

Title	Screening of Novel Secondary Metabolites from Endophytic Fungi by Chemical Library Analysis
Author(s)	Siriwach, Ratklaow
Citation	大阪大学, 2013, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/26207
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Synopsis of Thesis

Title: Screening of Novel Secondary Metabolites from Endophytic Fungi by Chemical Library Analysis

(化合物データベースを利用した植物内生菌からの新規生理活性物質の探索)

Name of Applicant Ratklaor Siriwatch

Chapter 1: Introduction

Extensive demand on new substances for various human utilities has led to continued screening for novel chemical structures. Microorganisms have been serving as industrial producers of bioactive compounds which are highly effective and of low toxicity with a minor environmental impact. Fungal endophytes, defined as fungi that live asymptotically in plant tissue, widely distribute in terrestrial and aquatic plants, and several secondary metabolites possessing diverse chemical structures and various biological activities have been discovered from endophytic fungi. In addition, the fact that they produce metabolites identical with or similar to those from the host plants has raised attractive possibility to replace plants with endophytes as the producer of the desired bioactive compounds. The aim of this research was to obtain novel compounds and assess the potential of endophytic fungi inhabiting medicinal plants in Thailand.

Chapter 2: Isolation and taxonomic identification of endophytic fungi from medicinal plants in Thailand, and screening of novel compounds from the isolates by chemical library analysis

Eighty six endophytic fungi were isolated from leaves of 30 spp. of medicinal plants harvested in a botanical garden, Mahidol University, Thailand, and taxonomically identified into 18 genera by partial 18S and ITS rDNA sequences. The criteria of screening were established in order to obtain novel compounds efficiently. In the first screening-strategy, chemical library analysis using UV/Vis database-coupled HPLC was adopted and gave two new compounds together with five known compounds (~33% possibility to find novel structures). In the improved screening-strategy, by adding 2 more steps (LC/MS analysis and comparison using Dictionary of Natural Products, DNP), two novel structures were found together with two known compounds (~50% possibility to find novel structures).

Chapter 3: Novel chemical structures and bioactive metabolites from the candidate endophytic fungi

In chapter 3, the endophytic fungi selected by the screening process described in chapter 2 were cultivated under optimum conditions for producing target putative novel compounds. The putative novel compounds were

isolated, and their chemical structures and biological activities were determined. Four novel compounds were obtained: xylaropyrone, mycoleptone, and bipolamides A and B. Xylaropyrone, a novel pyrone compound consisted of 2 unique branch chains, was obtained from *Xylaria fejeensis* MU18. Mycoleptone was isolated from *Mycoleptodiscus* sp. MU41. Mycoleptone is a novel chromone derivative containing a hydroxyl butyl side chain. Lastly, bipolamides A and B (two decatriene fatty acid amides) were characterized from culture of *Bipolaris* sp. MU34. Bipolamide A possessed rare structure of a five carbon unit connected to the fatty acid chain. All four new compounds were examined of their general antimicrobial activities. In addition to four novel compounds, eight known metabolites (pestalamides A, kotanin, dicerandrol, antibiotic LL-Z1640-2, pseurotin A, 7-epiaustdiol, palmarumycins BG2 and JC2) were isolated from candidate strains.

Chapter 4: General conclusions

In this research, 86 Thai endophytic fungi were obtained and screened for compounds of novel structures, resulting in finding four novel compounds by employing the screening strategy I developed. The fact that the four identified compounds exhibited weak to moderate antimicrobial activities demonstrated that the developed strategy for screening is useful to discover structurally novel compounds without easily detectable activity. All the 12 isolated compounds including the four novel compounds exhibited diverse chemical structures, suggesting that Thai endophytic fungi are a highly promising resource for finding structurally novel compounds.

論文審査の結果の要旨及び担当者

氏名 (Siriwach Ratklaor)		
論文審査担当者	(職) 氏名	
	主査 教授	仁平 卓也
	副査 教授	藤山 和仁
	副査 教授	村中 俊哉
	副査 教授	原島 俊
	副査 教授	渡邊 肇
	副査 教授	大竹 久夫
	副査 教授	福崎 英一郎
	副査 教授	福井 希一
	副査 教授	紀ノ岡 正博
論文審査の結果の要旨		
本論文は植物内生糸状菌からの新規生理活性物質探索を行っており、探索法の評価および同定された新規化合物について記述している。		
植物内生糸状菌は植物内部に生育する糸状菌であり、その特殊な環境下での生育に伴い、様々な生理活性を持った二次代謝産物を生産することが知られている。さらに、宿主の植物が生産する化合物と同じ化合物を生産する菌も報告されていることから、新規生理活性物質発見の探索源として期待されている。本研究ではこれまで研究が進んでいなかつたタイ王国の薬用植物から植物内生糸状菌を単離し、得られた菌が生産する化合物について解析を行った。研究の成果により得られた化合物は新たな医薬品、農薬としての利用が期待されること、またその化合物が宿主植物の薬効に寄与している可能性があることから、内生菌を利用した薬用植物の育種法への応用も期待される。		
本論文を要約すると以下のとおりである。		
1. タイ王国マヒドン大学植物園に栽培されている30種類の薬用植物の葉を採取し、そこから植物内生糸状菌を単離し、得られた86菌株についてリボソームDNA配列に基づいて分類学的解析を行った。続いて単離された菌株全てについて液体静置培養を行い、生産される化合物の新規性を評価した。各菌株について得られたHPLCプロファイル上に見出されたピークのUVスペクトル及びMSデータを我々が保持する既知化合物データベースおよび商用のデータベースのものと比較した。その結果、新規構造を有すると考えられる化合物が見出された。		
2. 新規構造が予想された化合物についてHPLC等を利用して単離、精製を行い、NMR、MS、UVスペクトル、IRスペクトル等のデータを基に化学構造を同定した。その結果、4つの新規化合物 xylaropyrone, mycoleptione, bipolamides A、B が見出された。新規化合物 xylaropyrone は2つの側鎖を保持するパイロン骨格を有する新規化合物であり、mycoleptione は水酸化ブチル側鎖を有する新規クロモン化合物であり、bipolamides A は脂肪酸とアシロインが結合している新規化合物であった。今後これら新規化合物を基に誘導体を作成し、新規な活性を有する化合物が作成されることが期待できる。		
以上のように、本論文はタイ王国から単離した植物内生糸状菌における二次代謝物質生産に関して網羅的な解析を行ったものであり、本論文によりタイ薬用植物およびその内生糸状菌の生理活性物質資源としての重要性が明確に示された。今後、探索を続けることにより新規化合物のさらなる発見が期待される。また見出された新規化合物生産菌の物質生産能を育種により高めた菌株を作成し、宿主である薬用植物の効能向上に寄与させることも可能と考えられることから、医療分野への貢献も期待できる。		
よって本論文は博士論文として価値あるものと認める。		