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Chapter 1 
 

GENERAL INTRODUCTION 
 
 
1. Back Ground 
1.1 The Science of Aromatics (Phenyl Group vs. Naphthyl Group) 
     Because of the dual nature of stability and ready reactivity, aromatic compounds 

compose an important class of organic chemicals. A variety of aromatic structures play critical 

roles as key stable moieties in the fundamental skeletons of various useful biological and 

artificial molecules. The reactivity of aromatic compounds is attributed to their abundance of 

!-electrons, which makes them highly susceptible to electrophiles. Aromatic compounds are 

good substrates for numerous electrophilic substitution reactions, such as aromatic nitration,1 

aromatic halogenation,2 aromatic sulfonation,3 and Friedel-Crafts acylation/alkylation 

reactions.4 These reactions have been widely investigated and used in the production of a 

variety of chemicals, such as pharmaceuticals and plastics.5 

     The reactivity of aromatic compounds, which is based on their electronic properties, is 

strongly dependent on the degree of conjugation or the number of conjugated rings. This 

dependence is clearly evident in a comparison between the simplest aromatics, benzene and 

naphthalene, as summarized in Table 1. Naphthalene is dozens to thousands of times more 

reactive than benzene in electrophilic substitution,6 oxidation,7 or Diels-Alder cycloaddition 

reactions.8 Increased conjugation in an aromatic compound leads to an enhancement of the 

highest occupied molecular orbital (HOMO) energy of an arene (e.g., –8.14 eV for naphthalene 

and –9.25 eV for benzene)9 and reduces its energy gap relative to the energy of the lowest 

unoccupied molecular orbital (LUMO) of an electrophile; hence, the HOMO of naphthalene 

tends to overlap the LUMO of an electrophile more easily than does that of benzene. The 

effects of other factors, such as the nature of substrate arenes,6(c),10 the substituents,11 the 

solvents,12 and the catalysts,13 have also been investigated at various reaction temperatures.11 A 

recent development in computational chemistry has allowed reasonable explanations of 

experimental results on the basis of precise and quantitative calculations of the reactivity.14 

     In addition to their stability and reactivity, rigidity is another important feature of 

aromatic structures. The rigidity is a decisive factor in fixing the whole structure of a molecule 

by reducing its mobility. This aspect of arenes significantly contributes to improvements in the 
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physical properties of a polymer chain. For example, polystyrene [poly(St)], one of the most 

widely used general-purpose plastics, exhibits good thermal properties, with high values of Tg 

and Tm of 100 and 240 °C, respectively. Polymeric materials with naphthyl rings exhibit higher 

Tg and Tm values; for example, those of poly(2-vinylnaphthalene) are 127 and 360 °C, 

respectively. Therefore, these materials have been used as film-forming segments.15,16 
 

Table 1. Comparison of benzene and naphthalene in their reaction relative rates 

 
  

Cycloaddition8 1 3.2 ! 104 

Nitration6(b) 1 3.0 ! 102 

Bromination6(a) 1 
1.84 ! 105 (for 1-position) 

1.86 ! 103 (for 2-position) 

Friedel-Crafts reaction6(c) 1 44 ("/# = 65/35) 

Dimerization by h$17 no dimer 
 

 

 
     Naphthyl-containing polymers are the focus of significant attention in both the academic 

arena and in industrial fields because of their unique and excellent properties, which include 

their mechanical behavior,18 optical properties,19 and thermal properties.15 For example, 

poly(2-vinylnaphthalene) can be used as a probing fluorescence tag due to its excimer emission 

[excimer fluorescence %max = 335 nm for poly(styrene) and 410 nm 

poly(2-vinylnaphthalene)].20 In addition, naphthyl-carrying polymers have been used as a 

thermoplastic resin and as a base material for photoresists because of their better thermal 

resistance in comparison with those of their phenyl counterparts and their more efficient 

light-absorption nature.21 

     Despite these interesting features, the number of polymers with naphthalene rings has 

been limited because undesired reactions caused by naphthyl groups often occur during 

polymerization.22,23,24 In radical polymerization, the thermal initiation by Diels-Alder-type 

reactions exhibits an activation energy that is significantly lower than that of St and was found 

to occur concurrently in the stable free-radical polymerization of 2-vinylnaphthalene [Scheme 

1(A)].23 Consequently, two types of initiations led to uncontrolled polymerization. In cationic 

polymerization, the high reactivity toward Friedel-Crafts-type reactions, as previously 
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mentioned, disturbed the control of the reaction (ktransfer / kpropagation = 17.7 & 104 for styrene and 

100.4 & 104 for 2-vinylnaphthalene) [Scheme 1(B)].22 Although anionic polymerization is the 

only additional polymerization mechanism that allows living polymerization of 

2-vinylnaphthalene, strict purification of the monomer was required to prevent termination by 

an impurity.24 

 
Scheme 1. Undesired reactions caused by naphthyl groups in (A) radical or (B) cationic polymerization 
of 2-vinylnaphthalene 
 

1.2 The Use of Living Polymerization for Precise Polymer Design 
     Living polymerization of vinyl-type monomers is an effective way to incorporate 

reactive groups into a polymer chain because the stable growing ends tend to remain intact 

even in the presence of polar and/or reactive compounds. Since the discovery of living anionic 

polymerization by M. Szwarc,25 the development of living polymerization techniques via 

several mechanisms has resulted in the preparation of various polymers with features that 

include precisely controlled molecular weight (MW), molecular weight distribution (MWD), 

polymer sequence, and/or chain-end functionality. In particular, living cationic and radical 

polymerizations have allowed the well-controlled polymerization of polar and/or functional 

monomers. A current trend in precise polymer synthesis is the incorporation of potentially 

reactive but not protected groups at predetermined positions for the synthesis of block or 

multibranched copolymers via a post-polymerization reaction. 

 

1.3 The Scope and Limitation of Living Cationic Polymerization 
     The potential reactive sites in a polymer chain are useful for the design of well-defined 

polymers with various sequences and/or shapes; however, the moieties can react with the 

growing species, thereby harming the polymerization reactions. In cationic polymerization, 

polar or aromatic compounds can play the role of transfer and/or terminating agents. The 

electron-deficient carbocation exhibits high reactivity toward nucleophilic compounds, such as 

CH2 CH

CH2 CH

CH2 CH

(B) Friedel-Crafts-type Side Reaction
in Cationic Polymerization

CH2 CH CH3 CH

3 +

(A) Diels-Alder-type Initiation Reaction
in Radical Polymerization

! -H+
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amides,26 esters,27 and aromatic groups.28,29,30 This high reactivity also facilitates end-capping 

reactions through the use of various functionalized nucleophiles, such as silyl enol ethers for 

styrene polymerizations,31 sodium dialkylmaronates for vinyl ether (VE) polymerizations,32 and 

furans,28 pyrroles,29 and alkoxybenzenes30 for isobutylene polymerizations. 

     Highly efficient cationic polymerization did not become viable for monomers with polar 

functional groups until the advent of living cationic polymerization systems; the polar 

functional groups can directly cause transfer and/or termination reactions in conventional 

cationic polymerization. The total suppression of these side reactions was achieved through the 

establishment of reaction systems with an extremely small amount of cationic species, which 

invariably are involved in an appropriate equilibrium between dormant (covalent) and cationic 

species.33 This type of equilibrium was realized through control via (1) a nucleophilic 

counteranion,34 (2) a weak Lewis base through moderate nucleophilic interactions with a 

carbocation and a Lewis acid,35 and (3) an ammonium salt through the common-ion effect.36 

Cationic processes were regarded as the most powerful methods for the synthesis of 

well-defined polymers with polar functional groups before controlled/living radical 

polymerization was discovered.37 

     Another group of monomers with potentially reactive sites is styrene derivatives. The 

cationic polymerization reactions of those monomers are often disturbed by intra- or 

intermolecular Friedel-Crafts-type side reactions. This drawback was responsible for the later 

development of the nearly ideal living cationic polymerization of styrene compared to those of 

alkyl VEs34 and isobutylene,38 which were prepared using the HI/I2 initiating system and the 

tertiary ester/BCl3 system, respectively. Because of the relatively high electron density of 

naphthyl groups, the controlled cationic polymerization of naphthyl-containing monomers is 

undoubtedly difficult and has never been reported. The previously cited report showed that 

Friedel-Crafts-type reactions occur frequently in the cationic polymerizations of 1- and 2- 

vinylnaphthalenes.22 

     The feasibility of the electrophilic reaction of carbocations depends on a balance between 

the reactivity of the carbocation from a certain monomer and the nucleophilicity or electron 

density of a nucleophile. For example, in the living cationic polymerization of isobutyl VE, an 

aromatic compound with high electron density, such as 1,3,5-trimethoxybenzene, reacts with 

the propagating carbocation via Friedel-Crafts-type reactions and functions as a chain transfer 

reagent.39 In contrast, anisole, which is a less electron-dense compound, did not react with the 

propagating carbocations of isobutyl VE. 
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Scheme 2. Living cationic polymerization of vinyl monomers with an added base [Method (2)]. 

 

     The recent second wave of the significant progress made with initiating systems, 

especially the base-containing versions (Scheme 2), for living cationic polymerization 

expanded the scope of monomers that can be polymerized in a controlled or living manner. 

This revolutionary change was produced as a result of the diversity of available metal halides 

as catalysts. Motivated by this recent progress, the author decided to examine controlled 

homopolymerization and copolymerizations with various cationically polymerizable monomers 

to synthesize functional block, random, and star-shaped polymers with specific properties 

based on naphthyl groups. The fluorescence property aids in the analysis of polymer 

morphologies. Furthermore, this research will lead to the development of controlled 

polymerizations of vinyl monomers with more conjugated aromatic rings, such as anthracene 

or pyrene rings. 

 

1.4 Graft Copolymers 
     Persistent progress in living polymerization techniques has allowed for the precision 

syntheses of a range of well-defined graft copolymers with desirable branched positions as well 

as controlled MW and MWD of the backbone and branches. Since the development of living 

anionic polymerization,40 this type of polymer has been synthesized via three general 

methodologies, including the “grafting-from,” the “grafting-through,” and the “grafting-onto” 

methods, because these polymers show unusual properties that are attributable to their confined 

and compact structures and to their chain-end effects. For example, surface property control 

using a graft copolymer is a useful technique for various applications, such as coatings and 

adhesives.41 Chujo et al.42 have reported that 1 wt% of a poly[methyl methacrylate (MMA) 

-graft- 2-dimethylmaminoethyl methacrylate] was sufficient to make a surface hydrophilic 

when mixed with a poly(MMA). 

     Among the three approaches, the “grafting-onto” method is better suited for the precise 

control and characterization of the structures of the backbone and branches because living 

CH2 CH
R

X CH2 CH
R

B
MtXn

B
MtXn

B
X

Dormant Active

CH2 CH
R

Propagation
B: Weak Lewis Base
MtXn: Metal Halide



Chapter 1 

 6 

polymerizations are independently conducted for linear polymers. However, conventional graft 

copolymer synthesis often requires the use of protecting and deprotecting functional groups for 

side-chain polymerization or coupling reactions when linear polymers are to be used as side 

chains. One common way to avoid such transformations is the use of two polymerization 

reactions that proceed via different mechanisms. For example, the chloromethylation of 

polystyrene is required for subsequent reaction with living anionic polymer chains.43 In this 

procedure, the modification and purification of the backbone are cumbersome tasks. Deffieux’s 

work is a good example of synthesis based on a coupling reaction without modification; the 

synthesis consists of two types of polymerization reactions: the living anionic polymerization 

and living cationic polymerization of poly(2-chloroethyl vinyl ether; CEVE) for the side and 

main chains, respectively.44 

 

 
Scheme 3. Synthesis of graft copolymers by “grafting-onto” method 

 

     The recent development of combinations of “click”-type polymer chemistry reactions has 

enabled the efficient synthesis of graft copolymers by the grafting-onto method, thereby 

leading to an increasing number of studies that involve this method.45 In addition to the grafting 

efficiency, the fewer steps required for the functional group transformation of a branching 

reaction is another merit of processes that involve “click” reactions. 

     Given the previously discussed background information, the direct synthesis of 

well-defined polymers with latent pendants would lead to the facile synthesis of graft 

copolymers via a single polymerization mechanism. The potential reactive groups, if they 

survive the polymerization reactions, can be used without further transformation for 

termination with living polymer chains to yield graft copolymers. Such simple “grafting-onto” 

methods usually require two different polymerization mechanisms because a functional group, 

which reacts easily in the branching step, is unable to survive the first polymerization if both 

steps are conducted through the same mechanism. 

Backbone
Branches

, Functional Groups
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     On the basis of their possible high reactivity toward cationic species, naphthyl groups 

may be used as capping sites for a “grafting-onto” method in cationic polymerizations. 

However, the literature contains no examples of Friedel-Crafts-type capping reactions of 

cationically prepared living polymers, even with a low-molecular-weight 

naphthalene-containing compound. Because Friedel-Crafts alkylation and cationic 

polymerization proceed under very similar conditions, a judicious choice of the initiating 

systems and other reaction conditions is required. The results of termination mechanisms based 

on the highly nucleophilic naphthyl group would lead to the synthesis of various well-defined 

branched polymers, i.e., not only graft copolymers but also star-shaped polymers. 

 

1.5 pH-Responsive Polymers 
     From the perspective of physical properties, naphthyl groups are expected to interact 

strongly with each other in aqueous solution due to the hydrophobic interaction that can be 

achieved with the assistance of !–! stacking interaction. The strong hydrophobicity of naphthyl 

groups is exemplified by the fact that the free energy value for the stacking of naphthyl groups 

is twice as large as that of phenyl groups (free energy of stacking !!Gº = 1.4 ± 0.2 for benzene 

and 2.9 ± 0.2 for naphthalene). 46 In addition, the stacking ability of naphthyl groups was 

assessed on the basis of the calculated values for the hydrophobicity, the dipole moment, the 

polarizability, and the surface areas of various aromatic analogues in a self-complementary 

DNA duplex.46 Such strong hydrophobic interactions based on naphthyl groups are expected to 

function as a driving force toward the unique self-assembly of polymer segments. 

     The precise control of the self-assembling behavior of a stimuli-responsive polymer 

cannot be realized without well-defined polymeric structures with functional groups. The 

recent development of the living cationic polymerization technique has permitted a high degree 

of control of primary structures and the tolerance of a wide range of polar groups, such as 

ether,47 carboxyester,48 phthalimide,49 silyloxy,50 and azobenzene51 groups. This 

accomplishment is expected to lead to the development of more sophisticated self-assembly 

systems that respond to various external stimuli, such as temperature,47,50 pH,48,49 and light.51 

     Carboxy-containing polymers contain ionizable functional groups capable of donating or 

accepting protons upon changes in the pH of their environment; hence, the hydrophobicity of 

the functional groups changes depending on the pH when the polymer is in water. This specific 

behavior is expected to be useful in many applications, particularly in biomedical systems.52 

However, poly(acrylic acid),53 poly(methacrylic acid),54 and poly(vinyl benzoate),55 which are 
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the most extensively studied pH-responsive polymers, respond in the acidic region, i.e., in the 

approximate pH range of 4–5. In contrast, property changes that occur at intermediate or higher 

pH values are usually required in biomedical fields.56 For example, phosphate- and 

tris-buffered salines, which are commonly used buffer solutions in biological investigations, 

maintain the pH of the solution at 7–8. 

     Hydrophobicity in a pH-responsive polymer chain would increase the critical pH value at 

which phase separation occurs. Recently, Aoshima et al.49(c) demonstrated that novel 

pH-responsive poly(VE)s with carboxyphenyl groups undergo pH-responsive phase separation 

in water at approximately pH 6, which is higher than the phase-separating pH of a poly(VE) 

with short alkyl chains that are less hydrophobic. Thus, a key for controlling the response pH is 

the introduction of hydrophobic groups with different hydrophobicities in the side group at the 

position adjacent to a carboxylic group. The introduction of naphthalene rings, which are 

highly hydrophobic groups with !–! stacking ability, is expected to further increase the 

phase-separating pH and thereby lead to the practical use of such polymers in the biomedical 

field. 

 

2. Objectives and Outline of This Thesis 
     As a result of the dearth of studies on the synthesis of various well-defined 

naphthalene-containing polymers, the author grew interested in the precise synthesis of novel 

polymeric materials using naphthalene as a key compound via base-assisting living cationic 

polymerization. The increased reactivity of a naphthyl group is likely to cause frequent 

Friedel-Crafts-type side reactions in the cationic polymerization of naphthalene-containing 

monomers, unlike the case with phenyl-counterparts undergoing living polymerization. Thus, 

the author first examined the cationic polymerizations of VE monomers with naphthyl groups. 

Furthermore, because the carbocations generated from vinylnaphthalene derivatives usually 

exhibit reactivities that vary from those exhibited by naphthyl-containing VEs or styrene 

derivatives. Thus, the appropriate conditions for the living cationic polymerization of 

vinylnaphthalene monomers were also investigated with particular focus on the initiating 

systems. 

     A novel synthetic methodology for well-defined graft copolymers was then designed 

around the high reactivity of a naphthyl ring. In addition, the precise synthesis of 

pH-responsive polymers that contain naphthyl rings and their stimuli-sensitive behavior based 

on the high hydrophobicity of the naphthyl ring was demonstrated. 
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     This thesis consists of two parts: Part I describes the precision synthesis of 

naphthalene-containing polymers via base-assisting living cationic polymerization (Chapters 2 

and 3). In Part II, the novel design of functional materials through the specific reactivity and 

properties of the identified naphthyl ring is described (Chapters 4 and 5). 

     Chapter 2 presents the living cationic polymerization of a naphthalene-containing VE. 

The naphthyl ring is potentially attacked by an electrophile at two positions: the 1 (")- and 2 

(#)-positions. The cationic polymerization of a #-substituted naphthalene-containing VE was 

controlled under conditions similar to those used for the living cationic polymerization of its 

phenyl-containing counterpart. In contrast, the polymerization of an "-substituted monomer 

was accompanied by side reactions. The cause of the side reactions was investigated through an 

analysis of the obtained polymers and through theoretical calculations. 

 
Figure 1. Cationic polymerizations of naphthalene-containing VEs. 

 

     In Chapter 3, the cationic polymerizations of various vinylnaphthalene derivatives are 

examined. The frequent chain transfer reactions that occur under the conditions suited for the 

corresponding styrene derivative were completely suppressed with the use of appropriate 

initiating systems at a low temperature, which led to the first living cationic polymerization of 

vinylnaphthalene derivatives. 

 
Figure 2. Cationic polymerizations of 6-tert-butoxy-2-vinylnaphthalene at various temperatures. 
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     Chapter 4 focuses on the high reactivity of naphthalene for electrophilic substitution 

reactions. A facile synthesis of graft copolymers was achieved through the use of the 

naphthalene-containing homopolymer as a quencher for the living cationic polymerization of 

various styrene derivatives. Living polymers of styrene derivatives that produce less-stable 

carbocations, such as the p-chlorostyrene or p-acetoxystyrene polymers, were suited for the 

highly efficient reactions with naphthyl groups and yielded well-defined graft copolymers. 

 

 
Scheme 4. Conceptual illustration for synthesis of graft copolymer by living cationic polymerization and 
subsequent Friedel-Crafts reaction. 
 

     Chapter 5 describes the synthesis of a pH-responsive polymer with naphthyl groups. 

pH-responsive carboxy groups were introduced through deprotection of the carboxy ester 

groups of a naphthalene-containing VE polymer that was prepared by a living cationic 

polymerization. The pH-responsive behavior of the obtained homopolymer and copolymer with 

other functional segments in water was investigated. 

 

 
Scheme 5. Synthesis of pH-responsive polymer with naphthyl rings and its pH-driven phase separation in 
water. 
 

C

C
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Chapter 2 
 

Living Cationic Polymerization of Vinyl Ethers with 
a Naphthyl Group: Decisive Effect of the Substituted 

Position on Naphthalene Ring 
 
 
INTRODUCTION 
     Although the living polymerization of monomers with polar functional groups is a 

challenge in cationic polymerization, the development of various initiating systems over the 

past few decades has overcome these problems to a large degree.1 This progress has led to the 

precise synthesis of various polyVEs containing functional groups such as oxyethylene,2,3 

hydroxy,4-6 carboxy,7-10 and amine groups.11-13 Recent developments in initiating systems 

consisting of various Lewis acids with added bases exhibit high durability toward highly Lewis 

basic groups, such as azobenzene,14 urethane15 and amide16 groups, and well-controlled 

synthesis from such monomers has become possible. This extension of the scope of 

polymerizable monomers has contributed to the synthesis of stimuli-responsive polymers with 

high sensitivity to temperature, light, and pH in solution1,17 or on bulk surfaces.18-20 

     As described in General Introduction, cationic polymerization of a monomer with an 

aromatic functional group is often difficult because the aromatic ring can react readily with a 

carbocation by Friedel-Crafts-type mechanisms under certain reaction conditions. For example, 

chain transfer reactions with intramolecular alkylation forming an indanyl-ring at the 

propagating chain end frequently occur in cationic polymerizations of styrene derivatives.21,22 

Furthermore, naphthalene and its derivatives have high reactivities toward cationic species and 

electrophilic reagents due to the rich !-electrons in their rings. In fact, the higher reactivity of 

naphthalene derivatives in electrophilic substitution reactions compared with the corresponding 

benzenes has been clearly demonstrated.23-25 The rates of nitration of the 1- and 2-positions of 

naphthalene were estimated to be 470- and 50-fold greater than the corresponding rates for 

benzene, respectively.24 Furthermore, the rate of chlorination at the 1-position of naphthalene is 

6.6 ! 104-fold greater than that of benzene.25 Because of this high reactivity toward 

electrophilic species, it is often difficult to control the cationic polymerization of vinyl 

monomers containing a naphthalene ring, such as 2-vinylnaphthalene,26 although various 

studies achieved controlled cationic polymerization of styrene derivatives and phenyl 
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group-containing VEs by suppressing Friedel-Crafts-type side reactions under appropriate 

reaction conditions. 

     Despite their potential problems, naphthalene rings are of great interest as main-chain or 

side-chain groups in polymer chains because these groups have attractive physical properties, 

such as higher thermal stability and desirable optical properties compared to benzene rings. In 

addition, the bulkiness of naphthalene rings restricts the mobility of the polymer chain, and 

therefore, the glass transition temperatures (Tg) of polymers containing naphthalene rings are 

generally higher than those of polymers containing phenyl rings. For example, the Tg of 

poly(ethylene terephthalate) and poly(ethylene naphthalene-2,6-dicarboxylate) are 84 ºC and 

134 ºC, respectively.27 In addition, vinyl monomers with a naphthyl group in their side-chains 

are copolymerizable with other vinyl monomers, giving various properties described above to 

copolymers. In fact, a poly(2-vinylnaphthalene) segment was introduced as a film-forming 

segment into block copolymers with ionic segments28,29 

     In this chapter, the author investigates the cationic polymerization of VEs with 

alkoxy-substituted naphthalene rings in the side chain, as illustrated in Chart 1. Polymerization 

is conducted using a base-assisted initiating system consisting of a metal halide with a Lewis 

base, such as an ether or an ester, because this system produces stable and robust cationic 

growing species. The polymerization properties of monomers with "- or #-substituted 

naphthalene rings are compared in terms of the reaction rate and the livingness of the reactions. 

The difference between the two monomers is discussed based on theoretical calculations using 

methoxynaphthalenes as model compounds. 

 

 
Chart 1. Monomer structures examined in this Chapter 
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EXPERIMENTAL 
Materials 

     1-Naphthoxyethyl VE ["NpOVE (> 99.5%)] and 2-naphthoxyethyl VE [#NpOVE (> 

99.5%)], both of which were supplied by Canon Inc., were recrystallized from methanol and 

then from dry hexane and vacuum-dried for over 3 h prior to use. 2-Phenoxyethyl VE (PhOVE) 

was prepared by the reaction of 2-chloroethyl VE (TCI; 97.0%) with phenol and purified by 

double distillation over calcium hydride under reduced pressure before use.30 Ethyl acetate 

(Wako; > 99.5%) was dried overnight over molecular sieves 3A and 4A and distilled twice 

over calcium hydride before use. 1,4-Dioxane (Wako; > 95%) was dried overnight over 

molecular sieves 3A and 4A and distilled over calcium hydride and then lithium aluminum 

hydride. Toluene (Wako; 99.5%) was dried by passage through solvent purification columns 

(Glass Contour). 1-(Isobutoxy)ethyl acetate [IBEA; CH3CH(OiBu)OCOCH3]31 and 

1-(isobutoxy)ethyl chloride [IBVE–HCl; CH3CH(OiBu)Cl],32 used as cationogens, were 

prepared by addition reactions of IBVE with acetic acid and dry HCl, respectively, according to 

literature methods. 1-Methoxynaphthalene ("MeONp) was distilled over calcium hydride 

under reduced pressure, and 2-methoxynaphthalene (#MeONp) was recrystallized from 

methanol and then dry hexane and vacuum-dried for over 1 h prior to use. Commercial 

Et1.5AlCl1.5 (Nippon Aluminum Alkyls; 1.0 M solution in toluene), SnCl4 (Aldrich; 1.0 M 

solution in heptane), and ZnCl2 (Aldrich; 1.0 M solution in ethyl acetate) were used without 

further purification. A stock solution of FeCl3 in diethyl ether was prepared from anhydrous 

FeCl3 (Aldrich; 99.99%). All materials except for toluene were stored in brown ampoules under 

dry nitrogen. 

 

Procedures 

     Polymerization was carried out in a dry nitrogen atmosphere in a glass tube equipped 

with a three-way stopcock that was baked at over 300 °C under dry nitrogen for 10 min before 

use. A typical example of the polymerization of #NpOVE in toluene at 0 °C is as follows: 

#NpOVE monomer was dried for over 3 h in a baked glass tube under vacuum and dissolved in 

toluene. The reaction was initiated by the addition of a prechilled Et1.5AlCl1.5 solution in 

toluene to a mixture of the #NpOVE solution, 1,4-dioxane, and the cationogen (IBEA) at 0 ºC 

with a dry syringe. The polymerization was terminated with prechilled methanol containing a 

small amount of aqueous ammonia (0.1 wt%). The quenched reaction mixture was diluted with 

dichloromethane and washed successively with dilute hydrochloric acid, aqueous sodium 
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hydroxide solution, and water to remove the initiator residues. The volatiles were then removed 

under reduced pressure at 50 °C, and the residue was purified by reprecipitation in methanol to 

remove residual monomers. The product polymer was vacuum-dried overnight at room 

temperature to yield a white rigid polymer. The extent of the monomer conversion was 

determined by gravimetry. 

 

Characterization 

     The molecular weight distribution (MWD) of the polymers was measured by gel 

permeation chromatography (GPC) in chloroform at 40 °C with three polystyrene gel columns 

[Tosoh; TSKgel G-4000HXL, G-3000HXL, and G-2000HXL; exclusion limit molecular weights = 

4 ! 105, 6 ! 104, and 1 ! 104, respectively, or TSKgel MultiporeHXL-M ! 3; exclusion limit 

molecular weight = 2 ! 106; column size = 7.8 mm (internal diameter) ! 300 mm; flow rate = 

1.0 mL/min] connected to a Tosoh DP-8020 pump, a CO-8020 column oven, a UV-8020 

ultraviolet detector, and an RI-8020 refractive-index detector. The number-average molecular 

weight (Mn) and the polydispersity ratio [weight-average molecular weight/number-average 

molecular weight (Mw/Mn)] were calculated from the chromatographs with respect to 16 

polystyrene standards (Tosoh; Mn = 291–1.09 ! 106, Mw/Mn < 1.1). 1H NMR spectra of the 

obtained polymers were recorded at 30 °C in CDCl3 using a JEOL ECA-500 spectrometer at 

500 MHz. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS) spectra were recorded using a Shimadzu/Kratos AXIMA-CFR 

spectrometer (linear mode) with dithranol (1,8,9-anthracenetriol) as the matrix and sodium 

trifluoroacetate as the ionizing agent. Differential scanning calorimetry (DSC) was performed 

with a Seiko Instruments EXSTAR6000 DSC6220 in the range from –20 to 120 °C. The DSC 

measurements were conducted under a nitrogen purge (50 mL/min.), and the heating and 

cooling rates were 10 °C/min. The glass transition temperature (Tg) of the polymers was 

defined as the temperature corresponding to the midpoint of the heat capacity change in the 

second heating scan. 

 

Computational Methods 

     All calculations were performed with Gaussian 03 at the density functional calculation 

(DFT)/B3LYP level of theory with the 6-31G** basis set.33 
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RESULTS AND DISCUSSION 
Cationic Polymerizations of NpOVEs: Effect of Lewis Acids 

Table 1. Cationic Polymerizations of VEs a 

entry monomer activator added base time 
conv. 

(%) 
Mn ! 10–4 b Mw/Mn

b 

1 "NpOVE Et1.5AlCl1.5  – 2 sec 94 1.9 3.68 

2  Et1.5AlCl1.5 EtOAc 31 h 89 1.1 1.30 

3  Et1.5AlCl1.5 DO 3 h 66 0.76 1.29 

4  SnCl4 DO 1 min 90 0.44 1.53 

5  FeCl3 DO 7 sec 35 0.27 1.26 

6  ZnCl2 DO 1.5 h 75 0.48 1.41 

7 #NpOVE Et1.5AlCl1.5  – 1 sec 92 2.0 1.85 

8  Et1.5AlCl1.5 EtOAc 20 h 93 1.3 1.10 

9  Et1.5AlCl1.5 DO 3 h 80 1.0 1.12 

10  SnCl4 DO 1 min 97 0.69 1.33 

11  FeCl3 DO 7 sec 57 0.52 1.28 

12  ZnCl2 DO 1 h 72 0.69 1.29 

13 PhOVE Et1.5AlCl1.5 DO 4 h 92 1.2 1.05 
a [monomer]0 = 0.40 M, [IBEA (for Et1.5AlCl1.5) or IBVE–HCl]0 = 4.0 mM, [Lewis acids]0 = 20 mM. 
[added base] = 1.0 M (for EtOAc) or 1.2 M (for 1,4-dioxane; DO), in toluene at 0 oC. 
b Determined by GPC, polystyrene calibration. 
 

 

     The cationic polymerizations of "NpOVE and #NpOVE were performed using 

Et1.5AlCl1.5 as a Lewis acid in conjunction with IBEA as a cationogen in toluene at 0 °C 

without any additives. The polymerizations of both monomers were complete in a few seconds 

but were not controlled, producing polymers with broad MWDs (entries 1 and 7 in Table 1). To 

control the reactions, the polymerizations were conducted in the presence of ethyl acetate, a 

weak Lewis base capable of inducing the living cationic polymerization of various alkyl 

VEs.1,3,6,9,10,13-20 The reactions of NpOVEs proceeded without induction periods at similar rates 

to reach almost quantitative conversions (Figure 1A; entries 2 and 8 in Table 1). The rates were 

comparable to that of the living polymerization of PhOVE, a phenyl-substituted counterpart, 

under similar conditions (entry 13). The polymerization rates of VEs are often affected by the 
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nature of their functional substituents.2,34 The polymerizations of NpOVEs proceeded much 

more slower compared to the case of alkyl VEs such as isobutyl, tetradecyl, or dodecyl VE.35 

The smaller reactivity may be due to an intramolecular interaction between a growing 

carbocation and the naphthyl groups in the side chain. The shift of the MWD curves with the 

consumption of the monomers confirmed the generation of long-lived species (Figure 1D). 

Furthermore, the Mn values of the "NpOVE and #NpOVE polymers increased in direct 

proportion to the monomer conversions (Figure 1B). However, an obvious difference in 

controllability was observed between the polymerizations. The MWDs of poly(#NpOVE) 

became narrower as the reaction proceeded, but those of poly("NpOVE) broadened with 

increasing monomer conversion (Figure 1C). A shoulder peak in a higher MW region and 

tailing also appeared at the latter stage of the polymerization, as shown in Figure 1D. These 

facts suggested that undesired reactions involving coupling and chain transfer reactions 

occurred during the polymerization of "NpOVE. 

     Cationic polymerizations of NpOVEs using various Lewis acids (SnCl4, FeCl3, and 

ZnCl2) as catalysts were also examined in the presence of an added base. The polymerizations 

proceeded with all catalysts, but the product polymers had lower MWs and broader MWDs 

compared with those obtained using the Al catalyst. In addition, the MWDs of the resultant 

poly("NpOVE)s were broader than those of their poly(#NpOVE)s counterparts, irrespective of 

the catalyst used. Based on these results, the author investigated the cationic polymerization of 

these two monomers in detail using Et1.5AlCl1.5 as a catalyst. 

 

Living Cationic Polymerization of #NpOVE with Et1.5AlCl1.5 

     The linear increase in the Mn values and the narrow MWDs should be evidence that the 

polymerization of #NpOVE using IBEA/Et1.5AlCl1.5 proceeded in a living fashion (Figure 1B). 

However, the Mn values determined by GPC were smaller than the theoretical values. This 

difference is most likely the result of the Mn values being determined relative to polystyrene 

standards. In fact, the degree of polymerization calculated from the integral ratio of the peaks 

assigned to the "-end and the main chain in the 1H NMR spectrum (see Figure 4) agreed well 

with the calculated value [conv. = 50%, Mn(GPC) = 0.68 ! 104, Mn(NMR) = 1.1 ! 104, and 

Mn(calcd.) = 1.1 ! 104]. The living nature of the polymerization using the IBEA/Et1.5AlCl1.5 

initiating system was further evaluated by a monomer addition experiment in which a fresh 

feed of #NpOVE solution was added to the reaction mixture when the monomer conversion 

reached 93% during the first stage of the polymerization. The added monomer was smoothly 
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consumed to reach almost quantitative conversion (Figure 2A). The molecular weights 

increased in direct proportion to monomer conversion (Figure 2B), and the GPC peaks shifted 

to the higher molecular weight region, maintaining a unimodal shape and a narrow MWD 

(Figure 2C). 

 
Figure 1. (A) Time-conversion curves, (B) Mn- and (C) Mw/Mn-conversion plots for the polymerization of 
"NpOVE (circle) and #NpOVE (square), and (D) MWD curves of the obtained polymers using 
IBEA/Et1.5AlCl1.5 initiating system in toluene in the presence of 1,4-dioxane at 0 °C: [monomer]0 = 0.40 
M, [IBEA]0 = 4.0 mM, [Et1.5AlCl1.5]0 = 20 mM, [1,4-dioxane] = 1.2 M. 
 

 
Figure 2. (A) Time-conversion curve, (B) Mn- and Mw/Mn-conversion plots for the polymerization of 
#NpOVE, and (C) MWD curves of the obtained polymers in the monomer addition experiment using 
IBEA/Et1.5AlCl1.5 initiating system in toluene in the presence of ethyl acetate at 0 °C: [#NpOVE]0 = 
[#NpOVE]add = 0.40 M, [IBEA]0 = 4.0 mM, [Et1.5AlCl1.5]0 = 20 mM, [ethyl acetate] = 1.0 M. 
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     The absence of side reactions was confirmed by MALDI-TOF-MS and 1H NMR 

analyses. In the MS spectrum of the product polymer with Mn(GPC) = 0.57 ! 104, only a single 

series of peaks was observed at constant intervals close to the #NpOVE monomer mass of 

214.3 (Figure 3). Furthermore, the m/z of 5943.6 is very close to 5940.2, the calculated mass of 

the structure with an "-end derived from the cationogen and an $-end from the quenching 

agent [CH3CH(OiBu)-(#NpOVE)27-OCH3/Na+]. The 1H NMR spectrum also showed no 

undesirable structures. 

 

 
Figure 3. MALDI-TOF-MS spectrum of poly(#NpOVE) (polymerization conditions: [#NpOVE]0 = 0.40 
M, [IBEA]0 = 4.0 mM, [Et1.5AlCl1.5]0 = 20 mM, [1,4-dioxane] = 1.2 M, in toluene at 0 °C. 
 

Side Reactions in the Polymerization of "NpOVE 

     In contrast to the living polymerization of #NpOVE, the polymerization of "NpOVE 

involved appreciable side reactions, as indicated by the broad MWD curves with two shoulders 

for the products (Figure 1D). A 1H NMR analysis of the product polymers revealed the types of 

side reactions. Figure 4 shows the 1H NMR spectra of poly("NpOVE) and poly(#NpOVE) 

obtained with the IBEA/Et1.5AlCl1.5 initiating system in the presence of 1,4-dioxane in toluene 

at 0 °C. The 1H NMR spectrum of poly("NpOVE) contained some small peaks in the range of 

5–6 ppm, whereas no peaks appeared in this region for poly(#NpOVE). The peaks were 
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assigned to the methine protons (p: see Scheme 1) of the structures resulting from 

Friedel-Crafts reactions36 and to the olefin protons (q and r: see Scheme 1) due to side-chain 

alcohol abstraction.38,39 The comparison of the integral ratios of peak r and the other peaks (p 

and q) suggested that Friedel-Crafts reactions were the primary side reactions. 

 

 
Figure 4. 1H NMR spectra (500 MHz, CDCl3, 30 °C) of poly("NpOVE) (upper) and poly(#NpOVE) 
(lower) obtained using IBEA/ Et1.5AlCl1.5 in the presence of 1,4-dioxane at 0 oC (see Scheme 1 for the 
assignments of peaks p, q, and r; polymerization conditions: ["NpOVE]0 = 0.10 M or [#NpOVE]0 = 0.40 
M, [IBEA]0 = 4.0 mM, [Et1.5AlCl1.5]0 = 20 mM, [1,4-dioxane] = 1.2 M.) 
 

 

 
Scheme 1. Postulated mechanisms of side reactions in cationic polymerization of "NpOVE. 
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     The MALDI-TOF-MS spectra also demonstrated the occurrence of side reactions in the 

polymerization of "NpOVE. Three series of peaks were detected, as shown in Figure 5, and 

each series had an interval of 214.3, corresponding to the mass of the "NpOVE monomer. The 

values of one series agreed with the masses of poly("NpOVE) chains with an initiator 

fragment [CH3CH(OiBu)–] at the "-end and a methoxy terminal [–OCH3] at the $-end derived 

from a methanol quencher. This structure is expected to result from propagation without side 

reactions. Another series with m/z values of –32 relative to the former series corresponded to 

two types of structures that were also suggested by the 1H NMR analysis, i.e., chains derived 

from intramolecular Friedel-Crafts alkylation or intramolecular side-chain alcohol abstraction. 

The almost exclusive occurrence of intramolecular Friedel-Crafts reactions (rather than 

intermolecular reactions) was also suggested because "MeONp induced no side reactions in the 

living cationic polymerization of PhOVE using the IBEA/Et1.5AlCl1.5 initiating system.40 The 

series with low intensity matched the masses of the structures containing internal olefins due to 

intermolecular or Lewis acid-mediated alcohol abstraction and an $-end methoxy group. 

 

 

Figure 5. MALDI-TOF-MS spectrum of poly("NpOVE) (["NpOVE]0 = 0.10 M, [IBEA]0 = 4.0 mM, 
[Et1.5AlCl1.5]0 = 20 mM, [1,4-dioxane] = 1.2 M, in toluene at 0 °C.) 
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     The greater vulnerability of "NpOVE to Friedel-Crafts-type side reactions was well 

supported by following theoretical calculations. Using density functional theory (DFT) 

calculations, the highest occupied molecular orbital (HOMO) energies of 1- and 

2-methoxynaphthalenes ("MeONp and #MeONp), model compounds of NpOVE monomers, 

were estimated to be –0.21005 a.u. (–131.84 kcal/mol) and –0.21130 a.u. (–132.59 kcal/mol), 

respectively. These results indicate that "MeONp is more reactive with electrophilic 

reagents,41,42 such as a growing carbocation, during cationic polymerization. In addition, the 

probabilities of the highest HOMO electron densities were obtained for the 4-position for 

"MeONp and for the 1-position for #MeONp, as shown in Figure 6, indicating that the carbons 

at these positions are most likely to be attacked electrophilically. The lower steric hindrance 

around the 4-position of "-alkoxy naphthalene relative to the 1-position of #-alkoxy 

naphthalene may also be responsible for the greater tendency toward electrophilic substitution 

reactions. 

 

 
Figure 6. Geometry of (A) "MeONp and (B) #MeONp, optimized by the B3LYP/6-31G** method. 
 

     An effective method to suppress Friedel-Crafts reactions in cationic polymerization is to 

perform reactions at low temperatures. Thus, the cationic polymerization of "NpOVE was 

examined with the IBEA/Et1.5AlCl1.5 initiating system at –30 °C. However, side reactions were 

shown to occur by 1H NMR and MALDI-TOF-MS analyses of the product polymers, although 

the peaks assigned to the uncontrolled structures were smaller in both analyses than the peaks 

for the polymers obtained at 0 °C. Polymerization at lower temperatures, such as –78 °C, was 

not possible due to the poor solubility of the monomer in toluene. 
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DSC Measurements 

     Owing to the rigidity of the naphthyl groups, poly(NpOVE)s are expected to have 

mechanical properties that differ greatly from those of poly(alkyl VE)s. In fact, DSC 

measurements revealed that the Tg values of poly("NpOVE) and the poly(#NpOVE) were 

42 °C and 41 °C, respectively (Figure 7). These values are much higher than the Tg of 

poly(ethyl VE) (–42 °C)43 and poly(PhOVE) (–0.5 °C), a phenyl-containing counterpart, 

although the values were still lower than that of poly(2-vinylnaphthalene) (127 °C),44 in which 

the rigid naphthyl group is directly linked to the main chain. In addition, the two 

poly(NpOVE)s showed similar Tg values, which was in contrast to the case of poly(naphthyl 

methacrylate)s [poly(NpMA)s; Tg = 135 °C for poly("NpMA), Tg = 119 °C for 

poly(#NpMA)].45 The large flexibility of the oxyethylene spacers of poly(NpOVE)s likely 

moderates the effect of the substitution position of the naphthyl group on the rigidity of the 

chains, an effect that does not occur in methacrylates. 

 

 

 
Figure 7. DSC thermograms for (A) poly(PhOVE): Mn(GPC) = 2.5 ! 104, Mw/Mn(GPC) = 1.05, (B) 
poly("NpOVE): Mn(GPC) = 1.3 ! 104, Mw/Mn(GPC) = 1.41, and (C) poly(#NpOVE): Mn(GPC) = 2.1 ! 
104 , Mw/Mn(GPC) = 1.10. 
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CONCLUSION 
     The cationic polymerizations of "- and #-substituted naphthoxyethyl VEs were 

examined using various Lewis acid/added-base initiating systems. The polymerization of 

#NpOVE proceeded in a living fashion with Et1.5AlCl1.5 in the presence of 1,4-dioxane or ethyl 

acetate in toluene at 0 °C. In contrast, frequent side reactions, such as intramolecular 

Friedel-Crafts reactions, occurred in the polymerization of "NpOVE under similar conditions. 

The difference in reactivity between the two monomers in electrophilic substitution reactions 

was attributed to the differences in the HOMO orbital energy and/or in steric hindrance. These 

results will contribute to monomer design for the precision synthesis of various types of 

well-defined polymers with naphthalene rings in the side chains. Moreover, because the 

resultant polymers have Tg values that are higher than room temperature, these polymers can be 

used as film-forming segments. 
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Chapter3 
 

Living Cationic Polymerization of 
Vinylnaphthalene Derivatives 

 
 
INTRODUCTION 
     In Chapter 2, the author described the living cationic polymerization of a 

naphthalene-containing VE. Another type of cationically-polymerizable monomers is a styrene 

derivative. The controlled cationic polymerizations of certain styrene derivatives is not 

straightforward because these polymerization reactions have a greater tendency to suffer from 

Friedel-Crafts reactions, than the polymerization of VEs. Thus, relatively strict reaction 

conditions are generally required for the living cationic polymerization of styrene derivatives. 

For styrene or p-methylstyrene, for instance, the polymerization must be carried out in the 

presence of additives at low temperatures, such as –15 °C or –80 °C.1-3 Based on similar 

strategies, the living cationic polymerization of various styrene derivatives has been achieved 

using several initiating systems under appropriate conditions.4-12 

     Greater difficulties are encountered in the polymerization of styrenic-type monomers 

such as vinylanthracene,13-17 vinylphenanthrene,18 and vinylnaphthalene derivatives14,18-21 

because the aromatic rings of these compounds are more susceptible to Friedel-Crafts reactions. 

This higher susceptibility is due to the high electron densities on the aromatic rings, resulting 

from the more expanded conjugated systems.22-24 Not only was the controlled polymerization of 

these monomers achieved, but high molecular weight polymers were obtained in only small 

amount via a cationic mechanism. 

     In this chapter, the author examined the cationic polymerization of three 

vinylnaphthalene derivatives (Chart 1): one with no substituent (2VN), one with an 

electron-donating substituent (tBOVN), and one with an electron-withdrawing substituent 

(AcOVN). The pendant groups were expected not only to block side reactions with the 

naphthalene rings due to the bulkiness of these pendant groups but also to adjust the electron 

densities of the rings. Our group has reported that the use of an EtAlCl2/SnCl4 combined 

initiating system is the most effective method for the living cationic polymerization of various 

styrene derivatives.9-11 In addition, a variety of metal chlorides have been shown to induce the 

living cationic polymerization of VEs. Thus, polymerization reactions were first examined 
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using a single metal chloride or a combined catalyst system. The polymerization behaviors and 

the polymer properties, such as the Tg, were compared with those of a polymer generated from 

a corresponding styrene derivative with a tBuO group. 

 

 

Chart 1. Structures of vinylnaphthalene derivatives 

 

 

EXPERIMENTAL 
Materials 

     6-tert-Butoxy-2-vinylnaphthalene [tBOVN (Tosoh Organic Chemical Co., Ltd.; 99.6%)], 

6-acetoxy-2-vinylnaphthalene [AcOVN (Tosoh Organic Chemical Co., Ltd.; 99.6%)], and 

2-vinylnaphthalene (2VN; Aldrich; 95%) were dissolved in hexane, washed with 10% aqueous 

sodium hydroxide and water, and dried thoroughly over NaSO4 overnight. Subsequently, the 

monomers were recrystallized from hexane twice and vacuum-dried for over 3 h prior to use. 

p-tert-Butoxystyrene (tBOSt; Wako; 98.0%) was washed with 10% aqueous sodium hydroxide 

and water, dried overnight over potassium hydroxide pellets, and distilled twice over calcium 

hydride before use. Dichloromethane (CH2Cl2; Wako; super dehydrated) was dried by passage 

through a solvent purification column (Glass Contour). Commercially available TiCl4 (Aldrich; 

1.0 M solution in CH2Cl2) and EtAlCl2 (Wako; 1.0 M solution in hexane) were used without 

further purification. For GaCl3, a stock solution in hexane was prepared from anhydrous GaCl3 

(Aldrich; > 99.999%). Other materials were prepared and used as described in Chapter 2. All 

materials except for vinylnaphthalene derivatives and CH2Cl2 were stored in brown glass 

ampules under dry nitrogen. 

 

Polymerization Procedures 

     Polymerization was carried out under a dry nitrogen atmosphere in a glass tube equipped 

with a three-way stopcock that had been baked at approximately 400 ºC for 10 min before use. 
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A typical example for the polymerization of tBOVN in CH2Cl2 at 0 ºC is as follows: A TiCl4 

solution was added to a mixture of IBEA and ethyl acetate in CH2Cl2, and then the solution was 

kept at room temperature for 30 min to quantitatively produce an initiating species. This 

solution and SnCl4 were sequentially added to a tBOVN monomer solution to start the reaction. 

After a predetermined interval, the polymerization was terminated with methanol containing a 

small amount of aqueous ammonia (0.1 wt%). The quenched reaction mixture was diluted with 

CH2Cl2, washed with water to remove the initiator residues, and evaporated to dryness under 

reduced pressure. The obtained compound was purified by reprecipitation by pouring CH2Cl2 

polymer solution into methanol to remove residual monomers. The precipitate was 

vacuum-dried overnight at room temperature to obtain a solid polymer. The percent monomer 

conversion was determined by gravimetric method or 1H NMR analysis. 

 

Characterization 

     The Mn and Mw/Mn of the polymers, and 1H NMR spectra were measured as described in 

Chapter 2. Differential scanning calorimetry (DSC) was performed with an EXSTAR6000 

DSC6220 instrument in the range of 0 to 80 °C [for poly(tBOSt)] or 100 to 200 °C [for 

poly(tBOVN)]. The measurements were conducted under a nitrogen purge (50 mL/min.), and 

the heating and cooling rates were 10 °C/min. The glass transition temperature (Tg) of the 

polymers was defined as the temperature corresponding to the midpoint of the heat capacity 

change during the second heating scan. 

 

 

RESULTS AND DISCUSSION 
Cationic Polymerizations of Vinylnaphthalene Derivatives: the Effect of the Substituent 

     Cationic polymerization reactions of 2VN, tBOVN, and AcOVN were carried out using 

SnCl4 as a Lewis acid catalyst in conjunction with an adduct of isobutyl VE with HCl 

(IBVE–HCl) as a cationogen in CH2Cl2 at 0 °C without any additives. Monomers were 

consumed quantitatively and the reactions produced polymers under these conditions, but the 

behavior differed completely among the monomers. The polymerization of tBOVN completed 

in a few seconds, and yielded a polymer with a broad molecular weight distribution (MWD; 

polymerization time = 5 sec, conv. ~ 100%, Mn(GPC) = 5.5 ! 104, Mw/Mn(GPC) = 1.92). The 

reactions of 2VN and AcOVN were also not controlled. The frequent occurrence of transfer 

reactions was indicated by the peaks assignable to the structures derived from not only 
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!-proton elimination but also intra- or intermolecular Friedel-Crafts alkylation reaction in the 
1H NMR spectra of the resulting polymers. In the 1H NMR spectrum of the obtained polymer, 

peaks of the methine protons assignable to the structure derived from Friedel-Crafts alkylations 

were observed around 4.5–4.8 ppm.25 

 

 
Figure 1. MWD curves for poly(vinylnaphthalene derivative)s obtained using SnCl4 in CH2Cl2 at 0 °C: 
[monomer]0 = 0.40 M, [IBVE–HCl]0 = 4.0 mM, [SnCl4]0 = 10 (for tBOVN) or 20 (for 2VN and AcOVN) 
mM, [ethyl acetate] = 0.20 M (for 2VN), 1.0 M (for tBOVN), and 0 M (for AcOVN). 
 

     To control the reactions of 2VN and tBOVN, ethyl acetate was used as an added base. As 

shown in Figure 1, the polymerization of 2VN was not controlled, yielding oligomers (Figure 

1A), indicative of the frequent occurrence of transfer reactions even in the presence of ethyl 

acetate. The frequent occurrence of Friedel-Crafts reactions was also supported by the 1H NMR 

spectrum, in which some peak signals due to Friedel-Crafts reactions were observed. The 

polymerization of tBOVN yielded products without oligomeric fractions, and the GPC curve 

shifted toward the higher molecular weight region as the polymerization proceeded, indicating 

the existence of long-lived growing species. However, the Mn values were much higher than 

the theoretical values. These results suggested that tBOVN has a weaker tendency to undergo 

side reactions such as the Friedel-Crafts reaction, and the initiation reactions were not 

quantitative. Thus, the polymerization of tBOVN was further examined in detail under various 

conditions. 
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Living Cationic Polymerization of tBOVN: The Effects of Initiating Systems and 

Polymerization Temperatures 
 

Table 1. Cationic Polymerization of tBOVN using various Lewis acids in CH2Cl2 at 0 °C a 

a [tBOVN]0 = 0.40 M, [IBVE–HCl]0 = 4.0 mM, [Lewis acids]0 = 10 mM, [ethyl acetate] = 1.0 M. 
b Determined by GPC, polystyrene calibration. 
 

     As the first step in the controlled polymerization of tBOVN, reactions using various 

metal chlorides were performed in the presence of ethyl acetate in CH2Cl2 at 0 °C (Table 1). 

The polymerization reactions proceeded smoothly to reach monomer conversions of 60–80% in 

3 min–1 h with EtAlCl2, SnCl4, FeCl3, and GaCl3 (entries 1–4, Table 1). In contrast, it took 

more than 100 h with TiCl4 for half of the charged monomer to be consumed (entry 5, Table 1). 

The positive shifts in the MWD curves with the consumption of the monomers when using 

TiCl4 and SnCl4 indicate the generation of long-lived species. 

     Among the Lewis acids examined, SnCl4 was superior to the others with respect to 

activity and immunity from side reactions, although the initiation efficiency was low. In 

contrast, TiCl4 initiated the reaction with high efficiency but showed very low activity. Thus, 

the author combined these two catalysts to induce controlled polymerization, i.e., quantitative 

initiation by TiCl4 and highly active propagation by SnCl4. In this initiating system, an adduct 

of IBVE with acetic acid (IBEA) was used as a cationogen instead of IBVE–HCl because 

IBEA is more stable, easier to handle, and less toxic than IBVE–HCl. The reaction of IBEA 

and TiCl4 produces an initiating species quantitatively through the exchange of the acetoxy and 

chloride anions (Scheme 1; a peak due to the methine and methylene of IBEA shifted from 5.8 

ppm to 5.7 ppm and from 3.17 and 3.37 ppm to 3.21 and 3.63 ppm, respectively. Figure 2), in a 

manner similar to that in the IBEA–EtxAlCl3-x (x = 1 or 1.5)/SnCl4 combined system.26 The dual 

Lewis acid system is effective for the controlled polymerization of VEs and styrene derivatives, 

including functional monomers, as shown in previous studies by S. Aoshima et al .9-11,27 

     The polymerization using the IBEA–TiCl4/SnCl4 initiating system was examined in the 

entry activator time conv. (%) Mn ! 10–4 (calcd) Mn ! 10–4 b Mw/Mn b 

1 SnCl4 3 min 78 1.8 5.7 1.60 

2 EtAlCl2 1 h 68 1.5 2.5 2.13 

3 FeCl3 10 min 74 1.7 1.9 2.07 

4 GaCl3 10 min 66 1.5 3.3 1.95 

5 TiCl4 100 h 48 1.1 0.83 1.53 
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presence of ethyl acetate in CH2Cl2 at 0 °C. The reaction proceeded quantitatively without an 

induction period to give a polymer with a very narrow MWD and an Mn value that agreed with 

the calculated value {conv. = 52% in 30 sec, Mn = 0.94 ! 104 [Mn(calcd.) = 1.17 ! 104], Mw/Mn 

= 1.14}. However, a further inspection showed that the MWDs of the products broadened in 

the higher MW region (Figure 3). This result suggested the occurrence of intermolecular 

Friedel-Crafts alkylation, which was also supported by the fact that the Mn value of this 

shoulder peak was twice that of the main peak [Mn(main) = 1.8 ! 104, Mn(shoulder) = 3.6 ! 

104]. In addition, the 1H NMR spectrum of the polymer contained peaks at approximately 4.6 

ppm (peak y in Figure 4) that were assignable to the methine protons between the two naphthyl 

groups resulting from Friedel-Crafts reactions.25 

 

 
Scheme 1. IBEA–TiCl4/SnCl4 initiating system. 

 

 

Figure 2. 1H NMR spectra of (A) IBVE–HCl adduct, (B) the mixture of IBEA and TiCl4, (C) IBEA in 
the presence of ethyl acetate in CD2Cl2 at 0 °C. 
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Figure 3. MWD curves for poly(tBOVN) obtained using IBEA–TiCl4/SnCl4 initiating system in CH2Cl2 
in the presence of ethyl acetate at 0 °C: [tBOVN]0 = 0.40 M, [IBEA]0/[TiCl4]0 = 4.0/2.5, mM, [SnCl4]0 = 
10 mM, [ethyl acetate] = 0.50 M. 

 
Figure 4. 1H NMR spectra (500 MHz, CDCl3, 30 °C) of poly(tBOVN) obtained using IBEA–TiCl4/SnCl4 
in the presence of ethyl acetate at 0 °C: [tBOVN]0 = 0.40 M, [IBEA]0/[TiCl4]0 = 4.0/2.5, mM, [SnCl4]0 = 
10 mM, [ethyl acetate] = 0.50 M. {polymerization time = 3 min, conv = 97%, Mn(GPC) = 1.6 ! 104, 
Mw/Mn(GPC) = 1.32.} 
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Table 2. Cationic Polymerizations of tBOVN and tBOSt using IBEA–TiCl4/SnCl4 initiating systemsa 

entry monomer 
temp. 

(°C) 
added base time conv. (%) 

Mn ! 10–4 

(calcd) 
Mn ! 10–4 b Mw/Mn 

b 

1 tBOVN 0 EtOAc 3 min 97 2.2 1.6 1.32 

2  0 DO 3 min 78 1.9 1.8 1.36 

3  –15 EtOAc 20 min 97 2.3 2.2 1.40 

4  –30 EtOAc 30 min 95 2.0 2.0 1.30 

5  –78 EtOAc 5 min 70 1.4 1.6 1.52 

6 tBOSt 0 EtOAc 15 sec 68 1.2 1.4 1.04 
a [tBOVN or tBOSt]0 = 0.40 M, [IBEA]0/[TiCl4]0 = 4.0/2.5, mM, [SnCl4]0 = 10 mM. [added base] = 1.0 
(for EtOAc) or 1.2 (for DO) M in CH2Cl2. 
b Determined by GPC, polystyrene calibration. 
 

 

Figure 5. (A) Time–conversion curve, (B) Mn- and Mw/Mn-conversion plots for the polymerization of 
tBOSt, and (C) MWD curves of the obtained polymers using IBEA–TiCl4/SnCl4 initiating system in 
CH2Cl2 in the presence of ethyl acetate at 0 °C: [tBOSt]0 = 0.40 M, [IBEA]0/[TiCl4]0 = 4.0/2.5, mM, 
[SnCl4]0 = 10 mM, [ethyl acetate] = 0.50 M. 
 

     In contrast, the cationic polymerization of tBOSt, a corresponding styrene derivative, 

proceeded in a living fashion under similar conditions (entry 6, Table 2 and Figure 5). This 

result suggested that the tBOVN monomer has a higher tendency to engage in side reactions 

involving the Friedel-Crafts reaction than tBOSt does, most likely due to the higher 

nucleophilic nature of the alkoxynaphthyl ring than that of the alkoxyphenyl ring. 
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Figure 6. (A) Time-conversion curve, (B) Mn, and (C) Mw/Mn–conversion plots for the polymerization of 
tBOVN, and (C) MWD curves of the polymers obtained using IBEA–TiCl4/SnCl4 initiating system in 
CH2Cl2 in the presence of ethyl acetate at –30 °C: [tBOVN]0 = 0.40 M, [IBEA]0/[TiCl4]0 = 4.0/2.5, mM, 
[SnCl4]0 = 10 mM, [ethyl acetate] = 0.50 M. 
 

 

Figure 7. 1H NMR spectra (500.00 MHz, CDCl3, 30 °C) of poly(tBOVN)s obtained using 
IBEA–TiCl4/SnCl4 in the presence of ethyl acetate at (A) 0 °C and (B) –30 oC: [tBOVN]0 = 0.40 M, 
[IBEA]0/[TiCl4]0 = 4.0/2.5, mM, [SnCl4]0 = 10 mM, [ethyl acetate] = 0.50 M in CH2Cl2. 
 

     Performing reactions at low temperature is known to be one of the most effective 

methods for suppressing side reactions, such as Friedel-Crafts alkylation, during cationic 

polymerization. Thus, the polymerization of tBOVN was conducted at lower temperatures (–15, 

–30, and –78 °C) with the IBEA–TiCl4/SnCl4 initiating system. At –15 °C, however, the MWD 
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curve broadened (entry 3, Table 2) during the later stage, indicating occurrence of side 

reactions. In contrast, when the polymerization was carried out at –30 °C, quantitative 

polymerization proceeded, producing polymers with narrow MWDs and Mn values that agreed 

with the calculated values (entry 4, Table 2). No shoulder peaks appeared, even in the later 

stage of the reaction. In the 1H NMR spectrum, peaks corresponding to methine protons at 

approximately 4.6 ppm resulting from Friedel-Crafts alkylation were not observed (Figure 7B). 

At –78 °C, the monomer conversion reached a plateau at approximately 70 % in 5 min, and 

polymers with broad MWDs were produced (entry 5, Table 2). 

     Monomer addition experiments were also conducted to confirm the livingness of the 

polymerization at –30 °C. A fresh tBOVN monomer solution in CH2Cl2 was added to the 

polymerization mixture when the first feed was almost completely consumed (conv. 

approximately 92%). The molecular weight increased in direct proportion with the monomer 

conversion, even after the monomer addition, and the peak in the GPC curve shifted to the 

higher molecular weight region as the polymerization proceeded while retaining a narrow 

MWD, as shown in Figure 8. These results demonstrated that the living cationic polymerization 

of a vinylnaphthalene derivative was achieved for the first time. 

 

 
Figure 8. (A) Time-conversion curve, (B) Mn, and (C) Mw/Mn–conversion plots for the polymerization of 
tBOVN, and (C) MWD curves of the obtained polymers in the monomer addition experiment using 
IBEA–TiCl4/SnCl4 initiating system in CH2Cl2 in the presence of ethyl acetate at –30 °C: [tBOVN]0 = 
[tBOVN]add = 0.20 M, [IBEA]0/[TiCl4]0 = 4.0/2.5, mM, [SnCl4]0 = 10 mM, [ethyl acetate] = 0.50 M. 
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Polymerizations of AcOVN and 2VN Using the IBEA–TiCl4/SnCl4 Initiating System 

 

 
Figure 9. MWD curves for (A) poly(2VN) and (B) poly(AcOVN) obtained using IBEA–TiCl4/SnCl4 in 
the presence of ethyl acetate at –30 °C: [monomer]0 = 0.40 M, [IBEA]0/[TiCl4]0 = 4.0/2.5, mM, [SnCl4]0 = 
20 mM, [ethyl acetate] = 0.20 M. 
 

     The cationic polymerization reactions of 2VN and AcOVN were examined under 

conditions similar to those for the living polymerization of tBOVN. With the 

IBEA–TiCl4/SnCl4 combined initiating system, the polymerization of 2VN at –30 °C gave 

polymers with narrower MWDs and higher molecular weights than did polymerization using 

SnCl4 alone at 0 °C (Figure 9A). However, small amounts of oligomers were also produced, 

indicating the incomplete suppression of chain transfer via Friedel-Crafts reactions. In contrast, 

the polymerization of AcOVN at –30 °C proceeded in a living fashion and produced 

well-defined polymers even at the late stage of the polymerization (Mw/Mn = 1.17, Figure 9B). 

The suppression of Friedel-Crafts reactions was supported by the 1H NMR spectra of the 

product. 

 

DSC Measurements 

     The Tg value of a tBOVN homopolymer (Mn = 1.7 ! 104, Mw/Mn = 1.10) was determined 

using DSC. The DSC curve is shown in Figure 10, in addition to the DSC curve for 

poly(tBOSt) (Mn = 1.7 ! 104, Mw/Mn = 1.03) for comparison. The Tgs of the polymers are 

indicated with arrows in Figure 10. The Tg of poly(tBOVN) was 157 °C, higher by 94 °C than 

that of poly(tBOSt), which was 63 °C. This difference is due to the greater rigidity and 
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bulkiness of the naphthalene rings relative to the benzene rings, restricting the mobility of the 

polymer chains. 

 

 
Figure 10. DSC thermograms for poly(tBOVN) (Mn = 1.7 ! 104 , Mw/Mn = 1.03) and poly(tBOSt) (Mn = 
1.7 ! 104, Mw/Mn = 1.10). 
 

 

CONCLUSION 
     The living cationic polymerization of vinylnaphthalene derivatives was first achieved 

with the IBEA–TiCl4/SnCl4 initiating system. Quantitative initiation by TiCl4 and highly active 

propagation by SnCl4 were effective for controlling the polymerization of tBOVN and AcOVN. 

In addition, low temperature was another key to suppressing side reactions such as 

Friedel-Crafts alkylation of the naphthyl groups, which are more electrophilic than their Ph 

counterparts. The homopolymer of tBOVN had a higher Tg by 94 °C than that of tBOSt due to 

the rigidity and bulkiness of tBOVN. These results will contribute to the application of 

vinylnaphthalene derivatives as useful products with unique properties. 
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Chapter 4 
 

Precision Synthesis of Graft Copolymers 
via Living Cationic Polymerization of p-Acetoxystyrene 
Followed by Friedel-Crafts-Type Termination Reaction 

 
 
INTRODUCTION 
     A straightforward post-polymerization reaction is a powerful method for constructing 

elaborate polymer architectures. The “click” reaction is among the most effective reactions 

examined recently. This type of reaction allows the ready and highly efficient synthesis of not 

only multicomponent linear polymers but also well-defined branched polymers with a 

controlled three-dimensional sequence arrangement.1-4 A Friedel-Crafts alkylation may be 

another facile post-polymerization reaction because the substrate, an aromatic ring, can survive 

various types of polymerizations without requiring protection. However this reaction has not 

been fully developed as a key reaction for the precise synthesis of various polymers. 

     Friedel-Crafts alkylation could be useful for polymer reactions in cationic 

polymerizations because an aromatic ring reacts with an electrophile or an electron-deficient 

species. For example, the use of the electrophilic reactions of aromatic groups has been 

examined as a novel synthetic tool for producing star-shaped polymers, hyperbranched 

polymers or end-functional polymers via the cationic polymerization of isobutylene or VEs.5-10 

More reactive aromatic rings such as a naphthyl group could allow more facile synthesis of 

well-defined polymers in cationic polymerization. Thus, the author started investigating 

precision synthesis via cationic polymerization of naphthyl-containing monomers, and have 

reported the living cationic polymerization of monomers with a naphthyl ring in the previous 

chapters, despite its high reactivity in the electrophilic substitution reactions owing to more 

expanded conjugated system than a phenyl ring.11,12 

     Graft copolymers have received recent attention due to their unique properties,13-16 and 

the synthetic methodologies for preparing these materials are classified according to three 

general types; (a) “grafting-onto”, (b) “grafting-from”, and (c) “grafting-through” methods. 

Among these methods, the “grafting-onto” technique, in which the branched chains are formed 

in advance then attached to the backbone, has the advantage of allowing the full 

characterization of the product copolymers because the graft density can be easily evaluated 
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from the molecular weights of the backbone polymer and the branched chains. The 

grafting-onto method has recently been studied extensively due to the aforementioned “click” 

chemistry.1-4 

     The use of a Friedel-Crafts reaction in the synthesis of graft copolymers would eliminate 

one or more steps between the first-stage main chain synthesis and the grafting reaction. Such a 

simplified synthetic procedure has significant advantages over most 

conventional ”grafting-onto” methods because it eliminates the additional steps necessary for 

introducing the reactive groups onto the side chains of the backbone polymer and purifying the 

functionalized polymer.17-20 However, no report has yet described the synthesis of branched 

polymers via a Friedel-Crafts reaction of more reactive naphthyl groups. Thus, the author 

focused on the synthesis of graft copolymers using a naphthyl group-containing polymer as a 

macroterminator. This strategy does not require any functionalization of the side chains 

because the macroterminator, a well-defined polymer with naphthyl reactive groups, is directly 

obtained by the base-assisting living cationic polymerization.11 

     To achieve an efficient reaction of living propagating cations with naphthalene rings, the 

propagating cations should have high reactivity, which allows the use of less reactive 

monomers for the synthesis. Highly reactive polyisobutylene or polystyrene carbocations were 

employed in the above-mentioned synthesis using the Friedel-Crafts reaction.5-9 Another 

candidate for such less reactive monomers generating highly reactive species is 

p-acetoxystyrene (AcOSt). 

     In this chapter, the author reports the living cationic polymerization of AcOSt using 

SnCl4 as a Lewis acid with the appropriate cationogens and additives. The precision synthesis 

of various (co)polymers with poly(AcOSt) chains can lead to new materials because 

poly(AcOSt) can be converted into poly(p-hydroxystyrene) (HOSt) via alkali-hydrolysis, which 

has been utilized for a wide variety of applications from photoresists to adhesives.21,22 However, 

although the cationic polymerization of this monomer has been studied for decades, the living 

cationic polymerization of AcOSt has not yet been achieved. One somewhat successful 

example can be found in the study by Storey et al.,23,24 which demonstrated the possibility of a 

controlled cationic polymerization of AcOSt using SnCl4 as the Lewis acid, and H2O or 

AcOSt–H2O adduct as the cationogen. In addition, a precision synthesis of a well-defined graft 

copolymer was achieved through a subsequent Friedel-Crafts reaction using a polyVE with a 

naphthalene ring as the macroterminator in this living system. 
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EXPERIMENTAL 
Materials 

     p-Methoxystyrene (pMOSt; TCI; >95%), p-methylstyrene (pMeSt; TCI; >96%), 

p-acetoxystyrene (AcOSt; TCI; >98%), p-chlorostyrene (pClSt; TCI; >98%), 

2,6-di-tert-butylpyridine (DTBP; Aldrich; 97%), and 1-phenylethyl chloride (St–HCl; TCI; 

>97%) were distilled twice over calcium hydride before use. Methyl chloroacetate (MeClAc; 

TCI; >98%) was dried overnight over molecular sieves 3A and 4A and distilled twice over 

calcium hydride before use. For nBu4NCl, a stock solution in CH2Cl2 was prepared from 

anhydrous nBu4NCl (Fluka; > 99%). Other materials were prepared and used as described in 

Chapters 2 and 3. All chemicals and stock solutions except for !NpOVE, toluene and CH2Cl2 

were stored in brown ampules under dry nitrogen. 

 

Procedures 

Synthesis of the Backbone Polymer 

     Polymerization of NpOVE was employed in a similar manner as described in Chapter 2. 

 

Synthesis of the Graft Copolymer 

     In the graft copolymerization of poly(AcOSt) (branched chain) with poly(!NpOVE) 

(backbone polymer), the AcOSt monomer, St–HCl (cationogen) solution in CH2Cl2, and ethyl 

acetate were added successively into a baked tube using dry syringes. The polymerization was 

initiated by the addition of a SnCl4 solution in CH2Cl2 pre-chilled at 0 °C. After a specific time, 

a 1.0 mL poly(!NpOVE) solution, which had been previously purified by azeotropic 

distillation with toluene to remove adventitious water, was added to the reaction mixture (2.5 

mL). After another interval, the reaction was quenched with a pre-chilled ammoniacal 

methanol. The quenched mixture was purified in a manner similar to that described previously. 

 

Alkaline Hydrolysis of the Acetoxy Group 

     A 1 wt% solution of the graft copolymer with the poly(AcOSt) side chains was prepared 

in acetone. To this solution, a 3.0 N aqueous NaOH solution (3 equivalents relative to the 

quantity of acetoxy units in the copolymer) was added to the solution at 0 ºC under magnetic 

stirring. The mixture gradually became cloudy due to the poor solubility of the hydrolyzed 

units in acetone. After 4 h, deionized water was added to obtain a homogeneous solution, and 

the stirring was continued for one day. After the mixture was neutralized with 1.0 N aqueous 
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HCl, the acetone was evaporated, and the polymer product was purified via dialysis against 

deionized water for at least 2 days, followed by Milli-Q water for another day (the MWCO of 

dialysis tubes was 12,000). 

 

Characterization 

     The Mn and Mw/Mn of the polymers, and 1H NMR spectra were measured as described in 

Chapters 2 and 3. The absolute weight-average molecular weight was determined using 

multi-angle laser light scattering coupled with GPC (GPC-MALS) in chloroform at 35 °C on a 

Dawn HELEOS instrument (Wyatt Technology; Ga–As laser, " = 658 nm). The refractive 

index increment (dn/dc) was measured in chloroform using a differential refractometer (Otsuka 

Electronics; DRM-3000). The transmittance of the polymer aqueous solutions was measured at 

500 nm at various pH values using a JASCO V-550 UV-vis spectrometer equipped with a 

Peltier-type thermostatic cell holder ETC-505. 

 

 

RESULT AND DISCUSSION 

Living Cationic Polymerization of AcOSt; The Effects of Initiators and Additives 

     The cationic polymerization of p-acetoxystyrene (AcOSt) was first carried out using 

SnCl4 as the Lewis acid catalyst in the presence of ethyl acetate or nBu4NCl as a weak Lewis 

base25 or an added salt26,27 in CH2Cl2 at 0 ºC (Table 1).28 SnCl4 was chosen as the catalyst,29 

because it is an effective Lewis acid for the living cationic polymerizations of various other 

styrene derivatives, such as p-methoxystyrene (pMOSt),30,31 p-tert-butoxystyrene (tBOSt),30 

p-methylstyrene (pMeSt),30,32 and p-chlorostyrene (pClSt).26 In conjunction with St–HCl as a 

cationogen, the polymerization of AcOSt proceeded smoothly without an induction period 

(Figure 1A), yielding polymers with relatively narrow molecular weight distributions (MWDs) 

(Mw/Mn = 1.04–1.26). The MWD of the resulting polymer shifted toward the higher molecular  

weight region over the course of the reaction (Figure 1C). In addition, the Mn value increased 

linearly with the monomer conversion and was in good agreement with the theoretical values 

(Figure 1B). A polymerization was conducted using the IBEA–EtAlCl2/SnCl4 system, 

generating another cationogen in situ and proving efficient for the living polymerization of 

various styrene derivatives.30 The polymerization of AcOSt proceeded smoothly but slowly 

with this initiating system, yielding polymers with narrow MWDs (Mw/Mn = 1.13; Table 1, 

entry 4). 
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Figure 1. (A) Time–conversion curves, (B) Mn-, and Mw/Mn-conversion plots, and (C) MWD curves of 
the obtained poly(AcOSt)s using St–HCl/SnCl4 initiating system in the presence of ethyl acetate or 
nBu4NCl in CH2Cl2 at 0 ºC; polymerization conditions: [AcOSt]0 = 1.0 M, [St–HCl]0 = 50 mM, [SnCl4]0 
= 100 mM, and [ethyl acetate] = 1.0 M (circles) or [nBu4NCl] = 40 mM [squares and (C)]. 

Table 1. Cationic Polymerizations of AcOSt a 

entry initiator  additive b [M]0/[I]0 time / h 
conv. 

(%) 
Mn ! 10–3 c Mw/Mn c 

1 St–HCl EtOAc 100  24 97 13 1.13 

2  EtOAc 50 18 97  7.2 1.17 

3  EtOAc 20 5 91  3.0 1.26 

4 IBEA–EtAlCl2 EtOAc 160 130 98 16 1.13 

5 St–HCl nBu4NCl 100 4 94 13 1.04 
a [AcOSt]0 = 0.65 (for entry 4) or 1.0 (for entries 1–3, 5) M, [initiator]0 = 4.0 (for entry 4), 10 (for entries 
1 and 5), 20 (for entry 2) or 50 (for entry 3) mM, [SnCl4]0 = 20 (for entry 4) or 100 (for entries 1–3, 5) 
mM. [additive] = 0.20 M (for entry 4), 1.0 M (for entries 1-3) or 40 mM (for entry 5), in CH2Cl2 at 0 ºC. 
b EtOAc = ethyl acetate 
c Determined by GPC with polystyrene calibration. 
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Figure 2. 1H NMR (500 MHz, CDCl3, 30 ºC) spectrum of poly(AcOSt) (Mn = 3.0 ! 103, Mw/Mn = 1.26) 
obtained using St–HCl/SnCl4 initiating system in CH2Cl2 at 0 ºC; polymerization conditions: [AcOSt]0 = 
1.0 M, [St–HCl]0 = 50 mM, [SnCl4]0 = 100 mM, [ethyl acetate]0 = 1.0 M. 
 

     The 1H NMR analysis of the resulting polymer revealed a well-defined polymer structure 

with an initiator fragment at the #-end (Figure 2; peak a) and a carbon-chlorine bond at the 

$-end (peak f). The end-functionality (Fn) was determined to be 0.93 based on the integral ratio 

of the chain-end peaks (Fn = 3f/a). No peaks were observed for side reaction products such as 

!-proton elimination and Friedel-Crafts-type reactions, which indicates the quantitative 

formation of one polymer chain per one St–HCl. These results confirmed that the 

polymerization of AcOSt proceeded in a highly controlled manner. 

     The living nature of the polymerization using a St–HCl/SnCl4 initiating system was 

confirmed by the monomer addition experiment. A fresh AcOSt solution was fed to the 

reaction mixture when the initial feed was nearly consumed. The added monomer was 

polymerized smoothly and consumed nearly quantitatively in 6 h [Figure 3(A)]. The resulting 

polymer exhibited a unimodal and narrow molecular weight distribution, irrespective of the 

monomer conversion. In addition, the Mn increased in direct proportion with the degree of 

monomer conversion [Figure 3(B)]. The 1H NMR spectrum revealed that the resulting polymer 

exhibited a quantitative end-functionality (Fn = 0.99). These results demonstrated that the 

St–HCl/SnCl4 initiating system induced the living cationic polymerization of AcOSt in the 

presence of an appropriate additive. 
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Figure 3. (A) Time–conversion curves, (B) Mn-, and Mw/Mn-conversion plots for the polymerization of 
AcOSt, and (C) MWD curves of the obtained polymers using St–HCl/SnCl4 initiating system in the 
presence of ethyl acetate in CH2Cl2 at 0 ºC; polymerization conditions: [AcOSt]0 = 1.0 M, [St–HCl]0 = 50 
mM, [SnCl4]0 = 100 mM, and [ethyl acetate] = 1.0 M, [AcOSt]0/[AcOSt]add = 1/1 (molar ratio). 
 

Precision Synthesis of Graft Copolymer Branched Poly(AcOSt)s via the Subsequent 

Friedel-Crafts Reaction 

     The synthesis of graft copolymers was examined using poly[2-(2-naphthoxy)ethyl VE] 

[poly(!NpOVE)] as a multifunctional terminator for the living cationic polymerization of 

AcOSt as illustrated in Scheme 1. The naphthyl group was expected to function as a 

Friedel-Crafts-type quencher because of its high nucleophilicity. The author have demonstrated 

that a well-defined poly(!NpOVE) was synthesized by a base-assisting living cationic 

polymerization with the IBEA/Et1.5AlCl1.5 initiating system described in Chapter 2.11 

 

 
Scheme 1. A synthetic route of the graft copolymers via living cationic polymerization of AcOSt and 
subsequent Friedel-Crafts reaction with poly(!NpOVE) 



Chapter 4 

 58 

 
Table 2. Synthesis of graft copolymers with various poly(Sts) a 

 

 

     A poly(!NpOVE) solution in CH2Cl2 was added to the AcOSt polymerization mixture at 

96% AcOSt conversion. Using a [St–HCl]0/[naphthalene units in the poly(!NpOVE)] ratio of 

1/10 (entry 1 in Table 2 and Figure 4), the GPC curve shifted toward the higher molecular 

weight region after adding the polymer solution while maintaining a narrow MWD. The 

grafting reaction was nearly quantitative (95%), although a small quantity of poly(AcOSt)s 

remained. The incomplete of the grafting reaction likely stemmed from a small quantity of 

dead AcOSt chains that formed indanyl end structures due to an intramolecular 

Friedel-Crafts-type reaction. In addition, the grafting efficiency decreased with the increasing 

[St–HCl]0/[naphthalene units in the poly(!NpOVE)] ratios (1/5 and 1/1, entries 2 and 3 in 

Table 2), an effect that is likely due to a steric hindrance among the grafted branches, which 

prevented further reactions between the living polymers to the unreacted naphthyl groups. 

entry branch 
[cationogen]0/ 

[Np units]add 

Mn ! 10–4 

(GPC) e 

Mw/Mn 

(GPC) e 
NB f 

grafting reaction 

efficiency (%) g 

1 b AcOSt 1/10 5.1 1.24 18 95 

2 b  1/5 5.6 1.20 29 31 

3 b  1/1 6.4 1.14 41 22 

4 c pClSt 1/10 4.2 1.24 18 96 

5 c  1/1 6.2 1.17 66 35 

6 d pMeSt 1/10 2.7 1.14 2 11 

7 d  1/1 4.3 1.14 17  8.9 
a Added poly(!NpOVE): Mn(GPC) = 2.5 ! 104, Mw/Mn(GPC) = 1.10. Degree of polymerization = 190. 
The reactions were conducted in CH2Cl2 at 0 ºC for 40 h. 
b [AcOSt]0 = 1.0 M, [St–HCl]0 = 50 mM, [SnCl4]0 = 100 mM, [ethyl acetate] = 1.0 M. 
c [pClSt]0 = 1.0 M, [StaHCl]0 = 50 mM, [SnCl4]0 = 100 mM, [nBu4NCl] = 40 mM. 
d [pMeSt]0 = 1.0 M, [IBVEeHCl]0 = 50 mM, [SnCl4]0 = 10 mM, [2,6-di-tert-butylpyridine] = 10 mM. 
e Determined by GPC for main peaks, polystyrene calibration. 
f The number of branches. Estimated by 1H NMR integral ratios. 
g Calculated by the following equation; 100 ! [estimated number of branches]/[theoretical number of 
branches]. 
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Figure 4. MWD curves for the synthesis of (A) poly(AcOSt), (B) poly(!NpOVE) and (C) the product 
after the addition of poly(!NpOVE): [AcOSt]0 = 1.0 M, [St–HCl]0 = 50 mM, [SnCl4]0 = 100 mM, [ethyl 
acetate] = 1.0 M, in CH2Cl2 at 0 ºC. [St–HCl]0/[Np units]add = 1/10 (molar ratio). 
 
     The absolute molecular weight of the graft copolymer (entry 3 in Table 2) was 

determined using GPC–MALS analysis. The obtained value [Mw(MALS) = 2.0 ! 105] was 

larger than that obtained by simple GPC analysis with polystyrene standards [Mw(GPC) = 6.4 ! 

104], which supports the formation of a branched and compact structure. The number of 

branched polymers was calculated to be 43 using the following equation; 

! 

number of branches =
(Mw of graft copolymer)" (Mw of backbone polymer)

Mw of branched polymer
 

in which the Mws were determined via GPC-MALS measurements. 

     The high efficiency of the grafting reaction was also confirmed by the 1H NMR spectrum 

(Figure 5) of the resulting graft copolymer, poly(!NpOVE)-graft-poly(AcOSt), after the 

fractionation via GPC. The spectrum presents a new peak (f in Figure 5) that is not derived 

from the VE backbone or the poly(AcOSt). The signal is assignable to the methine proton 

adjacent to the naphthyl and phenyl rings. The presence of this structure confirms that the 

proposed Friedel-Crafts-type termination reaction took place between the naphthyl groups and 

the living AcOSt polymer.33 The number of branches calculated by the ratio of the backbone 

peak integral (peaks b, c, and d) with that of the aromatic peaks (peaks e, i, and k) was 41,35 

which is in good agreement with the value of 43 estimated by GPC–MALS. 
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Figure 5. 1H NMR spectrum (500 MHz, in CDCl3, 30 °C) of poly(!NpOVE)-graft-poly(AcOSt) 
{polymerization conditions: [AcOSt]0 = 1.0 M, [St–HCl]0 = 50 mM, [SnCl4]0 = 100 mM, [ethyl acetate] = 
1.0 M, in CH2Cl2 at 0 ºC. [St–HCl]0/[Np units]add = 1/1 (molar ratio).} 
 

Synthesis of Graft Copolymers with Branches of Various Poly(styrene) Derivatives 

     Motivated by the successful synthesis of the graft copolymer with the poly(AcOSt) living 

polymer, the author focused his attention on the Friedel-Crafts-type grafting of poly(!NpOVE) 

side-chains with the living propagating carbocations of other styrene derivatives, such as 

pMOSt, tBOSt, pMeSt, and pClSt. Prior to these experiments, the author investigated the 

possibility of a reaction between the growing carbocations and the naphthyl side chains of 

poly(!NpOVE). Only highly reactive carbocations, which are generated from monomers with 

lower reactivity, were predicted to react with the naphthyl groups. The reactivity of the styrene 

derivatives is related to the 13C NMR chemical shifts of the !-carbon.36 The order summarized 

in Table 3 is in relatively good agreement with that of the reactivity in cationic 

polymerizations.37 Using 2-methoxynaphthalene (!MeONp) as an alternative for 

poly(!NpOVE), model experiments were performed to determine whether the propagating 

species of these styrene derivatives react with !MeONp during their living cationic 

polymerizations. The polymerizations of pMOSt or tBOSt remained living despite the presence 

of a large quantity of !MeONp. In contrast, !MeONp retarded the polymerizations of pMeSt 

and AcOSt, causing frequent Friedel-Crafts reactions. Especially, in the case of pClSt, side 
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reactions were induced by toluene, a common solvent for cationic polymerization. Based on 

these results, the author explored the synthesis of the graft copolymers with poly(pMeSt) and 

poly(pClSt) branches. 

 

 

     Grafting reactions were performed by adding the poly(!NpOVE) solution to each living 

polymerization system.26,32 The ratio of the [cationogen]0/[naphthalene units in the 

poly(!NpOVE)] were 1/1 and 1/10. In every cases, the GPC profiles of the products revealed 

the appearance of a new fraction with a narrow MWD, which was in a higher molecular weight 

region than the original poly(!NpOVE) backbone (entries 4-7 in Table 2). These results 

indicate that well-defined graft copolymers with poly(pMeSt) and poly(pClSt) branches were 

successfully obtained using this methodology, although a certain quantity of unreacted 

branches remained (Figure 6). The numbers of the branches were determined to be 16 for 

pMeSt (entry 5 in Table 2) and 64 for pClSt (entry 7 in Table 2) via GPC-MALS analysis 

[Mw(MALS) = 9.9 ! 104 for pMeSt and 3.0 ! 105 for pClSt], and these values agreed with those 

of 16 and 66 estimated by 1H NMR analysis, respectively. The numbers of branches followed 

the order pMeSt < AcOSt < pClSt, which is in good agreement with the reactivity order of their 

carbocations for a Friedel-Crafts reaction. 

 

 

 

Table 3. Friedel-Crafts-type termination reactions of various poly(styrene derivatives) with !MeONp 

 

styrene derivatives 

 

 

 

 

 

 

 

 

 

 

 

%(!C) ppm a 111.1 112.1 112.5 113.8 114.4 

!MeONp addition b undisturbed undisturbed F-C reaction F-C reaction F-C reaction 
a 13C NMR chemical shifts for !-carbons of various styrene derivatives 
b undisturbed; !MeONp did not disturbed the living polymerization; F-C reaction: !MeONp induced 
the Friedel-Crafts reactions in the living polymerization. 
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Figure 6. MWD curves of various resulting polymers obtained before and after the addition experiment 
of !MeONp for living polymerization of (A) poly(pMeSt), (B) poly(AcOSt) and (C) poly(pClSt), in 
CH2Cl2 at 0 ºC: (A) [pMeSt]0 = 1.0 M, [IBVE–HCl]0 = 50 mM, [SnCl4]0 = 10 mM, 
[2,6-di-tert-butylpyridine] = 10 mM, (B) [AcOSt]0 = 1.0 M, [St–HCl]0 = 50 mM, [SnCl4]0 = 100 mM, 
[ethyl acetate] = 1.0 M (C) [pClSt]0 = 1.0 M, [St–HCl]0 = 50 mM, [SnCl4]0 = 100 mM, [nBu4NCl] = 40 M. 
[initiator]0/[Np units]add = 1/1 (molar ratio). Mn values were calculated by GPC measurements. 
 

 

Solubilities of the Graft Copolymers 

     The author investigated the solubility of the resulting graft copolymers in various 

solvents at room temperature. The solubility characteristics of the graft copolymers and 

backbone poly(!NpOVE) were summarized in Table 4. For example, 

poly(!NpOVE)-graft-poly(pClSt) was readily dissolved in ethyl acetate, which dissolves 

poly(pClSt) but not poly(!NpOVE). In contrast, the poly(!NpOVE)-graft-poly(pClSt) was 

insoluble in DMSO, in which poly(!NpOVE) is soluble and poly(pClSt) is not. Thus, the 

solubility of the graft copolymer is likely governed largely by the nature of branches. 

     Furthermore, poly(!NpOVE)-graft-poly(AcOSt) was converted into 

poly(!NpOVE)-graft-poly(HOSt) by the alkaline hydrolysis of the acetoxy groups of the 

poly(AcOSt) branches, and its solubility characteristics were examined in various solvents. The 

poly(AcOSt) branches was quantitatively converted into poly(HOSt), as confirmed by 1H NMR 

analysis. The solubility of the poly(!NpOVE)-graft-poly(HOSt) in methanol and in alkaline 

water changed upon hydrolysis. 
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Table 4. Solubility of various graft copolymers and their branches at room temperature (1 wt%) a 

a S: soluble, I: insoluble. 

 

     Furthermore, the aqueous solution of this graft copolymer exhibited a pH-responsive 

phase separation behavior with high sensitivity (Figure 7). When the pH was decreased, the 

transparent solution became opaque at a critical pH of 11.3. In addition, the transmittance was 

somewhat reduced at the alkaline region possibly due to the formation of micellar aggregates 

with a hydrophobic !NpOVE core and hydrophilic HOSt coronas. The author propose that the 

pH-responsive phase separation occurred through the protonation of the hydroxy groups, which 

was accompanied by a reduction in the hydrophilicity of the polymer side chains. 

 

 
Figure 7. Transmittance at 500 nm for an aqueous solution of poly(!NpOVE)-graft-poly(HOSt): 
[phenolic units]0 = 20 mM, [added NaCl]0 = 0.10 M, at 30 ºC. 
 

entry polymer EtOAc acetone DMSO MeOH H2O 

1 !NpOVE190 I I S I I 

2 AcOSt100 S S S I I 

3 !NpOVE190-g-(AcOSt20)40 S S S I I 

4 HOSt100 S S S S I 

5 !NpOVE190-g-(HOSt20)40 S S S S I 

6 pClSt100 S I I I I 

7 !NpOVE190-g-(pClSt20)66 S I I I I 

8 pMeSt100 S I I I I 

9 !NpOVE190-g-(pMeSt20)18 S I I I I 
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CONCLUSION 
     A Friedel-Crafts-type termination reaction of naphthyl groups was shown to be highly 

effective for synthesizing graft copolymers using a cationic polymerization. The simple 

addition of a naphthyl-carrying VE polymer into a living polymerization system involving a 

less reactive styrene derivative yielded well-defined graft copolymers. The reactivity of the 

growing carbocation was a decisive factor for achieving an efficient grafting reaction. 

Moreover, HOSt-branched graft copolymers were prepared and exhibited a pH-responsive 

behavior in water. In addition, various grafted side chains were synthesized with other styrene 

derivatives. This new synthetic method based on a Friedel-Crafts-type termination reaction on 

a naphthalene-containing polymer would allow for the synthesis of various functional polymers 

with unique architectures. Furthermore, the living cationic polymerization of AcOSt was 

achieved for the first time using a St–HCl/SnCl4 initiating system in the presence of an 

appropriate additive such as ethyl acetate or nBu4NCl. 
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Chapter 5 
 

Precise Synthesis of pH-Responsive Copolymers 
with Naphthoic Acid Side Groups 

via Living Cationic Polymerization 
 
 
INTRODUCTION 
     Among the various types of stimuli-responsive polymers,1-13 pH-responsive anionic 

polymers are of great importance in various applications, such as drug and gene delivery,14-17 

metal-ion scavenging,18 and controlled biomineralization.19 An important advantage of anionic 

pH-responsive polymers is their pH-dependent ionic complexation with cationic compounds, 

such as amines and metal ions, hydrogen atoms bonded to oxygen atoms, and hydrophobic 

materials.20-23 These various interactions are critical to reversible microphase separations or 

self-organization phenomena, such as protein folding and the formation of lipid bilayers and a 

DNA double helices.24-27 The growing diversity of these materials can be attributed to the 

availability of various anionic acid groups, such as carboxy, phenolic hydroxy, and sulfo 

groups. Thus, pH-responsive polymers enable the construction of novel functional materials. A 

specific, critical pH range may be required for certain applications. For example, a polymer 

with a transition near neutral pH is required for physiological uses. However, the critical pH for 

the phase transition of widely investigated homopolyacids such as poly(acrylic acid) and 

poly(methacrylic acid) ranges from 4 to 6.28-31 

     The key to precisely controlling the pH response of a homopolymer chain is the 

introduction of an appropriate hydrophobic group, which preferably shows strong interaction in 

water under certain conditions at the position adjacent to a carboxy group. This strategy was 

recently shown to be feasible by our group. A homopolyVE containing carboxyphenyl groups 

prepared via a living cationic polymerization induced a pH-sensitive phase separation in water 

with a pH of 6.5.4 In addition to the hydrophobicity of the polymer, the aromatic group was 

expected to substantially change the relationship between the pH-responsiveness and the 

degree of ionization. Even though a naphthyl ring is a good hydrophobic candidate, the cationic 

polymerization of naphthyl-containing monomers suffers from inevitable Friedel-Crafts side 

reactions with the naphthyl rings, as observed during the cationic polymerization of 

vinylnaphthalene derivatives.32,33 
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     In Chapter 2, the author demonstrated that the living cationic polymerization of 

!-substituted naphthoxyethyl VE (NpOVE in Chart 1) occurred under appropriate reaction 

conditions. The substituted position on the naphthyl ring is critical to this living polymerization. 

In fact, frequent intramolecular Friedel-Crafts reactions occurred during the cationic 

polymerization of the "-substituted counterpart, whereas the phenyl-substituted analog 

underwent a living polymerization under similar conditions.34 In addition, the introduction of a 

carboxy ester to the aromatic ring is expected to further suppress any side reactions due to its 

electron-withdrawing nature and steric hindrance. 

 

 

Chart 1. Structures of vinyl monomers related to this Chapter 

 

     Therefore, in this Chapter, the author focused on synthesizing pH-responsive block or 

random copolymers via the cationic polymerization of the naphthyl carboxylate-containing 

monomer ethyl 6-[2-(vinyloxy)ethoxy]-2-naphthoate (EVEN in Chart 1). Thus, the author first 

examined the feasibility of a living cationic polymerization using EVEN with various Lewis 

acids in the presence of a base. Next, living cationic copolymerizations were performed using 

the various functional monomers depicted in Chart 1. Furthermore, various carboxy-containing 

block and random copolymers were prepared via the hydrolysis of side esters, and their 

pH-responsive behaviors were investigated using 1H NMR, transmittance change, and DLS 

analyses in aqueous solutions. 

 

EXPERIMENTAL 

Materials 

     Ethyl 6-[2-(vinyloxy)ethoxy]-2-naphthoate (EVEN; > 99.5%), dimethyl 

5-[2-(vinyloxy)ethoxy]isophthalate (DMVEIP; > 99.5%), and ethyl 

4-(2-(vinyloxy)ethoxy)benzoate (EVEB; > 99.5%) were supplied by Canon. These VEs were 
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recrystallized twice from ethyl acetate for EVEN or dry hexane for DMVEIP and EVEB and 

then vacuum-dried for more than 3 h prior to use. Other materials were prepared and used as 

described in Chapters 2 and 3. All materials except the solvents were stored in brown ampules 

under dry nitrogen. 

 

Procedures 

Polymerization 

     Polymerizations were performed in a similar manner as described in Chapters 2 and 3. 

 

Alkaline Hydrolysis of Pendant Carboxy Ester Groups 

     The ester pendant was converted into the carboxy group as described below.4 

Poly(EVEN) was dissolved in DMSO to prepare a 1 wt% solution, and 3.0 M sodium 

hydroxide (five equivalents relative to the ester unit in the polymer) was added. The mixture 

was magnetically stirred at room temperature. The originally transparent mixture gradually 

became cloudy because even the partially hydrolyzed polymer was insoluble in DMSO. After 4 

h, water was added to homogenize the mixture, and the resulting transparent solution was 

stirred for an additional day. The obtained sodium salt was neutralized with 1.0 M aqueous 

hydrochloric acid, and the polymer product was purified by dialysis first against distilled water 

for at least 2 days and then against Milli-Q water for another day. Evaporation of the water 

under reduced pressure yielded poly{6-[2-(vinyloxy)ethoxy]-2-naphthoic acid} [poly(VEN)]. 

 

Potentiometric Titration and Turbidity Measurement 

     For potentiometric titrations, polymer samples were dissolved into Milli-Q water to give 

a monomeric unit concentration of 20 mM, and NaCl of 0.10 M was added. With rapid stirring, 

aliquots of a standardized 0.10 N hydrogen chloride solution were injected using a burette. The 

solution was allowed to chemically and thermally equilibrate for 5 min after each addition and 

pH of the sample was measured with a HORIBA/pH ION METER F-23 equipped with 

HORIBA pH Electrode 9610-10D at 30 °C. The pH meter was calibrated before titration with 

standardized phosphate buffer solutions at pH 4, 7, and 9. 

 

Characterization 

     The Mn and Mw/Mn of the polymers, 1H NMR spectra, MALDI-TOF-MS spectra, and 

transmittance of the polymer aqueous solutions were measured as described in Chapters 2, 3, 
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and 4. The pH values of aqueous solutions were measured by using a F-52 digital pH meter 

(HORIBA). The hydrodynamic diameter (Dh) was determined by dynamic light scattering 

(DLS) [FPAR-1000HG (Otsuka Electronics); # = 632.8 nm, scattering angle = 90 °]. 

 

 

RESULTS AND DISCUSSION 
Living Cationic Polymerization of an Ester-Containing Vinyl Ether with a Naphthyl 

Ring: Effects of the Ester Substituent 
 

 

     The cationic polymerization of ethyl 6-[2-(vinyloxy)ethoxy]-2-naphthoate (EVEN in 

Chart 1) was performed using a variety of Lewis acids in CH2Cl2 at 0 °C in the presence of 

either 1,4-dioxane or ethyl acetate as an added base. The adducts of isobutyl VE (IBVE) with 

HCl [IBVE–HCl; CH3CH(OiBu)Cl] or acetic acid [IBEA; CH3CH(OiBu)OCOCH3] were 

employed as the cationogen. All of the catalysts used induced a quantitative polymerization, 

producing polymers with high molecular weights (Table 1). Among the investigated catalysts, 

Et1.5AlCl1.5 induced the most controlled polymerization [time = 6 h, conv. = 91%, Mn(GPC) = 

1.9 ! 104,35 Mw/Mn = 1.09 (entry 3 in Table 1)]. The Mn values increased linearly with the 

monomer conversions and the product polymers exhibited very narrow MWDs as shown in 

Figure 1. The polymerization of EVEN in the absence of any additives proceeded faster 

Table 1. Cationic polymerizations of EVEN, DMVEIP, and NpOVE a 

entry monomer initiator/activator 
added 

base b 
time 

conv. 

(%) 
Mn ! 10–4 c Mw/Mn

c 

1 EVEN IBEA / Et1.5AlCl1.5   – 2.3 h 86 1.3 1.26 

2  IBEA / Et1.5AlCl1.5 EtOAc 18 h 83 1.8 1.16 

3  IBEA / Et1.5AlCl1.5 DO 6 h 91 1.9 1.09 

4  IBVE–HCl / ZnCl2 DO 30 min 99 0.92 1.72 

5  IBVE–HCl / FeCl3 DO 5 sec 100 0.84 1.60 

6 DMVEIP IBEA / Et1.5AlCl1.5 DO 5 h 98 1.7 1.09 

7 NpOVE IBEA / Et1.5AlCl1.5 DO 2 h 92 0.96 1.38 
a [monomer]0 = 0.40 M, [initiator]0 = 4.0 mM, [Lewis acid]0 = 20 (for entries 4, 5, 7) or 40 (for entries 1-3, 
6) mM, [added base] = 1.0 M (for EtOAc) or 1.2 M (for DO), in CH2Cl2 at 0 oC. 
b DO = 1,4-dioxane, EtOAc = ethyl acetate. 
c Determined by GPC, polystyrene calibration. 
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relative to the base-assisting system. The reaction produced a well-controlled polymer with a 

relatively narrow MWD (time = 2.3 h, conv. = 86%, Mw/Mn = 1.26, entry 1), indicating that the 

pendant ester group played a role as an added base. In contrast, the polymerizations of EVEN 

using ZnCl2 and FeCl3 yielded polymers with broad molecular weight distributions (MWDs) 

containing oligomeric acetal byproducts with low molecular weights (entries 4 and 5, 

respectively).36 

 

 
Figure 1. (A) Time-conversion curve, (B) Mn- and Mw/Mn-conversion plots for the polymerization of 
EVEN, and (C) MWD curves of the obtained polymers using IBEA/Et1.5AlCl1.5 initiating system in 
CH2Cl2 in the presence of 1,4-dioxane (squares) or ethyl acetate (circles) at 0 °C: [EVEN]0 = 0.40 M, 
[IBEA]0 = 4.0 mM, [Et1.5AlCl1.5]0 = 40 mM, [added base] = 1.2 M (for 1,4-dioxane) or 1.0 M (for ethyl 
acetate). 
 

     The cationic polymerization of dimethyl 5-(2-(vinyloxy)ethoxy)isophthalate (DMVEIP 

in Chart 1) also proceeded via a living mechanism with almost the same polymerization rates 

despite its two ester groups (Mw/Mn = 1.09, entry 6). The inclusion of an additional ester group 

in the monomer pendant had no or a little effect on the rate and controllability of the 

polymerization for the same initiating systems under similar reaction conditions. In contrast to 

the successful polymerizations of EVEN and DMVEIP, the non-substituted analog, NpOVE, 
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underwent an ill-defined polymerization in CH2Cl2 because of frequent side reactions, as 

indicated by the broad MWD curves of the products (Mw/Mn = 1.38, entry 7). The 1H NMR and 

MALDI-TOF-MS results also indicated frequent side reactions.40,46 The different behavior was 

observed when toluene was used, where a well-controlled polymerization of NpOVE was 

achieved, as previously reported.34 

 

 
Figure 2. Mn and Mw/Mn versus [M]0/[I]0 ratio for the polymerization of EVEN using IBEA/Et1.5AlCl1.5 in 
CH2Cl2 at 0 °C: [EVEN]0 = 0.10–0.80 M, [IBEA]0 = 4.0 mM, [Et1.5AlCl1.5]0 = 40 mM, [1,4-dioxane] = 1.2 
M, in CH2Cl2 at 0 oC. 
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naphthalene rings to easily react with electron-deficient species such as carbocations. In 

addition, the MW calculated from the ratio of the aromatic protons (peak j in Figure 3) to the 

methyl protons (peak b in Figure 3) of the "-end group derived from IBEA was in good 

agreement with the theoretical value [conv. = 84%, Mn(GPC) = 1.8 ! 104, Mn(NMR) = 2.3 ! 

104, and Mn(calcd.) = 2.4 ! 104, Mw/Mn = 1.15].35 For the MALDI-TOF-MS spectrum, only a 

single peak series was detected with an interval of 286.3, which corresponds to the EVEN 

monomer. The obtained mass value of 5595.4 is very close to the calculated value of 5595.3 for 

the structure with the ideal "- and #-end groups derived from IBEA (cationogen) and methanol 

(quencher), respectively [CH3CH(OiBu)–(EVEN)19–OCH3/Na+]. 

 

 

 
Figure 3. 1H NMR spectra [500 MHz, CDCl3 (upper) at 30 °C or D2O (lower) at 50 °C] of (A) 
poly(EVEN) obtained using IBEA/Et1.5AlCl1.5 in the presence of ethyl acetate at 0 oC (polymerization 
conditions: [EVEN]0 = 0.40 M, [IBEA]0 = 4.0 mM, [Et1.5AlCl1.5]0 = 40 mM, [ethyl acetate] = 1.0 M.) and 
(B) poly(VEN) obtained by the alkaline hydrolysis of poly(EVEN) in DMSO/water at room temperature. 
 

CH3 CH
O

CH2 CH CH2
O

O

CH
O

OCH3

O

a

b

c d

e
f

g

h
ij

k
l

o p

CO O
CH2
CH3

COOEt

m
n

CH3 CH
O

CH2 CH OCH3
O

O

CO O-Na+

5 equiv. NaOH aq

DMSO / water, r.t.

(A) poly(EVEN)

(B) poly(VEN)

10 9 8 7 6 5 4 3 2 1 0
! / ppm

__

CHCl3

water

" 50 a b

c

o

p

m nd,e,f

i
kj

h
g
l__ ____

____
TMS

grease

______water



Chapter 5 

 74 

 
Figure 4. MALDI-TOF-MS spectra of poly(EVEN) {Mn(NMR) = 1.1 ! 104, Mn(GPC) = 0.97 ! 104, 
Mw/Mn = 1.20; polymerization conditions: [EVEN]0 = 0.40 M, [IBEA]0 = 4.0 mM, [Et1.5AlCl1.5]0 = 40 mM, 
[ethyl acetate] = 1.0 M, in CH2Cl2 at 0 °C.} 
 

 
Figure 5. MWD curves for obtained using base assisting initiating systems in CH2Cl2 (A)–(D) or toluene 
(E) at 0 °C: (A)–(D) [EVEN]0 = 0.40 M, [IBEA]0 = 4.0 mM, [Et1.5AlCl1.5]0 = 40 mM, [added base] = 1.2 
M (for 1,4-dioxane) or 1.0 M (for ethyl acetate). [EVEN]0/[DMVEIP or EOEOVE]0 or add = 1/1 (molar 
ratio). (E) [EVEB]0 = 0.80 M, [IBEA]0 = 4.0 mM, [Et1.5AlCl1.5]0 = 40 mM, [ethyl acetate] = 1.0 M. 
[EVEB]0/[DMVEIP]add = 4/1 (molar ratio). 
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     Furthermore, various random and block copolymerizations of EVEN with other 

functional monomers, such as DMVEIP, EVEN, and EOEOVE, were examined using the 

IBEA/Et1.5AlCl1.5 initiating system in the presence of an added base. DMVEIP and EVEN both 

have carboxy groups protected as esters, and EOEOVE has an oxyethylene unit, which induces 

thermoresponsivity. All of the monomers employed can be homopolymerized in a living 

fashion using the IBEA/Et1.5AlCl1.5 initiating system. Successful random and block 

copolymerizations also proceeded with this initiating system and yielded well-defined random 

and block copolymers (Figure 5). 

 

pH-Responsive Behaviors of the Carboxy-Containing Homopolymers in Water 

     The ester groups in the side chains were hydrolyzed to carboxy groups to yield a 

pH-responsive polymer. The quantitative transformation of poly(EVEN) into 

poly[6-(2-(vinyloxy)ethoxy)-2-naphthoic acid (VEN)] was confirmed by 1H NMR analysis of 

the product, as shown in Figure 3B. The methyl and methylene peaks from the ethoxy group at 

1.34 and 4.33 ppm, respectively, disappeared completely after hydrolysis. Other homo- and 

co-polymers containing carboxy groups were prepared in a similar manner [poly(DMVEIP) ! 

poly(VEIP), poly(EVEB) ! poly(VEB)4,47]. 

     The transmittances of the aqueous solutions of the obtained carboxy homopolymers at 

500 nm at various pH levels were measured at 30 °C.48 Rapid changes in the turbidity were 

observed at pH 7.0 for poly(VEN) and pH 4.8 for poly(VEIP) (Figure 6); these polymers were 

soluble in aqueous solutions with pH levels greater than these critical pH levels but precipitated 

under more acidic conditions. Poly(VEN) was pH-sensitive at a higher pH (7.0) than was 

poly(VEB) (pH 6.5). To investigate the role of polymer ionization in determining the critical 

pH, the homopolymers were titrated, and the apparent degree of ionization was estimated.49,50 

An apparent degree of ionization was defined as "app. On the titration measurements, the 

polymer ionization was calculated from a charge neutrality condition: 

! 

"app =
[H+]+ [Na+]# [OH#]# [Cl#]

[carboxylic acid]
 

where [carboxylic units] is the concentration of carboxylic groups in the polymer. However, 

the "app values would be incorrect because the aggregation occurred during the titration 

experiments. Poly(VEN) began to aggregate after only a small amount of the carboxy anions 

were protonated ("app ~ 0.8), because of the hydrophobicity of a naphthyl group. In contrast, for 

poly(VEIP), the estimated "app value was 0.4–0.5 at the critical pH of 4.8, which indicated that 
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the phase separation began when almost half of the total carboxy units in the polymer chain 

were protonated. 

 

 
Figure 6. Apparent degrees of ionization ("app) plots (circles) and temperature dependence of 
transmittance at 500 nm light for aqueous solutions of (A) poly(VEN) [precursor poly(EVEN): Mn(GPC) 
= 1.7 ! 104, Mw/Mn(GPC) = 1.11] and (B) poly(VEIP) [precursor poly(DMVEIP): Mn(GPC) = 1.7 ! 104, 
Mw/Mn(GPC) = 1.12] as a function of pH. [monomeric units]0 = 20 mM, [added NaCl]0 = 0.10 M. 
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hydrodynamic diameter Dh at pH 11 was 10 nm, which indicates that the copolymer dissolved 

as a unimer; this result is consistent with the fact that both segments behave as hydrophilic 

chains in water at this pH. When pH values decreased, the VEN segment became hydrophobic 

at pH 7.0 due to protonation, and this diblock copolymer formed a micelle through 

hydrophobic interactions with a hydrophobic VEN core and a hydrophilic VEIP corona (Dh = 

57 nm at pH 6.5). Moreover, a block copolymer with another carboxy unit, benzoic acid, 

VEB200-block-VEIP50 also exhibited a two-step phase separation when the pH was changed 

[Figure 7(C)]. In this way, various double pH-sensitive block copolymers were prepared via 

base-assisting living cationic polymerization. 

 

 
Figure 7. pH dependence of transmittance at 500 nm light for aqueous solutions of (A) 
VEN100-random-VEIP100, (B) VEN100-block-VEIP100, and (C) VEB200-block-VEIP50; [carboxy units]0 = 20 
mM, [added NaCl]0 = 0.10 M. 

 

 
Scheme 1. Conceptual illustration of the double pH-responsive behavior for the aqueous solution of 
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2. Dual stimuli-responsiveness 

     The pH/temperature-sensitive behavior of block copolymer solutions of VEN and 

2-(2-ethoxy)ethoxyethyl VE (EOEOVE) was examined at different pH values. Poly(EOEOVE) 

underwent phase separation at its lower critical solution temperature (LCST) in aqueous 

solution, which were driven by the dehydration of the polymer side chains. 

     In Figure 8, the correlation between temperature and transmittance for a 0.5 wt% 

aqueous solution of the random copolymer, EOEOVE160-random-VEN40, were plotted at 

various pH. The phase separation temperature of the copolymer increased with increasing pH 

values, and thermoresponsive behavior was not observed over pH 7.0. Because almost all 

carboxy groups were deprotonated at pH 7.0, judging from the titration curve of poly(VEN) 

(Figure 6), the random copolymer was highly hydrophilic owing to a hydration and an electric 

repulsion of carboxylic anions and dissolved at in the whole temperature regime examined. 

However, when a tiny amount of carboxylic groups were protonated below pH 7.0, the random 

copolymer easily aggregated through a hydrophobic interaction and %-% stacking interaction of 

the naphthyl groups. Thus, the phase-separation temperature was altered by varying the ratio of 

hydrophobic segments with the protonation of carboxylic groups. 

 

 
Figure 8. Temperature dependence of transmittance at 500 nm light for 0.5wt% aqueous solutions of 
EOEOVE160-random-VEN40 at various pH values: [added NaCl]0 = 0.10 M (scanning rate; 1.0 °C/min.). 
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     An aqueous solution of the block copolymer exhibited thermosensitive phase separation 

at pH 11, i.e., at a pH greater than the pKa value of poly(VEN) [Figure 9]. At higher 

temperatures, the transmittance decreased relative to that at lower temperatures, and the 

copolymer was thought to form micelle-like structures because the EOEOVE segments became 

hydrophobic due to dehydration. To confirm this hypothesis, DLS measurements of the 0.05 

wt% aqueous solution were conducted at pH 11 (circles, Figure 9). The measurements revealed 

that almost all of the block copolymer chains existed as approximately 5 nm unimers at 

50 °C.51 When the solution temperature was increased, the block copolymer formed a larger 

aggregate with a Dh of approximately 100 nm at approximately 54 °C. However, A solution of 

this polymer underwent precipitation at pH 6.0 in the whole temperature regime examined. 

This precipitation most likely results from the copolymer aggregating via hydrophobic 

interaction due to the formation of hydrogen bonds between the oxyethylene side chains of the 

EOEOVE segments and the protonated carboxy groups of the VEN segments in the acidic 

region.21,54 

 

 

 

Figure 9. Temperature dependence of transmittance at 500 nm light for a 0.5 wt% aqueous solution 
(scanning rate; 1.0 °C/min) and DLS measurement for 0.05 wt% aqueous solution (circles, 90 °, 
CONTIN method.) of EOEOVE100-block-VEN86 at various pH values: [added NaCl]0 = 0.10 M, and 
schematic illustration of the self-assemble behavior for the aqueous solution of 
EOEOVE100-block-VEN86. 
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CONCLUSIONS 
       The IBEA/Et1.5AlCl1.5 initiating system induced the living cationic polymerization of a 

VE with a carboxy ester and a naphthyl group (EVEN) in CH2Cl2 in the presence of an added 

base at 0 °C. The ester groups on the naphthyl ring played an important role in suppressing the 

Friedel-Crafts side reactions that are typical of a naphthalene ring. In addition, the subsequent 

alkaline hydrolysis quantitatively produced a polymer that contained carboxy groups. The 

aqueous solutions of the obtained polymer showed pH-responsive phase-separation behavior 

with a high sensitivity. Block copolymers consisting of the two different carboxy segments 

exhibited a two-step polymer morphology change. Furthermore, a block copolymer with a 

pH-sensitive carboxy segment and a thermosensitive segment exhibited dual 

stimuli-responsiveness in water. 
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Chapter 6 
 

SUMMARY 
 
 
     This thesis study demonstrated the first examples of successful precision synthesis of 

naphthalene-containing polymers with various architectures from both VEs and styryl-type 

analogs in cationic polymerization. A naphthalene derivative moiety, much more 

nucleophilically reactive than a phenyl counterpart, has been considered an obstacle to 

achieving controlled polymer synthesis in cationic polymerization because of the high 

susceptibility to cationic species, leading to Friedel-Crafts-type side reactions, although 

numerous examples of living polymerization of styrene derivatives using various initiating 

systems. This great difficulty was first overcome by performing cationic polymerization of 

naphthalene-containing monomers using the base-assisting cationic initiating systems. The key 

to controlling polymerization of naphthalene-containing monomers is the choice of initiating 

systems, polymerization conditions, and monomer structures. The high reactivity of a 

naphthalene moiety, in turn, was shown to be useful for achieving a ready polymer reaction. 

The author devised a new way to synthesize graft copolymers via the coupling reaction of 

pendant naphthalene moieties of cationically prepared polymers with another type of living 

cationic polymers. Another motivation for this study was the potential of more condensed 

aromatic rings in polymer chains to lead to unprecedented functions derived from their unique 

and excellent properties, such as thermal, optical, and mechanical properties. The author next 

targeted the design and creation of well-defined materials based on the specific properties of 

naphthyl rings. As a result, sensitive pH-responsive polymers were obtained, which showed 

pH-driven phase transition around a neutral pH. 

 

     Part I described the living cationic polymerizations of various naphthalene-containing 

monomers using a Lewis acid catalyst in the presence of an added base. 

     In Chapter 2, the author designed two VE monomers with naphthyl groups at different 

substituted positions and investigated their cationic polymerization using base-containing 

initiating systems. Living polymerization of 2-(2-naphthoxy)ethyl VE (!NpOVE) proceeded, 

whereas appreciable Friedel-Crafts-type side reactions occurred in the polymerization of 

1-(2-naphthoxy)ethyl VE ("NpOVE) under conditions similar to those for !NpOVE. This 
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difference in the polymerization behavior is attributed to the difference between the HOMO 

orbital energies of naphthalene rings, supported by quantum chemical calculations of model 

compounds. This research could serve as a guideline for the design of naphthalene-containing 

monomers to yield well-defined polymers via a cationic mechanism. 

     Chapter 3 presented living cationic polymerizations of vinylnaphthalene derivatives. Side 

reactions related with naphthyl rings occurred frequently under the suitable conditions for the 

living cationic polymerization of a corresponding styrene derivative. The polymerization was 

controlled as a result of the author’s thorough screening of various reaction conditions in the 

cationic polymerization. In particular, the side reactions were suppressed by setting 

polymerization temperature appropriately. Moreover, the obtained polymer had a much higher 

Tg value than that of the corresponding styrene derivative polymer. 

 

     Part II presented the development of a new methodology for well-defined graft 

copolymers and the synthesis of novel stimuli-responsive block and random copolymers by 

utilizing the high reactivity and hydrophobicity of naphthyl rings. 

     Chapter 4 described a novel effective strategy for the precision synthesis of graft 

copolymers using a potential of naphthalenes to readily react with carbocations. The pendant 

alkoxynaphthyl groups of a polyVE were shown to efficiently terminate the living cationic 

polymerization of various styrene derivatives, such as p-acetoxystyrene (AcOSt), 

p-methylstyrene, and p-chlorostyrene. The branches of poly(AcOSt) were converted into 

poly(p-hydroxystyrene)s by alkaline hydrolysis and an aqueous solution of the resulting graft 

copolymer exhibited a sensitive pH-responsive phase separation. 

     In Chapter 5, the author achieved the living cationic polymerization of a 

naphthyl-containing VE with a carboxy ester on the ring. The ester substituent is likely to elicit 

an effect to suppress side reactions by naphthyl rings due to the electron-withdrawing property 

and the steric hindrance. Moreover, the obtained polymer was converted into a 

naphthoic-acid-containing homopolymer by alkaline hydrolysis. An aqueous solution of the 

resulting homopolymer showed a pH-driven phase separation at pH 7.0, which was a higher 

value than that of a phenyl counterpart due to the highly hydrophobicity of naphthyl rings. 

Random or block copolymers with other functional segments, such as other polyacids or 

thermoresponsive segments, were also prepared quantitatively as well as homopolymers. The 

copolymers were found to form various aggregation structures under appropriate conditions. 

The self-assembly systems were established through the hydrophobic interaction and hydrogen 
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bonding under mild conditions. 

 

     Naphthalene-containing monomers can be within the scope of monomers for living 

cationic polymerization as demonstrated in this research, and these results will encourage 

further development of living polymerizations of vinyl monomers with more condensed rings, 

such as anthracene or pyrene rings as mentioned in General Introduction. Moreover, the author 

believes that the naphthalene-containing polymers will contribute to the construction of novel 

stimuli-responsive materials and will be employed for the industrial materials utilizing their 

mechanical and optical properties. 
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