline of

this thesis will be summarized.

1.1 Importance of bio-based process for valuable chemicals

The demand of crude oil is gradually increasing as shown in Fig. 1.1 as well as

increasing in its prices. These data suggest that petroleum sources are unsustainable.

It takes about hundred to million years to make oil by decomposition of dead

organisms mostly zooplankton and algae. Fuels and chemicals are mainly produced

by petroleum-based process from crude oil. Moreover, the petroleum-based process

has a negative impact on earth by releasing pollutants and generating hazardous

wastes. Thus alternative energy resources, such as solar, wind, hydroelectric and

biomass, which are renewable and sustainable, have been increasingly used in order

to preserve fossil resources and to reduce CO2-emissions. Among renewable energies,

biomass shares the most consumption in 2010 (Fig. 1.2). Biomass can be converted

into three main types of products, i.e., electrical/heat energy, transport fuels, and

chemical feedstocks (McKendry, 2002) by using microorganism via bio-based

processes.

In addition, biomass is available as renewable resources either as natural

processes (wood, pulp) or as by-products and/or wastes of human activities

C h a p t e r 1 P a g e | 3

(molasses, rice straw, corn stover). Therefore, bio-based process by using

microorganisms as cell factories to convert biomass into valuable products is

becoming an attractive way. In many years ago, bio-based process mainly focused on

improving the production of native metabolites (found in a host cell) widely used in

food and beverage industry, for example, amino acids produced by E. coli and

ethanol produced by yeast. Nowadays, trend of bio-based process for useful

products has moved to produce nonnative metabolites (not found in the host cell)

basically important as chemicals used for many industrial purposes such as polymers,

pharmaceuticals, fuels, solvents, and so forth. Currently, those of useful native and

nonnative metabolites are able to be produced by microorganisms (Dugar and

Stephanopoulos, 2011; J. W. Lee et al., 2011; S. K. Lee et al., 2008; Papini et al., 2010;

Schneider and Wendisch, 2011). The examples of such compounds and global

demand are shown in Table 1.1. Some of bio-fermentation products, for instance,

ethanol and higher alcohols are usually being used as fuels and solvents (Wang et al.,

2012). 1,3-propanediol forms the basis of polymers such as polytrimethylene

terephathalate (PTT) (H. Liu et al., 2010), while isoprene is an intermediate

metabolite in the production of cis-1,4-polyisoprene, a synthetic version of natural

rubber (Ohya and Koyama, 2005).

As shown in Fig. 1.3, the sales of chemicals made by bio-based process in 2010

were $118 billion. It is forecasted to increase to $296 and $668 billion by 2015 and

2020, respectively. These data suggest the importance of industrial chemicals made

by using bio-based process. The bio-based process for chemicals would be an

efficient route for reducing wastes and CO2 emissions, and preserving fossil fuels

comparing with petroleum-based process.

C h a p t e r 1 P a g e | 4

FIG. 1.1 Crude oil consumption and price from 1990-2011

(Source: U.S. Energy Information Administration available at

http://www.eia.gov/)

FIG. 1.2 World total and energy consumption by source, 2010

(Source: U.S. Energy Information Administration available at

http://www.eia.gov/)

C h a p t e r 1 P a g e | 5

FIG. 1.3 Trends in production of bio-based chemicals. 2015 and 2020 data are

projections based on 2010 data (Adapted from (Festel et al., 2012))

C h a p t e r 1 P a g e | 6

Table 1.1 Bio-based products and global demand

Compound Host cell factory Reference
Global market size*

(million ton/year)

Industrial

application

1,3-propanediol

Escherichia coli (H. Liu et al., 2010)

0.1-0.5
Co-polymers to

produce PTT for

plastics
Saccharomyces

cerevisiae
(Rao et al., 2008)

1,4-butanediol Escherichia coli (Yim et al., 2011) 1.7 Polymers, solvents

1-butanol

Escherichia coli (Shen et al., 2011)

3.0
Polymers, plastics,

solvents Synechococcus

elongatus PCC7942
(Lan and Liao, 2012)

2,3-butanediol

Escherichia coli (S. Lee et al., 2012)

0.06
Chemical, food, fuel

fibers, plastics
Bacillus subtilis (Biswas et al., 2012)

3-hydroxypropanoic

acid
Escherichia coli

(Rathnasingh et al.,

2012)
0.5

Contact lenses,

polymers for diapers,

carpet fibers

Cadaverine

Corynebacterium

glutamicum

(Kind and Wittmann,

2011)
0.1 Polyamides for plastics

Escherichia coli
(Z.-G. Qian et al.,

2011)

Ethanol

Saccharomyces

cerevisiae

(Guadalupe Medina et

al., 2010)
60

Biofuel, food

beverages, solvents
Escherichia coli (Woodruff et al., 2013)

Glucaric acid Escherichia coli (Moon et al., 2009) 0.06 Solvents, nylons

Glutamic acid
Corynebacterium

glutamicum

(Becker and Wittmann,

2012)
2.5

Monomers for polyester

and polyamides

Isoprene Escherichia coli (Lv et al., 2012) 0.1-0.5
Natural rubber,

thermoplastics

Itaconic acid Aspergillus terreus (Kuenz et al., 2012) 0.08 Polymers, fibers

Lactic acid

Escherichia coli
(Mazumdar et al.,

2013)

0.3-0.5
Polymers, plastics,

fibers

Saccharomyces

cerevisiae
(Pacheco et al., 2012)

Synnechocystis sp.

PCC6803

(Angermayr et al.,

2012)

Malic acid Escherichia coli (Zhang et al., 2011) 0.06
Acidulent in food

industry

Muconic acid

Saccharomyces

cerevisiae
(Curran et al., 2013)

2.30 Polymers, plastics

Escherichia coli (Niu et al., 2002)

Succinic acid

Corynebacterium

glutamicum
(Litsanov et al., 2012)

0.1
Feed additives, fuel

additives, fibers,

polymers

Escherichia coli (Hoefel et al., 2012)

Saccharomyces

cerevisiae
(Otero et al., 2013)

*Data retrieved from (Vennestrøm et al., 2011) and IEA Bioenergy (source:

www.ieabioenergy.com/) .

C h a p t e r 1 P a g e | 7

1.2 Importance of computational methods for metabolic

pathway design

Several approaches leading to the production of valuable products generally use

engineered microbes in which native metabolic networks of microorganisms are

artificially modified to produce target products. One such standard strategy

employed for producing target metabolites is the incorporation of heterologous

pathways into well-characterized hosts such as B. subtilis, C. glutamicum, E. coli, and

S. cerevisiae as shown in Table 1.1. Nevertheless, the selection of suitable

heterologous metabolic pathways for host organisms is often difficult due to the

metabolic network complexity. Besides, huge amount of information on metabolic

reactions have been found in literature, and are available on public databases such as

KEGG (Kanehisa et al., 2008), BRENDA (Chang et al., 2009), ENZYME (Bairoch, 2000),

MetaCyc (Caspi et al., 2008), and BKM-react (Lang et al., 2011) as shown in Fig. 1.4.

There are 8,507, 8,244, and 9,096 metabolic reactions available on BRENDA, KEGG,

and MetaCyc, respectively, and the integration database, BKM-react, contains 18,172

unique metabolic reactions combining from the 3 databases, BRENDA, KEGG and

MetaCyc. Thus, to find appropriate heterologous pathways for target production

generally requires massive calculations. For example, to search for heterologous

pathway for producing target nonnative metabolite, it requires users to search the

heterologous reactions which are able to connect nonnative metabolite to the target

host metabolism. As you can see in Fig. 1.5, there are 11 possible

routes/heterologous pathways containing 4 heterologous reactions to connect

nonnative metabolite to the host’s metabolic network. Since the complexity of

C h a p t e r 1 P a g e | 8

metabolic network available on database, it is difficult to manually check and search

for all possible heterologous pathways. In addition, the substrate-product conversion

should be primitively estimated as a reference value to be compared with

experimental outcome, and could be used to evaluate the feasibility of heterologous

pathways.

In Fig. 1.6, a toy metabolic network demonstrates 7 biochemical reactions (2

intracellular and 5 transport reactions) and contains 5 intracellular metabolites (A-E)

and 5 extracellular metabolites (Aext, Cext, Dext, Eext, and Biomass). If biomass is a

target from this network, theoretical yield can be calculated from reaction

stoichiometry between reactants and products. Therefore, 1 mole of A, D, and C will

be converted to 2 mole of Biomass and 1 mole of E as a by-product as shown in Fig.

1.7. This toy metabolic network is simple and contains only 7 reactions, so it is

possible to calculate by hand. However, the real host cell such as E. coli contains 931

internal and 143 transport reactions (Reed et al., 2003), it may be impossible to

manually calculate theoretical yield of target product and find feasible pathways of

targets.

FIG. 1.4 Distribution of the unique metabolic reactions between BRENDA, KEGG, and

MetaCyc databases (Lang et al., 2011)

C h a p t e r 1 P a g e | 9

FIG. 1.5 Heterologous pathway design by human to search for possible heterologous

reactions to connect nonnative metabolite to the host metabolism

FIG. 1.6 Toy metabolic network map consists of 5 intracellular metabolites (A-E) and

5 extracellular metabolites (Aext, Cext, Dext, Eext, and Biomass), 2 intracellular reactions

(v1-v2) and 5 transport reactions (b1-b5) and biochemical reactions present on right-

hand side.

C h a p t e r 1 P a g e | 1 0

FIG. 1.7 Theoretical yield calculation based on reaction stoichiometry

Without using the computational method, it is difficult and tight to handle

numerous reactions in host’s metabolic network and to search heterologous

reactions for the production of nonnative metabolites from databases. Additionally,

to find the feasible heterologous pathway and to check whether one target

nonnative metabolites produced by the host cell, are time-consuming tasks, when

these tasks depend only on the researcher’s knowledge and manual screen of

information. From these reasons, a computational method is required to help

researchers for finding the feasible heterologous pathway of target nonnative

metabolite.

Recently, numerous in silico heterologous pathway search methods have been

proposed and used in target metabolites productions (Cho et al., 2010; Dogrusoz et

al., 2009; Finley et al., 2009; Flórez et al., 2011; Handorf et al., 2005; Li et al., 2004;

McShan et al., 2003; Moriya et al., 2010; Pey et al., 2011; Pharkya et al., 2004;

Rodrigo et al., 2008; Yousofshahi et al., 2011). Comparison of key points among those

methods is shown in Table 1.2. The key points are composed of:

C h a p t e r 1 P a g e | 1 1

1. There is no requirement of background information for searching pathway,

for example, rules of enzyme transformation between substrate to product.

2. The calculation time of the method is fast when search for the optimized

pathway with maximum theoretical yield of target.

3. New/alternative pathways of target can be generated.

4. New reaction(s) not existing in the available databases can be generated.

5. The information of new reaction such as gene, sequence, protein is available.

6. The heterologous pathway is generated for specific host cells.

7. The information of heterologous genes corresponding to a heterologous

pathway is available and specific for the target host cell.

8. All possible nonnative metabolites and heterologous pathways information

are available as a catalog for each target host cell.

In Table 1.2, all approaches are able to screen the new pathway for target

production. However, only PathMiner (McShan et al., 2003), Pathway generation (C.

Li et al., 2004), PathPred (Moriya et al., 2010), BNICE (Finley et al., 2009), and

Prioritization (Cho et al., 2010). These methods can generate new metabolic

reactions since it used the concept of generalize enzyme activity based on third-level

of enzyme classification, which is recommended by International Union of Pure and

Applied Chemistry and International Union of Biochemistry and Molecular Biology

(IUPAC-IUBMB) (NC-IUBMB, 1999). Each enzyme is assigned a four-digit (EC i.j.k.l)

Enzyme Commission (EC) number. Enzyme-catalyzed reactions based on the third-

level enzyme classification, EC i.j.k, are not substrate specific, and thus, these

described the transformation of functional groups. With this concept, those methods

create rules of enzyme transformation to search for possible reactions catalyzed by

C h a p t e r 1 P a g e | 1 2

the third-level enzyme. Even those methods are capable to create new metabolic

reactions, but the information of gene and protein for further study is unavailable.

Thus, the rule-based methods are high risk as predicted chemicals may not be

possible in real experiments.

PathMiner, Pathway generation, PathPred, BNICE, and Prioritization methods

require background information are categorized as the rules-based methods, while

OptStrain (Pharkya et al., 2004), Network expansion (Handorf et al., 2005),

DESHARKY (Rodrigo et al., 2008), Graph-based pathway (Dogrusoz et al., 2009), Path

finding (Pey et al., 2011), Probabilistic (Yousofshahi et al., 2011), SPABBATS (Flórez et

al., 2011), and ArtPathDesign (this thesis) (Chatsurachai et al., 2013) are categorized

as the graph-based methods. The graph-based methods are capable to generate

pathways of target without using any background information of enzyme activity.

The rule-based methods require much time to search for the optimized pathway due

to a huge number of possible pathways from rules and atomic balances, while most

of graph-based methods are fast to calculate based on reaction stoichiometry.

However, the OptStrain, Network expansion, and DESHARKY applied alternative

ways/scores to rank and select the optimized pathways. For example, OptStrain used

OptKnock (Burgard et al., 2003) algorithm for further improving yield of target by

knockout genes in the host network. DESHARKY used earlier experimental data of

RNA polymerase activity as a score to find the optimized pathway, which required

more calculation time as well as prior information.

Among key features in Table 1.2, most of earlier methods have not yet been

developed to provide specific heterologous pathways and heterologous genes for the

C h a p t e r 1 P a g e | 1 3

host cell in addition to the catalog of nonnative metabolite especially for the target

host cell. These features are significant for researchers in order to improve and /or

produce the desire of industrial nonnative metabolites, because expression of

heterologous pathways may be low/not active. The main reasons are sometimes

occurred by heterologous genes show low/no expression in the target host cell since

diversity of species and cofactor balances such as NAD+/NADH and NADP+/NADPH.

Hence, in this thesis I have developed the in silico method according to the

purposes (Fig. 1.8), to search for feasible heterologous pathways, suggest rational

heterologous genes particular for each host, and provide the catalog of nonnative

metabolites, which are able to be produced by the host cell. This system was named

as ArtPathDesign (Artificial heterologous Pathway Design) and could overcome the

problems about host-specific heterologous pathways and genes, as well as the

catalog of nonnative metabolites (Table 1.2). In addition, this computational method

greatly reduces times and costs for data analysis and also experiments.

 C
h

a
p

t
e

r
 1

P
a

g
e

|

 1
4

FIG. 1.8 The schematic of the computational method developed in this thesis, named as “ArtPathDesign”.

Host metabolic network and metabolic reactions collected in an in-house database were used as input data for screening heterologous pathways of nonnative
metabolites. In parallel, Codon Adaptation Index (CAI) scores of all genes retrieving from the available databases was calculated and used to select candidate genes.
FBA simulation was performed to select heterologous pathways. Finally, list of nonnative metabolites and heterologous genes particular for a target host will be listed
as the output result in html-format easily opened by web browser such as Google Chrome, Firefox, etc.

 C
h

a
p

t
e

r
 1

P
a

g
e

|

 1
5

Table 1.2 Comparison of computational metabolic pathway search methods

Method

name
Reference

Key points of method

No
requirement

of Background

Optimized
pathway

search
(fast)

New
pathway

New
reaction

Information of
new reaction

(enzyme/gene)

Host-
specific

pathway

Host-specific
heterologous

gene(s)

Catalog of
nonnative

metabolites
(host-specific)

PathMiner
McShan et al.

(2003)
✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖

Pathways
generation

Li et al. (2004) ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖

OptStrain
Pharkya et al.

(2004)
✔ ✖ ✔ ✖ ✖ ✔ ✖ ✖

Network
expansion

Handorf et al.
(2005)

✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖

DESHARKY
Rodrigo et al.

(2008)
✔ ✖ ✔ ✖ ✖ ✔ ✔ ✖

Graph-
based

pathway

Dogrusoz et al.
(2009)

✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖

PathPred
Moriya et al.

(2010)
✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖

 C
h

a
p

t
e

r
 1

P
a

g
e

|

 1
6

Table 1.2 (Continued)

Method
name

Reference

Key points of method

No
requirement

of Background

Optimized
pathway

search
(fast)

New
pathway

New
reaction

Information of
new reaction

(enzyme/gene)

Host-
specific

pathway

Host-specific
heterologous

gene(s)

Catalog of
nonnative

metabolites
(host-specific)

BNICE
Finley et al.

(2009)
✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖

Prioritization
Cho et al.

(2010)
✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖

Path finding
Pey et al.

(2011)
✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖

Probabilistic
Yousofshahi
et al. (2011)

✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖

SPABBATS
Flórez et al.

(2011)
✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖

ArtPathDesig
n

(this thesis)

Chatsurachai
et al. (2013)

✔ ✔ ✔ ✖ ✖ ✔ ✔ ✔

C h a p t e r 1 P a g e | 17

1.3 Modeling and analysis of genome-scale metabolic

networks

Generally, a model is created to simulate a process or a set of processes observed

in the experiment in order to better understand mechanisms of process and to

predict outcomes for a given set of specific input parameters. Therefore, to gain

insight into cellular metabolism, a genome-scale metabolic network model has been

an important tool. The genome-scale metabolic network is reconstructed from

genome sequence annotation and biochemical reactions mining from databases

(Table 1.3) and literatures. The construction of metabolic network is an iterative

decision-making and time-consuming process and it could take up to one month to

several months to complete a comprehensive model of a genome-scale metabolic

network. In addition, an accurate model could be done by using experimental data

retrieved from literatures. E. coli (Reed et al., 2003), S. cerevisiae (Mo et al., 2009), B.

subtilis (Oh et al., 2007) and C. glutamicum (Shinfuku et al., 2009) models are the

examples of accurate models predicting cellular phenotypes under various conditions.

Table 1.3 Database useful for pathway mining and curation

Database URL

KEGG http://www.genome.jp/kegg/pathway.html

MetaCyc http://metacyc.org/

BRENDA http://www.brenda-enzymes.org/

BKM-react http://bkm-react.tu-bs.de/

BiGG http://bigg.ucsd.edu/

CyanoBase http://genome.microbedb.jp/cyanobase

Biochemical Pathway Maps http://web.expasy.org/pathways/

C h a p t e r 1 P a g e | 18

Several modeling techniques (Raman et al., 2006) are available to analyze and to

simulate cellular mechanism/response such metabolic flow when metabolic pathway

or environment altered. Among these techniques, flux balance analysis (FBA) is the

most commonly used. FBA can provide estimations of the metabolic fluxes on the

genome-scale metabolic network, thereby making it possible to predict the growth

rate of an organism or the rate of target production (Orth et al., 2010).

Theory of flux balance analysis (FBA)

FBA assumes that metabolic fluxes will reach a steady state constrained by the

stoichiometry (Kauffman et al., 2003). The stoichiometric constraints lead to an

underdetermined system; however, a bounded solution space of all feasible fluxes

can be identified. This solution space can be further restricted by specifying

maximum and minimum fluxes through any particular reaction and by specifying

other physiochemical constraints. Here, the metabolic fluxes are estimated by these

constraints, and the constraints can be refined by adding experimental data.

When the solution space that describes the capability of the organism is defined,

the metabolic network’s behavior can be studied by optimizing the steady-state

behavior with respect to some objective function. The simulation results can then be

experimentally verified and used to further strengthen the model. Finally, the

iterative model refinement procedure can result in predictive models of cellular

metabolism (Mo et al., 2009; Oh et al., 2007; Reed et al., 2003; Shinfuku et al., 2009).

To better understand how to formulate a FBA problem, the steps are explained in

detail and demonstrated through the toy metabolic network (Fig. 1.6).

C h a p t e r 1 P a g e | 19

FBA model formulation contains 4 steps. (Adapted from (Kauffman et al., 2003;

Raman and Chandra, 2009))

Step I. System definition

Development of a flux balance model requires the definition of all the metabolic

reactions and metabolites. Fig. 1.6 shows the toy metabolic network, which contains

2 intracellular and 5 transport reactions. There are 5 intracellular metabolites (A-E)

and 5 extracellular metabolites (Aext, Cext, Dext, Eext, and Biomass).

The biochemical reactions of the network are listed here.

Aextracellular  A

A + D  B + E

C  B

Cextracellular  C

Dextracellular  D

E  Eextracellular

Step II. Mass balance

Once all reactions and transport mechanism of the system are identified, a dynamic

mass balance is derived for all intracellular metabolites in the metabolic network

shown here (equation 1.1a-e).

�[�]

��
= �� − ��																						(1.1�)

�[�]

��
= �� + �� − ��													(1.1�)

C h a p t e r 1 P a g e | 20

�[�]

��
= �� − ��																								(1.1�)

�[�]

��
= �� − ��																								(1.1�)

�[�]

��
= �� − ��																								(1.1�)

The mass balance is defined in terms of the flux through each reaction and the

stoichiometry of that reaction, thus, a set of ordinary differential equations is

obtained (equation 1.2a-1.2e). In this analysis, the steady state of the system is

assumed, and corresponds to the case that input fluxes are equal to output fluxes, as

follows.

�[�]

��
= �� − �� = 0																					(1.2�)

�[�]

��
= �� + �� − �� = 0												(1.2�)

�[�]

��
= �� − �� = 0																						(1.2�)

�[�]

��
= �� − �� = 0																						(1.2�)

�[�]

��
= �� − �� = 0																							(1.2�)

The differential equations can be represented using a matrix notation, where "�"

is the stoichiometric matrix and "�" is the vector of the fluxes. The goal of FBA is to

identify the metabolic fluxes under steady-state condition of the metabolic network.

C h a p t e r 1 P a g e | 21

At steady-state condition, the different equations of all metabolites can display in

matrix form shown in Fig. 1.9 below.

FIG. 1.9 Matrix notations of differential equations under steady-state condition

Step III. Defining measurable fluxes and/or range of fluxes

In general, there are more reactions (or fluxes) than the number of metabolites,

and thus the steady-state solution for the metabolic fluxes is underdetermined.

C h a p t e r 1 P a g e | 22

Therefore, additional constraints are required to uniquely determine the steady-

state flux distribution. One way to get the additional constraints for the metabolic

network is measuring metabolic fluxes experimentally. In linear algebra, to solve the

problem, the number of variables should be equal to the number of equations, that

is, the measurement of fluxes such as substrates uptake, by-products formation rate

should be used as additional constraints. For example, the toy metabolic system

contains 5 equations and 7 variables; it requires at least 2 measured fluxes of

substrate uptake or production rate to find the unique solution of this problem. The

exact flux values are commonly not defined, but rather a range of allowable flux

values. The ranges of flux values are either retrieved from experiments or literature,

which are used as additional constraints.

The examples of additional constraints for the toy metabolic network are

demonstrated below. Here, ��, ��	���	��	represent substrate uptake rates (equation

1.3 h-j) that can be observed from experiments.

0 ≤ �� ≤ 10							(1.3�)

0 ≤ �� ≤ 10							(1.3�)

0 ≤ �� ≤ 10							(1.3�)

0 ≤ �� ≤ 10							(1.3�)

0 ≤ �� ≤ 10							(1.3�)

0 ≤ �� ≤ 10							(1.3�)

0 ≤ �� ≤ 10							(1.3�)

C h a p t e r 1 P a g e | 23

�� = 4.2															(1.3ℎ)

�� = 5.5														(1.3�)

�� = 3.2													(1.3�)

Step IV. Optimization

A genome-scale metabolic network always has more reactions (fluxes) in the

system than the number of metabolites corresponding to the underdetermined

system, thus there are allowable solution spaces/flux distributions (Fig. 1.10). To find

the unique/optimal solution, an optimization technique is commonly applied for

measuring the internal fluxes in the metabolic network. Fig. 1.10 shows the flux

distribution of the toy metabolic network predicted by using the optimization

technique with the objective function to maximize Biomass production (the flux of

b2).

Using the optimization technique, the metabolic network is assumed to be

optimized with respect to a target objective function. This allows the

underdetermined system to be formulated as the optimization problem. The

objective functions such as maximization of biomass, minimization of substrate

uptake, maximization of ATP production, etc. are widely used to estimate cellular

metabolisms and to provide predictions which can be verified by experimental data

(Mo et al., 2009; Oh et al., 2007; Reed et al., 2003; Schuetz, Kuepfer, & Sauer, 2007;

Shinfuku et al., 2009). The optimization problem of the genome-scale metabolic

network is formulated below.

C h a p t e r 1 P a g e | 24

Problem:

Maximize/Minimize ∑ �� ∙ ��
�
� 													(�������	1)

Subject to.

1. ∑ ���
�
� ∙ �� = 	0, ∀� ∈ �	���	∀� ∈ �										(mass balance constraints)

2. Linear inequality or equality constraints (additional constraints)

where,

�	 is a number of reactions (fluxes) in the system or cell.

� is a number of metabolites in the system or cell.

�� represents weight of the individual flux of the ��� reaction that contributed

to the objective function.

��	 represents metabolic fluxes of the ��� reaction.

��� represents the stoichiometric coefficient indicating the amount of the ���

metabolite produced per unit of flux of the ��� reaction.

The aim of FBA is to maximize or minimize the objective function (Problem 1) that is

subject to mass balance and additional constraints. The output of this problem is a

particular flux distribution of vector,	�, which maximizes/minimizes the objective

function (Orth et al., 2010).

C h a p t e r 1 P a g e | 25

In general, for the genome-scale metabolic network of the host, the biomass

equation is generated based on the ratios of cellular components such as amino acids,

RNA, DNA, etc., which are either estimated from experiments and/or genome

information. Here is the example of the E. coli’s biomass reaction (equation 1.4)

retrieved from (Reed et al., 2003):

C h a p t e r 1 P a g e | 26

FIG. 1.10 Optimization of the system with the objective function to maximize the flux

of b2. The b2 is the biomass production of the toy network (see in Fig. 1.5), which is

applied to obtain one optimal solution represented as red dot. The flux distribution

of the optimal point is labeled in red on the toy metabolic network map.

C h a p t e r 1 P a g e | 27

1.4 Microorganisms used as industrial cell factories

Since the sequencing of the first complete microbial genome of Haemophilus

influenza (Fleischmann et al., 1995), a hundred of microbial genomes have been

sequenced and archived for public research in GenBank database (Benson et al.,

2009). This availability of data provides the scientists to make a genome-scale

metabolic model for discovering new information for better understanding cellular

properties and processes. In last decade, a genome-scale metabolic model, which is a

mathematical model to represent cellular metabolism in linear algebra form, has

been used for metabolic engineering by integration of laboratory data such as

genome, transcriptome, proteome, metabolome and so forth. Generally, a genome-

scale metabolic model was constructed by using genome information such as gene,

protein, and metabolic network. As shown in Fig. 1.11, the rapid proliferation of

genome sequencing projects over the last decade has resulted in an exponential

growth in the amount of genomic DNA sequences and information available for

reconstructing genome-scale metabolic models.

The complete genome sequence for a number of microorganisms has been

established. Thus, the genome information is available to construct the model that

helps for the novel metabolic engineering strategies. Well-characterized hosts would

be used as cell factories to yield value-added products because of the availability of

genome information and genetic manipulation tools. The examples of these famous

host models widely used as cell factories for industrial production are briefly

summarized as follows.

C h a p t e r 1 P a g e | 28

FIG. 1.11 Statistical information of genome projects from GOLD database until

October, 2011, Total projects are 10,031 projects (Pagani et al., 2012).

Escherichia coli

E. coli is an aerobic, gram-negative, rod shaped bacteria that can be commonly found

in animal feces, lower intestines of mammals, and even on the edge of hot springs.

The complete genome sequence of E. coli strain K-12 was finished in 1997 (Blattner

et al., 1997). Its genome sequence contains about 4.6 Mbps and 4,288 protein-coding

genes. The main reasons why E. coli becomes famous host for numerous of products

are easy for cultivation and fast growth. Currently, E. coli has been engineered to

produce valuable compounds such as 1,3-propanediol, 1-butanol, lactic and so forth

(in Table 1.1). In order to analyze, interpret, and predict cellular behavior, a genome-

scale model of E. coli was constructed (Reed et al., 2003). This model, named as

iJR904, constructed based on E. coli K-12 genome annotation data, and showed well

predictive simulation comparing with experimental data.

C h a p t e r 1 P a g e | 29

Saccharomyces cerevisiae

A budding yeast S. cerevisiae is a eukaryote model for producing alcohols and organic

acids such as lactic acid and succinic acid (Table 1.1). The genome sequence of the

yeast S. cerevisiae was completed in 1996 (Goffeau et al., 1996) and contains about

12 Mbps and defines 5,885 protein-coding genes. Besides, the genome metabolic

model of yeast S. cerevisiae is also available (Mo et al., 2009). This model named as

iMM904 predicted intracellular flux changes consistent with published

measurements.

Corynebacterium glutamicum

C. glutamicum , a gram-positive microorganism, is one of the most important

bacteria in industrial biotechnology with an annual production of more than 2 million

tons of amino acids mainly, L- glutamate, L-serine and L-lysine (Becker and Wittmann,

2012). The C. glutamicum genome consists of a single circular chromosome with 3.3

Mbps in size and comprises 3,002 protein-coding genes (Kalinowski et al., 2003).

Additionally, its genome-scale metabolic model was constructed and demonstrated

metabolic profiles that correponding with experimental data (Shinfuku et al., 2009).

Bacillus subtilis

B. subtilis, a rod-shaped gram-positive bacterium naturally found in soil and plants, is

well-recognized as a producer of enzymes such as proteases and amylases (Zweers et

al., 2008). In addition, industrial compound like 2,3-butanediol and isobutanol have

also been produced by B. subtilis (Biswas et al., 2012; Jia et al., 2012). Its genome is

about 4.2 Mbps and comprises 4,100 protein-coding genes (Kunst et al., 1997).

C h a p t e r 1 P a g e | 30

Genome-scale metabolic model of B. subtilis was published in 2007 and this in silico

model could predict growth phenotypes of knock-out strains that found to be quite

consistent with experimental observations (Oh et al., 2007).

The microorganisms mentioned above are ideal hosts for bioengineered products

such as industrial chemicals, since they exhibit high growth activity under various

conditions as well as easy to genetically manipulated (Christina, 2010). Moreover, the

genome-scale metabolic models of these microorganisms are available for scientists

to use as the tools to identify metabolic engineering strategies such as gene

amplification and deletion for strain improvements. For example, target genes to

improve lycopene production in E. coli were successfully identified using in silico

simulation and corresponding to enhance the lycopene production in in vivo

experiment (Choi et al., 2010). Another example is gene knockout simulation to guide

target genes for improving L-valine in E. coli (Park et al., 2007).

1.5 Objectives of the work

The current demands of fuels and chemical feedstocks are critically increased,

while petroleum resources are limited and unsustainable. Moreover, fuels and

industrial chemicals by petroleum-based process show negative impacts on

environment. The alternative route to produce energy and valuable chemicals using

microorganisms becomes an attractive way. However, some microorganisms are not

easy to cultivate and produce high level of target products. In addition, the very large

amount of possible heterologous pathways is generated without any background in

C h a p t e r 1 P a g e | 31

formation and impossible to handle by human. Therefore, a computational or in silico

platform to design and select such suitable heterologous pathways is required.

Several pathway design methods had been reported (Table 1.2), however, it still

lacked of the method that can provide host-specific heterologous pathways, host-

specific heterologous genes as well as a catalog of nonnative metabolites particular

for each host.

Since the in silico platform to design and select suitable heterologous pathways

into particular hosts is still not developed, the goal of this thesis is to develop the

system aiming to provide necessary information to scientists for producing target

metabolites in cell factories hosts such as B. subtilis, C. glutamicum, E. coli and S.

cerevisiae. The algorithm to screen heterologous pathways for the specific host was

developed. This algorithm can provide all possible pathways for the production of

nonnative metabolites that are non-existent in the host. Then, parameters used for

selection of heterologous genes were applied to select feasible pathways for the

production of nonnative metabolites. Thus, a rational heterologous pathway design

system named as “ArtPathDesign” (Artificial heterologous Pathways Design) was

proposed for an efficient production of nonnative metabolites.

C h a p t e r 1 P a g e | 32

1.6 Outline of the thesis

The thesis consists of 4 chapters, and a schematic outline of the thesis is shown in

Fig. 1.12.

Chapter 1 deals with the background and motivation of this thesis. Literature review

of metabolic pathway design methods is summarized, and comparison of those

methods is demonstrated. The objectives and schematic of this thesis are also

described.

Chapter 2 deals with data collection, an in-house database construction and the

development of the algorithm for screening heterologous pathways of nonnative

metabolites in 3 host cell factories, E. coli, C. glutamicum, and S. cerevisiae as

templates. In this chapter, the �� value is applied in order to select candidate

heterologous genes based on enzyme-substrate affinity corresponding to the

heterologous pathway. However, the information of �� value is depending on

experimental data and several enzymes show no information of �� values. Besides,

to obtain or improve the production of nonnative metabolites, host-specific

heterologous pathways and host-specific heterologous genes are important features.

Thus, a new selection parameter could be applied for selection of suitable

heterologous pathways and genes.

Chapter 3 deals with the new score that used for selection of candidate heterologous

pathways and genes which are specific for each host. Codon Adaptation Index (CAI) is

accepted as a measurement of synonymous codon usage bias, which is one of the

most important factors effecting on heterologous enzymes expression. Thus, CAI was

C h a p t e r 1 P a g e | 33

applied in this study. With the CAI as the selection score, the host-specific pathways

and host-specific genes features are included in the improved in silico system,

ArtPathDesign. Furthermore, a catalog of nonnative metabolites especially for the

target host is improved and available as html file that is well-formed representations.

Chapter 4 deals with the general conclusion and future perspective of this research.

 C
h

a
p

t
e

r
 1

 P
a

g
e

 |
 3

4

FIG. 1.12 Outline of the thesis

Chapter 2

Development of an algorithm to design heterologous

pathway

2.1 Introduction

Recognizing the potential depletion of petroleum resources, researchers have

become increasingly interested in production of fuels and industrial chemicals by

microorganisms (Dugar and Stephanopoulos, 2011; S. K. Lee et al., 2008; Schneider

and Wendisch, 2011). Such biosynthesized materials include fuels, plastics, polymers,

solvents and drugs (Becker and Wittmann, 2012; J. W. Lee et al., 2011; Papini et al.,

2010; B.-W. Wang et al., 2012). To produce such industrially useful materials,

modifications of host’s metabolic networks are generally required. Target

metabolites are frequently produced by incorporating heterologous metabolic

pathways into well-characterized host microorganisms, such as E. coli, S. cerevisiae,

and so on, that I mentioned in previous chapter. However, the selection of suitable

heterologous metabolic pathways for host organisms is often difficult due to the

complexity of metabolic network. Although copious data on metabolic reactions and

enzymes have been available in the literature and available databases such as KEGG,

ENZYME, and BRENDA, constructing a target production pathway using a host’s

metabolic network with satisfying the metabolic balances requires a scientist’ s

experience and intuition. Thus, the development of an appropriate in silico platform

C h a p t e r 2 P a g e | 36

can facilitate industry-focused metabolic network design by providing possible

heterologous pathways for target metabolite production.

Currently, several in silico pathway search methods have been developed and

used to produce target metabolites (Cho et al., 2010; Dogrusoz et al., 2009; Finley et

al., 2009; Flórez et al., 2011; Handorf et al., 2005; C. Li et al., 2004; McShan et al.,

2003; Moriya et al., 2010; Pey et al., 2011; Pharkya et al., 2004; Rodrigo et al., 2008;

Yousofshahi et al., 2011). In previous chapter, the comparison of these methods is

summarized. Even numerous methods are available for screening heterologous

pathways of target metabolites, there still remains a lack of agreement on how to

choose heterologous pathways and host microorganisms for target production.

In this chapter, I first developed a novel pathway search algorithm that identifies

the shortest pathway between a host’s metabolic network and target metabolites

when heterologous reactions are added to the host’s metabolic network. Using this

algorithm, all producible target metabolites listed in databases were screened. In

addition, to select candidate heterologous enzymes, �� value was utilized as a

selection score. That is, among the heterologous genes that coding enzyme having

minimum 	�� value was selected for the construction of heterologous pathways.

Then, for all producible target metabolites, the production yields were estimated by

using flux balance analysis (FBA), assuming the steady-state conditions and the

maximization of target or biomass production rate. By analyzing the entire list of

producible target metabolites in several different hosts, a set of rational

heterologous pathways and host microorganisms that will likely produce desired

targets were selected.

C h a p t e r 2 P a g e | 37

2.2 Methods

2.2.1 Construction of an in-house database of metabolic reactions

 All known metabolic reactions were considered as candidate heterologous

reactions that could be added to the host metabolic network. First, an in-house

database of metabolic reactions was constructed based on data stored in KEGG

ligand section (Kanehisa et al., 2008) and BRENDA (Chang et al., 2009) databases.

All metabolic reaction information regarding genes, enzymes, pathways, and

organisms in the KEGG database was collected into the database, which was

developed using PostgreSQL 9.0 (The PostgreSQL Global Development Group).

The Michaelis-Menten constants (��) of the enzymatic reaction data were

retrieved from BRENDA.

2.2.2 Genome-scale metabolic model of host microorganisms

 In this chapter, 3 well-characterized and industry-used microorganisms,

namely, E. coli, C. glutamicum, and S. cerevisiae were adopted as host

microorganisms to be engineered for the target metabolite productions. E. coli

has been exploited for such industrially valuable compounds as L-phenylalanine,

L-tyrosine, 1-butanol, and 1,2-propanediol (Clomburg and Gonzalez, 2011;

Juminaga et al., 2012; Shen et al., 2011). C. glutamicum is widely used in amino

acid production (Becker and Wittmann, 2012). S. cerevisiae is an important

producer of alcohols and organic acids such as lactate (Hong and Nielsen, 2012).

These 3 organisms are widely used for bioengineering since they exhibit high

growth activity under several conditions and are easily genetically manipulated

C h a p t e r 2 P a g e | 38

(Christina, 2010). Genome-scale metabolic models of E. coli (iJR904)(Reed et al.,

2003), S. cerevisiae (iMM904) (Mo et al., 2009), and C. glutamicum (Shinfuku et

al., 2009),based on earlier metabolic constructions with slight modification were

used in this study. Because the pathway search algorithm developed in this

chapter uses the heterologous reactions listed in the KEGG database, all

metabolite IDs in the earlier genome-scale metabolic models were converted to

the KEGG compound ID format using metabolite name matching and manually

checking.

2.2.3 Heterologous pathway identification for target production

 An algorithm to identify heterologous reaction(s) producing a target

metabolite within a host microorganism was developed. The algorithm expands

the host’s metabolic network by sequentially adding heterologous metabolic

reactions from the constructed in-house database. The concept of the

heterologous pathway identification is shown in Fig. 2.1, and the procedure is as

follows:

1. A set of metabolites �� and a set of metabolic reactions ���� are defined

as those present in the genome-scale metabolic network of the host

microorganism.

2. From the in-house database, heterologous reactions that satisfy the

following conditions are collected:

i. The reaction does not exist in ����, and

ii. It can produce metabolites that do not exist in �� from a

metabolite in 	��. A set of these heterologous reactions is defined

C h a p t e r 2 P a g e | 39

as ����, and a set of metabolites produced by reactions in ���� is

defined as ��.

3. In the same way, ���� is the set of reactions not present in

{����, ����, … , ����} which can produce metabolites not existing in

{��,��, … ,��} from metabolites included in those sets. This expansion

procedure is iterated until no further reaction is connectable to the

expanded metabolic network.

FIG. 2.1 The concept of the algorithm to identify heterologous pathways. By

sequentially adding heterologous reactions, all nonnative metabolites are

able to connect to native/host metabolites will be obtained. The process will

stop when no further reactions could connect nonnative metabolite to the

previous expanded network.

If a target metabolite is included in a nonnative metabolite set	��, a set of

heterologous reactions that are necessary to produce the target metabolite can

be identified. For simplicity, all metabolic reactions in the database were

assumed to be reversible. Of course some reactions are known to be irreversible,

such as the carboxylation and decarboxylation reactions classified by

C h a p t e r 2 P a g e | 40

Nomenclature Committee of the international Union of Biochemistry and

Molecular Biology (NC-IUBMB, 1999). However, for the majority of reactions in

the database, directional information is limited and thus the reversibility of the

reactions is difficult to judge. To avoid the risk of missing important heterologous

pathways due to misjudgment of their reaction reversibility, all reactions are

assumed to be reversible. This strategy here is to initially screen all possible

heterologous pathways regardless of reaction irreversibility, then decide whether

the predicted pathway is plausible based on physiological knowledge of the

reaction irreversibility.

2.2.4 Flux balance analysis (FBA)

 FBA is based on a genome-scale metabolic model and optimization of a

specific objective flux by linear programming (Kauffman et al., 2003; Orth et al.,

2010). FBA was used to estimate the metabolic flux profile of metabolic networks

expanded with heterologous reactions. A pseudo steady-state is assumed, that is,

the net sum of all production and consumption fluxes for each internal

metabolite is zero. In matrix notation, this condition is represented as	S ∙ v = 0,

where S is the stoichiometric matrix representing the stoichiometry of metabolic

reactions in the network and v is the vector of metabolic fluxes. In FBA, the flux

profile (constrained by steady-state) is determined by optimizing a specific

objective function. The biomass production flux is one of several widely used

objective functions that can be maximized. The flux profiles obtained by

maximizing biomass production fluxes are known to be well correlated with those

C h a p t e r 2 P a g e | 41

obtained experimentally (Mo et al., 2009; Schuetz et al., 2007; Shinfuku et al.,

2009).

 For simulation, the coefficients of metabolites representing biomass

production flux were extracted from earlier studies (Mo et al., 2009; Reed et al.,

2003; Shinfuku et al., 2009). Another objective function, the production flux of

the target metabolite, was applied to judge whether the target metabolite was

producible by the metabolic network. In all of the FBA simulations, glucose was

chosen as the sole carbon source and the following external metabolites were

allowed to freely transport through the cell membrane: CO2, H2O, SO4 or SO3, and

NH3. All calculations were performed using MATLAB 2009b (MathWorks Inc.,

Natick, MA). The linear programming problem was solved using GLPK 4.34 (GNU

Linear Programming Kit) via MATLAB interface.

2.3 Results and discussion

2.3.1 Identification of heterologous pathway(s)

 Table 2.1 shows information of metabolic reactions and metabolites obtained

from 1,139 species were collected from KEGG database and deposited in the

constructed in-house database (published as the Additional file 1 of (Chatsurachai

et al., 2012)). To screen the target metabolites that are producible by the host

microorganisms S. cerevisiae, E. coli, and C. glutamicum, the host’s metabolic

network was iteratively expanded by adding heterologous metabolic reactions as

described in the method section.

C h a p t e r 2 P a g e | 42

Table 2.1 Statistics of the constructed in-house database used in this study

 In-house database

(version 1.0)

Source database KEGG

No. of reactions 7,769

No. of compounds 6,635

No. of reversible reactions 7,769

No. of irreversible reactions 0

Fig. 2.2 displays the number of nonnative metabolites connected to the host’s

metabolic network as a function of the number of heterologous reactions. Fewer

than 33 heterologous reactions are required to connect 3,154, 3,244, and 3,112

nonnative metabolites to the host’s metabolic networks of S. cerevisiae, E. coli,

and C. glutamicum respectively. The list of metabolites connected to the host’s

metabolic networks is presented in the Additional files 2, 3, 4 provided at

supplementary section of the publication (Chatsurachai et al., 2012). To this list,

the �� values of heterologous enzymes were added. Knowing the �� assists in

deciding which heterologous enzymes originating from various organisms in the

BRENDA database displaying minimum �� of the corresponding heterologous

enzymes are also listed, since the enzyme from this organism is expected to have

highest affinity among the orthologous enzymes to the corresponding substrate.

Importantly, these identified heterologous reactions of nonnative metabolite

production agreed well with those widely used in metabolic engineering and

which are important to the industry (Table 2.2), such as isoprene, -farnesene,

poly--hydroxybutyrate (PHB), and cadaverine.

C h a p t e r 2 P a g e | 43

FIG. 2.2 Number of connected nonnative metabolites produced by heterologous

reactions in 3 host microorganisms. The first vertical axis (solid line) shows the

number of connected metabolites in each iteration, while the second vertical axis

(dotted line) shows the cumulative number of the connected metabolites.

 As an example, the production pathway of 1,3-propanediol (C02457) by E. coli

and S. cerevisiae, which were adopted in earlier studies (Cameron et al., 1998;

Nakamura and Whited, 2003), are shown in Fig. 2.3. In previous studies, C02457

production proceeded via conversion of glycerol to 3-hydroxypropanal using

glycerol dehydratase (encoded by dhaB1-B3). 1,3-Propanediol was then produced,

aided by 1,3-propanediol oxidoreductase (encoded by dhaT). In this study, the

screened heterologous pathways for C02457 production exactly matched those

of earlier studies. In E. coli, the screened production pathways of isoprene, -

farnesene, and PHB derived by this algorithm were also identical to those of the

C h a p t e r 2 P a g e | 44

earlier studies, while similar heterologous genes introduced to the alternative

hosts (C. glutamicum and S. cerevisiae) additionally produced these targets (see

Table 2.2). Moreover, both reported and alternative production pathways were

screened by the proposed algorithm. For instance, It was found that E. coli cells

can produce (R)-propane-1,2-diol when methylglyoxal reductase and

lactaldehyde reductase are added to the metabolic network, which has not been

reported so far. Similar alternative pathways were found for the production of

itaconate, cis,cis-muconate, 2,3-dihydroxybenzoate, and so forth. These results

suggest that the developed algorithm successfully identified the metabolic

reactions necessary for the target productions and could assist in screening for

heterologous pathways of target productions.

 Next, I investigated whether these connectable metabolites are producible

from glucose as a sole carbon source, by using FBA simulations. In this simulation,

the production flux of each nonnative metabolite was used as an objective

function to be maximized under the steady-state assumption. When the

maximum production flux of a nonnative metabolite is zero, this metabolite is

non-producible under the given condition. The maximum production fluxes of all

connectable nonnative metabolites were calculated. 28% of the connectable

nonnative metabolites of E. coli could not be produced using glucose as a sole

carbon source. Similarly, 33% of the connectable nonnative metabolites of S.

cerevisiae and 16% of the connectable nonnative metabolites of C. glutamicum

were non-producible under this condition. These metabolites could not be

produced since they are disconnected from glycolysis. In E. coli, these

C h a p t e r 2 P a g e | 45

metabolites included trans-aconitase (C02341), butyrate (C00246), acetoacetate

(C00164), and L-lactaldehyde (C00424).

FIG. 2.3 Heterologous pathways for 1,3-propanediol production: (a) the

production pathway described in earlier studies, in E. coli (Cameron et al., 1998;

Nakamura and Whited, 2003); (b) the pathway identified by my algorithm in

either E. coli or S. cerevisiae as the host.

2.3.2 Evaluation of production feasibility

 To evaluate the feasibility of nonnative target metabolite production, FBA

simulations were performed under conditions of maximizing biomass production

following heterologous reaction expansion of the genome-scale metabolic model.

Metabolic flux profiles calculated by maximization of biomass production rates

have been shown to closely represent those in real microorganisms (Edwards and

Palsson, 2000a; Edwards et al., 2001; Feist and Palsson, 2010; Schuetz et al.,

C h a p t e r 2 P a g e | 46

2007; Varma and Palsson, 1994). Such agreement can be explained by the growth

optimization of microorganisms through evolutionary dynamics (Fong et al.,

2003). Furthermore, for the mutant strains constructed in the laboratory, the

cells could achieve the near-optimal metabolic state calculated by the FBA

simulation after long-term cultivation (Cornelius et al., 2011; Edwards and

Palsson, 2000b; Gerdes et al., 2003; Soyer and Pfeiffer, 2010), via the selection of

faster growing cells. Thus, it is expected that if a nonnative target metabolite is

produced in the FBA simulation under maximized biomass production, that target

may be feasibly manufactured.

 In Fig. 2.4, the number of target metabolites produced under maximized

biomass production was plot, versus the number of heterologous reactions

necessary for metabolite production. A threshold yield (1%) was set to identify

the produced metabolites because the production yields of some metabolites

were positive but extremely small. Sometimes the FBA simulation was

underdetermined under biomass maximization conditions; that is, the solution

was not unique. In such cases, following the maximization of biomass production,

the production flux of the target metabolites was further maximized with fixing

the maximized biomass production, to obtain a unique flux profile that would

produce the target. In the simulations, a micro-aerobic condition was used to

screen the target metabolites produced under the biomass maximization

condition, in which significantly a larger number of target metabolites were

produced than under anaerobic conditions, and at the same time all

anaerobically produced metabolites were included.

C h a p t e r 2 P a g e | 47

 Table 2.3 shows the representative target metabolites produced under

biomass maximization, together with their corresponding heterologous reactions.

The mechanisms involved in these reactions can be classified into two categories.

One is based on the production of oxygen as a by-product of the targets. Since

the simulations were performed under the micro-aerobic condition, oxygen

supply increased the biomass production by activating the electron transfer

system and facilitating adenosine triphosphate production. Therefore, if the

heterologous reactions used to produce the target are accompanied by oxygen

production, the target can be produced under minimum biomass production flux.

For example, pentane-2,4-dione was produced by introducing a single

heterologous reaction into E. coli and S. cerevisiae, whereas two heterologous

reactions were necessary to produce this metabolite in C. glutamicum. Vanillin

can be produced under the same mechanism by introducing 4 heterologous

reactions into the E. coli and C. glutamicum metabolic networks.

 Another mechanism is associated with NADH oxidation. Under micro-aerobic

condition, the cellular growth of microorganisms can be limited by NAD

regeneration, which is necessary for glycolysis activity, and which occurs through

NADH oxidization. Thus, when the heterologous reactions producing the targets

are associated with NADH oxidization, these heterologous reactions are activated

when the biomass production is maximized. This phenomenon occurs, for

example, in the production of (R)-propane-1,2-diol and 2-propyn-1-al.

 It is found that some metabolites are produced only by E. coli under

conditions of maximum biomass production, such as (R)-propane-1,2-diol and

C h a p t e r 2 P a g e | 48

adipate semialdehyde. Unlike S. cerevisiae and C. glutamicum, E. coli possesses

NAD transhydrogenase, which can convert NADP and NADH to NADPH and NAD

respectively (and vice versa). In E. coli cells, the excess NADH is converted to

NADPH which can then enter the target production pathway.

FIG. 2.4 The number of metabolites producible under biomass maximization

conditions with the addition of < 10 heterologous reactions.

C
h

a
p

t
e

r
 2

 P
a

g
e

|

 4
9

Table 2.2 Examples of nonnative metabolites for which my algorithm detected heterologous reactions matching those of previous studies

Compound
(synonym separated by
a semicolon)

KEGG ID Heterologous reaction(s) from the literature Reference Evaluation of in silico design

Isoprene;
2-methyl-1,3-butadiene

C16521 Introduced ispS gene from Populus nigra to
Escherichia coli

(Zhao et al., 2011) Identical reaction found in E. coli and in
Saccharomyces cerevisiae and Cerevisiae
glutamicum as the host

α-Farnesene C09665 Introduced farnesene synthase from plant to E.
coli

(C. Wang et al.,
2011)

Identical reaction found in E. coli and in S.
cerevisiae and C. glutamicum as the host

Poly-β-hydroxybutyrate;
PHB

C06143 Introduced phbC and phbB from Streptomyces
aureofaciens to E. coli

(Mahishi et al.,
2003)

Identical reaction found in E. coli and in S.
cerevisiae and C. glutamicum as the host

Cadaverine;
1,5-pentanediamine;
1,5-diaminopentane

C01672 Introduced ldcC from E. coli to C. glutamicum (Becker and
Wittmann, 2012;
Kind et al., 2010)

Identical reaction found in C. glutamicum
and in S. cerevisiae as the host

Amorpha-4,11-diene C16028 Introduced AMS1 from the plant Artemisia annua
L. to E. coli

(Lindahl et al., 2006;
Wallaart et al.,

2001)

Identical reaction found in E. coli and S.
cerevisiae and in C. glutamicum as the
host

Propane-1,3-diol;
1,3propanediol;
trimethylene glycol

C02457 Introduced glycerol dehydratase and 1,3-
propanediol oxidoreductase from Klebsiella
pneumoniae to E. coli.

(Cameron et al.,
1998; Nakamura

and Whited, 2003)

Identical reaction found in E. coli and in S.
cerevisiae as the host

Ethanol;
ethyl alcohol;
methylcarbinol

C00469 Introduced pyruvate decarboxylase and alcohol
dehydrogenase genes from Zymomonas mobilis
to C. glutamicum

(Inui et al., 2004) Identical reaction found in C. glutamicum
as the host

(R,R)-Butane-2,3-diol;
(R,R)-2,3-Butanediol;
(R,R)-2,3-Butylene glycol

C03044 Introduced acetolactate decarboxylase and
butanediol dehydrogenase genes to E. coli

(Nielsen et al.,
2010)

Identical reaction found in E. coli as the
host

C
h

a
p

t
e

r
 2

 P
a

g
e

|

 5
0

Table 2.2 (Continued)

(R)-Propane-1,2-diol;
(R)-1,2-propanediol;
(R)-propylene glycol

C02912 Introduced glycerol dehydrogenase gene from
Klebsiella pneumoniae and used aldehyde
dehydrogenase to produce product in E. coli

(Altaras and
Cameron, 1999)

Alternative pathway found to produce
target by adding methylglyoxal reductase
and lactaldehyde reductase to E. coli

 Introduced glycerol dehydrogenase and
methylglyoxal synthase genes from E. coli to S.
cerevisiae

(W. Lee and
Dasilva, 2006)

Alternative pathway found to produce
target by adding methylglyoxal reductase
and lactaldehyde reductase to S.
cerevisiae

Itaconate;
itaconic acid;
methylenesuccinic acid

C00490 No information No information EC 4.2.1.4-citrate dehydratase and EC
4.1.1.6-aconitate decarboxylase were
found to be added to E. coli as the host.

cis,cis-Muconate;
cis,cis-hexadienedioate;
cis,cis-2,4-
hexadienedioic acid

C02480 Introduced aroZ, aroY, and catA to E. coli (Niu et al., 2002) Alternative pathways from antharnilate or
2,3-dihydroxybenzoate to produce
catechol, which is a substrate for cis,cis-
muconate production

Adipate;
adipic acid;
hexanedioate;
hexan-1,6-dicarboxylate

C06104 Introduced aroZ, aroY, and catA to E. coli for
producing cis,cis-muconate and then convert to
adipic acid by chemical synthesis

(Niu et al., 2002) Alternative pathway found to produce the
target by adding 5 heterologous reactions
to E. coli or C. glutamicum as the hosts
(see Additional files 4 and 5 in
(Chatsurachai et al., 2012) for enzyme
information)

C
h

a
p

t
e

r
 2

 P
a

g
e

|

 5
1

Table 2.3 Examples of producible nonnative metabolites under conditions of maximized biomass production

Nonnative
metabolites

Host network By-product No. of
reaction(s)

Heterologous reaction(s) EC number

Pentane-2,4-dione E. coli, S.
cerevisiae

Oxygen 1 Pentane-2,4-dione + oxygen ↔ acetate + methylglyoxal 1.13.11.50

 C. glutamicum Oxygen 2 Glycerone phosphate ↔ methylglyoxal + orthophosphate

Pentane-2,4-dione + oxygen ↔ acetate + methylglyoxal

4.2.3.3

1.13.11.50

Vanillin

(4-hydroxy-3-
methoxy-

benzaldehyde)

E. coli, C.
glutamicum

Oxygen,
NADH

4 Formaldehyde + NAD+ + H2O ↔ formate + NADH + H
+

3-Dehydroshikimate ↔ 3,4-dihydroxybenzoate + H2O

Vanillate + oxygen + NADH + H
+
 ↔ 3,4-dihydroxybenzoate + NAD+ + H2O +

formaldehyde

Vanillate + NAD+ + H2O ↔ 4-hydroxy-3-methoxy-benzaldehyde + oxygen +
NADH + H

+

1.2.1.46

4.2.1.118

1.14.13.82

1.2.3.9

(R)-Propane-1,2-diol E. coli NAD
+
 2 (R)-Lactaldehyde + NAD

+
 + H2O ↔ (R)-lactate + NADH + H

+

(R)-Propane-1,2-diol + NAD
+
 ↔ (R)-lactaldehyde + NADH + H

+

1.2.1.23

1.1.1.77

2-Propyn-1-al S. cerevisiae NAD
+
 3 3-Oxopropanoate ↔ acetaldehyde + CO2

3-Oxopropanoate ↔ propynoate + H2O

2-Propyn-1-al + NAD
+
 + H2O ↔ propynoate + NADH + H

+

4.1.1.-

4.2.1.27

1.2.1.3

C
h

a
p

t
e

r
 2

 P
a

g
e

|

 5
2

Table 2.3 (Continued)

Adipate
semialdehyde

E. coli NADP+ 6 Succinyl-CoA + acetyl-CoA ↔ CoA + 3-oxoadipyl-CoA

(3S)-3-Hydroxyadipyl-CoA + NAD
+
 ↔ 3-Oxoadipyl-CoA + NADH + H

+

5-Carboxy-2-pentenoyl-CoA + H2O ↔ (3S)-3-hydroxyadipyl-CoA

Adipyl-CoA + FAD ↔ 5-carboxy-2-pentenoyl-CoA + FADH2

Adipate + CoA + ATP ↔ Adipyl-CoA + AMP + diphosphate

Adipate semialdehyde + NADP+ + H2O ↔ adipate + NADPH + H
+

2.3.1.174

1.1.1.35

4.2.1.17

1.3.99.-

6.2.1.-

1.2.1.4

C h a p t e r 2 P a g e | 53

2.3.3 Differences in target production capacity among host microorganisms

 While screening for heterologous pathways to produce the target metabolites

discussed earlier, differences in production capacity between the 3 host

microorganisms emerged; for example, a group of metabolites was producible by

the addition of heterologous reactions to one of the hosts, but was not produced

by the other hosts. To characterize the differences in target production capacity,

the producible metabolites (the Additional files 5, 6, 7 of supplementary of the

publication (Chatsurachai et al., 2012)) were categorized using the KEGG

Orthology database (Kanehisa et al., 2008). A chi-square statistical analysis was

then performed to identify the categories in which the frequency of producible

metabolites is significantly higher than expected. Fig. 2.5 shows the 10 categories

that demonstrated significant differences (P<0.001). As shown in the figure,

metabolites belonging to 5 categories, namely, “tyrosine metabolism”, “dioxin

degradation”, “benzoate degradation”, “chlorocyclohexane and chlorobenzene

degradation”, and “xylene degradation”, tended to be producible by S. cerevisiae

and C. glutamicum, but were non-producible in E. coli cells.

 Similarly, the metabolites in “flavonoid biosynthesis”, “phenylpropanoid

biosynthesis”, and “nicotinate and nicotinamide metaoblism” were preferentially

generated by E. coli and C. glutamicum. Metabolites assigned to “porphyrin and

chlorophyll metabolism” also tended to be produced in C. glutamicum cells.

Likewise, the metabolites assigned to “biosynthesis of 12-, 14-, and 16-

membered macrolides” were produced preferentially in E. coli cells. Such

differences in production capabilities result from the different metabolic

C h a p t e r 2 P a g e | 54

pathways by which the hosts produce necessary substrates, and from cellular

compartmentalization in the yeast strain (which is absent in the bacterial strains).

 In yeast cells, the compartments present barriers to metabolite transport. For

instance, mitochondrial/cytoplasmic interfaces prohibit the production of certain

target metabolites when sugar is used as a carbon source. Similarly, the

production of metabolites in the “flavonoid biosynthesis” category was inhibited

in yeast cells because the transportation of 4-coumarate between the

mitochondria and the cytosol is not permitted; therefore, the yeast strain could

not produce p-coumaroyl-CoA (required for making chalconoid, an important

ingredient in flavonoid biosynthesis). The genome-scale metabolic model used in

this study does not account for transportation capabilities between

compartments, which are currently unclear for many metabolites, and which

might influence the production capacities of target metabolites in real cell

systems.

C
h

a
p

t
e

r
 2

 P
a

g
e

|

 5
5

FIG. 2.5 The number of producible and non-producible metabolites in functional categories that exhibit significant differences between

host microorganisms. The blue and red bars represent the non-produced and produced metabolites respectively, under conditions of

maximized target production.

C h a p t e r 2 P a g e | 5 6

2.4 Summary

In this chapter, the in silico pathway search algorithm for target production was

developed, in which iterative additions of heterologous metabolic reactions to host’s

metabolic networks enable target productions. Biosynthetic capabilities are also

evaluated by pathway design and metabolic flux calculations. The 3 industrial host

cell factories, E. coli, S. cerevisiae, and C. glutamicum were used as templates. The

screened heterologous pathways by using the developed algorithm were validated.

The results were consistent with earlier reports. In addition, alternative heterologous

pathways that are no reports so far were also suggested, including the production

pathways of itaconate, cis,cis-muconate, adipic acid, and so on. Since these

compounds are important in industrial chemicals (Table 1.1), these alternative

pathways could be options of metabolic engineering strategies in order to

produce/improve industrial metabolites by bio-based process.

The computational platform developed in this chapter has included the features

which are host-specific heterologous pathways and selection of heterologous genes

by using �� value and provides a catalog of nonnative metabolites including

industrial chemicals for specific host cell. However, �� values are generally obtained

from experiments and many enzymes have no information on ��	in the database.

Furthermore, in some cases, the heterologous genes are not expressed or low

expressed, which can result low production rate of target metabolites. In addition,

the catalog of nonnative metabolites in this chapter is available as a table in

Microsoft Excel, which is difficult to search for the information of heterologous

genes.

C h a p t e r 2 P a g e | 5 7

In chapter 3, I will deal with these problems for improving the selection scores of

heterologous genes particular for each host cell and improving the catalog of

nonnative metabolites into well-format to provide heterologous genes and

compounds information.

Chapter 3

Selection of heterologous genes using CAI score

3.1 Introduction

The production of industrial compounds using microorganisms as cell factories

has presently become attractive due to the potential depletion of petroleum

resources. Metabolic engineering to incorporate heterologous pathways to host cell

factories is one major way to produce and improve target chemicals and fuels via

bio-fermentation process. In chapter 2, the development of the computational

platform are presented, which enables to screen heterologous pathways of

nonnative metabolites and used �� as a parameter to select heterologous genes

corresponding to heterologous pathways. Still, a large number of enzymes has no

information on �� values, thus a new and efficient parameter is desirable to select

candidate heterologous genes from among numerous of orthologous enzymes with

similar enzymatic activities. In addition, the inefficient target production by the

introduced heterologous genes could be caused by a low or lack of expression of

heterologous enzymes in the host cell. To overcome this problem, heterologous

enzymes which have the potential to be highly expressed should be chosen from the

screened candidates. It has been established that several factors namely, genome GC

content, codon usage, and mRNA secondary structures influence the expression of

heterologous enzymes. Amongst these factors, codon usage is known to cause a

C h a p t e r 3 P a g e | 5 9

relatively high impact on the enzymatic expression levels. In fact, it is demonstrated

there is the bias of codon used in high and low expressed genes in several organisms

(Gupta et al., 2004; G. Liu et al., 2010; Sharp et al., 1986). In addition, Botzman and

Margalit discovered that the global extent of codon usage bias of an organism plays a

crucial role in the adaptation of prokaryotes to their environments (Botzman and

Margalit, 2011). A few species such as E. coli (M.-S. Lee et al., 2011) and S. cerevisiae

(Norkiene and Gedvilaite, 2012) exhibited enhanced heterologous protein

expressions when the codons usage of heterologous genes were replaced with a set

of more suitable host codons. Several methods for analyzing codon usage bias have

been developed in order to study molecular evolution and heterologous

gene/protein expression (Ingvarsson, 2008; Olivares-Hernández et al., 2011; W. Qian

et al., 2012; Sharp and Li, 1987; Tao et al., 2009). Codon Adaptation Index (CAI)

(Sharp and Li, 1987) is one of the most widely used to estimate the extent of codon

usage bias in genes (Martín-Galiano et al., 2004; Nayak, 2012) and proteins (Futcher

et al., 1999; Washburn et al., 2001) based on their expression levels. Previous reports

employed CAI for optimizing DNA vaccines (Mani et al., 2011), enhancing and altering

exogenous and endogenous protein expressions (W. Li et al., 2011; Redemann et al.,

2011). These studies suggested that CAI can be used for the selection of

heterologous enzymes which is expected to be highly expressed in the host

microorganisms.

In this chapter, the computational platform for heterologous pathway search is

expanded by incorporating the CAI measure of heterologous genes to select

appropriate heterologous enzymes, whose introduction into host microorganisms

C h a p t e r 3 P a g e | 6 0

would enable efficient target metabolite production. Furthermore, I design the

optimized gene sequences for such enzymes by substituting the most frequent

codons found in host’s highly expressed genes. By integrating the simple in silico

screening platform (for identifying feasible heterologous pathways developed in

chapter 2) with the selected heterologous genes as well as the optimized gene

sequences, based on a target host’s preferable codons, a rational heterologous

pathway design system named “ArtPathDesign” (Artificial heterologous Pathway

Design) is proposed for an efficient production of nonnative metabolites. The

ArtPathDesign system applied to 3 hosts E. coli, S. cerevisiae and B. subtilis which are

recognized as industrial host producers. Using this system, all producible nonnative

metabolites of E. coli, S. cerevisiae, and B. subtilis were obtained along with specific

information regarding the feasible heterologous enzymes. Furthermore, the catalog

of nonnative metabolites which can be produced by each host is improved from

Microsoft Excel-format to Hyper Text Markup Language (HTML)-format that is a

well-demonstration of heterologous pathway, gene, and compound information.

3.2 Materials and methods

3.2.1 Constructing an in-house database of metabolic reactions

 All known metabolic reactions were considered as candidate heterologous

reactions that could be added to the host’s metabolic network. An in-house

database of metabolic reactions was firstly constructed from data stored in BKM-

react (Lang et al., 2011), which is an integrated database resulting from a

C h a p t e r 3 P a g e | 6 1

combination of database namely, BRENDA (Chang et al., 2009), KEGG (Kanehisa

et al., 2008), and MetaCyc (Caspi et al., 2008). This in-house database is the

update version of previously constructed that used metabolic reactions from

retrieved only from KEGG database. All metabolic reaction information regarding

genes, enzymes, pathways, and organisms in the KEGG and the EMBL (Kulikova et

al., 2004) databases were collected into the new version of the in-house database

developed using PostgreSQL 9.0 (The PostgreSQL Global Development Group).

3.2.2 Screening for artificial heterologous pathways involved in the production of

targets

 Genome-scale metabolic models of E. coli (iJR904)(Reed et al., 2003), S.

cerevisiae (iMM904) (Mo et al., 2009), and B. subtilis (Oh et al., 2007), were used

based on earlier metabolic reconstructions with slight modifications. In order to

incorporate known metabolic pathways listed in BKM-react database, all

metabolite IDs in the earlier genome-scale metabolic models were converted to

the KEGG compound ID and MetaCyc compound ID format using metabolic name

matching using python scripts and manually search. In this study, the algorithm

presented in chapter 2 was applied in order to search heterologous reaction(s)

that produce target metabolites within a host microorganism.

3.2.3 Codon Adaptation Index (CAI)

 CAI was proposed by Sharp and Li as a measure of synonymous codon bias

calculated based on the codon preference of highly expressed proteins, such as

ribosomal proteins, and elongation factors (Sharp and Li, 1987). CAI score of a

C h a p t e r 3 P a g e | 6 2

gene is a measure of favorable codons or optimal codons, which are frequently

used by the highly expressed proteins in a given genome, which takes a value

from 0 to 1. CAI for a gene with L-amino acids is formulated as follows:

��� = 	����

�

���

�

�/�

�� =
��

���(��)
						

where, �� denotes the frequency of ��� codon among other synonymous codons

coding the same amino acids in the set of highly expressing genes. The relative

adaptiveness 	�� is defined by the ratio between the frequency of ��� codon and

that of the most frequently used codon for the amino acid. CAI of a protein is

defined as the geometric mean of the relative adaptiveness of all the codons in

the coding sequence. For the calculation of CAI, a set of highly expressed genes in

the hosts, E. coli, S. cerevisiae, and B. subtilis was collected from literature (Das et

al., 2009) and database (Puigbò et al., 2008). The 	�� table was created for each

host by using sequence of highly expressed genes in the corresponding host

strain (see in Table B.1 in Appendix B). The CAI score of orthologous genes of all

organisms in KEGG and EMBL database was then calculated. The overall strategy

of the computational platform integrating a new selection score, named as

ArtPathDesign, developed in this thesis is summarized in Fig. 3.1.

C
h

a
p

t
e

r
 3

 P
a

g
e

 |

6
3

FIG. 3.1 The schematic representation of ArtPathDesign platform.

Host metabolic network and metabolic reactions collected in the in-house database were used as input data for screening heterologous pathways of
nonnative metabolites. In parallel, CAI scores of all genes retrieving from the available databases was calculated and used to select candidate genes.
Finally, the catalog of nonnative metabolites will be generated and available in html-format.

C h a p t e r 3 P a g e | 64

3.3 Results and discussion

3.3.1 Identification of heterologous pathways

 Statistics of the updated version of the in-house database is shown in Table

3.1. The updated in-house database contains 17,488 known metabolic reactions,

17,617 metabolites of 2,056 organisms retrieved from BKM-react (shown in Table

S1 of supplementary data). All supplementary data (Table S1-S4) in this chapter

are available on the web site below.

http://www-shimizu.ist.osaka-u.ac.jp/supplementaryData_artpathdesign.zip

 Necessary information regarding genes, enzymes, nucleotide sequences,

organisms as well as the reversibility data from KEGG, BRENDA, and EMBL

databases were parsed and stored in a version 2.0 of the in-house database.

Table 3.1 Statistics of the in-house database version 1.0 (chapter 2) and version

2.0 constructed in this chapter

 In-house database

(version 1.0)

In-house database

(version 2.0)

Source database KEGG BKM-react

No. of reactions 7,769 17,488

No. of reactions
(no EC number)

1,274 0

No. of compounds 6,635 17,617

No. of reversible reactions 7,769 17,488

 To archive nonnative production in E. coli, S. cerevisiae, and B. subtilis as the

hosts, the algorithm developed in chapter 2, was used to screen heterologous

C h a p t e r 3 P a g e | 65

pathways from the metabolic reactions collected in the in-house database. In

brief, by employing this algorithm the host’s metabolic network were iteratively

expanded by adding heterologous reactions step-by-step in order to link

nonnative metabolites. The host’s metabolic network expanded until no further

nonnative metabolites could connect to it. Fewer than 32 heterologous reactions

were required to connect 3,226, 3,298, and 3,211 nonnative metabolites to the

host’s metabolic networks of E. coli, S. cerevisiae, and B. subtilis respectively.

Comparison of results between version 1.0 and 2.0 of the in-house databases are

shown in Table 3.2. From this table, it was found in all hosts excluding E. coli, the

update version of the in-house database was improved as for the number of

connectable metabolites. The total number of connectable metabolites when E.

coli as the host decreased from 3,244 to 3,226 because, removing metabolic

reactions, which are no information of EC number, previously used to connect to

E. coli’s metabolic network in chapter 2. Those metabolites included D-Ribulose

(C00309), Hyaluronate (C00518), etc. If no EC number information, it is not

possible to select heterologous genes. Therefore, the in-house database version

2.0 contains only metabolic reactions that have information of EC number. The

list of metabolites connected to the host’s metabolic networks by using the new

version in-house database is shown in Table S2 of supplementary data.

C h a p t e r 3 P a g e | 66

Table 3.2 Comparison of total connectable nonnative metabolites between 2

versions of the in-house databases

Host cell In-house database

(version 1.0)

In-house database

(version 2.0)

E. coli 3,244 3,226

S. cerevisiae 3,154 3,298

C. glutamicum 3,112 3,321

B. subtilis 3,063 3,211

3.3.2 Relationship between CAI score and protein abundance

 To analyze the relationship between CAI scores and protein expression levels,

protein abundance data were obtained from PaxDb (M. Wang et al., 2012), which

is a repository containing information from different proteome experiments of

several organisms. 1,560 coding gene sequences (CDSs) of E. coli were obtained

from KEGG database. Likewise, 5,004 CDSs of S. cerevisiae and protein abundance

were collected for correlation analysis. CAI scores of genes were then computed

and compared them with the protein abundance data as shown in Fig. 3.2. A

statistically significant correlation was observed between CAI scores and log

(protein abundance values) (correlation coefficient r=0.60 in E. coli and r=0.65 in

S. cerevisiae). The observed positive correlation of CAI and protein abundances

suggested that the CAI could be used as the index representing potential protein

expression levels in host organisms.

C h a p t e r 3 P a g e | 67

FIG. 3.2 The relationship between the normalized log protein abundance data

(ppm: part per million) and CAI scores in (A) E. coli (B) S. cerevisiae. CAI scores of

1,560 genes in E. coli and 5,004 genes in S. cerevisiae from PaxDb (Protein

Abundance Across Organisms) database are shown. Protein abundance in “ppm”

essentially refers to each protein with reference to the complete proteome

expression. In other words, it implies the amount of each protein relative to all

other protein molecules present in the sample.

3.3.3 Screening of heterologous genes with higher CAI scores

 The expression levels of heterologous enzymes are often low (Kleber-Janke

and Becker, 2000; Lakey et al., 2000), probably due to the differences in the

codon usage between the source and the host organisms. However, based on the

positive correlation obtained between CAI scores and protein abundance values

(Fig. 3.2), it can be inferred that, amongst the multiple candidate heterologous

enzymes involved in the production of a target metabolite, selecting the one

C h a p t e r 3 P a g e | 68

whose corresponding gene sequence has a higher CAI score would result in an

enhanced expression of the heterologous enzyme.

 In this chapter, potentially highly expressed genes that could enhance the

expression level of the corresponding encoded enzymes were identified, and

thereby result in a higher productivity of the target metabolites. The process

involved determining the CAI scores for all the screened candidate heterologous

genes which could lead to the production of all possible target metabolites, and

subsequently selecting the candidate heterologous genes with higher CAI scores.

Expectedly, for all host microorganisms used in this study, the distributions of CAI

scores of the native genes were found to be higher when compared to those of

the heterologous genes from other organisms (Fig. 3.3).

 It was reported that human genes selected to express in E. coli as the host

showed low expression (Dai et al., 2013; Gvritishvili et al., 2010; Q. Wang et al.,

2012). Thus, I collected the wide type coding sequences of human kallistatin,

human Pigment epithelium-derived factor (PEDF), and human cystatin from the

previous reports, and calculated CAI scores of these genes. As results, CAI scores

of the 3 human genes selected to be expressed in E. coli are 0.37, 0.32, and 0.45,

respectively. These data suggests that the human genes show low expression due

to low CAI scores. In addition, these previous reports also successfully improved

the production of proteins by replacing the human genes with the codons that

suitable for host E. coli without changing amino acids.

 In Fig. 3.3, the dashed line represents the distribution of CAI scores of

different native genes that originally exist in the host, while the solid line

C h a p t e r 3 P a g e | 69

corresponds to the CAI scores of all possible heterologous genes which could be

utilized for the production of the target metabolite. The dotted line represents

the CAI scores of the selected heterologous genes. It was observed that the

highest CAI scores correspond to the set of heterologous genes which encode

enzymes having same functions. As evident, a significant increase in CAI scores

was achieved by repeated selection process, thus demonstrating that this

approach can overcome the problem of low expression of heterologous enzymes

which occur due to differences in the codon usage. The selected heterologous

genes required for the production of all possible target metabolites are

presented in Table S3 of supplementary data.

 Fig. 3.4 illustrates 2 different heterologous pathways where the higher CAI

score selection technique was applied for choosing suitable heterologous genes.

The production of 1,3-propanediol by S. cerevisiae (Rao et al., 2008) is generally

achieved by introducing dhaB (glycerol dehydratase) from Klebsiella pneumoniae

and yqhD (an alcohol dehydrogenase possessing the activity of 1,3-propanediol

dehydrogenase) from E. coli. As shown in Fig. 3.4A, the CAI scores of dhaB and

yqhD in S. cerevisiae is relatively low in comparison with the native genes, which

might result in low expression levels of these heterologous genes. However, this

screening platform demonstrated that the productivity of 1,3-propanediol by the

host S. cerevisiae could be enhanced by introduction of dhaB and dhaT from

Clostridium perfringens and Lactobacillus reuteri, respectively instead of dhaB

and yqhD from K. pneumoniae and E. coli, respectively since they have relatively

high CAI scores. Another classical example is the heterologous pathway for (R,R)-

2,3-butanediol in a host E. coli, which has been shown to utilize heterologous

C h a p t e r 3 P a g e | 70

genes from B. subtilis (Yan et al., 2009). In this case, the in silico system suggested

that alsS from Pseudomonas putida, alsD from Enterobacter cloacae and bdh

from Klebsiella oxytoca were comparatively better in terms of CAI, shown in Fig.

3.4B. Although other enzymatic characteristics such as �� value could influence

the production of target metabolites, the expression level of a particular

heterologous enzyme is crucial for the activation of a specific heterologous

pathway in order to achieve a higher productivity of the desired target. Therefore,

these findings highlight that the selection of heterologous genes with higher CAI

scores is an effective approach to enhance the productivity of the target

metabolites.

 In addition, the distributions in Fig. 3.3 reveal that in spite of selecting

heterologous genes with the highest CAI scores (shown in dotted line) from many

organisms, some heterologous genes still exhibit relatively low CAI scores which

could result in a low expression level due to the mismatch of codon usage. One

possible strategy to overcome this is to calculate an optimized gene sequence

encoding a specific heterologous enzyme which has preferable codon usage in

the host microorganism (i.e., CAI = 1), and subsequently synthesize this artificial

gene experimentally for its introduction into the host. With the growing

availability of low-cost de novo gene synthesis (e.g., $300/1kb in 2012), such

optimized gene sequences could be easily employed for bio-production. Fig. 3.5

shows the example of optimized gene sequence comparing with the original gene

sequence encoding for catechol 1,2-dioxygenase (catA).The optimized sequences

encoding all the heterologous enzymes that are required for the production of

target metabolites in the 3 host microorganism are given in Table S4 of

C h a p t e r 3 P a g e | 71

supplementary data. Collectively, these data suggest that artificial gene

sequences when considered in combination with optimal CAI are valuable, only

when the artificial gene synthesis technique is applied to the expansion of the

host’s metabolic network for the production of targets.

FIG. 3.3 Distribution of CAI scores for each organism (A) E. coli, (B) S. cerevisiae,

and (C) B. subtilis as the hosts. Solid line denotes the CAI score distribution of all

possible heterologous genes that can be used for nonnative metabolite

productions. Dotted line represents the CAI score distribution of all selected

heterologous genes with the highest CAI score encoding enzymes having the

C h a p t e r 3 P a g e | 72

same enzymatic function. Dashed line denotes the CAI score distribution of native

genes originally from the host microorganism.

FIG. 3.4 (A) Heterologous pathway for the production of 1,3-propanediol in S.

cerevisiae (Rao et al., 2008) as well as CAI scores of orthologous genes. The

heterologous genes from different organism with the higher CAI scores (shown in

box) were selected by employing the improved computational system. (B)

Heterologous pathway for the production of (R,R)-2,3-butanediol in E. coli (Yan et

al., 2009) as well as CAI scores of orthologous gens. The heterologous genes from

different organism with the higher CAI scores (shown in box) were selected by

employing the improved system. alsD encodes acetolactate decarboxylase, alsS

encodes acetolactate synthase, and bdh encodes butanediol dehydrogenase.

C h a p t e r 3 P a g e | 73

FIG. 3.5 The catA sequence (ORF ID: Psest_2692) from Pseudomonas stutzeri

RCH2 was replaced with the host’s favorable codons, for example codon “act”

was replace with “acc” coding for threonine. The GC content of original sequence

is 64.65%, while GC content of optimized sequence is 57.64%.

 Finally, FBA was performed to investigate whether all connected nonnative

metabolites are producible by using glucose as a sole carbon source. The

maximum fluxes of all connectable nonnative metabolites corresponding to each

host were calculated. It was observed that 11% of the connectable nonnative

metabolites of E. coli could not be produced using glucose as the sole carbon

source. Likewise, 27% and 11% of connectable nonnative metabolites of S.

cerevisiae and B. subtilis respectively could not be produced under this condition.

3.3.4 Examples of results in hyper-text based user interface

 HTML (Hyper Text Markup Language) is a language for describing web pages,

thus outputs in html-format easily open by using web browser such as Google

Chrome and Firefox. Python script function was created in order to provide

C h a p t e r 3 P a g e | 74

information of heterologous pathways of nonnative metabolites in html-based

format. The hyper-text is automatically generated by these programs and output

results are summarized in the file named “index.html” found in archive file

available at: http://www-shimizu.ist.osaka-u.ac.jp/APD.zip

 In order to search for target metabolite, the index.html can be opened via

web browser for example Google Chrome as shown in Fig. 3.6. In this figure, how

to find heterologous pathway(s) for the production of 1,3-propanediol using

search function (Ctrl+F) of Google Chrome is shown. By typing compound name

or ID, the possible pathways will be found as shown in Step 3 of Fig. 3.6. By

clicking target pathway (for example Pathway-1), the detail of the heterologous

pathway will be displayed as shown in Step 4 of Fig. 3.6. Additional example of

(R,R)-2,3-butanediol is shown in Fig. 3.7. By using this computational system, the

list of all possible metabolites able to connect to host’s metabolic network will be

provided as a catalogue for user to search for target production as well as

necessary information such as candidate genes, open reading frame ID, and

organisms.

C h a p t e r 3 P a g e | 75

FIG. 3.6 The output result of heterologous pathways for the production of 1,3-

propanediol in E. coli is provided in html-format. To search for target metabolite,

4 steps are required and shown here. Step 1 shows “index.html”, which is the

summarized results of ArtPathDesign (the html file can be easily opened using

Google Chrome and Firefox). In this example, the index.html was open by using

Google Chrome. Step 2 shows how to search target metabolite using Ctrl+F

(search function of Google Chrome) and type compound name or compound ID

of target. Step 3 shows the result of target search and two heterologous

pathways are available for 1,3-propanediol. Step 4 shows result page of the first

candidate pathway in the new page including a structure of compound and detail

information of heterologous pathway that are reactions, genes, open reading

frame ID, and organisms.

C h a p t e r 3 P a g e | 76

FIG. 3.6 (Continued)

 C
h

a
p

t
e

r
 3

 P

a
g

e

|
 7

7

FIG. 3.6 (Continued)

C
h

a
p

t
e

r
 3

 P

a
g

e

|
 7

8

FIG. 3.7 Heterologous pathway for the production of (R,R)-2,3-butanediol shown as html-format

C h a p t e r 3 P a g e | 79

3.3.5 Examples of new heterologous pathways for the production of nonnative

metabolites in the specific host

 In previous part, the evaluation of the ArtPathDesign system has been done,

thus, this part will demonstrate the advantage of this system that could identify a

new heterologous pathway of nonnative metabolites in the target host cell. For

example, muconic acid (C02480) previously reported to produce in E. coli by

adding 3 heterologous reactions by enzymes 3-dehydroshikimate dehydratase,

protocatechuic acid decarboxylase, and catechol 1,2-dioxygenase encoded by

heterologous genes aroZ, aroY and catA, respectively (Niu et al., 2002). The new

heterologous pathway was suggested by ArtPathDesign. This pathway contained

2 heterologous reactions by enzymes anthranilate 1,2-dioxygenase (EC number:

1.14.12.1) and catechol 1,2-dioxygenase (EC number: 1.13.11.1) encoded by

heterologous genes antABC and catA, respectively. In addition, the new

heterologous pathway of muconic acid was just reported by Sun et al., 2013 and

it is identical with the new pathway suggested by ArtPathDesign. Sun and

colleagues successfully produced muconic acid in E. coli by introducing the new

pathway containing antABC and catA from Pseudomonas aeruginosa and

Pseudomonas putida KT2440 (Sun et al., 2013). As the result, it is confirmed that

ArtPathDesign successfully identified the new heterologous pathway for muconic

acid and validated by the recently reported experiment (Sun et al., 2013).

 Another example is Isomultiflorenol production by using E. coli as the host

(Fig. 3.8). Isomultiflorenol (Hayashi et al., 2001) is a triterpene showed similar

structure with -Amyrin and -Amyrin (Fig. 3.9). In addition, -Amyrin and -

C h a p t e r 3 P a g e | 80

Amyrin (Liliana et al., 2012) have various pharmacological activities in vitro and in

vivo conditions against various health-related conditions, including conditions

such as anti-inflammation, antimicrobial, antifungal and antiviral infections. By

using the ArtPathDesign system, it was demonstrated that 3 heterologous

reactions are required to produce isomultiflorenol from trans,trans-Farnesyl

diphosphate and 3 heterologous genes encoding 3 enzymes have activities of EC

2.5.1.21, EC 1.14.13.132, and EC 5.4.99.36. The candidate heterologous genes

and open reading frame (ORF) ID are also suggested.

 One more typical example is heterologous pathway for vanillin production in

E. coli (Fig. 3.10). Vanillin is recognized as one of the most widely used flavoring

agents in the world (Kaur and Chakraborty, 2013) which is extracted from the

orchid Vanilla planifolia, Vanilla tahitiensis, and Vanilla pompona. In addition,

pure vanillin used in food and beverage industry and also as a bio-preservative

agent since its antimicrobial and antioxidant properties. According to vanillin

properties, previous studies had design the heterologous pathway to incorporate

into well-characterized hosts, E. coli, S. cerevisiae, etc. (Kaur and Chakraborty,

2013). By using the ArtPathDesign system, the new heterologous pathway and

heterologous genes for E. coli as the host, which has no report today, are

suggested. This heterologous pathway contains 4 heterologous reactions and 4

heterologous enzymes that have enzyme activities according to the following EC

numbers: EC 1.14.13.33, EC 1.2.1.46, EC 1.14.13.82, and EC 1.2.1.67. The

information of heterologous genes is shown below. Top substrates of this

heterologous pathway are formate (C00058) and 4-hydroxybenzoate (C00156)

which are able to be produced from the central metabolic pathway of E. coli.

C h a p t e r 3 P a g e | 81

FIG. 3.8 Heterologous pathway for Isomultiflorenol (C19801) production in E. coli

was produced via trans,trans-Farnesyl diphosphate (C00448).

C h a p t e r 3 P a g e | 82

FIG. 3.9 Compound structures between -Amyrin, -Amyrin and Isomultiflorenol

(compound structures retrieved from KEGG database)

C h a p t e r 3 P a g e | 83

 FIG. 3.10 Heterologous pathway for vanillin production in E. coli

C h a p t e r 3 P a g e | 84

3.4 Summary

 An improved computational or in silico platform, named as ArtPathDesign,

was developed to screen heterologous pathways suitable for the production of

nonnative metabolites particular for host cell factories such as E. coli, S. cerevisiae,

and B. subtilis. Owing to the presence of a vast number of candidate genes encoding

similar enzymes and problem of low/no heterologous enzyme expression, the

selection of suitable heterologous genes particular for the target host become

difficult. Therefore, the applicability of the previously designed platform in chapter 2

was extended to select suitable candidate heterologous genes encoding enzymes.

CAI score was used to screen the target genes whose introduction to host

microorganisms would enable efficient target metabolite production. This

ArtPathDesign system was improved to overcome the problems about host-specific

heterologous pathways, host-specific heterologous genes, and enables to provide a

catalog of nonnative metabolites in the specific host. Besides, the ArtPathDesign

system could suggest the new heterologous pathways, for example Isomultiflorenol,

vanillin, and so on. Furthermore, optimized nucleotide sequences of heterologous

enzymes consisting of only the most preferred codons of hosts were calculated and

these optimized heterologous genes may improve the production of metabolites if all

optimized gene sequences applied for the corresponding heterologous pathway. It is

expected that the in silico platform, ArtPathDesign, is proved as a valuable tool by

providing essential information for improving cell factories. This aids researchers in

developing strategies for strain improvement and facilitates the rational design of

C h a p t e r 3 P a g e | 85

metabolic pathways for the production of value-added chemicals by host

microorganisms.

Chapter 4

4.1 General conclusion and discussion

Nowadays, the demands of fuels and chemical feedstocks are largely increased,

while petroleum resources are limited and unsustainable. In addition, petroleum-

based process for energy and industrial chemicals shows negative impacts on

environment. The alternative route to produce fuels and valuable chemicals using

microorganisms becomes a striking way. However, some microorganisms are not

easy to cultivate and produce high level of target products, and lack of metabolic

information and genetic manipulation tools.

Metabolic engineering is one of the most widely used techniques to modify

and/or integrate heterologous pathways into the well-developed hosts, such as E.

coli, S. cerevisiae, etc. for producing and/or improving target compounds. It is

difficult for scientists to search for the feasible heterologous to produce target

metabolites since the following reasons. There are a huge number of metabolic

reactions available from databases and literature, and the complexity of host’s

metabolic network. To search for heterologous pathways connecting to the host’s

metabolism is tough and time-consuming tasks, and it is difficult to handle by human.

Accordingly, the computational or in silico system is required to solve those

problems. In previous studies, several pathway design approaches (Cho et al., 2010;

Dogrusoz et al., 2009; Finley et al., 2009; Flórez et al., 2011; Handorf et al., 2005; Li et

C h a p t e r 4 P a g e | 8 7

al., 2004; McShan et al., 2003; Moriya et al., 2010; Pey et al., 2011; Pharkya et al.,

2004; Rodrigo et al., 2008; Yousofshahi et al., 2011) for the production of target

metabolites have been developed (comparison of among methods are summarized

in Table 1.2 in chapter 1). Nevertheless, there is no consensus or general approach to

select heterologous pathways and genes especially for target host cells.

Therefore, the aim of this thesis was to develop the in silico method, named as

the ArtPathDesign (Artificial heterologous Pathway Design), for screening host-

specific heterologous pathways, host-specific heterologous genes and providing a

catalog of nonnative metabolites of each host. These key features are important for

producing/improving target compound in a specific host cell and still not yet be

developed by the earlier reports.

In chapter 2, in order to produce target nonnative metabolites in the well-

characterized hosts, E. coli, S. cerevisiae, and C. glutamicum, the algorithm to search

for heterologous pathways was developed. With this algorithm, all possible

nonnative metabolites that are able to connect to the 3 hosts were screened as well

as information of heterologous reactions. Still, it was found that numerous

orthologous genes encoding enzymes with similar function are available. Thus, a

minimum of �� value was applied with the expectation to have the highest affinity

among orthologous genes to select candidate heterologous genes corresponding to

heterologous pathway for the production of nonnative metabolites. Combining with

the �� selection score, the identical heterologous reactions of nonnative

metabolites agreed well with widely used in metabolic engineering of industrial

products were successfully screened (Table 2.2 and 2.3). The examples of those

C h a p t e r 4 P a g e | 8 8

nonnative metabolites are isoprene, -farnesene, poly--hydroxybutyrate (PHB), and

cadaverine. Furthermore, by comparing the number of producible nonnative

metabolites among host microorganisms, it was found that yeast (S. cerevisiae) cell

has several compartments presenting barriers to metabolite transport. For instance,

mitochondrial/cytoplasmic interfaces prohibit the production of certain target

metabolites when sugar is used as a carbon source. In addition, the genome-scale

metabolic model used in this thesis does not account for transportation capabilities

between compartments, which are currently unclear for many metabolites, and

which might influence the production capacities of target metabolites in the real cell

systems. By using the screening algorithm and 	�� as the selection score, times and

costs for searching suitable heterologous pathways agreed well with previous reports

were reduced when comparing with the possible heterologous pathways generated

without any background information. In addition, this computational method is

applicable for any genome-scale metabolic models.

Although 	�� value was used as the score for selection of candidate heterologous

genes among numerous orthologous genes, the ��	information is limited since it

required in vitro experiments to observe kinetic of enzymes and activities itself

depending on substrate concentration. However, the expression level of a particular

heterologous enzyme is crucial for the activation of a specific heterologous pathway

to yield a higher productivity of the desired target metabolite.

In chapter 3, the improvement of the in silico platform was developed to

facilitate the screening of host-specific pathways and genes by applying a new

selection score. Firstly, the in-house database was updated from version 1.0 to 2.0 by

C h a p t e r 4 P a g e | 8 9

using the newest metabolic reaction database called BKM-react (Lang et al., 2011).

The alternative score namely Codon Adaptation Index (CAI) was applied to be used as

a selection score for finding candidate heterologous genes. The CAI score of a gene is

calculated based on the preference codons found in the highly expressed genes of

the host. It is expected that a higher CAI score resulting in a high expression level of

the enzyme which could increase the production of target metabolite. With the CAI

score as the selection score, the alternative heterologous genes were screened that

could improve the productivity of nonnative metabolites such as 1, 3-propanediol in

S. cerevisiae as the host. The heterologous pathway for (R, R)-2, 3 -butanediol in E.

coli was identified and alternative heterologous genes were suggested. This in silico

system, named as ArtPathDesign, is successfully identified the new heterologous

pathways and genes of useful compounds such as cis,cis muconic acid, vanillin,

Isomultiflorenol, etc. and could open the new biotransformation route to produce

nonnative metabolites in the target host such as E. coli, S. cerevisiae, B. subtilis, etc.

In case of cis,cis muconic acid, Sun and colleagues (Sun et al., 2013) was just reported

the novel heterologous pathway which is the identical heterologous pathway

suggested by the in silico system developed in this thesis. This example shows the

proof of the algorithm successfully identified the new heterologous pathway that can

be used to produce useful chemical in E. coli cell.

In conclusion, the computational platform, ArtPathDesign, was developed as a

metabolic engineering tool in order to provide strategies for producing target

metabolites in specific host cell factories, E. coli, S. cerevisiae, C. glutamicum, and B.

subtilis. The ArtPathDesign platform is applicable for any genome-scale metabolic

models. The strategy of current ArtPathDesign is shown in Fig. 4.1. Host’s metabolic

C h a p t e r 4 P a g e | 9 0

networks and metabolic reactions from available databases were parsed into an in-

house database, which will be used as the input data for generating all possible

heterologous pathways. To select and rank heterologous genes for those possible

heterologous pathways, the Codon Adaptation Index (CAI) was calculated for all

orthologous genes retrieved from KEGG and EMBL databases and the optimized gene

sequences were created by replacing original codons with favorable codons from the

host’s highly expressed genes without changing amino acid. Then, the rank of

candidate heterologous genes and optimized gene sequences were included into the

in-house database. Once all possible heterologous pathways were generated for the

host cell, flux balance analysis (FBA) simulation was performed by including

constraints that are glucose as a carbon source and mass balance. FBA was applied to

observe capacity of the nonnative metabolites after introduction of heterologous

pathway to the host metabolism under specific constraints. The heterologous

pathway of the nonnative metabolite, which can produce more than 1% mol-

product/mol-glucose, was selected and the heterologous genes corresponding to

those heterologous pathways were ranked by using CAI score. Finally, list of

nonnative metabolites, heterologous pathways, and genes was obtained to provide

necessary information to users for conducting trial experiments. However, this

platform was not included such factors thermodynamics of heterologous reactions,

toxicity of products on the host cell, those features will be developed in the future as

expansion features for suggesting more rational heterologous pathways.

The ArtPathDesign platform successfully identified host-specific heterologous

pathways, host-specific heterologous genes, and provided the catalog of all

nonnative metabolites are able to be produced by each host. Also, the new

C h a p t e r 4 P a g e | 9 1

heterologous pathways and genes were also suggested from this platform which

would be a new route to engineer the host strain for target productions. Finally, the

optimized gene sequences, which substituted original coding sequences with the

preferable codons from highly expressed genes of each host, were also included. As

mentioned in chapter 3, the cost for the artificial gene synthesis is gradually

decreased. It is possible to improve the productivity of target metabolites by

including optimized heterologous genes into the target host cell.

FIG. 4.1 Overall strategy of heterologous pathway identification and selection

(current version of ArtPathDesign system)

C h a p t e r 4 P a g e | 9 2

4.2 Future perspective

The current version of ArtPathDesign generates all possible heterologous

pathways by assuming all known metabolic reactions to be reversible. However,

there are a few class of reactions such as carboxylation/decarboxylation reaction,

ATP consuming reactions (controlled by kinases), which are thermodynamically

irreversible. In order to identify a more rational heterologous pathway,

thermodynamics of heterologous reactions should be included to judge and select

heterologous pathway for the production of nonnative metabolites. However, to

manually incorporate all information on the reaction irreversibility is a hard task and

it will be an expansion feature (shown in Fig. 4.2). Thermodynamics of metabolic

reactions is calculated by using kinetic parameters retrieving from experiments,

which are limitation. Several computational methods have been developed to

estimate Gibbs free energy for biochemical reactions(Jankowski et al., 2008; Noor et

al., 2012; Rother et al., 2010; Sabatini et al., 2012). One of these methods called

group contribution is widely used. This group contribution method is demonstrated

to be capable of estimating Gibbs free energy for the majority of the biochemical

compounds and reactions found in E. coli’s metabolic network (Jankowski et al.,

2008). Therefore, the reversibility of heterologous reactions will be calculated using

this group contribution method and can be used to select more reasonable

heterologous pathways. The thermodynamics feature should further develop for

integrating with the current version of ArtPathDesign, and will help to improve the

performance for selection of heterologous pathways.

C h a p t e r 4 P a g e | 9 3

The current version of ArtPathDesign platform was developed based on

metabolic reactions data from available databases such as KEGG, BRENDA, BKM-

react and so on. However, the input data for ArtPathDesign is depending on

metabolic reactions from databases. Generating new metabolic reactions (non-

existent in any databases) is a desire feature of heterologous pathway design.

Therefore, to complete the ArtPathDesign system it requires a strategy to find new

metabolic reactions, including information of enzymes/proteins and genes. Thus,

another expansion feature is to create new heterologous reactions (Fig. 4.2 shown in

red dashed box).

It was reported that several enzymes in E. coli (about 37% of enzymatic enzymes)

that found to be generalist enzymes that promiscuously catalyze reactions on a

variety of substrates (Nam et al., 2012). The idea of generalist enzymes leads to the

possibility to create the novel metabolic reaction since these enzymes can bind to

multi-substrates. Therefore, the design of novel metabolic reactions based on

substrate similarity of generalist enzymes will be added to the ArtPathDesign as

shown in Fig. 4.2 (red dashed box). Tanimoto or Jaccard coefficient is one of the most

popular scores used to measure similarity between chemical structures represented

by means of fingerprints (Willett et al., 1998). By using compound similarity score

such as Tanimoto coefficient, the substrate-like compound will be screened. The

possible new metabolic reaction will suggest from the substrate-like compound used

as the alternative substrate in that metabolic reaction. The schematic of novel

metabolic reaction deign is shown in Fig. 4.3.

C h a p t e r 4 P a g e | 9 4

All metabolic enzymes and reactions from several databases such as KEGG,

BRENDA, EMBL, ENZYMES, PDB, etc. will be compiled. Next, an enzyme that is able to

catalyzed more than one reaction will be classified as generalists. Then, all substrate

compounds of those generalist enzymes will be collected. Structures of those

compounds can be retrieved from MetaCyc and KEGG databases. Consequently,

Tanimoto coefficient will be calculated between the substrates of generalist enzymes

and other compounds from available databases. If the similarity scores of such

compounds can pass the threshold of the substrate-like compound, the compound

will be used as the target for next step. After that, molecular docking technique will

be used for observing enzyme-substrate affinity and a binding score will be

calculated. Several docking tools (Yuriev and Ramsland, 2013) are available and

successfully used for screening drug targets based on free energy binding and

inhibition constant. In order to do enzyme-compound docking, target enzyme

structures can be downloaded from PDB database. Finally, enzyme-binding scores

between the substrate-like compound and target enzyme will be calculate by using

tools such as AutoDock (Morris et al., 2009), GOLD (Jones et al., 1997), Glide

(Friesner et al., 2004; Halgren et al., 2004), etc. However, the most important

parameters are thresholds of substrate-like compounds and enzyme-compound

binding scores; it required a computational system to repeat the process until finding

a well-represented score which fits to some experimental data. Finally, new

heterologous reactions will be identified and will be integrated to the ArtPathDesign

system. Thus, to further complete ArtPathDesign system, the thermodynamics of

heterologous reactions and the computational methods to design the new

heterologous reaction(s) features will integrate to the current version of

C h a p t e r 4 P a g e | 9 5

ArtPathDesign. The complete version of ArtPathDesign would be the useful tool that

enables the scientists for improvement of target metabolites in their target hosts by

providing alternative metabolic engineering strategies.

C
h

a
p

t
e

r
 4

 P

a
g

e
 |

 9
6

FIG. 4.2 The schematic of the complete ArtPathDesign integrated with the expansion features.
Thermodynamics of heterologous reactions will be expanded to improve the current version for selection of heterologous pathways. Red dashed box represents
another expansion feature will be developed for creation of new heterologous reactions based on compound similarity and enzyme-substrate binding scores.
(An image of protein structure was retrieved from http://www.rcsb.org/pdb/images/2yow_bio_r_500.jpg)

http://www.rcsb.org/pdb/images/2yow_bio_r_500.jpg

C h a p t e r 4 P a g e | 97

FIG. 4.3 The schematic of strategy to design new heterologous reactions

References

Altaras, N. E., and Cameron, D. C. (1999). Metabolic engineering of a 1,2-
propanediol pathway in Escherichia coli. Appl Environ Microbiol 65(3), 1180–
1185.

Angermayr, S. A., Paszota, M., and Hellingwerf, K. J. (2012). Engineering a
cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol
78(19), 7098–7106.

Bairoch, A. (2000). The ENZYME database in 2000. Nucleic Acids Res 28(1), 304–305.

Becker, J., and Wittmann, C. (2012). Bio-based production of chemicals, materials
and fuels -Corynebacterium glutamicum as versatile cell factory. Curr Opin
Biotechnol 23(4), 631–640.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers, E. W. (2009).
GenBank. Nucleic Acids Res 37(Database issue), D26–31.

Biswas, R., Yamaoka, M., Nakayama, H., Kondo, T., Yoshida, K., Bisaria, V. S., and
Kondo, A. (2012). Enhanced production of 2,3-butanediol by engineered Bacillus
subtilis. Appl Microbiol Biotechnol 94(3), 651–658.

Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., et al.
(1997). The complete genome sequence of Escherichia coli K-12. Science
277(5331), 1453–1462.

Botzman, M., and Margalit, H. (2011). Variation in global codon usage bias among
prokaryotic organisms is associated with their lifestyles. Genome Biol 12(10),
R109.

Burgard, A. P., Pharkya, P., and Maranas, C. D. (2003). Optknock: a bilevel
programming framework for identifying gene knockout strategies for microbial
strain optimization. Biotechnol Bioeng 84(6), 647–657.

Cameron, D. C., Altaras, N. E., Hoffman, M. L., and Shaw, A. J. (1998). Metabolic
engineering of propanediol pathways. Biotechnol Prog 14(1), 116–125.

Caspi, R., Foerster, H., Fulcher, C. A., Kaipa, P., Krummenacker, M., Latendresse, M.,
et al. (2008). The MetaCyc Database of metabolic pathways and enzymes and
the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res
36(Database issue), D623–31.

R e f e r e n c e P a g e | 99

Chang, A., Scheer, M., Grote, A., Schomburg, I., and Schomburg, D. (2009). BRENDA,
AMENDA and FRENDA the enzyme information system: new content and tools
in 2009. Nucleic Acids Res 37(Database issue), D588–92.

Chatsurachai, S., Furusawa, C., and Shimizu, H. (2012). An in silico platform for the
design of heterologous pathways in nonnative metabolite production. BMC
Bioinformatics 13, 93.

Chatsurachai, S., Furusawa, C., and Shimizu, H. (2013). ArtPathDesign - Rational
heterologous pathway design system for the production of nonnative
metabolites. J Biosci Bioeng.(in press)

Cho, A., Yun, H., Park, J. H., Lee, S. Y., and Park, S. (2010). Prediction of novel
synthetic pathways for the production of desired chemicals. BMC Syst Biol 4, 35.

Choi, H. S., Lee, S. Y., Kim, T. Y., and Woo, H. M. (2010). In silico identification of
gene amplification targets for improvement of lycopene production. Appl
Environ Microbiol 76(10), 3097–3105.

Christina, S. D. (2010). The Metabolic Pathway Engineering Handbook: Fundamentals
(1st ed.). LLC, USA: CRC Press, Taylor& Francis Group.

Clomburg, J. M., and Gonzalez, R. (2011). Metabolic engineering of Escherichia coli
for the production of 1,2-propanediol from glycerol. Biotechnol Bioeng 108(4),
867–879.

Cornelius, S. P., Lee, J. S., and Motter, A. E. (2011). Dispensability of Escherichia
coli’s latent pathways. Proc Natl Acad Sci U S A 108(8), 3124–3129.

Curran, K. A., Leavitt, J. M., Karim, A. S., and Alper, H. S. (2013). Metabolic
engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng
15, 55–66.

Dai, Z., Chen, Y., Qi, W., Huang, L., Zhang, Y., Zhou, T., Yang, X., and Gao, G. (2013).
Codon optimization increases human kallistatin expression in Escherichia coli.
Prep Biochem Biotechnol 43(1), 123–136.

Das, S., Roymondal, U., and Sahoo, S. (2009). Analyzing gene expression from
relative codon usage bias in Yeast genome: a statistical significance and
biological relevance. Gene 443(1-2), 121–131.

Dogrusoz, U., Cetintas, A., Demir, E., and Babur, O. (2009). Algorithms for effective
querying of compound graph-based pathway databases. BMC Bioinformatics 10,
376.

Dugar, D., and Stephanopoulos, G. (2011). Relative potential of biosynthetic
pathways for biofuels and bio-based products. Nat Biotechnol 29(12), 1074–
1078.

R e f e r e n c e P a g e | 100

Edwards, J. S., Ibarra, R. U., and Palsson, B. O. (2001). In silico predictions of
Escherichia coli metabolic capabilities are consistent with experimental data.
Nat Biotechnol 19(2), 125–130.

Edwards, J. S., and Palsson, B. O. (2000a). The Escherichia coli MG1655 in silico
metabolic genotype: its definition, characteristics, and capabilities. Proc Natl
Acad Sci U S A 97(10), 5528–5533.

Edwards, J. S., and Palsson, B. O. (2000b). Metabolic flux balance analysis and the in
silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1, 1.

Feist, A. M., and Palsson, B. O. (2010). The biomass objective function. Curr Opin
Microbiol 13(3), 344–349.

Festel, G., Detzel, C., and Mass, R. (2012). Industrial biotechnology — Markets and
industry structure. Journal of Commercial Biotechnology 18(1), 11–21.

Finley, S. D., Broadbelt, L. J., and Hatzimanikatis, V. (2009). Computational
framework for predictive biodegradation. Biotechnol Bioeng 104(6), 1086–1097.

Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F.,
Kerlavage, A. R., et al. (1995). Whole-genome random sequencing and assembly
of Haemophilus influenzae Rd. Science 269(5223), 496–512.

Flórez, L. A., Gunka, K., Polanía, R., Tholen, S., and Stülke, J. (2011). SPABBATS: A
pathway-discovery method based on Boolean satisfiability that facilitates the
characterization of suppressor mutants. BMC Syst Biol 5, 5.

Fong, S. S., Marciniak, J. Y., and Palsson, B. Ø. (2003). Description and interpretation
of adaptive evolution of Escherichia coli K-12 MG1655 by using a genome-scale
in silico metabolic model. J Bacteriol 185(21), 6400–6408.

Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., et
al. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1.
Method and assessment of docking accuracy. J Med Chem 47(7), 1739–1749.

Futcher, B., Latter, G. I., Monardo, P., McLaughlin, C. S., and Garrels, J. I. (1999). A
sampling of the yeast proteome. Mol Cell Biol 19(11), 7357–7368.

Gerdes, S. Y., Scholle, M. D., Campbell, J. W., Balázsi, G., Ravasz, E., Daugherty, M.
D., et al. (2003). Experimental determination and system level analysis of
essential genes in Escherichia coli MG1655. J Bacteriol 185(19), 5673–5684.

Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., et al.
(1996). Life with 6000 genes. Science 274(5287), 546, 563–567.

R e f e r e n c e P a g e | 101

Guadalupe Medina, V., Almering, M. J. H., Van Maris, A. J. A., and Pronk, J. T.
(2010). Elimination of glycerol production in anaerobic cultures of a
Saccharomyces cerevisiae strain engineered to use acetic acid as an electron
acceptor. Appl Environ Microbiol 76(1), 190–195.

Gupta, S. K., Bhattacharyya, T. K., and Ghosh, T. C. (2004). Synonymous codon usage
in Lactococcus lactis: mutational bias versus translational selection. J Biomol
Struct Dyn 21(4), 527–536.

Gvritishvili, A. G., Leung, K. W., and Tombran-Tink, J. (2010). Codon preference
optimization increases heterologous PEDF expression. PLoS One 5(11), e15056.

Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T.,
and Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and
scoring. 2. Enrichment factors in database screening. J Med Chem 47(7), 1750–
1759.

Handorf, T., Ebenhöh, O., and Heinrich, R. (2005). Expanding metabolic networks:
scopes of compounds, robustness, and evolution. J Mol Evol 61(4), 498–512.

Hayashi, H., Huang, P., Inoue, K., Hiraoka, N., Ikeshiro, Y., Yazaki, K., et al. (2001).
Molecular cloning and characterization of isomultiflorenol synthase, a new
triterpene synthase from Luffa cylindrica, involved in biosynthesis of bryonolic
acid. Eur J Biochem 268(23), 6311–6317.

Hoefel, T., Faust, G., Reinecke, L., Rudinger, N., and Weuster-Botz, D. (2012).
Comparative reaction engineering studies for succinic acid production from
sucrose by metabolically engineered Escherichia coli in fed-batch-operated
stirred tank bioreactors. Biotech J 7(10), 1277–1287.

Hong, K.-K., and Nielsen, J. (2012). Metabolic engineering of Saccharomyces
cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci
69(16), 2671–2690.

Ingvarsson, P. K. (2008). Molecular evolution of synonymous codon usage in Populus.
BMC Evol Biol 8, 307.

Inui, M., Kawaguchi, H., Murakami, S., Vertès, A. A., and Yukawa, H. (2004).
Metabolic engineering of Corynebacterium glutamicum for fuel ethanol
production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol
8(4), 243–254.

Jankowski, M. D., Henry, C. S., Broadbelt, L. J., and Hatzimanikatis, V. (2008). Group
contribution method for thermodynamic analysis of complex metabolic
networks. Biophysical journal 95(3), 1487–1499.

Jia, X., Li, S., Xie, S., and Wen, J. (2012). Engineering a metabolic pathway for
isobutanol biosynthesis in Bacillus subtilis. Appl Biochem Biotechnol 168(1), 1–9.

R e f e r e n c e P a g e | 102

Jones, G., Willett, P., Glen, R. C., Leach, A. R., and Taylor, R. (1997). Development
and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3), 727–
748.

Juminaga, D., Baidoo, E. E. K., Redding-Johanson, A. M., Batth, T. S., Burd, H.,
Mukhopadhyay, A., Petzold, C. J., and Keasling, J. D. (2012). Modular
engineering of L-tyrosine production in Escherichia coli. Appl Environ Microbiol
78(1), 89–98.

Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., et al.
(2003). The complete Corynebacterium glutamicum ATCC 13032 genome
sequence and its impact on the production of L-aspartate-derived amino acids
and vitamins. J Biotechnol 104(1-3), 5–25.

Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., et al. (2008).
KEGG for linking genomes to life and the environment. Nucleic Acids Res
36(Database issue), D480–4.

Kauffman, K. J., Prakash, P., and Edwards, J. S. (2003). Advances in flux balance
analysis. Curr Opin Biotechnol 14(5), 491–496.

Kaur, B., and Chakraborty, D. (2013). Biotechnological and molecular approaches for
vanillin production: a review. Appl Biochem Biotechnol 169(4), 1353–1372.

Kind, S., Jeong, W. K., Schröder, H., and Wittmann, C. (2010). Systems-wide
metabolic pathway engineering in Corynebacterium glutamicum for bio-based
production of diaminopentane. Metab Eng 12(4), 341–351.

Kind, S., and Wittmann, C. (2011). Bio-based production of the platform chemical
1,5-diaminopentane. Appl Microbiol Biotechnol 91(5), 1287–1296.

Kleber-Janke, T., and Becker, W. M. (2000). Use of modified BL21(DE3) Escherichia
coli cells for high-level expression of recombinant peanut allergens affected by
poor codon usage. Protein Expr Purif 19(3), 419–424.

Kuenz, A., Gallenmüller, Y., Willke, T., and Vorlop, K.-D. (2012). Microbial
production of itaconic acid: developing a stable platform for high product
concentrations. Appl Microbiol Biotechnol 96(5), 1209–1216.

Kulikova, T., Aldebert, P., Althorpe, N., Baker, W., Bates, K., Browne, P., et al.
(2004). The EMBL Nucleotide Sequence Database. Nucleic Acids Res
32(Database issue), D27–30.

Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., et al.
(1997). The complete genome sequence of the gram-positive bacterium Bacillus
subtilis. Nature 390(6657), 249–256.

R e f e r e n c e P a g e | 103

Lakey, D. L., Voladri, R. K., Edwards, K. M., Hager, C., Samten, B., Wallis, R. S.,
Barnes, P. F., and Kernodle, D. S. (2000). Enhanced production of recombinant
Mycobacterium tuberculosis antigens in Escherichia coli by replacement of low-
usage codons. Infect Immun 68(1), 233–238.

Lan, E. I., and Liao, J. C. (2012). ATP drives direct photosynthetic production of 1-
butanol in cyanobacteria. Proc Natl Acad Sci U S A 109(16), 6018–6023.

Lang, M., Stelzer, M., and Schomburg, D. (2011). BKM-react, an integrated
biochemical reaction database. BMC Biochem 12, 42.

Lee, J. W., Kim, H. U., Choi, S., Yi, J., and Lee, S. Y. (2011). Microbial production of
building block chemicals and polymers. Curr Opin Biotechnol 22(6), 758–767.

Lee, M.-S., Hseu, Y.-C., Lai, G.-H., Chang, W.-T., Chen, H.-J., Huang, C.-H., et al.
(2011). High yield expression in a recombinant E. coli of a codon optimized
chicken anemia virus capsid protein VP1 useful for vaccine development. Microb
Cell Fact 10, 56.

Lee, S. K., Chou, H., Ham, T. S., Lee, T. S., and Keasling, J. D. (2008). Metabolic
engineering of microorganisms for biofuels production: from bugs to synthetic
biology to fuels. Curr Opin Biotechnol 19(6), 556–563.

Lee, S., Kim, B., Oh, M., Kim, Y., and Lee, J. (2012). Enhanced activity of meso-
secondary alcohol dehydrogenase from Klebsiella species by codon optimization.
Bioprocess and biosystems engineering 36(7), 1005-1010.

Lee, W., and Dasilva, N. A. (2006). Application of sequential integration for metabolic
engineering of 1,2-propanediol production in yeast. Metab Eng 8(1), 58–65.

Li, C., Henry, C. S., Jankowski, M. D., Ionita, J. A., Hatzimanikatis, V., and Broadbelt,
L. J. (2004). Computational discovery of biochemical routes to specialty
chemicals. Chem Eng Sci 59(22-23), 5051–5060.

Li, W., Ng, I.-S., Fang, B., Yu, J., and Zhang, G. (2011). Codon optimization of 1,3-
propanediol oxidoreductase expression in Escherichia coli and enzymatic
properties. Electron J Biotechnol 14(4).

Liliana, H. V., Javier, P., and Arturo, N. O. (2012). The Pentacyclic Triterpenes alpha,
beta-amyrins: A Review of Sources and Biological Activities. Phytochemicals - A
Global Perspective of Their Role in Nutrition and Health (Vol. 426). InTech.

Lindahl, A.-L., Olsson, M. E., Mercke, P., Tollbom, O., Schelin, J., Brodelius, M., and
Brodelius, P. E. (2006). Production of the artemisinin precursor amorpha-4,11-
diene by engineered Saccharomyces cerevisiae. Biotechnol Lett 28(8), 571–580.

R e f e r e n c e P a g e | 104

Litsanov, B., Kabus, A., Brocker, M., and Bott, M. (2012). Efficient aerobic succinate
production from glucose in minimal medium with Corynebacterium glutamicum.
Microbial biotechnology 5(1), 116–128.

Liu, G., Wu, J., Yang, H., and Bao, Q. (2010). Codon Usage Patterns in
Corynebacterium glutamicum: Mutational Bias, Natural Selection and Amino
Acid Conservation. Comp Funct Genomics 2010, 343569.

Liu, H., Xu, Y., Zheng, Z., and Liu, D. (2010). 1,3-Propanediol and its copolymers:
research, development and industrialization. Biotech J 5(11), 1137–1148.

Lv, X., Xu, H., and Yu, H. (2013). Significantly enhanced production of isoprene by
ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl
Microbiol Biotechnol 97(6), 2357-2365.

Mahishi, L. H., Tripathi, G., and Rawal, S. K. (2003). Poly(3-hydroxybutyrate) (PHB)
synthesis by recombinant Escherichia coli harbouring Streptomyces aureofaciens
PHB biosynthesis genes: effect of various carbon and nitrogen sources.
Microbiol Res 158(1), 19–27.

Mani, I., Singh, V., Chaudhary, D. K., Somvanshi, P., and Negi, M. P. S. (2011). Codon
optimization of the major antigen encoding genes of diverse strains of influenza
a virus. Interdiscip Sci 3(1), 36–42.

Martín-Galiano, A. J., Wells, J. M., and De la Campa, A. G. (2004). Relationship
between codon biased genes, microarray expression values and physiological
characteristics of Streptococcus pneumoniae. Microbiology 150(Pt 7), 2313–
2325.

Mazumdar, S., Blankschien, M. D., Clomburg, J. M., and Gonzalez, R. (2013).
Efficient synthesis of L-lactic acid from glycerol by metabolically engineered
Escherichia coli. Microb Cell Fact 12(1), 7.

McKendry, P. (2002). Energy production from biomass (Part 1): Overview of biomass.
Bioresource technology 83(1), 37–46.

McShan, D. C., Rao, S., and Shah, I. (2003). PathMiner: predicting metabolic
pathways by heuristic search. Bioinformatics 19(13), 1692–1698.

Mo, M. L., Palsson, B. O., and Herrgård, M. J. (2009). Connecting extracellular
metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3,
37.

Moon, T. S., Yoon, S.-H., Lanza, A. M., Roy-Mayhew, J. D., and Prather, K. L. J.
(2009). Production of glucaric acid from a synthetic pathway in recombinant
Escherichia coli. Appl Environ Microbiol 75(3), 589–595.

R e f e r e n c e P a g e | 105

Moriya, Y., Shigemizu, D., Hattori, M., Tokimatsu, T., Kotera, M., Goto, S., and
Kanehisa, M. (2010). PathPred: an enzyme-catalyzed metabolic pathway
prediction server. Nucleic Acids Res 38(Web Server issue), W138–43.

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S.,
and Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking
with selective receptor flexibility. J Comput Chem 30(16), 2785–2791.

Nakamura, C. E., and Whited, G. M. (2003). Metabolic engineering for the microbial
production of 1,3-propanediol. Curr Opin Biotechnol 14(5), 454–459.

Nam, H., Lewis, N. E., Lerman, J. A., Lee, D.-H., Chang, R. L., Kim, D., and Palsson, B.
O. (2012). Network context and selection in the evolution to enzyme specificity.
Science 337(6098), 1101–1104.

Nayak, K. C. (2012). Comparative study on factors influencing the codon and amino
acid usage in Lactobacillus sakei 23K and 13 other lactobacilli. Mol Biol Rep 39(1),
535–545.

NC-IUBMB. (1999). IUPAC-IUBMB Joint Commission on Biochemical Nomenclature
(JCBN) and Nomenclature Committee of IUBMB (NC-IUBMB), newsletter 1999.
Eur J Biochem 264(2), 607–609.

Nielsen, D. R., Yoon, S.-H., Yuan, C. J., and Prather, K. L. J. (2010). Metabolic
engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Biotech J
5(3), 274–284.

Niu, W., Draths, K. M., and Frost, J. W. (2002). Benzene-free synthesis of adipic acid.
Biotechnol Prog 18(2), 201–211.

Noor, E., Bar-Even, A., Flamholz, A., Lubling, Y., Davidi, D., and Milo, R. (2012). An
integrated open framework for thermodynamics of reactions that combines
accuracy and coverage. Bioinformatics 28(15), 2037–2044.

Norkiene, M., and Gedvilaite, A. (2012). Influence of codon bias on heterologous
production of human papillomavirus type 16 major structural protein L1 in yeast.
ScientificWorldJournal 2012, 979218.

Oh, Y.-K., Palsson, B. O., Park, S. M., Schilling, C. H., and Mahadevan, R. (2007).
Genome-scale reconstruction of metabolic network in Bacillus subtilis based on
high-throughput phenotyping and gene essentiality data. J Biol Chem 282(39),
28791–28799.

Ohya, N., and Koyama, T. (2005). Biopolymers Online (pp. 73–81). Weinheim,
Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

R e f e r e n c e P a g e | 106

Olivares-Hernández, R., Bordel, S., and Nielsen, J. (2011). Codon usage variability
determines the correlation between proteome and transcriptome fold changes.
BMC Syst Biol 5, 33.

Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What is flux balance analysis? Nat
Biotechnol 28(3), 245–248.

Otero, J. M., Cimini, D., Patil, K. R., Poulsen, S. G., Olsson, L., and Nielsen, J. (2013).
Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic
Acid Cell Factory. PLoS One 8(1), e54144.

Pacheco, A., Talaia, G., Sá-Pessoa, J., Bessa, D., Gonçalves, M. J., Moreira, R., Paiva,
S., Casal, M., and Queirós, O. (2012). Lactic acid production in Saccharomyces
cerevisiae is modulated by expression of the monocarboxylate transporters Jen1
and Ady2. FEMS yeast research 12(3), 375–381.

Pagani, I., Liolios, K., Jansson, J., Chen, I.-M. A., Smirnova, T., Nosrat, B., Markowitz,
V. M., and Kyrpides, N. C. (2012). The Genomes OnLine Database (GOLD) v.4:
status of genomic and metagenomic projects and their associated metadata.
Nucleic Acids Res 40(Database issue), D571–9.

Papini, M., Salazar, M., and Nielsen, J. (2010). Systems biology of industrial
microorganisms. Adv Biochem Eng Biotechnol 120, 51–99.

Park, J. H., Lee, K. H., Kim, T. Y., and Lee, S. Y. (2007). Metabolic engineering of
Escherichia coli for the production of L-valine based on transcriptome analysis
and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104(19), 7797–
7802.

Pey, J., Prada, J., Beasley, J. E., and Planes, F. J. (2011). Path finding methods
accounting for stoichiometry in metabolic networks. Genome Biol 12(5), R49.

Pharkya, P., Burgard, A. P., and Maranas, C. D. (2004). OptStrain: a computational
framework for redesign of microbial production systems. Genome Res 14(11),
2367–2376.

Puigbò, P., Romeu, A., and Garcia-Vallvé, S. (2008). HEG-DB: a database of predicted
highly expressed genes in prokaryotic complete genomes under translational
selection. Nucleic Acids Res 36(Database issue), D524–7.

Qian, W., Yang, J.-R., Pearson, N. M., Maclean, C., and Zhang, J. (2012). Balanced
codon usage optimizes eukaryotic translational efficiency. PLoS Genet 8(3),
e1002603.

Qian, Z.-G., Xia, X.-X., and Lee, S. Y. (2011). Metabolic engineering of Escherichia coli
for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng
108(1), 93–103.

R e f e r e n c e P a g e | 107

Raman, K., and Chandra, N. (2009). Flux balance analysis of biological systems:
applications and challenges. Briefings in bioinformatics 10(4), 435–449.

Raman, K., Rajagopalan, P., and Chandra, N. (2006). Principles and Practices of
Pathway Modelling. Current Bioinformatics 1(2), 147–160.

Rao, Z., Ma, Z., Shen, W., Fang, H., Zhuge, J., and Wang, X. (2008). Engineered
Saccharomyces cerevisiae that produces 1,3-propanediol from D-glucose. J Appl
Microbiol 105(6), 1768–1776.

Rathnasingh, C., Raj, S. M., Lee, Y., Catherine, C., Ashok, S., and Park, S. (2012).
Production of 3-hydroxypropionic acid via malonyl-CoA pathway using
recombinant Escherichia coli strains. J Biotechnol 157(4), 633–640.

Redemann, S., Schloissnig, S., Ernst, S., Pozniakowsky, A., Ayloo, S., Hyman, A. A.,
and Bringmann, H. (2011). Codon adaptation-based control of protein
expression in C. elegans. Nat Methods 8(3), 250–252.

Reed, J. L., Vo, T. D., Schilling, C. H., and Palsson, B. O. (2003). An expanded
genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol
4(9), R54.

Rodrigo, G., Carrera, J., Prather, K. J., and Jaramillo, A. (2008). DESHARKY: automatic
design of metabolic pathways for optimal cell growth. Bioinformatics 24(21),
2554–2556.

Rother, K., Hoffmann, S., Bulik, S., Hoppe, A., Gasteiger, J., and Holzhütter, H.-G.
(2010). IGERS: inferring Gibbs energy changes of biochemical reactions from
reaction similarities. Biophysical journal 98(11), 2478–2486.

Sabatini, A., Vacca, A., and Iotti, S. (2012). Balanced biochemical reactions: a new
approach to unify chemical and biochemical thermodynamics. PLoS One 7(1),
e29529.

Schneider, J., and Wendisch, V. F. (2011). Biotechnological production of polyamines
by bacteria: recent achievements and future perspectives. Appl Microbiol
Biotechnol 91(1), 17–30.

Schuetz, R., Kuepfer, L., and Sauer, U. (2007). Systematic evaluation of objective
functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3,
119.

Sharp, P. M., and Li, W. H. (1987). The codon Adaptation Index--a measure of
directional synonymous codon usage bias, and its potential applications. Nucleic
Acids Res 15(3), 1281–1295.

R e f e r e n c e P a g e | 108

Sharp, P. M., Tuohy, T. M., and Mosurski, K. R. (1986). Codon usage in yeast: cluster
analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids
Res 14(13), 5125–5143.

Shen, C. R., Lan, E. I., Dekishima, Y., Baez, A., Cho, K. M., and Liao, J. C. (2011).
Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli.
Appl Environ Microbiol 77(9), 2905–2915.

Shinfuku, Y., Sorpitiporn, N., Sono, M., Furusawa, C., Hirasawa, T., and Shimizu, H.
(2009). Development and experimental verification of a genome-scale metabolic
model for Corynebacterium glutamicum. Microb Cell Fact 8, 43.

Soyer, O. S., and Pfeiffer, T. (2010). Evolution under fluctuating environments
explains observed robustness in metabolic networks. PLoS Comput Biol 6(8).

Sun, X., Lin, Y., Huang, Q., Yuan, Q., and Yan, Y. (2013). A Novel Muconic Acid
Biosynthetic Approach by Shunting Tryptophan Biosynthesis via Anthranilate.
Appl Environ Microbiol 79(13), 4024-4030.

Tao, P., Dai, L., Luo, M., Tang, F., Tien, P., and Pan, Z. (2009). Analysis of
synonymous codon usage in classical swine fever virus. Virus Genes 38(1), 104–
112.

Varma, A., and Palsson, B. O. (1994). Stoichiometric flux balance models
quantitatively predict growth and metabolic by-product secretion in wild-type
Escherichia coli W3110. Appl Environ Microbiol 60(10), 3724–3731.

Vennestrøm, P. N. R., Osmundsen, C. M., Christensen, C. H., and Taarning, E. (2011).
Beyond petrochemicals: the renewable chemicals industry. Angewandte Chemie
(International ed in English) 50(45), 10502–10509.

Wallaart, T. E., Bouwmeester, H. J., Hille, J., Poppinga, L., and Maijers, N. C. (2001).
Amorpha-4,11-diene synthase: cloning and functional expression of a key
enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin.
Planta 212(3), 460–465.

Wang, B.-W., Shi, A.-Q., Tu, R., Zhang, X.-L., Wang, Q.-H., and Bai, F.-W. (2012).
Branched-chain higher alcohols. Adv Biochem Eng Biotechnol 128, 101–118.

Wang, C., Yoon, S.-H., Jang, H.-J., Chung, Y.-R., Kim, J.-Y., Choi, E.-S., and Kim, S.-W.
(2011). Metabolic engineering of Escherichia coli for α-farnesene production.
Metab Eng 13(6), 648–655.

Wang, M., Weiss, M., Simonovic, M., Haertinger, G., Schrimpf, S. P., Hengartner, M.
O., and Von Mering, C. (2012). PaxDb, a database of protein abundance
averages across all three domains of life. Mol Cell Proteomics 11(8), 492–500.

R e f e r e n c e P a g e | 109

Wang, Q., Mei, C., Zhen, H., and Zhu, J. (2012). Codon preference optimization
increases prokaryotic cystatin C expression. J Biomed Biotechnol 2012, 732017.

Washburn, M. P., Wolters, D., and Yates, J. R. (2001). Large-scale analysis of the
yeast proteome by multidimensional protein identification technology. Nat
Biotechnol 19(3), 242–247.

Willett, P., Barnard, J. M., and Downs, G. M. (1998). Chemical Similarity Searching. J
Chem Inf Model 38(6), 983–996.

Woodruff, L. B. A., May, B. L., Warner, J. R., and Gill, R. T. (2013). Towards a
metabolic engineering strain “commons”: An Escherichia coli platform strain for
ethanol production. Biotechnol Bioeng 110(5), 1520-1526.

Yan, Y., Lee, C.-C., and Liao, J. C. (2009). Enantioselective synthesis of pure (R,R)-2,3-
butanediol in Escherichia coli with stereospecific secondary alcohol
dehydrogenases. Org Biomol Chem 7(19), 3914–3917.

Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A., Boldt, J., et al. (2011).
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol.
Nature chemical biology 7(7), 445–452.

Yousofshahi, M., Lee, K., and Hassoun, S. (2011). Probabilistic pathway construction.
Metab Eng 13(4), 435–444.

Yuriev, E., and Ramsland, P. A. (2013). Latest developments in molecular docking:
2010-2011 in review. Journal of molecular recognition : JMR 26(5), 215–239.

Zhang, X., Wang, X., Shanmugam, K. T., and Ingram, L. O. (2011). L-malate
production by metabolically engineered Escherichia coli. Appl Environ Microbiol
77(2), 427–434.

Zhao, Y., Yang, J., Qin, B., Li, Y., Sun, Y., Su, S., and Xian, M. (2011). Biosynthesis of
isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl
Microbiol Biotechnol 90(6), 1915–1922.

Zweers, J. C., Barák, I., Becher, D., Driessen, A. J., Hecker, M., Kontinen, V. P., Saller,
M. J., Vavrová, L., and Van Dijl, J. M. (2008). Towards the development of
Bacillus subtilis as a cell factory for membrane proteins and protein complexes.
Microb Cell Fact 7, 10.

Appendix A

Source code

A.1 Heterologous pathways detection by Python

A.1.1 Main script “runningScript.py”

Runing script by using this file with IDLE
Before run the script, you need to change the path of input file that
you want to obtain all possible connected metabolites
kegg_metabolic_reaction2010mar.csv -> is the reference reactions from
KEGG ligand database
host_metabolites.txt -> contains all metabolites in terms of KEGG ID if
available (you can get this list fromn the supplementary of Genome-scale
metabolic model
nonNativeMetabolites.txt -> contains all metabolites (retriving from
reference reactions that are not in the host metabolic network)

import sys,pickle,re,os,csv,glob
from heterologousReactionDetection import *
from addInfoOutput import *
from createIndexFile import *

current directory
cur_dir = os.getcwd()

Three input files are neccesary for running the script ############
Please see the format of input files in the input folder ##########
bkm_rn_file =
os.path.join(cur_dir,"input/bkm_metabolic_reactions_2012.csv")## KEGG
reaction in tab delimited format
gemMet_file = os.path.join(cur_dir,"input/eco_nativeMetbolites.csv")## host
metabolites if no KEGG ID used the original ID

nonNative_file =
os.path.join(cur_dir,"input/eco_nonNativeMetabolites.csv")## nonnative
metabolites (not found in host metabolic network)

list of metabolites from host metabolic model
gemMetList = [line.upper().rstrip() for line in open(gemMet_file)]

list of nonnative metabolites (found in KEGG reference reactions, but
not found in host network)
nonNativeMetList = [line.upper().rstrip() for line in open(nonNative_file)]

Creating Dictionary of KEGG reactions #############
result = Reaction(bkm_rn_file)## class KEGG metabolic reaction with
reaction ID, left metabolites, right metabolite
bkm_rns ={}
for item in result.getReaction():
 rec =
[item.rx_id,item.leftMet,item.rightMet,item.equation,item.orgEquation,item.
direction]
 bkm_rns[item.rx_id] = rec

Input the number of iteration that you want to observe
numOfiteration = raw_input("Please input total iterations (such as 10,20,
or 30) and then press Enter = ")

To write pre-results that contain the possible reaction to be used
maxIteration =
writePreResult(numOfiteration,nonNativeMetList,bkm_rns,gemMetList)

To write all heterolgous reactions (equation in term of KEGG compound
ID [Cxxxxx]) for each nonnative metabolites in each iteration
writeAllHeterologousPathwayToFile(maxIteration,bkm_rns)

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

1
1

print "Finished searching !!!!!!! for the current host organism"

To remove preResult file (*.csv)
removePreResultFile()

To generate output files in html-format ####
input_dir = os.path.join(cur_dir,"input")

bkmReactDict =
getBKMreaction(os.path.join(input_dir,"bkm_metabolic_reactions_2012.csv"))
keggDict = getKEGGcompound(os.path.join(input_dir,"kegg_compounds.csv"))
metaCycDict =
getMetaCycCompound(os.path.join(input_dir,"metacyc_compounds.csv"))
ecGenesDict =
getOptGenes(os.path.join(input_dir,"2012_optGenes_ecoHost_bothDB.txt"))

print "Still writing all results in output folder (html-file) !!!!!"

writeResultFiles(maxIteration,bkmReactDict,keggDict,metaCycDict,ecGenesDict
)
print "Finished all nonnative metabolites and Heterologous reactions in
output folder !!!!!!!!"

To create index.html file that summarized all connectable nonnative
metabolites #####

output_dir = os.path.join(cur_dir,"output")
writeIndexFile(output_dir,keggDict,metaCycDict)
print"#######################==End==################################"

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

1
2

A.1.2 “heterologousReactionDetection.py”

#!/usr/bin/env python
Author: Sunisa Chatsurachai
Purpose: For finding all additional reactions (Heterologous pathway) for
each non-native metabolite
Created: 11/26/2010

import sys,pickle,re,os,csv,glob
from candidateReaction import *
from createHeterologousPathwayFile import writeAllHeterologousPathwayToFile

class Record:
 """Blank class"""
 pass

class Reaction():
 """"""

 #--
 def __init__(self,reaction_file):
 """
 reaction_file = "finalBKM_ir.csv"
 EX:
 R00004 2.3.1.48 BS407080 acetyl-CoA + c-Myc <=> CoA + acetylated c-
Myc 1 C00024 + 1 c-Myc <=> 1 C00010 + 1 acetylated c-Myc brenda_r
 """
 self.reaction_file = open(reaction_file)
 self.data =[]
 self.process()
 def getReaction(self):
 """
 get each reaction from file
 """
 return self.data

 def checkGlycanReaction(self,list_equation_item,default = "No glycan"):
 for item in list_equation_item:
 if item.startswith("G"):
print "found Glycan"

 default = None
 break
 return default

 def checkMetabolite(self,item):
 """
 Check if it is metabolite or not
 if not return None
 """
 if item in ["<=>","<-->","<=","<--","=>","-->","+"]:
 return None

 elif re.findall(r'[a-z]|[A-Z]',item) == []:## found only numeric
 return None
 elif item != "":
 return None

 else:
 return item

 def getMetabolitesFromEquation(self,equation):
 """
 input equation
 return [leftmets,rightmets]
 """
 result = []
 pattern = re.search(r'(\<\=\>)|(\=\>)|(\<\-\-\>)|(\-\-
\>)',equation)

 if pattern is not None:
 #print pattern.group()
 data = equation.split(pattern.group())
 leftMet = data[0]
 rightMet = data[1]
 #print leftMet,rightMet

 result.append(leftMet)
 result.append(rightMet)

 else:
 print "not found direction"
 return result

 def getLeftMetabolite(self,leftMets):

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

1
3

 result = []
 metItem = leftMets.lstrip().rstrip().split(" + ")

 for m in metItem:
 m_item = m.split()

 if self.checkMetabolite(m_item[0]) is None and
re.findall(r'^[1-9]$|^[1-9][0-9]$|^[1-9][0-9][0-9]$',m_item[0]) != []:
 #print m_item[0],"##"," ".join(m_item[1:])
 stoi = m_item[0]
 met = " ".join(m_item[1:])
 else:
 if re.findall(r'^n$|^m$|^\(n\+[1-9]\)$|^\(n\+m\)|^\(m\+[1-
9]\)$',m_item[0]) !=[]:
 #print m_item[0], "##"," ".join(m_item[1:])
 stoi = '1'
 met = " ".join(m_item[1:])
 elif re.findall(r'^[2-9]n$|^[2-9]m$|^[1-9][0-9]n$|^[1-9][0-
9]m$',m_item[0]) != []:
 stoiData = m_item[0]
 if len(stoiData) >= 2:
 stoi = stoiData[:-1]
 met = " ".join(m_item[1:])
 else:
 stoi = '1'
 met = " ".join(m_item[:])
 #print stoi,met
 result.append(met)
 return result

 def getRigthMetabolite(self,rightMets):
 result = []
 metItem = rightMets.lstrip().rstrip().split(" + ")

 for m in metItem:
 m_item = m.split()
 if self.checkMetabolite(m_item[0]) is None and
re.findall(r'^[1-9]$|^[1-9][0-9]$|^[1-9][0-9][0-9]$',m_item[0]) != []:
 #print m_item[0],"##"," ".join(m_item[1:])
 stoi = m_item[0]
 met = " ".join(m_item[1:])
 else:

 if re.findall(r'^n$|^m$|^\(n\+[1-9]\)$|^\(n\+m\)|^\(m\+[1-
9]\)$',m_item[0]) !=[]:
 #print m_item[0], "##"," ".join(m_item[1:])
 stoi = '1'
 met = " ".join(m_item[1:])

 elif re.findall(r'^[2-9]n$|^[2-9]m$|^[1-9][0-9]n$|^[1-9][0-
9]m$',m_item[0]) != []:
 stoiData = m_item[0]
 if len(stoiData) >= 2:
 stoi = stoiData[:-1]
 met = " ".join(m_item[1:])

 else:
 stoi = '1'
 met = " ".join(m_item[:])
 result.append(met)
 return result

 def process(self):
 for rx_id,ecnumbers,bkm_id,org_equation,equation_used,revDatabase
in csv.reader(self.reaction_file,delimiter="\t"):
 if self.checkGlycanReaction(equation_used.split()) == None:##
No process if found glycan metabolite
 continue
 else:

 rRecord = Record()
 rRecord.rx_id = rx_id
 rRecord.enzyme = ecnumbers
 rRecord.equation = equation_used
 rRecord.orgEquation = org_equation
 preLeft,preRight =
self.getMetabolitesFromEquation(equation_used)
 rRecord.leftMet = self.getLeftMetabolite(preLeft)
 rRecord.rightMet = self.getRigthMetabolite(preRight)
 preDirection = revDatabase.split("_")[-1]
 if preDirection == "ir":
 rRecord.direction = "=>"
 else:
 rRecord.direction = "<=>"

 self.data.append(rRecord)

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

1
4

def writePreResult(maxIt,nonNativeMetList,kegg_rns,gemMetList):
 cur_dir = os.getcwd()
 for it in range(1, int(maxIt)+1):

 if it ==1: ## 1st searching
 result = getSingleAddedRn(nonNativeMetList,kegg_rns,gemMetList)
 set_r1 =[]## keep reaction used to connect to host GEM
 set_c1 =[]## keep non native compound found connecting
 f =
open(os.path.join(cur_dir,"preResult_iteration_"+str(it)+'.csv'),'w')
 for cpd, list_rn, min_rn in result:
 set_r1.extend(list_rn)
 set_c1.append(cpd)
 write_result = createListOfAddedRns(cpd,list_rn,it)
 for rec in write_result:
 f.write("\t".join(map(str,rec)))
 f.write("\n")
 f.close()

 pre_Rn = set_r1
 pre_Cpd = set(set_c1) ## remove compound duplicate (for next
iteration)

 nextNonNativeMetList =
list(set(nonNativeMetList).difference(pre_Cpd))
 print "Iteration = ",it,"\t","No. of connected metabolites =
",len(pre_Cpd),"\t","No. of nonnative metabolties for next step =
","\t",len(nextNonNativeMetList)

 elif it==2:
 second_result =
getAddedRns(pre_Rn,list(pre_Cpd),gemMetList,nextNonNativeMetList,kegg_rns,i
t)

 set_r2 = []
 set_c2 = []
 f =
open(os.path.join(cur_dir,"preResult_iteration_"+str(it)+'.csv'),'w')
 for cpd,list_rn,min_rn in second_result:
 set_r2.extend(list_rn)
 set_c2.append(cpd)

 write_result = createListOfAddedRns(cpd,list_rn,it)
 for rec in write_result:
 f.write("\t".join(map(str,rec)))
 f.write("\n")
 f.close()
 set_c2 = set(set_c2)

 pre_Cpd = set(set_c2)
 pre_Rn = set_r2
 nextNonNativeMetList =
list(set(nextNonNativeMetList).difference(pre_Cpd))

 print "Iteration = ",it,"\t","No. of connected metabolites =
",len(pre_Cpd),"\t","No. of nonnative metabolties for next step =
","\t",len(nextNonNativeMetList)

 else:
 next_result =
getAddedRns(pre_Rn,list(pre_Cpd),gemMetList,nextNonNativeMetList,kegg_rns,i
t)
 pre_Rn =[]
 pre_Cpd =[]
 f =
open(os.path.join(cur_dir,"preResult_iteration_"+str(it)+'.csv'),'w')
 for cpd,list_rn,min_rn in next_result:
 pre_Rn.extend(list_rn)
 pre_Cpd.append(cpd)
 write_result = createListOfAddedRns(cpd,list_rn,it)
 for rec in write_result:
 f.write("\t".join(map(str,rec)))
 f.write("\n")
 f.close()

 pre_Cpd = set(pre_Cpd)
 nextNonNativeMetList =
list(set(nextNonNativeMetList).difference(pre_Cpd))
 print "Iteration = ",it,"\t","No. of connected metabolites =
",len(pre_Cpd),"\t","No. of nonnative metabolties for next step =
","\t",len(nextNonNativeMetList)
 if len(pre_Cpd) ==0:
 break
 return it-1 ## return maximum iteration that found connecting nonnative
metabolite

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

1
5

def removePreResultFile():
 import glob
 cur_dir = os.getcwd()
 preResultFiles = glob.glob(os.path.join(cur_dir,"*.csv"))
 for f in preResultFiles:
 os.remove(f)

def main():
 pass

if __name__=='__main__':main()

A.1.3 “candidateReaction.py”

#!/usr/bin/env python
Author: Sunisa Chatsurachai
Purpose: functions for finding candidate reaction(s)
Created: 11/26/2010

import os,re,sys
from glob import glob

def allPrestepsMapping(preStepPath,can_rxn_metList):
 ## preStepPath =
"D:\\SUNISA_data\\2012_additional_reaction\\2012JUL_bkmReact\\2012JUL_addRe
action\\assume_r\\eco\\"
 metNotFound = []
 connectMets = []
 metFound = []
 for met in can_rxn_metList:
 list_csv = glob("*.csv")## list of preResult File
 for f in list_csv:
 for line in open(f,'r'):
 if line.startswith(met) == True:
 metFound.append(met)
 break
 metNotFound = set(can_rxn_metList).difference(set(metFound))
 return [list(metNotFound),metFound]

def hostMetaboliteMaping(gemMetList,can_rn_metList):
 """
 Comparing metabolite from candidate reaction with genome-scale
model(GEM) metabolite list
 and return list of metabolite does not found in GEM list
 """
 met_not_found =[]
 for item in can_rn_metList:
 if item not in gemMetList:
 met_not_found.append(item)
 return list(set(met_not_found))

def findAllPossibleCandidateRn(kegg_rns,nonNativeMet,gemMetList):
 """

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

1
6

 kegg_rns (all metabolic reaction from KEGG (no glycan reaction here)
Type is Dictionary
 each record as
 key -> item.rx_id
 value list->
[item.rx_id,item.leftMet,item.rightMet,item.equation,item.equation_name,ite
m.direction]
 """
 pre_candidate_rn = []
 for key,value in kegg_rns.iteritems():
 rx_id = value[0]
 leftMet = value[1]
 rightMet = value[2]
 direction = value[-1]

 if direction == "<=>": ## found reversible reaction
 if nonNativeMet in leftMet:
 rightMet = hostMetaboliteMaping(gemMetList,rightMet)##
compare and return met not found in GEM
 pre_candidate_rn.append([rx_id,rightMet])
 elif nonNativeMet in rightMet:
 leftMet = hostMetaboliteMaping(gemMetList,leftMet)
 pre_candidate_rn.append([rx_id,leftMet])
 else:## found irreversible reaction
 if nonNativeMet in rightMet:
 leftMet = hostMetaboliteMaping(gemMetList,leftMet)
 pre_candidate_rn.append([rx_id,leftMet])

 result = {}
 for k,m in pre_candidate_rn:
 result[k] = m
 return result

def getSingleAddedRn(nonNativeMetList,kegg_rns,gemMetList):
 """
 At 1st iteration -> finding non native metabolite which can connect to
host by adding single reaction
 """
 result ={}
 final_result = []
 for nonNativeMet in nonNativeMetList:

 eachNonNativeMet =
findAllPossibleCandidateRn(kegg_rns,nonNativeMet,gemMetList)
 if [] in eachNonNativeMet.itervalues():## [] found in possible
pathway of connected metabolite
 candidate_rn = []
 for key,val in eachNonNativeMet.iteritems():
 if val == []: ##all substrate found in GEM list
 candidate_rn.append(key) ## append reaction id
 result[nonNativeMet] = candidate_rn
 for k,v in result.iteritems():
 final_result.append([k,v,len(v)]) ## create list of all possible
reaction
 return final_result

def
getAddedRns(preStepRn,preStepMet,gemMetList,nonNativeMetList,kegg_rns,itera
tion):
 """
 From 2nd iteration -> finding at least two reactions to be added to
host for connecting non-native metabolite
 3rd iteration -> finding at least three reactions to be added to
host for connecting non-native metabolite

 """
 next_step_result = []

 for nonNativeMet in nonNativeMetList:
 pre_rn =
findAllPossibleCandidateRn(kegg_rns,nonNativeMet,gemMetList)
 pre_result = {}
 possible_rns = []

 for rx_id,met_not_found in pre_rn.iteritems():
 min_rn_found = 0+iteration ## at least start from iteration
number (to connect to host metabolite)

 if len(met_not_found) == 1:## only on metabolite does not found
in GEM list
 if met_not_found[0] in preStepMet:### found in previous
step added reaction (iteration -1)
 ## found connecting by adding one more reaction (from
previous step)
 min_rn_found = min_rn_found

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

1
7

possible_rns.append([rx_id,met_not_found[0],min_rn_found])
 else:

metNotFoundInAllPresteps,connectedMets=allPrestepsMapping(os.getcwd(),met_n
ot_found)
 if metNotFoundInAllPresteps == []:## all metabolite
found in presteps
 min_rn_found = min_rn_found+len(met_not_found)
 preMets =[]
 for cMet in connectedMets:
 cur_cMet = cMet.split("_")[0]
 listReaction = re.findall("R[0-9][0-9][0-9][0-
9][0-9]",cMet)
 preMets.append(cur_cMet)
 preMets = list(set(preMets))

possible_rns.append([rx_id,preMets[0],min_rn_found])
 else:## more than one metabolite does not found in GEM list
 met_found_in_preStep = []
 for i,m in enumerate(met_not_found):
 if m in preStepMet:
 met_found_in_preStep.append(m)

 cur_metNotFound =
set(met_not_found).difference(set(met_found_in_preStep))
 cur_metNotFound = list(cur_metNotFound)

 if cur_metNotFound == []:## all metabolites already found
in prestep metabolite
 min_rn_found = min_rn_found +len(met_not_found)## at
least reaction should be added

possible_rns.append([rx_id,met_found_in_preStep,min_rn_found])

 else:

metNotFoundInAllPresteps,connectedMets=allPrestepsMapping(os.getcwd(),cur_m
etNotFound)

 if metNotFoundInAllPresteps == []:## all metabolite
found in presteps
 min_rn_found = min_rn_found+len(met_not_found)

 preMets =[]
 for cMet in connectedMets:
 cur_cMet = cMet.split("_")[0]
 listReaction = re.findall("R[0-9][0-9][0-9][0-
9][0-9]",cMet)
 preMets.append(cur_cMet)

 for m in met_found_in_preStep:
 preMets.append(m)

 preMets = list(set(preMets))
 possible_rns.append([rx_id,preMets,min_rn_found])

 pre_result[nonNativeMet] = possible_rns
 if pre_result[nonNativeMet] != []:

next_step_result.append([nonNativeMet,possible_rns,len(possible_rns)])

 return next_step_result

def createListOfAddedRns(cpd_id,ListRns,iteration):
 rec = []
 if iteration ==1: ## 1st iteration result
 if len(ListRns) == 1:
 rn = ListRns[0]
 rec.append([cpd_id,rn,iteration])
 else:
 for rn in ListRns:
 rec.append([cpd_id,rn,iteration])
 return rec
 else:
 ## ListRns=[['R01424', 'C00180']]
 if len(ListRns) == 1:
 rn = ListRns[0][0] ## rx_id
 if rn.find("##") != -1:
 rn = rns.split('##')
 else:
 rn
 cpd_pre = ListRns[0][1] ## compound id
 min_rn_found = ListRns[0][2]

 if type(cpd_pre) != list:## only one previous step metabolite
(in iteration -1)

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

1
8

 rec.append([cpd_id,rn,iteration,cpd_pre,min_rn_found])
 else:
 rec.append([cpd_id,rn,iteration,cpd_pre,min_rn_found])

 else:
 ## [['R07922', 'C16353'], ['R07921', 'C07481'], ['R07954',
'C07481'], ['R07939', 'C07481'], ['R07943', 'C16358']]
 ## [['R03186', ['C00072', 'C05422']], ['R00095', 'C00072']]
 for r in ListRns:
 rn = r[0]
 if rn.find('##') != -1:
 rn = rn.split('##')
 else:
 rn

 cpd_pre = r[1]
 min_rn_found = r[-1]

 if type(cpd_pre) != list:
 rec.append([cpd_id,rn,iteration,cpd_pre,min_rn_found])
 else:
 rec.append([cpd_id,rn,iteration,cpd_pre,min_rn_found])
 return rec

A.1.4 “createHeterologousPathwayFile.py”

#!/usr/bin/env python
Author: Sunisa Chatsurachai
Purpose: Create additional pathway detection for simulation (txt-file)
Created: 11/29/2010

import sys,os,csv,re
from glob import glob

def addCompartmentToMet(reaction,compartment="[c]"):
 result = []
 reaction = reaction.upper().split()
 for item in reaction:
 if item not in ["<=>","<=","=>","+"] and re.findall(r'[0-
9]',item[0]) ==[]: ## only metabolite
 item = item+compartment
 result.append(item)
 else:
 result.append(item)

 return result

def addTargetMetOutputRn(nonNativeMet):
 met_ext = nonNativeMet.upper()+"[e]"
 sink_met_rn = " ".join([met_ext,'=>'])
 return sink_met_rn

def createTransportRn(nonNativeMet):
 met_cytosol = nonNativeMet.upper()+"[c]"
 met_extracellular = nonNativeMet.upper()+"[e]"
 transport_rn = " ".join([met_cytosol,"=>",met_extracellular])
 return transport_rn

def getPreviousStepRn(preMet,pre_it):
 """
 get all reactions of previous metabolite
 """
 cur_dir = os.getcwd()
 for iteration in range(pre_it):

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

1
9

 targetDir = os.path.join(cur_dir,"iteration_"+str(iteration+1))

 fileList = glob(targetDir+"/*.txt")
 results = []
 for fName in fileList:
 file_name = fName.split("\\")[-1]
 met_name = file_name.split("_")[0]
 if met_name == preMet:
 rns = [line.rstrip() for line in open(fName)]
 previous_rns_name = rns[0]
 list_rns = rns[1:-2]
 results.append([previous_rns_name,list_rns])
 if results != []:
 break
 return results

def getAllPossiblePreviousStepRn(preMetList,cur_it):
 """
 get all reaction of all previous metabolites(as list)
 """
 preMetList_rns ={}
 for preMet in preMetList:
 rns = []
 pre_rn_set = getPreviousStepRn(preMet,cur_it)
 if pre_rn_set != []:
 if len(pre_rn_set) == 1:## one possible set of reaction
 pre_cid_rid = pre_rn_set[0][0]
 pre_list_rn = pre_rn_set[0][1][:]
 rns.append([pre_cid_rid,pre_list_rn])
 else:
 for pre_cid_rid, pre_list_rn in pre_rn_set:
 rns.append([pre_cid_rid,pre_list_rn])
 preMetList_rns[preMet] =rns
 return preMetList_rns

def changeFormatPreviousListMet(preMet):
 ## nonNativeMet addedRn itearation previousMets minimum_rn
 ##C16688 R03921 2 ['C02336', 'C00668'] 4##
 preMetList = ""
 for char in preMet:
 if char not in ["[","]","'"," "]:
 preMetList =preMetList +char
 preMetList = sorted(preMetList.split(","))

 return preMetList

def writeResultToTextFile(targetDirectory,iteration,List_result):
 ## List_result =
[cur_rn_name,pre_rn_name,cur_rn,pre_rn,cur_tran_rn,sink_met_rn,path_no]

 if iteration > 2:

 f =
open(targetDirectory+str(iteration)+"/"+List_result[0]+"_"+str(List_result[
-1])+".txt","w")
 f.write(List_result[0]+"_"+List_result[1])
 f.write("\n")
 if len(List_result[3]) == 1: # only one heterologous pathway
 f.write(List_result[3][0])
 f.write("\n")
 else:
 rns = List_result[3]
 for r in rns:
 f.write(r)
 f.write("\n")
 f.write("\n".join([List_result[2],List_result[4],List_result[5]]))
 f.write("\n")

 else:
 f =
open(targetDirectory+str(iteration)+"/"+List_result[0]+"_"+List_result[1]+"
.txt","w")
 f.write(List_result[0]+"_"+List_result[1])
 f.write("\n")
 if len(List_result[3]) == 1: # only one heterologous pathway
 f.write(List_result[3][0])
 f.write("\n")
 else:
 rns = List_result[3]
 for r in rns:
 f.write(r)
 f.write("\n")
 f.write("\n".join([List_result[2],List_result[4],List_result[5]]))
 f.write("\n")

def writeAllHeterologousPathwayToFile(maxIt,kegg_rns):

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

2
0

 cur_dir = os.getcwd()
 for iteration in range(1,maxIt+2):

 if not
os.path.exists(os.path.join(cur_dir,"iteration_"+str(iteration))):
 os.mkdir(os.path.join(cur_dir,"iteration_"+str(iteration)))

 if iteration ==1:
 f =
open(os.path.join(cur_dir,"preResult_iteration_"+str(iteration)+".csv"),"r"
)

 for nonNativeMet,r_id,it in csv.reader(f,delimiter= "\t"):
 if kegg_rns.has_key(r_id):
 eq_with_compartment = "
".join(addCompartmentToMet(kegg_rns[r_id][3],"[c]"))
 add_rn = [nonNativeMet,r_id,eq_with_compartment]
 try:
 f1 =
open(cur_dir+"/iteration_1/"+nonNativeMet+"_"+r_id+".txt",'w')
 fName = nonNativeMet+"_"+r_id

f1.write("\n".join([fName,eq_with_compartment,createTransportRn(nonNativeMe
t),addTargetMetOutputRn(nonNativeMet)]))
 f1.write("\n")
 f1.close()

 except IOError:
 f1 =
open(cur_dir+"/iteration_1/"+nonNativeMet+"_"+r_id+".txt",'w')
 fName = nonNativeMet+"_"+r_id

f1.write("\n".join([fName,eq_with_compartment,createTransportRn(nonNativeMe
t),addTargetMetOutputRn(nonNativeMet)]))
 f1.write("\n")
 f1.close()

 if iteration > 1 and iteration <= maxIt+2:

 f =
open(os.path.join(cur_dir,"preResult_iteration_"+str(iteration)+".csv"),"r"
)

 for nonNativeMet,r_id,it,preMet,min_rn in
csv.reader(f,delimiter="\t"):
 path_no = 0
 if int(min_rn) == iteration:## means -> connecting by one
to one metabolite since other found in GEM List
 cur_rn_with_com = "
".join(addCompartmentToMet(kegg_rns[r_id][3],"[c]"))
 cur_rn_name = nonNativeMet+"_"+r_id
 cur_trans_rn = createTransportRn(nonNativeMet)
 sink_met_rn = addTargetMetOutputRn(nonNativeMet)
 #pre_rn_set =
getPreviousStepRn(preMet,cur_dir+"/iteration_"+str(iteration-1))
 pre_rn_set = getPreviousStepRn(preMet,iteration-1)

 if len(pre_rn_set)==1: ## only one possible added
pathway
 path_no = path_no+1
 pre_cid_rid = pre_rn_set[0][0]
 pre_list_rn = pre_rn_set[0][1][:]

 List_result
=[cur_rn_name,pre_cid_rid,cur_rn_with_com,pre_list_rn,cur_trans_rn,sink_met
_rn,path_no]

writeResultToTextFile(cur_dir+"/iteration_",iteration,List_result)

 else:
 for pre_cid_rid,pre_list_rn in pre_rn_set:
 path_no = path_no+1
 List_result
=[cur_rn_name,pre_cid_rid,cur_rn_with_com,pre_list_rn,cur_trans_rn,sink_met
_rn,path_no]

writeResultToTextFile(cur_dir+"/iteration_",iteration,List_result)

 else:
 cur_rn_with_com = "
".join(addCompartmentToMet(kegg_rns[r_id][3],"[c]"))
 cur_rn_name = nonNativeMet+"_"+r_id
 cur_trans_rn = createTransportRn(nonNativeMet)
 sink_met_rn = addTargetMetOutputRn(nonNativeMet)

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

2
1

 pre_metList = changeFormatPreviousListMet(preMet)
 pre_metListRn =
getAllPossiblePreviousStepRn(pre_metList,iteration-1)

 first_substrate_rn = pre_metListRn[pre_metList[0]]
 del pre_metListRn[pre_metList[0]] ## update list of
previous step metabolite

 for p_rn in first_substrate_rn:
 pre_cid_rid = p_rn[0]
 pre_list_rn = p_rn[1][:]

 for key,value in pre_metListRn.iteritems():
 if len(value)== 1: ##only one possible pathway
 ##key = C02557
 ##value = [['C02557_R05373', ['C02557[c]
<=> C00100[c] + C00011[c]']]]
 path_no = path_no+1
 new_pre_list_rn = []
 v_cid_rid = value[0][0]
 v_list_rn = value[0][1]
 new_pre_list_rn.extend(pre_list_rn)
 new_pre_list_rn.extend(v_list_rn)

 List_result
=[cur_rn_name,pre_cid_rid+"_"+v_cid_rid,cur_rn_with_com,new_pre_list_rn,cur
_trans_rn,sink_met_rn,path_no]

writeResultToTextFile(cur_dir+"/iteration_",iteration,List_result)
 else:
 for v_cid_rid,v_list_rn in value:
 new_pre_list_rn = []
 path_no = path_no+1
 new_pre_list_rn.extend(pre_list_rn)
 new_pre_list_rn.extend(v_list_rn)
 List_result
=[cur_rn_name,pre_cid_rid+"_"+v_cid_rid,cur_rn_with_com,new_pre_list_rn,cur
_trans_rn,sink_met_rn,path_no]

writeResultToTextFile(cur_dir+"/iteration_",iteration,List_result)

def main():
 pass

if __name__=='__main__':main()

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

2
2

A.1.5 “addInfoOutput.py”

#!/usr/bin/env python
Author: Sunisa Chatsurachai --<>
Purpose: To add more information of the output files
Created: 27-Feb-13

import sys,os,re
import glob
from heterologousReactionDetection import *

def getKEGGcompound(fName):
 result = {}
 for line in open(fName,'r'):
 line = line.lstrip().rstrip().split('\t')
 cpd_id = line[0]
 cpd_syn = line[1]
 cpd_common = line[2]
 cpd_charge = line[3]
 cpd_formula = line[4]
 result[cpd_id] = [cpd_syn,cpd_formula]
 return result

def getMetaCycCompound(fName):
 result = {}
 for line in open(fName,'r'):
 line = line.lstrip().rstrip().split('\t')
 m_id = line[0]
 k_id = line[1]
 cpd_syn = "##".join([line[2],line[3]])
 cpd_charge = line[5]
 cpd_formula = line[6]
 result[m_id] = [cpd_syn,cpd_formula,k_id]
 return result

def getBKMreaction(fName):
 result = {}
 for line in open(fName,'r'):
 line = line.lstrip().rstrip().split('\t')
 r_id = line[0]
 ec_num = line[1]

 refID = line[2]
 eq_name = line[3]
 eq = line[4]
 type_rxn = line[5]
 result[r_id] =[eq_name,eq,ec_num,refID,type_rxn]
 return result

def getReactions(listReactions,bkmDict):
 rxns = listReactions.split('##')
 result = {}
 for r in rxns:
 eqName,eq,ec_id,refID,revData = bkmDict[r]
 result[r] = eqName
 return result

def getOptGenes(fName):
 result = {}
 for line in open(fName,'r'):
 line = line.lstrip().rstrip().split('\t')
 ec = line[0]
 #db = line[1]
 #genes = line[2]
 #orfList = line[3]
 #org_id = line[4]
 #org_name = line[5]
 result[ec] = line[1:6]
 return result

def getCompoundName(target,keggDict,MetacycDict):
 if keggDict.has_key(target):
 cpd_syn,cpd_formula = keggDict[target]
 elif MetacycDict.has_key(target):
 cpd_syn,cpd_formula,k_id = MetacycDict[target]
 else:
 cpd_syn = "None"
 cpd_formula = "None"
 return [prepareCompoundName(cpd_syn),cpd_formula]

def prepareCompoundName(cpdName):
 cpdName = cpdName.split("##")
 cpdName = set(cpdName)
 cpdName = list(cpdName)

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

2
3

 if len(cpdName)==1:
 met = cpdName[0]
 if met.upper() == "NONE" or met.upper() == "NULL":
 return "No information"
 else:
 return met
 else:
 data = []
 for m in cpdName:
 if m.upper() != "NONE" and m.upper()!="NULL":
 data.append(m)
 return "||".join(data)

def
writeResultFiles(maxIteration,bkmReactDict,keggDict,metaCycDict,ecGenesDict
):
 cur_dir = os.getcwd()

 if os.path.exists(os.path.join(cur_dir,"output")) == False:
 os.mkdir(os.path.join(cur_dir,"output"))

 for it in range(1,maxIteration+1+1):
 curRentPath = os.path.join(os.getcwd(),"iteration_"+str(it))
 listTextfiles = glob(curRentPath+"/*.txt")

 outputDir = os.path.join(cur_dir,"output")

 if os.path.exists(outputDir)== False:
 os.mkdir(outputDir)

 for f in listTextfiles:
 f_op = open(f,'r')
 line = f_op.readline()
 f_op.close()

 foutName = f.split("\\")[-1][:-4]

 connMet= line.lstrip().rstrip().split("_")
 targetName,targetFormula =
getCompoundName(connMet[0],keggDict,metaCycDict)

 outputFile = os.path.join(outputDir,foutName+".html")

 f_out = open(outputFile,'w')
 f_out.write('<html>\n')
 f_out.write('<body>\n')
 f_out.write("<table border ='2'>\n")
 f_out.write('<h1> Result </h1>\n')
 f_out.write('<tr>\n')
 f_out.write('<td> Target compound ID </td>\n')
 f_out.write('<td>'+connMet[0]+'</td>\n')
 f_out.write('</tr>\n')

 f_out.write('<tr>\n')
 f_out.write('<td> Target compound Name </td>\n')
 f_out.write('<td>'+targetName+'</td>\n')
 f_out.write('</tr>\n')

 listRxns = re.findall(r'R[0-9][0-9][0-9][0-9][0-9]',line)

 f_out.write('<tr>\n')
 f_out.write('<td> List of Heterologous reaction(s) </td>\n')
 f_out.write('<td>'+"||".join(listRxns)+'</td>\n')
 f_out.write('</tr>\n')

 for r_id in listRxns:
 f_out.write('<tr>\n')
 f_out.write('<td> Detail of heterologous reaction</td>\n')

 r_data = bkmReactDict[r_id]
 eq_name = r_data[0]
 eq_id = r_data[1]
 ec_id = r_data[2]

 f_out.write('<td>'+r_id+'
'+eq_name+'
'+eq_id+'
')

 listEC = ec_id.split("##")
 if len(listEC) ==1: ## found only one EC number

 try:
 e = listEC[0]
 data_hetGenes = ecGenesDict[e]
 db = data_hetGenes[0]
 geneSym = data_hetGenes[1]
 orfList = data_hetGenes[2]
 org_id = data_hetGenes[3]

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

2
4

 org_name = data_hetGenes[4]
 f_out.write("-------------------------------------
---"+'
'+'Enzyme information:')
 f_out.write('
'+e+'
'+'Gene symbol:
'+geneSym.replace("##",";")+'
'+"ORF: "+orfList.replace("##","||")+'
from database '+db+'
'+'Organism: '+org_name+'
')
 f_out.write('</td>\n')

 except KeyError,err:
 f_out.write("-------------------------------------
---"+'
'+'Enzyme information:')
 f_out.write('
'+listEC[0]+'
'+'No information
about genes')
 f_out.write('</td>\n')

 else:
 f_out.write("---
-------------------------------------"+'
'+'Enzyme information:')
 for e in listEC:

 try:

 data_hetGenes = ecGenesDict[e]
 db = data_hetGenes[0]
 geneSym = data_hetGenes[1]
 orfList = data_hetGenes[2]
 org_id = data_hetGenes[3]
 org_name = data_hetGenes[4]
 f_out.write('
'+e+'
'+'Gene symbol:
'+geneSym.replace("##",";")+'
'+"ORF: "+orfList.replace("##","||")+'
from database '+db+'
'+'Organism: '+org_name+'
')

 except KeyError,err:
 f_out.write('
'+e+'
'+'No information
about genes'+'
')

f_out.write('_______________________________________')

 f_out.write('</td>\n')

 f_out.write('</tr>\n')

 f_out.write('<footer>')
 f_out.write('<p>Created by: Sunisa Chatsurachai</p>')
 f_out.write('<p>Date: 2012-02-28</p>')
 f_out.write('</footer>\n')
 f_out.write('</table>\n')
 f_out.write('</body>\n')
 f_out.write('</html>\n')
 f_out.close()

def main():

 cur_dir = os.getcwd()
 input_dir = os.path.join(cur_dir,"input")

 bkmReactDict =
getBKMreaction(os.path.join(input_dir,"bkm_metabolic_reactions_2012.csv"))
 keggDict =
getKEGGcompound(os.path.join(input_dir,"kegg_compounds.csv"))
 metaCycDict =
getMetaCycCompound(os.path.join(input_dir,"metacyc_compounds.csv"))
 ecGenesDict =
getOptGenes(os.path.join(input_dir,"2012_optGenes_ecoHost_bothDB.txt"))

 maxIteration = 3

writeResultFiles(maxIteration,bkmReactDict,keggDict,metaCycDict,ecGenesDict
)

if __name__=='__main__':main()

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

2
5

A.1.6 “createIndexFile.py”

#!/usr/bin/env python
Author: Sunisa Chatsurahcai --<>
Purpose: To create index.html for link result of nonnative metabolites
Created: 28-Feb-13

import sys,os,re

def getKEGGcompound(fName):
 result = {}
 for line in open(fName,'r'):
 line = line.lstrip().rstrip().split('\t')
 cpd_id = line[0]
 cpd_syn = line[1]
 cpd_common = line[2]
 cpd_charge = line[3]
 cpd_formula = line[4]
 result[cpd_id] = [cpd_syn,cpd_formula]
 return result

def getMetaCycCompound(fName):
 result = {}
 for line in open(fName,'r'):
 line = line.lstrip().rstrip().split('\t')
 m_id = line[0]
 k_id = line[1]
 cpd_syn = "##".join([line[2],line[3]])
 cpd_charge = line[5]
 cpd_formula = line[6]
 result[m_id] = [cpd_syn,cpd_formula,k_id]
 return result

def getCompoundName(target,keggDict,MetacycDict):
 if keggDict.has_key(target):
 cpd_syn,cpd_formula = keggDict[target]
 elif MetacycDict.has_key(target):
 cpd_syn,cpd_formula,k_id = MetacycDict[target]
 else:
 cpd_syn = "None"
 cpd_formula = "None"
 return [prepareCompoundName(cpd_syn),cpd_formula]

def prepareCompoundName(cpdName):
 cpdName = cpdName.split("##")
 cpdName = set(cpdName)
 cpdName = list(cpdName)
 if len(cpdName)==1:
 met = cpdName[0]
 if met.upper() == "NONE" or met.upper() == "NULL":
 return "No information"
 else:
 return met
 else:
 data = []
 for m in cpdName:
 if m.upper() != "NONE" and m.upper()!="NULL":
 data.append(m)
 return "||".join(data)

def getAllConnectedMetaboites(targetDir):
 import glob
 allHtmls = glob.glob(os.path.join(targetDir+"/*.html"))
 allTargets = []
 for f in allHtmls:
 target = f.split("\\")[-1]
 target = target.split("_")[0]
 allTargets.append(target)
 return list(set(sorted(allTargets)))

def getHtmlLinks(cpdId,targetDir):### limited to 5 possible way only ###
 import glob,random
 htmls = glob.glob(os.path.join(targetDir,"%s*.html"%cpdId))

 if len(htmls) < 5:
 targetFiles = htmls[:]
 else:
 targetFiles = []
 targetFiles.append(random.choice(htmls))
 targetFiles.append(random.choice(htmls))
 targetFiles.append(random.choice(htmls))
 targetFiles.append(random.choice(htmls))
 targetFiles.append(random.choice(htmls))
 return targetFiles

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

2
6

def writeIndexFile(output_dir,keggDict,metaCycDict):
 import os
 cur_dir = os.getcwd()
 allNonMets = getAllConnectedMetaboites(output_dir)
 indexFile = os.path.join(cur_dir,"index.html")
 fopen = open(indexFile,'w')
 fopen.write('<html>\n')
 fopen.write('<h1>'+'Index'+'</h1>\n')

 fopen.write('<body>\n')
 fopen.write("<table border='2'>\n")
 fopen.write('<tr>\n')
 fopen.write('<th>Nonnative metabolite </th>')
 fopen.write('<th>Heterologous pathway(s)</th>')
 fopen.write('</tr>\n')

 for m in allNonMets[:]:

 targetName,targetFormula = getCompoundName(m,keggDict,metaCycDict)
 htmls = getHtmlLinks(m,output_dir)

 fopen.write('<tr>\n')
 fopen.write('<td>'+targetName+"||"+m+'</td>')

 for i,htm in enumerate(htmls):

 targetFile = htm.split("\\")[-1]### name of html file
 fopen.write('<td>')
 fopen.write(''+"Pathway_"+str(i+1)+''+'
')
 fopen.write('</td>')
 #text that responds to link
 #fopen.write('<td></td>')
 fopen.write('</tr>\n')

 fopen.write('<footer>')
 fopen.write('<p>Created by: Sunisa Chatsurachai</p>')
 fopen.write('<p>Date generated: 2012-02-28</p>')
 fopen.write('</footer>\n')

 fopen.write("</table>\n")
 fopen.write('</body>\n')
 fopen.write('</html>\n')
 fopen.close()

def main():

 cur_dir = os.getcwd()
 input_dir = os.path.join(cur_dir,"input")
 keggDict =
getKEGGcompound(os.path.join(input_dir,"kegg_compounds.csv"))
 metaCycDict =
getMetaCycCompound(os.path.join(input_dir,"metacyc_compounds.csv"))

 output_dir = os.path.join(cur_dir,"output")
 writeIndexFile(output_dir,keggDict,metaCycDict)

if __name__=='__main__':main()

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

2
7

A.2 Codon Adaptation Index by Python and

Biopython

A.2.1 “ecoHost_cai.py”

Author: SUNISA Chatsurachai --<>
Purpose: Calculate CAI when E. coli as the host
Created: 18-Nov-11

import sys,os,re

from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio.SeqIO import *
from Bio.SeqUtils.CodonUsage import *
from Bio.SeqUtils.CodonUsageIndices import *
from glob import glob
aminoDict = {'ala':['GCA','GCC','GCG','GCT'],
 'arg':['AGA','AGG','CGA','CGC','CGG','CGT'],
 'asn':['AAC','AAT'],
 'asp':['GAC','GAT'],
 'cys':['TGC','TGT'],
 'gln':['CAA','CAG'],
 'glu':['GAA','GAG'],
 'gly':['GGA','GGC','GGG','GGT'],
 'his':['CAC','CAT'],
 'ile':['ATA','ATC','ATT'],
 'lys':['AAA','AAG'],
 'met':['ATG'],
 'phe':['TTC','TTT'],
 'pro':['CCA','CCC','CCG','CCT'],
 'ser':['AGC','AGT','TCA','TCC','TCG','TCT'],
 'stop':['TAA','TAG','TGA'],
 'thr':['ACA','ACC','ACG','ACT'],
 'trp':['TGG'],
 'tyr':['TAC','TAT'],
 'val':['GTA','GTC','GTG','GTT'],
 'leu':['CTA','CTC','CTG','CTT','TTA','TTG']}

def findKOId(orf_desc):
 orf_desc = orf_desc.split()

 koID = []
 for item in orf_desc:
 if item.startswith("K") and re.findall("^K[0-9][0-9][0-9][0-9][0-
9]$",item) != []:
 koID.append(item)
 if len(koID) >=1 and koID != []:
 return koID
 else:
 return None

def findGenes(orf_desc):
 orf_desc = orf_desc.split(";")[0]
 if orf_desc.find(",") != -1:#found gene information
 print orf_desc

 else:
 pass
def printListRecordsToFile(fName, records, delimiter='\t'):
 f = open(fName,'a')
 f.write(delimiter.join(map(str,records)))
 f.write('\n')
 f.close()

def main():

 cur_dir = os.getcwd()

 heg_ecoli = CodonAdaptationIndex()
 heg_ecoli.generate_index(os.path.join(cur_dir,'heg_ecoli_seq.fasta'))
w value in Sharp's Method
 ##heg_ecoli.print_index()
 #for item,val in heg_ecoli.index.iteritems():
 #print item,val
 #sys.exit()

 kegg_seq_dir =
"D:\\SUNISA_data\\2012_CAI_calculation\\KEGG_cds\\2012JUNE_kegg_cds\\"
 list_seq_file = glob(kegg_seq_dir+"*.csv")

 for fName in list_seq_file:
 org_id = fName.split("\\")[-1].split("_")[0]

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

2
8

 for s in parse(fName,'fasta'):

 orf_id = s.id[4:]
 orf_desc = s.description
 seq = str(s.seq)
 outputFile =
os.path.join(cur_dir,"output/"+org_id+"_ecoHost.csv")

 if seq[:3].upper() in ['ATG','GTG','TTG'] and seq[-3:].upper()
in ['TAA','TAG','TGA']:
 try:
 s_cai = heg_ecoli.cai_for_gene(seq)
 except TypeError,e:
 print e
 s_cai = "None"

 else:
 print 'NOT CDS',orf_id
 s_cai = "None"

 resultGenes = findGenes(orf_desc)
 resultKO = findKOId(orf_desc)

 if resultKO != None:
 if len(resultKO) == 1:## only one KO id for this orf
 record = [orf_id,orf_desc,len(s.seq),s_cai,org_id]
 ko_id = resultKO[0]
 record.append(ko_id)
 #print record
 printListRecordsToFile(outputFile,record,"\t")
 else:
 for ko_id in resultKO:## one orf has more than one KO
id
 record = [orf_id,orf_desc,len(s.seq),s_cai,org_id]
 record.append(ko_id)
 #print record
 printListRecordsToFile(outputFile,record,"\t")

 else:
 record = [orf_id,orf_desc,len(s.seq),s_cai,org_id]
 record.append("None")
 printListRecordsToFile(outputFile,record,"\t")

 print "Finished calculation!!!!!!!!!!!!!"

if __name__=='__main__':main()

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

2
9

A.2.2 “maxCAIscoreECnumbers_ecoHost.py”

Author: Sunisa Chatsurachai --<>
Purpose: To collecte maximum CAI score for each EC number -> suggest
heterolgous gene(s)
Created: 17-May-12

import sys,os,re
import glob,time

def printListToFile(fName,record,delimiter="\t"):
 f = open(fName,'a')
 f.write(delimiter.join(map(str,record)))
 f.write("\n")
 f.close()

def getECDict(fName):
 result = {}
 for line in open(fName):
 line = line.lstrip().rstrip().split("\t")
 ec_id = line[0]
 ko_ids = line[1].split("##")
 gene_ids = line[2].split("##")
 data = zip(ko_ids,gene_ids)
 data = list(set(data))
 result[ec_id] = data

 return result

def checkNoCAI(cai_data):
 if cai_data == "None":
 return None
 else:
 return float(cai_data)

def getAllGenesFromOrganisms(targetDir,cur_koId):
 caiList = []
 orgList = []
 orfList = []
 for f in glob.glob(targetDir+'/*.csv'):
 for line in open(f):
 line = line.lstrip().rstrip().split("\t")
 cai_data = line[-3]

 org_id = line[-2]
 ko_id = line[-1]
 orf_id = line[0]

 if ko_id == cur_koId:
 if checkNoCAI(cai_data) != None:
 cur_cai = cai_data
 else:
 cur_cai = 0.00
 caiList.append(cur_cai)
 orgList.append(org_id)
 orfList.append(orf_id)

 return sorted(set(zip(caiList,orgList,orfList)))

def getCAIFromAllSubunit(caiDict):
 allKK = []
 allCai = []
 allGene = []
 for kk,vv in caiDict.iteritems():
 keggID = kk
 caiTuples = vv[0]
 keggGene = vv[1]
 allKK.append(keggID)
 allGene.append(keggGene)
 allCai.extend(caiTuples)

 orgDict = {}
 for i,v,k in allCai:
 cai = float(i)
 orgID = v
 orfID = k
 if orgDict.has_key(orgID):## already have this organism
 caiData,listOrf = orgDict[orgID]
 caiData.append(cai)
 listOrf.append(orfID)
 orgDict[orgID] =[caiData,listOrf]

 else:
 orgDict[orgID] = [[cai],[orfID]]
 result = []
 for o, caiOrgs in orgDict.iteritems():
 oId = o

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

3
0

 caiOrf = "##".join(caiOrgs[1])

 avg_cai = sum(caiOrgs[0],0.0)/len(caiOrgs[0])
 #print oId,avg_cai,caiOrf,"##".join(allKK),"##".join(allGene)
 rec = (avg_cai,oId,caiOrf,"##".join(allKK),"##".join(allGene))
 result.append(rec)
 return list(sorted(set(result)))

def getOrgDict(fName):
 result = {}
 for line in open(fName):
 line = line.lstrip().rstrip().split("\t")
 org_id = line[0]
 org_name = line[1]
 result[org_id] = org_name
 return result

def main():
 start = time.clock()
 cur_dir = os.getcwd()
 targetDir = os.path.join(cur_dir,"output")
 orgNameDict = getOrgDict(os.path.join(cur_dir,"input/orgName.csv"))
 ecDict = getECDict(os.path.join(cur_dir,"input/ecLinkKOIDs.csv"))
 outputFile = os.path.join(cur_dir,"2012OCT_maxCAI_ecoHost_kegg.csv")
 for k,v in ecDict.iteritems():
 ec_number = k
 if len(v) == 1:## found only one KO id -> 1 EC number
 ko_id, gene = v[0]
 #print k,ko_id,gene
 caiScores = getAllGenesFromOrganisms(targetDir,ko_id)
 if caiScores != []:
 maxCai,oId,ORFid = caiScores[-1]
 orgName = orgNameDict[oId]
 rec =
[ec_number,'KEGG',gene,maxCai,ORFid,oId,orgName,ko_id]
 printListToFile(outputFile,rec,"\t")

 else:
 print "Empty CAI not Found!!!!!!!!!","\t",ec_number

 else:## found more than one KO id -> 1 EC number
 caiDict = {}
 for kdata in v:

 ko_id, gene = kdata
 #print k,ko_id,gene
 caiScores = getAllGenesFromOrganisms(targetDir,ko_id)
 caiDict[ko_id] = [caiScores,gene]
 allResults =
getCAIFromAllSubunit(caiDict)##(avg_cai,oId,caiOrf,"##".join(allKK),"##".jo
in(allGene))

 if allResults != []:

 result = allResults[-1]
 maxCai = result[0]
 oId = result[1]
 ORFids = result[2]
 koIDs = result[3]
 genes = result[4]
 orgName = orgNameDict[oId]

 rec =
[ec_number,'KEGG',genes,maxCai,ORFids,oId,orgName,koIDs]
 printListToFile(outputFile,rec,"\t")
 else:
 print "Empty CAI not Found!!!!!!!!!","\t",ec_number

 end = time.clock()
 print "Time elapsed = ", (end - start)/3600, "hrs"
if __name__=='__main__':main()

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

3
1

A.3 Model simulations by MATLAB

A.3.1 Main script “iJR904_maxTarget_r_glpk_par.m”

clear
clc
recycle('on');
curr_path= pwd;
cd(curr_path);
funct_folder = addpath(strcat(curr_path,'\function'));
start_time = clock;

%%% clock returns a 6-element date vector containing the current date and
time in decimal form:
%%% [year month day hour minute seconds]

%%%%%%%%% In put files for simulation %%%%%%%%%%%%
rxn_ext_file_nh3 = fullfile(curr_path,'\input\iJR904_reaction_ext.xls');%%
external reaction (substrate uptake and product secretion
rxn_c_nh3_file = fullfile(curr_path,'\input\iJR904_reaction_cyt.xls'); %%
cytosol reaction including Biomass equation
%%%

%%%%%% Case Basic condition %%%%%%%%%%%%
% lb(v.glucose,1)= -20;
% ub(v.glucose,1) = -20;
%
% lb(v.atpm,1) = 7.6;
% ub(v.atpm,1) = 7.6;
%
% lb(v.o2,1)= -20;
% ub(v.o2,1) = 0;
%
% lb(v.nh3,1) = -100;
% ub(v.nh3,1) = 0;
%
% lb(v.so3,1) = -100;
% ub(v.so3,1) = 0;
%
% lb(v.pi,1) = -100;

% ub(v.pi,1) = 0;
%%%%%%%%%%%%%%%% END%%%%%%%%%%%%%%%%%%%%%%

[wt ,v] = createLPMatrixBasicCon(rxn_c_nh3_file,rxn_ext_file_nh3);
save wt_data_basic_condition.mat wt;

% [wt ,v] = createLPMatrixMicroaerobic(rxn_c_nh3_file,rxn_ext_file_nh3);
% save wt_eco_microaerobic_condition.mat wt;

%%%%%%%%% Write simulation flux of wild type to text file %%%%%%%%%%
% fid = fopen('iJR904_wt_flux_microaerobic.txt','w');
% for aa =1:1:size(wt.reaction_id,1);
% if iscell(wt.reaction_id{aa,1}) ==0 || iscell(wt.reaction_id{aa,2})==
0;
% rxn_data = wt.reaction_id{aa,1};
% rxn_id = wt.reaction_id{aa,2};
% rxn_no = wt.reaction_id{aa,3};
% rxn_flux = num2str(wt_flux(aa));
% else
% rxn_data = wt.reaction_id{aa,1}{:};
% rxn_id = wt.reaction_id{aa,2}{:};
% rxn_no = wt.reaction_id{aa,3};
% rxn_flux = num2str(wt_flux(aa));
% end
% fprintf(fid,rxn_data());
% fprintf(fid,'\t');
% fprintf(fid,rxn_id());
% fprintf(fid,'\t');
% fprintf(fid,num2str(rxn_no));
% fprintf(fid,'\t');
% fprintf(fid,rxn_flux);
% fprintf(fid,'\n');
%
% end
% fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

totalIteration = 23;
matlabpool open 12
timeCals=zeros(totalIteration,3);
for iteration=1:totalIteration;

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

3
2

 if
exist(strcat(curr_path,'iteration_',num2str(iteration)),'dir')==0;%% if no
Directory, make directory for data
 mkdir(curr_path,
strcat('iteration_',num2str(iteration)));
 end
 nonNativeMetPath =
strcat('C:\Users\sunisa\Desktop\sunisa\2012SEP_BKM_react\addReactions\assum
e_r\eco_add\iteration_',num2str(iteration));
 listAllFiles = dir(fullfile(nonNativeMetPath,'*.txt'));
 each_iteration_result =
fullfile(strcat('iJR904_maxTarget_producible_basicCon_r_',num2str(iteration
),'.csv'));
 load wt_data_basic_condition.mat;
 tic;
 parfor fName=1:length(listAllFiles);
 % parfor fName=1:10;
 targetFnamePath =
fullfile(nonNativeMetPath,listAllFiles(fName).name);
 curFname = listAllFiles(fName).name;
 rxn_data = textread(targetFnamePath,'%s');
 canRxnName = rxn_data(1);
 addRxns =
getAdditionalBKMrxn_mod(targetFnamePath,size(wt.reaction_matrix_ce,1));
 mutant_reaction_id = [wt.reaction_id;addRxns];

 canRxns = cellstr(rxn_data((2:end),1));%% first line shows the
information of connectable metabolites (BKM-react ID)
 [mutant_rxns,mutant_metabolites,met_row] =
convertStoiAsNumber(canRxns,size(wt.metabolites,1),wt.metabolites);
 [reactionMatrixExpand,lb,ub,~] =
reactionMatrix(mutant_rxns,size(wt.reaction_matrix_ce,1)+1,wt.lb,wt.ub,wt.r
eaction_matrix_ce);

 %%% add lower and upper of target reaction %%%
 lb(size(reactionMatrixExpand,1),1) =0.0;
 ub(size(reactionMatrixExpand,1),1)=1000.0;
 %%

 %%% Maximize biomass first %%%%
 biomass_rxn = wt.biomass_rn;
 mutant_metabolites = unique(mutant_metabolites);
 mutant_lb = lb;
 mutant_ub = ub;

 targetReaction = size(reactionMatrixExpand,1);%% target reaction
of nonNative metabolite

 [LP_matrixExpand] =
makeLPMatrix_mod(reactionMatrixExpand,mutant_metabolites);
 [s,t] = size(LP_matrixExpand); %% s = no of metabolites, t = no of
reactions;
 b = zeros(s,1);
 c = zeros(1,t);
 c(1,v.biomass+1) = 1; %% determine objective function
 objType = -1 %% for gurobi solver -> 1 = minimize, -1 = maximize
obj function
 conType = repmat('S',1,s);
 varType = repmat('C',1,t);
% [mt_flux,mt_fval,mt_exitflag,mt_output,mt_lambda] =
gurobi_mex(c',objType,LP_matrixExpand,b,conType,mutant_lb,mutant_ub,varType
);

 [mt_flux,mt_fval, mt_status, mt_extra] =glpk (c, LP_matrixExpand, b,
mutant_lb,mutant_ub, conType, varType, objType);
 mt_growth = num2str(mt_flux(v.biomass,1));
 disp(['Expand model maximize E. coli growth (assume r) = '
mt_growth 'solution status if 2 , unique == ' num2str(mt_status)])

%%%

 %%% Maximize Target production of mutant without fixing
growth %%%%%%%%%%%%%%%%%%%%
 mt_lb = mutant_lb;
 mt_ub = mutant_ub;
 mt_lb(v.biomass+1,1) = 0;
 mt_ub(v.biomass+1,1) = mt_flux(v.biomass+1,1);

 v_carbon = mt_flux(v.glucose,1);
 [lpMatrixExpand] =
makeLPMatrix_mod(reactionMatrixExpand,mutant_metabolites);
 [m,n] = size(lpMatrixExpand);
 b_target = zeros(m,1);
 c_target = zeros(1,n);
 c_target(1,targetReaction) = 1; %% Target reaction
 objType_target = -1; %% to maximize targer reaction flux
 conType_target = repmat('S',1,m);

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

3
3

 varType_target = repmat('C',1,n);
% [mt2_flux,mt2_fval,mt2_exitflag,mt2_output,mt2_lambda] =
gurobi_mex(c_target',objType_target,lpMatrixExpand,b_target,conType_target,
mt_lb,mt_ub,varType_target);
 [mt2_flux,mt2_fval, mt2_status, mt2_extra] =glpk
(c_target,lpMatrixExpand, b_target, mt_lb,mt_ub, conType_target,
varType_target, objType_target);

 disp(['Expand model maximize target of E. coli growth (r)= '
num2str(mt2_flux(v.biomass)) 'At iteration = ' num2str(iteration)
'Solution status if 2, unique == ' num2str(mt2_status)])
 disp(['Expand model maximize target of E. coli taget (r)= '
num2str(mt2_flux(targetReaction)) 'At iteration = ' num2str(iteration)
'Solution station if 2, unique == ' num2str(mt2_status)])

%%%

 %% check target production higher than 1% of carbon source%%
 if mt2_status ==5 && mt2_flux(targetReaction) > 0.00;
 t_flux = num2str(mt2_flux(targetReaction));
 t_growth = num2str(mt2_flux(v.biomass));

 wfile= fopen(each_iteration_result,'a');
 fprintf(wfile,'%s\t%s\t%s\t%s\n',curFname(1:end-
4),t_flux,t_growth,num2str(iteration));
 fclose(wfile);

 end
 outputFile =
strcat(curr_path,'\iteration_',num2str(iteration),'\',listAllFiles(fName).n
ame(1:end-4),'_Flux.txt');
 writeOutputFluxToFile_par(outputFile,mutant_reaction_id,mt2_flux);

 end

 timeCals(iteration,1) = iteration;
 timeCals(iteration,2) = length(listAllFiles);
 % timeCals(iteration,2) = 10;
 timeCals(iteration,3) = toc;

 fTime = fopen('eco_maxTarget_r_glpk_time.txt','a');

fprintf(fTime,'%s\t\%s\t%s\n',num2str(iteration),num2str(length(listAllFile
s)),num2str(toc));

 fclose(fTime);

end
matlabpool close
xlswrite('eco_maxTarget_r_glpk.xls',timeCals);
disp('Finised calculation !!!! E. coli assume r BY GLPK solver ')

%% clock ==> [year month day hour minute seconds] %%
 %% start_time(1,1) = year
 %% start_time (1,2) = month
 %% start_time (1,3) = day
 %% start_time (1,4) = hour
 %% start_time (1,5) = minute
 %% start_time(1,6) = seconds

end_time = clock;
s_year = start_time(1,1);
s_month = start_time(1,2);
s_day = start_time(1,3);
s_hour = start_time(1,4);
s_min = start_time(1,5);

e_year = end_time(1,1);
e_month = end_time(1,2);
e_day = end_time(1,3);
e_hour = end_time(1,4);
e_min = end_time(1,5);

disp(['starting time Year Month Day Hour Minute = ' num2str(s_year)
num2str(s_month) num2str(s_day) num2str(s_hour) num2str(s_min)])
disp(['End time Year Month Day Hour Minute = ' num2str(e_year)
num2str(e_month) num2str(e_day) num2str(e_hour) num2str(e_min)])

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

3
4

A.3.2 “createLPMatrixBasicCon.m”

function [wt,v] =createLPMatrixBasicCon(rxn_c_nh3_file,rxn_ext_file_nh3)

[reaction_cytosol_data,reaction.cytosol_id] = getReactions(rxn_c_nh3_file);

[reaction_c.eq,reaction_c.metabolite,m_row]=convertStoiAsNumber(reaction_cy
tosol_data,0,[]);
[reaction_matrix_cytosol, lower_bound, upper_bound, ~] =
reactionMatrix(reaction_c.eq,1,[],[],{});

[~,rxn_extracellular] = xlsread(rxn_ext_file_nh3);

[reaction_matrix_withEXT,reaction_ext_id,lb,ub] =
addExtReaction(rxn_extracellular,reaction_matrix_cytosol,lower_bound,upper_
bound);
met_ext = reaction_ext_id(1:end,1);
wt.cytosolRxns = reaction.cytosol_id;
wt.reaction_matrix_ce = reaction_matrix_withEXT;
wt.metabolite_ext = met_ext;
wt.reaction_id =[reaction.cytosol_id;reaction_ext_id];
wt.metabolite_c = reaction_c.metabolite;

wt.metabolites = unique([reaction_c.metabolite;met_ext]);

[~,cc_rns] = xlsread(rxn_ext_file_nh3);
[~,v]=keepTransportRn(wt.reaction_id,cc_rns);

[LP_matrix_original] =
makeLPMatrix_mod(reaction_matrix_withEXT,wt.metabolites);

%%%%%% Case Basic condition %%%%%%%%%%%%

lb(v.glucose,1)= -20;
ub(v.glucose,1) = -20;

lb(v.o2,1)= -20;
ub(v.o2,1) = 0;

lb(v.nh3,1) = -20;

ub(v.nh3,1) = 0;

lb(v.so3,1) = -20;
ub(v.so3,1) = 0;

lb(v.pi,1) = -20;
ub(v.pi,1) = 0;

%%%%%%%%%%%%%%%% END%%%%%%%%%%%%%%%%%%%%%%

wt.lpMatrix = LP_matrix_original;
wt.biomass_rn =v.biomass;
wt.lb = lb;
wt.ub = ub;

end

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

3
5

A.3.3 “getReactions.m”

function [rn_eq,rn_tag]= getReactions(target_file)

%%
%%% To collect all strings of metabolic reaction %%
%%% and keep all strings in one column %%
%%% outputs are rn_eq(n,1) and rn_tag (keep reaction ID) %%
%%

%%% First to keep reaction tag in which to identify what target reaction
%%% is?
%%% Reacation data was read and keep in reaction_set variable:
%%% reaction_set(1,1) = reaction_id
%%% reaction_set(1,2) = reaction_palsson_id
%%% reaction_set(1,3) = reaction_kegg_id
[~,reaction_set] = xlsread(target_file);
rxns =cell(size(reaction_set),3);
for v=1:size(reaction_set,1);
 rxns{v,1}= reaction_set(v,3);
 rxns{v,2} = reaction_set(v,1);
 rxns{v,3} = v;
end
%%%

%%Second to keep metabolic information by split text data into cellstr data
%%by using space as delimiter.
%% Ex:
%%
{'FADH2_TCA[c]';'+';'VITAMIN_K_{2}[c]';'+';'2.0';'C00080[e]';'=>';'FAD_TCA[
c]';'+';'REDUCED-MENAQUINONE[c]';'+';'2.0';'C00080[c]';}

for k=1:size(rxns,1);%% loop for number of reaction in rxns
 if k==1;
 remain = rxns{1,1}; %% start from first or stoichometry coefficient
in first reaction.
 position = 0;
 kk= 0;
 while kk < k;
 %% token = strtok('str',delimiter) returns the first token in
 %% the text string str, that is, the first set of characters
before a delimiter is encountered.

 %%The vector delimiter contains valid delimiter characters. Any
leading delimiters are ignored.
 [str,remain] = strtok(remain);
 if strcmp(str,{''});
 kk=2;%% update kk cause no more string in this reaction
 end
 position = position+1;
 result{position,1} = str; %% update position for collecting str
found in each reaction

 end
 elseif k>1;%% not first reaction
 remain = rxns{k,1};
 kkk = 0;
 while kkk ==0;
 [str,remain] = strtok(remain);
 if strcmp(str,{''});
 kkk = 1;%% update kkk cause no more string in this reaction
 else
 result{position,1} = str;
 position = position+1;
 end
 end

 end % if k==1
end % for k=1:size(rxns,1)
rn_eq = result;
rn_tag = rxns;

end

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

3
6

A.3.4 “convertStoiAsNumber.m”

function [reaction metabolite met_rows] =
convertStoiAsNumber(rxn_cytosol,m_rows, metabolite_list)

%%%
%%% From getReactions function,
%%% all data is in string type as well as
%%% stoichiometry coefficient.
%%% To covert the stoichiometry coefficient to number (n,1)
%%% and collect metabolite ID
%%% outputs are reaction array (n,1) and metabolites (m,1)
%%%
%% To convert stoichiometry as a number
for i=1:size(rxn_cytosol,1); % size of rxn_cytosol equal to a member of
array

 if iscell(rxn_cytosol{i,1});%%% convert cell to char for comparing with
string
% rxn_cytosol{i,1} = char(rxn_cytosol{i,1}{:});
 temp = char(rxn_cytosol{i,1}{:});

 if str2num(temp) ~= 0;%% if temp is numeric:
 temp = str2num(temp);
 rxn_cytosol{i,1} = temp;
 else
 pat = '\w+\[+[a-z]+\]'; %% find pattern of compartment such
as[c], [m] ..
 if regexp(temp, pat) ~= 0; %% found metabolites from the
compartment
 m_rows = m_rows+1; %% set position of metabolite in array
 metabolite_list{m_rows,1} = temp;
 rxn_cytosol{i,1} = temp;
 else
 temp = temp;
 rxn_cytosol{i,1} = temp;
 end

 end
 else
 temp = rxn_cytosol{i,1};

 if str2num(temp) ~= 0;%% if temp is numeric:
 temp = str2num(temp);
 rxn_cytosol{i,1} = temp;
 else
 pat = '\w+\[+[a-z]+\]'; %% find pattern of compartment such
as[c], [m] ..
 if regexp(temp, pat) ~= 0; %% found metabolites from the
compartment
 m_rows = m_rows+1; %% set position of metabolite in array
 metabolite_list{m_rows,1} = temp;
 rxn_cytosol{i,1} = temp;
 else
 temp = temp;
 rxn_cytosol{i,1} = temp;
 end

 end
 end

end
metabolite = metabolite_list;
reaction = rxn_cytosol;
met_rows = m_rows;

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

3
7

A.3.5 “reactionMatrix.m”

function [matrix, lb, ub, row] =
reactionMatrix(rxn_cytosol,rows,lower_bound,upper_bound,reaction_matrix)

% create reaction matrix
% input reaction in cytosol
% retrun reaction matrix, lowerbound, upperbound and row of reaction

% reaction_matrix = {};
% rows = 1;
% lower_bound = [];
% upper_bound = [];
columns = 1;
% Making reaction matrix %%%

for i=1:size(rxn_cytosol,1)-1;%% minus one because last metabolite
determine at line 61
 reaction_matrix{rows,columns} = rxn_cytosol{i};
 if isnumeric(rxn_cytosol{i}) ==1;
 rows = rows; % found stoichiometry so row number not increase

 elseif strcmp(rxn_cytosol{i},'+') == 1 | strcmp(rxn_cytosol{i},'=>')
== 1 | strcmp(rxn_cytosol{i},'<=>') == 1;
 rows = rows;

 if strcmp(rxn_cytosol{i},'=>') == 1;

 lower_bound(rows,1)= 0.00;
 upper_bound(rows,1) = 1000.0;

 elseif strcmp(rxn_cytosol{i},'<=>') == 1;

 lower_bound(rows,1)=(-1)*(1000.0);
 upper_bound(rows,1) = 1000.0;

 end

 elseif isnumeric(rxn_cytosol{i}) == 0 & strcmp(rxn_cytosol{i},'+') ==
0 & strcmp(rxn_cytosol{i},'=>') == 0 ...
 & strcmp(rxn_cytosol{i},'<=>')== 0;
 %%% final metabolite name (cpd_id) from previous reaction %%%

 if ~isnumeric(rxn_cytosol{i+1}) & ~strcmp(rxn_cytosol{i+1},'+') &
~strcmp(rxn_cytosol{i+1},'=>') & ~strcmp(rxn_cytosol{i+1},'<=>');
 %% Next array should be metabolite (next reaction) so increase
 %% row (number of reaction increase)
 rows = rows+1;
 columns = 0;
 elseif isnumeric(rxn_cytosol{i+1}) == 1 %% only stoichiometry
before the first metabolite of this reaction
 %% next array must be metabolite for starting reaction
 if ~isnumeric(rxn_cytosol{i+2}) & ~strcmp(rxn_cytosol{i+2},'+')
& ~strcmp(rxn_cytosol{i+2},'=>') & ~strcmp(rxn_cytosol{i+2},'<=>');
 rows = rows+1;
 columns = 0;

 end
 end
 end
 columns = columns+1; %% if not metabolite have to extend column for
equal size of all reaction

end

reaction_matrix {rows, columns} = rxn_cytosol{size(rxn_cytosol,1)}; %%
determine the last metabolite of reaction
rows = rows+1; % adding one row for starting next reaction from external
reaction
matrix = reaction_matrix;
lb = lower_bound;
ub = upper_bound;
row = rows;

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

3
8

A.3.6 “makeLPMatrix_mod.m”

function [LP_matrix] =
makeLPMatrix_mod(reaction_matrix_withEXT,Allmetabolites)

%%%% Making LP matrix %%%%%%

[m,n] = size(reaction_matrix_withEXT);
LP_matrix =sparse(length(Allmetabolites),m);

%%% construct stoi matrix %%%%%
nonMetsList = {'<=','=>','<=>'};
for i =1:m
 oneRxn = reaction_matrix_withEXT(i,1:end);
 for sign=1:3
 pos = find(strcmp(nonMetsList(sign),oneRxn));
 if (~isempty(pos))
 sign_pos = pos;
 end
 end

 reactant_mets = reaction_matrix_withEXT(i,1:sign_pos-1);
 product_mets = reaction_matrix_withEXT(i,sign_pos+1:end);

 for k=1:length(reactant_mets);
 item = reactant_mets{1,k};
 m_pos = find(strcmpi(item,Allmetabolites));

 if (~isempty(m_pos)) && k==1; %% found start metabolite %%

 LP_matrix(m_pos,i) = -1;

 elseif (~isempty(m_pos)) && k > 1; %% found metabolite %%

 if isempty(reactant_mets{1,k-1})||(strcmp(reactant_mets{1,k-
1},'+'))==1;
 LP_matrix(m_pos,i) = -1;
 elseif isnumeric(reactant_mets{1,k-1});
 LP_matrix(m_pos,i) = (-1)*(reactant_mets{1,k-1});
 end

 end

 end

 for k=1:length(product_mets);
 item = product_mets{1,k};
 m_pos = find(strcmpi(item,Allmetabolites));

 if (~isempty(m_pos)) && k==1; %% first of product
 LP_matrix(m_pos,i) = 1;

 elseif (~isempty(m_pos)) && k >1;

 if isempty(product_mets{1,k-1})||(strcmp(product_mets{1,k-
1},'+'))==1;
 LP_matrix(m_pos,i) = 1;
 elseif isnumeric(product_mets{1,k-1});
 LP_matrix(m_pos,i) = (1)*(product_mets{1,k-1});
 end
 end

 end

end

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

3
9

A.3.7 “addExtReaction.m”

function [reaction_matrix_withEXT,reaction_ext_id,lower_bound,upper_bound]
= addExtReaction(rxn_ext_item,reaction_matrix,lb,ub)

%% add extracellular reaction %%%
%% rxn_ext_item(1,1:end) = {'[e]12ppd-S','C02917','=>';}

reaction_ext_id = cell(size(rxn_ext_item,1),2);
rows = size(reaction_matrix,1);
rows = rows+1;
columns = 1;

for i=1:size(rxn_ext_item,1);

 reaction_ext_id{i,1} = strcat(rxn_ext_item{i,2},'[e]');%% metabolite
 reaction_ext_id{i,2} = rxn_ext_item{i,1};%% reaction id
 reaction_ext_id{i,3} = rows;%% no_reaction in reaction_matrix

 reaction_matrix{rows,columns} =strcat(rxn_ext_item{i,2},'[e]');%%
external metabolite in KEGG ID

 if strcmp(rxn_ext_item{i,3},'=>')==1;
 lb(rows,1) = 0.0;
 ub(rows,1) = 1000.0;
 columns = columns+1;
 reaction_matrix{rows,columns} = rxn_ext_item{i,3};
 elseif strcmp(rxn_ext_item{i,3},'<=>')==1;
 lb(rows,1) = -1000.0;
 ub(rows,1) = 1000.0;

 columns = columns+1;
 reaction_matrix{rows,columns} = rxn_ext_item{i,3};
 end
 rows = rows+1;
 columns=1;
lower_bound = lb;
upper_bound = ub;
reaction_matrix_withEXT = reaction_matrix;

end

A.3.8 “getAdditionalBKMrxn_mod.m”

function no_add_rxns =
getAdditionalBKMrxn_mod(target_fName_path,original_reaction_no)
f_target = fopen(target_fName_path,'r');
tLine = fgetl(f_target);
fLine = tLine;
findRxnPos = regexpi(fLine,'R[0-9][0-9][0-9][0-9][0-9]');
rxnsList = cell(size(findRxnPos,2),1);

for item=1:size(findRxnPos,2);
 rn_id = fLine(findRxnPos(item):findRxnPos(item)+5);
 rxnsList{item} = rn_id;
end

rxnsList = unique(rxnsList);
rxnsList = [rxnsList;'addRxn1';'addRxn2'];%% add transporter reactions (by
diffusion)
no_add_rxns = cell(length(rxnsList),3);

pos = 0;
while pos < length(no_add_rxns);
 pos = pos+1;
 tLine = fgetl(f_target);
 no_add_rxns{pos,1} = tLine;
 no_add_rxns{pos,2} = rxnsList{pos};
 no_add_rxns{pos,3} = original_reaction_no+pos;

end
fclose(f_target);

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

4
0

A.3.9 “keepTransportRn.m”

function [central_reaction,v]= keepTransportRn(reaction_id,t_reaction)
central_reaction = cell(size(t_reaction,1),4);
for vv=1:size(t_reaction,1);
 target_rnID = t_reaction(vv,1);

 for k=1:size(reaction_id,1);
 x= reaction_id(k,2);
 r_id = x{:};

 if strcmpi(r_id,target_rnID) ==1;
 central_reaction{vv,1} =reaction_id{k,3};
 central_reaction{vv,2} = t_reaction(vv,1);%% rn_id
 central_reaction{vv,3} = t_reaction(vv,2);%% ec_id
 central_reaction{vv,4} = t_reaction(vv,3);%% pathway name

 end

 if strcmp(r_id,'BIOMASS_TRANS')==1;
 v.biomass =reaction_id{k,3};

 elseif strcmp(r_id, '[e]etoh')==1;
 v.eth = reaction_id{k,3};

 elseif strcmp(r_id,'[e]glc-D')==1;
 v.glucose = reaction_id{k,3};

 elseif strcmp(r_id,'[e]o2')==1;
 v.o2 =reaction_id{k,3};

 elseif strcmp(r_id,'[e]ac')==1;
 v.acetate =reaction_id{k,3};

 elseif strcmp(r_id,'[e]lac-D')==1;
 v.lactate =reaction_id{k,3};

 elseif strcmp(r_id,'[e]succ')==1;
 v.succ =reaction_id{k,3};

 elseif strcmpi(r_id,'[e]co2')==1;

 v.co2=reaction_id{k,3};

 elseif strcmp(r_id,'[e]nh3')==1;
 v.nh3=reaction_id{k,3};

 elseif strcmp(r_id,'[e]pi')==1;
 v.pi =reaction_id{k,3};

 elseif strcmp(r_id,'[e]so4')==1;
 v.so3 =reaction_id{k,3};

 elseif strcmp(r_id,'[e]h2o')==1;
 v.h2o =reaction_id{k,3};
 elseif strcmp(r_id, 'ATPM') == 1;
 v.atpm = reaction_id{k,3};

 end
 end

end

end

A
p

p
e

n
d

i
x

 A

 P
a

g
e

 |
 1

4
1

A.3.10 “writeOutputFluxToFile.m”

function
writeOutputFluxToFile_par(fileName,mutant_reaction_id,mutant_maxTargetFlux)

f_flux = fopen(fileName,'w');
flux = mutant_maxTargetFlux;
parfor aa =1:1:size(mutant_reaction_id,1);
 if iscell(mutant_reaction_id{aa,1}) ==0 ||
iscell(mutant_reaction_id{aa,2})== 0;
 rxn_data = mutant_reaction_id{aa,1};
 rxn_id = mutant_reaction_id{aa,2};
 rxn_no = mutant_reaction_id{aa,3};
 rxn_flux = num2str(flux(aa));
 else
 rxn_data = mutant_reaction_id{aa,1}{:};
 rxn_id = mutant_reaction_id{aa,2}{:};
 rxn_no = mutant_reaction_id{aa,3};
 rxn_flux = num2str(flux(aa));
 end
 fprintf(f_flux,rxn_data());
 fprintf(f_flux,'\t');
 fprintf(f_flux,rxn_id());
 fprintf(f_flux,'\t');
 fprintf(f_flux,num2str(rxn_no));
 fprintf(f_flux,'\t');
 fprintf(f_flux,rxn_flux);
 fprintf(f_flux,'\n');
end
fclose(f_flux);

Appendix B

Table B.1 Values of relative adaptiveness (w) of codon generated from highly

expressed genes of B. subtilis, E. coli, and S. cerevisiae.

List of publications

Chatsurachai, S., Furusawa, C., and Shimizu, H. (2012). An in silico platform for the

design of heterologous pathways in nonnative metabolite production. BMC

Bioinformatics, 13, 93.

Chatsurachai, S., Furusawa, C., and Shimizu, H. (2013). ArtPathDesign – Rational

heterologous pathway design system for the production of nonnative

metabolites. J Biosci Bioeng (in press)

Acknowledgements

This thesis would not be possible without the contribution of many people. I

would like to express my deepest gratitude to Prof. Dr. Hiroshi Shimizu, Metabolic

Engineering, Department of Bioinformatic Engineering, Graduate School of

Information Science and Technology, Osaka University, who has given me an

opportunity to study in his laboratory and for endless support, invaluable guidance,

patience, and encouragement for my research.

I would like to express my sincere appreciation to Prof. Dr. Hisao Ohtake and Prof.

Dr. Toshiya Muranaka for their helpful comments and suggestions to improve my

thesis. I would like to express my sincere gratitude to Prof. Dr. Chikara Furusawa for

the immeasurable amount of support, endless patience, and careful guidance he has

provided throughout this study.

I would like to thank to Assoc. Prof. Dr. Fumio Matsuda for his helpful advices,

comments, and encouragements.

I am especially grateful to all members in Shimizu’s laboratory for their help

throughout my study.

I would like to gratefully acknowledge the Ministry of Education, Culture, Sports,

Science and Technology (MEXT) of Japan for the Japanese government

(Monbukagakusho) scholarship.

I would like to thank my best friend Aiyada Aroonsri for her helpful advices and

support for all these years.

I would like to thank all my friends for their support throughout these years in

Japan. Without them, my life in Japan is not go as nice as this.

I am especially grateful to my parents for their support, love and continuous

encouragements throughout many years.

Sunisa Chatsurachai

	Cover
	Table of Contents
	Chapter 1 General introduction
	1.1 Importance of bio-based process for valuable chemicals
	1.2 Importance of computational methods for metabolic pathway design
	1.3 Modeling and analysis of genome-scale metabolic networks
	1.4 Microorganisms used as industrial cell factories
	1.5 Objective of the work
	1.6 Outline of the thesis

	Chapter 2 Development of an algorithm to design heterologous pathway
	2.1 Introduction
	2.2 Methods
	2.2.1 Construction of an in-house database of metabolic reactions
	2.2.2 Genome-scale metabolic model of host microorganisms
	2.2.3 Heterologous pathway identification for target production
	2.2.4 Flux balance analysis (FBA)

	2.3 Results and discussion
	2.3.1 Identification of heterologous pathway(s)
	2.3.2 Evaluation of production feasibility
	2.3.3 Differences in target production capacity among host microorganisms

	2.4 Summary

	Chapter 3 Selection of heterologous genes using CAI score
	3.1 Introduction
	3.2 Materials and methods
	3.2.1 Constructing an in-house database of metabolic reactions
	3.2.2 Screening for artificial heterologous pathways involved in the production of targets
	3.2.3 Codon Adaptation Index (CAI)

	3.3 Results and discussion
	3.3.1 Identification of heterologous pathways
	3.3.2 Relationship between CAI score and protein abundance
	3.3.3 Screening of heterologous genes with higher CAI scores
	3.3.4 Examples of results in hyper-text based user interface
	3.3.5 Examples of new heterologous pathways for the production of nonnative metabolites in the specific host

	3.4 Summary

	Chapter 4 General conclusion and Future perspective
	4.1 General conclusion and discussion
	4.2 Future perspective

	References
	Appendix A
	Appendix B
	List of publications
	Acknowledgements

