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Abstract

Game theory formulates situations where some decision makers (players)
conflict and/or cooperate with one another and enables us to analyze social
behavior of players. Above all, a useful theory for the analysis of the situ-
ation where a cooperative relationship (a coalition) among players arises is
cooperative game theory. In cooperative game theory, a function which as-
signs to each coalition the procéeds or the cost when the coalition is formed
is called a game. Rational distribution of the proceeds or the cost can be
derived from the corresponding game and is regarded as a solution concept.
Such solution concepts enables objective analyses of power and rational de-
cision making, so it is considered important in engineering to study solution
concepts in cooperative game theory.

The first part of this thesis discusses a cooperative fuzzy game (a fuzzy
game) and a minimum spanning tree game: the former is an extension of a
conventional game, a cooperative crisp game (crisp game); and the latter is
a cooperative game derived from one of realistic optimization problems, say
the minimum spanning tree problem.

Fuzzy game theory is based on fuzzy coalitions defined by rates of players’
participation to the coalition, while crisp game theory on crisp coalitions
defined by whether each player cooperates or not. It follows that fuzzy game
theory can deal with situations where some players cooperate partially. Thus,
it can be applied to real situations more flexibly than crisp one.

This thesis discusses rational imputations of the proceeds when a fuzzy
coalition is formed. The Shapley value, the core and the dominance core,

which are important solution concepts in crisp game theory, are extended
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to fuzzy game theory. The solution concepts are obtained through functions
from a pair of a game and a fuzzy coalition. It is shown that the core and
the dominance core coincide with each other if a given fuzzy game is su-
peradditive and monotone nondecreasing with respect to rates of players’
participation. Since there does not always exist some imputation which be-
longs to the core as in crisp games, a necessary and sufficient condition for
the core to be nonempty is given in fuzzy games. Since it is not easy to ob-
tain an explicit form of the Shapley value in an arbitrary fuzzy game, a class
of fuzzy games is introduced. The class can be considered natural since any
game in the class is monotone nondecreasing and continuous with respect to
rates of players’ participation. A function which derives the Shapley values
of fuzzy games in the class is given in explicit form. Properties of the explicit
form of the Shapley value are clarified. It is shown that the center of gravity

of the core coincides with the Shapley value for a convex game in the class.

On the other hand, a problem such as to minimize the cost when an intel-
ligence network is built in cooperation is a minimum spanning tree problem.
When the optimal solution is obtained, a problem of how to allocate the cost
may arise. A minimum spanning tree game and a monotonic cover game de-
rived from minimum spanhing tree problems will give some objective criteria
to this problem. One of solution concepts proposed so far in the situation of
the minimum spanning tree problem is not well-defined. Furthermore, this
solution concept is not rational since it is not always included in the core of
the corresponding monotone cover games and some players may pay negative

cost in it.

The second part of this thesis gives a restriction of the definition of this
solution concept to be well-defined. Furthermore, a new solution concept is
introduced on the assumption that each player allows himself/herself to be a
component of a network on behalf of other players as far as he/she need not
pay the cost at all. It will be shown that any player will pay nonnegative
cost in the solution concept and the solution concept is always included in

the core of both minimum spanning tree games and monotonic cover game.
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We introduce solution concepts in cooperative fuzzy games and minimum
spanning tree games and discuss the rationality of them. Cooperative fuzzy
game can deal with real situation flexibly and the situation which derives
minimum spanning tree games is so realistic. We give realistic and appropri-
ate decision making in distribution of the proceeds/cost by studying solution

concepts in cooperative fuzzy games and minimum spanning tree games.
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Chapter 1

Introduction

1.1 General Introduction

Game theory was first introduced by J. von Neumann [27, 28] in 1928 and
has been developed on the basis of Theory of Games and Economic Behavior
by J. von Neumann et al. [29]. This theory enables us to analyze social
behavior of human being objectively. It has been regarded as important for
a long time and studied from so many angles. This theory can be classified

into noncooperative game theory and cooperative game theory.

Cooperative game theory is so useful to understand social phenomena
when some cooperative relationship (coalition) among decision makers (play-
ers) arises. Cooperative game theory is concerned with both matters: defin-
ing solution concepts and then investigating their properties, in general as
well as in specific models coming from the various areas of application. This
leads to mathematical theories that ultimately yield important and novel

insights, quantitative as well as qualitative.

By forming a coalition, players may get benefit such as increasing the
proceeds or decreasing the cost. The proceeds to be obtained or the cost
to be paid when each coalition is formed is called the coalition value. In
cooperative game theory, a function which assigns to each coalition its coali-
tion value is called a game. Rational distribution of the proceeds or the cost

can be derived from the corresponding game and is regarded as a solution

1



2 CHAPTER 1. INTRODUCTION

concept. Such solution concepts enable objective analyses of power or ratio-
nal decision making, so it is considered important in engineering to study
solution concepts in cooperative game theory.

In this thesis, we introduce solution concepts in cooperative fuzzy games
(fuzzy games) and minimum spanning tree games and investigate their prop-
erties. Fuzzy games enable us to represent rates of players’ participation
and to deal with real situation flexibly. In fuzzy games, we discuss solution
concepts and investigate their properties in general. A minimum spanning
tree game is a cooperative game derived from one of realistic optimization
problems, say minimum spanning tree problem. It may be important since
it can deal with the situation where players would like to reduce the cost
of constructing a network, i.e., the situation which can be formulated as a
minimum spanning tree problem. We give some rational cost allocations as
solution concepts and investigate their properties in this game.

We give realistic, rational and appropriate means of decision making by
discussing solution concepts in fuzzy games, which are flexible to deal with
real situations, and minimum spanning tree games, which are realistic game-

theoretical formulations.

1.1.1 Cooperative Fuzzy Games

The Shapley value [4, 22], the core and the dominance core {23, 24] are well-
known solution concepts in cooperative game theory. Thé Shapley value is a
vector and the other two solution concepts are sets of vectors whose elements
show members’ shares derived from several reasonable bases when a coalition
is formed. Those solution concepts have been investigated by a number of
researchers, most of whom treat games with conventional coalitions, which
are called crisp coalitions and defined by whether each player participate or
not. However, we may come across situations where some members do not
fully participate in a coalition, but to a certain extent. For example, in a
class of production games, partial participation in a coalition means to offer

a part of resources while full participation means to offer all of resources. A
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coalition including some players who participate partially can be treated as
a so-called fuzzy coalition [1, 2]. A fuzzy coalition is defined as a collection
of players who transfer fractions of their representability [5] and identified
with membership function on the set of players. A membership degree to
which a player transfers his/her representability is called the rate of his/her
participation [3]. Games with such fuzzy coalitions are usually called fuzzy

games.

Butnariu [7] defined a Shapley function as a function which derives the
Shapley value from a given pair of a fuzzy game and a fuzzy coalition. He
showed the explicit form of the Shapley function on a limited class of fuzzy
games. Most games in the class are neither monotone nondecreasing nor
continuous with regard to rates of players’ participation although crisp games
are often considered monotone nondecreasing. Thus, the class cannot be
regarded as quite natural. The core of a fuzzy game was also introduced [7].

The core is based on the unusual imputation set.

On the other hand, multi-choice cooperative games [15, 18, 19] and continu-
ously-many-choice cooperative games [16] have been discussed. Those games
deal with situations where each player has finite or infinite action levels,
which may correspond to rates of his/her participation in coalitions. Several
solution concepts for such games are considered [15, 16, 18, 19]. Each so-
lution is represented by a matrix or a set of matrices whose element shows
a player’s rational gain in an action level. Each player’s rational gain in
an action level is independent of the other players’ action levels, and not
all n-vectors of the rational gains satisfy the efficiency of the corresponding
(fuzzy) coalition. These two facts are essential differences from Butnariu’s

approach.

There also exists an approach similar to Butnariu’s on such points. Spru-
mont [25] proposed a population monotonic allocation scheme (PMAS) as
a reasonable solution concept. It as well as solution concepts by Butnariu
meets the need for solution concepts which specify not only how to allocate

v(N) but also how to allocate the worth of every coalition S C N. But it
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was introduced only for crisp games.

In this thesis, we adopt Butnariu’s approach and define the Shapley value,
the core and the dominance core in cooperative fuzzy games. Solution con-
cepts defined in this thesis are related to the solution concept by Sprumont.

Rational properties of them is discussed.

1.1.2 Minimum Spanning Tree Games

It is well known that the mathematical modeling of various real-world de-
cision making situations gives rise to optimization problem. However, for
situations where plural decision makers (players) are involved, classical op-
timization theory does not suffice. Suppose that a group of decision makers
decides to undertake a project together in order to increase the total revenue
or decrease the total cost and finds an optimal way to execute the project
by using classical optimization problem. Then they face the problem of how
to allocate the revenue or the cost among the participants. It is quite easy
to find examples where cooperation among several participants would have
increased total revenue or decreased total cost but the cooperation did not
work out because a reasonable allocation was not achieved. The solution con-
cepts in cooperative game theory can be applied to arrive at some reasonable
allocation and make an important contribution.

The problem of finding the most inexpensive way to build a distribution
system such as an intelligence network servicing many cities is formulated as
a minimum spanning tree problem. It is one of optimization problems and
is equivalent to a problem to find a minimum spanning tree for the complete
graph with edge cost. The problem of allocating the cost of a spanning tree
in a graph among the users which are situated as the nodes of the graph,
with one node reserved for a common supplier which is not to participate in
the cost sharing, was first introduced by Claus and Kleitman [9]. Bird [6]
was the first to suggest a game theoretic approach to the problem and gave
a rational cost allocation, which is called a Bird tree allocation. The Bird

tree allocation is always included in both the cores of the minimum spanning
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tree game (mst-game for short) and the monotone cover game (mc-game for
short), which are game-theoretical formulations in this situation. However,
the Bird tree allocation is not so realistic. It is because a player directly
connected to the supplier does not benefit by forming the grand coalition
although his/her coopefation is important for connecting the supplier and
other players in many cases.

To improve this point, Granot and Huberman [14] proposed the weak
demand operation (w.d.o.) by a player and the w.d.o. by a coalition. In
their thesis, it was considered that both the allocations obtained through
the w.d.o. by a player and that by a coalition on a Bird tree allocation are
elements of the core of the mst-game. However, the w.d.o. by a coalition is
not well-defined, and in fact some allocations obtained through it on Bird
tree allocations are not elements of the core of the mst-game. Furthermore,
some obtained allocations may have negative elements. This means not only
that they do not belong to the core of the mc-game but also that some players
obtain payoff; hence this allocation is not acceptable in many real situations.

In this thesis, we add an appropriate restriction to the weak demand
operation. Furthermore, we propose more rational operation than the weak

demand operation.

1.2 Contributions and Organization of the
Thesis

In this thesis, we give definitions of solution concepts in cooperative games
and investigate their properties in the following structure.

In Chapter 2, we give preliminaries to discuss solution concepts in coop-
erative fuzzy games and minimum spanning tree games.

In Chapter 3, we discuss solution concepts in cooperative fuzzy games in
general. We define an imputation function, an imputation set-valued func-
tion and a fuzzy population monotonic allocation scheme (FPMAS) as an

extension of an imputation, an imputation set and a PMAS, respectively.
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Natural extensions of a carrier and a null player are given to introduce an
axiomatic definition of the Shapley function. We also introduce a core func-
tion and a dominance core function. They are functions which derive the
core and the dominance core from a given pair of a fuzzy game and a fuzzy
coalition, respectively. It is shown that they coincide if a given fuzzy game is
superadditive and monotone nondecreasing with respect to rates of players’
participation. Balancedness is also defined. It is also shown that the core of
a fuzzy game is nonempty if and only if the game is balanced.

In Chapter 4, we introduce a particular class of fuzzy games where any
game is both monotone nondecreasing and continuous with regard to rates of
players’ participation to give some explicit form of a Shapley function. The
class can be considered natural in terms of continuity and monotonicity. An
explicit form of the Shapley function on the proposed class is given. We show
that the Shapley function on the class has rational properties. Furthermore,
we show that the center of gravity of the core coincides with the Shapley
value for any convex game in the proposed class of fuzzy games.

In Chapter 5, we discuss solution concepts in minimum spanning tree
games. We add a certain restriction to the weak demand operation by a
coalition so that it is well-defined. It will be called the demand operation.
Then, any allocation obtained through it on a Bird tree allocation is an ele-
ment of the core of the mst-game. However, some of the obtained allocations
st@ll do not belong to the core of the mc-game. We propose a revised weak
demand operation such that any allocation obtained through it on a Bird tree
allocation is an element of both the cores of the mst-game and the mc-game.
It follows that every obtained allocation has no negative element, and hence
the revised weak demand operation is more applicable than the original one.

Chapter 6 concludes this thesis.



Chapter 2

Preliminaries

2.1 Cooperative Fuzzy Games

In this section, we shall provide preliminaries to introduce solution concepts

in cooperative fuzzy games, i.e., cooperative games with fuzzy coalitions.

2.1.1 Cooperative Fuzzy Games

In this thesis, we consider cooperative fuzzy games with the set of players
N ={1,...,n}. A cooperative fuzzy game is a cooperative game based on
fuzzy coalitions. A fuzzy coalition is a fuzzy subset of N, which is identified
with a function from N to [0,1]. Then for a fuzzy coalition S and player
i, S(i) indicates the membership grade of i in S, i.e., the rate of the ith
player’s participation in S. For a fuzzy coalition S, the level set is denoted
by [S]n = {i € N | S(i) > h} for any h € [0,1], and the support is denoted
by Supp S = {i € N | S(i) > 0}. The class of all fuzzy subsets of a fuzzy set
U C N is denoted by L(U). Let P(W) denote the set of all crisp subsets of
a crisp set W C N.

A fuzzy game is a function v : L(N) - R, = {r € R | 7 > 0} such
that v(#) = 0. G(N) denotes the set of all fuzzy games. A function v :
P(N) — R; such that v(§) = 0 is called a crisp game. According to the
classical interpretation by von Neumann et al. [29], for any crisp coalition S,

v(S) is regarded as the least profit which can be achieved by the members of

7



8 CHAPTER 2. PRELIMINARIES

S when S is formed. It follows that any crisp game v is superadditive; hence
v is monotone nondecreasing with respect to set inclusion. We denote the
set of all superadditive crisp game by Go(V).

Union and intersection of two fuzzy sets are defined as usual, i.e.,

(SUT)() = max{S(i),T(})}, VieN,
(SNT)() = min{S(:),T(5)}, VieN.

Then superadditivity and convexity in fuzzy games are defined as follows:
Definition 2.1 A game v € G(N) is said to be superadditive if
v(SUT) >v(S)+v(T), VS ,TeL(N)st SNT=0.
Definition 2.2 A game v € G(N) is said to be convez if
v(SUT)+v(SNT) >v(S)+v(T), VS,TeL(N).

As can be seen easily, any convex game is superadditive. Note that the
restrictions of the definitions above to crisp games coincide with usual super-
additivity and convexity, respectively.

As will be seen later, any fuzzy game dealt with in this thesis is super-
additive. It can be considered that the interpretation of coalition value by
von Neumann et al. is adopted in fuzzy games as well as in crisp games
in this thesis. It is to be noted that not all superadditive fuzzy games are
monotone nondecreasing whereas any superadditive crisp games is monotone

nondecreasing as far as the range is R,.

2.1.2 Basic Concepts in Cooperative Crisp Games

In usual cooperative crisp game theory, a rational distribution of revenue of
a grand coalition, say a crisp coalition NV, is discussed. We call such rational
distributions usual solution concepts. In Chapters 3 and 4, we discuss ratio-
nal distributions of revenue of a fuzzy coalition defined by a fuzzy subset of
the grand coalition IV, which are regarded as solution concepts in Chapters

3 and 4. It is to be noted that many concepts in Chapters 3 and 4 depend
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on not only a game but also a coalition while many concepts in’ usual coop-
erative game theory on a game. Preparatory to discussions in Chapters 3
and 4, we prepare some basic concepts which depend on both a game and a
coalition as follows.

In this thesis, a vector € R™ can be called an imputation of W € P(N)
for v € Go(N) if it satisfies

1. 2,=0, VigW,

2. Z.’L’i = U(W),

1EN
3.z >v({i}), VieW,

where & = (z;)icn. Let us denote the set of all imputations of W € P(N)
for v € Go(N) by I'(v)(W). An imputation function and an imputation

set-valued function based on an imputation have defined as follows:

Definition 2.3 A function x from P(N) to R" is said to be an imputation
function of a crisp game v if x(W) € I(v)(W) for any W € P(N). A
function X from P(N) to 28% is called an imputation set-valued function of
a crisp game v if £(W) C I(v)(W) for any W € P(N).

Note that (V) is a usual imputation of v if z is an imputation function.
Sprumont [25] proposed a population monotonic allocation scheme (PMAS)

as a reasonable solution concept as follows:

Definition 2.4 [25] A vector & = (z;(W))iew, wep(n) 1 said to be a popu-

lation monotonic allocation scheme (PMAS) if it satisfies the following:

> z(W)=v(W), VW eP(N),
iew.
z;(S) < z;(T), VieS, VS TeP(N)st SCT.
PMAS’s also meet the need for solution concepts which specify not only
how to allocate v(/N) but also how to allocate the worth v(S) of every coali-
tion S € P(N).
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2.1.3 Solution Concepts in Cooperative Crisp Games

In this subsection, functions which derive solutions from a given pair of a
crisp game and a crisp coalition are introduced. First, a core function on the

class of crisp games is defined as follows:

Definition 2.5 A function C' from Go(N) to (28%)P(N) is said to be a core
function on Go(N) if it satisfies

C'(v)(W)= {-’L‘ € I'(v)(W)

Y zi>v(S), VSe P(W)}.

iew
To introduce a dominance core function on the class of crisp games, we

define the concept of dominance in crisp games. In this thesis, it is said that

an imputation & dominates an imputation ¢ via a coalition S € P(N) if

Z:L‘,- <.v(S),

i€S
>y, Vi€ES.

Now, a dominance core function on the class of crisp games is defined as

follows:

Definition 2.6 A function DC' from Go(N) to (28%)PWN) s said to be a
dominance core function on Go(N) if it satisfies:
DC'(v)(W)

= {x € I'(v)(W) | there exists no y € I'(v)(W)
which dominates  in W }

In order to define the Shapley function on the class of all superadditive
crisp games in Go(N), we introduce a carrier in a coalition W € P(N) for a
game v € Go(N), which can be regarded as an extension of the traditional

carrier defined in the grand coalition N.

Definition 2.7 Let v € Go(N) and W € P(N). S € P(W) is called a

carrier in a coalition W for a game v if

W(SNT)=v(T), VTePW).
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We will denote the set of all carriers in W for v by C(W | v), z e.,
CW|v)={SePW)|v(SNT)=v(T), VTePW)}

A carrier is closely related to the eoncept of a null player defined below.

Definition 2.8 Let v € Go(N) and W € P(N). Player i € W is called a
null player in W for v if

v(S) =v(SU{i}), VS ePW\{i}).

Note that carriers and null players defined above are specified not only
by a game but also by a coalition. Carriers and null players in a coalition N
coincide with the usual carriers and the usual null players, respectively. As
can be seen easily, if S € C(W | v) then any ¢ ¢ S is a null player in W for
v.

Now we introduce a Shapley function on Gy(N).

Definition 2.9 A function f' : Go(N) — (R?)P™) s said to be a Shapley

Junction on Go(N) if it satisfies the following four azioms.

Axiom C): Ifv e Go(N) and W € P(N) then

>_ fi) (W) =v(W),
Hm =0, vigw
where fi(v)(W) is the i-th element of f'(v)(W) € R™.
Axiom Cy: Ifv € Go(N), W € P(N) and T € C(W | v) then
fi)W) = f[()(T), VieN.

Axiom C3:  Ifv € Go(N), W € P(N), i,j € W and v(SU{i}) = v(SU{j})
holds for any S € P(W\{i,j}) then
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Axiom Cy: For any vy,ve € Go(N), define a game vy + v2 € Go(N) by
(v1 +v2)(S) = v1(S) + 12(S) for any S € P(N). If vy, v2 € Go(N) and
W € P(N) then

vy + ) (W) = fl(n) (W) + fl(v) (W), Vi€N.

Butnariu [7] also introduced a carrier and a Shapley function on Gy(N)
implicitly. His axioms of the Shapley function are slightly different from ours,
as will be explained later in the fuzzy case.

The unique Shapley function on Go (V) is explicitly obtained by extending
the Shapley value for grand coalition N.

Theorem 2.1 Define a function f' : Go(N) — (R’jr)P(N) by

, > BUTEWD - {o(T) = o(T\{i})}, if ieW,
fiw)(W)=Q Terw)
0, otherunse,
where P (W) = {T € P(W) | T 3 i} and B(|T); W|) = (|T| - 1)! - (W] -
|T|)!/|W|!. Then the function f' is the unique Shapley function on Go(N).

Proof. Let v € Go(N) and W € P(N). Then f'(v)(W) can be obtained
in the same manner as the usual Shapley value, namely f'(v)(N). It was
proved for f'(v)(N) in [22]. O

Note that f'(v) is an imputation function of a crisp game v. It is also
noted that if v € Go(N) then the vector (f{(v)(W))iew,wep(n) coincides with
the extended Shapley value proposed by Sprumont [25]. Hence, the following

proposition holds:

Proposition 2.1 [25] The vector (f](v)(W))iew,wepw) 15 a PMAS if v €

Go(N) is convex.

This proposition implies that if v € Go(N) is convex, i € N and SC T
then f;(v)(S) < fi(v)(T).
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2.2 Minimum Spanning Tree Games

In this section, a definition of a minimum spanning tree problem is given. A
minimum spanning tree game and a monotone cover game are derived from
this problem. A basic solution concept, a Bird tree allocation [6], is given

and its properties are clarified.

2.2.1 Minimum Spanning Tree Problem

In this subsection, various basic concepts concerning networks are defined
preparatory to define minimum spanning tree problems.

Let G = (V, E) represent a graph with the set of vertices V and the set
of edges E. An edge e € E is denoted by (u,v) if the end points of e are u
and v. Edges (u,v) and (v, u) denote the same edge for any u,v € V. In this
thesis, we do not take account of edges (u,u) for any u € V. If there exists
an edge (u,v) in a graph G for any u,v € V, G is said to be a complete

graph. Consider a sequence described as follows:

P = (vo, e1,v1,... ,e,v),
where vg,... ,u, € Vande;,...,e € E. A sequence P is said to be a path of
length ! from vertex vy to vertex v; if e; = (v;_1,v;) for any i € {1,2,...,1}.

A path P is said to be a circuit if vy and v; denote the same vertex. A graph
G is said to be connected if there exists a path from u to v for any u,v € V.
It is clear that a graph G is connected if it is complete. A connected subgraph
without any circuits is called a tree. A tree is said to be a spanning tree in
a graph G = (V| E) if its vertex set is equal to V.

A graph G = (V, E) is said to be a network if a value ¢, > 0 is given for
each edge (u,v) € E. In this thesis, the value c,, is regarded as the cost of
constructing a link between v and v and called the edge cost of (u,v). Any
network can be considered complete without loss of generality by letting c,,
be positively infinite or sufficiently large if a link between u and v cannot be
constructed. For subnetwork (V') E') satisfying V' C V and E' C E, we call
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the sum of its edge costs, say Z(u,v) cE’ Cup, the cost of the subnetwork. Then

a minimum spanning tree is defined as follows:

Definition 2.10 A spanning tree in a network G = (V, E) is said to be a
minimum spanning tree in G and denoted by I' = (V, Er) if it is minimum

of all spanning trees in G in terms of the cost.

It is to be noted that there exist some distinct minimum spanning trees
in many networks.

Let a vertex 0 be regarded as a source. For a minimum spanning tree I’
in a network G whose vertex set includes the source 0, let Or (i) denote the
length of the unique path from the source 0 to a vertex i in I'. If a vertex ¢ is
on the unique path from the source 0 to a vertex j in I", the notation ¢ <r j
is used and vertices 7 and j are called a predecessor of j and a follower of i,
respectively. It is apparent that Or(i) < Or(j) if ¢ <r j. In particular, if
i =r j and Or(j) — Or(i) = 1, then the vertices ¢ and j are said to be the
adjacent predecessor of vertex j and an adjacent follower of vertex 7 in T,
respectively. For any ¢ € N, let p(¢) and F (i) denote the adjacent predecessor

of 7 and the set of the adjacent followers of ¢ in I, respectively.

2.2.2 Minimum Spanning Tree Games

In this subsection, we shall define minimum spanning tree games and their
solution concépts. A minimum spanning tree game is a kind of cost-sharing
game which is defined as follows. Suppose that each player needs cost to
make products or something. In many of such situations, they may be able
to reduce the cost by cooperating with someone, which means that it is
rational to make the coalition if possible. Game theory on cost-sharing games
gives an answer to allocate the cost among members of the formed coalition.
Let the formed coalition be denoted by a set of players N = {1,2,... ,n}.
The cost which is to be paid by members of a coalition S C N when S is
formed is denoted by c(S). By convention, let ¢(@) = 0. Then a function

c: 2N — R, is said to be a discrete cost function or a cost-sharing game,
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where R, = {r € R | r > 0}. A cost-sharing game c is said to be monotone if
¢(S) < ¢(T) forany S C T C N. Let x; denote the amount charged to player
i and let (S) =)
z(N) = ¢(N) and z; shows the cost to be paid by player . An allocation

icg Ti- An n-vector & = (z;);cn is called an allocation if
or a set of allocations selected by reasonable bases are regarded as solution
concepts in cost-sharing games. The core of a cost-sharing game c is one of

solution concepts and defined as follows:
C(c) = {x € R" | z(N) = ¢(N), z(S) < ¢S), VSCN}.

Next, a minimum spanning tree game (mst-game) and a monotone cover
game (mc-game) are introduced. Suppose that players in N would like to
make up an intelligence network system with which all players in N and
information source 0 are covered. If G denotes a network whose vertex set
is Np = N U {0}, then such intelligence network systems can be regarded
as subnetworks including spanning trees in a network G. In such a case, it
is rational in terms of cost to construct a minimum spanning tree in G. If
once players find a minimum spanning tree, they may face a problem of how
to allocate the cost of the minimum spanning tree. Optimal solution to this
problem can be given by mst-games or mc-games, which will be defined later.
In order to define those games, we prepare some notations. For S C N, let
So = SU{0}. For Q C Ny, let Gg = (Q, Eg) and T'g = (Q, Er,,) denote a
complete network with a vertex set () and a minimum spanning tree in Gy,
respectively. We will call a minimum spanning tree I'g, in a network Gg, a
minimum spanning tree for the coalition S. In particular, let T' = (Np, Er)
denote a minimum spanning tree for N. Then an mst-game is defined as

follows:

Definition 2.11 [10, 13] A function ¢ : 2N — R, is said to be the mini-

mum spanning tree game (mst-game for short) for a network G if it satisfies
c(S)= Y. e VSCN,
(iaj)eEFso

where ¢(0) = 0.
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Table 2.1: The Costs to Construct Power-transmission Line (x $ 10,000)
EPP Cityl City2 City3 City4

EPP 0 2 6 1 5
City 1 2 0 2 5 4
City2 6 2 0 5 1
City3 1 5 5 0 5
Cityd 5 4 1 5 0

Table 2.2: The Mst-game ¢ and the Mc-game ¢ of Example 1

S ¢(S) &(S) S c(S) &(S)
2 2 | {24 6 5
2) 6 4| {34 6 6
B 1 1| {,23 5 5
4 5 5 | {1,249 5 5

L2} 4 4 | {1,349 7 6
1,3y 3 3 | {234 7 6
{1L4y 6 5 |{1,2,34 6 6
2,3 6 5 0 0o 0

Note that the mst-game is uniquely determined for any network. An

example of an mst-game is given as follows:

Example 2.1 Suppose that 4 cities which are denoted by 1,2,3,4 are ge-
ographically separated and that they have neither an electric power plant
nor a power-transmission line. A new electric power plant (EPP) which
could provide the electricity to the 4 cities was constructed in the place de-
noted by 0. The mayors of the cities have decided to cooperate in laying
a power-transmission line over the cities. The costs of constructing power-
transmission lines are given in Table 2.1. Figure 2.1 illustrates the situations,
where 0 denotes the electric power plant and the number assigned to each
edge denotes the cost of constructing the link. Then the associated mst-game

¢ is shown in Table 2.2.

At the first glance, one may be considered that any mst-game is monotone
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Figure 2.1: The Network corresponding to Table 1

since a minimum spanning tree for a larger coalition consists of more edges
than that for a smaller one. However, some mst-games are not monotone.
In fact, the mst-game in Example 1 is not monotone since c¢({1,4}) = 6 >
c({1,2,4}) = 5 holds. In such a case in a real situation, Cities 1 and 4 will
propose to construct a minimum spanning tree not for the coalition {1,4}
but for the coalition {1, 2,4} without asking City 2 for a shared cost but for a
permission to pass. It can be considered that City 2 will accept the proposal.

From this point of view, the mc-game for a network G is defined as follows:

Definition 2.12 [10, 13] Let c be the mst-game for a network G. A function
¢:2Y — R, is said to be the monotonic cover of a game c or the monotone

cover game (mc-game for short) for a network G if it satisfies

]

(S)= min ¢(T), VSCN.
SCTCN

It is noted that for a network, i.e., for the mst-game derived from it, the
monotonic cover of it is uniquely determined. In this thesis, ¢ and ¢ represent
the mst-game and the mc-game for a network G, respectively, if there is no
fear of confusion. The monotonic cover of the mst-game in Example 1 is also
shown in Table 2.2.
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From Definition 2.12, it is apparent that &(S) < ¢(S) holds for any S C N.

Hence, it is apparent that the following remark holds.

Remark 2.1 If c is the monotonic cover of an mst-game c, then the follow-

ing holds:
C(e) € C(e).

For mény networks, some allocations included in the core of the mst-game
have negative elements. In fact, the allocation (2, —1,1,4) is included in the
core of the mst-game in Example 1. On the other hand, if an allocation is
an element of the core of an mc-game, then all the elements of the allocation

are negative, as is shown in the following lemma.

“Lemma 2.1 [10, 13] If ¢ is an mc-game and & € C(c), then the following
holds:

2, >0, VieN.
Bird [6] proposed a solution concept defined as follows:

Definition 2.13 [6, 10, 11, 13] Let T be a minimum spanning tree in a
network G. For i € N, let p(i) denote the adjacent predecessor of i in T'.
A vector I = (l;)ien s said to be the Bird tree allocation for the minimum

spanning tree I' or a Bird tree allocation for the network G if it satisfies
li = Cp(.,'),;, Vi € N.

A Bird tree allocation depends on and is uniquely determined by the
selected minimum spanning tree. In many networks some distinct minimum
spanning trees exist. So, for many of such networks, there exist distinct Bird
tree allocations. Any Bird tree allocation is an element of the core of the

mst-game, as is shown in the following lemma.

Lemma 2.2 [10, 13] Ifl is a Bird tree allocation, then the following holds:

l € Clc).
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The following theorem is proved by using Lemma 2.2.
Theorem 2.2 [10, 13] Ifl is a Bird tree allocation, then the following holds:
leC(e).

Lemma 2.2 and Theorem 2.2 guarantee that both the cores of the mst-
game and the mc-game are not empty for any network.

Note that ¢({i}) = ¢({i}) = I; for any adjacent follower ¢ of the source
in a minimum spanning tree I' = (Np, Er) in a network G, as explained in
what follows. If player ¢ is an adjacent follower of the source, (N, Er\{(0,%)})
represents two minimum spanning trees for the disjoint subnetworks of Gy, .
The one’s edge set is {(u,v) € Er | u,v >=r i} and the other’s vertex set
includes source 0. Since I' is a minimum spanning tree, it can be confirmed
from Kruskal’s algorithm [17] that I; = cp; = c({3}) is minimum of all edge
costs such that edges connect the two trees. It means that at least I; = c({i})

is necessary to have a connection from the source to vertex i. It follows that
c({i}) = c({i}) = {; for any i € F(0).



Chapter 3

Solution Concepts in
Cooperative Fuzzy Games

3.1 Introduction

Cooperative fuzzy games (fuzzy games) are extensions of conventional coop-
erative games, cooperative crisp games (crisp games). Fuzzy games are based
on fuzzy coalitions while crisp games on conventional coalitions, crisp coali-
tions. Fuzzy coalitions are defined by the rate of each player’s participation
while crisp coalitions by whether each player participate or not. This means
that fuzzy games are more flexible to be applied to the real situations than
conventional one.

Although there are many situations which can be described by fuzzy
games but which cannot be described by crisp games, there are not so many
researches which deal with rational imputations in fuzzy games. Butnariu [7]
gave an approach to this problem by defining functions which derived solution
concepts from a given pair of a fuzzy game and a fuzzy coalition. However,
his definitions are unacceptable on some points, which will be discussed in
this chapter.

On the other hand, multi-choice cooperative games [15, 18, 19] and continu-
ously-many-choice cooperative games [16] have been discussed. Those games
deal with situations where each player has finite or infinite action levels, which

may correspond to rates of his/her participation in coalitions. Several solu-

21
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tion concepts for such games are considered {15, 16, 18, 19]. Based on those
solution concepts, each player’s rational gain in an action level is indepen-
dent of the other players’ action levels, and not all n-vectors of the rational
gains satisfy the efficiency of the corresponding (fuzzy) coalition. Hence, it
can be considered that these games do not deal with rational distributions
of the revenue when a fuzzy coalition is formed.

On the other hand, Sprumont [25] proposed a pdpula.tion monotonic al-
location scheme (PMAS) as a reasonable solution concept. It as well as
solution concepts by Butnariu meets the need for solution concepts which
specify not only how to allocate v(N) but also how to allocate the worth of
every coalition S C N. But it was introduced only for crisp games.

In this chapter, we follow Butnariu’s approach and discuss rational distri-
butions of the revenue when a fuzzy coalition is formed. To do so, we extend
an imputation function, an imputation set-valued function and a PMAS to
fuzzy games. Concepts related to the Shapley value are introduced in fuzzy
games. We introduce an axiomatic definition of the Shapley function which
derives the Shapley value based on those concepts from a pair of a fuzzy
game and a fuzzy coalition. Furthermore, we define a core function and a
dominance core function as functions which derive the core and the domi-
nance core, respectively. We investigate properties of the core function and
the dominance core function and give a necessary and sufficient condition for

the core to be nonempty.

3.2 Basic Concepts in Cooperative Fuzzy
Games

In this section, we introduce basic concepts closely related to solution con-

cepts in fuzzy games.

First, we extend an imputation to a fuzzy game. Define €' € R™ by

i - 1, if k= i,
e'(k) = { 0, otherwise.
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In this thesis, a vector € R™ is called a fuzzy imputation of U € L(N) for
v € G(N) if it satisfies

l. z; =0, Vi¢&SuppU,

2. Z z; = v(U),

i€N

3. z; > v(U(d)e*), Vie Supp U,
where & = (z;)ien. Let us denote the set of all fuzzy imputations of U €
L(N) for v € G(N) by I(v)(U).

A fuzzy imputation function and a fuzzy imputation set-valued function

based on a fuzzy imputation have defined as follows:

Definition 3.1 A function x from L(N) to R" is said to be a fuzzy impu-
tation function of a fuzzy game v if x(U) € I(v)(U) for any U € L(N). A
function X from L(N) to 2% is called a fuzzy imputation set-valued function

of a fuzzy game v if x(U) C I(v)(U) for any U € L(N).

Butnariu [7] also defined a fuzzy imputation function, which he called a payoff
function, but it is different from that of Definition 3.1.

We extend a PMAS in order to treat fuzzy games.

Definition 3.2 A vector € = (2;(U))icsupp v, ver(nv) 18 said to be a fuzzy

population monotonic allocation scheme (FPMAS) if it satisfies the following:
Y %(U) =), YU e L(N),
z;(S) < z;(T), VieSupp S, VS,TeL(N)st SCT.

It is noted that the restriction of an FPMAS to crisp game will be a
PMAS, i.e., if the class L(NV) is replaced by the class P(N) in the above
definition, a PMAS is obtained.

3.3 The Shapley Function

This section is dedicated to give a definition of a Shapley function, which is

applicable to any class of fuzzy games. In order to give the definition, we
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extend a null player and a carrier to fuzzy games. It will be found that they
are closely connected with each other and with a Shapley function.

First, we define a y-null player as an extension of a null player to fuzzy
games. There may exist some player who cannot contribute to the coalition
value further if the rate of his/her participation exceeds a certain rate y. We

call such a player a y-null player. Preparatory to its definition, let us define
SY e L(U) by

ven_ J U@E), if j =4,
50 () = { S(4), otherwise,

for any U € L(N), S € L(U) and i € N. Then a y-null player is defined as

follows:

Definition 3.3 Let v satisfy 0 < v < U(z). Player i € Supp U is said to be
a y-null player in U for v € G(N) if

v(S) =v(SY), VS e L), st S@)>.

For monotonous fuzzy games, if player ¢ is a y-null player in U for v then
he/she is a v'-null player in U for v for any +' satisfying v < ' < U(¥).
We also define an f-carrier in a fuzzy coalition for a fuzzy game as an

extension of a carrier in a crisp coalition for a crisp game.

Definition 3.4 Let v € G(N) and U € L(N). S € L(U) is called an f-

carrier in U for v if it satisfies
v(SNT)=v(T), VYTelLU).

The set of all f-carriers in U for v is denoted by FC(U | v).

From the definition it is clear that U is an f-carrier in U for any v € G(N).
For a monotonous fuzzy game v, it can be found that if S € FC(U | v), then
S§'€ FC(U | v) for any S’ € L(U) such that S' 2 S.

It is to be noted that an f-carrier is specified not only with a game but

also with a coalition whereas a carrier defined by Hsiao [16] as well as a
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usual carrier in a crisp game only with a game. Especially, f-carriers in
a coalition N coincide with carriers defined by Hsiao for any fuzzy game.
Thus, f-carriers are extensions of Hsiao’s carriers. Butnariu [7] also extended
a carrier to fuzzy games. However, an f-carrier can be considered more
straightforward than the carrier defined by Butnariu. It is because an f-
carrier is based on standard set inclusion whereas the carrier by Butnariu on
nonstandard set inclusion.

Preparatory to the definition of a Shapley function, we define the follow-
ing. Let U € L(N) and 4,5 € N. For any S € L(U), define SJ € L(U)
by

Si;(k) = ¢ min{S(j),U(5)}, if k=3,

min{S(i), U(j)}, if k=1,
S(k), otherwise.
For any S € L(N), define P;;{S] by
SG),  if k=4,
PylSI(k) =q S@), if k=7,
S(k), otherwise.

Clearly, SY:

VR

Pi;[SH] € L(U). Now, we define a Shapley function as follows.

Definition 3.5 Let G'(N) C G(N). A function f : G'(N) — (R%)L™)
15 said to be a Shapley function on G'(N) if it satisfies the following four

azioms.

Axiom Fi: Ifv € G'(N) and U € L(N) then

S A@)U) = o(U),
ieN
fiw)(U)=0, Vi¢gSupp U,
where f;(v)(U) is the i-th element of f(v)(U) € R%.

Axiom Fy: Ifve G'(N),U € L(N) and T € FC(U | v) then

fi()(U) = f;(v)(T), VieN.
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Axiom F3: Ifv € G'(N), U € L(N), U € FC(U | v) and v(S) =
v(Py[S]) for any S € L(U]) then

fi()(U) = £;(v) (V).

Axiom Fy: For any vy,vs € G'(N), define a game vy +v3 by (v +v2)(S) =
v1(S) + v2(S) for any S € L(N). If vy + vy € G'(N) and U € L(N)
then

fi(vi + v2)(U) = fi(n1)(U) + fi(v2)(U), Vi€N.

Note that the definition above can be adopted for aﬁy class of fuzzy
games.

Butnariu [7] also gave a definition of a Shapley function. One of the
axioms of his Shapley function uses an extended carrier defined by him. As
is stated above, his definition of an extended carrier is not quite natural,
because it is based on a nonstandard inclusion relation between fuzzy sets.
This is why we have proposed a new extended carrier. From this point of
view, a Shapley function should be defined without using Butnariu’s extended
carrier. One conceivable approach is to replace Butnariu’s extended carrier
with an f-carrier. However, by this approach, we encounter an unacceptable
result, i.e., a contributory player cannot always receive a profit by forming the
coalition U. Hence, we abandoned this approach and gave a new definition

of a Shapley function in Definition 3.5.

3.4 The Core and the Dominance Core Func-
tion

We introduce a core function as a function which derives the core from a

given pair of a fuzzy game and a fuzzy coalition.

Definition 3.6 Let G'(N) be a subset of G(N). A function C from G'(N)
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to (2R+)LWN) s said to be a core function on G'(N) if it satisfies:

>z >v(9), VSeL(U)}.

i€Supp S

C)(U) = {a: e I(w)(U

Note that C(v)(U) is a convex polyhedron if it is nonempty. It is also
noted that C(v) can be regarded as an imputation set-valued function for
any v € G(N). v

For v € G(N) and U € L(N), define a crisp game v¥ € Go(N) b

UE(T) = MaXge(U):T=Supp S,S#£U ’U(S)

Remark 3.1 If v € G(N) and U € L(N), then we have

C(v)(U)
{welv) (U) Z z; > v(S), VSEL(U)\{(D,U}}
1€Supp S
{mEI Zz,Zv (T), VT e P(Supp U)\{(b}}

Let Ly(U) = {S € L(U) | St) € {0,U(:))}, Vi € N}. Forv €
G(N) and U € L(N), let us define a crisp game v¥ € Gyo(N) by vV(T) =
. MaXgerw)T=supp s ¥(S). If v € G(N) is monotone nondecreasing, then we
have vY(Supp U) = v(U) and vY({i}) = v(U(i)e!) for any i € N; hence
I'(vY)(Supp U) = I(v)(U). We obtain the following remark.

Remark 3.2 If v € G(N) is monotone nondecreasing with respect to rates

of players’ participation, we have

(v)(U)
{:z: eIw)U)| > z>v(S), VSe LO(U)}
i€Supp S ‘
= {m € I'(vY)(Supp U) Zmi >vY(T), VT € P(Supp U)}
i€T
= C'(vY)(Supp V).
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To introduce a dominance core function, we define the concept of domi-
nance in fuzzy games. We say that a fuzzy imputation & dominates a fuzzy
imputation y via a coalition S € L(N) if

{ >z <u(S),

icSupp §
x; >y, Vié€Suppsb.
In such a case, the notation & domg vy is used.

Note that there exists no € I(v)(U) which dominates some fuzzy im-
putation y € I(v)(U) via U or U(i)e* for some i € Supp U, as in a crisp
game. In fact, if & € I(v)(U), y € R" and there exists 7 € Supp U satisfying
x domy (e y then y; < z; < v(U(¢)e*), which means y & I(v)(U). Thus,
a dominance via U(i)e’ is not possible for any i € N. If & € I(v)(U) and
z domy y then z; > y; for any ¢ € Supp U. Hence, v(U) = ZiESupp uZi >
Y iesupp v Yi- 1t means y & I(v)(U). A dominance via U is neither possible.

If £,y € I(v)(U) and there exists S € L(U) satisfying  domg y, we say

that £ dominates y in U. The dominance core function can be defined.

Definition 3.7 Let G'(N) be a subset of G(N). A function C from G'(N)
to (2R LN s said to be a dominance core function on G'(N) if it satisfies:
DC(v)(U)
={x € I(v)(U) | there exists
no y € I(v)(U) which dominates ® in U }
={x € I(v)(U)| y domg x does not hold
for any pair (S,y) € L(U) x I(v)(U) }.
Consider a pair (S,S") € Lo(U) x L(U) satisfying Supp S = Supp S'.
Then it is easy to confirm that £ domg y if v is monotone nondecreasing

and £ domg y. Thus, we have the following remark.

Remark 3.3 If v € G(N) is monotone nondecreasing with respect to rates
of players’ participation, we have
DC(v)(U)
= {x € I(v)(U) | y domg « does not hold
for any pair (S,y) € Lo(U) x I(v)(U) }.
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To show the relationship between the core function and the dominance

core function, we prepare the following lemma.

Lemma 3.1 Let U € L(N) and © € I1(v)(U). Let S € Lo(U) satisfy S #
U,U(i)e’ for anyi € Supp U. Ifv € G(N) is superadditive, then there ezists
y € I(v)(U) which dominates & via S if and only if Z z; < v(S).
i€Supp S

Proof. If there exists a fuzzy imputation y € I(v)(U) satisfying y domg «,
then v(S) 2 3 icqupp 5 ¥i > Diesupp s Fi holds. Hence, it is sufficient to prove
iesupp s Ti < V(5). Let
6 = v(S) = Yicsupp 5 %i and &' = v(U) — v(S) = Yicsupp v7\supp sv(U(i)e’).
From the assumption, § > 0. For (U,W) € L(N) x P(N), define U\W €
L(U) by

that the converse relationship holds. Suppose that

UG, VigW,

(U\W)(i) = { 0, otherwise, VieN.

Note that U;csupp t\supp sU(¢)e* = U\Supp S and S U (U\Supp S) = U.

Then, by virtue of superadditivity of v, we have

' =vU)—-v(S) - Z v(U(i)e’)

i€Supp U\Supp S

> v(U) — v(S) — v(U\Supp S) > 0.

Define y € R" by

)
T+ ———, Vi € Supp S,
e ISlfpp S| 5
v U(i)et VieS U\S S,
0, Vi ¢ Supp U,

for any ¢ € N. Then it is easy to confirm y € I(v)(U) and y domg . O

Theorem 3.1 If v € G(N) is superadditive and monotone nondecreasing

with respect to rates of players’ participation then C(v) = DC(v).
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Proof. Let U € L(N) and & € I(v)(U). Let S € Lo(U) satisfy S #
U,U(i)e* for any i € Supp U. As noted above, no y € I(v)(U) dominates
x € I(v)(U) via U or U(i)e’ for some i € Supp U. Thus, by using Remarks
3.2 and 3.3, it is sufficient to prove that y domg x does not hold for any y €
I(v)(U) ifand only if } 7, 5,0 5 %: > v(S), since v is monotone nondecreasing.
From Lemma 3.1, we have the relation above when v is superadditive. The

proof is completed. (W

Note that C(v) = DC(v) if v € G¢(N), since any v € G¢(N) is super-
additive and monotone nondecreasing.

We define balancedness in fuzzy games as follows:

Definition 3.8 A collection {y7}repsupp v)\(0} 8 said to be a balanced col-

lection in U if it satisfies

Z yr =1, Vi € Supp U,
TeP(Supp U)\{0}:T3i
vr >0, VT € P(Supp U)\{0}.

A fuzzy game v € G(N) is said to be balanced in U if the following holds:

S w1 <o),

TeP(Supp U)\{0}
for any balanced collection {yr}repsupp v)\(8) in U.
Then the following theorem holds:
Theorem 3.2 Let v € G(N) and U € L(N). Then the core of U for v, say
C(v)(U), is nonempty if and only if v is balanced in U.
Proof. Consider the following problem:

(P) minimize E x;
i€Supp U

subject to Za:, >oY(T) VT e P(Supp U)\{0}

€T
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It is apparent from Remark 3.1 that the core of U for v is nonempty if and
only if the optimal value of (P) is not greater than v(U). The dual problem
for the problem (P) is described as follows:

(D) mazximize Z v - vY(T)
TeP(Supp U\ {0}
subject to Z yr =1 VieSupp U
TeP(Supp UN\{0}:T>i
>0 VT € P(Supp U)\{0}

It is apparent that the problem (P) has the optimal solutions. From the
duality theorem, its dual problem (D) has also the optimal solutions and the
optimal values of the two problems coincides with each other. Therefore, the
core of U for v is nonempty if and only if ) ;. P(Supp UN\{0} VT v7(T) < v(U)
for any {yr}rep(supp v)\(0} Satisfying the constraints of the problem (D), i.e.,

for any balanced collection in U. a

The following remark shows a relationship between the cores for two

strategically equivalent games in G¢(N).

Remark 3.4 Let zp =c-z;+U(@) ~a; for any i € N. If v,v' € G¢(N)
satisfy v'(S) = c-v(S) + X ;cn S(¢) - a; for any S € L(U) where ¢ > 0, then
z € C(v)(U) if and only if ' € C(v')(U).

3.5 Concluding Remarks

In this chapter, we have defined some basic concepts related torsolution
concepts, i.e., a fuzzy imputation function, a fuzzy imputation set-valued
function and an FPMAS, which are applicable to any fuzzy games. We have
given definitions of an f-carrier and a ~-null player in fuzzy games to intro-
duce an axiomatic definition of the Shapley function. The core function and
the dominance core function have been defined. We have shown that those
two functions coincide with each other if a given fuzzy game is superadditive

and monotone nondecreasing with respect to rates of players’ participation.
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Balancedness in fuzzy games has also been introduced. The core and the
dominance core are not always nonempty. It has been shown that the core
is nonempty if and only if a given fuzzy game is balanced. Strategical equiv-

alence on the core function is discussed.



Chapter 4

Solution Concepts in a Class of
Cooperative Fuzzy Games

4.1 Introduction

In Chapter 3, we have given an axiomatic definition of the Shapley function,
which is applicable to any class of fuzzy games. However, it is not easy to
give an explicit form of the Shapley function on the class of all fuzzy games.
Butnariu [7] introduced a limited class of fuzzy games in order to obtain an
explicit form of the Shapley function defined by him. However, the class
cannot be quite natural since most games in the class are neither continuous
nor monotone nondecreasing with respect to rates of players’ participation.
In this chapter, in order to give an explicit form of the function, we shall
define a new class of fuzzy games, which is considered natural in terms of
monotonicity and continuity. We investigate properties of concepts closely
related to the Shapley function in the class of fuzzy games. An explicit form

of the Shapley function is given and its rational properties are discussed.

4.2 A Class of Cooperative Fuzzy Games
We define the following class of fuzzy games:

Definition 4.1 Given S € L(N), let Q(S) = {S(i) | S(i) > 0, i € N} and
let q(S) be the cardinality of Q(S). We write the elements of Q(S) in the

33
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increasing order as hy < --- < hys). Then a game v € G(N) is said to be a

fuzzy game ‘with Choquet integral form’ if and only if the following holds:

a(S)

v(S) =Y o((Slh) - (b — Puy), (4.1)

=1
for any S € L(N) where hy = 0. We denote by Go(N) the set of all fuzzy

games with Choguet integral forms.

It is apparent that (4.1) is a Choquet integral 8, 12, 26] of the function
S with regard to v. There is a one-to-one correspondence between a crisp
game and a fuzzy game with Choquet integral form. We call the crisp game
corresponding to a fuzzy game with Choquet integral form the associated
vcrisp game, and the fuzzy game with Choquet integral form corresponding
to a crisp game the associated fuzzy game. For the sake of simplicity, we will
denote the crisp game associated with v € G¢(N) by v € Gp(N) if there is

no fear of confusion.

Remark 4.1 Letv € Go(N) and S € L(N). Consider a set {ki,... ,kn} 2
Q(S) such that 0 < ky < --- < ky, < 1. Then the following holds:

v(S) =Y v([Sl) - (ki — k1), VS € L(N),

where ky = 0.

From the definition of G¢(N), we obtain the following relations. It is
clear that v € G¢(N) is superadditive since the associated game v € Gy(N)
is superadditive. Any v € G¢(NN) is monotone nondecreasing with respect to
rates of players’ participation since the associated game v € Gy(N) is mono-
tone nondecreasing, which is shown in the next lemma. It is also apparent
that v € G¢(V) is convex if and only if the associated game v € Go(N) is

convex.

Lemma 4.1 Let v € G¢(N). Then the following holds:

v(S) <u(T), VSTeL(N), st. SCT.
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In other words, any v € G¢(N) is monotone nondecreasing with respect to

each player’s grade of membership.

Proof. Note that S C T if and only if [S], C [T, for any h € (0,1]. Hence,
the lemma is apparent from the definition of v € G¢(N) since any game

v € Gy(N) is monotone nondecreasing with respect to set inclusion. a

The following theorem is obtained.

Theorem 4.1 Define the distance d in L(N) by d(S,T) = max |S(7) — T'(4)|
for any S,T € L(N). Any v € Gc(N) is continuous.

Proof. Let S € L(N). Let § be sufficiently small and let T € L(N) satisfy
max;en |S(i) — T(7)| < 8. We shall prove that v(T) — v(S) if § — 0. Let
Q'(S) ={S@) | i€ N} = {k1,... ,km,... ,ky(s)}, where ¢'(S) denotes the
cardinality of Q'(S). Let S™ = {i € N | S(i) = k,}. We write the elements
of T[m] = {T(i) | i € S™} in the increasing order as k* < --- < kT* <
-+ + < ki), where t[m] denotes the cardinality of T[m]. We can assume that

k;’[‘"ﬂ” < kT holds for any m > 2 when ¢ is sufficiently small. Thus,

7(5) t{m]
o(T) =3 > v([Thy) - (kg — k),
m=1 p=1
where k} = 0 and kJ* = k:ﬁrﬂl] (m > 2). Note that v({T]sr) = v([Slk,,) for

any m since § is sufficiently small. Hence, for any m, we have

tm]

> v([Tly) - (k2 — k)

p=1
t[m]

= 0([Slkn) - (WP — B2 ) + D o([Tlep) - (K — k),

where k%, = 0. Note that kn — km_1 — 26 < kI* = K7Ly < K — by + 26

and 0 < k' — k7' ; < 20 (p > 2) hold for any m > 2 because of the definition
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of T. Thus, the following holds:

v([SIk..) - (km — Ky — 26)

t[m)
< Y o[Thyp) - (kp — k)

t[m]
< v([Slk,) - (bm — kmey +28) + > v([Tiy) - 26.
p=2
Note that v(W) < oo holds for any W € P(N). Hence, if § — 0 then
S ([ Tlep) - (K~ ki*1) = v([Slk..) - (km — km—1). It follows that if § — 0
then v(T) — Zzlg) v([Slk..) - (km — km—1) = v(S). The proof is completed.
O

From Lemma 4.1 and Theorem 4.1, G¢(N) can be considered more nat-
ural than Butnariu’s class in the sense of monotonicity and continuity.

Let us show next lemma preliminary to the following section.

Lemma 4.2 Let v € Gg(N) and S,T € L(N) such that S C T. Then
v(S) = v(T) if and only if v([S)s) = v([T|1) for any h € (0,1] .

Proof. It is apparent that v(S) = v(T) if v([S]n) = v([T]n) for any h €
(0,1]. We shall show the reverse relationship. Let Q(S) = {S(1) | S(z) >
0, :e N}, Q(T)={T({) | T() >0, i€ N} and Q(S,T) = Q(S)UQ(T) =
{h1,... ,hgsm)}, where hy < -+ < hgsr) and ¢(S,T) = |Q(S,T)|. From

Remark 4.1, we have

q(S,T)

o(T) ~v(S) = Y {v([Tlh) = v([Slh)} - (he = huy).

The associated game v € Go(N) is nondecreasing with respect to set inclu-
sion, and S C T if and only if [S], C [T, for any h € [0,1]; hence v([T]) >
v([S]n) holds for any h € [0,1]. Thus, if v(S) = v(T), v([T]s,) — v([S‘]h,) =0
holds for any h; € Q(S,T). Note that [S], - [S]n, and [T]p = [T]n, holds
for any h satisfying h;_1 < h < hy; hence, we have v([T],) = v([S]s) for

any h € (0,hysr)). For any h satisfying h > hgsz), [Tlh = [Slh = &
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Table 4.1: An example of crisp games
S v(S) S (S S v(S) S v(S)
{1} 120 {1,2} 450 {2,4} 480 {1,3,4} 900
{2} 150 {1,3} 480 {3,4} 600  {2,3,4} 900
{3} 180 {1,4} 480 {1,2,3} 840 {1,2,3,4} 1500
{4} 180 {2,3} 480 {1,2,4} 840

Figure 4.1: v € G¢(N) in Example 4.1

hence v([T]n) = v([S]s) = v(0) holds. Accordingly, if v(S) = v(T) then

v([S]n) = v([T)s) for any h € (0,1]. This completes the proof. ]
Some properties of Go(N) are illustrated with the following examples.

Example 4.1 Let N = {1,2}. For any S € L(N), if S(1) < S(2) then
v(S) =v({1,2})- S(1) + v({2}) - {S(2) — S(1)}; otherwise, v(S) = v({1,2}) -
S(2)+v({1})-{S(1) — S(2)}. Suppose that v € G4(N) is given by Table 4.1.
Then we have the associated fuzzy game v € G¢(N) explicitly as follows.
If S(1) < S(2) then v(S) = 300 - S(1) + 150 - S(2). Otherwise, v(S) =
120 - S(1) + 330 - S(2). It is shown in Figure 4.1.

Example 4.2 Let N = {1,2,3,4}. Let S € L(N) satisfy S(2) = 0.4 and
S(3) = S(4) = 0.7. We have the associated fuzzy game v € G¢(N) explicitly
as follows. If S(1) < 0.4 then v(S) = v({1,2,3,4})-S(1) +v({2,3,4})-{0.4—
S(1)}+v({3,4})- (0.7—0.4). If 0.4 < S(1) < 0.7 then v(S) = v({1,2,3,4})-
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Figure 4.2: v € G¢(N) in Example 4.2

0.4+v({1,3,4})-{S(1)-0.4} +v({3,4})-{0.7—-S(1)}. If 0.7 < S(1) < 1 then
v(S) = v({1,2,3,4}) - 0.4 + v({1,3,4}) - (0.7 — 0.4) + v({1}) - {S(1) — 0.7}.
Here, suppose that v € Go(N) is given by Table 4.1. If S(1) < 0.4 then
v(S) = 600 - S(1) + 540. If 0.4 < S(1) < 0.7 then v(S) = 300 - S(1) + 660.
If 0.7 < S(1) < 1 then v(S) = 120 - S(1) + 786. A gradual variation of
the coalition values with that of the rate of the first player’s participation is

shown in Figure 4.2.

4.3 Concepts Related to the Shapley Func-
tion in the Class of Cooperative Fuzzy
Games

In this section, we discuss properties of a y-null player and an f-carrier in
the proposed class.

As is shown in Lemma 4.1, any v € G¢(N) is monotone nondecreasing
with respect to rates of players’ participation. Hence, if player ¢ is a «y-null
player in U for v € G¢(N) then he is a 4'-null player in U for v for any +/
satisfying v < +' < U(3).
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The following theorem shows a relationship between a y-null player in
U for v € G¢(N) and a null player in [U], for the associated crisp game
v E Go(N)

Theorem 4.2 Letv € G¢(N) and U € L(N). Player i is a y-null player in
U for v if and only if he is a null player in [U]y, for the associated v € Go(N)
for any h satisfying v < h < U(3).

Proof. We define L{y|(U) = {[S]n | S € L(U), 0 <y < S(1) < h < U®5)}
and Py|(U) = {T € P([UL\{#}) | 0 < v < h < U(3)}. Let us show
L[y](U) = P[v](U) holds. If [S], € L[y](U) is given, then the corresponding
Te P[y](U) is immediately obtained by setting T = [S],. It means that
Lly|(U) € P[](U). We shall show that L[y](U) D P[y](U). Let T €
P[y](U), i.e., let T € P([U]x\{¢}) for some h satisfying 0 < v < h < U(4).
Let S be defined by

{ U@G), if jeT e P(UL\{i}),

S =<t if j =1,

0, otherwise,
where v <t < h. Then we have S € L(U), 0 < v < S(3) < h < U(3) and
[Sh=1{j€N|jeTePUL\i)} =T
Hence, T € L[y](U), which means that L[y](U) D P[y](U).

Since S C SY, by using Lemma 4.2 we obtain

v(S) = v(8Y), |
<= v([Sl) = v([S{]n), Vhe(01],
<= v([Shh)=v(Slhu{s}), S(G)<VhIU(®).

Hence, using L[y](U) = P[y](U), we have

v(S) =v(SY), VSeL{l), st SGE >v>0,
<= [v([S]h) =v([SlhU{s}), S()<VALSUG)],
VS e L(U), s.t. S(i) >~ >0,

= v([Sh) = v([S] U {i}), V[S]n € LI(U)
&= o(T) =v(TU{i}), VT € Ph|(U)
= [o(T) =v(TU{i}), VT e P([Uln\{i}) ],

0<y < Vh<UG).
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Therefore, player ¢ is a y-null player in U for v if and only if he/she is a null
player in [U],, for the associated v € Go(NN) for any h satisfying v < h < U(4).
a

Next, we shall discuss an f-carrier for v € G¢(N). Since any v € G¢(N)
is monotone nondecreasing, it can be found that if v € G¢(N) and S €
FC(U | v), then 8" € FC(U | v) for any S’ € L(U) such that S’ 2 S.

We have relationships between an f-carrier in U for v € G¢(N) and a
carrier in [U], for the associated crisp game v € Go(N), as shown in the

following theorems.

Theorem 4.3 Let v € Go(N) and U € L(N). If S is an f-carrier in U for
v then [S]a is a carrier in [U), for the associated crisp game v € Go(N) for
any h € (0, 1].

Proof. The following always holds:
{[Tln | T € LU)} = P(Uls), Vhe(01]

By using Lemma 4.2 and the above relationship,

S e FC(U | v),
= o(SNT)=0v(T), VT e LU),
<> v([SNT)p) =v(T]n), V h.€ (0,1], VT € L(U),
< v([SIN[Th) =v(Tl), VTeLU), Vhe(01],
= [v(ShNR)=v(R), VReP(Ul)], Vhe(01],
& [Slh e C([U | v), Vhe(0,1).

Hence, if S € FC(U | v), then [S], € C([U], | v) for any h € (0,1]. |

In general, the following lemma holds.

Lemma 4.3 [21, Lemma 3.1] Let U € L(N). Let a set-valued function T
: [0,1] = P(N) satisfy the following properties:

For any h € (0,1], 7[h] C [Ulx,
Property 1. { (0] = V.

Property 2. For any pair (hy, h2) satisfying 0 < hy < he <1, T[hy] D 7[ha].
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Property 3. For any h* € (0,1], hgﬂ T[h] = T[h*].

Then S defined by S(i) = sup{h € [0,1] | ¢ € T[h]} is an element of L(U)
and satisfies [S]y = 7[h] for any h € [0, 1].

Theorem 4.4 Let v € Go(N) and U € L(N). Let T be a set-valued function
satisfying Properties 1 - 3 in Lemma 4.3. If T[h] is a carrier in [U], for v
for any h € (0,1], then S defined by S(i) = sup{h € [0,1] | ¢ € 7[h]} is
an f-carrier in U for the associated fuzzy game v € Go(N) and satisfies
[S]n = 7[h] for any h € (0,1].

Proof. From Lemma 4.3, S defined by S(i) = sup{h € [0,1] | ¢ € 7[h]} is
an element of L(U) and satisfies [S], = 7[h] for any h € (0,1]. If 7[h] is a
carrier in (U], for v for any h € (0,1] then we can adopt the relation proved

in Theorem 4.3, namely

T[hl € C([Uln | v), VY he(0,1],

< [v(r[h]NR)=v(R), VRe P(Uls)], Vhe(01],
< [v([ShNR)=v(R), VREP(Ul)], Vhe(01]
< v(SNT)=v(T), VT e L(U),
< SeFC(U)|wv).
Thus, the proof is completed. O

Preparatory to the proof of the existence of the smallest f-carrier, we

show the following remark and lemmas.

Remark 4.2 Let U € L(N) and h* € (0,1]. Then g [Uln = [Ulp+-
< *

Next lemma is obtained from the definition.

Lemma 4.4 Let v € Go(N), U € L(N) and 0 < hy < hy < 1. IfS €
C([Uln, | v) then SN [Ula, € C([Uln, | v).

Proof. Since hy < hy implies [Uly, 2 [Ulp,, we obtain {R{R=Tn
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[Ulhy, T € P([U]n,)} = P([Uls,)- Hence, the following holds:
S € C([Un | v),

= v(SNT)=u(T), VT e P([Us,),

= w(SN(TNU))=v(TN[Ul,), VT eP(Ul),

< v(SNR)=v(R), V R € P([U)n,),

<> v(SN([Ul, NR)) =v(R), V R € P([U]p,),

> ’U((S n [U]h2) N R) = ’U(R), VRe P([U]hz)
Obviously, S N [U]p, € P([U}n,). This completes the proof. O

Lemma 4.5 Letv € Go(N) and W € P(N). Then N S isa carrier in

SeC(Wi)
W for v.

Proof. Suppose that S,T € C(W | v). Then the following relationships
hold:

SeCW|v) <= v(SNR)=v(R), VR e P(W),
= v(SN(TNR))=v(TNR), VRe PW).

TeCW|v) <= v(TNR)=v(R), VRePW).
Consequently, if S, T € C(W | v), we obtain
v((SNT)NR) =v(R), VRePW).

It implies SNT € C(W | v). Since |C(W | v)| is finite for any v € Go(N),

Nsecww)S is the smallest carrier in W for v. O

Lemma, 4.5 implies that there exists the smallest (possibly empty) car-
rier for any crisp game. Now we are ready to prove the existence of the

smallest f-carrier.

Theorem 4.5 Let v € Go(N) and U € L(N). S defined by

S(i):sup{he[(),l] | ie N R}

ReC([Ulnlv)

is the smallest f-carrier in U for v.
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Proof. Let 7[h] = Ngec(uumR for any h € (0,1] and 7[0) = N. It is
apparent that 7[h] is the smallest carrier in [U], for v from Lemma 4.5. We
shall show that the set-valued function 7 satisfies Properties 1 - 3 in Lemma
4.3 so that we ensure the existence of T € L(U) such that [T], = 7[h] for
any h € [0,1].

It is apparent that, for any h € (0,1], 7[h] C [U]; since 7[h] is a carrier in
[U]n for v. Hence, Property 1 has been proved.

From Lemma 4.4, for any pair (hy, hy) satisfying 0 < hy < hy < 1, if
R € C([Us, | v) then R' = RN [U]y, € C([Uly, | v). Note that P([U],) =
{R' | R = RN [Ul,, for R € P([Ul,)} since [Uls, D [Uln,- We have
7] = ﬂReC([U],,1 wy B 2 nREC([U]h1|v)(R N [Ulh,) 2 nR’eC([U]h2 oy £ = 7lha].
Property 2 has been proved.

Let Q(U) = {U(i) | U(5) > 0} = {ha,... ,hgun}, ho =0 and hypyy41 = 1
where hg < hy < -+ < hyw) < hguy41- For any h* € (0,1], there exists
te{1,...,q(U)+1} such that hy_; < h* < k. Then [U]s+ = [U]s, holds and
there exists A’ > 0 such that h_; < h' < h* < by. We have [Uly = [U]j- =
[Uln,. Thus, from the definition, C([U]w | v) = C([Ulx- | v) = C([U], | v)
holds, from which we derive that 7[h'] = 7[h*] = 7[h;]. From the above
discussion, for any h* € (0,1], there exists A’ such that 0 < ' < h* and
7[h'} = 7[h*] = 7[h;]. We have 7[h] D 7[h*] for any h € (0, h*) from Property

2 proved above. Consequently we obtain Ny;-7[h] = 7[h*]. Hence, Property

3 has been proved.

Therefore the set-valued function 7 satisfies Properties 1 - 3 in Lemma
4.3; hence [S], = 7[h] holds for any h € [0, 1] from Lemma 4.3, and S is an
f-carrier in U for v from Theorem 4.4. Moreover, Theorem 4.3 and definition
of 7[h] imply that if T is an f-carrier in U then [T], D 7[h] = [S], for any
h € (0,1],ie, T 2 S. Hence, S is the smallest f-carrier in U for v. O

We can show that the smallest f-carrier in U for v € G¢(N) is nonempty

under a natural condition.

Corollary 4.1 Let v € Go(N) and U € L(N). The smallest f-carrier in U
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for v is nonempty if and only if v(Supp U) > 0.

Proof. From Theorem 4.5 there exists the smallest f-carrier in U for v but
it is possibly empty. It is sufficient to show that { is not an f-carrier in U
for v if and only if v(Supp U) > 0. By using Lemma 4.1, we obtain

0 € FC(U | v),

<~ o(T) =v(D), VT e L(U),

<~ [v(R)=v(0), VRe P([Uly)], VYhe(0,1],

< v(Supp U) =v(0) =0.
Hence, the emptyset () is not an f-carrier in U for v € G¢(N) if and only if
v(Supp U) > 0. O

We showed a close relationship between an f-carrier and carriers as well
as that between a y-null player and null players. Through those results and
the relationship between null players and carriers in a crisp game, we have

the following remark.

Remark 4.3 Let v € Go(N) and U € L(N). Suppose that there exists the
smallest f-carrier R in U for v satisfying R C U and that player i is a y-null
player in U for v for some . Then we have R(3) < 7.

4.4 Properties of the Shapley Function and
its Relationship to the Core Function

In this section, we discuss properties of an explicit Shapley function and a
relationship between the explicit Shapley function and the core function in
the proposed class of fuzzy games.

Define a function f : Go(N) — (R?)E™) by

a(U)

fi(v)(U) Zf Y([Uln,) - (bt = hu_y), (4.2)

where f' is the function given in Theorem 2.1. Note that (4.2) is a Choquet
integral of the function U with regard to f/(v). Now we show that f is a
Shapley function on G¢(N).
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Theorem 4.6 The function defined by (4.2) is a Shapley function on Go(N).

Proof. We shall prove that the function f defined by (4.2) satisfies the
Axioms F1 - F4.

Axiom Fi: Let v € G¢(N) and U € L(N). Since Y .. fi(v)([Uln) =
v([U]n,) holds for any | € {1,...,¢(U)} from Axiom C; in Definition

2.9, we obtain

v aoU)
Y 5@ = Y3 S (Ul - (b — ki)
1EN =1 ieN
a(U)

= Z v([Uln,) - (e — hu—1) = v(U).

=1

Next, consider an arbitrary ¢ ¢ Supp U. Then i ¢ [U], holds for any
le{1,...,9(U)}. We have f](v)([U]n,) = 0 from Axiom C;. Thus,

F)(U) = S8 f1)([Uln,) - (b — huzy) = 0.

Axiom F,: Letv € Go(N),U € L(N)andT € FC(U | v). From Theorem
4.3, T € FC(U | v) implies [T], € C([U]x | v) for any h € (0,1]. By
Axiom C; in Definition 2.9, f/(v)([U]s) = f{(v)([T]s) for any h € (0, 1].
Hence, we obtain f;(v)(U) = fi(v)(T).

Axiom F3: Let v € G¢(N) and U € L(N). Note that UJ (i) = U (5). If
Ug(z) = Ug(]) =0, then f;(v)(UJ) = f;(v)(U) = 0 from Axiom F}
proved above. We shall discuss the case where UJJ (i) = Uj (j) > 0, i.e.,
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U(i),U(3) > 0. In this case, the following is valid.

U(S) - ’U(PU[S]) =0, VSe L(Ug ,
—  o(S) = u(P,[S]) =0,
VSe L(Ug), s.t. S(j) =0 and S(k) € {S(z),0},
Vk € Supp U,
= [v(S)—v(Py[S]) =0,
VS e LU,
st. S()=h,S()=0
and S(k) € {h,0},Vk € Supp U ],
Y he (0,U7(3)],
= [{o(8wu{i}) ~v(SThu{s}} -h=0,
VS e L(Ug),
st. S'(i)=S5"(G)=0
and S’(k) € {h,0},Vk € Supp U ],
Vhe (0, Ug(i)],
<= [o([STU{i}) - v([SWu{i}) =0,
VS e L(Ufj’),
st. S'(i) = S'(j) =0
and S’'(k) € {h,0},Vk € Supp U ],
v he (0,UY(3)],
<= [v(TU{i})-v(TU{j}) =0,
VT € P([Uli[;]h\{iaj}) 1,
Y h e (0,UY(3)).

Consequently, if v(S) = v(Py;[S]) for any S € L(UJ) then v(TU{i}) =
v(T' U {j}) for any T € P([UJ]s\{%,4}) and h € (0, U] (i)]. Hence, we
have f{(v)([U7]) = fj(v)([U]s) for any h € (0,UY(i)] from Axiom
Cs in Definition 2.9. f/(v)([UJ]x) = fj(v)([UJ]n) = 0 holds for any
h € (U] (i), 1] from Axiom C} in Definition 2.9. Hence, f/(v)([UZ]s) =
Fi)((U{s) for any h € (0,1]. It follows that

q(U‘-'f)

LU = > AUk - (= hiy)

Q(Uil]j‘)

= 3 AU - (ke hiy) = f()(UY):
=1 ;

This completes the proof of Axiom F3.
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Axiom Fy: Let U € L(N) and v;,v3 € Go(N). It is clear that vy + vy €
Gc¢(N) from the definition of Go(N). Using Axiom Cj in Definition

2.9, we have

q(U)
filtvi +v2)(U) = fi(vr +v2)([Uln) - (he = hyy)
=1
a(U)
= > {f@)([U) + fi@)([(Ul)} - (b — buy)
= fi(v1)(U) + fi(v2)(U).

O

In the reminder of this section, we investigate properties of a Shapley
function f on G¢(N).

Theorem 4.7 The vector (fi(v)(U))iesuppu,ver(yy 5 an FPMAS if v €
G¢(N) is conve.

Proof. From Axiom Fj, it is apparent that ), ¢,  fi(v)(U) = v(U) for
any U € L(N). Hence we shall show f;(v)(S) < fi(v)(T) for any i € N if
S CT. Note that S C T if and only if [S], C [T for any h € (0,1]. From
Proposition 2.1, if v € Go(N) is convex and [S], C [T}, then f](v)([S]n) <
Ji(@)([T]) for any i € N; therefore f;(v)(S) < fi(v)(T) foranyic N. O

Theorem 4.7 suggests that f;(v) is monotone nondecreasing with respect
to rates of players’ participation if v € G¢(N) is convex. f;(v) is continuous

if v € G¢(N), as shown in next theorem.

Theorem 4.8 Define the distance d in L(N) by d(S,T) = néalu\;dS(z) —T(3)]
Jor any S,T € L(N). If v € G¢(N) then f;(v) is continuous for any i € N.

Proof. The theorem can be proved in the same manner as Theorem 4.1. O

The following theorem shows that f(v) is a fuzzy imputation function of

v if v € G¢(N) is convex.



48 CHAPTER 4. SOLUTION CONCEPTS IN A CLASS OF GAMES

Theorem 4.9 Let v € G¢(N) be conver. Then f(v) is a fuzzy imputation

function of v.

Proof. Let U € L(N). From Axiom F}, it is apparent that f;(v)(U) = 0
for any ¢ ¢ Supp U and ), fi(v)(U) = v(U). We shall show f;(v)(U) >
U(i) - v({¢}) for any ¢ € N. Let i € N be arbitrary. From Axiom C; in
Definition 2.9, f!/(v)([U]s) = 0 for any h > U(i). From Proposition 2.1,
F@)Y[U) = fi(w)({i}) = v({s}) for any h < U(3) if v is convex. Then

a(U)

fiw)U) = Zf(v)(U]ht (e = hyy)
= Z filw )+ (= hua)

L: hy<U(3)

> Z v({z}) (b — b)) = v({3}) - U(5).

1 hy<U(%)
O

The following theorem provides a relationship between a pair of Shapley

values for two strategically equivalent games in G¢(N).
Theorem 4.10 Let v € Go(N). Let v' be defined by

V(S)=c-v(S)+ ) _S(i)-a;, VSeLN),

1IEN

where ¢ > 0 and a; are real constants. Then v' € G¢(N) and
fiWYU) =c- fi(v)(U)+U@E) -ai, VieN.

Proof. Consider a game w € G(N) defined by w(S) = X,y S(j) - a; for
any S € L(N). Then ¢'(S) = c-v(S)+w(S) for any S € L(N). The following
holds:

9(5)
’LU(S) = Zaj Z (hl-—-hl 1 z Z aJ (hl hl 1)
JEN  ©I:m<8(5) I=1 j€[S],

q(5)
= D w(Sh) - (b= hi-y).

=1
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This implies w € G¢(N). From the definition of G¢(N), it is clear that
v'=c-v+w€ Ge(N). Let U € L(N). The following holds if h; < U(i):

@) (Uk) = 3 BUSEIUI) - {w(S) - w(S\{i})}

SEFP;([Ulx,)
= ) BUSKIU {Za, > a }
SeFi([Uln)) jes JES, i
= Y BUSHIUkD - e = as.
SEP([Ulx,)
Note that f](w)([U]s,) = 0 if by > U(3). We have
q(U)
filw)U) = Z Fw)([Uln) - (e = ha_y)

- Z ai - (b — 1) = U(d) - a;.

heQU) : i <U()
The following also holds.
fi(e - v)(U)

q(U)

= Z file-0)([Uh) - (he — )

q(U ‘
=3 S BUSKIUm - {e- v(S) — e v(S\{ED)} - (b — huy)
I=1 SeP;([Ulx,)
q(U)
=c ), > BUSHIUKD - {v(8) — v(S\{iD} - (bt — hi-s)
I=1 SeP([Uln,)
q(U)

=c Z A@(Uln) - (= hiza) = ¢ fi(0) (V).
By virtue of Axiom F}, for any 7« € N, we have

FNU) = file-v+w)(U) = file-v)U) + fi(w)(U)
O

A gradual variation of each element of the Shapley value can be illustrated

with the following example.
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Table 4.2: The first element of the Shapley value for Example 4;3

S f@S) S f@ES) S fi(w)(S) S f1(v)(5)

{1} 120 {1,3} 210 {1,2,3} 260  {1,3,4] 240
{1,2} 210 {1,4} 210 {1,2,4} 260 {1,2,3,4} 340

£,

244
208

136

0 04 07 1 “U(1)

Figure 4.3: f;(v)(U) in Example 4.3

Example 4.3 Consider the game in Example 4.2. Note that the game is
convex. Table 4.2 shows fi(v)(W) for any W € P(N) such that W > 1.

fi(w)(W) = 0 for any W € P(N) such that W # 1. The first element of the
Shapley value in U for v will be

340 - U(1), if 0<U(1) <04,
A@TU) = 240 - U(1) + 40, if 0.4<U(1)<0.7,
120-UQ)+124,  if 0.7<U(1) <L

A gradual variation of f;(v)(U) with respect to the rate of the first player’s

participation can be confirmed in Figure 4.3.

Preparatory to the following theorem, we define some notations. Consider
bijections from W to W. They can be regarded as renumberings of the
players in W. Let Q(W) denote the set of all bijections from W to W. Let
w € QSupp U) and k € N. Then let S,; € L(U) be a fuzzy coalition
defined by

UG),  ifw() <k,

Sun(d) = { 0, otherwise, VieN.
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For l € {1,...,q(U)}, let Q/(U) denote the set of all bijections from [U]s, to
[Uln,. For w! € QY(U) and k € N, let us define

SO = {i € [Un, | '(3) < k).

Now, we shall show the relationship between the Shapley function and the
core function on the restriction of our proposed class of fuzzy games, G¢(N),

to convex games.

Theorem 4.11 Ifv € G¢(N) is convex and U € L(N), then f(v)(U) coin-
cides with the center of gravity of C(v)(U).

Proof. Let v € G¢(N) be convex and U € L(N). From a well-known
property of the Shapley value for a crisp game [24], the following holds:

F@(Uh)=— > 0D - v(SQue-D}

l W eQ(U)

where uy, is the cardinality of [U],,. Hence, we have

fi(w)(U)

a(U)
= > AUk - (= hiy)

=1
B q(U) 1 o Y
- zz:; a’”—' wzeznl:(U){ (Swl wl(’)) (S Lwt(i)— 1)} (= hya)

1

B 1 by <U(d) un! wzegn;(u) {U (Sgl)’”'(“) - (Sg’),w’(i)—l)} (T = haa).

The last equality follows from s® =S, @ for any [ satisfying h; >
U().
From Remark 3.2, C(v)(U) = C'(vV)(Supp U) holds since any v € G¢(N)

is monotone nondecreasing with respect to rates of players’ participation.

wh!() — el wt(i)-1

Note that v¥ € Gy(N) is convex since the corresponding v € G¢(N) is
convex, and that the core for a convex crisp game is nonempty [24]. These
facts derive that C(v)(U) = C'(vY)(Supp U) # 0.
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We shall show that f;(v)(U) and the ith element a; of the center of gravity
of C'(vV)(Supp U) coincide with each other. From a well-known property
of the core for a convex crisp game [24], the ith element a¥ of each extreme

point of C'(vY)(Supp U) is represented as follows with the corresponding
permutation w € Q(Supp U):

a; = UU(Sul),w(i)) - ,UU(S::,w(i)—l)
= U(Sw,w(i)) - 'U(Sw,w(i)—l)

q(U)
= D {v(Suwiln) = v([Suwe-1ln)} - (= hua)
= > {v(Suwmln) = v([Suwe-1ln)} - (= hisa). (4.3)
l:h<U(3)

The second equality follows from monotonicity of v € G¢(N). The last
equality follows from the fact that [S, .i)ln = [Swwi)-1]a if & & [Uln,-
Note that

[Suwln = {5 € [Uln, | w(5) < w(@)}-

Thus, if i € [Uln, then [Suumln = Sours 804 [Suwi-th = S5 i1
for any pair of bijections (w,w!) € Q(Supp U) x Q(U) such that w(j) <
w(k) if and only if w!(j) < w'(k) for any pair (j,k) € [Uls, x [Uls,- Forl
satisfying by < U(i) and a bijection w' € Q(U), the number of bijections
w € Q(Supp U) such that w(j) < w(k) if and only if w'(j) < w!(k) for any
pair (j,k) € [Uly, x [Uln, coincides with that of permutations of Supp U
without distinction of elements of [U],, i.e., |Supp U|!/us,!. Hence, for each

[ satisfying h; < U(i), we have

> (Suwln) = v([Suwem-1ln)

we(Supp U)

Supp U|!
= Z | ! | ’ {U(Sg’),w’(i)) - U(Sg’),w‘(i)—l)}'

u
W eQl(U) hi

Thus, from (4.3), the ith element a; of the center of gravity of C'(vY)(Supp U)
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will be
1
a, = — E G,lf)
(2 ' 1
|SuPp I w€Q(Supp U)

= > S (Swwln) — v([Sww-ln)}

|SUpp ' L:h<U(F) weQ(Supp U) (hl - hl 1)

_ ISupp Ul
- |SUPP 22

! [:<U@E) wieQtU)

' { (S(l)w'(z)) _”(Sgl)w’m 1)}'(’”_’”“)
= Y o 2 {0(8%) o (W) - = b
Lm<UG) M wleqi(U)
= fi(v)(D).

Therefore the center of the gravity of C(v)(U) coincides with f(v)(U). O

4.5 An Illustrative Example

Consider three economic companies, simply named 1, 2 and 3. Company
¢ has 100 units of resource R; (i = 1,2,3). Company i can obtain gains
v({2}) by producing 100 units of Product P; from 100 units of Resource R;.
Valuable products can be produced by compounding two or three resources
among R;, R; and R3;. Namely, one unit of Product P;; can be produced
by compounding one unit of R; and one unit of R; (i < j, i,j € {1,2,3}).
Moreover, one unit of Product P33 can be produced by compounding one
unit of R, one unit of R, and one unit of R3. However, to produce Product
P;; (i < j), Companies 7 and j have to make up a cooperative relationship,
and to produce Product P53, Companies 1, 2 and 3 have to. If Companies i
and 7 make up a full cooperative relationship, i.e., a crisp coalition {i, j}, then
they can obtain gains v({7, j}) by producing 100 units of Product P;; (¢ < 7).
Similarly, by a crisp coalition {1,2, 3}, they can obtain gains v({1,2,3}) by
producing 100 units of Product Pjo3.

As is in the real life, each company does not need to supply all units

of resource to the formed cooperation. Thus, we have to consider a fuzzy
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game. For example, when Company i can supply only 40 units of R; to the
cooperation between 7 and j, we regard the rate of ith Player’s participation
(membership degree) as 0.4 = 40/100. In such a way, a fuzzy coalition is
interpreted. On the other hand, in the setting of this example, the value
of a fuzzy coalition can be obtained by Choquet integral. Consider a fuzzy
coalition U defined by

U(1) =02, U(2) =04, U(3) = 0.5.

This fuzzy coalition means that a cooperation among Companies 1, 2 and 3
is formed and Companies 1, 2 and 3 supply 20, 40 and 50 units of Ry, R,
and Rj3 to the cooperation, respectively. Under this cooperation, they can
produce 20 units of Pja3, 20 units of P,3 and 10 units of P;. Thus the value
of this fuzzy coalition is evaluated by Choquet integral of U with respect to
v, i.e.,
v(U)
- (©) f S dv
N
q(S)

= > v([Sh,) - (hy — hi—y)

1=1
= 0.2-v({L,2,3})+ (0.4 — 0.2) - v({2,3}) + (0.5 — 0.4) - v({3}).
Now, let us estimate each company’s share of v(U) in the fuzzy coalition
U. To do this, we can employ the proposed Shapley function or the proposed

core function. If v is defined by

v({1}) =100, wv({2,3}) = 800,
v({2}) =200, w({1,3}) = 600,
v({3}) =200, w({1,2}) = 600,
and v({1, 2, 3}) = 1800,

we obtain v(U) = 540. Note that v is convex. The ordinary Shapley values
are obtained as in Table 1. The share of Company i by the Shapley value
can be calculated by
fiw)(U)
= 0.2 fi(v)([Ulo2) + (0.4 = 0.2) - fi(v)([U]o.)
+(0.5 - 0.4) - £;(v)([Ulo.s)
0.2 f;(v)({1,2,3}) + 0.2+ fi(v)({2,3}) + 0.1 fi(v)({3}).
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Table 1: f!(v)(U)
U\Company 1 1 2 3

{1} 100 0 0
{2} 0 200 0
{3} 0 0 200
{1,2} 250 350 0
{1,3} 250 0 350
{2,3} 0 400 400

{1,2,3} 500 650 650

Table 2: v(S)
S(1) S(2) S(3) v(S)

0.2 0 0 20
0 04 0 &0
0 0 05 100

02 04 0 160

0.2 0 05 180
0 04 05 340

Therefore the share of Company 1 can be calculated as follows:

fi(w)(U)
= 02-fi(v)({1,2,3}) + 0.2 fi(v)({2,3}) + 0.1- fi(v)({3})
= 100.

In the same way, Companies 2 and 3’s shares can be calculated as f,(v)(U) =
210 and f3(v)(U) = 230. |
The values of the fuzzy coalitions needed to calculate the core function

is obtained as in Table 2. Hence, we have

C(v)(U)
:{il: € I(U)(U) | Ty +T9 > 160, T+ T3 > 180,$2 +x3 > 340}
={x € R® | z, > 20,2, > 80,25 > 100,
1+ 79 > 160, 2, + 3 > 180,25 + 23 > 340,
Ty + T2+ x3 = 540}
=co{ (20, 140, 380), (20, 360, 160), (80, 80, 380),
(80, 360, 100), (200, 80, 260), (200, 240, 100) }.

Then the center of gravity of the core is the Shapley value.
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4.6 Concluding Remarks

We have given a new class of fuzzy games. It has been shown that any fuzzy
game in the class is continuous and monotone nondecreasing with respect to
rates of players’ participation. The class can be considered natural in these
point.

Relations between an f-carrier and a carrier and relations between a -
null player and a null player have been clarified in this class. In particular,
the existence of the smallest f-carrier has been discussed and it has been
shown that the smallest f-carrier can be identified with a carrier for the
corresponding crisp game.

Furthermore, we have given an explicit form of the Shapley function.
We have shown that a collection obtained from this explicit function is an
FPMAS and that the function obtained from this explicit function is a fuzzy
imputation function, if a given game is convex and belongs to this class. The
former implies that the function is monotone nondecreasing with respect to
rates of players’ participation. Furthermore, it has been shown that the
explicit function is continuous with respect to rates of players’ participation
if a given fuzzy game is in the class. Strategical equivalence on the explicit
function has been discussed. Furthermore, we have proved that the Shapley
value and the center of gravity of the core coincide with each other. The
above discussions means that many of properties which hold in crisp games
are valid also in this class.

Finally, an illustrative example has been given.



Chapter 5

Solution Concepts in Minimum
Spanning Tree Games

5.1 Introduction

Suppose that players in a set N = {1,2,... ,n} are geographically separated
and need some good that is provided by a common supplier 0. Then a
distribution system from the supplier 0 to all members in N has to be built.
They are willing to construct a distribution system with the minimum cost.
The algorithm to find distribution systems with the minimum cost has been
studied for a long time [17, 20]. If it is once found, then the problem of
how to allocate the cost to each member will arise. Such a problem was first
introduced by Claus and Kleitman [9].

Bird [6] was the first who suggested a game theoretic approach to this
problem. He also proposed rational allocations called Bird tree allocations.
For each coalition S C N, let ¢(S) be determined by the minimum cost of
all distribution systems from supplier 0 to players in S. Let &(S) be a game
defined by the minimum cost all over distribution systems from supplier 0
and to players in T O S. Then games ¢ and ¢ are called the minimum
spanning tree game (mst-game) and the monotonic cover game (mc-game),
respectively. A Bird tree allocation is an element of both the cores of the mst-
game and the mc-game (10, 13]. In a Bird tree allocation, each player should

pay the cost of the edge which connects him/her and his/her immediate

o7
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predecessor. It means that the allocation does not depend on the length of
the unique path from the source to him/her. In particular, if the vertex ¢ be
an adjacent follower of the source in T', i.e., 2 € F(0) (p(i) = 0), and I is a
Bird tree allocation for T', then I; = ¢y = c({i}) = €({4}) holds as noted
in Chapter 2. It means that players directly connected to the source in I' do
not benefit in the allocation I although his/her cooperation is important for
connecting the supplier and his/her followers. However, from the definition
of a minimum spanning tree, each player may have\‘to pay more cost but for
a presence of his/her predecessor. So, it may be considered that each player
can demand that his/her followers should pay the cost which his/her absence
caused. To give such players the benefit in the grand coalition formation,
Granot and Huberman [14] proposed the original weak demand operations
(original w.d.o.’s for short). They are defined as operations which map an

allocation to an allocation.

However, it can be considered better to give a slight modification of the
original w.d.o. by player since the original w.d.o. brings an unfair allocations
from some allocations. Furthermore, the original w.d.o. by a coalition is
not well-defined. In this chapter, we define a demand operation by a player
by giving a slight modification of the original w.d.o. by a player. We also
define a demand operation by a coalition by adding a certain restriction to
the original w.d.o. by a coalition so that it becomes well-defined and any

allocation obtained through it is an element of the core of the mst-game.

The demand operation by player i is based on the idea that players who
belong to F'(z) should share the cost which the ith player’s absence caused.
However, if the cost of a minimum spanning tree in Gy, is smaller than that in
G no\({i}> then players in N\{i} will propose to construct a minimum spanning
tree in Gy, by themselves. It can be considered that player ¢ will accept the

proposal. Based on this idea, a revised demand operation is defined.
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5.2 Demand Operations

In this section, we define modified demand operations both by a player and by
a coalition. They are defined by modifying or restricting the weak demand
operations both by a player and by a coalition, which were proposed by
Granot and Huberman [14] and which will be called the original weak demand

operations (original w.d.o.’s) in what follows.

In order to define the original w.d.o.’s and demand operations, various
notations are required, which will be represented as follows. Let I' be a
minimum spanning tree in a network G. Let F (i) be the set of the adjacent
followers of vertex 4 in I', namely F'(i) = {j € N | j =r ¢, Or(j)—Or(i) = 1}.
For k € F(i), let Vi denote the set of the followers of vertex &k in I" and &
itself, i.e., V, = {j € N | j =r k}. Let Ej be the edge set consisting of
all edges which are included in Er and whose end points belong to V4, i.e.,
Ey = {(u,v) € Er | u,v € V;}. Define the subnetwork (V{*, E;*) by Vi* =
No\{{i}U(Urer)Vi)} and Ex* = Er\{{(p(¢), 8)} U {Urer (Bx U {(i, k) H}}-

Let a spanning tree I'; in the network Gy, (;; be minimum of all spanning
trees whose edge sets include Er\{{(p(i),%)} U (Urer{(5,k)})} = Ex* U
(Uker@) Er) in terms of the cost. For any k € F(i), there exists a unique
vertex gx such that g € Vi and ¢x =<r, j for any j € V4. We denote the
unique adjacent predecessor of ¢ in I'; by vertex py. The edge set of I';
is represented by Er* U {Ukerq)(Ex U {(Pk,gc)})}- Then I'; is a minimum
spanning tree in G\ (i3- In fact, (V;, E,) for any r € F(i) and (V- *, E;*) are
disjoint subnetworks of the minimum spanning tree I in Gy,. Hence, from
Kruskal’s algorithm [17], spanning trees obtained by adding some appropriate
edges to them can be minimum spanning trees in G n,\(;}. From the definition
of (p, qx) for k € F(3), I'; is one of minimum spanning trees in G\ {i}-

Let ¢; = ¢p,q for k € F(i). Then we define a demand operation by a

player as follows.

Definition 5.1 Let i € N and let y be an allocation. For r € N and for a
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minimum spanning tree I' in Gy,, let

_ Cr, . if TeF(@),
d(y)=1 ¥ — ZkeF(i) (di(y) — wk), if T =1,
Yrs otherwise.

The operation d* which associates the vector d'(y) = (d'(y))ren with each

allocation y is said to be the demand operation by player ¢ in I

Definition 5.1 is similar to but slightly different from the definition of the
original w.d.o. by a player. The difference is that d;(y) = ¢; — (X, 4)e, Cov—
y(V:\{r})) for r € F(i) in the original w.d.o. by a player. We consider
that the original w.d.o. by a player is not very rational in the following
reason. Consider an allocation y satisfying y(V:\{r}) > >, ,)c, Cuv for
some r € F(i), which means that the followers of player k, i.e., the members
of Vi\{k}, pay more cost in y than the cost of minimum spanning tree
(Vk, Ex). Then player k has to pay more cost than ¢ in the allocation
obtained through the original w.d.o. on y. It follows that player 7 will gain
too much benefit in the obtained allocation. We think it more rational that
each player r € F(i) should pay ¢,. Because of this reason, we have slightly
modified the definition of a weak demand operation by a player.

I y(VArD) = (VA{rD), then ¢ — (Suen, @w — LVAITD) = o
Thus, our modification does not make difference as far as y(V;\{r}) =
(V. \{r})) for any r € F(3).

It is apparent that d'(y) is an allocation if y is an allocation. Note that
d'(y) = y if F(i) = 0. It is also noted that doreN\(i) d (1) is the cost of the
minimum spanning tree I; in G\ (i}, -6, Yoo gy 45 (1) = c(N\{i}).

A subnetwork (N, Er\{(¢,r)}) represents two minimum spanning trees for
the disjoint subnetworks of Gy, for any r € F(i); the one includes vertex r
and the other includes source 0 and vertex ¢. For I to be a minimum spanning
tree means that c; is minimum among the costs of all edges connecting the
two trees from Kruskal’s algorithm. It follows that [, = ¢;- < ¢, holds for
any r € F(¢). Hence, for any r € F(i), di(l) = ¢, > ;.

The following theorem holds.
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Table 5.1: Preparation for obtaining the result of the demand operation in

Example 2
i {1} {2} {3} {4}
F(z) {2} {44 0 90
ZkEF(i) Cr o 4 - -

Coliyi + Dper Gk 4 3 - -
r {1} {2} {3} {4}
Cr - ) - 4
Z(u,v)EE[«, Cuv - 1 - 0
Vi\{r} - {4 - 0

Theorem 5.1 Ifl and d* are the Bird tree allocation and the demand oper-
ation both associated with ', respectively, then the following holds:

d'(l)e C(c), VieN.
Proof. It can be proved in a similar manner to Theorem 2 in [14]. O

For a Bird tree allocation ! in a network, di(l) is not always included in

the core of the associated mc-game. An example is given as follows:

Example 5.1 Suppose that G is given by Figure 2.1. Then (N, {(0,1), (1, 2),
(2,4),(0,3)}) is a minimum spanning tree in G. The associated Bird tree
allocation is (2,2,1,1). Let I = (2,2,1,1). Then, F(i), > ker(s G and
Cp(iyi + ZkeF(i) cik for any i € N, and c,, Z(u,v)eEp, cuw and V. \{r} for any
r € F(i) are given in Table 3.

Since F(1) = {2} and ¢; = 5, d}(l) = c; = 5and d}(l) = I, — (ds (1) —1y) =
2-(5—-2) = —1. We have d'(l) = (~1,5,1,1). From Lemma 2.1, it is
apparent that d'(l) & C(¢).

A weak demand operation by a coalition is also proposed in [14]. It
is defined as the operation to apply w.d.o.’s by a player repeatedly for all
members of the coalition. In the paper [14], it was considered that the
operation by a coalition is independent of the order of applying the w.d.o. by

a player. In fact, however, the operation depends on the order, as is shown
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in Examples 3 and 4 later. Therefore, we revise the weak demand operation
by a coalition by taking the order into account.
Let IT be the set of all permutations of N. Let I be defined by

Op = {r e | n(j) <n(i), Vi,j €N, s.t. j <ri}.
Then a demand operation by a coalition is defined as follows.

Definition 5.2 Let S C N and w € [Ir. Let d* be the demand operation by

player i in T for any i € S. Consider the following algorithm which generates
d*(y) from y.

Step 1: Set Q@ =0.

Step 2: Choose player i c S\Q satisfying ©(i) < ©(j) for any j € S\Q
and update Q@ := Q U {i}.

Step 3: Calculate d?(y) = d'(d®\}(y)), where we define d®(y) = y for

convenience.
Step 4: IfQ = S, then it is terminated. Otherwise, return to Step 2.

Then the operation d° which associates d°(y) with the vector each allocation

y is said to be the demand operation by a coalition S in T.

Our definition of a demand operation is different from the original w.d.o.
in terms of Step 2. Step 2 of the original w.d.o. can be described as ‘select
i € S\Q and set @ := QU {¢}.” The original weak demand operation is not
well-defined since the result depends on which player is chosen at Step 2, as
is shown in Examples 3, 4 and 5 later.

Note that there exists a unique demand operation by S for any S C N
and for any minimum spanning tree I', namely d° is independent of the
choice of # € IIr. This is because the demand operation by player ¢ has an
influence only on the r-th element of y for r € {i} U F(i). It follows that the
order of applying the operations by player j and by player ! does not have

an influence on the result if they satisfy neither j <p { nor j >r .
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The demand operation by a coalition in Definition 5.2 is based on that
by a player defined in Definition 5.1. That demand operation based on the
original w.d.o. by a player can be also considered. It is noted that these two
demand operations by a coalition bring a Bird tree allocation to the same
allocation. This is because an original demand operation by player ¢ depends
on y(V;\{r}) for r € F(3) and has an influence only on the r-th element of
y for r € {i} U F(3).

The following Theorem holds.

Theorem 5.2 Ifl and d* are the Bird tree allocation and the demand oper-
ation both associated with ' respectively, then the following holds:

d’(l) e C(c), VSCN.
Proof. It can be proved in a similar manner to Theorem 3 in [14]. O

It was considered that the theorem corresponding to Theorem 5.2 holds
for the original w.d.o. by a coalition. The proof of the theorem is based on
the idea that w.d.o. by a coalition is independent of the order. However, the
original w.d.o. depends on the order; hence the theorem for original w.d.o.
does not hold. In fact, not all allocations obtained through the original w.d.o.
are included in the core of the mst-game, as is shown in Example 5 later.

An example of the demand operation is given as follows:

Example 5.2 Consider the same network G and the same minimum span-
ning tree I' as Example 2. Then I = (2,2,1,1) is the Bird tree allocation
for I'. Let d° be the demand operation by S € N in I'. Then d¥(1) is
obtained as follows. Let m be defined by n(1) = 1, 7(2) = 2, n(3) = 3 and
7(4) = 4. In Step 1, set @ = 0. Then n(1) = min{n(j) | 7 € S\Q}, and
reset @ = {1} in Step 2. dM (1) = d'(d*(1)) = d' (1) = d*((2,2,1,1)). From
Example 2, we have d'((2,2,1,1)) = (-1,5,1,1). Since Q # S, go to Step
2. Since w(2) = min{n(j) | j € S\Q}, update @ = {1} U {2} = {1,2}.
d2 (1) = d*(d'(l)) = d*((~1,5,1,1)). Since F(2) = {4} and ¢; = 4,
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d2((-1,5,1,1)) = 4. It follows that d3((-1,5,1,1)) = 5—(4—1) = 2. Hence,
we have di*?} (1) = d?((~1,5,1,1)) = (-1,2,1,4). Since F(3) = F(4) = 0,
we have d¥ (1) = d*(d*(d*(d'(1)))) = d*(d*((—1,2,1,4))) = (-1,2,1,4). It
can be easily seen that (—1,2,1,4) € C(c).

Not all allocations obtained by the sequential application of the demand
operations by a player on a Bird tree allocation in an order # ¢ Il are

elements of the core of the mst-game. It is shown in the following example.

Example 5.3 (cf. Example 3) Consider the same network G and the same
minimum spanning tree I' as Example 2. Then the Bird tree allocation for
Fisl = (2,2,1,1). Let 7' be defined by #'(1) = 2, 7#'(2) = 1, n'(3) = 3
and 7'(4) = 4. Then n' ¢ ;. For S C N, let 5 be obtained by the
algorithm in Definition 5.2 but based on 7' ¢ IIy. Then f¥(l) is obtained
as follows. Set @ = 0 in Step 1. Then 7'(2) = min{#'(y) | j € S\Q}, and
reset Q@ = {2} in Step 2. £ (1) = £2(F£°() = £2(1) = £%((2,2,1,1)). Since
F(2) = {4} and ¢4 = 4, f3((2,2,1,1)) = 4. It follows that f2((2,2,1,1)) =
2 — (4 —1) = —1. Hence, we have f*(I) = £*((2,2,1,1)) = (2,—1,1,4).
Since @ # S, go to Step 2. #'(1) = min{#'(j) | j € S\Q}. Update Q =
{2} u {1} = {1,2}. Since F(1) = {2} and ¢; = 5, f3((2,-1,1,4)) = 5.
It follows that fl((2,-1,1,4)) = 2 — (5 — (=1)) = —4. Hence, we have
FRW = F1FP0) = £1(2,-1,1,4) = (-4,5,1,4). Since F(3) = F(4) =
B, we have £V(1) = FA(FF (F2D)) = FF((~4,5,1,4)) = (~4,5,1,9).
Since 3,5 SN (1) =9 > c({2,4)) = 6, £¥(1) ¢ C(0).

Not all allocations obtained by the sequential application of the original
w.d.o. by a coalition on a Bird tree allocation in an order n’ ¢ Il are elements

of the core of the mst-game, as is shown in the following example.

Example 5.4 (cf. Example 3 and Example 4) Consider the same network
G and the same minimum spanning tree I' as Example 2. Then the Bird
tree allocation for I' is I = (2,2,1,1). Let #n' be the same permutation as
Example 4. For S C N, let g% be obtained by the algorithm in Definition
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5.2 but based on 7’ ¢ IIr and the original w.d.o. by a player. Then gV (1) =
9'(g’(9'(9(9((2,2,1,1))))) = g*(g°(9"((2,-1,1,4)))) = 9*(¢*((~7,8,1,4))) =
(=7,8,1,4). Since Tyepp o¥0) = 12 > e({2,4)) = 6, g™ (1) ¢ C(0).

5.3 Revised Demand Operations

In this section, we define a revised demand operation both by a player and
a coalition.

Let 7 € F(i). Let I be a minimum spanning tree in the network Gy,.
Let p(i) be the adjacent predecessor of 7 in I'. Then we define 3, with respect
to I' as follows:

Cry . if Z ik < Cpiyi + Z Cik;
Br = keF (i) kEF (i)
O Cy(3)i + Cir, otherwise,
where 0 < o, < (¢, — ¢ir)/Cps)i and Zrep(i) o, = 1.

Note that there exists (o, )rcr(;) satisfying the above conditions, i.e., 0 <
ar < (¢ — cir)/cpiiyi and ZTeF(i) a, = 1. In fact, (¢, — cir)/cpiyi > 0 holds
since ¢, — ¢y > 0 and ¢y > 0. Furthermore, ) Fli) (¢r — Cir)/cpgyi > 1 also
holds, since 3, Fi) Ok > Cpliyit D pe F(i) Cik holds when (o ),er(;) is necessary.
Thus, the existence of (a),cr() is apparent.

Note that I' and I'; defined in the previous section are minimum spanning
trees in G'n, and G'n,\ ), respectively. It follows that the cost of a minimum
spanning tree in G, is smaller than that in G\ ;) if and only if 3 2y pisy s >
Co(i)i + 2er(i) Cik- Consider the case where Y-, piiy €k > Cpayi + ke rg) Cik-
In such a case, players in F(i) will share the cost cy)i + Y-y prqiy Ciks Which
means that player i will pay nothing. Then 0 < o, < (¢ — ¢;r)/cp(i)i should
hold. In fact, o, > (¢, — ¢ir)/cp(i)i means ¢, < orCp)y + ¢ir; then player r
prefer to pay c,. Hence, o, < (¢, — cir)/Cp(s)i should hold for any r € F(3).
o, > 0 should also hold for any r € F(i) since at least c;, is needed in order
that players in V, have a link.

It is noted that &(1) > I, for any r € F(i) if { is the Bird tree allocation

for I'. In fact, it is apparent that a,cyu) + cir > Cir, and as noted in the
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previous section ¢, > [, = ¢;,. Hence, 8, > ¢;, = [, holds if [ is the Bird tree
allocation for I'.

Then we define a revised demand operation as follows.

Definition 5.3 Let i € N and let y be an allocation. For r € N and for a

minimum spanning tree I' in Gy,, let

b if r € P,
) =4 v o G@ —w), i r=i,
" kEF (i)

Yry otherwise.

The operation 6" which associates the vector 6'(y) = (6:(y))ren is said to be

the revised demand operation by player i in I

It is obvious that §*(y) is an allocation if y is an allocation. It is noted
that 6:(y) < di(y) for any r € F(i) and that 6}(y) > di(y). In particular,
l, = cir < 8:(1) < di(l) holds for any r € F(i) and I; > 8}(1) > di(l) holds.
Note that &'(y) = y if F(i) = 0.

Lemma 5.1 Ifl and 8° are the Bird tree allocation and the revised demand

operation by player i both associated with T respectively, then the following
holds:

&) e C(c), VieN.

Proof. It is sufficient to show that ) ¢ d:(l) < ¢(S) holds for any S C N.
Let S C N satisfy S 2 i. Note that §¢(1) > [, for any r € F(i) and 6:(l) = I,
for any r ¢ F(i) U {i}. It follows that &6¢(l) > I, for any r € N\S. Hence, we
obtain the following:

DG =c(N) = D Si(1) < e(N) — UN\S) = I(S).

res rEN\S

Let T C N satisfy T # i. Note that 6:(1) < di(l) holds for any 7 € F(i)

and 6:(1) = di (1) holds for any r ¢ F(i)U{i}, which means that &:(1) < d:(l)
holds for any r € T. Thus, 3, 4 0:(1) < 3, 7 di(l) < ¢(T) by Theorem 5.2.

r

The proof is completed. O
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Lemma 5.2 Ifl and 6" are the Bird tree allocation and the revised demand
operation by player i both associated with I' respectively, then the following
holds:

6i(l) >0, VYreN.

Proof. If r € F(i), then the following holds:
8il) > 1, > 0.

If r = 4, then the following holds:

&) = &)
= L- Y G-k

keF(i)

= lz—" Z lk—min{ Z Cr, Z akcp(z)z+czk }

kEF(3) keF(i) keF (i)

> L+ > b= ) (ke +ca)

kEF (i) keF (i)
= [+ Z Iy — Cp(i)i + Z cr )] =0
kEF(3) keF (i)

The last equality comes from I; = c,(;); and I = cix for any k € F(3).
If r ¢ F(i) U {3}, we have

Sy =1,>0.
Thus, 6:(1) > 0 for any 7 € N. O
Theorem 5.3 Ifl and 6° are the Bird tree allocation and the revised demand

operation by player i both associated with T' respectively, then the following
holds:

&'(l) e C(€), VieN.
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Proof. It is apparent that > .y 0:(1) = €N). It will be shown that
Y res0:(l) > &(S) for any S € N. Suppose that there exists S C N sat-
isfying 3~ s 6:(1) > &(S). From the definition of an mc-game, there exists a
coalition R C N satisfying R O S and ¢(R) = é(S). From Lemma 5.2, the
following holds:

26 2D 51) > eS) = «(R).

TER reS

Hence, 6°(1) € C(c). This contradicts Lemma 5.1. Therefore, Y res O(l)
¢(S) for any S C N.

O IA

Definition 5.4 Let S C N and 7 € IIp. Let & be the revised demand
operation by player i in I'. Let 8" be the demand operation by player i in T’
for any i € S. Consider the following algorithm which generates 6°(y) from

Y.
Step 1: Set Q = 0.

Step 2:  Choose player i € S\Q satisfying 7(i) < w(j) for any j € S\Q
and update Q) := QU {i}.

Step 3:  Calculate 6%(y) = 869\ (y)), where we define 6°(y) = y for

convenience.

Step 4: IfQ =S, it is terminated. Otherwise, return to Step 2.

Then the operation 8° which associates each allocation y with the vector

6°(y) is said to be the demand operation by a coalition S in T

Then the following lemma holds.

Lemma 5.3 Ifl and 8% are the Bird tree allocation and the revised demand
operation by a coalition S both associated with T' respectively, then the fol-

lowing holds:

5°(l)eC(c), VSCN.
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Proof. From Lemma 5.1, 6°(l) € C(c) holds for any S C N satisfying
|S| = 1. Let T C N satisfying |T'| > 2. Consider ¢ € T such that i <r j
does not hold for any j € T. It will be shown that 67 (I) € C(c) holds, i.e.,
> eq 0t (1) < c(Q) for any Q C N, if 8™\ (1) € C(c).

Let @ C N satisfy Q > i¢. Note that 5TT\{i}(l) = I, for any r € F(i)
because any r € F (i) is included in neither T\ {1} nor Ujer\ (i} F'(j). We have
ST W) = 6, 2 1 = 67 () for any 7 € F(). (NI @) =670 )
for any r & {i} U F'(i) also holds. Thus, the following holds:

dSEW = D amEB )

T€EQ reQ

= oV - 3 HE"OQ
) reN\Q

< o)~ 3 N
, reN\Q

= > 5\
reQR

< Q).

Let @ C N satisfy Q # i. Note that 6:(y) < di(y) for any pair of r # ¢
and y. The following holds by using Theorem 5.2:
D oaENEW) <Y G @"\P@) =) dr1) < Q)

reEQ reqQ reQ

Lemma 5.4 Ifl and 6" are the Bird tree allocation and the revised demand
operation by a coalition S C N both associated with &', then the following
holds:

§3(1) >0, VYreN.

7

Proof. From Lemma 5.2, §5(1) > 0 holds for any r € N when |S| = 1.

Let T C N satisfy |T'| > 2. Consider ¢ € T such that ¢ <r j does not hold
for any j € T. It is sufficient to show that 6I'() > 0 holds for any r € N if
5?\{i}(l) >0 for any r € N.
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From the definition, 6%(y) > 0 holds for any pair of allocation y and
r € F(i). Hence, we obtain

67 (1) = 66" @) >0, VreF()
Consider the case where r = i. Note that d;(y) = d5(l) for any pair of
k € F(i) and an allocation y. Note that 4, \{’}(l) = [, for any r € F(i)
because any r € F'(i) is included in neither T\ {¢} nor Ujen i3 F(5). It is also

noted that
(ST\{'L}(l) — { /Bi > li, if p(z) € T\{'L}$

l;, otherwise .

Hence, by using Lemma 5.2, we obtain

&) = 5T()=5?(5T\{”(l))

keF(i)
= 50 - Y @G -w
kEF(3)
> Li— Y () — ) =681 >0
keF(i)

For r ¢ F(i)U{i}, it is apparent that 6T (1) = &: (67 (1)) = 67\ (1) > 0.

Theorem 5.4 Ifl and 6% are the Bird tree allocation and the revised demand

operation by a coalition S both associated with T', then the following holds:
°(l)e C@), VSCN.

Proof. Suppose that there exists T C N satisfying >, .65 (1) > ¢(7T).
From the definition of an mc-game, there exist R C N satisfying R O T and
¢(R) = &(T). From Lemma. 5.4, the following holds:

S8 > Y85 > oT) = <(R).

rcR reT
This contradicts Lemma 5.3. O

An example of revised demand operations is given as follows:
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Example 5.5 (cf. Example 3) Consider the same network G and the same
minimum spanning tree I' as Example 2. Then the Bird tree allocation for I is
l=1(2,2,1,1). Let 7 be the same permutation as Example 3. Thus, 7 € IIr.
Let 6° be the revised demand operation by S € N in I'. Then V(1) is
obtained as follows. In Step 1, set @ = ). Then 7 (1) = min{n(j) | j € S\Q},
and reset Q = {1} in Step 2. §{1(1) = 6*(6°1)) = 8*(1) = 6'((2,2,1,1)).
Since F(1) = {2}, X oyerqy s = 5 > &y + 2ker) C1k = 4 holds. Hence,
Nl =F=1-cu+cz=4andéi(l)=1, - (1) -L)=2-(4-2)=0.
We have 6'(l) = (0,4,1,1). Since Q@ # S, go to Step 2. Since 7(2) =
min{r(j) | j € S\Q}, set @ = {1} U {2} = {1,2}. §0D) = 828" (1)) =
6%((0,4,1,1)). Since F(2) = {4}, Yycpp Ck = € = 4 > Cplagi + Doperg) Cik =
c1a + ¢4 = 3 holds. Thus, 62((0,4,1,1)) = B4 = 1-c12 + ¢4 = 3 and
62((0,4,1,1)) = 4 — (62((0,4,1,1)) — 1) = 4 — (3 — 1) = 2. 'Hence, we
have 612 (1) = 62((0,4,1,1)) = (0,2,1,3). Since F(3) = F(4) = 0, we have
o (1) = 6*(6°(6%(8' (1)) = 6*(6%((0,2,1,3))) = (0,2,1,3). As can be easily
seen, (0,2,1,3) € C(¢)

5.4 Concluding Remarks

We have defined the demand operation by a coalition by modifying the orig-
inal w.d.o. by a coalition so that it is well-defined. We have confirmed that
any allocation obtained through the demand operation on a Bird tree alloca-
tion is always included in the core of the corresponding mst-game. However,
it is not always included in the core of the corresponding mc-game.
Furthermore, we have defined a revised demand operation. It has been
shown that allocations obtained through the revised demand operations both
by a player and by a coalition on a Bird tree allocation are elements of both
cores of the corresponding mst-game and mc-game. We have also shown that
any elements of allocations obtained through the revised demand operations
both by a player and by a coalition on a Bird tree allocation are nonnegative.

It means that the revised demand operation is more acceptable than the
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demand operation.



Chapter 6

Conclusion

In this thesis, we have introduced solution concepts and investigated their
rational properties in both cooperative fuzzy games (fuzzy games) and mini-
mum spanning tree games. We have given realistic and appropriate decision

making by discussing those solution concepts.

Chapter 3 has dealt with solution concepts in fuzzy games in general.
We have defined a fuzzy imputation function, a fuzzy imputation set-valued
function and an FPMAS as basic concepts in fuzzy games. We have in-
troduced ‘the Shapley function, the core function and the dominance core
function, which are applicable to any class of fuzzy games. Properties of the
latter two functions have been discussed. Furthermore, we have introduced
balancedness in fuzzy games and shown that the core is nonempty if and only
if a given fuzzy game is balanced, since the core is not always nonempty as

in crisp games.

In Chapter 4, in order to obtain an explicit form of the Shapley func-
tion, we have defined a new class of fuzzy games and discussed solution
concepts in the class. This class has some good properties, i.e., continuity
and monotonicity with respect to rates of players’ participation. Properties
of concepts related to the Shapley function in this class has been discussed.
We have given an explicit form of the Shapley function on the class. We have
also discussed its properties which cannot be obtained in general and which

are special for the proposed class. It has been shown that an imputation

73
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obtained through this explicit function coincides with the center of gravity
of a set of imputations obtained through the core function, if a given fuzzy
game in this class is convex. Furthermore, an illustrative example has been
given.

Chapter 5 has dealt with solution concepts in minimum spanning tree
games. We have defined the demand operation by a coalition by modifying
the original weak demand operation by a coalition so that it is well-defined.
It has been confirmed that any allocation obtained through the demand
operation on a Bird tree allocation is always included in the core of the
corresponding minimum spanning tree game. However, it is not always an
element of the core of the corresponding monotone cover game. We have
defined a revised demand operation. It has been shown that allocations
obtained through the revised demand operations on a Bird tree allocation
are elements of both cores of the corresponding mst-game and mc-game. We
have proved that any elements of allocations obtained through the revised
demand operations on a Bird tree allocation are nonnegative. It means that
the revised demand operation is more acceptable than the demand operation.

The following topics need further research:

e Several solution concepts which are considered important in crisp games
should be introduced.

e The uniqueness of the Shapley function in the proposed class of fuzzy

games should be proven.

® The revised demand operation includes parameters. Those parameters
effect on the obtained allocation. The rational determination of those

parameters should be discussed.

We hope that this thesis makes an impotant contribution to the progress
of the field of cooperative fuzzy games and minimum spanning tree games

and gives a guide for an appropriate decision making in cooperation.
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