

Title	Mechanism of Action of Membrane-Active Marine Natural Products Theonellamide A and Amphidinol 3
Author(s)	Espiritu, Rafael Atillo
Citation	大阪大学, 2013, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/26247
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Synopsis of Thesis

Title: Mechanism of Action of Membrane-Active Marine Natural Products Theonellamide A and Amphidinol 3
(膜作動性海洋天然物セオネラミドAとアンフィジノール3の作用機構解析)

Name of Applicant: Rafael Atillo Espiritu

Marine organisms are a rich source of numerous structurally unique and biologically active secondary metabolites that may find potential use as effective therapeutics. Among the several promising compounds include the sponge-derived theonellamides (TNMs) and dinoflagellate-derived amphidinols (AMs).

Theonellamides are antifungal and cytotoxic bicyclic dodecapeptides isolated from the marine sponge *Theonella* sp. Recently, it has been shown that TNMs recognize 3β -hydroxysterol-containing membranes, induce glucan overproduction, and damage cellular membranes. However, to date, the detailed mode of sterol-binding at a molecular level has not been determined. To gain insight into the mechanism of sterol-recognition of TNM in lipid bilayers, surface plasmon resonance (SPR) experiments and solid state deuterium nuclear magnetic resonance (^2H NMR) measurements were performed on theonellamide A (TNM-A). SPR results revealed that the incorporation of 10 mol% of cholesterol or ergosterol into 1-palmitoyl-2-oleyl-*sn*-glycero-3-phosphocholine (POPC) membranes significantly enhances the affinity of the peptide for the membrane, particularly in the initial binding process, to the membrane surface, while binding to epicholesterol (3α -cholesterol)-containing membranes was significantly weaker. This increase in affinity is due to direct intermolecular interaction between the 3β -hydroxysterols in membranes and TNM-A as evidenced by characteristic changes in the solid state ^2H NMR spectra. These results demonstrate that TNM-A recognizes the 3β -OH moiety of sterols, greatly facilitating its binding to bilayer membranes.

It has also become apparent that membrane action of TNM-A does not involve the formation of clear and distinct pores but more likely morphological changes or deformations. To observe these morphological changes, solid state ^{31}P NMR and differential interference and confocal fluorescence microscopy were performed. Solid state ^{31}P NMR revealed the presence of isotropic signals both in cholesterol-containing and sterol-free POPC liposomes indicating disruption of the membrane, consistent with previous dye leakage experiments. These were most likely due to regions of high membrane curvature than small fast-tumbling structures based on dynamic light scattering (DLS) measurements. Differential interference and confocal microscopy images using giant unilamellar vesicles (GUVs) showed clear fluctuations in membrane surface structure indicating regions of high curvature both in cholesterol-containing (5 mol%) and sterol-free POPC liposomes, which occurs more frequently in the former. These deformations also appear to allow the influx of bulk solution into the vesicles

as observed with a fluorescent TNM-A derivative. Interestingly, a membrane fission process was also detected in both types of liposomes that may account for vacuolar fragmentation reported earlier.

Amphidinols (AMs) are polyketide metabolites from the dinoflagellate *Amphidinium klebsii* whose structure is characterized by a polyol and polyene chains separated by two tetrahydropyran rings. These compounds show potent antifungal and hemolytic properties which is believed to arise from its interaction with the lipid bilayer. Indeed, amphidinol 3 (AM3) has been demonstrated to permeabilize sterol-containing liposomes and its membrane-bound structure where the polyol and polyene chains are located in the membrane surface and interior, respectively, supported a toroidal pore mechanism. Despite these findings, a detailed molecular basis on how AMs recognize sterols on membranes and how the pore/lesion forms is still unclear. Here, it was demonstrated that pore formation by AM3 was found to occur exclusively in liposomes with 3β -hydroxysterols, suggesting the importance of sterol in the pore complex. Similarly with TNM-A, SPR analysis showed AM3 to have very weak affinity towards epicholesterol-containing membranes, in contrast with 3β -hydroxysterol-containing liposomes. This is brought about by the lack of direct intermolecular interaction in the former compared with the latter based on solid state ^2H NMR data. Interestingly, however, in contrast to the assumed toroidal pore formed by AM3, no such structure was apparent based on solid state ^{31}P NMR spectra indicating that AM3 does not cause significant disruption of surrounding phospholipids.

論文審査の結果の要旨及び担当者

氏名 (Rafael Attilo Espiritu)		氏名
論文審査担当者	主査 教授	村田道雄
	副査 教授	梶原康宏
	副査 教授	中谷和彦

論文審査の結果の要旨

Rafael 氏は、海洋生物の產生する脂質二重膜活性化合物について、それらの膜作用の分子機構解明を目指して、学位論文研究を行った。なかでも、海綿動物が含有する生理活性物質・セオネラミド(TMN)の作用機構に関する研究を重点的に行なった。セオネラミド A (以下 TNMA と略称) は、強い抗真菌活性を有するが、その活性発現には、膜中のステロールが必須であることが明らかとなり、ステロールと TNMA の相互作用に興味を持たれていた。

Rafael 氏は、まず TNMA の作用機構解明に必要な材料を *Theonella* 属海綿から単離精製した。続いて、TNMA の膜透過化活性のステロール依存性を、定量的に解析する目的で、表面プラズモン共鳴法 (SPR) の適用を試みた。本 SPR 実験では、脂質膜への結合と解離の過程の時間経過を観測するのが目的であるが、TNMA のような両親媒性物質では再現性よい結果を得るのが困難とされていた。Rafael 氏は試行錯誤の結果、実験条件を最適化することによって信頼性の高い親和性の指標を得ることに成功した。その結果、TNMA がコレステロールおよびエルゴステロール依存的にリン脂質二重膜に結合すること、その結合速度は、ステロールのない膜にくらべて数十倍大きく、TNMA の抗真菌性を含む生物活性がステロール膜への速い結合によって説明できることを示した。また、TNMA とステロールとの相互作用を直接観測する目的で、重水素置換したコレステロールおよびエルゴステロールの固体広幅 NMR を測定したところ、活性の増強作用が認められた 3β -ヒドロキシ体については相互作用を示す顕著な変化が認められたが、活性増強作用のなかった立体異性体である 3α -ヒドロキシ体には有意な変化は認められなかった。さらに、彼は膜形状の巨視的な変化を共焦点および微分干渉顕微鏡を用いて観察した。高圧形成法によって得た巨大リポソームについて、TNMA の添加による形態変化を観察した結果、TNMA の添加によって顕著な形態変化が観測された。これらの形態変化は、ステロールの有無によらず観察されたが、コレステロール存在時において変化はより顕著であった。また、Rafael 氏は、TNMA による脂質二重膜構造の変化を選択的に検出するために、固体 ^{31}P NMR におけるシグナルパターンを観測し、TNMA の添加によって膜の平面性が部分的にみだされることを見出した。これは、以前の研究で推定されていたトロイダルモデルでは TNMA の作用機構を説明することができないことを示し、リン脂質分子の配向の顕著な乱れを伴わない、新しい機構の存在を示した。

Rafael 氏は、同様の手法を海洋渦鞭毛藻の抗真菌物質であるアンフィジノールにも適用した。渦鞭毛藻の培養によって得たアンフィジノール 3 について、重水素置換したコレステロールおよびエルゴステロールの固体広幅 NMR を測定したところ、TNM の場合と同様に 3β -ヒドロキシ体については顕著な相互作用が認められたが、 3α -ヒドロキシ体には有意な変化は認められなかった。これらは、脂質二重膜におけるアンフィジノール類とステロールとの相互作用を観測した初めての例である。

このように、Rafael 氏の研究は、特徴的な膜透過性増大作用を有する生物活性物質の研究を強力に推進し、貴重な新知見を数多くえた点においても学術的意義が大きい。以上のように、本論文は博士 (理学) の学位論文として十分価値あるものと認める。