
Title
Mechanism of Action of Membrane-Active Marine
Natural Products Theonellamide A and Amphidinol
3

Author(s) Espiritu, Rafael Atillo

Citation 大阪大学, 2013, 博士論文

Version Type VoR

URL https://doi.org/10.18910/26247

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



i 
 

Mechanism of Action of Membrane-Active 
Marine Natural Products  

Theonellamide A and Amphidinol 3 
 

(膜作動性海洋天然物セオネラミド Aと 

アンフィジノール３の作用機構解析) 
 

 

A Thesis Submitted to the  
Graduate School of Science  

Osaka University  
 

 
 

In Partial Fulfillment of the  
Requirements for the Degree of  

Doctor of Philosophy (Ph.D.) in Chemistry 
 
 

By 
 
 

Rafael Atillo Espiritu 
 
 

Department of Chemistry 
Graduate School of Science 

Osaka University 
2013 



ii 
 

 
   



i 
 

 

Mechanism of Action of Membrane-Active 
Marine Natural Products 

Theonellamide A and Amphidinol 3 
 

 

(膜作動性海洋天然物セオネラミド Aと 

アンフィジノール３の作用機構解析) 
 
 
 
 
 
 
 
 

 
 

Rafael Atillo Espiritu 
 
 
 
 
 

Department of Chemistry 
Graduate School of Science 

Osaka University 
2013 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



iii 
 

Abstract

 

Marine organisms are a rich source of numerous structurally unique and biologically 

active secondary metabolites that may find potential use as effective therapeutics. Among the 

several promising compounds include the sponge-derived theonellamides (TNMs) and 

dinoflagellate-derived amphidinols (AMs).  

Theonellamides are antifungal and cytotoxic bicyclic dodecapeptides isolated from the 

marine sponge Theonella sp. Recently, it has been shown that TNMs recognize 3β-

hydroxysterol-containing membranes, induce glucan overproduction, and damage cellular 

membranes. However, to date, the detailed mode of sterol-binding at a molecular level has not 

been determined. To gain insight into the mechanism of sterol-recognition of TNM in lipid 

bilayers, surface plasmon resonance (SPR) experiments and solid state deuterium nuclear 

magnetic resonance (2H NMR) measurements were performed on theonellamide A (TNM-A). 

SPR results revealed that the incorporation of 10 mol% of cholesterol or ergosterol into 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes significantly enhances 

the affinity of the peptide for the membrane, particularly in the initial binding process, to the 

membrane surface, while binding to epicholesterol (3α-cholesterol)-containing membranes 

was significantly weaker. This increase in affinity is due to direct intermolecular interaction 

between the 3β-hydroxysterols in membranes and TNM-A as evidenced by characteristic 

changes in the solid state 2H NMR spectra. These results demonstrate that TNM-A recognizes 

the 3β-OH moiety of sterols, greatly facilitating its binding to bilayer membranes. 

It has also become apparent that membrane action of TNM-A does not involve the 

formation of clear and distinct pores but more likely morphological changes or deformations. 

To observe these morphological changes, solid state 31P NMR and differential interference 

and confocal fluorescence microscopy were performed. Solid state 31P NMR revealed the 

presence of isotropic signals both in cholesterol-containing and sterol-free POPC liposomes 

indicating disruption of the membrane, consistent with previous dye leakage experiments. 

These were most likely due to regions of high membrane curvature than small fast-tumbling 

structures based on dynamic light scaterring (DLS) measurements. Differential interference 

and confocal microscopy images using giant unilamellar vesicels (GUVs) showed clear 

fluctuations in membrane surface structure indicating regions of high curvature both in 

cholesterol-containing (5 mol%) and sterol-free POPC liposomes, which occurs more 

frequently in the former. These deformations also appear to allow the influx of bulk solution 

into the vesicles as observed with a fluorescent TNM-A derivative. Interestingly, a membrane 
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fission process was also detected in both types of liposomes that may account for vacuolar 

fragmentation reported earlier.   

Amphidinols (AMs) are polyketide metabolites from the dinoflagellate Amphidinium 

klebsii whose structure is characterized by a polyol and polyene chains separated by two 

tetrahydropyran rings. These compounds show potent antifungal and hemolytic properties 

which is believed to arise from its interaction with the lipid bilayer. Indeed, amphidinol 3 

(AM3) has been demonstrated to permeabilize sterol-containing liposomes and its membrane-

bound structure where the polyol and polyene chains are located in the membrane surface and 

interior, respectively, supported a toroidal pore mechanism. Despite these findings, a detailed 

molecular basis on how AMs recognize sterols on membranes and how the pore/lesion forms 

in still unclear. Here, it was demonstrated that pore formation by AM3 was found to occur 

exclusively in liposomes with 3β-hydroxysterols, suggesting the importance of sterol in the 

pore complex. Similarly with TNM-A, SPR analysis showed AM3 to have very weak affinity 

towards epicholesterol-containing membranes, in contrast with 3β-hydroxysterol-containing 

liposomes. This is brought about by the lack of direct intermolecular interaction in the former 

compared with the latter based on solid state 2H NMR data.  Interestingly, however, in 

contrast to the assumed toroidal pore formed by AM3, no such structure was apparent based 

on solid state 31P NMR spectra indicating that AM3 does not cause significant disruption of  

surrounding phospholipids. 
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Chapter 1 

 

General Introduction – Mechanism of Action of Membrane-
Active Compounds 

 

1.1 Membrane-Active Compounds  

Biological membranes (Figure 1-1) are fundamental cellular structures that mainly 

function as a barrier separating the inside of the cell from the external environment. At the 

same time, it acts as a semi-permeable membrane that allows the passage of certain ions or  

 

 

 

Figure 1-1. Fluid mosaic representation of a biological membrane. Reprinted with permission 
from Horizon Symposia: Living Frontier, 2004, 1-4.2 Copyright © (2004) Nature Publishing 
Group. 

 

 

molecules while excluding others. The currently accepted representation of a biological 

membrane is the so-called fluid mosaic model proposed by Singer and Nicholson which states 

that the membrane is a fluid phospholipid bilayer dispersed with integral and peripheral 
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membrane proteins, and other constituents such as sterols (in eukaryotic cells), that can freely 

diffuse laterally.1,2 

Given the importance of membranes in ensuring cell integrity and survival as well as 

compartmentalizing the entire cell and the organelles inside them, disruption of membrane 

function results in significant biological problems. It is therefore not surprising to find a lot of 

compounds, both natural and synthetic, that are known to target the membrane to be able to 

exert their biological activity. For instance, integral membrane proteins are the target of more 

than 60% of current commercially available drugs.3 Cholesterol-dependent cytolysins (CDCs), 

toxins secreted by certain Gram-positive bacteria that contribute to their pathogenesis, show  

 

 

 

Figure 1-2. Molecular structure of the CDC from Clostridium perfringens, perfringolysin O. 
Reprinted with permission from Biochim, Biophys. Acta., 2012, 1818, 1028-1038., and Cell, 1997, 
89, 685-692.4,45 Copyright © (2012 and 1997) Elsevier. 

 

 

 

an absolute dependence on the presence of membrane cholesterol for its activity.4 These 

proteins have been previously identified exclusively with Gram-positive organisms, but 

recently the first CDCs from two species of Gram-negative bacteria, not known to cause harm 

or disease in humans or animals, were reported.5 Another group of well known sterol-binders 

are the polyene macrolide antibiotics that include amphotericin B, natamycin, nystatin A1 and 

filipin III.6 Meanwhile, antimicrobial peptides (AMPs) produced by a great variety of 

organisms including animals, plants, invertebrates, and bacteria, like the well studied 

magainin and melittin, are widely believed to target the membrane itself and/or certain 

phospholipid components more prevalent in bacteria than mammals and are thus proposed as 
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possible candidate drugs to combat antibiotic- resistant bacteria.7,8 The structures of some of 

these membrane-active compounds are shown in Figure 1-2 and 1-3. 

 

 

 

Figure 1-3. Chemical structures of several polyene macrolide antibiotics and the primary amino 
acid sequence of melittin and magainin 1 and 2. 
 

 

Components of the membrane are varied, ranging from proteins, phospholipids and 

sterols, and recognition of these components by their appropriate biomolecular partner is 

critical for different membrane and cellular processes. This is more pronounced in the case of 

drugs used to treat human diseases; in fact an extremely high selectivity and affinity are two 

of the most desired characteristics of drug molecules.9 In general, increasing the selectivity of 

drugs for their targets, such as membrane proteins, involves functionalizing the compound 

with non-polar or polar groups that could induce the most favorable interactions with the 

protein’s binding pocket in thermodynamic terms.9 Some molecules also take advantage of 

certain cellular deficiencies to account for their selectivity such as the small molecule 

lanperisone which works by inducing reactive oxygen species that some cancer cells cannot 

effectively scavenge leading to oxidative stress and ultimately, cell death.10 
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Selective toxicity of CDCs for mammalian cells, on the other hand, arises from its 

absolute dependence on membrane cholesterol,4 which is predominant in mammalian 

membranes. Cholesterol acts as the membrane receptor for this class of compounds, binding 

to which leads to a cascade of events resulting in pore formation. Interestingly, a few CDCs 

use human CD59 as their receptor, rather than cholesterol, but presence of this sterol is still a 

requirement for pore formation.4 Efficacy of polyene macrolide antibiotics, e.g. amphotericin 

B, in the treatment of systemic fungal infections is widely attributed to its higher binding 

affinity to ergosterol, the main fungal sterol, compared with cholesterol in mammalian 

membranes.11,12 Nevertheless, this does not preclude the serious side effects of the drug, most 

notably  its nephrotoxoctiy, which sometimes necessitates the discontinuation of its use even 

in severe fungal infections.13 

Antimicrobial peptides have recently gained considerable attention due to their 

potential use in combating the increasing incidence of bacteria resistant to traditional 

antibiotics.14 The marked selectivity and lethality of AMPs towards microbes rather than the 

host cells is most commonly associated with the preferential ionic interaction between the 

usually cationic AMPs and the anionic constituents of bacterial membranes coupled with the 

lack of rigidifying lipids like cholesterol; eukaryotic membranes, on the other hand are 

zwitterionic and contain sterols.7,8,14-17 Some of these AMPs also show a selective cytotoxicity 

towards cancer cells which is also due to the preponderance of anionic membrane components 

in these cells: the expression of anionic molecules such as phosphatidylserine, O-glycosylated 

mucins, sialilated gangliosides, and heparin sulfates are elevated in cancer cells.18 Another 

subset in these big group of AMPs are those that usually have high activity on a specific 

target bacterium  and act via a receptor-mediated mechanism.14 These high target specificity 

peptides both have a receptor-binding region and a pore-forming region, and it includes nisin 

Z and mesentercicin Y.19 

 

 

1.2 Mechanisms of Membrane Permeabilization 

The afore-mentioned compounds, specifically the CDCs, polyene macrolides, and 

AMPs exert their biological action through membrane interactions and there is sufficient 

evidence to suggest that their toxicity arises from permeabilization of the membrane 

subsequently leading to cell lysis.4,6-8,11,12,14-19 Membrane permeabilization by these 

compounds can occur via formation of distinct transmembrane pores or non-pore defects,  

both of which are able to dissipate membrane potential as well as cause leakage of cellular 

solutes and/or components. 
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1.2.1 Transmembrane Pore Models 

Pore formation of membranes can occur in any of two possible mechanisms: barrel-

stave or toroidal pore. 

In a barrel-stave pore, membrane-bound compounds aggregate and form oligomeric 

structures able to span the entire length of the membrane. The extraordinarily large CDC pore 

is usually composed of about 35-50 monomers with a diameter ranging from 250-300 Å,4 

while the amphotericin B-sterol pore complex is normally composed of 4-8 pairs of 

amphotericin B and sterol molecules with a pore diameter of about 6-9 Å.12,20 Pore formation 

by AMPs, in general, is unique and only a few of them qualify as true pore formers.7,8,14 In the 

barrel-stave mechanism (Figure 1-4), penetration of the hydrophobic membrane core is 

essential, thus interaction between the peptides and membranes is primarily governed by 

hydrophobic interactions, with the hydrophobic residues facing the lipid core while the 

hydrophilic ones line the water-filled pore lumen.14 For this reason, these peptides necessarily 

have to be non-cell selective, permeabilizing both zwitterionic and anionic membranes, as is 

the case with alamethicin, which forms a barrel-stave pore with an inner diameter of about 18 

Å.7,8,14 

 

 

 
Figure 1-4. Cartoon representation of barrel-stave pore formation by antimicrobial peptides. Blue 
and red regions represent the hydrophobic and hydrophilic portions of AMPs, respectively. 
Reprinted with permission from Nat. Rev. Microbiol., 2005, 3, 238-250., and Biopolymers, 1998, 
47, 451-463.7,46 Copyright © (2005) Macmillan Publishers Ltd. and (1998) John Wiley & Sons, 
Inc. 
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In the toroidal-pore model, membrane-bound peptides, for instance, insert and 

cooperatively affect the local curvature by inducing the membrane to bend back on itself 

continuously such that the water-filled pore is lined by both the peptides and the phospholipid 

head groups, forming a toroid of high curvature (Figure 1-5).7,8 The defining characteristic of 

a toroidal pore is that the peptides are always associated with the lipid headgroups. Melittin 

and magainin are examples of AMPs that are believed to permeabilize membrane via toroidal 

pore formation, and in the case of magainin, it forms a larger pore compared with alamethicin 

having an inner of about 30-50 Å, which is thought to contain approximately 4-7 peptides and 

~90 lipid molecules.7 Aside from small, cationic antimicrobial peptides, toroidal pore 

formation has also been proposed as the mode of action of proteinous toxins (>20 kDa), 

specifically equinatoxin II and sticholysins obtained from sea anemones.21,22 

 

 

 

Figure 1-5. Cartoon representation of toroidal pore formation by antimicrobial peptides. Blue and 
red regions represent the hydrophobic and hydrophilic portions of AMPs, respectively. Reprinted 
with permission from Nat. Rev. Microbiol., 2005, 3, 238-250., and Phys. Rev. Lett., 2004, 92, 
198304-1 – 198304-4.7,47 Copyright © (2005) Macmillan Publishers Ltd., and (2004) American 
Physical Society. 
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The fundamental difference between these two pore models is that a barrel-stave works 

with the hydrophobic membrane core using it as a basis to form the channel, while a toroidal 

pore works against it, disrupting non-polar-polar segregation of the membrane with 

alternative regions where these parts can have more favorable interactions.8  

 

1.2.2 Non-Pore Models 

Pore formation by AMPs is quite a unique phenomenon.8,15 However, conclusive 

evidence on the presence of these water-filled pores formed by most of the so called “pore-

forming peptides” are still lacking.8 In addition, pore-forming peptides should theoretically be 

bactericidal at very low concentrations; lower than the experimentally observed micromolar 

levels, since they will be lethal once they penetrate the membrane where pores can be formed 

by as few as three monomers.14 Simulation studies have also demonstrated that a single, 10 Å 

water-filled pore will have a release rate of 50,000 ions per second,8 while that of the 

gramicidin, a well-studied AMP, ion channel is known to pass up to 106-107 ions per 

second.23 Since a typical large unilamellar vesicle can only contain hundreds to a few 

thousand probe molecules,  complete release should be observed within a fraction of a second. 

However, experimentally, only a fraction of vesicle contents are released with rates that are at 

least 3 orders of magnitude below the theoretical rate (Figure 1-6). In addition, a typical 

vesicle experiment, for instance using giant unilamellar vesicles, has bound peptide to lipid 

ratio that is quite high (~ 1:50). This would translate to about 2 x 107 bound peptides enough 

to form 2 million pores (assuming decameric structures) but leakage of contents remain 

inefficient.8 Thus significant leakage via pore formation  is really a rare occurrence, instead, 

what could actually happen is a more general disruption of membrane integrity.8  

The most commonly-cited non-pore permeabilization mechanism is the so-called 

carpet or detergent model (Figure 1-7).7,8,14,15 In this model, the peptides bind parallel to the 

membrane surface with their hydrophobic regions oriented towards the lipidic core while their 

hydrophilic portions contact the polar phospholipid headgroup, and cover the membrane 

surface like a carpet. Only when the peptides reach a threshold concentration, they insert and 

permeate the membrane leading to disruption of membrane integrity. At this concentration, 

the peptides may also form transient toroidal holes which could facilitate translocation of the 

peptide into the inner membrane leaflet leading to formation of mixed micelles and a 

disastrous collapse of the membrane. This mode of action is proposed to account for the 

activity of the majority of AMPs since it does not require specific interaction between 

membrane-bound monomers, peptide insertion into hydrophobic core or channel formation. In 
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contrast, it appears that an appropriate hydrophobicity and net positive charge is enough for 

activity.15  

 

 

 

Figure 1-6. Release of vesicle-entrapped molecules. (A) Typical experimental conditions, (B) 
theoretical release rate, (C) experimental release rate. Reprinted with permission from ACS Chem. 
Biol., 2010, 5, 905-917.8 Copyright © (2010) American Chemical Society.  

 

 

 

Figure 1-7. Cartoon representation of the carpet/detergent mode of action by antimicrobial 
peptides. Reprinted with permission from ACS Chem. Biol., 2010, 5, 905-917.8 Copyright © 
(2010) American Chemical Society. 

 

 

Other non-pore models that have been previously proposed include the sinking raft 

model,24,25 charge cluster mechanism,26,27 leaky slit model,28  and the interfacial activity 

model.8 It is worth pointing out, however, that these models most likely complement each 
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other, rather than any single one being the exclusive  mechanism of antimicrobial peptide-

induced membrane permeabilization. 

In the sinking raft model (Figure 1-8), a mass imbalance between the outer and inner 

membrane leaflets is generated because of peptide binding on the former. This mass 

imbalance creates curvature strain and to relieve the stress, peptides “sink” into the bilayer 

with concomitant lipid flip-flop and efflux of intracellular metabolites. When the peptides 

reach the cytoplasmic side of the membrane and equilibrium is re-established, lipid flip-flop 

and efflux stops. This model was proposed to account for the graded dye release observed 

with Staphylococcus aureus lytic peptide δ-lysin.24,25 

 

 

 

Figure 1-8. Representation of the sinking raft model. Peptides are shown as circles, with dark and 
light regions corresponding to the molecules’ hydrophobic and hydrophilic portions, respectively. 
Reprinted with permission from Biochemistry, 2004, 43, 8846-8857., and Biochemistry, 2005, 44, 
9538-9544.24,25 Copyright © (2004 and 2005) American Chemical Society. 

 

 

Bacterial plasma membrane contains a greater proportion of anionic lipids than 

zwitterionic ones, and clustering of the former by some cationic antimicrobial peptides is 

proposed to contribute to their bactericidal action.26,27 The charge cluster mechanism (Figure 

1-9) arises from the preferential interaction between cationic AMPs and anionic lipids and 

subsequent clustering of the latter leading to formation of lipid-peptide domains that excludes 

the zwitterionic membrane components. This causes a large reorganization of the bacterial 
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membrane and an increase in concentration of anionic lipids and peptides within certain 

domains will result in boundary defects leading to membrane permeabilization and/or 

functional impairment of membrane proteins normally associated with anionic lipids. 

Furthermore, this clustering may cause existing bacterial membrane domains to be unstable 

and/or to have altered properties which ultimately could lead to cell death. Antimicrobial 

peptides that are highly cationic (+6 to +10 net charge) served as a model for this mechanism. 

 

 

 

Figure 1-9. Clustering on anionic lipids (red) by cationic antimicrobial peptides leading to 
formation of peptide-lipid domains and segregation of zwitterionic lipids (yellow). Reprinted with 
permission from Prog. Lipid Res., 2012, 51, 149-177.17 Copyright © (2012) Elsevier.  

 

 

The leaky slit model (Figure 1-10) was proposed as a possible mechanism to account 

for the toxicity of plantaricin A and other fiber forming proteins and peptides.28 Fibril 

formation by various proteins and peptides has been reported to be induced by negatively-

charged phospholipids, particularly phosphatidylserine, present in membranes.29 In this model, 

bound peptides arrange themselves in a linear configuration with their hydrophobic regions 

facing the membrane core. Toxicity lies in the hydrophilic regions of the peptide (interactions 

between these regions account for the aggregation and formation of fibrilliar oligomers) 

which will not be able to make contact with the opposing hydrophobic layer. This will then 
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force the membrane to adopt a highly positive curvature, forming a “leaky slit” facilitating 

movement of solutes across the membrane causing the cell to be irreparable. Given these, the  

 

 

 

Figure 1-10. Cartoon representation of a membrane leaky slit induced by fiber-forming peptides. 
Reprinted with permission from Biochim. Biophys. Acta., 2006, 1758, 1461-1474.28 Copyright © 
(2006) Elsevier. 

 

 

only requirement for the formation of a leaky slit appears to be the capacity of the peptide to 

aggregate into fibers having an amphiphatic nature able to span the membrane. 

Another probable mechanism of AMP action was proposed based on the activity of the 

peptides in the interfacial region of the membrane. The hydrophobic core of the membrane, 

which acts as a semi-permeable barrier, is sandwiched between a region about 10-15 Å thick 

containing lipid polar head groups, water, counterions, and a small fraction of hydrocarbon 

groups, called the interfacial region.8 The interfacial activity model describes the capacity of 

an imperfectly amphiphatic peptide, those that are amphiphatic but with imperfect segregation 

of polar and non-polar residues, to partition in this region resulting in the perturbation of the 

strict permeability barrier imposed by the membrane core. This perturbation arises from local 

membrane rearrangements affecting the separation of the hydrophobic core and the interfacial 

groups, formation of which carries polar solutes along with the peptides and lipids across the 

membrane resulting in leakage associated with AMPs. It is also proposed that an interfacially- 

active peptide will be active even at low concentrations, and that translocation of these 

peptides will always be coupled with lipid flip-flop and membrane leakage.8 This model is 

represented in a molecular dynamics simulation shown in Figure 1-11. 

 

 

 



12 
 

 

Figure 1-11. Molecular dynamics simulation that could represent the interfacial activity. Water, 
choline, phosphate, carbonyl, and terminal methyl groups are represented by blue-green, blue, 
orange, red, and yellow spheres. Reprinted with permission from ACS Chem. Biol., 2010, 5, 905-
917., and Biochim. Biophys. Acta, 2008, 1778, 2308-2317.8,48 Copyright © (2010) American 
Chemical Society and (2008) Elsevier. 

 

 

1.3 Methods to Study Membrane Interactions 

Interactions between bioactive molecules and cell membranes play a key role in the 

regulation of several cellular processes such as signal transduction, ion channel formation, 

and the action of antimicrobial and cytotoxic peptides. Among a wide range of techniques 

employed to investigate these interactions,30,31 SPR has been proven to be an excellent tool to 

examine the binding behavior of biomolecules to membranes.30,32 This technique was 

successfully employed to characterize the interaction of cationic amphiphilic drugs and 

antimicrobial peptides with artificial membranes.33-35 Recently, using SPR, the binding of 

amphotericin B36 to POPC liposomes was also evaluated, which revealed that the affinity of 

this molecule to the vesicles is significantly enhanced by incorporating cholesterol or 

ergosterol into the lipid bilayer. In this earlier study, a dodecylamine-modified CM5 sensor 

chip was developed to minimize non-specific interaction between amphotericin B and the 

dextran matrix on the chip thus providing a more accurate evaluation of the binding 

interaction between the drug and liposomes.36  
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Solid-state 2H NMR spectroscopy is an invaluable tool in the study of lipid and sterol 

dynamics in model membranes, e.g. the membrane perturbing effects induced by 

antimicrobial peptides can be directly observed by the change in quadrupole splitting of 

deuterated acyl chain segments of phospholipids.37 Recently, 2H NMR was used to reveal the 

dynamics of sterols affected by the presence of amphotericin B.38 This study has showed that 

amphotericin B inhibits the fast rotational motion of ergosterol in membranes, thus 

unequivocally demonstrating the direct amphotericin B-ergosterol interaction in lipid bilayers.  

Membrane morphological changes or deformations have been observed to be induced by 

certain compounds, most notably antimicrobial peptides, and is postulated to be linked with 

their reported biological activities.15,27,39-41 These peptides cause a wide range of effects 

including positive and negative curvature strain, induction of cubic lipid phases, clustering of 

certain phospholipids, membrane thinning, formation of lipid protrusions, and membrane 

disruptions. Solid state 31P NMR is a sensitive and highly useful tool to study changes in 

membrane morphology and phospholipid dynamics as exemplified by some antimicrobial 

peptides.37-42 Meanwhile, giant unilamellar vesicles (GUVs), whose diameter reaches up to 

about 100 μm, have gained much attention as suitable tools to carry out fluorescence 

microscopy experiments and to observe structural details in membrane organization above 

~300 nm.43,44 In addition, the average size of GUVs also approximate that of the plasma 

membrane of a number of cells, which makes it possible to conduct measurements with single 

vesicles that mimic the curvature of natural membranes.43 This latter advantage can be 

exploited in order to gain more meaningful insight into the effects of certain molecules, such 

as peptide and proteins, on the structure of the membrane. 
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Chapter 2 

 

Interaction between Theonellamide A and Sterols in Lipid Bilayer 
Membranes 

 

2.1 Introduction – Bioactive Compounds from the Marine Sponge of the 
Genus Theonella 

 

2.1.1 Marine Sponge-Derived Natural Products 

Marine sponges are multicellular, filter-feeding, and sessile organisms belonging to the 

phylum Porifera (Latin: “pore-bearer) whose porous bodies facilitate the passage of water 

through them. These benthic animals are among the most ancient multicellular organisms 

having first appeared in the world’s waters about 700 million years ago, and their simple body 

structure, which have served them well throughout their existence, have largely remained 

unchanged.1,2 Most of the roughly 15,000 sponge species live in polar, tropical, and temperate 

marine environments, however, a small population of about 1% can be found in freshwater 

regions. 

Perhaps the most remarkable attribute of marine sponges is their ability to house an 

extremely dense and diverse microbial community that includes prokaryotes, including 

cyanobacteria, archaea, and unicellular eukaryotes, which are most commonly found in the 

sponge’s mesohyl tissue (Figure 2-1).2 These microbial clusters can account for as much as 

35% of the animal’s biomass and is present in densities beyond 109 microbial cells per cubic 

centimeter of sponge tissue, which is 3-4 orders of magnitude greater than that found in the 

surrounding water.2   

Marine sponges are a rich source of natural products, largely because of their 

inclination to produce various structurally unique bioactive secondary metabolites.3 It is 

believed that, in some case, these bioactive compounds are actually produced, not by the 

sponge themselves, but by the diverse and dense microbial community they host,4 examples 

of which are shown in Table 2-1.  

Sponges produce these various compounds and toxins to serve a multitude of functions 

necessary for their survival that includes deterrent for predators, to compete for space with 

other sessile organisms, communication, and for protection against infection.1  
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Figure 2-1. Representation and images of sponge. (a) schematic representation of a typical 
sponge body, (b) enlargement of the sponge internal structure, (c) Mycale laxissima, (d) 
Amphimedon queenslandica,56 (e) Ancorina alata,57 (f) Rhopaloeides odorabile,57 (g) 
Xestospongia muta, (h) Cymbastela concentric, (i) Aplysina aerophoba,57 (j) Theonella swinhoei, 
and (k) Ircinia felix. Reprinted with permission from Nat. Rev. Microbiol., 2012, 10, 641-654., 
and Environ. Microbiol., 2012, 14, 335-346. 2,57 Copyright © (2012) Macmillan Publishers Ltd., 
and (2011) Society for Applied Microbiology and Blackwell Publishing Ltd. 
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Table 2-1. Some natural products suspected or known to be produced by sponge symbionts.5-9 

Natural Product Suspected Bacterial Source Host Sponge 

Brominated 

Biphenyl ethers 

Oscillatoria spongeliae Lamellodysidea spp. 

Chlorinated peptides O. spongeliae Lamellodysidea spp. 

Theopalauamide Candidatus Entotheonella 

palauensis 

Theonella swinhoei 

Swinholide A Unicellular bacterium T. swinhoei 

Onnamide A Unidentified bacterium T. swinhoei 

Psymberin Unidentified bacterium Psammocinia bulbosa 

 

 

 

The prevalence of these varied bioactive compounds offer promising potential for 

biotechnological and therapeutic purposes. Precandidaspongiolide A and candidaspongiolide 

A are potent (nM) and selective melanoma inhibitors isolated from a Papua New Guinean 

Candidaspongia sp.10 Kabiramide J and K are potent antimalarials isolated from Pachatrissa 

nux11 as well as psammaplysin H obtained from Pseudoceratina sp.12 Sorbicillactone A, an 

antileukemic compound, was isolated from a symbiont of Ircinia fasiculata.13 The antioxidant 

meroterpenoid hydroquinone halioxepine was isolated from Haliclona sp.14 Hippolide A from 

Hippospongia lachne is an inhibitor of protein tyrosine phosphatase 1B activity.15  The 

cytotoxic peptides callyaerins E16 and discodermins A-H were isolated from Callyspongia 

aerizusa and Discodermia kiiensis respectively,17,18 while the cytotoxic sphingosine 

derivatives jaspines A and B from Jaspis sp.19  
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2.1.2 Bioactive Compounds from Sponge of the Genus Theonella 

 The marine sponge Theonella swinhoei (Lithistida, Theonellidae) has attracted 

considerable attention over the past few decades due to its prolific production of diverse 

natural products with intriguing structures as well as potent biological activities, some of 

which may have promising therapeutic potential.20 Among the first compounds reported from 

this species are the rare 4-methylene-substituted sterols theonellasterol and conicasterol, 

which up to that time, has never been reported from either marine or terrestrial sources,21 and 

the symmetric 44-member macrolide swinholide A.22 Theonellasterol, together with ten new 

related polyhydroxy steroids theonellasterol B-H and conicasterol B-D, were recently 

demonstrated to be selective antagonists of the farnesoid-X-receptor and agonists of the 

pregnane-X-receptor, widely expressed in mammalian livers, which could make them a 

promising lead for treating liver diseases such as cholestasis and cirrhosis.23,24 Meanwhile, 

swinholide A, which has also been established to be produced by sponge-associated microbes, 

exhibits potent antifungal and cytotoxic activities against certain cancer cell lines.25 Moreover, 

its mechanism of action has been investigated in detail and revealed to involve the 
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dimerization of actin as well as disruption of the actin cytoskeleton.26,27 This remarkable 

characteristic allows it to be used extensively in cell biology studies.28 

 Natural products isolated from worldwide collections of Theonella swinhoei can be 

classified into approximately 9 biosynthetic categories that include sesquiterpenes, 

polyketides, alkaloids, linear and cyclic peptides, theopedrin derivaties, and glycopeptides and 

glycosides.20 Among these, however, peptides represent the most notable group.29 

Solomonamide A is an unprecendented cyclic tetrapeptide isolated recently which showed 

anti-inflammatory activity (60% edema reduction in mice at a dose of 100μg/kg body weight) 

in in vivo assay;29 the same species has also previously yielded two new anti-inflammatory 

cyclic octapeptides, perthamides C and D.30 Theonella species collected from deeper waters 

revealed the co-occurrence of three different families of peptides, the combination of which 

appears to define a new Theonella chemotype.31 Interestingly, in this suite of compounds, the 

cyclic N-methylated peptides koshikamides F and H inhibited an HIV entry in a HIV-1 

infectivity assay with the IC50 values of 2.3 and 5.5 μM, respectively.31 Their linear 

counterparts, on the other hand, were inactive suggesting the importance of the exocyclic 

olefin and its associated conformation as well as the ten-membered lactone ring in the anti-

HIV activity of these peptides.31  Perhaps one of the most extraordinary compound obtained 

from this species is the linear polypeptide polytheonamide B (pTB) isolated from a sponge 

collected in Japan.32 This compound is composed of 48 amino acid residues that includes 13 

non-proteinogenic residues which is capped with 5,5-dimethyl-2-oxohexanoate at the N-

terminus and is by far the largest non-ribosomal peptide known to date. A very intriguing 

structural feature of pTB is that the entire sequence is made up of alternating D- and L- amino 

acids that adopts a β-helix structure with 6.3 residues per turn (determined with NMR in 

methanol/chloroform) with a length of approximately 45 Å and a hydrophilic pore with a 4 Å 

inner diameter.33,34 Experiments with planar lipid bilayers demonstrated that the peptide 

inserts into the bilayer forming channels that showed selectivity towards monovalent 

cations.35 pTB is an extremely cytotoxic peptide with the IC50 value of 70-80 pg/mL in the 

MTT assay (in contrast, doxorubicin exhibited an IC50 value of 40-90 ng/mL), IC50 < 4 ng/mL, 

and IC50 < 1 ng/mL against P388 murine leukemia cells, L1210 murine lymphocytic leukemia 

cells, and Neuro-2a mouse neuroblastoma cells, respectively.34 The total synthesis of pTB has 

been reported recently.36 
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2.1.3 Theonellamides and its Congeners 

Investigation on bioactive compounds from Theonella swinhoei collected off Hachijo-

jima Island in Japan, led to isolation of the first member of this family in 1989 by Matsunaga 

et. al., which they named theonellamide F.37 Theonellamide F is a bicyclic dodecapeptide 

which contains some unusual amino acids and is bridged by an unprecedented 

histidinoalanine moeity : L-Asn, L-aThr, two residues of L-Ser, L-Phe, βAla, (2S,3R)-3-

hydroxyasparagine, (2S,4R)-2-amino-4-hydroxyadipic acid, τ-L-histidino-D-alanine, L-p-

bromophenylalanine, and (3S,4S,5E,7E)-3-amino-4-hydroxy-6-methyl-8-(p-bromophenyl)-

5,7-octadienoic acid. Further characterization of the antifungal fraction from the same sponge 

extracts afforded five related peptides, theonellamides (TNMs) A-E.38 TNM-A and TNM-B 

differ in three amino acid residues from TNM-F. Furthermore, TNM-A has a sugar residue, β-

D-galactose, attached to the free imidazole nitrogen. Meanwhile, TNM-C is the debromo of 

TNM-F. Finally TNM-D and TNM-E have the same structure and composition as TNM-F 

except that they have a β-L-arabinose and β-D-galactose, respectively, attached to the free 

imidazole nitrogen.  TNM-A and TNM-F appears to be the most abundant compounds. 
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Very few closely related analogs of theonellamides have been reported. Theonegramide 

was isolated from a similar sponge species collected off Negros Island, the Philippines and 

elucidation of its structure and sequence revealed very close similarity to  TNM-A except that 

the hydroxyl group in the Ahad residue as well the sugar in TNM-A were replaced by a 

hydrogen and an arabinose, respectively, in theonegramide.39 Meanwhile, theopalauamide and 

isotheopalauamide were also isolated from same sponge species, but collected off Palau.40 

The latter two peptides were identical to theonegramide but they contained a galactose sugar 

instead of arabinose. The minor peptide, isotheopalauamide, was established to be a stable 

conformer formed from TFA-catalyzed equilibration in the isolation process. All of these 

three congeners showed growth inhibition activity against Candida albicans in the standard 

paper disk assay. 
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2.1.4 Biological Evaluation of Theonellamides 

Theonellamide-F (TNM-F) was isolated as a major antifungal metabolite from a 

bioactive fraction of extracts from the sponge Theonella swinhoei.37 This peptide inhibited the 

growth of various pathogenic fungi, e.g. Candida spp., Trichophyton spp., and Aspergillus 

spp., at low concentrations of 3-12 μg/mL. Further characterization of the antifungal extracts 

afforded other bioactive compounds, TNM-A to E. Some of these later peptides contain a 

sugar moiety attached to the histidinoalanine bridge making them ideal analogs to determine 

the effect of such substitution on the peptide’s activity. Interestingly, however, it appears that 

the sugar residue does not play a significant role in their bioactivity as evidenced by their 

cytotoxic potencies against P388 murine leukemia cells summarized in Table 2-2.37,38  

It has previously been reported that TNM-F induces the formation of extraordinarily 

large vacuoles in 3Y1 rat fibroblasts, and that such vacuoles accumulated granules exhibiting 
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Brownian motion that also appeared to be organelle-like in size.41 From this observation, it is 

postulated that TNM-F may affect cellular autophagy and inhibits organelle degradation as 

well as the breakdown of the cells’ own proteins. Furthermore, treatment of the cells with 

TNM-F did not have any pronounced effect on either cellular morphology or cell viability. 

Monensin, on the other hand, altered morphology and was lethal to cells, thus TNM-F can be 

a useful probe to study intracellular membrane structures.41 A more detailed investigation of 

this extraordinarily large vacuoles showed that they were acidic,42 based on colocalization 

with an acidotropic dye, and inhibition of this process and disappearance of vacuoles upon 

treatment with bafilomycin A suggested that these vacuoles contained V-ATPase that 

maintained cellular acidity similar to those induced by the H. pylori toxin VacA. Unlike VacA 

that required the integrity of microtubules and the function of the GTPase rab7 for vacuolar 

formation, TNM-F action was hardly affected by tubulin-depolymerzing agents and rab7 

appears to be important only in certain types of vacuoles and processes. Evidence of this 

mechanism indicated vacuolar formation of these two compounds were different.42 In addition, 

by using TNM-A-conjugated gel beads, glutamate dehydrogenase and 17β-hydroxysteroid 

dehydrogenase IV were identified as its binding proteins from rabbit liver tissues, and in vitro 

assays revealed that TNM-F activates glutamate dehydrogenase leading to the amination of α-

ketoglutarate, although its potency is lower than the known activator adenosine diphosphate.43  

 

 

Table 2-2. Reported cytotoxicties of TNMs.37,38 

 IC50(µg/mL) 

TNM-A 5 

TNM-B 1.7 

TNM-C 2.5 

TNM-D 1.7 

TNM-E 0.9 

TNM-F 2.7 
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Figure 2-2. Sterol binding and disruption of plasma membrane integrity by TNM-F. (A) Binding 
of TNM-F to 3β-hydroxysterols, in vitro. (B) Passive entry of calcein into TNM-F treated yeast 
cells. (C) Changes in yeast vacuolar morphology upon treatment with DMSO (left), amphotericin 
B (middle), and TNM-F (right). Reprinted with permission from Nat. Chem. Biol., 2010, 6, 519-
526.44 Copyright © (2010) Macmillan Publishers Ltd. 

 

 

 Recently, a series of systematic experiments have provided substantial insights into 

the mode of action of TNMs and the structurally related theopalauamide.44,45 Budding yeast 

genomics, using a collection of molecular barcoded ORF libraries, revealed that 

theopalauamide is less effective toward mutated cells in the ergosterol biosynthesis 

pathway.45 Indeed, theopalauamide permeabilizes liposomes containing ergosterol.45 

Chemical genomic analysis using a fission yeast ORF collection suggested a mechanistic link 

between TNMs and 1,3-β-D-glucan synthesis, and an overproduction of 1-3-β-D-glucan was 

observed following the treatment of yeast cells with TNM-F in a Rho1-dependent manner.44 

Furthermore, in vitro binding assays, using a fluorescent-labeled TNM derivative, 

demonstrated that it specifically binds to 3β-hydroxysterols such as cholesterol and ergosterol 

(Figure 2-2A).44 The sterol binding is required for the TNM-induced 1-3-β-D-glucan 

synthesis and subsequent loss of membrane integrity (Figure 2-2B). Judging from the 

phenotypic changes in yeasts, the membrane action of TNM-F is apparently distinct from that 

of polyene antifungals such as amphotericin B, which is also known to bind sterols in 

membranes; e.g., TNM-F caused fragmentation (Figure 2-2C), instead of enlargement, of 

vacuoles, and exhibited a time-dependent toxicity, as opposed to amphotericin B, which had 

acute fungicidal activity. Thus, TNMs represent a novel class of sterol-binding compounds 

whose mode of action is different from that of polyene antibiotics, and therefore are expected 

to be a new tool for exploring the function and localization of sterols in cells.  
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2.1.5 Objectives of this Study on the Mode of Action of Theonellamide A 

Despite the findings described above, the precise mode by which TNMs recognize 

sterols in membranes is still unclear. Therefore, a detailed analysis of the bimolecular 

interaction between TNMs and sterols is indispensable in understanding the mode of action of 

this class of compounds. To this end, the nature of the binding interaction between TNM-A 

and POPC liposomes containing cholesterol, ergosterol, or epicholesterol (Figure 2-3), as well 

as its binding kinetics, was investigated by carrying out SPR measurements. Then, the 

presence or absence of direct intermolecular interaction between TNM-A and membrane-

embedded sterols, which could affect the peptide’s binding to the bilayer, was scrutinized 

with solid state 2H NMR using deuterium-labeled sterols (Figure 2-3). Moreover, to possibly 

account for the observed biological action of TNM-A, the effects of TNM-A addition to 

POPC membranes, with or without sterols, were explored with a variety of methods including 

calcein leakage assay, solid state 31P NMR, and microscopy observations. From the results 

obtained in these work, a probable mechanism of TNM-A membrane action was proposed.   

  

 

 
Figure 2-3. Structures of lipids used in this study. 
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2.2 Results and Discussion 

 

2.2.1 Binding of TNM-A to POPC Liposomes Measured by SPR 

Several important biological processes begin at the membrane surface by the 

interaction of certain membrane components with bioactive molecules. Surface plasmon 

resonance (SPR) has been extensively used in assessing the interaction between bioactive 

compounds and artificial membranes,46-50 mainly because it allows for a real-time observation 

of the binding interaction as well as an evaluation of the binding kinetics, among its other 

features. Recently, by devising a new SPR method that minimizes non-specific interaction 

between the analyte and dextran matrix on the sensor surface, a more accurate evaluation of 

the binding interaction between amphotericin B and POPC membranes was achieved.51 This 

same dodecylamine-modified sensor chip was used to examine in more detail the interaction 

between TNM-A and membranes.  

 

2.2.2 Sensor Chip Modification and Binding Interaction 

A dodecylamine-modified CM5 sensor chip (Figure 2-4) was utilized to evaluate the 

interaction of TNM-A with POPC/sterol (10 mol %) and pure POPC liposomes as was 

previously reported for amphotericin B.51 One of two flow cells was modified while the other  

 

 

 
Figure 2-4. Sensorgram of dodecylamine modification of one of CM5 sensor chip’s flow cells. 
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was left intact, serving as the reference cell. A schematic representation of a typical SPR 

experiment is shown in Figure 2-5. The liposomes, at a concentration of 0.5 mM, were 

captured by the modified lane with an immobilization level of around 12700 ± 800 RU, which 

 

 

  
 

 

 

 

 

 

Figure 2-5. Schematic representation of a typical SPR experiment. 

 

 

 
Figure 2-6. Representative sensorgram of POPC:cholesterol liposome immobilization on a 
dodecylamine-modified sensor surface. A drop in response upon liposome injection is due to the 
difference in the running buffer (PBS with 5% DMSO) and liposome buffer (PBS). 
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was stable even after repetitive washing with NaOH (50 mM); a representative sensorgram of 

liposome capture is shown in Figure 2-6.  For kinetic analysis, TNM-A, at various 

concentrations, was injected and response from the control lane was subtracted from that in 

the liposome-immobilized lane. 

 

   

 
Figure 2-7. SPR sensorgrams for binding of TNM-A to liposomes captured on a dodecylamine-
modified CM5 sensor chip: (A) 10 mol % cholesterol-containing POPC liposomes, (B) 10 mol % 
ergosterol-containing POPC liposomes, (C) 10 mol % epicholesterol-containing POPC liposome, 
and (D) pure POPC liposomes. Sensorgrams correspond to 20 (green), 15 (blue), and 10 (violet) 
μM TNM-A.  



34 
 

Figure 2-7 shows typical sensorgrams representing the binding of TNM-A to various 

POPC liposomes. Interaction of the peptide with the membranes showed clear concentration 

dependence, regardless of the presence or absence of sterol, indicating that the amount of 

membrane-bound peptide is directly proportional to the peptide concentration in the bulk 

solution. Moreover, as evidenced by the RU increase, the presence of cholesterol and 

ergosterol significantly enhanced the binding of the peptide to POPC liposomes by 

approximately 3-fold compared with that of pure POPC liposomes, while the binding of the 

peptide to epicholesterol (3α-cholesterol)-containing liposomes was comparable to that of 

pure POPC liposomes. These observations clearly demonstrate the preference of the peptide 

for 3β-hydroxysterols, which is consistent with the previous findings obtained with 

fluorescently labeled TNM.44 

 

2.2.3 Kinetic Evaluation of TNM-A Binding 

The kinetics of binding of TNM-A to lipid membranes was analyzed by fitting the 

experimental curves to those calculated from a theoretical model. On the basis of the possible 

mechanism of action of antimicrobial and membrane-active peptides,46,49 the sensorgrams 

could be fitted to the two-state reaction model (Figure 2-8). This model assumes that the 

interaction between the peptide and membrane lipids occurs via a two-step process: the first  

 

 

 
Figure 2-8. Illustration of the two-state reaction model for the interaction between TNM-A and 
sterol-containing phospholipid membranes. 
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Figure 2-9. Curve fitting of the SPR sensorgrams to the two-state reaction model (left) and 
components of the fitting curves (right): (A) 10 mol % cholesterol-containing POPC liposomes, 
(B) 10 mol % ergosterol-containing POPC liposomes, (C) 10 mol % epicholesterol-containing 
POPC liposomes, and (D) pure POPC liposomes. Experimental RU values were recorded for 20 
μM TNM-A. Red and black traces in the left panels depict experimental and theoretical curves, 
respectively. Blue, pink, and yellow traces in the right panels represent contributions from the AB 
complex, the ABx complex, and the bulk effect of the solvent, respectively, to the total component 
(black line).  
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Figure  2-10. Curve fitting of the SPR sensorgrams using the Langmuir or 1:1 bimolecular 
interaction model for TNM-A (20 μM) binding to POPC liposomes captured on a modified CM5 
sensor chip. (A) 10 mol% cholesterol-containing POPC liposomes, (B) 10 mol% ergosterol-
containing POPC liposomes, (C) 10 mol% epicholesterol-containing POPC liposomes, and (D) 
pure POPC liposomes. Red and black traces correspond to experimental and theoretical curves 
respectively. 

 

 

step involving the actual binding of TNM-A to the membrane surface and the second step 

probably corresponding to a conformational or morphological change to form a more stable 

membrane complex. The two-state analysis was first applied to well-known membrane 

peptides melittin and magainin49,50 and then successfully used for the antifungal natural 

product amphotericin B.51 For these compounds, the two-state model reproduced the 
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experimental SPR sensorgrams better than the conventional Langmuir model, which is 

consistent with the mechanisms of their membrane activities. Figure 2-9 shows the curve 

fitting of the experimental sensorgrams to the two-state reaction model (Figure 2-8 and Eq. 6-

1 to 6-4) together with the components of the theoretical curve, demonstrating that theoretical 

curves using the two-state model excellently reproduced the experimental sensorgrams. As is 

evident from the right panels of Figure 2-9, progression of the second step is much slower 

than that of the first step in all four cases, thus showing that the second step is rate-limiting. 

The sensorgrams were also fitted to the Langmuir or 1:1 bimolecular interaction model but it 

could not reproduce the theoretical curve (Figure 2-10), thus supporting the notion that the 

binding of TNM-A to the lipid bilayers occurs via two different processes. Table 2-3 lists the 

kinetic and affinity constants obtained from the fitting, showing that the presence of 3β-

hydroxysterol, cholesterol, or ergosterol significantly enhanced the affinity (KA) of TNM-A 

for the membranes compared with those of epicholesterol (3α-hydroxysterol)-containing and  

 

 

Table 2-3.  Kinetics and affinity constants of the binding of TNM-A to liposomes obtained 
from the two-state reaction model.a 

 POPC- 
cholesterol 
(10 mol%) 
 

POPC- 
ergosterol 
(10 mol%) 

POPC- 
epicholesterol 
(10 mol%) 

POPC 

ka1 (×103/Ms) 1.6 ± 0.3 2.5 ± 0.2 0.22 ± 0.09 0.15 ± 0.05 

kd1 (×10−2/s) 5.3 ± 0.5 4.73 ± 0.06 7.5 ± 3.7 7.7 ± 1.1 

ka2 (×10−3/s) 6.6 ± 0.4 5.7 ± 0.2 3.4 ± 0.7 6.1 ± 0.4 

kd2 (×10−3/s) 1.8 ± 0.2 1.2 ± 0.1 2.4 ± 1.3 4.7 ± 0.3 

KA1 (×103/M) 30 ± 4 52 ± 4 3.0 ± 0.5 1.8 ± 0.4 

KA2  3.6 ± 0.6 4.8 ± 0.4 1.6 ± 0.5 1.3 ± 0.1 

KA (×103/M) 109 ± 32 250 ± 26 4.9 ± 1.9 2.4 ± 0.5 

a Concentration of TNM-A was 20 μM. 
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pure POPC liposomes. This enhanced affinity of the peptide for the 3β-hydroxysterol-

containing membranes is mainly due to the first binding step, because the rate constants (ka1) 

are ~10 times larger in cholesterol- and ergosterol-containing liposomes than in 

epicholesterol-containing and pure POPC liposomes. In contrast, the second rate constants 

(ka2 and KA2) were approximately the same for all systems tested, thus indicating that the 

second process is less affected by the presence of 3β-hydroxysterol. 

In these measurements, the binding of TNM-A to POPC liposomes was very strong, 

especially with cholesterol- or ergosterol-containing membranes, such that regeneration of the 

liposome surface via repeated washing with NaOH was not successful (Figure 2-11). Thus, 

the liposomes once used for analysis had to be removed, and then fresh liposomes were 

immobilized on the sensor chip for the next analysis, which resulted in the relatively large 

standard deviations shown in Table 2-3. Nevertheless, kinetic data can be safely compared 

because the differences in the kinetic constants between membrane systems significantly 

exceed the deviations. 

 

 

 
Figure 2-11. Regeneration of (A) 10 mol% ergosterol-containing POPC liposome and (B) pure 
POPC liposome surface with 50 mM NaOH. TNM-A bound to ergosterol-containing POPC 
liposomes were hardly removed after NaOH washing such that new liposome surface was 
immobilized for each TNM-A injection. Asterisk denote the point when NaOH was injected. 
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2.2.4 Sterol Stereoselectivity of TNM-A Viewed by Solid State 2H NMR 

Although the SPR experiments described above clearly show the preferential binding 

of TNM-A to 3β-hydroxysterol-containing membranes, it does not necessarily indicate that 

TNM-A directly interacts with 3β-hydroxysterol in lipid bilayers; it is also possible to assume 

that the presence of 3β-hydroxysterols changes the physicochemical properties of the 

membrane and consequently enhances the membrane affinity of TNM-A. Hence, to gain 

decisive evidence of the direct binding of TNM-A to membrane sterols, solid-state 2H NMR 

measurements using 3-d-sterols (Figure 2-3) incorporated into POPC liposomes were 

conducted. Sterol molecules in lipid bilayers undergo fast lateral diffusion, which can be 

regarded as an axial rotation in NMR, and quadrupolar splitting observed in the 2H NMR 

spectra depends both on the tilt angle of the C–2H bond with respect to the rotation axis and 

the wobbling of the molecule.52 Figure 2-12 shows the spectra of the 3-d-sterols incorporated 

into POPC bilayers in the absence and presence of TNM-A. In the absence of TNM-A 

(Figure 2-12A), 3-d-cholesterol exhibits a characteristic Pake doublet indicative of fast 

rotational motion of the sterol in the POPC bilayers. However, upon addition of the peptide, a 

stark attenuation of the splitting signal is observed (Figure 2-12B), indicating that the 

molecular rotation falls into an intermediate motional speed with correlation times of 10–4 to 

10–5 s. A similar change in the splitting pattern was observed with 3-d-ergosterol (Figure 2-

12C, D). On the other hand, in 3-d-epicholesterol-containing POPC liposomes (Figure 2-12E, 

F), the characteristic splitting pattern hardly changed, although the splitting value was slightly 

reduced by the presence of TNM-A, which may be attributable to a morphological change in 

the liposome induced by TNM-A that will be discussed shortly. Therefore, this demonstrates 

that the fast rotational motion of both 3-d-cholesterol and 3-d-ergosterol slows via direct 

interaction with TNM-A in lipid bilayers, which is indicative of considerable intermolecular 

interaction. Conversely, no such inhibition with 3-d-epicholesterol means that the fast 

rotational motion occurs even in the presence of TNM-A, indicative of a weaker 

intermolecular interaction between these two molecules. In addition, these observations 

strongly support the fact that the presence of either cholesterol or ergosterol, but not 

epicholesterol, significantly enhances the affinity of TNM-A for POPC liposomes as was 

shown explicitly in the SPR experiments (Figure 2-7 and Table 2-3). These results 

unequivocally prove the direct interaction between TNM-A and 3β-hydroxysterols in lipid 

bilayers. 
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Figure 2-12. 2H NMR spectra of 3-d-sterol incorporated into POPC bilayers in the absence (A, C, 
and E) and presence (B, D, and F) of TNM-A. 3-d-cholesterol (A and B), 3-d-ergosterol (C and D), 
and 3-d-epicholesterol (E and F) were used. 3-d-sterol:TNM-A:POPC molar ratios of 1:0:18 (A, C, 
and E) and 1:1:18 (B, D, and F) were used. Isotropic signals are mostly from residual deuterium 
water.  

 

 

2.2.5 TNM-A and Sterol Bimolecular Interaction in Lipid Bilayer Membranes 

Although it had been reported that fluorescently labeled TNMs bind to 3β-sterols,44 the 

detailed mode of interaction is yet to be clarified. In this study, to gain a better understanding 

of the sterol recognition mechanism exhibited by the peptide, the interaction between TNM-A 

and sterol-containing liposomes was scrutinized using SPR and solid-state 2H NMR and 

demonstrated for the first time the direct interaction using TNM-A as an intact TNM. Here it 

should be stressed that, although the concentrations of TNM-A are different by 2 orders of 

magnitude between the two experiments (20 μM and 2.6 mM), the molar ratios between 

TNM-A and lipid molecules are almost identical (1:25 and 1:19 for SPR and 2H NMR, 

respectively), thus rationalizing the concomitant use of both methods. 

As described in Chapter 2.1.4, the presence or absence of a sugar moiety in TNM 

molecules hardly affects the activity based on comparable results obtained from biological 

tests.37,38 Theopalauamide, which is structurally closely related to TNM-A and has a sugar 
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moiety, recognizes sterol molecules as is the case in TNM-F lacking the sugar moiety;45 

therefore, it is reasonable to consider that these results obtained for TNM-A essentially hold 

true for TNM-F and other TNM congeners. 

Using SPR with a dodecylamine-modified CM5 sensor chip that was devised to 

minimize nonspecific hydrophobic interactions, it was successfully demonstrated in this study 

that the presence of 3β-hydroxysterols, as seen in cholesterol and ergosterol, significantly 

increases the affinity of the peptide for POPC membranes (Figure 2-7 and 2-9 and Table 2-3). 

In contrast, TNM-A showed a lower affinity for epicholesterol-containing or pure POPC 

liposomes. The kinetic parameters listed in Table 2-3 further revealed that the 3β-sterols 

markedly promote the initial binding of TNM-A to the membrane surfaces (ka1). The 

membrane affinity is enhanced by direct interaction between the peptide and the sterols that 

was explicitly shown by characteristic spectral changes in solid-state 2H NMR. These findings, 

together with the fact that the alcohol groups of sterols are located close to the membrane 

interface,53-55 imply that TNM-A has a direct interaction with the hydroxy moiety of 3β-

sterols at the initial binding of TNM-A to the membrane surface, resulting in the greater level 

of accumulation of the peptide in the shallow area of the membrane. The direct recognition of 

the sterol hydroxy groups at the membrane surface is consistent with the relatively small 

difference (a factor of approximately 2) in the affinity between cholesterol and ergosterol 

(Table 2-3), indicating that TNM-A does not strictly recognize the difference in the steroid 

skeleton or side chain structure. It is not so far-fetched to assume that intermolecular 

hydrogen bonds play a crucial functional role in the interaction between TNM-A and the 

sterol hydroxy group. 

In a previous report,44 it was demonstrated that calcein, a membrane-impermeable 

fluorescent dye, was able to enter yeast cells in the presence of TNM-F (11 μM), indicating 

that membrane integrity is compromised by the peptide. Although the presence of 3β-

hydroxysterols had a weaker effect on the second step of the binding process (KA2 in Table 2-

3), the greater level of accumulation of TNM-A on the membrane surface, in the presence of 

cholesterol or ergosterol, results in an increased level of formation of the second complex 

(ABx) (Figure 2-9A, B). This presumably corresponds to the relocation of the peptide from 

the surface-binding form to a more stable membrane-complex form. Observations through 

microscope and 31P NMR experiments have showed that TNM-A induced microscopic 

morphological changes in liposome features such as the occurrence of high-curvature regions 

(to be presented in the next Chapter), which is consistent with the reduced quadrupole 

splitting value of epicholesterol by the presence of TNM-A (Figure 2-12E, F). Therefore, the 

second step may correspond to deformation of membrane morphology through the binding of 
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the peptide. Namely, the accumulated TNM-A in the 3β-sterol-containing membranes could 

change the membrane morphology and integrity, ultimately resulting in membrane damage as 

previously reported for yeast cells.44 In fact, TNM-induced membrane damage as well as 

cytotoxicity is reported to be time-dependent,44 consistent with the slow progression of the 

second process as shown in Figure 2-9. 

As described similarly in the Chapter 2.1.4, the membrane action of TNM-F is 

apparently different from that of amphotericin B, a representative polyene antibiotic forming 

sterol-dependent pores in fungal membranes; e.g., TNM-F exhibited a time-dependent 

toxicity, while amphotericin B has acute fungicidal activity.44 In these experiments using 

artificial membranes, distinct pore formation by TNM-A could not be observed (Figure 2-13), 

although it induced hemolysis (Table 2-4). Here it may be meaningful to compare the SPR 

kinetic parameters of TNM-A with those of amphotericin B. It was previously reported that 

sterols, particularly ergosterol, prominently promote not only the initial surface binding step 

of amphotericin B but also the subsequent reorientation process presumably corresponding to 

pore formation.51 In particular, the second step of amphotericin B hardly proceeds without 

sterols in membrane, thus suggesting that the sterol is involved in the pore complex. In 

contrast, as clearly shown in Table 2-3, the second step of TNM-A binding proceeds without 

sterols and is not significantly accelerated by the presence of sterols. In addition, 

amphotericin B shows a more than 10-fold difference in the KA values between cholesterol 

and ergosterol, which is largely attributed to the second reorientation step, while TNM-A 

exhibits a smaller difference (a factor of ~2) as shown in Table 2-3. Taken together, 

amphotericin B recognizes not only the 3-hydroxy group but also steroid rings and side chains, 

the latter of which would account for its ergosterol selectivity and promote the second 

reorientation process corresponding to pore formation, while TNM-A mostly recognizes the 

sterol hydroxy group in the initial binding process. This difference is consistent with the 

observation that TNM-A is unlikely to form distinctive pores as does amphotericin B. Rather, 

as mentioned previously, it is more plausible that the accumulation of TNM-A in the sterol-

containing membrane disturbs and damages the bilayer morphology and integrity, which 

would correspond to the second process in TNM-A binding. Here it should be stressed that 

the weaker sterol dependency in the second process of the binding of TNM to the membrane 

does not indicate the lack of the interaction between TNM-A and sterol in the second step, 

because 2H NMR spectra demonstrate the persistent interaction in the membrane, but rather 

suggests that TNM-A induces the second step regardless of the presence or absence of its 

interaction with the sterol molecules. 
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Figure 2-13. TNM-A-induced calcein leakage from POPC (pink) and POPC:cholesterol (10 
mol%; green)  liposomes. In both cases, final lipid concentration was 27 μM.  

 

 

Table 2-4.  EC50 values of TNM-A, amphidinol 3, and amphotericin B-induced hemolysis in 
human erythrocytes.  

 EC50 (μM) 

Theonellamide-A 0.70 

Amphidinol 3 0.58 

Amphotericin B 1.62 

 

 

 

In conclusion, it was demonstrated using SPR that the presence of cholesterol or 

ergosterol significantly enhances the affinity of TNM-A for POPC liposomes and the peptide 

exhibits a preference for sterols with a 3β configuration. This enhanced affinity is caused by 

direct interaction between the peptide and 3β-hydroxysterols that is explicitly shown by 

characteristic spectral patterns in solid-state 2H NMR. These results are consistent with the 

selective binding of fluorescently labeled TNM to 3β-hydroxysterols.44 Kinetic data obtained 

in this work show that 3β-hydroxysterols accelerate the initial binding of TNM-A to the 
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membrane surface, thus suggesting that TNM-A directly recognizes the 3β-OH moiety upon 

binding to the membrane surface. Although the presence of 3β-hydroxysterols had a weaker 

effect on the kinetic constants of the second process corresponding to some deformation of 

bilayer morphology, the accumulation of TNM-A in the sterol-containing membranes 

eventually promotes the second process, thus causing the damage to the integrity of the 

membrane as reported previously.44 However, the nature of these membrane effects as well as 

that of the molecular recognition is still a subject of further investigation. For this purpose, 

microscopic and solid state 31P NMR experiments were carried out to observe changes in 

membrane morphology caused by the peptide, to be presented in the next Chapter. 
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Chapter 3 

 

Morphological Changes of Lipid Bilayers Induced by Marine 
Sponge Cyclic Peptide Theonellamide A 

 

3.1 Introduction 

Theonellamide A (TNM-A) is a potent antifungal peptide produced by the marine 

sponge Theonella sp. The peptide has stereospecific interaction with 3β-hydroxysterols, 

which is believed be involved in its mechanism of action, for membrane damage.1 To better 

understand the nature of TNM-A-sterol interaction in lipid bilayers, SPR and solid state 2H 

NMR measurements have been carried out, which are described in detail in the preceding 

Chapter. It was clearly demonstrated that the presence of 3β-hydroxysterols significantly 

enhance the membrane affinity of TNM-A towards POPC liposomes as opposed to 

epicholesterol-containing and sterol-free POPC membranes. This enhancement was brought 

about by direct intermolecular interaction between the peptide and 3β-hydroxysterols, which 

was explicitly shown in solid state 2H NMR. Nevertheless, interaction between TNM-A and 

3β-hydroxysterol-containing membranes were found to result only in moderate membrane 

permeabilization, which may be due to membrane deformations or morphological changes 

caused by the peptide, rather than distint pores. Hence, in this Chapter, the effects of TNM-A 

binding on the morphology of POPC liposomes was investigated, both in the presence and 

absence of cholesterol, by utilizing solid state 31P NMR, and differential interference/confocal 

fluorescence microscopy with GUVs. 

 

 

 

Figure 3-1. Chemical structure of fluorescein-labeled TNM-A (TNM-FL) used in this study. 
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3.2 Results and Discussion 

 

3.2.1 Effect of TNM-A on Phospholipid Bilayers as Viewed by Solid State 31P NMR 

Changes in the phospholipid headgroup region caused by the incorporation of TNM-A 

in cholesterol-containing and sterol-free POPC liposomes were monitored using solid state 
31P NMR spectroscopy. In the absence of TNM-A, line shapes typical for lamellar bilayer 

structures were observed for both cholesterol-containing and sterol-free POPC liposomes 

(Figure 3-2A, B). Upon incorporation of 5 mol% TNM-A, however, isotropic signals 

appeared in both lipid systems as well (Figure 3-2C, D). Isotropic signals are usually assigned 

to small, fast-tumbling molecules such as lipids in micelles or small unilamellar vesicles, 

although these could also arise from 31P species undergoing different molecular motions that 

give rise to isotropic chemical shifts such as regions of high membrane curvature.2 In any case,  

 

 

 
Figure 3-2. Solid State 31P NMR spectra of pure POPC (A and C) and POPC:cholesterol (B and 
D) liposomes in the absence (A and B) and presence (C and D) of TNM-A. Molar ratios of 
Cholesterol:TNM-A:POPC were 0:0:18 (A), 1:0:18 (B), 0:1:18 (C) and 1:1:18 (D). 

 

 

the appearance of these isotropic signals indicates that incorporation of TNM-A into the 

bilayer results in disruption of the tight phospholipid packing ultimately causing membrane 
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perturbation or deformation. Moreover, chemical shift anisotropy (CSA) is known to reflect 

the structural and dynamic response of the lipid head groups as well as the molecular motion, 

i.e. fluidity, of the phospholipid bilayer and so it may be altered when peptides interact 

strongly with the phospholipids.3,4 Disruption of the bilayer integrity by TNM-A, however, 

appears not to include any significant changes in membrane fluidity as evidenced by the 

comparable width of the 31P peaks in all four cases (Figure 3-2A-D).  

 

3.2.2 Liposome Size Distribution by Dynamic Light Scattering Measurements 

As shown in the solid state 31P NMR in Figure 3-2, isotropic signals were observed 

when 5 mol% of TNM-A was incorporated into the phospholipid bilayer. These signals may 

be attributed to one of two possibilities; firstly, TNM-A incorporation induced the emergence  

 

 

 

Figure 3-3. Size distribution of cholesterol-free (A) and cholesterol-containing (B) 
POPC liposomes in the presence (pink) or absence (green) of TNM-A. Components 
were pre-mixed and molar ratio of Cholesterol:TNM-A:POPC used were 0:1:18 (A, 
pink), 0:0:18 (A, green), 1:1:18 (B, pink), and 1:0:18 (B, green). 
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of regions of high membrane curvature, and secondly, addition of the peptide resulted in the 

formation of small fast-tumbling structures such as micelles, bicelles, or small unilamellar 

vesicles (SUVs). To distinguish these possibilities, dynamic light scattering measurements 

were carried out to determine the size distribution profiles of vesicles in the presence of  

TNM-A. Micelles and bicelles have diameters of about 4.5 nm and 30-100 nm, respectively,5 

while a typical small unilamellar vesicle is approximately 20-50 nm in size.6 In the presence 

of TNM-A, however, no such small structures were detected judging from the vesicles’ sizes, 

of which diameters centered at approximately 200 - 500 nm in all four cases (Figure 3-3), 

well within the reported size of multilamellar vesicles.6 These results indicate that the 

presence of isotropic signals in the 31P NMR spectra is likely due to the presence of regions of 

high membrane curvature induced by TNM-A addition. Another mode of analysis was also 

performed where TNM-A, at different concentrations, was incubated with pre-formed large 

unilamellar vesicles (LUVs) for various time, but liposome size distribution also hardly 

changed (Figure 3-4).  

 

 

 

Figure 3-4. Size distribution of POPC:cholesterol (5 mol%) LUVs after incubation with various 
concentrations of TNM-A for (A) 1, (B) 3, (C) 6, and (D) 21 hours. Blue, green, and pink traces 
correspond to 0, 5, and 10 μM TNM-A respectively. 
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3.2.3 Microscopic Observations of Membrane Morphological Changes 

In Chapter 2, it was mentioned that TNM-A-induced leakage of vesicle-entrapped 

calcein was found to be inefficient but comparable, both in sterol-containing and sterol-free 

POPC liposomes. It is therefore hypothesized that an addition of TNM-A does not result in 

the formation of distinct pores but causes membrane deformations or morphological changes, 

which may account for the poor dye leakage activity of TNM-A. This notion was 

corroborated by results from solid state 31P NMR and dynamic light scattering measurements 

as shown in Figures 3-2 and 3-3/3-4, respectively, where the isotropic signals observed most 

likely result from regions of high membrane curvature. To further explore the nature of these 

deformations or morphological changes, differential interference and confocal fluoresecence 

microscopy observations were carried out using GUVs.  

Addition of TNM-A at various concentrations to POPC GUVs resulted in distinctive 

morphological changes such as elongation of vesicles and wave-like structures/wrinkling of 

the membrane surface as indicated by arrows in Figure 3-5. These deformations were found to  

 

 

 
Figure 3-5. Membrane deformations induced by TNM-A. Top (A-C) and bottom panels (D-F) 
correspond to cholesterol-free and 5 mol% cholesterol-containing POPC GUVs, respectively.  
Final concentration of TNM-A were 1 μM (A, D), 10 μM (B, E), and 20 μM (C, F). Scale bar (A-
E and F) = 25 μm. 
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Figure 3-6. TNM-A-induced membrane deformation and permeabilization of 5 mol% cholesterol-
containing POPC GUVs. Panels A and B are brightfield images of the same liposomes before and 
after TNM-A addition, respectively. The corresponding fluorescent image of panel B’s is shown in 
panel C. Panels D and E are the brightfield and fluorescent images, respectively, of a different set 
of liposomes. To facilitate fluorescent observations, TNM-FL (10 mol% of peptide) was mixed 
with unmodified TNM-A and added to a final concentration of 20 μM. Scale bar = 50 μm. 

 

 

be concentration-dependent and occur much more frequently in cholesterol-containing 

membranes. Furthermore, these defects were detected with TNM-A concentrations as low as 

1 μM in cholesterol-containing GUVs (Figure 3-5D), but not in sterol-free liposomes (Figure 
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3-5A). Moreover, in cholesterol-containing POPC vesicles (Figure 3-5D-F), membrane 

deformations included vesicle elongation, and some budding and wrinkling of the membranes. 

On the other hand, elongation was much more prevalent in sterol-free vesicles (Figure 3-5A-

C). 

To further study the nature of these membrane defects, we also utilized confocal 

fluorescence microscopy by using a fluorescent derivative of TNM-A, TNM-FL, at 10 mol% 

of total peptide concentration. In the absence of TNM-A, GUVs clearly appeared spherical 

(Figure 3-6A). After addition of the peptide, however, a distinguishable deformation of the 

membrane was observed, both in cholesterol-containing POPC (Figure 3-6B, D) and sterol-

free POPC (Figure 3-7A, indicated by an arrow) GUVs. The corresponding fluorescent 

images (Figure 3-6C, E and Figure 3-7B) shows a predominantly green background due to 

probe molecules in solution with some vesicles appearing dark because of probe exclusion 

from the vesicle interior, i.e. unpermeabilized GUVs. Interestingly, the deformed vesicles in 

Figure 3-6B are almost indistinguishable from that of the background in Figure 3-6C 

indicating that the extravesicular solution containing the fluorescent probe has diffused to the 

membrane interior. This phenomenon is more clearly shown in Figure 3-6, D and E, showing 

the brightfield and fluorescent images of another set of liposomes, respectively, where probe 

molecules appear to diffuse in the vesicles from their upper region (Figure 3-7E). These 

observations indicate that TNM-A is capable of inducing both membrane deformation and 

permeabilization, in which the latter is a result of the former.  

 

 

 

Figure 3-7. Brightfield (A) and fluorescence (B) images of sterol-free POPC GUVs after 
TNM-A addition, respectively. To facilitate fluorescent observations, TNM-FL (10 mol% of 
peptide) was mixed with unmodified TNM-A and added to a final concentration of 20 μM. 
Scale bar = 50 μm. 
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Figure 3-8. Membrane fission induced by TNM-A. Time-lapse images of sterol-free POPC GUVs 
from A to D and cholesterol-containing (5 mol%) POPC GUVs from E to H showing a fission 
process in the presence of the peptide. TNM-A was added to a final concentration of 10 μM (A-D) 
and 5 μM (E-H). Scale bar = 25 μm. Asterisk in panels E-H denote vesicle undergoing fission. 

 

 

Another finding was that TNM-A appears to promote the fission processes on the 

membrane. This phenomenon was observed also on both sterol-free (Figure 3-8A-D) and 

cholesterol-containing (Figure 3-8E-H) POPC GUVs. In the sterol-free GUVs, an originally 

tubular structure (Figure 3-8A) gave rise to multiple vesicles that are almost completely 

separated from each other (Figure 3-8B-D) resembling a pearls-on-a-string structure. In 

cholesterol-containing POPC GUVs, a smaller vesicle (marked with an asterisk) seemed to 

have completely separated from the bigger one as seen by the appearance of a clear boundary 

representing a resealed and continuous bilayer (Figure 3-8H). These phenomena progressed 

with time, but were generally completed within approximately 3-5 minutes in both cases.  

The difference in the effects of TNM-A on cholesterol-containing and sterol-free POPC 

GUVs, as well as the concentration-dependent changes observed in these two systems, are 

consistent with previous results obtained from SPR. In addition, the observation that some 

liposomes were deformed while others were not may provide significant insights into the 

possible mechanism of TNM-A action on the membrane. These will be discussed later. 

 

3.2.4 TNM-A-Induced Morphological Changes in Membrane 

Previously, it was reported that a fluorescent derivative of TNM-F specifically binds to 

3β-hydrosterols such as cholsesterol and ergosterol in vitro, and that sterol binding is required 

for peptide-induced aberration and toxicity in yeast cells.1 This work was extended in a recent 
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report detailed in Chapter 2, and provided insights into the mechanism of TNM-sterol 

recognition demonstrating by SPR and solid state 2H NMR that TNM-A exhibits direct 

intermolecular interaction with 3β-hydroxysterols in lipid bilayers leading to peptide 

accumulation on the shallow region of the membrane. Furthermore, based on moderate dye 

leakage potency of TNM-A on both sterol-containing and sterol-free POPC liposomes, it was 

hypothesized that peptide accumulation results in disruption and damage of membrane 

integrity rather than formation of distinct pores. The results obtained from solid state 31P 

NMR measurements and microscopy observations further confirmed that TNM-A induces 

characteristic morphological changes in POPC liposomes either in the presence or absence of 

sterols, supporting the notion of membrane disruption. It is also worth mentioning that 

comparison of the results between these two techniques is reasonable when considering that 

peptide-to-lipid ratio used in 31P NMR was 1:19, while in the lowest TNM-A concentration (1 

μM) that induced morphological changes in GUVs, the peptide-to-lipid ratio was 1:57. 

The results obtained with TNM-A can also be extended to the other TNM congeners, 

since, as mentioned in previous studies, the presence or absence of a sugar moiety does not 

greatly affect the peptides’ activities.7,8 Moreover, theopalauamide, a sugar-containing 

analogue related to TNM-A, recognizes sterol9 in the same way as TNM-F bearing no sugar 

moiety. In addition, the fluorescent analog of TNM-F, with a BODIPY-FL fluorophore 

attached on the sugar moiety, retained the in vivo activity of the unmodified peptide.1 This 

rationalizes the use of TNM-FL (Figure 3-1), with the fluorescent probe attached on the same 

position as in the other analog, in this study where its activity may be safely assumed to be 

unaffected by this modification. 

Using solid state 31P NMR, it was demonstrated that TNM-A disrupts the tight 

phospholipid packing of the membrane environment, both in the presence and absence of 

cholesterol as seen in Figure 3-2. Disruption of the membrane is evidenced by appearance of 

isotropic and narrower anisotropic signals (Figure 3-2C, D), which is likely due to the 

presence of regions of high membrane curvature rather than small vesicles on the basis of 

DLS measurements that ruled out the presence of the latter (Figure 3-3 and 3-4). TNM-A-

induced disruption of the bilayer integrity in both types of membrane systems would result in 

an increase in the permeability of the membrane. In fact, comparable dye leakage activity was 

observed earlier in both cholesterol-containing and sterol-free POPC liposomes upon TNM-A 

addition.  

Kinetic evaluation of the interaction between TNM-A and liposomes using SPR 

revealed that the second step of TNM-A binding, i.e. membrane deformation, following a 

two-state reaction model proceeds regardless of the presence or absence of sterols and TNM-
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A-sterol interaction. On the other hand, the rate of the first step, i.e. binding on the membrane 

surface, is greatly enhanced by the presence of 3β-hydroxysterols leading to accumulation of 

the peptide on the shallow region of the membrane by around three times as much compared 

with sterol-free POPC liposomes. However, this does not mean an absence of significant 

sterol-TNM-A interaction since solid state 2H NMR clearly showed the presence of their 

direct intermolecular interaction. What most likely occurs is that the presence of more TNM-

A molecules on the surface of sterol-containing membranes would lead to greater incidence of 

the second step of the binding, that is, a concentration-dependent disruption of phospholipid 

headgroups and acyl chain packing in cholesterol-containing membranes. These include 

vesicle elongation, appearance of surface dents, some wave-like deformations, or wrinkling of 

the membrane surface, which becomes more pronounced at higher peptide concentrations. 

These are visibly seen in the microscopy images shown in Figures 3-5. The greater frequency 

of membrane morphological changes in cholesterol-containing membranes will necessarily 

translate to more frequent occurrence of regions of high curvature exhibiting isotropic 

behavior. This could account for the difference in the isotropic signals observed in 31P spectra, 

e.g. sharper in the case of POPC:cholesterol liposomes (Figure 3-2D). Another possible 

explanation for this difference in isotropic signals can arise from the smaller vesicles formed 

in cholesterol-containing liposomes in the presence of the peptide than in sterol-free 

membranes as depicted in the DLS traces in Figure 3-3. From these results, it can be argued 

that membrane destabilization and permeabilization by TNM-A is generally independent of 

the presence or absence of sterols since it probably occurs when the local threshold 

concentration, i.e. on a specific area of the membrane, is reached and thus is likely governed 

by non-specific hydrophobic interactions. Indeed, antimicrobial peptides whose mechanism of 

action is mainly brought about by hydrophobic interactions are necessarily non-cell selective, 

permeabilizing both zwitterionic and anionic membranes.10 Still, the presence of both 

permeabilized and unpermeabilized membranes as seen in Figure 3-6 may suggest an all-or-

none mechanism11 of membrane disruption by TNM-A. 

Resistance to bending, fusion and fission is one of the important characteristic of a lipid 

bilayer since it forms the structural foundation of cell membranes, thus forces and energy 

have to be applied in order to initiate changes in membrane curvature that will lead to vesicle 

fission.12 Remodeling of the membrane, such as a fission process, is an important biological 

event necessary for proper cellular functions and this is usually driven by specialized proteins 

such as the N-BAR and dynamin protein families.13,14 In addition, certain amphiphatic helices 

have also been demonstrated to sense membrane curvature and subsequently be involved in 

membrane remodeling.15 In the latter case, as well as the N-BAR protein family, it has been 
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shown that insertion of hydrophobic residues in the shallow region of the membrane 

generating changes in membrane curvature is sufficient enough to drive fission processes.13,14 

This was explained on the basis of the stability of a funnel-like membrane neck, which is an 

unavoidable intermediate in the fission process.13 Specifically, shallow insertion of the 

hydrophic regions into the outer leaflet will necessarily result in the expansion of the bilayer 

surface with respect to its midplane, thus resulting in stress and destabilization of the neck and 

favoring its fission. Furthermore, it was predicted that these insertions also accelerate fission 

by lowering its energy barrier.13 A similar mechanism was also proposed for fission induced 

by lyso-PC for GUVs where, beyond a threshold concentration, the funnel-like neck breaks 

down ultimately resulting in the separation of distinct smaller vesicles.16 Recently, membrane 

permeabilization and budding caused by the triterpenoid saponins α- and δ-hederin were 

proposed to arise from their ability to induce local spontaneous positive curvature.17 These 

same events could account for the observed membrane fission induced by TNM-A as shown 

in Figure 3-8. The hydrophobic phenylalkenyl and neighboring benzyl residues of TNM-A 

(Figure 3-1) are most likely involved in the shallow penetration of the membrane outer leaflet. 

It has already been reported that aromatic amino acid residues such as phenylalanine 

preferentially partition around the membrane-water interface serving as efficient anchors for 

the proteins, positioned about ~10 Å below the lipid phosphates.18,19 Thus, it is not far-fetched 

to hypothesize that insertion of TNM-A phenyl groups could lead to disruption of tight 

phospholipid packing, expansion of the bilayer surface, and membrane fission. In particular, 

the phenylalkenyl moiety with the methyl-substituted conjugated diene system may be most 

critical of the three phenyl-containing side chains in binding and insertion since the rigid 

diene moiety could provide additional hydrophobic contacts with the membrane shallow 

interior. The fission process in cholesterol-containing GUVs (Figure 3-8E-F) resulted in 

vesicle separation, unlike in sterol-free membranes (Figure 3-8A-D). This may be due to a 

difference in the concentration of membrane-bound peptide where sterol-free membranes 

have accumulated peptide to a much smaller extent than cholesterol-containing ones. In the 

context of the funnel-like membrane neck, the threshold concentration needed to break it 

down may not have been reached in the former.16 Membrane fission in cholesterol-containing 

GUVs were observed at lower concentrations of TNM-A (5 μM) compared with pure POPC 

GUVs (10 μM), and the SPR experiments have demonstrated that more TNM-A are bound in 

cholesterol-containing membranes. Thus, the rate of fission should be expected to be faster in 

the former case. This fission brought about by TNM-A may also account for the vesicular 

fragmentation observed earlier in yeast cells upon addition of the peptide.1 
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Based on the above results and our previous findings, a possible mechanism of 

membrane destabilization by TNM-A is proposed, summarized in Figure 3-9. In the absence 

of cholesterol, or ergosterol, only a small number of TNM-A were bound on the membrane 

surface (Figure 3-9A). It therefore takes time for the peptide to reach its threshold 

concentration but when it does, membrane deformation can occur. In contrast, the presence of 

either of these sterols (Figure 3-9B) together with the aid of direct intermolecular interaction, 

a significantly higher level of peptide accumulation on the membrane surface is reached on a 

shorter time resulting in more pronounced and faster appearance of membrane morphological 

changes. In both of these cases, TNM-A probably disrupts only the shallow portion of the 

membrane interior resulting in morphological changes such as regions of high membrane 

curvature, wrinkling and dents on the membrane surface, and fission, which also increases the 

membrane’s permeability. This is similar to the proposed interfacial activity model for the 

action of imperfectly amphiphatic AMPs.20 

 

 

 

Figure 3-9. Proposed mechanism of membrane disruption by TNM-A on (A) sterol-free and (B) 
sterol-containing POPC liposomes. Arrows indicate the rate constants, which were determined 
using SPR and sensorgram fitting to a two-state reaction model detailed in Chapter 2. 

 

 

 In conclusion, we have shown by solid state 31P NMR that TNM-A disrupts both 

sterol-free and sterol-containing POPC liposomes on the basis of the appearance of 

characteristic isotropic signals. These isotropic or narrower anisotropic signals probably arose 
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from regions of high membrane curvature rather than the formation of small vesicles or 

micelles based of dynamic light scattering measurements. By carrying out microscopy 

observations, we have verified that TNM-A induces distinct morphological changes in POPC 

GUVs, which is consistent with the appearance of isotropic signals in solid state 31P NMR. 

Furthermore, the concentration- and time-dependencies of these morphological changes are 

consistent with previous findings. Binding of TNM-A on the membrane most likely results in 

its shallow insertion leading to disruption of the tight phospholipid packing rendering the 

membrane more permeable as also reported previously.1 At a higher local concentration that 

exceeds the threshold concentration, membrane fission could occur which may explain 

vesicular fragmentation observed earlier.1 However, additional experiments will have to be 

carried out to further investigate the fission process, the peptide’s binding to only a subset 

population of liposomes as well as the specific mode of recognition of sterols by the peptide 

in order to have a more complete understanding of the mode of action of this unique natural 

product. 
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Chapter 4 

 

Amphidinol 3 – Sterol Interaction and Pore Formation in Lipid 
Bilayer 

 

4.1 Introduction – Bioactive Compounds from the Marine Dinoflagellates 
of the Genus Amphidinium 

 

4.1.1 Dinoflagellate-Derived Toxins 

Microalgae, most notably phytoplanktons, perform a critical role in maintaining a 

viable marine environment. By occupying the bottom of the marine food chain, they provide a 

significant proportion of biomass to support higher lifeforms such as filter-feeding organisms 

(clams, shellfish, mussels, etc); they also produce a considerable amount of oxygen, through 

photosynthesis, that is essential to human life.1,2 The over 5,000 known species of 

phytoplanktons are classified into one of eight main phylogenetic groups comprised of the  

Chlorophyta (green algae), Chrysophyta (golden algae), Phaenophyta (brown algae), 

Dinophyta (dinoflagellata), Euglenophyta, Rhodophyta (red algae), Diatoms (yellow or brown 

unicellular organisms) and Cyanobacteria (blue-green algae). Extensive proliferation of algae 

population results in so-called algal blooms that show distinctive and visible colored patches 

on the ocean surface commonly referred to as “red or brown tides.” In some instances, these 

blooms are harmless; however, in the case of toxic microalgae, referred to as harmful algal 

bloom or HAB, it often leads to mortality in fish, birds, and mammals (including humans). 

Although a natural phenomena, HABs have become economically detrimental and a serious 

health problem, among other things, due to its frequency and with nearly every country with 

marine waters being affected.1,3 Of the documented species of phytoplanktons, only around 85 

are known to produce potent toxins capable of inflicting harm to other organisms; flagellated 

microalgae account for about 90% of harmful algal blooms, of which more or less 75% are 

dinoflagellates.2 

Dinoflagellate toxins normally accumulate in tissues of, e.g., bivalves filter-feeders, 

causing no observable damage. In cases where HABs are present, however, the accumulated 

toxins can increase to critically high levels which then become toxic, even fatal, for organisms 

higher on the food chain.  These toxins associated with harmful algal blooms that cause 

seafood poisoning are classified into 6 categories traditionally named after the human 

symptoms observed upon consumption of the toxic seafood: paralytic shellfish poisoning 

(PSP), ciguatera fish poisoning (CFP), neurotoxic shellfish poisoning (NSP), diarrhetic 
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shellfish poisoning (DSP), azaspiracid shellfish poisoning (AZP), spiroimine shellfish 

poisoning (SSP), and possible estuary-associated syndrome (PEAS). 1-5 The last class of 

shellfish poisoning, amnesic shellfish poisoning (ASP), due to the toxin domoic acid is the 

only known intoxication caused by a diatom and the only one not caused by dinoflagellates.2  
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PSP is attributed to the heterocyclic guanidine toxins produced by the species in the 

genera Alexandrium, Gymnodinium, and Pyrodinium represented by the neurotoxic alkaloid 

saxitoxin, the most researched PSP toxin.3,6 CFP is the most prevalent case among the seven 

and is caused by ingestion of reef fish contaminated with ciguatoxins and its analogs 

maitotoxin, palytoxin and gambierol, which is primarily produced by Gambierdiscus 

toxicus.2,4,7-9
 Incidentally, maitotoxin and palytoxin are the two biggest and most potent non-

peptide, non-polymeric toxin known to date. NSP are caused by the cyclic polyether 

brevetoxins produced primarily by the unarmoured dinoflagellate Karenia brevis.4 These 

three kinds of seafood intoxication result from the toxins’ action on potassium and/or sodium 

ion channels. DSP is a non-fatal condition associated with polyether toxins mainly produced 

by species in the genera Dinophysis and Prorocentrum that includes okadaic acid, 

dinophysistoxins, and pectenotoxins.1,10 Yessotoxins were earlier misclassified as DSP toxin, 

but further studies showed they did not inhibit known targets of the other DSP toxins and was  
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Table 4-1. Seafood poisoning and their associated dinoflagellates and toxins. 1,2,4,5,11,12 

Seafood poisoning Causative dinoflagellates Main toxins 

Paralytic shellfish poisoning (PSP) Alexandrium catenalla, A. 
cohorticula, A. fundyense, A. 
fraterculus, A. leei, A. minutum, 
A. tamarense, A. andersonii, A. 
ostenfeldii, A.tamiyavanichii, 
Gymnodinium catenatum, 
Pyrodinium bahamanse var. 
compressum 

Saxitoxins (STXs) 

Ciguatera fish poisoning (CFP) Gambierdiscus toxicus, 
Prorocentrum spp., P. lima, P. 
concavum, P. hoffmannianum, P. 
mexicanum, P. rhathytum, 
Gymnodinium sangieneum, 
Gonyaulax polyedra,  Ostreopsis 
spp., O. lenticularis, O. 
siamensis. 

Ciguatoxins (CTXs), 
Maitotoxins (MTXs), palytoxin, 
gambierol 

Neurotoxic shellfish poisoning 

(NSP) 

Karenia brevis, K. papilonacea, 
K. sellformis, K. bicuneiformis, 
K. concordia, Procentrum 
borbonicum  

Brevetoxins (PbTxs) 

Diarrhetic shellfish poisoning 

(DSP) 

Dinophysis acuta, D. caudate, D. 
fortii, D. norvegica, D. mitra, D. 
rotundata, D. sacculus, D. mile, 
D. tripos, Prorocentrum lima, P. 
arenarium, P.belizeanum, P. 
cassubicum, P. concavum, 
P.faustiae, P. hoffmannianum,P. 
maculosum, Coolia sp., 
Protoperidium oceanicum, P. 
pellucidum,Phalacroma 
rotundatum.  

Okadaic acid, dinophysis toxins 
(DTXs), pectenotoxins (PTXs) 

Azaspiracid shellfish poisoning 

(AZP) 

Protoperidinium crassipes 

 

Azaspiracids (AZAs) 

Spiroimine shellfish poisoning 

(SSP) 

A. ostenfeldii, A. peruvianum, K. 
selliformis, Vulcanodinium 
rugosum 

Spirolides, gymnodimines, 
pinnatoxins 

Possible estuary-associated 

syndrome (PEAS) 

Pfiesteria piscicida 

 

Cu-ligated toxin 
(uncharacterized) 
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more lethal in mice; however, its mechanism is still unclear.4 AZP is caused by the 

neurotoxin azaspiracids, whose pharmacology is still unclear, and is produced by the 

heterotrophic dinoflagellate Protoperidinium crassipes.2,3 SSP has been recently proposed as 

another class of shellfish poisoning caused by toxins containing a spiroimine unit, specifically 

spirolides and the other fast- acting toxins gymnodimines and pinnatoxins.2 The spirolide, 

gymnodimine, and pinnatoxin family of toxins are produced by the dinoflagellates 

Alexandrium ostenfeldii and A. peruvianum, Karenia selliformis, and Vulcanodinium rugosum, 

respectively.2,11,12 A summary of these intoxications, causative dinoflagellates and main 

toxins involved are shown in Table 4-1.1,2,4,5,11,12 

Some metabolites associated with dinoflagellates reported so far are of polyketide 

origin.4 Secondary metabolites produced by dinoflagellates, and phytoplanktons in general, 

serve a multitude of functions. These compounds can act as predator defense, for instance, by 

poisoning grazers; it can also work against competitors, which are mainly other 

photoautotrophic organisms, by inhibiting photosynthesis, killing of the competitor, or 

excluding them within the vicinity of the metabolite-producing organism.13 These metabolites 

may also compensate competitive disadvantage such as low growth rate and nutrient uptake, 
13 enhance interspecific competition under nutrient limitation by redirecting grazers towards 

non-toxic phytoplanktons,14 act as pheromones to promote mating,15 and as means to stun 

their prey before ingestion.16  

 

4.1.2 Bioactive Compounds from Dinoflagellates of the Genus Amphidinium 

Dinoflagellates belonging to the genus Amphidinium are widely considered a prolific 

source of polykeyide metabolites with unique and intriguing structures that also exhibit 

fascinating bioactivities, and over the years have attracted considerable attention due to 

production of ichthyotoxic compounds by some species.17,18 This genus contains 

approximately 120 species.17 One of the most remarkable compounds isolated from the 

dinoflagellates that is a symbiont of the Okinawan marine flatworm Amphiscolops sp., are the 

potent cytotoxic macrolide family designated as amphidinolides of which around 40 members 

have been reported.18,19 Ammphidinolide C, for instance, exhibits cytotocity against murine 

lymphoma L1210 and human epidermoid carcinoma KB cells in the nanomolar region.19 

Other macrolides reported from Amphidinium sp. includes the amphidinolactones,20 

iriomoteolides,21,22  and caribenolide.19 Moreover, linear polyketides, the amphidinins, have 

also been reported from the same dinoflagellates.23,24 All of these compounds exhibit modest 

to very potent cytotoxicites. In addition, unique polyhydroxy compounds called the 

colopsinols, have been isolated from the same dinoflagellates that produced the 
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amphidinolides and so far, five analogs are known.25-27 These compounds contain a 

gentiobioside (-D-glucopyranosyl-(16)--D-glucopyranoside) moiety and a sulfate ester. 

While colopsinols C and E showed cytotoxic activity against L1210 murine leukemia cells, 

the other three analogs were inactive. However, colopsinol A exhibited, instead, inhibitory 

activity against DNA polymerase α and β. 
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4.1.3 Amphidinols 

Initial screening of the dinoflagellate Amphidinium klebsii collected at Ishikagi Island, 

Japan for novel bioactive compounds afforded the very first member of this polyhydroxy 

polyene class of metabolites, in 1991, which was subsequently called amphidinol 

(synonymous with amphidinol 1).28  Since then, nearly 20 closely related compounds 

collectively termed as amphidinols (AMs) have been isolated.29-35 The defining structural 

features of these family of natural products include a polyol and polyene chain, conferring on 

them amphiphatic properties,  which is separated by an intermediate C16 section that contains 

two tetrahydropyran rings connected by a short aliphatic chain (C6). This middle region of the 

molecule containing the tetrahydropyran rings is basically conserved among the amphidinol 

homologues and the variation in AM structures mainly arise from differences in the length 

and substitution pattern both on the polyol and polyene chains.35  

The majority of the reported AMs have been isolated from dinoflagellates collected in 

Japan. The first member, amphidinol 1 (AM1) was obtained from cultured A. klebsii found in 

Ishigaki Island.28 AM2 – AM6 were extracted from a strain of A. klebsii found in the surface 

wash of seaweeds collected at Aburatsubo Bay in Miura Peninsula, Japan (deposited in the 

Microbial Culture Collection of the National Institute for Environmental Studies and 

identified as NIES 613). Further screenings performed much more recently on this same strain 
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of A. klebsii (NIES 613) have afforded AM7, AM14, and AM15.32,34 Incidentally, AM7 has 

the shortest carbon backbone among the known AMs as well as possessing the smallest 

molecular weight. The isolation of AM8 has been reported but its structure has not been 

elucidated.30 

The other AM analogues were obtained from dinoflagellates found in other countries. 

From A. carterae collected at Kauauroa, South Island, New Zealand, AM9-AM13 were 

isolated and up to that time, was the first report of AMs obtained from outside of Japan as 

well as not from A. klebsii.33 Much more recently, AM17 was also reported from A. carterae 

collected from Little San Salvadore Island, Bahamas.35 These findings indicate the wide 

distribution of AMs  within the Amphidinium spp. as well as AM production that varied from 

strain to strain, similarly observed with other toxigenic dinoflagellates.33 

 

4.1.4 Amphidinol Congeners 

Numerous amphidinol congeners have been reported so far both from Amphidinium sp. 

and other species of dinoflagellates. Luteophanols A-D were isolated from Amphidinium sp. 

(strain number Y-52) obtained from the inside of the cells of the Okinawan marine acoel 

flatworm Pseudaphanostoma luteocoloris.36-38 These compounds exhibited no antifungal 

activity; however, they showed weak antibacterial action against certain microorganisms. 

Meanwhile, Amphidinium sp. from the surface wash of seaweeds obtained from Lingshui Bay, 

Hainan Province, China, afforded lingshuiols A and B, later on demonstrated to possess 

cytotoxic activity against primary rat hepatocytes (IC50 value of 0.21 μM) that was attributed 

to possible membrane permeabilizing properties.39,40  An enantiomer of lingshuiol B, named 

symbiopolyol, was recently reported from a symbiont dinoflagellate of the Papuan jellyfish 

Mastigias papua that exhibited significant inhibitory activity against the expression of 
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vascular cell adhesion molecule-1 (VCAM-1) involved in inflammation.41 Karatungiols A and 

B, on the other hand were isolated from Amphidinium sp. found in an unidentified marine 

acoel flatworm from Karatung Island, Indonesia.42 Karatungiol A exhibited both antifungal  

(Aspergillus niger, 12 μg/disk) and antiprotozoan activities (Trichomonas foetus, 1 μg/mL).  

A different lab-cultured dinoflagellate, A. carterae, yielded the polyhydroxy 

ichthyotoxin carteraol E which, aside from its potent ichthyotoxicity (LD50 value of 0.28 

μM), also exhibits antifungal properties against A. niger (15 μg/disk).43 In addition, a suite of 

water-slouble toxins, designated as karlotoxins, were isolated from a co-occurring 

dinoflagellate, Karlodinium veneficum, in massive fish kills in Maryland and in many other 

places since.44-46 The function of these compounds appear to be non-specifically increasing 

the ion permeability of membranes leading to osmotic lysis, and they are thought to kill fish 

by damaging sensitive gill epithelial tissues.44 

Very recently, a further two related compounds to AMs were isolated. Prorocentrol was 

reported from Prorocentrum hoffmannianum, the very first long carbon chain compound that 

is linear in nature isolated from the genus Prorocentrum.47 Although prorocentrol was not a 

potent hemolytic and antifungal compound, it nevertheless showed cytotoxic (against P388 

cells) and antidiatom (against Nitzschia sp.) activities at 16 μg/mL and 50 μg/mL, respectively. 

Amdigenol A, on the other hand, was isolated from the dinoflagellate Amphidinium sp. that 

was present on the surface of the marine alga Digenea simplex.48 This compound is large, 

with a C98- linear carbon backbone that includes the two core structures of AM analogs: the 

sulfate ester side is similar to that of lingshuiol B, luteophanol A, and symbiopolyol, while the 

olefinic side chain is analogous to luteophanol D and so it was hypothesized to arise from a 

linear combination of two AM analogs. 
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4.1.5 Structure-Activity Relationship of Amphidinols 

During the course of screening for bioactive metabolites from the cultures of 

dinoflagelletes, a potent antifungal and hemolytic constituent was isolated and named 

amphidinol (amphidinol 1 or AM1), a polyhydroxypolyene compound.28 This compound 

contained a terminal sulfate ester moiety on its polyhydroxyl part, which was later on 

demonstrated to have no significant effect or even inhibitory on the activity of these class of 

compounds based on the isolation and biological evaluation of other AMs lacking the sulfate 

ester.34  

With the succeeding isolation of AM7,32 additional insights into the structure-function 

relationship in AMs were further obtained mainly because this analog had the shortest 

polyhydroxyl chain as well as smallest molecular weight among the known AMs, which 

incidentally also contains a sulfate ester moiety. Specifically, the effect of the length of the 

polyhydroxyl portion on bioactivity was investigated by preparing a desulfo-AM7 (DsAM7) 

by hydrolysis of the sulfate ester.34 Both AM7 and dsAM7 showed antifungal and hemolytic 

activities albeit weaker compared with AM3, the most potent among the homologs. DsAM7 

was slightly more hemolytic than AM6, which possess a long polyhydroxyl chain, but weaker 

compared with AM3 suggesting that the ideal length of the polyol chain for maximum 

erythrocyte lysis was that of AM3. Furthermore, the importance of the polyene region on the 

other side of the molecule was also demonstrated. Both AM14 and AM15, with a hydrophilic 

dihydroxyl group on the terminal polyene portion, were inactive as hemolytic and antifungal  
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Table 4-2. Hemolytic and antifungal activities of some amphidinols.34 

 Hemolytic activitya

(EC50 in µM) 
 

Antifungal activityb 
(MEC in µg/disk) 

AM3 0.4 6

AM6 2.9 6

AM7 3.0 10

dsAM7 1.2 8 

AM14              >50           >60 

AM15              >50 60 

a against human erythrocytes 
b against Aspergillus niger 

 

 

Table 4-3. Comparison of the antifungal activites of AM2 and AM3.* 

IC50 μg/mL AM2 
 

AM3 

Candida albicans 9.73 2.63

Candida glabrata 5.59 1.47

Candida parapsilosis 4.94 3.27

Candida tropicalis 9.77 4.49 

Saccharomyces cerevisiae 3.14 0.66 

Aspergillus fumigatus 0.24 0.08 

Aspergillus flavus >10 2.88 

Aspergillus niger 4.54 1.86 

  *Results kindly provided by Shionogi Pharmaceutical Company,  
Osaka, Japan. 
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agents. This is in contrast to AM7 and dsAM7, their vinyl homologues, which showed 

activity on both assays. These results highlight the significance of the hydrophobic polyene 

chain for activity, particularly in the antifungal activities of AM2 and AM3, where the latter 

has a longer polyene chain. These are summarized in Table 4-2 and 4-3. 

In addition, by comparing the activities of AM4 and AM9, it became apparent that 

location of hydroxyl groups and the terminal double bond did not have any significant adverse 

nor beneficial effect on their respective activities. Furthermore, the presence of the sulfate 

ester moiety on the terminal polyhydroxy chain resulted in significantly attenuated activities 

as shown by AM11, AM12, and AM13. This is in contrast to those of AM2, AM4, and AM9 

which differ from the previous three only in the absence of the sulfate ester group.33 These 

results are summarized in Table 4-4. 

 

 

Table 4-4. Biological activites of AM2, AM4, AM9-AM13, and AM17.33,35 

 Hemolytic activitya 
(µM) 

Antifungal 
activityb  
(µg/disk) 

 

Cytotoxicityc 
(µg/mL) 

AM2 1.16 44.3 14.8 

AM4 0.21 58.2 25.3 

AM9 0.18 32.9 36.5 

AM10 6.53              154 35.2 

AM11               28.9              257 23.0 

AM12 3.00            >100 26.8 

AM13 2.02               132 32.5 

AM17 4.90 inactive not tested 

a  against mouse erythrocytes, except AM17 which was against human erythrocytes 
b against Aspergillus niger 
c against mouse lymphoid P388 D1 cells 
 
 
 
Lastly, osmotic protection experiments, used to estimate the size of the pore formed by 

various AMs on erythrocytes, revealed a comparable sized pore formed by AM6, AM7, and 
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DsAM7.34 From this data, it can be said therefore that the pore size is not a critical deciding 

factor for their bioactivities since they had differing hemolytic effects but still forms rather 

large pores of roughly the same size. In addition, the length of the polyhydroxyl chain also 

does not greatly influence pore size as AM7, with the shortest polyol chain, had comparable 

results with AM6, which possesses a longer chain. 

 

4.1.6 Amphidinol – Phospholipid Bilayer Membrane Interactions 

The potent antifungal property and hemolytic action of amphidinols are believed to 

arise from its interaction with the phospholipid membrane ultimately leading to its 

permeabilization. In addition, studies with artificial membranes demonstrated that AMs bind 

to them and cause leakage of vesicle contents.30,49 Investigations in the biological activities of 

the various amphidinol homologues have revealed significant insights into the role of the 

polyhydroxy and polyene portions of the molecule in binding and the subsequent 

permeabilization of the membranes. It was demonstrated that the ideal length of the 

polyhydroxyl chain for the most efficient lysis of erythrocytes belongs to that of AM3 and 

that different substitution patterns on this region are not particularly deleterious on the 

biological activity.33,34 Furthermore, the presence of a sulfate ester moiety on the terminal 

polyhydroxy part generally resulted in slight attenuation of their biological action.35 In 

contrast, the polyene portion of AMs appears to have a very significant role in their activity, 

specifically, preserving its hydrophobicity since analogues with dihydroxyl substitution on the 

terminal polyene region did not exhibit any detectable hemolytic and antifungal properties.33 

In addition, partition coefficients of AMs to vesicles, among which AM3 has the most 

pronounced partitioning to membrane, clearly highlight the significance of polyolefin region 

in membrane binding.49 

The activity of AMs in sterol-containing membrane was also assessed and the initial 

report on the leakage of calcein entrapped in SUVs induced by AM5 showed a clear sterol 

dependency: a 27-fold increase in leakage potency was observed upon addition of 33 mol% 

cholesterol in the membranes.30 In addition to the hemolytic properties of AMs described in 

the preceding paragraphs, the diameter of the pore formed by these compounds in 

erythrocytes was also estimated to be approximately 2 – 2.9 nm, much bigger than that 

formed by amphotericin B.50 The membrane permeabilizing properties of AM2 and AM3 in 

LUVs with varying lipid composition were also investigated by leakage of vesicle-entrapped 

calcein and showed potent activity on sterol-containing membranes.51 Both amphidinols did 

not show activity in vesicles composed of saturated phosphatidylcholines (PC) without sterol. 

Interestingly, in unsaturated PC without sterol, AM2 still exhibited membrane permeabilizing 



80 
 

action, but not AM3, even at high concentration, which might point out to a possible 

difference in the mechanism of action of these two molecules (Figure 4-1). Furthermore, 

sterol content as low as 0.5 mol% is enough to elicit leakage of entrapped dye and the 

importance of the 3-OH group in sterol was demonstrated since its esterification was 

inhibitory to the action of AMs. In addition, the activity of AMs was also found to be hardly 

affected by membrane thickness (Figure 4-2) suggesting marked differences in its mode of 

action compared with another potent antifungal, amphotericin B; that is AM3 may form 

toroidal pores. In a recent report using SPR, this higher activity in sterol-containing 

membranes of AM3 was determined to arise from its higher affinity to ergosterol- and 

cholesterol-containing membranes compared with sterol-free ones, which was approximated 

to be about 5300 and 1000 times higher, respectively.52 

Studies on the conformation of AM3 in micelles and isotropic small bicelles have 

provided additional basis for its molecular mode of action.49,53 Findings from these NMR 

experiments revealed that AM3 takes a hairpin turn around the two tetrahydropyran rings 

stabilized by hydrogen bonds in amphiphatic environments, with the hydrophilic polyhydroxy 

region, assumed to be responsible for formation of pores/lesions, predominantly present on 

the membrane surface while the hydrophobic polyene region, responsible for membrane 

binding,  penetrates the membrane interior. These findings also support the notion of a 

toroidal pore since in this conformation, AM3 may be too short to span the entire membrane 

making toroidal pore formation much more feasible. 

 

 

 

Figure 4-1. Calcein leakage potency of AM2 (A) and AM3 (B) in cholesterol-containing (open 
circles) and sterol-free (closed circles) POPC liposomes. Phospholipid concentration was 27 μM. 
Reprinted with permission from Bioorg. Med.Chem., 2008, 16, 3084-3090.7 Copyright © (2008) 
Elsevier. 
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Figure 4-2. Calcein leakage activity of AM2 (filled bars) and AM3 (open bars) in liposomes 
composed of phosphatidylcholine with varying acyl chain lengths. Reprinted with permission 
from Bioorg. Med.Chem., 2008, 16, 3084-3090.7 Copyright © (2008) Elsevier. 

 

 

4.1.7 Objectives of this Study on the Mode of Action of Amphidinol 3 

Despite these findings, a detailed molecular basis on how AMs recognize sterols on 

membranes and how the pore/lesion forms in still unclear. For this purpose, the effect of 

sterol stereochemistry on the membrane permeabilizing activity of AM3 was investigated by 

observing leakage of trapped dye from liposomes. Activity or inactivity of AM3 towards 

liposomes with various sterols were then correleated on the basis of its affinity to such 

membranes using SPR. Furthermore, the presence or absence of direct intermolecular 

interaction between sterols in membranes and AM3 was also probed with solid state 2H NMR 

using labeled sterols (Figure 2-3). Finally, to obtain a much more conclusive proof on the 

initial hypothesis that AM3 may form toroidal pores in membranes, solid state 31P NMR 

measurements of POPC liposomes, with or without sterol, in the presence or absence of AM3 

were carried out. From these data, considerable insights into the mode of membrane action of 

AM3 were obtained. 
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4.2  Results and Discussion 

 

4.2.1 Effect of 3α-OH Group on AM3 Activity 

As shown in Figure 4-1, the pore-forming activity of AM3 is absolutely dependent on 

membrane cholesterol, i.e. the absence of which renders the compound inactive.51 Although 

SPR results have suggested a functional role of the sterols in increasing AM3 affinity for the 

membrane,52 it is still not clear whether this involves direct intermolecular interaction 

between AM3 and sterol (to be addressed in the next section), or if the stereochemistry of the 

3-OH group is critical in the activity. To answer the latter question, calcein leakage 

measurements were performed with epicholesterol (3α-cholesterol)-containing POPC 

liposomes and compared with the activity in 3β-hydroxysterol (cholesterol or ergosterol)-

containing and pure POPC membranes (for lipid structures, see Figure 2-3). As shown in 

Figure 4-3, AM3 did not show any significant pore-forming activity in epicholesterol (3α-

cholesterol)-containing POPC liposomes; in fact it was almost identical to that in pure POPC 

membranes. This was in contrast to its high activity in cholesterol- or ergosterol-containing 

liposomes. These data suggest that membrane permeabilization by AM3, assumed to proceed 

via formation of pores, also requires that the 3-OH group of sterols be in the β conformation. 

 

 

 
Figure 4-3. AM3-induced calcein leakage from POPC (pink), POPC:cholesterol (green), 
POPC:ergosterol (blue) and POPC:epicholsterol (purple) liposomes. Mole ratio of POPC:sterol 
used was 9:1. In all cases, final lipid concentration was 27 μM. 
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Figure 4-4. SPR sensorgrams for binding of AM3 to liposomes captured on a dodecylamine-
modified CM5 sensor chip: (A) 10 mol % cholesterol-containing POPC liposomes, (B) 10 mol % 
ergosterol-containing POPC liposomes, (C) 10 mol % epicholesterol-containing POPC liposome, 
and (D) pure POPC liposomes. Sensorgrams correspond to 50 (red), 40 (purple), and 30 (orange) 
μM AM3. 
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The absence of pore formation in epicholesterol-containing membranes was also found 

to be correlated with poor affinity of AM3 towards such liposomes, from a qualitative point of 

view. This was determined based on SPR experiments using the same protocols as in TNM-A 

described in Chapter 2.2.1 and 2.2.2, with liposome immobilization levels comparable to that 

shown in Figure 2-6. Concentration-dependent binding of AM3 was observed in cholesterol- 

or ergosterol-containing membranes (Figure 4-4A,B) indicating that membrane binding is 

directly proportional to the concentration of AM3 in the bulk solution, just like TNM-A. 

Furthermore, as evidenced from RU changes in these two lipid systems, which was 

approximately 7 seven times as much compared with epicholesterol-containing and pure 

POPC liposomes (Figure 4-4C,D), it clearly shows the preference of AM3 towards the 3β-

hydroxysterols, consistent with the compound’s membrane permeabilizing potency shown in 

Figure 4-3. 

 

4.2.2 Sterol Stereoselectivity of AM3 Viewed by Solid State 2H NMR 

Despite preferential binding of AM3 to 3β-hydroxysterol-containing membranes 

demonstrated by SPR measurement, direct interaction between AM3 and sterols in lipid 

bilayers cannot be readily assumed to result in the observed increase in membrane affinity. As 

in the case of TNM-A described in Chapter 2.2.4, solid state 2H NMR experiments were also 

carried out to obtain evidence of direct interaction between AM3 and different 3-d-sterols 

(Figure 2-3) incorporated into POPC liposomes. 

Figure 4-5 shows the spectra of 3-d-sterols incorporated into POPC membranes in the 

absence and presence of AM3. In the absence of AM3 (Figure 4-5A), cholesterol in 

membranes undergoes fast rotational motion exemplified by the characteristic Pake doublet. 

This splitting pattern was significantly reduced in the presence of AM3 (Figure 4-5B) 

implying that molecular motion was considerably inhibited, falling in the range with 

correlation times of between 10-4 and 10–5 s.54 A similar change in the splitting pattern was 

recorded with 3-d-ergosterol (Figure 4-5C,D). These observations were in stark contrast with 

3-d-epicholesterol where the Pake doublet intensity was comparable, both in the absence and 

presence of AM3 (Figure 4-5E,F).  
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Figure 4-5. 2H NMR spectra of 3-d-sterol incorporated into POPC bilayers in the absence (A, C, 
and E) and presence (B, D, and F) of AM3. 3-d-cholesterol (A and B), 3-d-ergosterol (C and D), 
and 3-d-epicholesterol (E and F) were used. 3-d-sterol:AM3:POPC molar ratios of 1:0:18 (A, C, 
and E) and 1:1:18 (B, D, and F) were used. Isotropic signals are mostly from residual deuterium 
water. 

 

 

These changes in the spectral pattern obtained in the absence and presence of AM3 

clearly indicate that the fast rotational motion of both 3-d-cholesterol and 3-d-ergosterol were 

considerably inhibited as a result of direct, and significantly stronger, intermolecular 

interaction between AM3 and these sterols in membranes. In contrast, no noticeable inhibition 

of fast rotational motion was observed with 3-d-epicholesterol indicating a weaker 

intermolecular interaction between the two molecules. Moreover, these results support the 

lack of membrane-permeabilizing activity of AM3 (Figure 4-3) and the lower RU response in 

epicholesterol-containing liposomes as shown by SPR (Figure 4-4) and explicitly 

demonstrates the direct intermolecular interaction between AM3 and 3β-hydroxysterols in 

membranes. 
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4.2.3 Pore Formation by AM3 Viewed by Solid State 31P NMR 

The membrane-disrupting activity of AM3 is thought to arise from its interaction with 

phospholipid bilayers and evidence obtained previously has suggested that AM3 permeabilize 

the membrane via formation of toroidal pores.49,51,53 Specifically, the hairpin conformation of 

AM3, with the polyhydroxy chain located on the membrane surface and the polyene portion 

penetrating the membrane interior, likely results in the hydrophobic chain of the compound 

being too short to span the bilayer as in the case of a barrel-stave pore.49,53 Furthermore, the 

fact that membrane thickness does not greatly affect AM3 activity supports the notion of 

toroidal pore formation.51 To get more conclusive data on whether AM3 forms toroidal pores, 

the solid state 31P NMR spectra of POPC liposomes with or without sterols were recorded in 

the absence and presence of AM3. Solid state 31P NMR is a valuable tool to study changes in 

membrane morphology and phospholipid dynamics. This technique has been extensively 

utilized to study antimicrobial peptides that form toriodal pores or disrupt the membranes via 

the carpet mechanism, whose spectra show characteristic isotropic signals.55-58  

Figure 4-6 and 4-7 shows the solid state 31P NMR spectra of cholesterol- or ergosterol-

containing POPC liposomes, respectively, in the absence and presence of AM3. In the 

absence of AM3 (Figure 4-6A), cholesterol-containing POPC liposomes exhibit typical 

bilayer lamellar structure as evidenced by the characteristic powder pattern. However, in the 

presence of 5 mol% AM3 (Figure 4-6B), the spectra hardly changed and no isotropic signals 

were observed that could suggest phospholipids in a toroidal pore. This was also the case even 

at a higher AM3 concentration of 15 mol% (Figure 4-6C). A similar observation was recorded 

in ergosterol-containing POPC liposomes (Figure 4-7A,B) as well as in sterol-free POPC 

membranes, where it is inactive (Figure 4-8A,B). 

AM3, at this sterol concentration (5 mol%), is expected to be active since as low as 0.5 

mol% sterol was enough to induce membrane permeabilization,51 and the lack of distinctive 

isotropic signals suggests that the compound permeabilizes the membrane without any 

significant disturbance of the surrounding lipids, in contrast to the assumed toroidal pore 

model of AM3 action. 
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Figure 4-6. 31P NMR spectra of POPC:cholesterol bilayers in the absence 
(A) and presence (B and C) of AM3. Cholesterol:AM3:POPC molar ratios of 
1:0:18 (A), 1:1:18 (B) and 1:3:16 (C) were used. 
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Figure 4-7. 31P NMR spectra of POPC:ergosterol bilayers in the absence (A) 
and presence (B) of AM3. Ergosterol:AM3:POPC molar ratios of 1:0:18 (A) 
and 1:1:18 (B) were used. 

 

 
Figure 4-8. 31P NMR spectra of sterol-free POPC bilayers in the absence (A) 
and presence (B) of AM3. Sterol:AM3:POPC molar ratios of 0:0:18 (A) and 
0:1:18 (B) were used. 
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4.2.4 AM3 - Sterol Bimolecular Interaction and Pore Formation in Lipid Bilayers 

Interaction of AMs with phospholipid membranes and subsequent binding is thought to 

contribute to its observed membrane permeabilizing activity, demonstrated by the 

compound’s ability to release vesicle contents.30,49 AM3 activity was additionally shown to 

require the presence of cholesterol or ergosterol in membranes; unlike AM2, which had the 

activity in the absence of sterols.51 This was supported by previous SPR experiments detailing 

a more than 3 orders of magnitude increase in affinity of AM3 towards sterol-containing 

POPC membranes compared with sterol-free liposomes.52 Despite these, an in depth 

understanding of AM3-sterol interaction as well as how the AM3 pore/lesion forms is still 

lacking. To this end, the effect of the stereochemistry of sterol 3-OH on the membrane 

permeabilizing activity of AM3 was investigated and direct interaction between sterols and 

AM3 was demonstrated using solid state 2H NMR. Moreover, the assumption of a toroidal 

pore being formed by AM3 was evaluated with solid state 31P NMR. It is also worth 

mentioning that the AM3:lipid molar ratios used in the above experiments were similar (1:27, 

1:17, and 1:19 for calcein leakage, lowest concentration in SPR, and both 2H and 31P NMR 

respectively), thus results may be reasonably compared with one another. 

 To gain further insight into how AM3 recognizes sterols in membrane, calcein leakage 

experiments were carried out with POPC liposomes containing epicholesterol (3α-cholesterol). 

As shown clearly in Figure 4-3, pore formation by AM3 does not just require the presence of 

a sterol in the membrane, but also of the correct orientation of the 3-OH group: the lack of 

activity in epicholesterol-containing membranes was almost identical to pure POPC 

liposomes, in contrast to cholesterol- or ergosterol-containing (3β-hydroxysterol) liposomes. 

These results reveal the functional role that stereospecific recognition of the 3-OH group 

plays in formation of pores/lesions by AM3. Pore formation was also closely coupled to the 

extent of membrane binding as demonstrated by SPR sensorgrams in Figure 4-4. Bound AM3 

in cholesterol- or ergosterol-containing membranes were about 7 times as much compared 

with epicholesterol-containing or pure POPC membranes. This increase in affinity of AM3 

towards 3β-hydroxysterol-containing membranes was brought about by direct intermolecular 

interaction between AM3 and 3β-hydroxysterol as evidenced by characteristic changes in the 

spectral patterns in solid state 2H NMR spectra (Figure 4-5). Since epicholesterol has its 

hydroxyl group around the water-membrane interface and thus is still accessible,59-61 suggests 

that AM3 stereospecifically and directly recognizes the hydroxyl group of 3β-sterols, 

probably via hydrogen bonding, in this shallow region resulting in increased AM3 

accumulation and subsequent membrane permeabilization. Lack of activity and binding 
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towards 3α-cholesterol is not surprising as a number of well-known bacterial pore-forming 

toxins have been demonstrated to be inactive in membranes containing this sterol,62,63 which 

accounts for their potent selective toxicity against animal/mammalian cells, which contains 

3β-cholesterol. Overall, 3β-sterol exhibits dual effects on the action of AM3: it facilitates both 

membrane binding and pore/lesion formation. 

 As described in Chapter 4.1.6, membrane destabilization of AM3 is assumed to follow 

the toroidal pore model on the basis of its hairpin conformation in membranes and 

independence of activity on membrane thickness.49,51,53 This mechanism of pore formation, 

which has also been described as transient holes prior to membrane collapse in the carpet 

mechanism (Figure 1-7),64 shows distinct powder patterns in solid state 31P NMR spectra, e.g. 

isotropic signals, as was demonstrated for a number of antimicrobial peptides.55,57,58 

Surprisingly, however, no spectral changes were observed in cholesterol- or ergosterol-

containing POPC liposomes in the presence of AM3; in fact, the spectra were identical with 

pure POPC membranes (Figure 4-8). As shown in Figure 4-3, significant membrane 

destabilization evidenced by calcein leakage was observed at the lowest AM3 concentration 

tested (1 μM), corresponding to an AM3:lipid molar ratio of 1:27. In the 31P NMR samples, 

the mole ratio of AM3:lipid was a little higher, at 1:19 (Figure 4-6B and 4-7B), and thus 

should also result in membrane permeabilization, i.e. changes in spectral patterns should 

occur, based on its concentration-dependent dye leakage activity (Figure 4-3). Even at a 

higher AM3:lipid molar ratio of 3:17 (Figure 4-6C) in cholesterol-containing POPC 

membranes, no noticeable changes in 31P NMR spectrum was observed, undoubtedly 

indicating that no change in the orientation of a phospholipid headgroup occurs in the 

presence of AM3. 

Previous SPR experiments have suggested that AM3 penetrates the membrane interior 

of cholesterol- or ergosterol-containing POPC liposomes, based on the sensorgrams’ fitting to 

the two-state reaction model (Figure 2-8 and Equations 6-1 – 6-4).52 In particular, the 

formation of the membrane-inserted complex ABx was about 31 times higher in ergosterol-

containing POPC membranes than in pure POPC ones as depicted by their respective KA2 

values.52 Penetration of AM3 into the hydrophobic core is similar to that observed with 

amphotericin B, whose pore complex was also stabilized by the presence of cholesterol or 

ergosterol,65 but is different from that of TNM-A described in Chapter 2.2. From these 

previous and current observations, therefore, it is not far-fetched to suggest that membrane 

insertion and subsequent permeabilization by AM3 does not involve any significant 

disturbance of the surrounding lipids. In other words, AM3 may not actually form toroidal 

pores in membranes. A barrel-stave mechanism cannot be ruled out since alamethicin, a 
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known barrel-stave pore former, also hardly affected the spectra of lipid vesicles in solid state 
31P NMR.58 Although AM3 activity was also independent of membrane thickness, thus the 

assumption of a toroidal pore,51 it is worth mentioning that a recent report argues that 

differentiating the mechanism of action of antimicrobial peptides based on the effect of 

membrane thickness is an unreliable experimental test.66 Specfically, mastoparan-X, which 

disrupts membranes via the toroidal pore/carpet model, exhibited an activity that was much 

more strongly dependent on bilayer thickness than did the barrel-stave pore-former 

alamethicin.66 Another toroidal pore former, colicin E1, was also found to form a larger 

conductance channel,  approximately 2 Å wider, in thicker membranes than in thinner ones.67 

These are in contrast with the prevailing knowledge, which holds that membrane thickness-

dependent acitivity is generally supportive of the barrel-stave pore model.66  

 In summary, it was demonstrated that AM3 membrane permeabilizing activity was not 

only dependent on the presence of sterols in membrane, but more importantly, the 3-OH 

group must be in the β-configuration. On the basis of SPR measurements, it was likewise 

shown that membrane binding and affinity of AM3 was lost in epicholesterol-conatining 

membranes, suggesting a dual role of the 3β-OH group: it serves a critical functional role both 

in the initial AM3 binding to membrane surface and in the subsequent pore/lesion formation. 

This enhanced affinity and acitivity towards the 3β-hydroxysterol-containing membranes was 

explicitly shown to arise from direct intermolecular interaction between AM3 and sterols in 

membranes as evidenced by characteristic changes in solid state 2H NMR spectral patterns. 

Finally, solid state 31P NMR data have unambiguously revealed that AM3 perforates the 

membranes without significant disruption of surrounding lipids, implying a different 

mechanism of action from the originally proposed toroidal pore model. However, additional 

experiments will have to be carried out to provide a better picture of the mechanism of AM3 

action. To this end, freeze fracture microscopy observations will be useful to probe in more 

detail the state of AM3 as well as the membrane in the presence of this compound. Similarly, 

NMR-based experiments may provide significant insights into the nature of AM3-sterol 

complex in the bilayer environment.  
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Chapter 5 

 

Conclusions 

       

Theonellamides (TNMs) and amphidinols (AMs) are among the several promising 

marine natural products that may find potential use as efficient therapeutic agents.   

Theonellamides are bicyclic dodecapeptides isolated from the marine sponge Theonella 

sp. that exhibit potent antigfungal and cytotoxic activities, with the former attributed to its 

stereospecific interaction with 3β-hydroxysterol, in particular ergosterol, in fungal membranes. 

Amphidinols, on the other hand, are polyketide metabolites from the dinoflagellate 

Amphidinium klebsii whose unique structure is characterized by linear polyhydroxyl and 

polyene chains, separated by an aliphatic region containing two tetrahydropyran rings. 

Amphidinols are believed to exert their antifungal and cytotoxic action by interacting with the 

phospholipid bilayer; in particular, amphidinol 3 requires the presence of membrane-

embedded sterols. This unique structure of amphidinols, lacking nitrogenous macrocylces 

present in other antifungals, makes them novel tools to probe the mechanism of antifungal 

action. 

From this study, comparison between the probable mechanism of action of TNM-A and 

AM3 is possible and the following conclusions can be made: 

 

1. SPR experiments using a dodecylamine-modified CM5 sensor chip demonstrated 

the preference of both TNM-A and AM3 towards cholesterol- or ergosterol (3β-

hydroxyterol)- containing POPC liposomes over epicholesterol (3α-cholesterol)-

containing ones.  

2. In the case of TNM-A, two state reaction model clearly showed that the presence 

of 3β-hydroxyterols significantly enhance binding to the membrane surface (first 

step), but membrane insertion (second step) proceeds and is not significantly 

affected by the presence or absence of sterol. 

3. For both TNM-A and AM3, the increase in membrane affinity was due to direct 

intermolecular interaction with 3β-hydroxyterols as evidenced by characteristic 

changes in splitting patterns from solid state 2H NMR suggesting a critical role 

played by the 3β-OH moiety. 

4. TNM-A most likely disrupts membranes not by distinct pore formation, but rather 

via membrane deformations or morphological changes which explains its moderate 
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activity in calcein lekagae assay in both sterol-free and sterol-containing 

membranes; this is in contrast with AM3 that exhibits very potent dye leakage 

property, which was further shown to require the presence of not just sterols in 

membranes, but 3β-hydroxysterols. This implies a dual role for 3β-OH group in 

AM3 action: membrane binding and pore formation. 

5. Membrane disruption and morphological changes induced by TNM-A were clearly 

observed using differential interference and confocal microscopy supporting the 

dye leakage results. This was also consistent with the observations of solid state 31P 

NMR which revealed the presence of isotropic signals both in sterol-free and 

sterol-containing liposomes indicating disruption of phospholipid packing. 

6. Unlike TNM-A, the presence of AM3 in membrane does not involve any 

significant disruption of surrounding phospholipids in 3β-hydroxysterol-containing 

membranes, explicitly shown based on the absence of isotropic signals from solid 

state 31P NMR. These results contradict the earlier hypothesis of a toroidal pore 

formed by AM3 to account for its membrane permeabilizng action, and thus imply 

a different mode of action for this compound. 
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Chapter 6 

 

Experimental Section 

 

6.1 Materials 

Salt for artificial seawater, Marin Art Hi® was from Tomita Pharmaceutical. (Osaka, 

Japan) and silica gel YMC ODS-AQ was from YMC Co. (Kyoto, Japan). Glass plates coated 

with 60 F254 silica gel or RP-18 F254 were used for normal phase or reverse phase thin layer 

chromatography (TLC), respectively. NMR solvents CD3OD and D2O were from Merck 

(Darmstadt, Germany), while DMSO-d6 was from Euriso-Top (Saint-Aubin Cedex, France). 

Deuterium-depleted water was from Isotec Inc (St. Louis, MO, USA). 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) was purchased from NOF Corporation (Tokyo, Japan), 

Cholesterol, chloroform, methanol (MeOH), 1-propanol (1-PrOH), 2-propanol, 1-butanol, 

ethyl acetate, acetonitrile, sodium chloride (NaCl), potassium chloride (KCl), disodium 

hydrogen phosphate, potassium dihydrogen phosphate, sodium nitrate, 

tris(hydroxymethyl)aminoethane, magnesium sulfate (anhydrous), zinc sulfate heptahydrate, 

cyanocobalamin (Vitamin B12), biotin (Vitamin H), thiamine hydrochloride (Vitamin B1), 

triton X-100, and Celite® 545RVS were purchased from Nacalai Tesque, Inc. (Kyoto, Japan). 

Ergosterol and disodium ethylenediamine tetraacetic acid were purchased from Tokyo 

Chemical Industry Co., Ltd. (Tokyo, Japan). Disodium β-glycerophsphtae n hydrate, boric 

acid, cobalt (II) sulfate hexahydrate, and Phospholipid C-Test were from Wako Pure 

Chemical Industries, Ltd. (Osaka, Japan). 1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide 

hydrochloride (EDC), N-hydroxysuccinimide (NHS), 10 mM acetate buffer (pH 5.0), 1 M 

ethanolamine (pH 8.5), 50 mM sodium hydroxide (NaOH), 0.5% (w/v) sodium dodecyl 

sulfate (SDS), and 10× PBS buffer (pH 7.4) were purchased from GE Healthcare (Uppsala, 

Sweden). Dodecylamine and dimethyl sulfoxide (DMSO) were purchased from Sigma-

Aldrich Co. (St. Louis, MO). Calcein and iron (III)-ethylenediamine tetraacetic acid were 

from Dojindo Laboratories (Kumamoto, Japan). Epicholesterol was obtained from Steraloids 

Inc. (Newport, RI, USA). All of these chemicals were of the highest grade and used without 

further purification. Water was purified with a Millipore Simpli Lab System (Millipore Inc., 

Bedford, MA). 3-d-Cholesterol, 3-d-ergosterol, and 3-d-epicholesterol (Figure 2-3) and 

fluorescein-labeled TNM-A (Figure 3-1) were synthesized as previously reported.1-3 
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6.2 Instruments 

HPLC System :  Shimadzu SCL-10Avp, SPD-M10Avp, 

   LC-10ADvp, LC-10ADvp, DGU-12A 

UV Spectrophotometer :  Shimadzu UV-2500 

    JASCO V-630 BIO 

Spectrofluorometer :  JASCO FP-6500 

Mass Spectrometer :  Thermo Finnigan LCQ Deca XP  

 Thermo Scientific LTQ Orbitrap XL  

NMR Spectrometer :  JEOL ECA400, ECS400 

   Varian Chemagnetics CMX300  

    Bruker AVANCE700 

Surface Plasmon Resonance :  GE Healthcare Biacore™ T200  

Particle Size Analyzer :  Horiba LB-550 

Microplate Reader :  Molecular Devices Emax 

Clean Bench :  Sanyo MCV-710ATS  

Confocal Microscope :  Olympus FluoView™ FV1000-D 

Autoclave :  TOMY BS-325, LSX-500 

Water Purifying Apparatus :  Millipore Elix-UV, Simpli Lab 

Electronic Balance :  A&D GR-202,HF-3200 

pH Meter  :  TOA HM-40S  

Rotary Evaporator :  Technosigma N-1000, Iwaki Thermo Bath THB-3N; 

EYELA COOL ACE CA-1111, NVC-2000  

Centrifuge :  WEALTEC KUBOTA5200 

 Hitachi Himac CF 15R, CR 22GIII  

Lyophilizer :  EYELA FDU-1200, FDU-2200 

Vortex Mixer :  Scientific Industries VORTEX GENIE-2 

Sonicator :  Yamato BRANSON 1510 

Micropipette :  Nichiryo Nichipet EX 

 

 
6.3 Methods 

  

6.3.1 Isolation of Theonellamide A 

TNM-A (20 mg) was a kind gift from Dr. Shinichi Nishimura (Kyoto University) 

while subsequent sample was isolated as reported previously, summarized in Scheme 6-1.4 
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Briefly, the sponge (provided by Prof. Shigeki Matsunaga, The University of Tokyo) was 

homogenized using a blender. It was then soaked in a mixture of 1-PrOH:H2O (2:1 v/v) 

overnight. Celite was then added and mixed extensively. The sample was filtered using a 

Buchner funnel and the residue was washed several times with 1-PrOH:H2O (2:1 v/v). The 

filtrate and washings were combined and 1-propanol was removed using a rotary evaporator. 

The aqueous mixture was charged in an ODS column and then subjected to HPLC 

purification to afford 10 mg TNM-A. 

 

 

Theonella sp. 
 (200 g) 
 

i) homogenized 
ii) extract w/ 1-PrOH:H2O 
iii) celite 

 
Extracts 
 
            ODS open column 

i) aq. MeOH (30,60,90,100%) 
ii) 80% aq. 1-PrOH 

 
 
100% MeOH and 80% 1-PrOH fractions* 

100% MeOH and 80% 1-PrOH fractions*

 
 ODS HPLC; 39% aq. MeCN  
 (Cosmosil, 5C18-AR-II, 
  250 X 10 mm) 
 
 
TNM-A 
(10 mg) 

 

Scheme 6-1. Schematic diagram of TNM-A isolation from sponge. 

 

 

6.3.2 TNM-A Liquid Chromatography Using an Open Column and HPLC 

The aqueous extract (Scheme 6-1), after removing 1-PrOH by a rotary evaporator, was 

charged to an ODS open column (YMC Gel ODS-AQ; 12 X 2 cm) and initially washed with 

H2O. It was then eluted with increasing ratio of MeOH in H2O (30, 60, 90, and 100%) 

followed by 80% 1-PrOH in H2O. TNM-A was found to be mostly in the latter two fractions. 

After evaporation of the solvent, the residues containing TNM-A were dissolved in MeOH 

and subjected to further purification by HPLC.  

Two pre-packed columns (Cosmosil, 5C18-AR-II, 250 X 10 mm) were connected in 

series on a Shimadzu HPLC system. 25 μL of the TNM-A containing mixture was injected for 

each separation. Eluent used was aqueous acetonitrile (39%), which was first degassed using 

a sonicator. Flow rate was 2 mL/min. TNM-A was collected with a retention time of 12 min 

(Figure 6-1 and 6-2).  
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Figure 6-1. Typical chromatogram of TNM-A isolation. 

 

 

 
Figure 6-2. UV spectrum of TNM-A obtained from HPLC purification with retention time of 12 
min. 

 

 

6.3.3 Culture of Amphidinium klebsii 

The dinoflagellate Amphidinium klebsii was originally isolated from the surface wash 

of seaweeds collected from Aburatsubo-Bay, Miura Peninsula, Japan and deposited in the 

Microbial Culture Collection of the National Institute for Environmental Studies having the 

identification code NIES 613.5 Identification of the species was previously carried out by Prof. 

Y. Fukuyo (Faculty of Agriculture, The University of Tokyo). 

TNM-A 
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Table 6-1. Composition of ES-1 supplement. 

Ingredients Volume or Weight 
Artificial sea water 1000 mL 

NaNO3 70 mg 
Na2-β-glycerophosphate 10 mg 

Tris(hydroxymethyl)aminomethane 100 mg 
H3BO3 1 mg 
MgSO4  200 µg 
ZnSO4 25 µg 

Na2-EDTA 5 mg 
Fe(III)-EDTA 550 µg 

CoSO4 1 µg 
Cyanocobalamin (Vitamin B12) 2 µg 

Biotin (Vitamin H) 1 µg 
Thiamine-HCl (Vitamin B1) 100 µg 

 

 

Amphidinium klebsii was grown unialgally in 2- or 3-L flasks using artificial seawater 

(Marin Art Hi, Tomita Pharmaceutical, 3% w/v) enriched with ES-1 supplement (Table 6-1) 

at 25 oC for 3-4 weeks under a 16-8 light-dark photocycle (Figure 6-3).  The cells were then 

harvested by filtration and subjected to AM3 isolation. 

 

 

 
Figure 6-3. Culture of the dinoflagellate A. klebsii in artificial 
seawater enriched with ES-1 supplement.  
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Large scale, 1000 liters, culturing of dinoflagellates was also carried out with the 

assistance of Prof. Masashi Tsuda (Kochi University) using sterile seawater enriched with 

Pravasoli’s ES (PES) supplement (Table 6-2), added to a final concentration of 1% (v/v), at 

22 ~ 28 oC under a 16-8 light-dark photocycle (light intensity at 3000 lux) with constant 

stirring. A.klebsii was first grown in a 10-L medium for two weeks, then transferred to a 200-

L medium for another two weeks, and finally to a 1000-L medium for three weeks (Figure 6-

4), after which the cells were harvested. Briefly, the culture medium was filtered and 

concentrated with a MOLSEP® Fiber FS03-FC-FUS1582 (Daicen Membrane-Systems Ltd., 

Tokyo, Japan) shown in Figure 6-5. The cell concentrate (~80 L) was centrifuged at 5000 rpm, 

20 ºC for 2-3 hours using a Hitachi CR 22GIII high speed refrigerated centrifuge (Hitachi 

Koki Co., Ltd., Tokyo, Japan) to facilitate sedimentation of the cells (Figure 6-6). Water 

removed from centrifugation was observed under a microscope to ensure that no cells 

remained in the supernatant. 

 

 

Table 6-2. Composition of PES supplement.* 

Ingredients Volume or Weight 
Distilled water 1000 mL 

NaNO3 3.5 g 
Na2-glycerophosphate 500 mg 

Tris 5 g 
Fe (as EDTA; 1:1 mol) 25 mg 
PII solution of metals 250 mL 

Cyanocobalamin (Vitamin B12) 100 mg 
Biotin (Vitamin H) 50 mg 

Thiamine-HCl (Vitamin B1) 5 mg 
* pH = 7.8 
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Figure 6-4. Culture of the dinoflagellate A. klebsii 
in 1000-L seawater enriched with PES 
supplement.  

 

 

 
Figure 6-6. A. klebsii cells collected after 
centrifugation. 

 

 

6.3.4 Isolation of Amphidinol 3 

Amphidinol 3 was isolated from harvested cells as reported previously,6 summarized 

in Scheme 6-2, corresponding to 198 L  and ~200 L of the small and large scale (about 20% 

of total weight of cells collected) cultures, respectively. Briefly, cells were extracted with 

MeOH twice, followed by 50% aq. MeOH once, and the solvent was removed with a rotary 

evaporator at 30 ºC until about 200 mL mixture remained. Then, an excess of lead acetate was 

added to remove most of the coloring materials/pigments in the mixture, after which excess 

Figure 6-5. Filtration and concentration of A. 
klebsii. 
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lead was removed with an equal volume of Na2HPO4. The resulting supernatant was 

partitioned between H2O/EtOAc, and the aqueous layer further partitioned between 1-

BuOH/H2O. The organic layer was collected, dried, and charged into an ODS open column. 

The AM3-containing fractions were then purified by HPLC to afford 27.2 mg and 4.7 mg 

AM3 from the small and large scale culture media, respectively.  

 

 

Harvested cells of A. Klebsii 
 
 extract with 

i) MeOH 
ii) 50% aq. MeOH 

 
Extracts 
 

i) MeOH evaporation 
ii) 10 mL 10% lead acetate  
iii) centrifugation 

 
Supernatant 
 

i) 10 mL 4.7% Na2HPO4 
ii) centrifugation 

 
Supernatant* 

 

Supernatant*

 
 solvent partition 
 
H2O    EtOAc 
 
 
1-BuOH   H2O 
 
 ODS open column 
 (YMC ODS-AQ) 
 H20 MeOH 
 
70-80% MeOH fractions 
 
 ODS HPLC; 70% MeOH  
 (Cosmosil, 5C18-AR-II, 
  250 X 10 mm) 
AM3 
(27.2 mg: small scale culture) 
(4.7 mg: large scale culture) 
 

Scheme 6-2. Schematic diagram of AM3 isolation from harvested A. klebsii cells. 

 

 

6.3.5 AM3 Liquid Chromatography Using an Open Column and HPLC 

The residue from the 1-BuOH layer (Scheme 6-2) was dissolved in a few mL of H2O 

and charged to an ODS open column (YMC Gel ODS-AQ; 12 X 2 cm). The ODS column was 

initially washed with 3 column volumes of H2O prior to sample introduction. It was then 

eluted with increasing ratio of MeOH in H2O (0 to 100%). AM3 was found to be mostly in 

the 70 and 80% aq. MeOH fractions. After evaporation of the solvent, the residues containing 

AM3 were dissolved in MeOH and subjected to further purification by HPLC.  

Two pre-packed columns (Cosmosil, 5C18-AR-II, 250 X 10 mm) were connected in 

series on a Shimadzu HPLC system. 30 μL of the AM3- containing mixture was injected for 

each separation. Isocratic elution was carried out using 70% aq. MeOH, which was first 
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degassed using a sonicator. Flow rate was 1.5 mL/min. AM3 was collected with a retention 

time of about 60-65 min (Figure 6-7 and 6-8).  

 

 

 
Figure 6-7. Typical chromatogram of AM3 isolation from the 80% aq. MeOH fraction. 

 

 

 
Figure 6-8. UV spectrum of AM3 obtained from HPLC purification with retention time of 64 
min. 

 

 

 

 

AM3 
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6.3.6 Surface Plasmon Resonance Experiments 

Investigation of the binding interaction between TNM-A or AM3 and POPC 

liposomes, with or without sterols, was carried out using SPR as reported previously.6,7  

6.3.6.1 Liposome Preparation 

Large unilamellar vesicles (LUVs) were prepared as follows. POPC (10 mg) 

with or without 10 mol % ( 0.5 mg) sterol (cholesterol, ergosterol, or epicholesterol) 

were dissolved together in chloroform in a round-bottom flask. The solvent was 

evaporated, and the resulting lipid film was further dried in vacuo overnight. It was 

then hydrated with 1 mL of PBS buffer [10 mM phosphate buffer (pH 7.4), 2.7 mM 

potassium chloride, and 137 mM sodium chloride]. The mixture was vortexed, 

sonicated, and subjected to three cycles of freezing (−80 °C), thawing (60 °C), and 

vortexing (5 sec) to form multilamellar vesicles (MLVs). The MLV suspension was 

passed through double 100 nm polycarbonate filters 19 times with LiposoFast-Basic 

(AVESTIN Inc., Ottawa, Canada) at room temperature to form LUVs. The lipid 

concentration of the LUVs was determined using a phospholipid C-Test (Wako Pure 

Chemical Industries Ltd.). The LUVs were then diluted with the same PBS buffer to 

produce a suspension with a final lipid concentration of 0.5 mM for injection into the 

SPR instrument. 

 

 6.3.6.2  Analyte-Ligand Binding Interaction 

TNM-A (1 mg, 0.57 μmol) or AM3 (1 mg, 0.75 μmol) was first dissolved in 

DMSO (1 mL) or H2O (1 mL) and stored as a 0.57 mM or 0.75 mM stock solution, 

respectively. 50 μL of the TNM-A stock solution was diluted to 28 μM with 950 μL of 

PBS buffer. This solution was further diluted with PBS buffer containing 5% DMSO to 

give 10, 15, and 20 μM TNM-A solutions. All these solutions, together with the 

running buffer, were ensured to have the same DMSO concentration. For AM3, an 

aliquot of the stock solution was diluted to 250 μM with PBS buffer, and subsequently 

diluted to give 30, 40, and 50 μM AM3 solutions for SPR analysis. 

The SPR experiments were performed at 25 °C using a dodecylamine-

modified CM5 sensor chip mounted on a Biacore T200 system (GE Healthcare), and 

the running buffer was PBS containing 5% DMSO (pH 7.4) or PBS buffer (pH 7.4) for 

TNM-A and AM3, respectively. The unmodified CM5 sensor chip was first washed 

three times with a 50 mM NaOH/2-propanol solution [3:2 (v/v)] at a flow rate of 20 

μL/min for 2 min. Dodecylamine was immobilized in one of the flow cells (fc2) of the 

CM5 chip with an amino coupling method while the other flow cell (fc1) was left 
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untouched to serve as the control lane. This chip was activated by injecting a solution 

of 390 mM EDC and 100 mM N-hydroxysuccinimide [1:1 (v/v), 70 μL] and then 

dodecylamine (1 mg/mL) in 10 mM acetate buffer containing 10% DMSO (pH 5.0) at a 

flow rate of 10 μL/min and a contact time of 7 min. The remaining N-

hydroxysuccinimide ester groups on the sensor chip were deactivated by converting 

them to amide groups with an injection of 1 M ethanolamine hydrochloride (pH 8.5). 

Thus, the obtained modified sensor chip was then washed with 10% DMSO to remove 

nonspecifically bound molecules. 

For the immobilization of liposomes on the sensor surface, the dodecylamine-

modified sensor chip was first conditioned by an injection of running buffer at a flow 

rate of 10 μL/min for 5 min. The liposome suspension (0.5 mM) was then injected at a 

flow rate of 2 μL/min for 40 min, followed by the injection of 50 mM NaOH at a flow 

rate of 20 μL/min for 2 min, three times to generate a stable sensorgram, which 

indicated the formation of a stable liposome layer on the sensor surface. 

TNM-A or AM3 solutions, at concentrations of 10, 15, 20 μM, and 30, 40, 50 

μM, respectively, were then injected at a flow rate of 10 μL/min; its association was 

observed for 300 s. Then running buffer was injected at the same flow rate for 300 s, 

and the dissociation of TNM-A or AM3 from the surface was monitored. A new 

liposome surface was prepared for each injection of the TNM-A or AM3 solution. To 

remove the liposomes from the sensor surface, injections of 0.5% (w/v) SDS, followed 

by a 50 mM NaOH/2-propanol solution [3:2 (v/v)] both at a flow rate of 20 μL/min for 

2 min, were conducted twice to ensure a return to the original baseline. 

 

 6.3.6.3 Data Analysis 

The sensorgrams obtained from the peptide–lipid bilayer interaction were 

analyzed by curve fitting8,9 with Biacore T200 Evaluation version 1.0. Global fitting, 

which is normally done by simultaneously fitting sensorgrams corresponding to 

different analyte concentrations, was found to be incompatible with TNM-A as in the 

case with amphotericin B.7 This is probably because concentration-dependent 

aggregate formation of TNM-A in the aqueous phase affects its membrane binding, 

thus leading to the inconsistency in the kinetic parameters at different TNM-A 

concentrations. Thus, the kinetic parameters were evaluated not by global fitting but by 

local fitting to the sensorgrams from 20 μM TNM-A. The sensorgrams were fit to a 

two-state reaction model,7 in which interaction between the peptide and the lipid 

bilayers is assumed to occur in two steps (Scheme 6-3). The first step involves the 
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binding of TNM-A (A) to membrane lipids (B) in a parallel and stoichiometric manner, 

identical to the simple bimolecular or Langmuir model if the second step does not 

proceed. The second step involves a conformational or morphological change of the 

complex (AB) to a second complex (ABx). 

 

 

 
Scheme 6-3. Two-state reaction model. 

 

In this model, rate equations are given by 

 

    (Eq. 6-1) 

 (Eq. 6-2) 

      (Eq. 6-3)  

                               (Eq. 6-4)    

 

 

where ka1 and kd1 correspond to the association and dissociation rate constants for the 

liposome surface of free TNM-A, respectively, while ka2 and kd2 correspond to the 

distribution rate constants from AB to ABx forms and vice versa, 

respectively. KA1, KA2, and KA represent the affinity constants for the first, second, and 

overall equilibrium steps, respectively. A detailed method for determining the kinetic 

parameters on the basis of this model is given in the literature.7,9,10  

 

6.3.7 Sample Preparation for Solid-State NMR 

For the measurement of 2H NMR spectra of the deuterated sterols in POPC 

membranes, 2.6 μmol of 3-d-sterol, 46 μmol of POPC, and TNM-A or AM3 (0 or 2.6 μmol) 

were dissolved in a CHCl3/MeOH solution [2:1 (v/v)] in a round-bottom flask. The solvent 

was removed in vacuo and further dried overnight. The lipid film was then rehydrated with 1 

mL of milli-Q water. After being sonicated and vortexed for a few minutes, the lipid 

suspension was subjected to three cycles of freezing (−80 °C) and thawing (40 °C) to make 

MLVs. The vesicle suspension was lyophilized overnight, rehydrated with deuterium-
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depleted water [50% (w/w)], and homogenized by being vortexed, frozen, and thawed. It was 

then transferred to a 5 mm glass tube (Wilmad) and sealed with epoxy glue. 

For the measurement of 31P NMR spectra of POPC membranes, 6.6 μmol of POPC, 

cholesterol or ergosterol (0 or 0.4 μmol) and TNM-A or AM3 (0 or 0.4 μmol) were dissolved 

in a solution of CHCl3-MeOH (2:1 v/v) in a round bottom flask.  For AM3, an additional 

sample was made by mixing 5.8 μmol POPC, 0.4 μmol cholesterol, and 1.2 μmol AM3. The 

same procedure as in 2H NMR sample preparation was performed except for the following: 

deuterium oxide (50% w/w) was used to rehydrate the sample after lyophilization, instead of 

deuterium-depleted water, and the homogenized sample was transferred to a 7-mm Teflon 

tube.  

   

6.3.8 Solid-State NMR Measurements 

All the 2H NMR spectra were recorded on a 400 MHz ECA400 (JEOL, Tokyo, Japan) 

or a 300 MHz CMX300 (Chemagnetics, Agilent, Palo Alto, CA) spectrometer. Spectra were 

collected at 30 °C using a 5 mm 2H static probe (Doty Scientific Inc., Columbia, SC, or 

Otsuka Electronics, Osaka, Japan) following a quadrupolar echo sequence.1 The 90° pulse 

width was 2 μs; the interpulse delay was 30 μs, and the repetition rate was 0.5 s. The sweep 

width was 200 kHz, and the number of scans was around 400000. 

All 31P NMR spectra were recorded on a 400 MHz ECA400 (JEOL, Tokyo, Japan) 

using a 7-mm CP-MAS probe ((Doty Scientific Inc., Columbia, SC, USA) without rotation. 

Spectra were collected at 30 ºC. A singe pulse sequence with proton decoupling was 

employed with the following spectra parameters: acquisition time was 18 ms, 90º pulse width 

was 5.6 μs, relaxation delay was 2 s, and total number of scans was around 25 000. 

 

6.3.9 Calcein Leakage Experiments 

Extent of calcein leakage from liposomes was carried out as reported previously.11 

Large unilamellar vesicles were prepared as follows. POPC (10 mg, Avanti Polar Lipids, Inc., 

Alabaster, AL) with or without sterol (10 mol%) was dissolved in chloroform in a round-

bottom flask. The solvent was removed under vacuum for about 2 hours at 30 ºC and further 

dried in vacuo overnight. The lipid film thus obtained was rehydrated with 1 mL of 60 mM 

calcein in Tris-HCl containing 1 mM EDTA and 150 mM NaCl (pH 7.4) and subjected to two 

cycles of vortexing (1 min) and warming-up (65 ºC) followed by five cycles of freezing (-20 

ºC) and thawing (65 ºC) to obtain MLVs. Afterwards, the suspension was passed through a 

polycarbonate membrane filter (pore size, 200 nm) 19 times using a LiposoFast-Basic 

(AVESTIN Inc., Ottawa, Canada) to prepare LUVs of homogenous size. Excess calcein was 
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removed by passing the suspension through a Sepharose 4B column (GE Healthcare 

BioSciences AB, Uppsala, Sweden) with Tris-HCl containing 1 mM EDTA and 150 mM 

NaCl (pH 7.4). The lipid concentration in the LUV fraction was quantified using phospholipid 

C-Test Wako (Wako Pure Chemical Industries, Ltd., Osaka, Japan). Resulting stock solution 

was stored at 4 ºC under nitrogen gas. 

Measurement of calcein leakage was performed on a JASCO FP 6500 

spectrofluorometer (JASCO Corp., Tokyo, Japan) with an excitation wavelength of 490 nm 

(slit 1.5 nm) and an emission wavelength of 517 nm (slit 5 nm). To monitor calcein leakage, 

20 μL of the LUV suspension was diluted to 980 μL with the same Tris buffer. A 20 μL 

aliquot of TNM-A or AM3 in MeOH:DMSO (1:1 v/v)  or MeOH, respectively, was then 

added. Subsequently, 20 μL of 10% (v/v) Triton X-100 (Nacalai Tesque Inc., Kyoto, Japan) 

was added to obtain the condition of 100% leakage. All measurements were carried out at 

room temperature with a final lipid concentration of 27 μM. 

 

6.3.10 Hemolysis Assay 

Human red blood cells (2 mL) were suspended in PBS buffer containing 8.10 mM 

Na2HPO4, 1.47 mM KH2PO4, 137 mM NaCl and 2.68 mM KCl (pH 7.4) and immediately 

separated from the plasma by centrifugation at 2000 rpm for 5 minutes, repeated twice.  The 

sedimented cells were re-suspended in the same PBS buffer to yield 1% hematocrit.  Various 

concentrations of TNM-A or AM3 in DMSO:MeOH (1:1 v/v, 10 μL) or MeOH (10 μL), 

respectively, was then added to the red blood cell suspension (1% hematocrit, 190 μL) and 

incubated for 18 hours at 37 ºC.  Afterwards, the mixtures were centrifuged at 2000 rpm for 5 

minutes and the supernatant (50 μL) was transferred to a 96-well microplate and subjected to 

colorimetric measurements at 450 nm to determine the absorbance (AS450) using an Emax® 

Precision Microplate Reader (Molecular Devices Corp., Sunnyvale, CA).  Condition for 

100% hemolysis was obtained by incubating the blood suspension in water (AT450). The 

percentage of released hemoglobin from erythrocytes was computed as (AS450/AT450) x 100. 

The concentration that caused 50% hemolysis (EC50) was determined from the dose-

dependent curve. 

 

6.3.11 Particle Size Distribution Measurement 

6.6 μmol of POPC, cholesterol (0 or 0.4 μmol) and TNM-A (0 or 0.4 μmol) were 

dissolved in a solution of CHCl3-MeOH (2:1 v/v) in a round bottom flask.  The solvent was 

removed in vacuo and further dried overnight. The lipid film was then rehydrated with 1 mL 

of Milli-Q water. After a few minutes of vortexing, the lipid suspension was subjected to 
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three cycles of freezing (-80 ºC) and thawing (40 ºC) to make MLVs. The suspension was 

then transferred into a cuvette and the size distribution of the vesicles was measured with a 

Horiba Dynamic Light Scattering Particle Size Analyzer LB-550 (HORIBA, Ltd., Kyoto, 

Japan) at 30 ºC. 

A second mode of analysis was performed wherein TNM-A was added after vesicle 

formation. The same protocol as in the preceding paragraph was performed to make 

POPC:cholesterol (95:5) MLVs except that TNM-A was not mixed with the lipids. The 

resulting suspension obtained after the freeze-thaw cycle was passed through a polycarbonate 

membrane filter (pore size, 100 nm) 19 times using a LiposoFast-Basic (AVESTIN Inc., 

Ottawa, Canada) to prepare LUVs of homogenous size. The lipid concentration in the LUV 

fraction was quantified using Phospholipid C-Test Wako (Wako Pure Chemical Industries, 

Ltd., Osaka, Japan). Resulting stock solution was stored at 4 ºC under nitrogen gas. TNM-A 

was then added to a lipid suspension (0.1 mM) in an eppendorf tube to a final concentration of 

0, 5, and 10 μM. The solution was mixed and then incubated at 30 ºC for 1, 3, 6, and 21 hours. 

At the end of each incubation period, the suspension was transferred into a cuvette and the 

size distribution of the vesicles was measured with the same conditions as above. Final lipid 

concentration was 20 μM. 

 

6.3.12 Differential Interference and Confocal Microscopy Observations 

Giant unilamellar vesicles (GUVs) were obtained by electroformation explored by 

Angelova and Dimitrov.12 Briefly, POPC solutions (with or without 5 mol% cholesterol) were 

prepared in chloroform or chloroform/methanol (4:1 v/v) to a final phospholipid 

concentration of 1mg/mL. 15 μL aliquots were then deposited on parallel aligned electrodes 

(Pt wires, φ=100μm) attached to glass slides and the solvent was evaporated under vacuum 

overnight. 300 μL of Milli-Q water (Simplicity UV, MerckMillipore, Billerica, MA) was then 

added to completely immerse the electrodes which were then sealed with another glass slide 

using a rubber spacer with a small fill port for the drag injection.  The slide was thermostated  

at 30 ºC on a temperature control objective plate (Tokai Hit ThermoPlate, Tokai Hit Co., Ltd., 

Shizuoka, Japan), and an alternating current (10V, 10Hz) was applied (Arbitrary Waveform 

Generator 33220A, Agilent Technologies, Tokyo, Japan)  for 40-50 minutes to form the 

GUVs.  

After GUV formation, TNM-A or TNM-A:TNM-FL (9:1 mol%), dissolved in Milli-Q 

water, was gently added to the sample to a final volume of 350 μL through the fill port (final 

concentration of TNM-A was between 1-20 μM) with micropipette.  TNM-A induced 

morphological changes of the GUV were observed by an Olympus FluoView™ FV1000-D 
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Scanning Unit with the IX81 Inverted Microscope (Olympus Corp., Tokyo, Japan). A 

LUCPLFLN 60x universal semi-apochromat objective with NA of 0.70 (Olympus Corp., 

Tokyo, Japan) was used for differential interference and fluorescent observations. Acquisition 

speed was 8 μs/pixel and images were visualized with FV10-ASW-3.0 software.  The sample 

temperature was kept at 30 ºC for all observation with the temperature control objective plate. 

For confocal fluorescence microscopy observations, excitation and emission 

wavelength used for TNM-FL was 488 and 515 nm, respectively.  
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NMR Spectra 

 

 
Figure S-1. 400 MHz 1H NMR spectra of TNM-A in DMSO-d6:D2O (4:1) obtained at 308K. 
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Figure S-2. 700 MHz 1H NMR spectra of AM3 in MeOH-d4 obtained at 303K.
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Reprint Permissions 

 

 

 

 
Figure A-1. Reprint permission for Horizon Symposia: Living Frontier, 2004, 1-4. (For Figure 1-1 
of thesis). 
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Figure A-2. Reprint permission for Biochim, Biophys. Acta., 2012, 1818, 1028-1038. (For Figure 
1-2 of thesis). 
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Figure A-3. Reprint permission for Cell, 1997, 89, 685-692. (For Figure 1-2 of thesis). 
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Figure A-4. Reprint permission for Nat. Rev. Microbiol., 2005, 3, 238-250. (For Figure 1-4 and 1-
5 of thesis). 
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Figure A-5. Reprint permission for Biopolymers, 1998, 47, 451-463. (For Figure 1-4 of thesis). 
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Figure A-6. Reprint permission for Phys. Rev. Lett., 2004, 92, 198304-1 – 198304-4. (For Figure 
1-5 of thesis) 
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Figure A-7. Reprint permission for ACS Chem. Biol., 2010, 5, 905-917. (For Figure 1-6, 1-7, and 
1-11 of thesis) 
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Figure A-8. Reprint permission for Biochemistry, 2004, 43, 8846-8857. (For Figure 1-8 of thesis). 
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Figure A-9. Reprint permission for Biochemistry, 2005, 44, 9538-9544. (For Figure 1-8 of thesis). 
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Figure A-10. Reprint permission for Prog. Lipid Res., 2012, 51, 149-177. (For Figure 1-9 of 
thesis). 
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Figure A-11. Reprint permission for Biochim. Biophys. Acta., 2006, 1758, 1461-1474. (For Figure 
1-10 of thesis). 
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Figure A-12. Reprint permission for Biophys. Acta, 2008, 1778, 2308-2317. (For Figure 1-11 of 
thesis). 
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Figure A-13. Reprint permission for Nat. Rev. Microbiol., 2012, 10, 641-654. (For Figure 2-1 of 
thesis). 
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Figure A-14. Reprint permission for Environ. Microbiol., 2012, 14, 335-346.  (For Figure 2-1 of 
thesis). 
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Figure A-15. Reprint permission for Nat. Chem. Biol., 2010, 6, 519-526.  (For Figure 2-2 of 
thesis). 
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Figure A-16. Reprint permission for Bioorg. Med.Chem., 2008, 16, 3084-3090. (For Figure 4-1 
and 4-2 of thesis). 
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