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General Introduction 

 

Naturally occurring macromolecules have uniform molecular weights, and their 

stereoregularites, sequences, and even higher-order conformations are completely 

controlled, thus providing functionality, uniqueness, and forms to all living matter. In 

the 1950s, it was discovered that protein and deoxyribonucleic acid (DNA) form an 

α-helix1 and a double-stranded helix2 with each other, as a secondary structure 

fundamental to the higher-order structure. In the case of DNA, complementary base 

pairs, such as adenine and thymine or cytosine and guanine, are formed by hydrogen 

bond interactions inside the double-stranded helix. Each base pair of DNA piles up 0.34 

nm apart along the strands, and about 10.5 base units ride the entire loop; the pitch 

length of the strand is 3.6 nm. This structure is the so called ‘B form’ that DNA inside 

the cell ordinarily adopts (Figure 1a).3 Two types of helical grooves, a ‘major groove’ 

and a ‘minor groove’, are formed between each nucleotide chain outside the B form 

DNA, where the terminal atom of each base can be accessed by DNA binding proteins 

to inform the base sequence. Therefore, this structure, which is formed by 

complementary polymer-polymer interactions, is important for signal transduction in 

biological systems and could be applied to controlling higher-order structures in 

macromolecule syntheses. 
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Figure 1. (a) Structure of the B form DNA and a schematic representation of DNA 
replication: (b) the semiconservative mechanism, (c) the conservative mechanism, and 
(d) the dispersive mechanism. 

 

Replication of the DNA strands was achieved by the formation of complementary 

daughter strands from the parent strands as a template. DNA template replication can 

proceed according to one of three different mechanisms (Figure 1b—d). In the 

semiconservative mechanism, the parent double-stranded helix separates and each chain 

forms a new double-stranded helix with the daughter chain, which was proposed by J. D. 
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Watson and F. C. Crick.4 In the conservative mechanism, two daughter chains form a 

new double-stranded helix, while the parent double-stranded helix remains preserved.5 

In the dispersive mechanism, two double-stranded helices, both containing distinct 

regions composed of either both parent chains or both daughter chains, would be 

produced.6 M. Meselson and F. W. Stahl proved that DNA synthesis was achieved by 

the semiconservative mechanism7 employing Escherichia coli culture in medium 

containing the nitrogen isotope 15N and subsequent incubation in medium with 14N. The 

fully-transcribed double-stranded helix cannot be synthesized without the template 

chain in the semiconservative mechanism. Therefore, a precise template structure is 

considered to be essential for complete structural control of synthetic polymers, which 

has not been achieved yet. 

In the field of synthetic polymers, some stereoregular polymers have been known as 

their regularly-structured crystals. In the 1950s, it was demonstrated that isotactic (it-) 

polypropylene (PP) forms a 3/1 single helix, whereas syndiotactic (st-) PP and 

it-polystyrene form a 2/1 single helix and a 3/1 single helix, respectively.8 These 

structural discoveries of the poly-α-olefins were important, because even vinyl 

monomers could form artificial helices and have functions similar to natural polymers by 

controlling their tacticities precisely. In addition to these findings, it has also been 

observed that various stereoregular synthetic polymers formed helices9 such as 

polyisocyanate,10,11 polyisocyanide,12 polychloral,13 polysilane,14 polyacetylene,15-18 and 

polythiophene.19 

Numerous studies have been performed on structural control of vinyl polymers not 

only by carefully designing monomers,20,21 metal catalysts,22-26 and additives27 but also 

by the fabrication of reaction fields.28 However, they still have some intractable 
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problems as follows. In monomer design, the steric repulsion of monomer units has 

been generally employed, but this strategy requires a bulky monomer structure and 

lacks versatility. In addition, complete control of the nanospaces around the reaction 

point by catalysts or additives has been unattainable probably because of the lack of a 

structure fitting between the monomer and the agent, which could be improved by 

efficiently employing van der Waals interactions with the precise control of atomic 

distances and bond angles. Furthermore, trapping the monomer into the nanospaces was 

only modestly beneficial in controlling the tacticity due to a lack of interactions between 

the monomer and the cage. Therefore, a novel approach completely different from the 

aforementioned studies was considered to be essential to synthesize stereoregular 

polymers. Template polymerization inspired by the mechanism of DNA replication has 

great potential to precisely control the polymer structure by complementary 

polymer-polymer interactions. 

Template polymerization, defined as the process in which monomer units are 

organized by a preformed template matrix, has also been intensely researched29 since the 

first report by M. Szwarc.30 The organization of a monomer unit can be modified by 

variable interactions, hydrogen bonds,31-33 electrostatic forces,34,35 and covalent 

bonds.36-38 Template polymerization can proceed via two different mechanisms described 

as follows. In the Zip mechanism, monomer units interact with a template by strong 

interactions. In contrast, in the Pick-up mechanism, the monomer is free at the beginning 

of the reaction, and then complex formation between the growing species and the 

template occurs, and the polymerization proceeds along the template by monomer supply 

(Figure 2). In most of the following examples, a template effect on the change in the 

kinetics or molecular weight was discussed, and the polymerization proceeded via the 
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Zip mechanism due to strong interactions between the monomer unit and the template, 

although the aforementioned DNA replication is also classified as a Zip mechanism.  
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Figure 2. Schematic representation of chain template polymerization: (a) Zip 
mechanism and (b) Pick-up mechanism. I, initiator; M, monomer; T, template. 
 

In the first example, strong hydrogen bonds were employed for the polymerization 

of acrylic acid (AA)31,32 or methacrylic acid (MAA)33 in the presence of different 

templates, which was reported by J. Ferguson et al. for the first time. The 

Zip-mechanism was proposed for the polymerization of AA or MAA on a poly(vinyl 

pyrrolidone) (PVP) template, and the maximum polymerization rate was closed to the 

equivalence of the acid and PVP unit concentration. The higher the molecular weight of 
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the template, the higher that of the daughter polymer. For example, the degree of 

polymerization (DP) of AA increased almost directly proportional to that of the template 

PVP.32 These results suggest that strong interactions between the monomer and the 

template will be effective in increasing the polymerization rate and controlling the 

molecular weight. In contrast, controlling the tacticity by template polymerization has 

been very difficult. 

Second, electrostatic interactions were used early on by E. Tsuchida and Y. Osada 

for the polymerization of AA or MAA in the presence of 

poly(N,N,N’,N’-tetramethyl-N-p-xylylene-ethylenediammonium dichloride) as a 

positively charged template matrix.34 In the presence of the matrix, the rates of 

polymerization increased remarkably in high pH values, while the blank reaction was 

prevented by electrostatic repulsion between the oligomers and the monomers. Later, P. 

Cerrai et al. examined the template polymerization of sodium acrylate on 

poly(allylamine hydrochloride) using K2S2O8 as an initiator.35 Kinetic experiments 

revealed that the maximum rate was also closed to the equivalence of the monomer unit 

and the template concentration, and that the template polymerization proceeded by a 

typical Zip-mechanism. These studies showed that electrostatic interactions are useful to 

improve the template polymerization of acrylates but still not sufficient to control 

conformational structures. 

Third, the template polymerization of monomer units connected with a template 

matrix by covalent bonds was reported by H. Kämmerer et al.36 for the first time, and by 

S. Połowiński et al. in a subsequent set of papers.37,38 The specific characteristic of this 

system is the fact that the daughter polymer has the same DP as the template polymer. 

For example, the polymerization of acrylates connected with polynuclear phenolic 
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compounds and their subsequent decomposition generated acrylate oligomers with the 

imprinted molecular weight and the original polynuclear phenolic compounds, which 

could be treated again with acrylate derivatives.36 In addition, the polymerization of 

methacrylate connected with poly(vinyl alcohol) was performed resulting in the 

formation of a ladder-type complex.38 Template polymerizations achieved by covalent 

bonding are superior for the complete control of molecular weight. However, most of 

these studies focused mainly on the polymerization rate and the dependence of the 

molecular weight of the daughter polymer on that of the template, and the polymerization 

proceeded by Zip mechanism. 

Stereocontrol of the main chains is more important in terms of the expression of 

function. Thus, it is necessary for the precise control of conformational structure to 

utilize not the strong polymer-monomer interactions between the monomer and the 

template in the Zip mechanism, but also a suitable polymer-polymer interaction. Indeed, 

two innovative approaches on template polymerization to control the tacticity of the 

daughter polymer have been developed; one was a biomimetic approach to the design of 

monomers containing nucleic acid bases,39 and the other was the utilization of existing 

synthetic polymer complexes.40 

The strategy of the former template polymerization method was inspired by DNA 

duplication, employing the specific interactions of complementary nucleic acid bases 

such as adenine, uracil, thymine, and theophylline connected with methacryloyl group by 

ethylene linker (Figure 3).39 These complementary base-base interactions are crucial for 

the template polymerization. For instance, the rate of polymerization of 

N-β-methacryloyloxyethyladenine (MAOA) was accelerated in the present of the 

complementary template polymer, poly-(N-β-methacryloyloxyethylthymine) 
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(poly-MAOT), as compared with that of the blank polymerization, whereas the 

polymerization of MAOT was not accelerated. The polymerization proceeded via the 

Pick-up mechanism because the interaction between the dimer model compound of 

MAOA and poly-(N-β-methacryloyloxyethyluracil) (poly-MAOU) could be seen only at 

high concentrations,41 whereas the interaction between a monomeric model compound 

and poly-MAOU was never observed. 
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Figure 3. Template polymerization of methacrylate derivatives using specific 
interactions between complementary nucleic acid bases such as adenine, uracil, thymine, 
and theophylline. 

  

The hydrogen bonds were affected by the temperature and solvent. Competition 
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between the intramolecular self-association of the bases along the template and the 

intermolecular complementary base-base interaction would occur. Indeed, the higher the 

temperature, the more unstable the intramolecular self-association becomes but the 

more stable the complex formation of the complementary bases, which increases the 

conversion. In addition, a strong interaction between the solvent and bases would also 

prevent the specific base-base interactions between the polymers. Therefore, the rate of 

the template polymerization of MAOA in the presence of MAOU was significantly 

accelerated in pyridine, a poorer solvent for both poly-MAOU and the synthesized 

poly-MAOA, as compared with dimethylformamide (DMF) and dimethyl sulfoxide 

(DMSO).  

This approach suggests that the formation of the complementary polymer complex 

is important for template polymerization. However, stereocontrol of the obtained 

polymethacryloxyethyl derivatives was not achieved. This is because the base-base 

interactions would be too strong to control the conformation precisely, or the C—C bond 

of the ethylene group between the main chain and the interacting site could spin freely 

(Figure 3). Thus, an accurate design of the bond angles and distances between the atoms 

in polymer backbones is extremely important, while fixing the bond rotation of the 

linker by an ethylene bridge between the main chain and nucleic acid base42 would 

improve the stereocontrol of the synthesized polymers. 

In the other strategy for template polymerization, an existing synthetic polymer 

complex was utilized to resolve the aforementioned issue. It would be a reasonable 

approach to employ one of the polymers as a template, which is known to interact wish 

the other polymer. The complementary polymer complex (stereocomplex) formation of 

it-poly(methyl methacrylate) (PMMA) and st-PMMA was reported by J. D. Stroup et al. 
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for the first time in the 1950s.40 The crystal structure was initially proposed to be 

nonhelical; st-PMMA chains in a conformation with a glide plane lay in grooves formed 

by the 5/1 helices of the it-PMMA chains.43  

Structural analysis of the PMMA stereocomplex has been important because this 

unique structure could be applied to template polymerization inspired by the DNA 

replication. G. Challa et al. suggested that the stereocomplex formed a complementary 

double-stranded helix, in which a 9/1 it-PMMA helix was surrounded by an 18/1 

st-PMMA helix with a helical pitch of 1.84 nm, on the basis of X-ray analysis of the 

stretched fibers (Figure 4).44 There is a groove between each outside helix of the 

st-PMMA chain, which closely resembles the structure of B form DNA. Recently, E. 

Yashima et al. proposed a triple-stranded helix model, in which the 9/1 it-PMMA 

double-stranded helix was surrounded by the 18/1 st-PMMA single helix with a helical 

pitch of 0.92 nm, on the basis of high-resolution atomic force microscopy (AFM) images 

of stereocomplex monolayers obtained using the Langmuir-Blodgett (LB) technique 

(Figure 4).45,46 The 10/1 it-PMMA double-stranded helical structure was proposed by Y. 

Chatani et al. based on X-ray analysis.47 The it-PMMA films were prepared by casting 

from toluene solution, followed by stretching and heating.48 The 18.5/1 st-PMMA single 

helical structure was also postulated when st-PMMA co-crystallized in cyclohexane and 

benzene.49,50 It has been claimed that each component of the aforementioned 

stereocomplex model is almost identical to the original helical structure. 
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Figure 4. Basic stereocomplex models of (a, b) it-PMMA/st-PMMA and (c) 
it-PMMA/st-PMAA. 
 

Herein, the structures of the PMMA stereocomplexes were compared with that of B 

form DNA. In both cases, the PMMA stereocomplex is composed of two kinds of helices 

(it-PMMA and st-PMAA), whereas DNA forms a double-stranded helix from the same 

helices. In addition, both the distance of each unit and the helical pitch of the PMMA 

stereocomplex models are shorter than those of the B form DNA, probably according to 

the different driving forces, van der Waals interaction in the stereocomplex and 

hydrogen bonding in DNA. These differences would make it difficult to apply the 

nucleic base pairs of DNA directly to the stereospecific template polymerization of a 

vinyl polymer as described above. In spite of the differences in bond distances and 

binding modes, it would be most useful to employ one component of the existing 

multiple-stranded helical polymer complex as a template. Therefore, this structural 
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discovery of a complementary helix of the PMMA stereocomplex was very important for 

applying the replication mechanism of DNA to synthetic polymers.  

The formation of stereocomplexes has also been well analyzed by infrared (IR) 

spectroscopy,51 differential scanning calorimetry, viscometry,52 and nuclear magnetic 

resonance analysis.53 Thus, the PMMA stereocomplex should be a good research subject 

due to the large amounts of information available to confirm the complexation. The 

stereocomplex formation is driven by a good steric fit between the two chains in specific 

solvents or in solids.54-56 The solvent type affects complexing formation, and the solvents 

can be divided into three groups: strongly complexing solvents such as DMF, DMSO, 

acetone and acetonitrile; weakly complexing solvents like toluene and benzene; and 

non-complexing solvents like chloroform and dichloromethane.52 Since stereocomplex 

formation occurred between it-PMMA and st-polyalkylmethacrylate53 or 

st-poly(methacrylic acid) (PMAA)57,58 with different stoichiometries depending on the 

solvent, it would proceed through an interaction of the methyl ester groups of it-PMMA 

and the α-methyl groups of st-polyalkylmethacrylate or st-PMAA.44,53 

G. Challa et al. investigated the template polymerization of methacrylates in 

complexing solvents based on the idea that stereocomplex formation could be applied to 

the stereospecific polymerization of a complementary monomer in the presence of a 

template polymer.59-67 st-PMMA propagated in the presence of it-PMMA, while the 

presence of st-PMMA afforded it-PMMA using a suitable solvent.59,61 The 

stereospecificity decreased with conversion and was higher in the presence of a higher 

average molecular weight of template polymer.59-61 For PMMA, the solvents could be 

devided in three types: polar solvents such as DMF, DMSO and acetone; nonpolar 

aromatic solvents like benzene and toluene; and good solvents such as chloroform and 
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dichloromethane.63 For instance, the template effect was strong in DMF, very weak in 

benzene, and disappeared in chloroform, which corresponded with the strength of the 

stereocomplex formation in the solvents as described above.52 The effect was also more 

pronounced at lower temperatures, whereas the polymerization proceeded at the same 

rate as the blank polymerization at higher temperature.64 The rate effects increased not 

only with decreasing initiator concentration,65 but also with increasing the template 

concentration until the template chains overlapped each other.66 

However, the tacticities of the obtained polymers were not controlled effectively 

(mm<60%, rr<80%).61,63,67 This was probably because the thermal motion and 

conformation of the template polymer chains could not be precisely controlled in 

solution, which could also result in poor interactions of the growing species with the 

template polymer. In addition, van der Waals interactions and structural fitting of the 

complementary polymers in this system would be much weaker than the multiple 

hydrogen bonds in DNA duplication in vivo. Therefore, a novel approach to effectively 

utilize the weak polymer-polymer interactions is essential to transcribe the stereoregular 

structure of the template polymer. 

Surprisingly, the tacticities of polymethacrylates synthesized by free radical 

polymerization in artificially-designed macromolecularly porous thin films were almost 

perfectly controllable (mm>90%, rr>90%) with a layer-by-layer (LbL) assembly 

technique.68,69 These results suggests that fabrication of a reaction field with 

stereoregular nanospaces, in which the template polymer matrix appropriately interacts 

with the growing species by polymer-polymer interactions, is essential for stereospecific 

template polymerization. In this way, the transcription of stereoregularity of a synthetic 

polymer has been achieved at last, based on the mechanism of DNA replication. 



 18 
 

The LbL assembly technique has been known to be as a versatile technique to prepare 

polymer thin films on a substrate by simple alternate immersion into interactive polymer 

solutions.70 Electrostatic interactions between oppositely charged polymers have been 

widely utilized as the driving force for LbL assembly. The principles of LbL assembly 

can be applied to other interactions, not only to charge transfer interactions71,72 and 

hydrogen bonding,73 but also to weak polymer-polymer interactions such as the 

stereocomplex formation of poly(lactide),74 inclusion complex formation,75 and 

biological recognition.76,77 In particular, these weak interactions would make it possible 

to arrange polymers into the most stable conformation in films, whereas strong 

interactions can increase the amounts of the polymer adsorbed but not control the 

structure of the polymer complex in the films. Therefore, such LbL films can be applied 

to the stereospecific template polymerization by employing this characteristic feature of 

weak interactions. 

Indeed, stepwise stereocomplex assemblies between it-PMMA and st-PMMA,78 

st-PMAA79 or st-polyalkylmethacrylate80 were achieved by the LbL technique. IR 

spectroscopy demonstrated the formation of stereocomplex assemblies, and static 

contact angle measurements confirmed that it-PMMA adsorbed onto the substrate 

physically, and a molecular rearrangement occurred by the penetration of 

st-polymethacrylate into the it-PMMA layer. In other words, the formation of the 

aforementioned multiple-stranded helices of the stereocomplexes in the LbL films was 

revealed by surface analyses. 

It is noteworthy that macromolecularly porous thin films could be prepared by the 

selective extraction of it-PMMA or st-PMAA from it-PMMA/st-PMAA stereocomplex 

films with chloroform or an alkaline aqueous solution.68,69 These porous films could be 
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used for the selective recognition of stereoregular polymers,81 which strongly suggests 

that the porous films possessed stereoregular nanospaces. Stereocomplex films of 

it-PMMA/st-PMAA with a 1:1 (length/length) stoichiometry were fabricated from a 

mixed solvent of DMF/water.68 In contrast, stereocomplex films of it-PMMA/st-PMAA 

(1:2, length/length), which would be the same structure as the PMMA stereocomplex as 

described above, were prepared from a mixed solvent of acetonitrile/water.69 

The present approach was superior to template polymerization in solution due to the 

following three points: 1) focusing on the stereocomplex assembly of 

it-PMMA/st-PMAA79 with different solvent solubilities enabled the selective extraction 

of one component from the original films81; 2) employing multilayered thin films with 

LbL assembly78 would make it possible to regulate the conformation of the preformed 

stereocomplex assemblies and strongly suppress the molecular motion of the growing 

species in the films as compared with in solution; and 3) utilizing macromolecularly 

porous films68,69 with stereoregular nanospaces can precisely control the structure of the 

synthesized polymers in the films by complementary polymer-polymer interactions. By 

this means, stereoregular template polymerization has been achieved and the tacticity 

and molecular weight can be effectively transcribed from the template polymers. 

For the aforementioned stereocomplex of it-PMMA/st-PMAA (1:2, length/length), it 

would be important to investigate the two kinds of stereocomplex models, 

double-stranded helix44 and triple-stranded helix,45,46 since the it-PMMA/st-PMMA 

stereocomplex and the it-PMMA/st-PMAA stereocomplex are considered to be basically 

the same structure.82,83 In contrast, it is easier to understand that the stereocomplex of 

it-PMMA/st-PMAA can be treated as a double-stranded helix composed of single helices 

of it-PMMA and st-PMAA. The reason is that the number-average molecular weight of 
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st-PMAA synthesized in the porous films by template polymerization was about twice 

that of it-PMMA,69 and that the stereocomplex was considered to be most stable when 

the ratio of the molecular weights was about 1:2 (it-PMMA/st-PMAA).78,81 In the case 

of a double-stranded helix of it-PMMA in the porous films, the average molecular weight 

of the st-PMAA thus obtained must be quadruple of that of it-PMMA, which was in 

disagreement with the experimental results. In this thesis, the structure of the 

it-PMMA/st-PMAA stereocomplex can be discussed on the basis of the double-stranded 

helix model.44,83 

Since isospecific template polymerization occurs in porous st-PMAA thin films, 

investigations into porous st-PMAA films are important. However, fabrication of the 

porous st-PMAA films was difficult because the it-PMMA inside the stereocomplex of 

it-PMMA/st-PMAA (1:2, length/length) could not be extracted with conventional 

organic solvents, except a particular one (tetrafluoroacetylacetone), resulting in a 

disarrayed st-PMAA conformation. In contrast, it is interesting that it-PMMA can form 

two kinds of double-stranded helices with both st-PMAA83 (or st-PMMA)44 and 

it-PMMA itself,47,48 which is different from the molecular recognition system of DNA 

and the unique identity for it-PMMA. Furthermore, the crystal structure of it-PMMA, 

the helical shape or packing-mode, has been intensely investigated.47,48,84-88 Thus, in this 

thesis, porous it-PMMA thin films prepared from stereocomplex films of 

it-PMMA/st-PMAA (1:2, length/length) were employed. 

Stereospecific template polymerization in porous thin films is also useful in terms of 

the quantity synthesis of stereoregular polymethacrylates. This is not only because the 

porous films are reusable at least three times,68,69 but because the stereoregular 

polymethacrylates are easily synthesized by free radical polymerization, whereas the 
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stereoregular polymers are ordinarily synthesized by anionic polymerization. Anionic 

polymerization needs strict conditions and is unsuitable for industrial applications. In 

addition, stereoregular PMMAs can also be applied to biocompatible thin films,89,90 

fibers,91 membranes,92,93 and hollow capsules.94 Furthermore, their stereocomplex 

formation or inclusion ability are also utilized in electrical switches95 as well as the 

construction of specific architectures like nanoparticles, nanonetworks,96 and 

nano-to-microscale assemblies.97 

As described above, understanding stereospecific template polymerization in 

macromolecularly porous thin films using LbL assembly68,69 is a very important research 

area in terms of industrial applications, and can be thought of as the first step to achieve 

the complete structural control of natural polymers. This approach is completely different 

from conventional precise polymerization, but makes it possible to control the structure 

of the synthesized polymers by utilizing a complementary polymer-polymer interaction 

and structural regulated nanospaces as the reaction field. On the other hand, there still 

remain several issues to be solved regarding stereospecific template polymerization. 

One issue is the resolution of the mechanism of template polymerization. It remains 

unclear whether template polymerization in porous it-PMMA thin films would proceed 

via the Zip or Pick-up mechanism, and how the growing species could interact with the 

template during polymerization. A comparison with studies on ordinary precise 

polymerizations would be helpful for understanding these mechanisms. For example, 

1,1-diphenylethylene does not produce a homopolymer through any kind of catalysis due 

to steric reasons, whereas dibenzofulvene, whose structure is closely related to that of 

1,1-diphenylethylene, can polymerize easily.98 In another example, the bulkiness of 

aluminum substituent groups of an auxiliary agent significantly affected the tacticities of 
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the obtained polymers in the living anionic polymerization of methacrylate derivatives.99 

These facts imply that polymerization reactivity is affected by a subtle environmental 

difference in the reaction site. Therefore, nanostructural analyses are considered to be 

important for template polymerization in macromolecularly porous thin films. 

Another issue with stereospecific template polymerization68,69 is the 

poorly-reproducible results, probably due to the heterogeneous reaction field, where 

monomers polymerize both in solution and in porous thin films. For instance, the yields 

and tacticities of the obtained polymers were greatly reduced in a concentrated monomer 

solution or a mixed solvent of acetonitrile/water (4/6, v/v) instead of water,100 which 

suggests that the porous films could not remain stable under these conditions. Therefore, 

the fabrication of a stable reaction field is essential to synthesize stereoregular polymers 

from porous thin films with high reproducibility. The author considers solvent effects 

toward the films and the morphological changes of the films as two major aspects 

regarding the stability of the porous it-PMMA thin films. 

First, solvent effects on the porous it-PMMA films are referred to in this thesis. 

Among the aforementioned strong complexing solvents, acetonitrile is a specific one 

because it is the poorest solvent of PMMA101 as compared to acetone and DMF. In 

general, poor solubility promotes polymer adsorption on a substrate,102 which would 

accelerate stereocomplex assembly on the substrate. Indeed, the amount of 

it-PMMA/st-PMMA stereocomplexes fabricated by LbL assembly was the largest in 

acetonitrile under certain conditions,78 in contrast to in solution.54 Therefore, the poor 

solubility of PMMA might also promote the stereocomplex assembly of 

it-PMMA/st-PMAA during the template polymerization of MAA in porous it-PMMA 

thin films. In contrast, a counterproductive result was observed, which indicated that 
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porous thin films could not function effectively as templates in the presence of 

acetonitrile. Thus, the stability of the porous it-PMMA thin films in a mixed solvent of 

acetonitrile/water (4/6, v/v) was investigated. 

Second, morphological observations of the porous thin films at the micrometer scale 

are also necessary because this system is heterogeneous, and the surface morphology of 

the porous films will significantly affect the DP when the monomers are soused from a 

solution. Indeed, in a typical case of emulsion polymerization, the rate of growth 

depends on the surface area of the nuclei or particles in solution.103 In addition, the 

propylene polymerization activity is also proportional to the surface area of 

heterogeneous Ziegler-Natta catalysts such as core-shell MgO/MgCl2/TiCl4, which has 

been recently reported by M. Terano et al.104 Since silica particles are employed as 

substrates for template polymerization due to their large surface area,68,69 

thedispersibility of the silica particles is also important for degree of template 

polymerization. 

In this thesis, the author conceived the idea to simplify this phenomenon. The 

phenomenon of template polymerization is too complicated to observe directly, because 

there are several kinds of growing radicals with different molecular weights in solution 

and in porous films during polymerization. Thus, the growing radicals interacting with 

the porous films were clarified to be monomeric, oligomeric, and polymeric. Next, 

studies on the recognition of a complementary polymer or oligomer in the porous films 

were taken as a model for understanding template polymerization. In addition, 

interactions between monomers and the template were investigated changing the 

monomer structure. If this approach is taken, then the findings from this thesis could be 

used as a mechanism of template polymerization. 
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The purpose of this thesis is to understand stereospecific template polymerization in 

the porous it-PMMA thin films. First, solvent effects on the molecular motion of the 

polymer chains in the porous films were mainly investigated to obtain knowledge on the 

nanospaces as a reaction field for the template polymerization. Second, morphological 

observations were performed to confirm the stability (structural change) of the porous 

films. Third, the effects of the molecular structure on the porous films were analyzed by 

investigating the interactions (molecular recognition) between the template polymer 

it-PMMA and MAA, the oligomer, or st-PMAA in the porous thin films under 

hypothetical conditions as a model of template polymerization (Figure 5). 

 

 

Figure 5. Schematic illustration of the effects of template morphology, solvent, and 
molecular structure on porous it-PMMA films prepared by the LbL assembly of 
it-PMMA/st-PMAA in incorporating variable molecules. 
 

This thesis is divided into Part 1 (analyses of the structure and molecular recognition 

ability of porous films at the nanolevel scale), Part 2 (morphological observations of 

porous films at the micrometer scale), and Part 3 (mechanistic studies on template 

polymerization in porous films). 

In Part 1, the effects of acetonitrile solvation on porous it-PMMA thin films were 

investigated at the nanolevel scale, in order to obtain knowledge on the nanospaces of the 
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porous films as a reaction field for template polymerization. 

In Chapter 1, X-ray diffraction (XRD) analysis was employed as a powerful tool to 

confirm the packing structure of the polymer chains in order to observe the porous 

structure of the it-PMMA thin films. The XRD patterns of crystalline it-PMMA on a 

substrate changed when the surrounding st-PMAA eluted out and was incorporated. 

In Chapter 2, the solvent effects on the crystallization of porous it-PMMA thin films 

as well as the incorporation of st-PMAA into porous films were investigated. The packing 

structure, conformation, and surface structural changes of the it-PMMA thin films were 

observed using XRD, IR spectroscopy, and AFM, respectively. 

In Chapter 3, the effects of the stereoregularity, temperature, and solvent on the 

specific recognition of st-PMAA in the porous it-PMMA thin films were investigated to 

give important insights into the regularity and stability of the nanospaces in the porous 

it-PMMA films as well as template polymerization. Quartz crystal microbalance (QCM) 

analysis and IR spectroscopy revealed the first case of stereocomplex formation using 

st-PMAA with lower stereoregularity (rr = 73%) in the LbL films. 

In Part 2, macroscopic observations of the surface of the porous it-PMMA thin films 

were made in order to investigate the effects of the structural changes, as described in 

Part 1, toward the morphology of the porous films as a reaction field for the template 

polymerization. 

Chapter 4 describes the morphological changes of the porous thin films during 

it-PMMA crystallization and the subsequent st-PMAA incorporation. Surface analyses of 

the films were performed by scanning electron microscopy (SEM), AFM, X-ray 

photoelectron spectroscopy, and static contact angles. 

In Chapter 5, the dispersibilities of the silica nanoparticles coated with stereocomplex 
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thin films composed of it-PMMA/st-PMAA and with porous it-PMMA thin films under 

gentle stirring or static conditions were analyzed by dynamic light scattering and SEM, 

respectively. 

In Part 3, the mechanisms responsible for the template polymerization and 

nanospaces in the porous it-PMMA thin films were studied. I focused on the adsorption 

of the oligomers, as well as monomers with different bulkiness with or without the 

α-methyl groups described above, and their polymerization behavior in porous it-PMMA 

thin films. 

In Chapter 6, MAA, methyl methacrylate (MMA), methacrylamide (MAm), and 

oligomers of MAA and MMA were selected as models of active radical species during 

template polymerization using stereocomplex formation. The adsorption behaviors of the 

aforementioned model compounds were examined with regard to the porous it-PMMA 

thin films by QCM analyses. 

In Chapter 7, a macroporous silicagel (diameter: 7 µm, pore: 100 nm) was employed 

as a suitable substrate for template polymerization in order to use it repeatedly as an 

available polymerization container. The template polymerization of MAA on porous 

it-PMMA thin films formed on these macroporous silicagels was described, and the 

curvature effect and reproducibility were discussed. 

In Chapter 8, the postpolymerization of various vinyl monomers was investigated for 

mechanistic studies of the template polymerization of MAA in porous it-PMMA thin 

films on QCM substrates, and on silica gels. QCM analyses, IR, 1H NMR, and size 

exclusion chromatography were employed to investigate the polymerization mechanism. 
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Part 1 Analyses of Structure and Molecular Recognition 

Ability of Porous Isotactic Poly(methyl methacrylate) Thin 

Films at Nanolevel Scale 

 

Chapter 1 

Dynamics of Polymer Chains in Porous Isotactic Poly(methyl 

methacrylate) Thin Films 

 

1. 1 INTRODUCTION 

Porous nanospaces composed of a regular structure in solids and membranes have 

been of great interest for decades, because such structures provide precise reaction 

fields and enable specific molecular recognition. For example, S. Kitagawa et al. 

recently reported the polymerization of styrene in self-assembled porous coordination 

polymer materials.1 Y. Tsujita et al. prepared a smart membrane with syndiotactic 

polystyrene and molecular cavities after the removal of small molecules from the 

polymer–solvent complex.2 However, little data is available on porous nanospaces 

based on polymer–polymer interactions. 

Recently, E. Yashima et al. observed atomic force microscopy (AFM) image of a 

monolayer of isotactic (it) poly(methyl methacrylate) (PMMA) and syndiotactic (st) 

PMMA stereocomplex formed by van der Waals interactions.3 In contrast, 

layer-by-layer (LbL) assembly is a convenient procedure to prepare multilayered thin 



 34 
 

polymer films with polymer–polymer interactions by the simple alternating immersions 

of a substrate into each polymer solution.4 In our laboratory, thin films of 

it-PMMA/st-PMMA stereocomplexes were fabricated on a substrate with the LbL 

assembly.5 Similarly, it-PMMA/st-poly(methacrylic acid) (PMAA) stereocomplex thin 

films were also formed, in which the component polymers possess different solvent 

solubilities.6 

It is noteworthy that porous it-PMMA films could be prepared by the selective 

extraction of st-PMAA from it-PMMA/st-PMAA stereocomplex films with an alkaline 

solution. The porous it-PMMA films were used for the recognition of stereoregular 

polymers7 and template polymerization,8 which strongly suggests that these porous 

films possess stereoregular (st-PMAA) nanospaces. However, the detailed structure 

remains unclear at present, although the surface roughness and conformation were 

analyzed by AFM and infrared (IR) spectroscopy. On the other hand, X-ray diffraction 

(XRD) analysis is a powerful tool to confirm the packing structure of polymer chains. 

For example, it-PMMA/st-PMMA stereocomplex thin films on silica particles were 

analyzed by XRD.9 In this study, we used XRD analysis for porous it-PMMA films 

obtained from it-PMMA/st-PMAA stereocomplex films. The evidences of dynamics of 

it-PMMA chains in the thin films, as well as its porous structure, were confirmed by 

XRD analyses (Figure 1-1). 
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Figure 1-1. Schematic illustration of the dynamics of it-PMMA chains in porous thin 
films: fabrication of it-PMMA/st-PMAA stereocomplex films with LbL assembly, 
selective extraction of st-PMAA, and subsequent st-PMAA incorporation and it-PMMA 
crystallization. 
 

1. 2 EXPERIMENTAL 

it-PMMA (Mn = 22900, Mw/Mn = 1:21, mm:mr:rr = 96:2:2) and st-PMAA (Mn = 

33700, Mw/Mn = 1:45, mm:mr:rr = 1:5:94) were synthesized by conventional anionic 

polymerization.10,11 Porous it-PMMA thin films were prepared as follows. A 100-step 

alternative immersion process into an it-PMMA acetonitrile solution and a st-PMAA 

acetonitrile/water (4/6, v/v) mixed solution of 0.017 unitM was performed to generate 

stereocomplexes of it-PMMA/st-PMAA on a glass substrate at 25 ºC. Next, 10mM 

NaOH aq. was used to extract the st-PMAA from the stereocomplex by simple 

immersion for 30 min, which resulted in porous it-PMMA thin films. Subsequently, 

st-PMAA was incorporated into the porous films by immersing the films in the same 

st-PMAA solution at 25 ºC. The XRD patterns were taken by Rigaku RINT2000. 

Ni-filtered CuKα (λ = 0.154 nm) was used as X-ray source and operated with Rigaku 

ultraX18 (40 kV, 200 mA). Films were examined in the scanning angle range from 5 to 

35º at a scan rate of 0.5º/min. 
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1. 3 RESULTS AND DISCUSSION 

The observed reflections of the multilayered polymer films are ascribed to the 

packing of the polymer chains. The XRD patterns from the LbL assembly of it-PMMA 

and st-PMAA for a 100-step assembly (Figure 1-2a) showed two characteristic peaks of 

it-PMMA/st-PMAA stereocomplex (2θ = 12 and 15o, d = 0.74 and 0.59 nm, 

respectively),12 none of which are present in it-PMMA or st-PMAA. This result clearly 

indicates that it-PMMA/st-PMAA stereocomplex films were formed on the glass 

surface. 

 

 

Figure 1-2. XRD patterns of (a) it-PMMA/st-PMAA stereocomplex films, (b) porous 
it-PMMA films, (c) st-PMAA incorporated films (after 600 min of immersion), (d) 
it-PMMA powder, and (e) st-PMAA powder. 

 

st-PMAA was then selectively extracted from the stereocomplex thin films to form 

porous it-PMMA thin films, supported by IR spectra.7 Surprisingly, the peak from the 
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porous films (Figure 1-2b) shifted from that of the stereocomplex films. The broad 

reflection at 2θ = 13o (d = 0.67 nm) suggests that the crystallinity in the films had 

decreased. The distance between the polymer chains in the films also expanded as 

compared to it-PMMA powder (Figure 1-2d),13 suggesting that the evidence of porous 

structure was obtained and that stereoregular (st-PMAA) nanospaces could be fabricated 

in the thin films. In a previous report using AFM,7 the surface roughness of the porous 

films increased after the extraction of st-PMAA, supporting the molecular-level 

extraction in this result. 

Next, st-PMAA was incorporated into porous it-PMMA films. In Figure 1-2c, the 

XRD pattern of st-PMAA incorporated films (after 600-min immersion) showed a 

shoulder peak characteristic of the stereocomplex (2θ = 12o) with two peaks of 

crystalline it-PMMA (2θ = 9 and 14o, d = 0.96 and 0.62 nm, respectively).13 It is known 

that st-PMAA was incorporated into about 80% of the it-PMMA in the porous films 

analyzed by a quartz crystal microbalance (12-step assembly).7 The present result 

indicates that the stereocomplexes were partially formed, and the residual 

semicrystalline it-PMMA crystallized. Thus, we propose that the molecular motion to 

assemble caused by polymer—polymer interactions could be a driving force to 

crystallize even at the solid—liquid interface, regardless of whether it is it-PMMA itself 

or the it-PMMA/st-PMAA stereocomplex. 

The temporal changes of the aforementioned porous it-PMMA structure were 

monitored by immersing the films into a st-PMAA solution (Figure 1-3). The intensities 

at 2θ = 9 and 14o, which were assigned to crystalline it-PMMA, gradually increased. 

Probably, the movement of the it-PMMA chains in the crystalline thin films depends on 

appropriate solubilities, such as acetonitrile. In contrast, as the intensities around 2θ = 
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12o were constant, the stereocomplex formation occurred more rapidly than it-PMMA 

crystallization. 

 

 

Figure 1-3. XRD patterns of (a) porous it-PMMA films, st-PMAA incorporated films 
after (b) 40 min of immersion, (c) 115 min of immersion, and (d) 600 min of immersion, 
respectively. 

 

 

1.4 CONCLUSIONS 

The porous structure of it-PMMA films with stereoregular (st-PMAA) nanospaces 

was confirmed by XRD analysis for the first time. Furthermore, the polymer chains 

moved slightly at the interface, changing the packing distances. The porous it-PMMA 

films not only incorporated st-PMAA, but also slowly crystallized. Thus, competition 
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between the stereocomplex formation and it-PMMA crystallization occurred when the 

porous films immersed into a st-PMAA solution. Further research is currently underway 

testing various conditions in order to apply this useful nanospace for specific 

recognition of stereoregular polymers and template polymerization efficiently. 
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Chapter 2 

Solvent Effects on Isotactic Poly(methyl methacrylate) 

Crystallization and Syndiotactic Poly(methacrylic acid) 

Incorporation in Porous Thin Films 

 

2. 1 INTRODUCTION 

Biomacromolecules have a higher order nanostructure, and assemble by themselves 

in certain environments. For example, DNA forms a double helix via complementary 

base-pair hydrogen bond interactions in water, which precisely recognizes the sequence 

to control the replication process.1 In synthetic polymers, isotactic (it) poly(methyl 

methacrylate) (PMMA) and syndiotactic (st) PMMA form a stereocomplex driven by a 

good steric fit between the two chains in specific solvents or in solids.2-4 G. Challa et al. 

suggested that the stereocomplex formed a complementary double-stranded helix, in 

which it-PMMA was surrounded by st-PMMA based on an X-ray analysis of the 

stretched fibers.5 Recently, E. Yashima et al. proposed a triple-stranded helix model, in 

which a double-stranded of it-PMMA was surrounded by a single helix of st-PMMA, 

based on high-resolution atomic force microscopy (AFM) images of the stereocomplex 

monolayers obtained with the Langmuir-Blodgett technique.6,7 On the other hand, 

layer-by-layer (LbL) assembly has been known as a versatile technique to prepare 

polymer thin films on a substrate by simple alternate immersion into interactive 

polymer solutions.8 Electrostatic interactions between oppositely charged polymers 

have been widely utilized as a driving force for LbL assembly. In our laboratory, van der 
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Waals interactions have been applied to stereoregular polymer thin films such as 

polymethacrylate9-12 or poly(lactic acid)13 stereocomplexes. 

Stereocomplexes were also formed when the methyl ester groups of st-PMMA were 

replaced by carboxyl or other alkyl ester groups, whereas the methyl ester of it-PMMA 

was essential.2-4,14,15 Therefore, stereocomplex formations between it-PMMA and 

various st-polymethacrylates have been well-researched. In particular, a stereocomplex 

thin film composed of it-PMMA and st-poly(methacrylic acid)11 (PMAA) is very 

attractive due to the fact that a porous it-PMMA thin film can be prepared by the 

selective extraction of st-PMAA from the stereocomplex film, taking advantage of the 

different solubilities of each component polymer. In this manner, macromolecular 

porous thin films were utilized as a host film for stereoregular polymers16 or oligomers17 

and for the template polymerization of methacrylates,18,19 although the mechanisms 

responsible for these phenomena are still under study. 

For the aforementioned it-PMMA/st-PMAA stereocomplex, it would also be 

important to examine two kinds of stereocomplex models (double-stranded helix5 

versus triple-stranded helix6,7), since the stereocomplex composed of 

it-PMMA/st-PMMA and that composed of it-PMMA/st-PMAA are considered to be 

basically the same structure on X-ray analysis.15,20 it-PMMA would form a single helix 

in the double-stranded stereocomplex model, and a double-stranded helix in the 

triple-stranded stereocomplex model, respectively. We anticipated that it could be a 

significant approach to elucidate whether the it-PMMA helix inside the stereocomplexes 

would adopt a single-strand or a double-strand shape by extracting only the st-PMAA 

component from the stereocomplex films to observe the it-PMMA chains directly. It is 

also believed that the helical shape of it-PMMA is maintained after st-PMAA extraction 
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from the stereocomplex films with an aqueous alkaline solution, because the residual 

it-PMMA is insoluble in water. More recently, we observed porous it-PMMA thin films, 

st-PMAA incorporation into these films, and partial it-PMMA crystallization in the 

films using X-ray diffraction (XRD) analysis.21 

it-PMMA has been famous not only for its unique crystalline double-stranded 

helix,22 but also for its extremely slow crystallization rate. It takes several days to 

develop a semicrystalline morphology in melt or cast it-PMMA film by annealing at 

high temperature.23-26 The it-PMMA chains, however, are more flexible than st-PMMA 

and atactic (at) PMMA chains, because the glass transition temperature of it-PMMA 

(around 40 ºC) is much lower than st-PMMA and at-PMMA (both above 100 ºC).27 

Recently, the snake-like motion of a single it-PMMA chain deposited on a substrate 

under humid air was observed by in-situ AFM.28,29 Various solvents have been studied 

to investigate the nature of PMMA, because some solvents can affect it-PMMA 

dynamics. Among them, acetonitrile is a theta solvent30 and water is a nonsolvent for 

PMMA, respectively. Mixed solvents of acetonitrile and water have been utilized for the 

LbL assembly of it-PMMA/st-PMAA stereocomplexes due to the controllable 

solubilities of it-PMMA and st-PMAA.11,16,17,19,21 it-PMMA crystallization and 

st-PMAA incorporation in the porous it-PMMA thin films were also occurred in a 

mixed solvent of acetonitrile/water (4/6, v/v).16,21 

In this study, we further investigated the molecular motion of it-PMMA chains in 

porous thin films after various solvent treatments by XRD, infrared (IR), and AFM, as 

well as the solvent effects and incorporation rates of st-PMAA into the porous films 

using a quartz crystal microbalance (QCM). According to the present results, the 

mechanisms of st-PMAA incorporation and template polymerization in the porous 
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it-PMMA films are also discussed. 

 

2. 2 EXPERIMENTAL 

Materials it-PMMA (Mn = 22900, Mw/Mn = 1.21) and st-PMAA (Mn = 33700, 

Mw/Mn = 1.45) were synthesized by anionic polymerization in toluene at –78 ºC with 

t-C4H9MgBr31 and t-C4H9Li/bis(2,6-di-t-butylphenoxy)methyl-aluminium32 as initiators, 

respectively. The number average molecular weights and their distribution were 

measured by gel permeation chromatography (Tosoh System HLC-8120GPC) with 

PMMA standards at 40 ºC. Two commercial columns (TSKgel SuperH4000 and TSKgel 

GMHXL) were connected in series, and tetrahydrofuran was used as an eluent. Their 

tacticities (mm:mr:rr), which were analyzed from their α-methyl proton signals using 

400-MHz NMR (nitrobenzene-d5, 110 ºC), were 96:2:2 and 1:5:94, respectively. The 

characterization of st-PMAA was achieved after methylation of the carboxyl group to 

st-PMMA by diazomethane solutions. Acetonitrile was purchased from Wako Pure 

Chemical Industries (Japan). Ultrapure distilled water was provided by the MILLI-Q 

laboratory (MILLIPORE). 

Stepwise Assembly A substrate (a slide glass or QCM electrode) was cleaned 3 

times with a piranha solution (H2SO4:40% H2O2 aqueous solution = 3:1 by volume) for 

1 min each, followed by rinsing with ultrapure water and drying with N2 gas. The 

cleaned substrate was immersed into an it-PMMA acetonitrile solution at a 

concentration of 0.017 unitM for 5 min at 25 ºC. The substrate was then taken out, and 

rinsed thoroughly with acetonitrile. The substrate was again immersed into a st-PMAA 

acetonitrile/water (4/6, v/v) solution at a concentration of 0.017 unitM for 5 min at 25 

ºC. The aforementioned procedure was repeated to fabricate stereocomplexes of 
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it-PMMA/st-PMAA on the substrate. This alternative deposition cycle was repeated 

until the desired multilayers were obtained. Next, porous it-PMMA thin films were 

prepared by the extraction of st-PMAA by immersion into a 10 mM NaOH aqueous 

solution, and were characterized by IR, AFM,16 and XRD.21 

X-ray Diffraction A 100-step alternative immersion process into an it-PMMA 

solution and a st-PMAA solution was performed with a slide glass. The XRD patterns 

were taken by a Rigaku RINT2000. CuKα (λ = 0.154 nm) was used as the X-ray source 

and operated at 40 kV, 200 mA with a Ni filter (Rigaku ultraX18). The films were 

examined at 2θ = 5 to 35º at a scan rate of 0.5º/min. 

Infrared Spectroscopy Multilayered thin films of a 16-step assembly of it-PMMA 

and st-PMAA were prepared on QCM substrates. Attenuated total reflection (ATR) IR 

spectra of the thin films were then obtained with a Spectrum 100 FT-IR spectrometer 

(Perkin-Elmer, USA). The interferograms were co-added 64 times, and 

Fourier-transformed at a resolution of 4 cm-1. 

Atomic Force Microscopy A 16-step alternative immersion was performed using a 

QCM substrate. Porous it-PMMA thin films were prepared by the same procedure as 

per the stepwise assembly. AFM images were obtained with a JSPM-5400 (JEOL, 

Japan) that was operated in the tapping mode in air at ambient temperature. Scanning 

was performed using silicon cantilevers (NSC35, µ-masch; resonance frequency: 

around 150 kHz; spring constant: 4.5 N/m) within an area of 1 × 1 µm2 with a 512 scan 

line and a scan speed of 2.0 µm/s. We did not perform any image processing other than 

the flat leveling. The mean square roughness (Ra) in the observed areas was estimated 

from the following equation where F(x,y) is the surface relative to the center plane, and 

Lx and Ly are the dimensions of the surface. 
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Ra = 1/(LxLy)∫
0

Lx 
∫
0

Ly 
│F(x,y)│ dx dy 

Quartz Crystal Microbalance An AT-cut QCM with a parent frequency of 9 MHz 

was obtained from USI (Japan). The frequency was monitored by an Iwatsu frequency 

counter (Model 53131A). The quartz crystal (9 mm diameter) was coated on both sides 

with mirror-like polished gold electrodes (4.5 mm in diameter). The alternative 

immersion process was performed with QCM substrates. 

 

2. 3 RESULTS AND DISCUSSION 

Using an acetonitrile/water (4/6, v/v) solvent, st-PMAA incorporation and it-PMMA 

crystallization in the porous it-PMMA thin films occurred at the same time, though their 

rates were very different.21 We paid attention to the solvent effects on it-PMMA 

crystallization in the porous films without st-PMAA at the beginning of this study. 

Acetonitrile might promote it-PMMA crystallization, but the it-PMMA multilayered 

thin films dissolve in it. Therefore, we selected acetonitrile/water with a 4/6 (v/v) 

composition as the solvent with proper solubility. To analyze the structural changes of 

the porous it-PMMA thin films, three measurement methods, XRD, Fourier transform 

(FT) IR, and AFM were employed as described below. 
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Figure 2-1. XRD patterns of (a) porous it-PMMA films and (b, c) it-PMMA films after 
10 h of immersion (b) in water and (c) in a mixed acetonitrile/water (4/6, v/v) solvent. 
 

Figure 2-1 shows the XRD patterns of the it-PMMA thin films. After the prepared 

films were immersed into water for 10 h, the peak pattern of the films did not change as 

compared to that of the initial porous films (2θ = 13º, d = 0.67 nm) (Figure 2-1a, b). 

This observation seems to be reasonable, because it-PMMA chains do not aggregate in 

water, although a peculiar repetitive movement of single it-PMMA chains deposited on 

mica under humid air was reported.28,29 In contrast, two peaks of crystalline it-PMMA33 

appeared (2θ = 9 and 14º, d =0.96 and 0.62 nm, respectively) after immersion into 

acetonitrile/water (4/6, v/v) for 10 h (Figure 2-1c). This result indicates that acetonitrile 

plays an important role in it-PMMA crystallization in porous multilayered films, 

whereas water keeps the film structure porous. Thus, water enables template 

polymerization in porous it-PMMA films when used as a solvent.18,19 However, the 



 47 
 

structure of the porous it-PMMA thin films after st-PMAA extraction from the 

stereocomplex assembly could not be determined in detail, because the crystallinity 

decreased as compared to that of the stereocomplex based on the broad spectral 

pattern.21 It was also demonstrated that the crystallized it-PMMA in the thin films 

formed a double-stranded helix consisting of two chains.22,33 

The FT-IR/ATR spectra of the carbonyl vibration region were used to detect the 

polymer chain conformation. Two peaks assigned to it-PMMA (1737 cm-1) and 

st-PMAA (1726 cm-1) were observed for the LbL assembly, which supported 

stereocomplex formation (Figure 2-2a).11 Even after removal of the st-PMAA from the 

stereocomplex by immersion into an aqueous alkaline solution, the conformation of the 

it-PMMA main chain was still maintained according to only one peak of it-PMMA 

observed at 1739 cm-1 (Figure 2-2b),16 although a random conformation of it-PMMA 

was observed at 1725 cm-1 prepared by cast film.11,16 In the present study, we observed 

IR spectra focused on the conformational changes of the crystallized it-PMMA films 

when immersing the films into acetonitrile/water (4/6, v/v). The peaks of the it-PMMA 

films after immersion in the mixed solvent for 10 and 40 h were observed at 1736 and 

1737 cm-1, respectively (Figure 2-2c, d). These observations indicate that it-PMMA 

chains maintain their conformation after crystallization. 
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Figure 2-2. FT-IR/ATR spectra of (a) the LbL assembly of it-PMMA and st-PMAA for 
a 16-step assembly, (b) porous it-PMMA films, and (c, d) crystallized it-PMMA films 
after (c) 10 and (d) 40 h of immersion in a mixed acetonitrile/water (4/6, v/v) solvent. 

 

In Figure 2-3, AFM images of the it-PMMA films are shown. The mean square 

roughness (Ra) of the QCM substrate and porous it-PMMA films after 10 h of 

immersion in water was 3.9 and 7.2 nm, respectively. A relatively smooth surface16 was 

maintained even after the water treatment (Figure 2-3a). On the other hand, several 

hemispherical outshoots were observed on the surface of crystallized it-PMMA films 

after 10 h of immersion in acetonitrile/water (4/6, v/v), and the height reached several 

hundreds of nanometers (Figure 2-3b). The outshoots are likely aggregates of crystalline 

it-PMMA because they appeared only when immersed in acetonitrile/water (4/6, v/v) 

and the structure was confirmed by XRD measurement (Figure 2-1c). The Ra was 39 

nm, which was much larger than the porous films. As reported previously, it is therefore 
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conceivable that the solvent affected the surface roughness of the films9 and the 

dynamics of the it-PMMA chains21 in the thin films. 

 

 
Figure 2-3. AFM images of (a) porous it-PMMA films after 10 h of immersion in water 
and (b) crystallized it-PMMA films after 10 h of immersion in acetonitrile/water (4/6, 
v/v). 
 

Next, we moved to QCM analyses to investigate what percentages of 

stereocomplexes would be formed in the multilayered thin films. QCM analysis is a 

powerful tool to calculate the amount of absorbed polymer at the nano gram order, ∆m, 

by measuring the frequency decrease, ∆F, using Sauerbrey’s equation.34 

–∆F (Hz) = 1.15∆m (ng) 
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Figure 2-4. Typical QCM analysis of the LbL assembly and selective extraction and 
subsequent incorporation of st-PMAA. it-PMMA in acetonitrile (white circles) and 
st-PMAA (black circles) were alternately assembled on a QCM substrate at 0.017 unitM 
at 25 °C. The porous it-PMMA films were prepared by st-PMAA extraction using 10 
mM NaOH(aq) (white square). The following st-PMAA incorporation was observed at 
a concentration of 0.017 unitM at 25 °C (black squares). 

 

A typical QCM analysis is shown in Figure 2-4. The stepwise, alternative assembly 

of it-PMMA and st-PMAA, the selective extraction of st-PMAA, and the subsequent 

st-PMAA incorporation were observed as described in previous studies.11,16 The drastic 

frequency shift at the extraction stage showed the total amount of adsorbed st-PMAA in 

the stepwise assembly. The ratio of extraction amount towards total amount of 

assembled st-PMAA was 102 ± 7.02 % (n = 30). The molar ratios of the units assembled 

from st-PMAA and it-PMMA calculated from the QCM analyses were between 1 and 

1.5, and were not equal to 2 (st-PMAA/it-PMMA).14 It is suggested that a mixture of the 

stereocomplexes with 1/1 and 2/1 unit molar ratios (st-PMAA/it-PMMA) was formed,11 

though QCM analyses mean all amount of stepwise assembled it-PMMA and st-PMAA 

should interact each other because there would be almost no weight change when one 

component is treated.9 Therefore, the complex efficiency defined in previous studies16,17 

was not applied to the st-PMAA incorporation stages in this study. We defined the 
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incorporation, which was calculated as a percentage of the incorporated st-PMAA 

weight against the extracted st-PMAA weight, under the assumption that the 

stereocomplex formed again with the identical ratios as the original LbL assembly. 

Incorporation (%) = Wincorporation/Wextraction × 100 

 

 

Figure 2-5. Time dependence of st-PMAA incorporation into porous it-PMMA films at 
a concentration of 0.017 unitM at 25 °C. The porous films were immersed into a 
st-PMAA mixed acetonitrile/water (4/6, v/v) solution after (a) st-PMAA extraction, (b) 
10 h of immersion in water, and (c) 10 and (d) 40 h of immersion in a mixed 
acetonitrile/water (4/6, v/v) solvent. 

 

We were interested in whether it-PMMA would recognize st-PMAA even after 

crystallization. The st-PMAA incorporation was around 80 % towards the porous 

it-PMMA thin films after immersion in water for 10 h, which was similar to the value of 

the porous films just after st-PMAA extraction (Figure 2-5a, b). This is likely because 

the terminal of it-PMMA might support the porous film structure when st-PMAA was 

extracted from the stereocomplex films, but could not incorporate st-PMAA.16 It is 

implied that the stereocomplex formation was similarly generated without any structural 
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change of it-PMMA in water (Scheme 2-1A). In contrast, after immersion in 

acetonitrile/water (4/6, v/v) for 10 and 40 h, the incorporations was reduced to around 

50 and 35 %, respectively (Figure 2-5c, d). The decreased values suggest that 

crystallized it-PMMA in the thin films lost their stereocomplex formation capability as 

it may have shortened the packing distance (Scheme 2-1B) and formed hemispherical 

outshoots under immersion in acetonitrile/water (4/6, v/v) (Figure 2-3b). However, the 

macroscopic deformation such as destroy of pores in the porous it-PMMA films could 

not significantly influence incorporation of st-PMAA because reversible incorporation 

and extraction of st-PMAA were occurred using spin-coated it-PMMA films with no 

pores.16 It is believed that the films are slightly swollen by acetonitrile, and interfacial 

rearrangement is occurred in the spin-coated films. FT-IR/ATR spectra also confirmed 

that incorporation of st-PMAA into the crystallized it-PMMA films was occurred not 

through physical adsorption but thorough stereocomplex formation. The carbonyl 

vibration peak of st-PMAA in the stereocomplex assembly was observed around 1726 

cm-1, although a random conformation of st-PMAA was observed at 1695 cm-1 prepared 

by cast film.11,16 
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Scheme 2-1. Schematic Illustration of the Molecular Motion of it-PMMA in 

Multilayered Thin Films
a 

 

a Porous it-PMMA films, which were unchanged in water, selectively incorporated 
st-PMAA to form the stereocomplex (A). Crystallized it-PMMA films, which were 
prepared by immersion in acetonitrile/water (4/6, v/v), barely incorporated any 
st-PMAA (B). 

 

It is believed that acetonitrile solvated the it-PMMA chains, and enhanced their 

molecular motion.11,21 Therefore, the solvent effect of a st-PMAA solution during the 

incorporation stages was also investigated. Porous it-PMMA thin films were immersed 

into st-PMAA solutions with various ratios of acetonitrile/water (0.017 unitM). A 

st-PMAA solution with an acetonitrile content of more than 60 % was not examined 

because of the poor solubility of st-PMAA. Figure 2-6 shows the time dependence of 

the incorporation using various st-PMAA solutions. st-PMAA was barely incorporated 

into the porous it-PMMA films in water or acetonitrile/water (1/9, v/v) (Figure 2-6a, b), 

whereas the maximal incorporation increased significantly between 20 and 40 vol % of 

acetonitrile in the st-PMAA solution. From the fact that st-PMAA was slowly 

incorporated into the porous films (Figure 2-6c, d), it is believed that the it-PMMA 

chains in the film are slightly swollen by acetonitrile in the mixed solvents. At more 
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than 50 % of acetonitrile, the incorporation values saturated to about 80 % (Figure 2-6e, 

f, g). These results suggest that the it-PMMA chains could not move enough to change 

its conformation in water, and a certain degree of solvation in acetonitrile is necessary in 

order to incorporate st-PMAA. Acetonitrile is known as a strongly complexing 

solvent,35 and would dynamically change the adsorbed it-PMMA chains from a random 

conformation into the proper shape for the stereocomplex formation at the stepwise 

assembly stages.9,11 In contrast, the conformation of it-PMMA remained the same as 

that in the stereocomplex during the st-PMAA incorporation stages.16 This enabled 

template polymerization to form the stereocomplex, even in water,18,19 which is a 

nonsolvent for PMMA. Therefore, in the thin films, acetonitrile is not always necessary 

for stereocomplex formation, but is regarded as a solvent here to slightly solvate the 

it-PMMA chains. The solubilities of st-PMAA would not generate a significant effect, 

because the stereocomplex films did not dissolve in water. However, penetration of 

st-PMAA into the porous it-PMMA films is also necessary to form the stereocomplex. 

In Figure 2-7, the FT-IR/ATR spectra of the st-PMAA incorporated films with various 

mixed solutions were shown. The peak intensities of st-PMAA (1726 cm-1) in the 

stereocomplexes increased with the acetonitrile content, which is in good agreement 

with the results of the QCM analyses (Figure 2-6). These observations also demonstrate 

that stereocomplex formation was promoted as the acetonitrile content increased in the 

st-PMAA solution. However, from Figure 2-7, the absorbance of st-PMAA for 

it-PMMA increased between acetonitrile/water (v/v) 4/6, 5/5, and 6/4, though these 

maximal incorporation were almost same (Figure 2-6). This might be because a mixture 

of the stereocomplexes with 1/1 and 2/1 (st-PMAA/it-PMMA) was formed as the 

original stereocomplex assembly. The IR carbonyl vibration of it-PMMA and st-PMAA 
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in a stereocomplex film with 1:1 stoichiometry are observed at 1731 and 1717 cm-1,18 

and 1:2 (it-PMMA:st-PMAA) stoichiometry are at 1737 and 1726 cm-1,11 respectively. 

Thus, stereocomplexes with 1:2 stoichiometry were likely most formed using 

acetonitrile/water (6/4, v/v). 

 

 

Figure 2-6. Time dependence of st-PMAA incorporation into porous it-PMMA films at 
a concentration of 0.017 unitM at 25 °C. The porous films were immersed into a 
st-PMAA soulution of mixed acetonitrile/water (v/v) solvents: (a) water, (b) 1/9, (c) 2/8, 
(d) 3/7, (e) 4/6, (f) 5/5, and (g) 6/4. 
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Figure 2-7. FT-IR/ATR spectra of st-PMAAincorporated films. The porous films were 
immersed into a st-PMAA soulution of mixed acetonitrile/water (v/v) solvents: (a) 
water, (b) 1/9, (c) 2/8, (d) 3/7, (e) 4/6, (f) 5/5, and (g) 6/4. 

 

Film thickness would also affect the incorporation of st-PMAA into the porous 

it-PMMA thin films. Figure 2-8A shows the time dependence of the st-PMAA 

incorporation into porous it-PMMA thin films of varying thickness in a st-PMAA 

acetonitrile/water (4/6, v/v) solution. There was a tendency for st-PMAA to penetrate 

more slowly into the porous films as the amount of porous it-PMMA films was 

increasing. The thickness of the porous it-PMMA films, which corresponded to 
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approximately -800 Hz/QCM, was determined as 44 nm by AFM scratching mode in a 

previous study.16 Therefore, the it-PMMA film thickness was calculated in this study 

according to an estimation of the increased thickness at a constant rate of 0.055nm/Hz 

(Figure 2-8B). The incorporation decreased to around 40 % with an increasing thickness 

of the porous it-PMMA films. Although it is difficult to explain why the decreasing 

behavior of the st-PMAA incorporation into the films became suppressed, the it-PMMA 

chains in the films would be evenly swollen by acetonitrile. Thus, it could be suggested 

that st-PMAA penetrated into the it-PMMA layer on the film surface easily, but more 

slowly inside the multilayered films due to entanglements with each polymer chain or 

interactions of the it-PMMA chains themselves. 

 

 

Figure 2-8. (A) Time dependence of st-PMAA incorporation into porous it-PMMA 
films prepared by LbL assembly for (a) 16-, (b) 24-, (c) 32-, (d) 40-, (e) 48-, and (f) 
64-step assemblies in mixed acetonitrile/water (4/6, v/v) st-PMAA solutions at a 
concentration of 0.017 unitM at 25 °C. (B) Frequency shift dependence of the porous 
it-PMMA films for the incorporation of st-PMAA into the porous films. 
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2. 4 CONCLUSIONS 

We investigated the structure of partially crystallized it-PMMA multilayered thin 

films and the mechanism of st-PMAA incorporation into the films. The XRD pattern of 

the it-PMMA thin films after immersion into acetonitrile/water (4/6, v/v) showed two 

peaks of a crystalline it-PMMA double-stranded helix (2θ = 9 and 14º). According to 

the FT-IR spectra, the it-PMMA chains maintained their conformations after the 

crystallization. Hemispherical outshoots with heights of several hundred nanometers 

were observed on the surface of crystallized it-PMMA films by AFM. The incorporation 

percentages of st-PMAA into the porous films decreased as the it-PMMA films 

crystallized, or with an increasing thickness of the porous it-PMMA films, probably due 

to the entanglement of it-PMMA chains. However, the incorporation into the porous 

films was gradually improved, when the acetonitrile contents of the st-PMAA solution 

increased from 20 to 40 vol %. In contrast, it-PMMA crystallization as well as st-PMAA 

incorporation did not occur using only water, which is a nonsolvent for it-PMMA. Thus, 

it can be concluded that the acetonitrile percentage in water is important for the 

dynamics of it-PMMA chains in porous thin films. We believe that these structural 

investigations and the incorporation behavior of the stereoregular host films also 

provide important insights for the analysis of template polymerization mechanisms. 
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Chapter 3 

Specific Recognition of Syndiotactic Poly(methacrylic acid) in 

Porous Isotactic Poly(methyl methacrylate) Thin Films Based 

on the Effects of Complexing Solvent, Temperature, and 

Stereoregularity 

 

3. 1 INTRODUCTION 

The stereocomplexation of poly(methyl methacrylate)s (PMMA) has received 

significant attention because stereocomplexes are unique structures composed of 

isotactic (it) and syndiotactic (st) PMMA chains bonded together by van der Waals 

forces.1—3 These PMMA stereocomplexes form a multiple-stranded helical structure, 

which was demonstrated by X-ray4 and atomic force microscopy.5,6 Although the basic 

structure and mechanism of complex formation are still unclear, the formation of 

thermoreversible ion gels,7 hollow capsules,8 fibers,9 and nano- or microstructures10—13 

via stereocomplexation have been reported recently as advanced materials. Numerous 

studies have also been performed on stereocomplex formation between it-PMMA and 

st-PMMA in solution,14—18 bulk,19 supercritical fluids,20—22 and Langmuir-Blodgett 

films.5,6,23—27 Furthermore, Challa et al. investigated the stereoselective association 

between it-PMMA and st-polymethacrylates in solution,28—30 and the stereospecific 

polymerization of methacrylates in the presence of it-PMMA or st-PMMA.31—33 

However, there are few reports on stereocomplexes composed of it-PMMA and 
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st-poly(methacrylic acid) (PMAA). 

In our laboratory, the layer-by-layer (LbL) assembly technique34 has been employed 

to fabricate multilayered thin films composed of PMMA stereocomplexes on quartz 

crystal microbalance (QCM) substrates.35—37 In particular, macromolecularly porous 

it-PMMA thin films obtained from it-PMMA/st-PMAA stereocomplex assemblies are 

very important from a scientific point of view, as will be described next. Porous 

it-PMMA films demonstrated the selective recognition of st-polymethacrylates,38 and 

provided precise reaction fields for the perfectly controlled template polymerization of 

methacrylic acid (MAA),39—41 because the van der Waals interactions were maximal, 

which contributes to stereocomplex formation due to suppressed molecular motion in 

the porous films as compared to in solution.28—33 

More recently, we investigated the mechanisms responsible for this system, such as 

the recognition of similar guest molecules42,43 or the structure of the porous it-PMMA 

films under specific conditions.44—48 As a result, it is hypothesized that the template 

polymerization follows a pick up mechanism, in which the growing oligomer radical 

interacts with the porous it-PMMA films and MAA is freely supplied from the 

solution.42 However, studies on the incorporation behaviors of st-PMAA with lower 

tacticities synthesized in the solution or at higher temperature conditions, in which the 

template polymerization was achieved,39—41 are necessary not only to confirm the 

hypothesis but to get important insights into the regularity and stability of nanospaces in 

the it-PMMA films. In addition, it has been reported that acetonitrile content in the 

st-PMAA solution affects on the unit-molar ratio stoichiometry of st-PMAA/it-PMMA 

in the stereocomplex films36 and the mobility of the it-PMMA polymer chains in the 

porous films.45 Therefore, specific incorporation of st-PMAA into the porous it-PMMA 
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films depending on complexing solvents29 would be achieved in this system. 

In this study, we investigated the effects of stereoregularity, temperature, and solvent 

on st-PMAA incorporation into the porous it-PMMA films using QCM and infrared (IR) 

spectroscopy (Scheme 3-1). 

 

Scheme 3-1. Schematic Illustration of st-PMAA Extraction from Stereocomplex 

Films Composed of it-PMMA/st-PMAA, and Subsequent Specific st-PMAA 

Incorporation in Porous it-PMMA Films. Steregularity, Temperature, and Solvent 

Affect the st-PMAA Incorporation. 
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3. 2 EXPERIMENTAL 

Materials it-PMMA and st-PMAA were synthesized by anionic polymerization in 

toluene at –78 ºC with t-C4H9MgBr49 and t-C4H9Li50 as initiators, respectively. 

st-PMAA of low tacticity was synthesized by radical polymerization in water at 40 ºC 

with 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride as a water-soluble 

initiator. The number average molecular weights (Mn) and their distribution (Mw/Mn) 

were measured by size exclusion chromatography (Tosoh System HLC-8120GPC) with 

PMMA standards at 40 ºC in tetrahydrofuran. Their tacticities (mm:mr:rr) were 

analyzed from their α-methyl proton signals using 400-MHz NMR (nitrobenzene-d5, 
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110 ºC). The characterization of st-PMAA was achieved after methylation of the 

carboxyl group to st-PMMA by a diazomethane solution. The characteristics of these 

polymers are summarized in Table 3-1, and the sample codes are abbreviated using the 

tacticity. Acetonitrile, N,N-dimethylformamide (DMF), and ethanol were purchased 

from Wako Pure Chemical Industries. Ultrapure distilled water was provided by the 

MILLI-Q labo. 

 

Table 3-1. Stereoregular Polymethacrylates Synthesized in This Study 

 

 

Quartz Crystal Microbalance An AT-cut QCM with a parent frequency of 9 MHz 

was obtained from USI. The frequency was monitored by an Iwatsu frequency counter 

(Model 53131A). The quartz crystal (9 mm diameter) was coated on both sides with 

mirror-like polished gold electrodes (4.5 mm in diameter). QCM analysis enables us to 

calculate the amount of absorbed polymer at the nano gram order, ∆m, by measuring the 

frequency decrease, ∆F, using following equation.51 

–∆F (Hz) = 1.15∆m (ng) 
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QCM electrode was cleaned three times with a piranha solution (H2SO4/40% H2O2 

aqueous solution = 75/25, v/v) for 1 min each, followed by rinsing with ultrapure water 

and drying with N2 gas. The cleaned substrate was immersed into an it-PMMA-96 

acetonitrile solution at a concentration of 0.017 unitM for 5 min at 25 ºC. The substrate 

was then taken out, and rinsed thoroughly with acetonitrile. The QCM substrate was 

again immersed into a st-PMAA-94 acetonitrile/water (40/60, v/v) solution at a 

concentration of 0.017 unitM for 5 min at 25 ºC. The aforementioned procedure was 

repeated to fabricate stereocomplexes of it-PMMA/st-PMAA on the QCM substrate. 

This alternative deposition cycle was repeated for 16 steps. Then, porous it-PMMA thin 

films were prepared by the extraction of st-PMAA using 10 mM NaOH aqueous 

solution. Next, the porous it-PMMA films were immersed in each st-PMAA solution at 

a concentration of 0.017 unitM and rinsed with each solvent. 

Infrared Spectroscopy Attenuated total reflection (ATR) IR spectra of the thin 

films were obtained with a Spectrum 100 FT-IR spectrometer (Perkin-Elmer). The 

interferograms were co-added 64 times and were Fourier transformed. 

 

3. 3 RESULTS AND DISCUSSION 

It has been previously reported that st-PMAA with low tacticity (rr = 58%) was not 

incorporated into macromolecularly porous it-PMMA films.38 However, this study was 

not sufficient to study the specific recognition mechanism of the stereoregularities in 

this system, because the only one sample was tested. Therefore, st-PMAA with different 

stereoregularities (rr = 94, 73, and 62%, respectively) and almost same Mn were 

synthesized to compare the incorporations under the same conditions (Table 3-1). When 
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the molecular weight of st-PMAA was appropriately twice that of it-PMMA, the 

incorporation constant of st-PMAA was maximal, as described in the previous paper.40 

The molecular weight distributions (Mw/Mn) of st-PMAA-62 and st-PMAA-73 were 

almost the same, although they were broader than that of st-PMAA-94 because of the 

differences of the polymerization methods or catalysts. Thus, it is indicated that the 

difference of the stereoregularities between st-PMAA-62 and st-PMAA-73 would 

directly affect on the incorporation behaviors, while the effect of molecular weight 

distribution should be taken into consideration in the case of st-PMAA-94. A mixed 

solvent of acetonitrile/water (40/60, v/v) was used as the solvent for the st-PMAA 

solution, and the porous it-PMMA films were immersed into the st-PMAA solutions for 

115 min.44—46 The incorporation of st-PMAA was calculated as a percentage of the 

incorporated st-PMAA weight against the extracted st-PMAA weight from QCM 

analyses, as previously reported.45 

Incorporation (%) = Wincorporation/Wextraction × 100 

Figure 3-1 shows the time dependence of the st-PMAA incorporation in porous 

it-PMMA films. The incorporation of st-PMAA-94 was almost saturated within 20 min, 

and the value reached a maximum around 80% (Figure 3-1a).38,45 Note that 

st-PMAA-73 was incorporated in the porous it-PMMA films very slowly, and the 

incorporation was not saturated within 115 min (Figure 3-1b), whereas st-PMAA-62 

was barely incorporated in the porous it-PMMA films even after 115 min (Figure 3-1c). 

Therefore, it-PMMA films were immersed in the st-PMAA-73 solution for 800 min, 

with the result that the incorporation value reached a maximum at approximately 60%, 

and became saturated. This indicates that the incorporation rates depended on the 

stereoregularity of st-PMAA, and that the porous it-PMMA films could not recognize 
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the st-PMAA obtained with conventional free radical polymerization at this dilute 

concentration (0.017 unitM). Indeed, the st-PMAA-62, employed in this study, was 

synthesized in an aqueous solution under the same conditions that the template 

polymerization was achieved in the porous it-PMMA films.41 Thus, these results show a 

model for understanding the mechanism of template polymerization; the porous 

it-PMMA films selectively recognized growing PMAAs, not of lower tacticities but of 

higher tacticities (rr > 73%), synthesized in solution, although the incorporation of 

st-PMAA-94 was much faster than that of st-PMAA-73. 
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Figure 3-1. Time dependence of st-PMAA incorporation into porous it-PMMA films at 
a concentration of 0.017 unitM at 25 ºC. The porous films were immersed into a 
st-PMAA mixed acetonitrile/water (40/60, v/v) solution: (a) st-PMAA-94, (b) 
st-PMAA-73, and (c) st-PMAA-62 (the average value: n = 3). 

 

FT-IR/ATR spectroscopy was used to evaluate the stereocomplex formation of 

it-PMMA/st-PMAA on a substrate.36,38—40,42—48 The it-PMMA and st-PMAA peaks in 

the stereocomplexes were observed at 1737 and 1725 cm-1, respectively, which 
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appeared on the st-PMAA-94 incorporated films after 115 min of immersion (Figure 

3-2a). In contrast, the peak intensity of st-PMAA at the lower wavenumber was smaller 

on the it-PMMA/st-PMAA films after 800 min of immersion in the st-PMAA-73 

solution (Figure 3-2b), as compared to the st-PMAA-94 incorporated films. In addition, 

there were almost no st-PMAA peaks on the st-PMAA-62 incorporated films (Figure 

3-2c). These observations also demonstrated stereocomplex formation in the porous 

it-PMMA films, and supported the QCM results (Figure 3-1). 
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Figure 3-2. FTIR/ATR spectra of st-PMAA incorporated films. The porous films were 
immersed into a st-PMAA mixed acetonitrile/water (40/60, v/v) solution: (a) 
st-PMAA-94, (b) st-PMAA-73, and (c) st-PMAA-62. 

 

Stereocomplex formation between it-PMMA and st-polymethacrylates in LbL films 

has been intensively investigated. However, almost all the reports were about the 

stereocomplexes with the highest stereoregularities.35—41,44—48 Here, we reported the 
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first case of stereocomplex formation using st-PMAA with lower stereoregularity (rr = 

73%) in the LbL films (Figure 3-1b), although even st-PMMA with very low tacticity 

(rr = 45%) was still able to form stereocomplexes with it-PMMA in solutions.52 

Furthermore, the multilayered thin films prepared by stepwise stereocomplex assembly 

of it-PMMA and st-PMAA-73 (Mn = 50400, Mw/Mn = 2.19) were successfully obtained, 

while the amount of the assemblies were about half that of it-PMMA and st-PMAA-94 

(Figure 3-3). Note that the amount of it-PMMA films obtained by immersion of 

NaOH(aq) was almost the same as that of porous it-PMMA films using st-PMAA-94, 

because the amount of st-PMAA-73 at each step was much smaller compared with the 

case of st-PMAA-94, indicating that st-PMAA-73 only partially form stereocomplexes 

with it-PMMA. Therefore, st-PMAA-73 would form the stereocomplexes with 

it-PMMA more weakly than st-PMAA-94, which also affected on the incorporation rate 

in the porous it-PMMA films (Figure 3-1b). FT-IR/ATR spectrum of the assembled 

films composed of it-PMMA and st-PMAA-73 also demonstrated the stereocomplex 

formation, because its peak appeared at 1731 cm-1 and shifted to a higher wavenumber 

compared to those of spin-coated it-PMMA (1725cm-1) or st-PMAA films (1696 cm-1). 
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Figure 3-3. QCM analyses of 16-step assembly of it-PMMA in acetonitrile (whites) and 
st-PMAA (blacks) in acetonitrile/water (40/60, v/v) (rr = (a) 94 and (b) 73%, 
respectively) and subsequent selective extraction of st-PMAA using 10mM NaOH(aq) 
(black squares). 

 

Next, the effects of temperature and solvent species on stereocomplex formation in 

porous it-PMMA films were investigated, and st-PMAA-94 was used to compare 

previous studies.38,45 The maximum incorporation of st-PMAA is known to be around 

80% in acetonitrile/water (40/60, v/v) at 25 ºC. However, we recently reported that the 

incorporation was variable when the acetonitrile content of the st-PMAA solution 

increased from 20 to 40 vol % at 25 ºC.45 In order to observe slight changes from 

thermal effects on incorporation, we selected the solvent condition as acetonitrile/water 

(20/80, v/v), under which the maximum st-PMAA incorporation was approximately 

20%. 

st-PMAA was gradually incorporated into the porous it-PMMA films at 40 ºC, and 

the incorporation increased from 21% at 25 ºC to 34% at 40 ºC over 115 min (Figure 
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3-4b, c), suggesting that stereocomplexation is promoted with increasing temperature. 

However, there was almost no difference between 40 and 55 ºC, even after the porous 

it-PMMA films were immersed into st-PMAA solutions for 115 min (Figure 3-4a, b). 

Thus, these two films were also immersed for 800 min, with the result that there was not 

a significant difference considering the large margin of experimental error. It has been 

reported that competition between stereocomplex formation and it-PMMA 

crystallization occurred when the porous it-PMMA films were immersed into the 

st-PMAA solution.44,45 Therefore, the it-PMMA crystallization would also be 

accelerated by an elevated temperature, and the stereocomplex formation might become 

progressively saturated. Figure 5 shows the FT-IR/ATR spectra of st-PMAA 

incorporated films at each temperature. Only one peak of it-PMMA (1737 cm-1) was 

observed when the st-PMAA was incorporated at 25 ºC (Figure 3-5c), whereas the peak 

intensities of st-PMAA (1726 cm-1) in the stereocomplexes increased with increasing 

incorporation of st-PMAA. Indeed, the maximum incorporation of the samples shown in 

Figure 3-4a, b were 60 and 50%, respectively. 

 



 72 
 

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Time / min

In
c
o
rp
o
ra
ti
o
n
 /
 %

780 800 820

Time / min

a

b

c

Time / min

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Time / min

In
c
o
rp
o
ra
ti
o
n
 /
 %

780 800 820

Time / min

a

b

c

Time / min

 

Figure 3-4. Time dependence of st-PMAA incorporation into porous it-PMMA films at 
a concentration of 0.017 unitM. The porous films were immersed into a st-PMAA 
mixed acetonitrile/water (20/80, v/v) solution at (a) 55 ºC, (b) 40 ºC, and (c) 25 ºC 
(the average value: n = 3). 
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Figure 3-5. FTIR/ATR spectra of st-PMAA incorporated films. The porous films were 
immersed into a st-PMAA mixed acetonitrile/water (20/80, v/v) solution at (a) 55 ºC, 
(b) 40 ºC, and (c) 25 ºC. 
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We have previously studied st-PMAA incorporation in porous it-PMMA thin films 

using mixed solvents of acetonitrile/water.38,42,44—46 However, other solvents such as 

DMF at 25 ºC,28,29 ethanol/water (83/17, v/v) at 45 ºC,29 and water at 70 ºC39—41,43 have 

also been used as complexing solvents, although the st-PMAA synthesized in this study 

was not completely dissolved in DMF, likely due to differences in the tacticities or 

molecular weights. Thus, st-PMAA was dissolved in a mixed solvent of DMF/water 

(40/60, v/v) at 25 ºC, which has been employed for the LbL assembly of 

it-PMMA/st-PMAA.39 st-PMAA incorporation in the porous films was then analyzed 

under these three conditions: ethanol/water (83/17, v/v) at 45 ºC, DMF at 25 ºC, and 

water at 70 ºC at a concentration of 0.017 unitM. 

The value of the incorporation at 5 min was –10% in ethanol/water (83/17, v/v) at 

45 ºC (Figure 3-6a), indicating that the films had peeled off in the mixed solvent. Indeed, 

porous it-PMMA films equivalent of about 50% incorporation were peeled off in 83 

vol % ethanol/water at 45 ºC. However, the incorporation was improved from 15 min 

onward, and became almost saturated. The FT-IR/ATR spectrum of the films after 55 

min immersion in ethanol/water (incorporation value: 13%) demonstrated the 

stereocomplex formation of it-PMMA/st-PMAA (Figure 3-7a). On the other hand, the 

incorporation in DMF/water (40/60, v/v) at 25 ºC was approximately 8% at most 

(Figure 3-6b), although the porous films were not dissolved under these conditions. The 

IR spectrum also showed that almost no stereocomplexes were formed in the films in 

DMF/water (Figure 3-7b). It was reported that unit-molar ratio stoichiometry of 

st-PMAA/it-PMMA in the stereocomplex depended on the solvent species. The 

stereocomplex with 2/1 unit-molar stoichiometry (st-PMAA/it-PMMA) was formed in 

acetonitrile/water (40/60, v/v) at 25 ºC36 or ethanol/water (83/17, v/v) at 70 ºC,29 while 
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the stereocomplex with 1/1 unit-molar stoichiometry was formed in DMF/water (40/60, 

v/v) at 25 ºC.39 Thus, these results suggest that it-PMMA in the porous films could only 

form the original 2/1 complex, in other word, rearrangement of the host it-PMMA from 

template of the 2/1 complex to the 1/1 complex could not happen. However, the mixed 

solvent of acetonitrile/water, which has also been employed for the LbL assembly of 

original stereocomplexes,36,38,40—48 was most appropriate for st-PMAA incorporation in 

these porous it-PMMA films (Figure 3-1a). 

Furthermore, the incorporation of st-PMAA in water at 70 ºC was around 5% 

(Figure 3-6c), and only the it-PMMA peak was observed by FT-IR (Figure 3-7c), 

although it was reported that porous it-PMMA films were not dissolved in the hot water 

over 3h.43 We should also take into consideration the fact that the porous it-PMMA 

films incorporated the PMAA oligomers42 instead of st-PMAA with a lower 

stereoregularity (rr = 62%) synthesized under the same conditions that template 

polymerization was achieved, and that the incorporation rates of st-PMAA depended on 

its tacticity (Figure 3-1). Therefore, this result strongly supports that the hypothesis that 

the mechanism of template polymerization is not st-PMAA incorporation in the porous 

films after polymerization of the MAA in solution, but rather oligomer incorporation 

with high tacticities from the aqueous solution and subsequent polymerization in the 

porous films. 
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Figure 3-6. Time dependence of st-PMAA incorporation into porous it-PMMA films at 
a concentration of 0.017 unitM. The porous films were immersed into a st-PMAA 
solution: (a) ethanol/water (83/17, v/v) at 45 ºC, (b) DMF/water (40/60, v/v) at 25 ºC, 
and (c) water at 70 ºC (the average value: n = 3). 
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Figure 3-7. FTIR/ATR spectra of st-PMAA incorporated films. The porous films were 
immersed into a st-PMAA solution: (a) ethanol/water (83/17, v/v) at 45 ºC, (b) 
DMF/water (40/60, v/v) at 25 ºC, and (c) water at 70 ºC. 
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3. 4 CONCLUSIONS 

We demonstrated that st-PMAA incorporation in porous it-PMMA films depended 

on stereoregularity, temperature, and solvent using QCM and IR analyses. The first case 

of stereocomplex formation using st-PMAA with lower tacticity (rr = 73%) in the LbL 

films was reported in this study, while st-PMAA obtained with conventional free radical 

polymerization (rr = 62%) was barely incorporated into the porous it-PMMA films. It is 

recognized that van der Waals interactions between it-PMMA and st-PMAA at the 

interface were important, because the lack of stereoregularity of st-PMAA decreased the 

incorporation capability. In addition, the porous films could not incorporate st-PMAA 

(rr = 94%) in water at 70 ºC. These investigations strongly support the hypothesis of 

template polymerization; the porous it-PMMA films would pick up growing PMAA 

with high tacticities from the aqueous solution and not st-PMAA. The maximum 

st-PMAA incorporation increased from 25 to 40 ºC, but there were almost no 

differences between at 40 ºC and at 55 ºC. This is likely because not only stereocomplex 

formation, but also it-PMMA crystallization, were promoted with increasing 

temperature. The porous it-PMMA films incorporated st-PMAA not in DMF/water (a 

complexing solvent of the 1/1 stereocomplex) but in acetonitrile/water or ethanol/water 

(complexing solvents of the 2/1 stereocomplex). These results could also shed light on 

the mechanism of the specific molecular recognition system. 
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Part 2 Morphological Observations of Porous Isotactic 

Poly(methyl methacrylate) Thin Films at Micrometer Scale 

 

Chapter 4 

Morphological Change of Isotactic Poly(methyl methacrylate) 

Thin Films by Self-organization and Stereocomplex 

Formation 

 

4. 1 INTRODUCTION 

Stereoregular poly(methyl methacrylate)s (PMMA) have attracted much attention 

because of their unique crystalline structure, morphology, and other particular properties 

since the first report by J. D. Stroupe et al.1 Isotactic (it) PMMA and syndiotactic (st) 

PMMAcan self-aggregate either by themselves or as stereocomplexes. it-PMMA 

crystals form a double-stranded helical structure,2 whereas st-PMMA does not 

crystallize, but includes specific organic solvents in a cavity within its single-stranded 

helix.3 The stereoregular PMMA stereocomplex is a complementary helical structure 

formed on the basis of structural fitting between two chains of it-PMMA and 

st-PMMA.4–6 Recently, the discussion has arisen on the basic structure of the PMMA 

stereocomplex by using X-ray7 and atomic force microscopy (AFM),8,9 although it was 

concluded that the structure of the stereocomplex is a helix with it-PMMA on the inside 

surrounded by st-PMMA. 
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Interfacial rearrangements of it-PMMA chains are expected to occur more easily 

than st-PMMA or atactic-PMMA chains, because the glass transition temperature of 

it-PMMA (~40 ºC) is significantly lower than that of st-PMMA or atactic-PMMA 

(around 105–135 ºC).10 The crystallization of it-PMMA films has been researched by 

annealing at elevated temperatures for more than a few days, or under compression.11–19 

Most of these studies focused mainly on structural analyses of the crystals using 

infrared (IR) spectroscopy and X-ray diffraction (XRD), but the morphology of 

crystallized it-PMMA films has also been studied for a long time.11,12,16,18 The 

film-formation methods used were either solvent evaporation from solution-cast films 

or the Langmuir–Blodgett technique as described below. Over 30 years ago, J. J. 

Klement and P. H. Geil11 studied the lamellar growth of it-PMMA cast films annealed 

at a narrow temperature range (55–65 ºC) with electron microscopy, whereas G. Challa 

et al.12 observed the macroscopic hexagonal structures of crystallized it-PMMA from 

casts at 90–130 ºC using a polarization microscope. Later, R. H. R. Brinkhuis and A. J. 

Schouten16 demonstrated the epitaxial crystallization in it-PMMA cast films covered by 

Langmuir–Blodgett overlayers. Recently, E. Yashima et al.18 directly observed 

two-dimensional folded-chain crystals of it-PMMA monolayers obtained by 

Langmuir–Blodgett deposition using AFM. 

In contrast, macromolecularly porous it-PMMA thin films have been studied as a 

scientifically important model, as they have strictly controlled nanospaces and were 

utilized for specific molecular recognition or precise reaction fields by forming 

stereocomplexes on substrates.20–25 Porous it-PMMA thin films were prepared on 

quartzcrystal microbalance (QCM), silica or glass substrates through layer-by-layer 

(LbL) assembly26 of it-PMMA/st-poly(methacrylic acid) (PMAA)27–29 and the selective 
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extraction of st-PMAA from it-PMMA/st-PMAA stereocomplex films, taking 

advantage of the different solubilities of each component polymer. The 

it-PMMA/st-PMAA stereocomplex also forms a double-stranded helix similar to the 

aforementioned it-PMMA/st-PMMA stereocomplex.30 In addition, porous films 

prepared by LbL assembly have been compared with spin-coated it-PMMA films. The 

spin-coated films showed neither the specific recognition of st-polymethacrylate20 nor 

the template polymerization of methacrylic acid.22 Thus, it is concluded that these 

phenomena are particular to the macromolecularly porous films. 

More recently, we observed partial it-PMMA crystallization, as well as st-PMAA 

incorporation, into porous films by XRD analyses.31,32 It was revealed that crystallized 

it-PMMA chains in films formed doublestranded helices.2,33 The crystallization of 

it-PMMA occurred merely by immersing the porous films in a mixed solvent of 

acetonitrile/water (4/6, v/v) at room temperature, which is a different procedure and 

milder than conventional conditions.11–19 Furthermore, st-PMAA incorporation into 

porous it-PMMA films was analyzed at the molecular level by QCM. Porous it-PMMA 

films incorporated st-PMAA with increasing acetonitrile content in the st-PMAA 

solution. Therefore, it was concluded that acetonitrile was important for it-PMMA chain 

motion in porous films. st-PMAA was also incorporated into it-PMMA films driven by 

stereocomplex formation, even after it-PMMA crystallized partially, although the 

amount of st-PMAA incorporated into crystallized films was reduced as compared with 

the incorporation into porous films.32 However, both the changes in the morphology or 

properties of the films and the mechanisms responsible for these phenomena remained 

unclear. 

In this study, we focused on the morphological changes of porous thin films during 
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it-PMMA crystallization and the subsequent st-PMAA incorporation. Films were 

characterized by scanning electron microscopy (SEM), AFM, X-ray photoelectron 

spectra and static contact angles. We also investigated whether the morphological 

changes of spin-coated films occur after immersion into a mixed solvent of 

acetonitrile/water in order to study the mechanisms of these interfacial rearrangements. 

 

4. 2 EXPERIMENTAL 

Materials it-PMMA34 (Mn = 22 900, Mw/Mn = 1.21, mm:mr:rr = 96:2:2) and 

st-PMAA35 (Mn = 33700, Mw/Mn = 1.45, mm:mr:rr = 1:5:94) were synthesized by 

conventional anionic polymerization. The number average molecular weights and 

distributions were measured by size exclusion chromatography using PMMA standards 

with a tetrahydrofuran eluant at 40 ºC and a flow rate of 0.6ml min-1. Tacticities were 

analyzed from a-methyl proton signals using 400-MHz nuclear magnetic resonance 

(nitrobenzene-d5, 110 ºC). Characterization of st-PMAA was achieved after the 

carboxyl group was methylated. Acetonitrile was purchased from Wako Pure Chemical 

Industries (Osaka, Japan). Ultrapure distilled water was provided by the MILLI-Q 

laboratory system (Millipore, Billerica, MA, USA). 

Film preparation An AT-cut QCM with a parent frequency of 9 MHz was obtained 

from USI (Fukuoka, Japan) and used as the substrate. Frequency was monitored by an 

Iwatsu frequency counter (Model 53131A: Iwatsu Test Instruments Corp., Tokyo, 

Japan). The quartz crystal (9mm diameter) was coated on both sides with mirror-like 

polished gold electrodes (4.5mm in diameter). At first, the QCM electrode was cleaned 

three times with a piranha solution, a mixed aqueous solution of H2SO4/40% H2O2 (3/1, 

v/v) for 1min, followed by rinsing with ultrapure water and drying with N2 gas. LbL 
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films were prepared as follows: the substrate was alternatively immersed into an 

it-PMMA acetonitrile solution and an st-PMAA acetonitrile/water (4/6, v/v) solution at 

a concentration of 0.017 unitM for 5 min at 25 ºC each. The substrate was rinsed with 

each solvent, and dried with N2 gas whenever it was taken out from each solution. This 

alternative deposition step was repeated 16 times to fabricate stereocomplexes of 

it-PMMA/st-PMAA on the substrates. Porous it-PMMA thin films were prepared by 

immersion into a 10mM NaOH aqueous solution. The 

porous films were immersed in mixed solvents of acetonitrile/water (4/6, v/v) for 10 

h, and then immersed in st-PMAA solutions of mixed acetonitrile/water (4/6, v/v) 

solvents for 115min.32 Spin-coated it-PMMA films were prepared on the QCM at 1500 

r.p.m. for 1 min with 0.051 unitM it-PMMA chloroform solutions. Acetonitrile was not 

used because it was a poor solvent for PMMA10 and could not dissolve it-PMMA 

completely at more than 0.017 unitM. Thus, chloroform, a good solvent for PMMA, 

was used to prepare the spin-coated films. The amount of it-PMMA adsorbed onto the 

substrate was approximately -1600 Hz per QCM. Spin-coated films were then immersed 

in acetonitrile/water (4/6, v/v) for 10 h.  

Measurements SEM images were obtained with a JSM-6701F (JEOL, Akishima, 

Japan) at an acceleration voltage of 5 kV after osmium tetraoxide was spattered onto the 

surfaces of films at a thickness of approximately 5nm. AFM images were obtained with 

a JSPM-5400 (JEOL) that was operated in tapping mode in air at 25 ºC. Scanning was 

performed using silicon cantilevers (NSC35, µ-masch; resonance frequency: around 150 

kHz; spring constant: 4.5Nm-1) within an area of 5×5 µm2 with a 512 scan line and a 

scan speed of 5.0 µm s-1. We did not perform any image processing other than the flat 

leveling. The mean square roughness (Ra) in the observed areas was estimated from the 
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following equation, where F(x,y) is the surface relative to the center plane, which is a 

flat plane parallel to the mean plane, and Lx and Ly are the dimensions of the surface. 

Ra = 1/(LxLy)∫
0

Lx 
∫
0

Ly 
│F(x,y)│ dx dy 

X-ray photoelectron spectroscopy (XPS) was obtained with a spectrometer (AXIS 

165, Shimadzu-Kratos, Kyoto, Japan) using MgKa radiation. The typical operating 

conditions were as follows: X-ray gun, 12 kV, 10mA; takeoff angle, 90 ºC; pressure in 

the source chamber, ~10-9 torr. The static contact angles of the thin films were measured 

by dropping ultrapure water on the films at 25 ºC with a DropMaster 500 (Kyowa 

InterFACE Science, Niiza, Japan). Contact angles were determined 10 s after applying 

the drop. The volume of water in the drop was 0.5 µl. All reported values represent the 

average of at least six measurements taken at different locations on the film surface. 

 

4. 3 RESULTS AND DISCUSSION 

We used QCM analysis to calculate the amount of it-PMMA assembled on the gold 

substrate by Sauerbrey’s equation.36 A typical QCM analysis is shown in Figure 4-1, 

and the time evolution means the period of immersion time in each solution or solvent. 

The stepwise stereocomplex assembly of it-PMMA/st-PMAA and the selective 

extraction of st-PMAA from assembled films were confirmed in previous 

papers.20,23,25,32 Interestingly, the elution of porous it-PMMA thin films was barely 

observed after the films were immersed into acetonitrile/water (4/6, v/v) for 10 h, 

although the crystallized it-PMMA peaks were observed by XRD.31,32 These results 

indicate that the interfacial rearrangements of it-PMMA chains that occurred in films 

were driven by the mixed solvent, whereas it-PMMA crystallization was driven by 
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annealing at high temperature or under compression in previous studies.11–19 The 

crystallized it-PMMA thin films can incorporate st-PMAA, most likely because further 

interfacial rearrangements also occurred in these films. Therefore, the morphological 

changes of the porous thin films during it-PMMA crystallization and the subsequent 

st-PMAA incorporation were initially analyzed by SEM and AFM. The same 

crystallized it-PMMA films, which corresponded to approximately -1400 Hz per QCM, 

and the st-PMAA incorporated films were used in SEM and AFM observation. 

 

 
Figure 4-1. Typical QCM analysis of the LbL assembly, st-PMAA extraction, isotactic 
it-PMMA crystallization and subsequent st-PMAA incorporation. it-PMMA (white 
circles) in acetonitrile and st-PMAA (black circles) in acetonitrile/water (4/6, v/v) were 
alternately assembled on a QCM substrate at 0.017unitM at 25 ºC. Porous it-PMMA 
films were prepared using 10mM NaOH(aq) (white square). The following it-PMMA 
crystallization occurred in a mixed solvent of acetonitrile/water (4/6, v/v) (white 
triangle). The last st-PMAA incorporation was observed at 0.017unitM at 25 ºC (black 
squares). 

 

We have observed several hemispherical outshoots on the surface of crystallized 

it-PMMA films by AFM,32 which implies that the morphological changes of the films 
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occurred in a wide area as compared with the scanning area (1×1 µm) used in previous 

studies.20,29,32 Thus, SEM was used to observe the macroscopic deformation of porous 

thin films during it-PMMA crystallization and the subsequent st-PMAA incorporation. 

Figure 4-2 shows SEM images of crystallized it-PMMA films and st-PMAA 

incorporated films after 10 h of immersion in acetonitrile/water (4/6, v/v). Dotted 

aggregates of crystallized it-PMMA and networks of the it-PMMA/st-PMAA mixed 

assembly broadened evenly at the submillimeter scale (Figure 4-2a, b). The patterns 

were not observed on the surface of a bare QCM substrate and porous it-PMMA films. 

In the magnified view (tilted at 40-degree angles), some dots were connected to form 

big outshoots on the crystallized it-PMMA films (Figure 4-2c), and some isolated 

outshoots were also observed on st-PMAA incorporated films after it-PMMA 

crystallization (Figure 4-2d). However, most regions of the crystallized it-PMMA films 

and st-PMAA incorporated films formed dots and networks, respectively, although the 

configurations of these assemblies cannot be controlled yet. This morphological change 

from dots to networks likely resulted from an increased polymer density of films during 

the incorporation of st-PMAA. 
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Figure 4-2. SEM images of (a, c) crystallized it-PMAA films and (b, d) st-PMAA 
incorporated films after 10h of immersion in acetonitrile/water (4/6, v/v). (a, b) Top 
view. (c, d) Tilted view. 

 

AFM analysis was used to calculate both the height of the assemblies and the 

surface roughness of films, which was difficult to measure by SEM. Figure 4-3 shows 

AFM images of crystallized it-PMMA films and st-PMAA incorporated films after 

it-PMMA crystallization. Hemispherical outshoots of crystallized it-PMMA, which 

were several hundred nanometers high, were arranged in a dot pattern on films (Figure 

4-3a), whereas porous films were relatively flat. The mean square roughness (Ra) of the 

crystallized it-PMMA films was 53 nm, although the Ra of the smooth parts (0.3×0.3 

µm) of films was 3.3 ± 0.2 nm (n = 3). This value was more similar to that of a bare 

QCM substrate (3.1 nm) than that of porous it-PMMA films (17 nm), suggesting that 

the bare gold surface is exposed. In addition, the outshoots of crystallized it-PMMA 
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films, which corresponded to approximately -700 Hz per QCM, were smaller and more 

than that of the crystallized films in Figure 4-3a (-1400 Hz per QCM), which implies 

that film thickness is one of the important parameters for morphological changes of 

it-PMMA films. Furthermore, a similar dot pattern was also observed on crystallized 

it-PMMA (-700 Hz per QCM) after 40 h of immersion in acetonitrile/water (4/6, v/v). 

On the other hand, networks of agglomerates composed of crystallized it-PMMA and 

stereocomplexes were observed on the surface of st-PMAA incorporated films (Figure 

4-3b), and the heights of these assemblies were not significantly different from that of 

crystallized it-PMMA films. Therefore, the polymer chains in films likely spread in a 

horizontal direction during st-PMAA incorporation. Indeed, the Ra of 

st-PMAA-incorporated films was 46 nm, but the Ra of the smooth parts (0.3×0.3 µm) 

was 3.8 ± 0.5 nm (n = 3). This morphological change in films indicated that some 

noncrystalline parts of it-PMMA could incorporate st-PMAA, and that a rearrangement 

of the partially crystallized it-PMMA might occur on the film surface. 

 

 

Figure 4-3. AFM images of (a) crystallized it-PMAA films and (b) st-PMAA 
incorporated films after 10h of immersion in acetonitrile/water (4/6, v/v). 
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Next, we were interested in the changes in properties of porous it-PMMA films. The 

deformation of films during it-PMMA crystallization would dynamically change the 

film thickness. XPS analysis is a common tool to confirm chemical bonds on a surface 

at ~10 nm of the measured depth. The XPS spectra of a bare QCM substrate, porous 

it-PMMA films and crystallized it-PMMA films are shown in Figure 4-4. Distinct Au 4f 

peaks at around 84.1 and 87.7 eV were observed on the QCM substrate (Figure 4-4a). In 

contrast, these Au peaks were not observed on the surface of porous films (Figure 4-4b), 

showing that the thickness of porous films was more than 10 nm, and that the substrate 

was evenly covered with film. In a previous paper,20 the thickness of porous it-PMMA 

films was determined to be 44 nm by AFM scratching mode, which corresponded to 

approximately -800 Hz per QCM. Therefore, it-PMMA film thickness was calculated as 

83 nm (-1500 Hz per QCM) in this study (Figure 4-1), according to a constant rate of 

0.055 nm/Hz. Note that the intensity of Au 4f peaks on the surface of crystallized 

it-PMMA films was about two-thirds of that of the QCM substrate (Figure 4-4c), and 

that the heights of the outshoots on the crystallized it-PMMA films reached several 

hundred nanometers (Figure 4-3a), where Au peaks should not be detected. Thus, the 

film thickness of the smooth parts became less than 10nm after it-PMMA films were 

immersed in acetonitrile/water (4/6, v/v). These results confirmed that the 

homogeneously broadened it-PMMA in porous films became localized because of its 

crystallization, which brought about differences in the polymer density of films. 
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Figure 4-4. XPS in the region of the gold element of a bare quartz crystal microbalance 
substrate (a), porous it-PMMA films (b) and crystallized it-PMMA films (c) after 10h of 
immersion in acetonitrile/water (4/6, v/v). 

 

Furthermore, film characteristics were analyzed on the millimeter scale with static 

contact angles, which have been used to confirm stepwise stereocomplex formation 

during LbL assembly.29 We thought that the contact angles of each film would change 

according to its surface components or shapes. Figure 4-5 shows the dependence of 

static contact angles on various film surfaces. Surface components and polymer 

conformations were analyzed by attenuated total reflection-IR.20 The mean angles of 

porous it-PMMA films as prepared and after 10 h of immersion in water were 49.2 ± 

1.9º and 51.7 ± 1.0º, respectively (Figure 4-5a, b). This is reasonable because XRD 

analyses revealed that no structural changes of porous it-PMMA films occurred in 

water.32 In contrast, the angles of crystallized it-PMMA films after 10 h immersion in 

acetonitrile/water (4/6, v/v) was 36.5 ± 1.6º (Figure 4-5c). These differences likely 

resulted from a surface morphology change of the thin films, because both films were 
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composed only of it-PMMA and the two porous films were smooth compared with 

crystallized films (Figure 4-3a). We should also consider that the film thickness of the 

smooth parts in crystallized it-PMMA films was less than 10 nm and the gold surface of 

QCM is exposed, according to XPS results (Figure 4-4c). Although the mean angle of a 

bare QCM substrate was 69.2 ± 1.4º, Z. Burton and B. Bhushan37 reported that 

increasing roughness on hydrophilic surfaces, such as the patterned PMMA surface, 

decreased the contact angle, which was consistent with these results. 

 

 
Figure 4-5. Static contact angles of porous it-PMMA films (a) as prepared and (b) after 
10h of immersion in water, crystallized it-PMMA films (c) after 10h of immersion in 
acetonitrile/water (4/6, v/v), (d) stereocomplex films and st-PMAA incorporated films 
(e) just after st-PMAA extraction and (f) after 10h of immersion in water and (g) 
acetonitrile/water (4/6, v/v). 

 

This tendency was also observed in the case of stereocomplex films. The contact 

angle of the original LbL films was 30.2 ± 2.5º, and the angles of st-PMAA 
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incorporated films after st-PMAA extraction and a subsequent 10 h of immersion in 

water were 26.4 ± 1.3º and 21.4 ± 0.8º, respectively (Figure 4-5d—f). The mean values 

of stereocomplex films were smaller than those of porous it-PMMA films,29 because the 

hydrophobic it-PMMA is buried in the helical structure of hydrophilic st-PMAA in the 

stereocomplex model.30 st-PMAA incorporated films remained flat, although the slow 

crystallization of it-PMMA also occurred during the incorporation of st-PMAA.31 

Therefore, the fast st-PMMA incorporation by stereocomplexation might prevent film 

deformation because of it-PMMA crystallization. On the other hand, the angle of 

st-PMAA incorporated films after it-PMMA crystallization was 13.6 ± 0.7º (Figure 

4-5g). It is indicated that the surface of films was covered with stereocomplexes (Figure 

4-6), although the it-PMMA inside the aggregates is densely packed and loses the 

ability to incorporate st-PMAA. It also remains unclear whether st-PMAA adsorbed 

both on the crystallized it-PMMA outshoots and on the smooth domains of films. These 

tendencies of static contact angles also corresponded to the relatively regular surface 

profile at the submillimeter scale, which was observed by SEM (Figure 4-2a, b). 
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Figure 4-6. Schematic illustration of the morphological changes of macromolecularly 
porous thin films in it-PMMA crystallization and st-PMAA incorporation. 

 

We were also interested in whether ordinary it-PMMA films would form outshoots 

after immersion into a mixed solvent of acetonitrile/water. Spin-coated it-PMMA films 

were prepared on the QCM substrate from the chloroform solution as described in the 

experimental procedure section. Figure 4-7 shows the AFM and SEM images of 

spin-coated it-PMMA films as prepared and after immersed in acetonitrile/water (4/6, 

v/v) for 10 h. The Ra of spin-coated films was 8.4 nm and the film surface was relatively 

smooth (Figure 4-7a). A few big craters were formed on the films, most likely because 

of the evaporation of chloroform (Figure 4-7c). The QCM frequency shift was a few 

hertz after 10 h of immersion in acetonitrile/water (4/6, v/v), which implies that the 

spin-coated films did not dissolve in the mixed solvent either. Semispherical outshoots 

were also observed on films after immersion (Figure 4-7b), and dotted aggregates of 

it-PMMA broadened evenly at the submillimeter scale (Figure 4-7d). The same 

tendency of crystallized it-PMMA films was obtained by LbL assembly, even though 

the Ra of films (82 nm) was much greater than that of it-PMMA films from LbL 
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assembly (32 nm). The surface roughness derived by the crystallization of it-PMMA is 

dependent on the initial thickness, roughness or morphology of the films, such as the 

cratered surface. These results indicate that the formation of these hemispherical 

outshoots would occur by rearrangements of it-PMMA chains in thin films. 

 

 
Figure 4-7. AFM and SEM images of spin-coated it-PMMA films (a, c) prepared from 
a chloroform solution and (b,d) after 10h of immersion in acetonitrile/water (4/6, v/v). 
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4. 4 CONCLUSIONS 

We investigated the morphological changes of porous thin films on a QCM substrate 

during it-PMMA crystallization and the subsequent st-PMAA incorporation. Dotted 

aggregates of crystallized it-PMMA appeared on films on SEM and AFM images, 

although the films were not dissolved in a mixed solvent of acetonitrile/water. Gold 

substrate peaks were observed on crystallized it-PMMA films by XPS. Therefore, this 

indicated that the adsorbed it-PMMA spontaneously localized in films to reform the 

surface profile. These dotted it-PMMA aggregates were also observed when spin-coated 

films were immersed in the mixed solvent, suggesting that this immersion method is a 

simple and different approach to film deformation, as compared with previous studies. 

On the other hand, networks of crystallized it-PMMA and the stereocomplex appeared 

on st-PMAA-incorporated films. In this way, the design and restructuring of 

self-assembled films at the nano or micrometer scale were achieved through 

self-organization and stereocomplex formation of stereoregular polymethacrylates. 
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Chapter 5 

Stability and Fusion of Porous Isotactic Poly(methyl 

methacrylate) Thin Films Fabricated on Silica Nanoparticles 

 

5. 1 INTRODUCTION 

Stereocomplexes of poly(methyl methacrylate) (PMMA) or poly(lactic acid) have 

received considerable interests not only due to their unique supramolecular structures 

but also because of their many applications in the biomedical field. Isotactic (it) PMMA 

and syndiotactic (st) PMMA form multiple-stranded helices,1,2 and poly(L-lactide) and 

poly(D-lactide) form 31-helix racemic crystals.3,4 For example, multilayered thin films 

composed of the stereocomplexes fabricated by layer-by-layer (LbL) assembly5—8 

showed excellent performance for cell-adhesion and blood-coagulant,9 or alkaline 

hydrolysis10 as compared to spin-coated films composed of homopolymers. 

Furthermore, specific nanostructure formations such as spheres, networks, or 

hierarchical assemblies were achieved by stereocomplexation.11—14 

In contrast, we demonstrated the macroscopic deformation of macromolecularly 

porous it-PMMA thin films prepared on a flat substrate with the stepwise stereocomplex 

assembly of it-PMMA/st-poly(methacrylic acid) (PMAA)15 and st-PMAA extraction,16 

and the subsequent it-PMMA crystallization.17—19 It was demonstrated that acetonitrile 

solvation promoted the crystallization of the porous it-PMMA films, whereas water 

maintained the polymer conformation of the films.18 Furthermore, film crystallization 

induced the formation of nanoscale outshoots on the surface due to the easy 
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rearrangement of the polymer chains on the film by solvation without dissolution.19 

These dynamics of the it-PMMA polymer chains depending on the circumstances is 

interesting, but, the morphological changes all occurred on the same plane, and thus the 

effects of substrate geometry or static immersion on the outshoot formation remained 

unclear. Fusion based on the crystallization of it-polymethacrylates might create a 

specific nanostructure.20 
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Figure 5-1. Schematic illustration of stereocomplex formation, the preparation of 
porous it-PMMA films, and the subsequent fusion of the it-PMMA films onto silica 
nanoparticles. 
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In this study, silica particles were employed as a model for multiple non-planar 

substrates, in contrast to previous studies with one planar substrate of glass or a quartz 

crystal microbalance (QCM).15—19,21 Indeed, the film formation of stereocomplexes on 

various silica particles has been previously reported.22—25 We selected silica 

nanoparticles of 330 nm in diameter23 because the size of the hemispherical outshoots 

on the QCM substrate was several hundred nanometers,18,19 as large as the silica 

nanoparticles. Therefore, the aggregation of the silica particles through fusion with the 

it-PMMA thin films would form a novel polymeric nanostructure (Figure 5-1), instead 

of the outshoot formation on the same plane. In addition, the particle structures under 

gentle stirring or static conditions were analyzed by dynamic light scattering (DLS) and 

scanning electron microscopy (SEM), respectively. 

 

5. 2 EXPERIMENTAL 

it-PMMA (Mn = 22900, Mw/Mn = 1.21, mm:mr:rr = 96:2:2)26 and st-PMAA (Mn = 

33700, Mw/Mn = 1.45, mm:mr:rr = 1:5:94)27 were synthesized by conventional anionic 

polymerization. Silica nanoparticles with a diameter of 330 nm were alternately 

immersed into an acetonitrile solution of it-PMMA (1.7 mg ml-1) and an 

acetonitrile/water (4/6, v/v) solution of st-PMAA (1.5 mg ml-1) for 5 min at 25 ºC under 

gentle shaking (each of solution volumes was 5 ml). After each immersion, the silica 

particles were rinsed with each solvent. The immersion process was continued for 16 

steps to deposit the it-PMMA/st-PMAA stereocomplex films on the silica nanoparticles. 

Porous it-PMMA films were obtained by immersing the silica particles coated with the 

stereocomplex films in 10 mM NaOH(aq) for 30 min and rinsing with water. The 
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resulting particles were gently stirred in an aqueous or acetonitrile/water (4/6, v/v) 

solution for 10 h, which had been investigated in the previous articles.18,19 The particle 

size distribution in aqueous solution was measured by the DLS method using a 

Zetasizer Nano ZS (Malvern Instruments, UK). The SEM images were obtained with a 

JSM-6701F (JEOL, Japan) after staining with osmium tetraoxide. A 10 µL aliquot from 

each solution was dropped onto poly(ethylene terephthalate) substrates on a SEM stage, 

and were dried at normal pressure at 25 ºC for 6 h. 

 

5. 3 RESULTS AND DISCUSSION 

Water and a mixed solvent of acetonitrile/water (4/6, v/v) were employed as proper 

solvents for the it-PMMA/st-PMAA stereocomplex films and porous it-PMMA films, 

because the effective LbL assembly of it-PMMA/st-PMAA was achieved15—19,21,23—25 

and neither of the films were dissolved in the solvents.19,25 In addition, the 

conformational changes of the polymer chains in the porous it-PMMA films in water or 

acetonitrile/water (4/6, v/v) were investigated in previous studies.17,18 Infrared (IR) 

spectroscopy was used to detect the polymer chain conformations on the silica 

nanoparticles. The LbL steps were continued for 40 steps for the IR analyses, because 

the carbonyl vibrations of a 16-step assembly18,19 did not appear due to the thin film 

thickness.25 The peaks of the alternative LbL assembly and it-PMMA films after 10 h of 

stirring in water or acetonitrile/water (4/6, v/v) appeared at around 1720 and 1730 cm-1, 

respectively, whereas each cast film of it-PMMA and st-PMAA has a peak at 1726 and 

1695 cm-1, respectively. These results suggest that the stereocomplex films and the 

it-PMMA films remained on the silica particles after immersion. 
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Figure 5-2 shows the size distribution of the silica particles in distilled ultrapure 

water after gently shaking in each solution. The sizes of the bare silica nanoparticles, 

silica nanoparticles coated with the stereocomplex films after 10 h of stirring in water or 

acetonitrile/water (4/6, v/v), and porous it-PMMA films after 10 h of stirring in water 

were approximately 400, 420, 390, and 420 nm, respectively (Figure 5-2a—d). The 

layers of stereocomplexes or it-PMMA would not be detected by DLS, because all the 

values of the diameters of bare and coated silica particles were around 400 nm. On the 

other hand, the size of the silica particles coated with the it-PMMA films after 10 h of 

stirring in acetonitrile/water (4/6, v/v) was about 460 nm (Figure 5-2e), which was a 

little bigger than the other silica particles. Therefore, it was demonstrated that the 

stereocomplex films on the silica particles (Figure 5-2b, c) did not play a role in 

bonding the particles, whereas the it-PMMA chains on the silica particles, which were 

slightly solvated by acetonitrile, interacted with each other to form a couple of silica 

nanoparticles (Figure 5-2e). It is noteworthy that there was no adhesive effect on the 

silica particles, even when it-PMMA films were treated in water (Figure 5-2d). I 

expected that the it-PMMA chains would connect each of the silica particles to form an 

aggregate, although the it-PMMA adsorbed onto one planar substrate could move only 

on the surface. However, evident differences among these particles were not observed, 

most likely because the silica particles were gently shaken, whereas the self-assembly of 

it-PMMA on the QCM substrate occurred at rest in acetonitrile/water (4/6, v/v).18,19 
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Figure 5-2. Size distribution of silica particles in distilled ultrapure water measured by 
DLS: (a) bare silica particles, (b, c) it-PMMA/st-PMAA stereocomplex film-coated 
silica particles, and (d, e) it-PMMA filmcoated silica particles.The polymer film-coated 
silica particles were gently shaken in (b, d) water and (c, e) acetonitrile/water (4/6, v/v) 
for 10 h, respectively. 

 

Next, SEM images were observed after droplets from the silica suspensions were 

dried at rest. Although there was almost no fusion of the stereocomplex films on the 

silica nanoparticles after 10 h of stirring in water or acetonitrile/water (4/6, v/v), nor of 

the porous it-PMMA films after stirring in water (Figure 5-3a—d), only the it-PMMA 

films after 10 h of stirring in acetonitrile/water (4/6, v/v) fused to form nanostructured 

networks (Figure 5-3d). The aforementioned SEM observation was in good agreement 

of the results from Figure 5-2. In the magnified view of Figure 5-3d, almost all the 

it-PMMA films at contact points between the silica particles were extensively fused, 

indicating that the it-PMMA chains would infiltrate each layer of the films on the 

particles (Figure 5-1). Indeed, the thickness of the porous it-PMMA multilayered thin 

films prepared by LbL assembly for a 16-step assembly was estimated at approximately 
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44 nm, which was estimated by direct analyses of atomic force microscopy and 

approximate calculation by QCM analysis, as described in previous papers,16,18 and also 

could be sketchily estimated at less than 50 nm in the magnified view of Figure 5-3d. 

Furthermore, QCM analysis also revealed that the porous it-PMMA films were not 

peeled off after immersion in acetonitrile/water (4/6, v/v).19 Thus, the fusion of the 

it-PMMA films occurred not by the dissolution of it-PMMA in the mixed solvent, but 

rather by an interaction of the it-PMMA chains driven by the slight solvation of 

acetonitrile without dissolution. Furthermore, it is expected that the removal of silica 

particles23 from the it-PMMA/silica assemblies will lead to novel nanostructures28 

composed of only it-PMMA. 
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Figure 5-3. SEM images of silica particles coated with (a, c) it-PMMA/st-PMAA 
stereocomplex films and (b, d) porous it-PMMA films after 10 h of immersion in (a, b) 
water and (c, d) acetonitrile/water (4/6, v/v). 
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5. 4 CONCLUSIONS 

The fusion of porous it-PMMA thin films prepared on silica nanoparticles was 

observed after gentle shaking in acetonitrile/water (4/6, v/v) and subsequent drying on a 

SEM stage, although DLS showed only a few aggregates of the silica particles in the 

solution. These results suggest that leaving the solution at rest is important for film 

fusion on the particles, and that multiple spherical substrates would promote the 

cross-linking of the it-PMMA chains on the particles. 
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Part 3 Mechanistic Studies on Template Polymerization in 

Porous Isotactic Poly(methyl methacrylate) Thin Films 

 

Chapter 6 

Methacrylic Acid and Methyl Methacrylate Oligomers 

Adsorbed to Porous Isotactic Poly(methyl methacrylate) 

Ultrathin Filims 

 

6. 1 INTRODUCTION 

Natural polymers, such as DNA and proteins, are synthesized with extremely 

precise structures, controlled at main chain configurations, and contain arrays of 

different kinds of monomers and higher order structures. This almost perfect selectivity 

is achieved by template effects based on interactions between polymers. Controlling 

polymer structure is essential for synthetic polymers, because the chemical and physical 

characteristics of a polymer strongly depend on stereoregularity and molecular weight. 

Usually, synthetic polymers are mixtures of various stereochemistries and 

conformations, possessing molecular weight distributions. Thus, a huge amount of 

research has been put into controlling polymeric structure. For example, the design of 

polymerization catalysts, proper additives, and the design of monomer structures 

provides narrow molecular weight distributions and stereocontrol.1–5 

The template effect during polymerization is also known as a synthetic method to 
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control molecular weight and increase the polymerization rate, which leverages 

interactions with the mold (template) polymer.6 Radical template polymerization on 

methacrylate and acrylate using poly(vinyl pyrolidone) has been widely investigated. 

Although most studies concentrate on the kinetics and molecular weight distributions of 

complex formation,7–12 S. Kitagawa and T. Uemura recently achieved a topotactic 

selective polymerization in porous inorganic materials with a radical method.13,14 

Stereocomplexes, such as enantiomeric poly(lactide)s and syndiotactic (st) 

poly(methyl methacrylate) (PMMA)/isotactic (it) PMMA, are an attractive materials 

from the aspect of creating of molecularly stereocontrolled templates.15 The discussion 

arose on the basic structure of the PMMA stereocomplex, by commonly using 

X-rays.16–18 More recently, the visual images of stereocomplex were captured by 

AFM.19,20 With their different approach, both G. Challa and E. Yashima concluded that 

the structure of the PMMA stereocomplex is a helix with it-PMMA inside surrounded 

by st-PMMA, which supports the possibility for stereospecific template polymerization. 

G. Challa et al. also reported the stereocontrol of PMMA. They polymerized methyl 

methacrylate (MMA) radically in the presence of stereoregular it-PMMA or st-PMMA, 

which resulted in syndiotactic or isotactic enriched polymers, respectively, because of 

the formation of stereocomplexes during the polymerization.21–23 However, it was 

difficult to draw out the effect of the template to its maximum so that polymers existed 

under thermal motion in solutions. 

Complex formation on substrates by alternatively dipping into each polymer 

solution was explored, and this procedure provides ultrathin films composed of 

polycations/polyanions.24 Polymer–polymer interactions were usually electrostatic in 

nature; however, van der Waals interactions were applied toward it-PMMA/st-PMMA 
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stereocomplex formation.25 The amount of PMMA stereocomplex assembled could be 

controlled by solvents, polymer concentration, and molecular weight, which enabled the 

preparation of desirable stereocomplex ultrathin film on substrates. With this LbL 

assembly technique, a variety of stereocomplex ultrathin films was also prepared, such 

as st-poly(methacrylic acid) (PMAA)/it-PMMA stereocomplexes26 and st-poly(alkyl 

methacrylate)/it-PMMA stereocomplexes.27 It is noteworthy that the LbL assembly 

technique is a general procedure for PMMA stereocomplex derivatives with different 

solubilities and bulkiness. 

A revolutionary invention with this method is the preparation of porous it-PMMA 

ultrathin films as templates, achieved by the selective extraction of st-PMAA from 

st-PMAA/it-PMMA stereocomplex films.28 Furthermore, the subsequent incorporations 

of st-PMAA or st-PMMA were confirmed, implying the existence of stereoregular 

nanospaces and possible stereospecific polymerization. In fact, free radical 

polymerization of MMA within nanospaces of st-PMAA ultrathin films was achieved. 

Surprisingly, the radically synthesized polymer showed high isotacticity (mm = 97, Mn 

= 68500, Mw/Mn = 2.4), and st-PMAA was similarly formed from methacrylic acid 

(MAA) with a radical method within porous it-PMMA ultrathin films (rr = 98, Mn = 

19200, Mw/Mn = 2.1).29 The molecular weight was also controlled, as shown by one-pot 

polymerization with various molecular weight templates.30 It was a significant 

phenomenon, because molecular weight control with a radical method is usually 

difficult to achieve, due to side reactions, such as disproportionation and radical 

coupling reactions of active radical species. 

Highly tactic and molecular weight controlled PMMAs have been synthesized by 

anionic polymerization;31,32 however, a strict water-free condition and organometallic 
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compounds are needed. Template polymerization in porous ultrathin films by radical 

methods provides the possible manufacture of precise controlled PMMAs. 

On the other hand, the detailed mechanism for radical template polymerization 

remains unclear in porous ultrathin films. Thus, mechanistic investigations could be 

essential for understanding the quite rare stereospecific living radical polymerization 

system and to expand its possible applications toward various vinyl monomers. In 

general, pick-up and zip mechanisms are known as template polymerization 

mechanisms, depending on interaction behaviors between template polymer and 

reacting monomers or oligomers.6 Therefore, if the interacting species are determined 

with the template polymer one could reveal the template polymerization mechanism. At 

present, the adsorption behavior of st-PMAA toward porous it-PMMA ultrathin films 

and various compounds toward PMMA stereocomplexes have been investigated.28,33 

However, adsorption behaviors of oligomers and monomers toward porous it-PMMA 

ultrathin films have not been characterized on well-controlled template polymerization 

systems.34 

In this study, we focused on porous it-PMMA ultrathin films to reveal molecular 

weight control during the template polymerization.30 Previously, the interactions of 

it-PMMA with st-PMMA using various molecular weight,25 st-PMAA,26 atactic-PMAA, 

st-poly(ethyl methaclyrate), and st-poly(propyl methacrylate)28 have been studied; 

however, no data are available about the intermediate species of template 

polymerization. Thus, we paid attention to vinyl monomers (MAA and MMA) and their 

oligomers, as models of active radical intermediate species during template 

polymerization (Scheme 6-1), to investigate their interactions on a quartz crystal 

microbalance (QCM), together with ATR-IR spectral analyses. 
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Scheme 6-1. Preparation of Porous it-PMMA Ultrathin Film and Incorporation of 
Monomers and Oligomers. 

 

 

6. 2 EXPERIMENTAL 

Materials Methyl methacrylate (MMA) (Tokyo Chemical Industry Co.), 

trimethylsilylmethacrylate (Aldrich), and toluene (Tokyo Chemical Industry Co.) were 

distilled with calcium hydride just before use. it-PMMA in this study was synthesized 

by anionic polymerization of MMA in toluene at  78 ºC for 5 days with t-BuMgBr31 

(mm:mr:rr = 96:2:2, Mn = 22900, Mw/Mn = 1.21 were used for oligomer adsorption. 

mm:mr:rr = 96:3:1, Mn = 36000, Mw/Mn = 1.20 were used for monomer adsorption). 

st-PMAA was synthesized by anionic polymerization of trimethylsilylmethacrylate with 

t-BuLi/Bis(2,6-di-tert-butylphenoxy)methyl aluminum,32 and the obtained polymer was 

methylated by diazomethane to be characterized (mm:mr:rr = 1:5:94, Mn = 33700, 

Mw/Mn = 1.45 were used for oligomer adsorption. mm:mr:rr = 1:6:93, Mn = 32400, 

Mw/Mn = 1.59 were used for monomer adsorption). Tacticities of polymers were 

determined by 1H NMR spectra of alpha methyl protons in nitrobenzene-d5 at 110 ºC. 

Molecular weights and polydispersities were determined by SEC in THF at 40 ºC with 

PMMA standard. PMAA oligomers were obtained by radical polymerization with 
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azobisisobutylonitrile and purified with fractionation by THF and benzene. Trimer of 

PMMA was prepared by anionic polymerization with NaOMe.35 

Quartz Crystal Microbalance An AT-cut quartz crystal with a parent frequency of 

9 MHz was obtained from USI (Japan). A crystal (9 mm in diameter) was coated on 

both sides with gold electrodes 4.5 mm in diameter, which was of mirror like polished 

grade. The frequency was monitored by an Iwatsu frequency counter (Model SC7201) 

and was recorded manually. The leads of the quartz crystal microbalance (QCM) were 

sealed and protected with a rubber gel to prevent degradation as a result of the solvent 

contact during immersion in organic solutions. The amount of polymers adsorbed, ∆m, 

could be calculated by measuring frequency decreases in the QCM, ∆F, using 

Sauerbrey’s equation36 as follows: 

∆F = 2F0
2/(Aρqµq)1/2) × ∆m 

where F0 is the parent frequency of the QCM (9 MHz), A is the electrode area 

(0.159 cm2), ρq is the density of the quartz (2.5 g cm-3), and µq is the shear modulus 

(2.95 × 1011 dyn cm-2). This equation was reliable when measurements were made in air 

as described in this study, because the mass of solvent is never detected as frequency 

shifts, and the effect of the viscosity of the absorbent on the frequency can be ignored. 

 

6. 3 RESULTS AND DISCUSSION 

Stereocomplexes were prepared using the combinations between it-PMMA (Mn = 

22900) and st-PMAA (Mn = 33,700), or it-PMMA (Mn = 36000) and st-PMAA (Mn = 

32400). A typical QCM analysis is shown in Figure 6-1. The porous it-PMMA ultrathin 

film was prepared as follow: 16-step alternative immersions into it-PMMA in 
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acetonitrile and st-PMAA in acetonitrile/water (4/6, v/v) with 0.017 unit M were 

achieved to form stereocomplexes of st-PMAA/it-PMMA on a QCM substrate at 25 ºC. 

Then, 0.01 M NaOHaq. was used to extract st-PMAA from the stereocomplex, which 

results in the it-PMMA ultrathin film with stereoregular (st-PMAA) nanospace, 

analyzed by AFM28 and XRD.37 The reduced weight at this point showed the total 

amount of adsorbed st-PMAA in the alternative assembly. Using the obtained porous 

it-PMMA ultrathin films on the QCM substrate, vinyl monomers and oligomers were 

adsorbed and their behaviors were observed. To clarify the adsorption amounts and the 

relationship among various kinds of compounds in this study, the complexing efficiency 

(CE) was defined as: 

CE (%) = Wincorp. × (Mst/Mincorp.)/{2 × Wit × (Mst/Mit)} × 100 

where Wincorp. is the increased weight at incorporation stages, Wit is the remaining 

it-PMMA weight on the QCM substrate, Mincorp. is the unit molecular weight of the 

incorporation compound, Mst is the unit molecular weight of st-PMAA (86.09 g mol-1), 

and Mit is the unit molecular weight of it-PMMA (100.12 g mol-1), assuming 2:1 

st-PMAA/it-PMMA stoichiometry. Wincorp. was calculated by the change of frequency 

(∆F) in formula (6-1). 
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Figure 6-1. Typical frequency shift of QCM by the stepwise assembly: it-PMMA (open 
circle) in acetonitrile and st-PMMA (filled circle) in acetonitrile/water (4/6, v/v). The 
LbL alternative assembly was achieved for 16-steps on the QCM substrate at the 
concentration of 0.017 unit M at 25 ºC and st-PMAA was selectively extracted by 
NaOH(aq) (open square). The following subsequent MMA (filled square) incorporation 
was achieved at the concentration of 0.13 mol L-1 at 25 ºC. 

 

At first, we were interested in the structure of the trimer as the smallest stereoregular 

unit (mm, mr, and rr), which is possibly small enough to enter into the stereoregular 

nanospace, with little tacticity variation and a short sequence. Thus, the PMMA trimer 

was prepared by anionic polymerization initiated by sodium methoxide35 and distilled 

under vacuum. On the other hand, it was difficult to purify the PMAA trimer from 

oligomers after radical polymerization with azobisisobutylonitrile, and a mixture of 

oligomers was used. Both oligomer ending structures were derived from each initiator 

and were confirmed by mass spectra (Figure 6-2). 
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Figure 6-2. FAB mass spectra of (a) poly(methyl methacrylate) trimer and (b) 
poly(methacrylic acid) oligomers. 

 

Figure 6-3 shows CE (%) of the adsorbed PMMA trimer toward porous it-PMMA 

ultrathin films, accompanied with those of st-PMMA and MMA. As reported, the 

st-PMMA adsorbed around 30% from acetonitrile solution, indicating quick 

stereocomplex formation on the surface, otherwise the it-PMMA on the QCM was 

dissolved by acetonitrile [Figure 6-2(a)].28 In fact, MMA and PMMA trimers were not 

able to keep it-PMMA on the QCM under the same conditions, and whole polymers 
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flowed, when employed for adsorption compounds. To estimate their adsorption 

behavior, MeOH/water (1/1, v/v) was selected since it does not destroy the ultrathin 

film and the PMMA trimer and MMA demonstrate good solubility in this solvent. The 

results are depicted in Figure 6-2(b,c) with a concentration of 0.1 mol L-1 at 25 ºC. 

Although the MMA monomer does not stayin the film at all, the PMMA trimer is 

adsorbed with around 5% CE immediately and sustains this value. Surprisingly, this 

value approximates the ideal value, when stereocomplex formation is achieved by 

st-PMAA/it-PMMA = 2. In other words, considering the amount (about 1800 Hz) and 

molecular weight of the it-PMMA on the ultrathin film (Mn = 22900), the ratio of 

(PMMA trimer)/(it-PMMA) was calculated to be about 6. The aforementioned indicates 

approximately 230 ng of the PMMA trimer is trapped inside the porous it-PMMA film, 

whereas over 70000 times (17 mg) of the PMMA trimer exists in solution. This suggests 

that the possible adsorption spot in the porous it-PMMA film is limited, even when a 

large excess of rr-, mr-, and mm-isomers should exist. Probably, the different structure 

from the polymer chain, such as the ending group, would contribute the stable 

adsorption. The smaller bulkiness of the methoxy group, the ending group in the 

PMMA trimer, rather than the isobutyl group, which is used in actual radical 

polymerization might allow the PMMA trimer to enter the porous it-PMMA ultrathin 

film. To add to this, the length and angle of C—C bonds in PMMA trimers were altered 

from vinyl monomer structures, affecting favorable van der Waals interactions. 
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Figure 6-3. Complexing efficiency of st-PMMA (a), PMMA-trimer (b), and MMA (c) 
with it-PMMA in MeOH/H2O (1/1, v/v) at 0.1 mol L-1 (the average value; n = 3). 

 

ATR-IR spectra of the QCM surface covered with ultrathin films are shown in 

Figure 6-4 and correspond to carbonyl groups of it-PMMA and PMMA trimers. Since 

the pattern of carbonyl groups have been assigned to conformations of each 

stereoregular PMMA and PMAA, detectionof the difference give us insight into the 

nanostructure of each polymer.28 Compared with the peak top around 1739 cm-1 of 

porous it-PMMA [Figure 6-4(c)], the shift to 1737 cm-1 was observed in the spectrum of 

the it-PMMA/PMMA trimer 5% CE, accompanied with a slight shoulder pattern around 

1730 cm-1 [Figure 6-4(b)]. This suggests that PMMA trimer is incorporated into the 

porous it-PMMA film, to maintain the internal main chain conformation. 
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Figure 6-4. ATR-IR spectra of (a) stereocomplex, (b) complex of porous it-PMMA and 
PMMA trimer, and (c) porous it-PMAA film. 

 

The space of the porous it-PMMA ultrathin film should fit into the st-PMAA 

structure rather than the st-PMMA, which possesses bulky methyl groups. Next we 

might try the PMAA trimer, however, synthetic difficulties and a small amount 

incorporation of PMMA trimers, which made it difficult to analyze ATR-IR spectra, 

further hampered the research. The radical oligomerization of methacrylic acid (MAA) 

and solvent fractionation by THF and benzene provided the mixture of PMAA trimer 

and several oligomers with isobutylonitrile groups at the ends [Figure 6-2(b)]. Thus, we 

used the PMAA oligomer, which consisted of a mixture of trimer to octamer. 
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Figure 6-5. Complexing efficiency of (a) st-PMAA in MeCN/H2O = 4/6 at 0.017 unit 
M, (b) PMAA-oligomer in H2O at 0.13 unit M, and (c) MAA in H2O at 0.13 unit M 
with it-PMMA (the average value; n = 3). 

 

The general tendency of the adsorption behavior using PMAA oligomer was the 

same as that using PMMA trimer (Figure 6-5). Namely, st-PMAA and PMAA 

oligomers were absorbed nearly 60 and 15% CE, respectively, but no monomer (MAA) 

adsorption was observed at 20 min. Incorporated amounts of st-PMMA in Figure 6-3 

and st-PMMA in Figure 6-5 decreased when compared with reported values, probably 

because of different stereocomplex ratios during the preparation of porous it-PMMA 

films in this study.28 MAA looks like it is being incorporated gradually, however, a 

significant difference is still recognized between monomer and oligomer 2 h later. 

Besides, atactic PMAA could not be incorporated into the porous it-PMMA ultrathin 

film as reported.28 On the other hand, PMAA oligomer entered into the porous film very 
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quickly at the initial stage, and the value did not change at all, in spite of the abundant 

amount of PMAA oligomer around the film [Figure 6-5(b)]. This implies a limited 

adsorption site exists in porous it-PMMA ultrathin films for the oligomer under these 

conditions and supports the reason why the living nature of active radical species in the 

ultrathin film and why molecular weight control was achieved in template 

polymerization using the radical method. Monomer could move in and out of the film to 

contribute to polymer growing reactions, and the total shape of the polymer should be 

syndiotactic as shown by polymer incorporation [Figure 6-5(a)]. atactic-PMAA 

oligomer (radical), which would be formed during the template polymerization at the 

same time, would not be able to enter into the it-PMMA ultrathin film, so radical 

concentration should extremely decrease in the it-PMMA ultrathin film. Therefore, we 

suggest that the limitedincorporation of oligomer is a reasonable model of radical 

species and provides a mechanism for the reported template polymerization. Polymer 

carbonyl peaks were confirmed by ATR-IR spectra, and slight peak top shifts from 

1739 cm-1 to 1737 cm-1 were confirmed (Figure 6-6). 
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Figure 6-6. ATR-IR spectra of (a) complex of PMAAoligomer and it-PMMA film after 
extraction of st-PMMA (50% CE), (b) complex of PMAA-oligomer and it-PMMA film 
after extraction of st-PMMA (15% CE), and (c) porous it-PMMA film. 

 

The monomer concentration used for adsorption was 0.1 mol L-1, which was also 

used for template polymerization (Figure 6-3, 6-5). However, MAA was slightly 

incorporated after 2 h, which lead to more investigations with vinyl monomers under 

20-fold concentrated conditions. Results from MAA, methacryl amide, and acrylic acid 

are shown in Figure 6-7. van der Waals interactions between methyl ester groups of 

it-PMMA and alpha methyl groups of st-poly(alkyl methacrylate) contribute to the 

stereocomplex formation.38,39 Under concentrated conditions, MAA was moderately 

adsorbed into porous it-PMMA films [Figure 6-7(b)]; however, acrylic acid which does 

not possess alpha methyl groups was not adsorbed at all, as expected from the 

conventional idea regarding van der Waals interactions [Figure 6-7(c)]. Interestingly, 
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methacrylamide was adsorbed with almost the same value as that of MAA, implying the 

porous it-PMMA ultrathin films do not really recognize MAA, the monomer which 

gave rise to template polymerization. This result is reasonable, because the template 

space accommodated the polymer but not the monomer, even if the monomer was the 

source for template polymerization. In other words, the mechanism of the template 

polymerization follows a pick up mechanism, whose association with the template 

polymer is the oligomer but not the monomer. Compound angles and bond lengths are 

important factors to fit template structure. 

 

 
Figure 6-7. Adsorption efficiency of (a) methacryl amide, (b) methacrylic acid, and (c) 
acrylic acid in H2O at 2 mol L-1 (the average value; n = 3). 
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6. 4 CONCLUSIONS 

The mechanism for the stereoregular living polymerization of MAA on porous 

it-PMMA template film was investigated, using oligomers as active intermediate model 

species. When we combined results from monomeric and oligomeric adsorption 

behaviors, template polymerization follows a pick up mechanism, in which the growing 

oligomer radical interacts with the template polymer and monomer is freely supplied. 

The adsorbed PMMA trimer and PMAA oligomer amounts are limited to 5 and 15% CE 

toward the porous it-PMMA film, respectively. These results support a reason for 

molecular weight control during template polymerization, because the concentration of 

the growing radical species in the porous it-PMMA ultrathin film would be determined 

at initial stage by small amount of oligomers to the stable value. No further atactic 

oligomer radical could enter the ultrathin reaction field to prevent side reactions, such as 

radical coupling termination. Thus, the synthesized molecular weight of PMAA on the 

template polymerization in the porous it-PMMA ultrathin film should be controlled. 

Basic information regarding vinyl monomer adsorption under condensed conditions 

might provide further applications for the porous it-PMMA ultrathin films. 
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Chapter 7 

Macroporous Silicagel Substrate for Stereoregular Template 

Polymerization of Methacrylic Acid Using Stereocomplex 

Assembled Thin Films 

 

7. 1 INTRODUCTION 

Controlling polymer structure is important, because the chemical and physical 

characteristics of a polymer depend on its molecular weight distribution and 

stereoregularity. Polymer-polymer interactions have received much attention due to the 

possible application as a precise reaction control. For example, isospecific and 

syndiospecific template polymerizations of methyl methacrylate (MMA) have been 

reported with the use of stereocomplex formation in the presence of one stereoregular 

polymer.1,2 However, van der Waals interactions between isotactic (it) and syndiotactic 

(st) poly(methyl methacrylate)s (PMMA) exert an unfavorable effect against the 

formation of a stereoregular polymer during radical polymerization in solution, because 

the polymer chain moves constantly with thermal motion. Recently, molecularly porous 

thin films were employed for stereoregular template polymerization, which were 

prepared by the alternative layer-by-layer assembly of it-PMMA/st-poly(methacrylic 

acid) (PMAA) and the subsequent extraction of one polymer from the stereocomplex 

film.3,4 It was a breakthrough for the precise control of radical polymerization on MMA 

and methacrylic acid (MAA). This new stereocontrol approach is significant, because 

conventional anionic polymerization requires restricted polymerization conditions and 
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organometal reagents. Porous it-PMMA thin film formation, st-PMAA recognition, and 

stereoregular template polymerization of MAA were investigated preliminarily on a 

quartz crystalline microbalance (QCM) substrate at the nano gram order. In order to 

manufacture stereoregular PMMAs with the aforementioned template polymerization 

method, a more efficient reaction field is crucial. Although silica gel (diameter: 1.6 mm) 

was used as a substrate because of its larger surface area,3 the issues still remain. For 

example, the aggregation of the silicagels bearing thin polymer films prevents good 

dispersion, which is required for an efficient reaction field. The smaller the silicagel is, 

the greater the reaction efficiency, but this makes it difficult to recover the silicagels 

completely by centrifugation after several dozen alternative immersion steps. 

Therefore, we selected a macroporous silicagel (diameter: 7 µm, pore: 100 nm) as a 

suitable substrate for template polymerization in this study. Macroporous silicagel is 

widely used, for example as the supporting for material of a stationary phase in 

high-performance liquid chromatography (HPLC).5 Packed column is possible to be 

applied for repeatedly available polymerization container. Herein, we report the 

template polymerization of MAA on a porous it-PMMA thin film formed on 

macroporous silicagels, and discuss the curvature effect and reproducibility. 

 

7. 2 EXPERIMENTAL 

Materials Macroporous silicagel (diameter: 7 mm, pore: 100 nm) was purchased 

from Daiso, Co., LTD. MMA (Tokyo Chemical Industry Co., LTD.), MAA (Tokyo 

Chemical Industry Co., LTD.), trimethylsilylmethacrylate (Aldrich), toluene (Tokyo 

Chemical Industry Co., LTD.) were distilled with calcium hydride. 

2,2’-Azobis(2-methylpropionamidine) dihydrochloride (V-50) (Wako) was used 
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without further purification. it-PMMA for Layer-by-layer assembly in this study was 

synthesized by anionic polymerization of MMA in toluene at 78 ºC for 5 d with 

t-BuMgBr6 (mm:mr:rr = 96:3:1, Mn = 36000, Mw/Mn = 1.20). st-PMAA for 

Layer-by-layer assembly was synthesized by anionic polymerization of 

trimethylsilylmethacrylate with t-BuLi/bis(2,6-di-tert-butylphenoxy)methyl aluminum,7 

and the obtained polymer was methylated by diazomethane to be characterized 

(mm:mr:rr = 1:5:94, Mn .33700, Mw/Mn = 1.45). Tacticities of polymers were 

determined by 1H NMR spectra of alpha methyl protons in nitrobenzene-d5 at 110 ºC. 

Molecular weights and polydispersities were determined by SEC in THF at 40 ºC with 

PMMA standard. 

Preparation of Porous it-PMMA Thin Film Stereocomplex was prepared using 

it-PMMA (Mn = 36000) and st-PMAA (Mn = 32400), which were obtained by anionic 

polymerizations. The porous it-PMMA thin film on macroporous silicagel was typically 

prepared as follow. In plastic tube with cap, a 2 g of macroporous silicagel was 

introduced. 40 mL of it-PMMA in acetonitrile with 0.017 unitM was then introduced 

into the tube to rotate mildly for 15 min. After centrifugation, supernatant polymer 

solution was separated from macroporous silicagel, and washed with acetonitrile twice. 

Similarly, st-PMAA in acetonitrile/water (4/6, v/v) with 0.017 unitM was treated to 

form stereocomplexes of st-PMAA/it-PMMA on macroporous silicagel substrate. Those 

alternative immersions were repeated twenty cycles (Table 7-1, entry 1–4). The same 

procedure was achieved to prepare the other stereocomplex on macroporous silicagel, 

except for st-PMAA in acetonitrile/water (2/8, v/v) and washing water for st-PMAA 

steps (Table 7-1, entry 5). Then, 0.01M NaOH(aq) was used to extract st-PMAA from 
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the both stereocomplex, which results in the it-PMMA ultrathin film with stereoregular 

(st-PMAA) nanospace. The extraction was confirmed by the IR spectral change of 

carboxyl group. 

 

Table 7-1. Template polymerization of methacrylic acida 

 

 

Template Polymerization 0.9mL of MAA was dissolved in ultrapure water, and 

the porous it-PMMA thin film on macroporous silicagel were introduced. Dry nitrogen 

gas was handled for more than 15 min before use, and then V-50 was added under 

nitrogen atmosphere to heat at 40 ºC for 2 h. The mixture was cool down to stop 

reaction. Macroporous silicagel was washed by water to recover PMAA, which was 

produced in solution. Then PMAA which was synthesized in porous it-PMMA thin film 

was extracted by 0.01M NaOH(aq). The macroporous silicagel with porous thin film 

was used for three times. 
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Figure 7-1. Schematic illustration of (a) stereoregular template preparation for 
st-PMAA and (b) a SEM image of the macroporous silicagel with it-PMMA/st-PMAA 

stereocomplex films. White bar indicates 10 µm. 

 

 

7. 3 RESULTS AND DISCCUSION 

Figure 7-1 shows a schematic illustration of stereocomplex (it-PMMA/st-PMAA) 

formation, porous it-PMMA film preparation, and the subsequent template 

polymerization of MAA, together with SEM images of the silicagel. After 10 cycles of 
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alternative immersion between the it-PMMA and st-PMAA solution, the 

it-PMMA/st-PMAA stereocomplex would be present on the surface. It is not surprising 

that holes in the silicagel could still be clearly observed, because the width of 

it-PMMA/st-PMMA stereocomplex is around 2 nm as reported elsewhere.8 These holes 

were also recognized even after 20 cycles of alternative immersion, although very small 

amount of polymer which are not adsorbed onto the silicagel was also observed. Due to 

the washing processes of silicagel against the existing it-PMMA or st-PMAA, these 

polymers were assumed to be stereocomplexes. During the st-PMAA template (porous 

it-PMMA film) preparation with the subsequent extraction of st-PMAA, the holes in the 

silicagel were not completely covered with the polymers, but the silicagel surface 

became smoother and the hole size tended to be smaller; these findings were confirmed 

by SEM. This suggests that the polymer solution could permeate inside each silicagel 

particle, and a template field could also be created inside the macroporous silicagel. 

The syndiospecific template polymerization of MAA with the it-PMMA film on the 

silicagel was successfully achieved (Table 7-1).3 The template polymerization with 

twenty cycles of alternative assembly on 2 g of macroporous silicagel resulted in 44 mg 

(5% yield) of PMAA, whereas 740 mg of PMAA (81% yield) was recovered from the 

solution. Previously, it has been reported that about 1.4 × 10-6 mg (1600 Hz) of 

it-PMMA/ st-PMAA stereocomplex was adsorbed onto a QCM (9 mm diameter) at 5 

cycles of assembly.9 Assuming that the same amount of stereocomplex was adsorbed 

onto the macroporous silicagel, 2.6 g was estimated as the amount of stereocomplex 

film in this study, because a 60 m2 surface area of macroporous silicagel (30m2/g, 2 g) 

was used for 20 cycles of assembly. Taking the 1/2 ratio of it-PMMA/st-PMAA into 

account, the efficiency of the template polymerization was calculated to 3%. However, 
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the amount adsorbed onto the silicagel should be much smaller than the theoretical 

value, because the surface energy of glass on macroporous silicagel is much smaller 

than that of gold on a QCM. Furthermore, the molecular weight (Mn = 26000) during 

the extraction procedure was smaller than that of st-PMAA used during stereocomplex 

formation, and the molecular weight of synthesized PMAA was similar to that of the 

extracted PMAA. Taken together, these findings imply that not all stereocomplex film 

were effective for template field creation deep inside the pores, however, the template 

polymerization proceeded along the nanospace. 

A lack of syndiotacticity was observed in PMMA recovered from supernatant in the 

previously reported template polymerization,3 which was considered to be a result of the 

excess adsorption of rr-triads to the template thin film. However, the tacticity of the 

PMAA collected from solution in this study was atactic after treatment with 

diazomethane (Figure 7-2c), which is a similar value as the typical PMAAs obtained 

with radical methods. This is likely the result of the large amount of monomer 

polymerized as compared to the template thin film. On the other hand, PMAA 

synthesized on the macroporous silicagel was confirmed as highly syndiotactic (Figure 

7-2d), suggesting that the stereoregularity of the PMAA was influenced by the 

it-PMMA film on the macroporous silicagel. The molecular weight of PMAA 

synthesized on the macroporous silicagel (Mn = 28000) was similar to the initially 

extracted st-PMMA (Mn = 26000), and smaller than that collected from solution (Mn = 

46000), which implies that the polymerization circumstances were quite different. 
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Figure 7-2. 

1H NMR spectra of synthesized poly(methacrylic acid) at 110 ºC in 
nitrobenzene-d after methylation with diazomethane. (a) st-PMMA obtained by anionic 
polymerization, (b) PMMA extracted from stereocomplex thin film on macroporous 
silicagel at preparation of template reaction field, (c) PMMA collected from solution 
after polymerization, and (d) PMMA synthesized with porous it-PMMA on silicagel. 

 

Next, the macroporous silicagel was maintained at 20 ºC for 2 d, and then the 

template polymerization was repeated two times (Table 7-1, entries 2, 3, Figure 7-3a, 

3b). Another 13 d late, the template polymerization was performed again (Table 7-1, 

entry 4, Figure 7-3c). These results demonstrate that the polymerization field was stable 

for recycled use, because the highly syndiotactic selective polymerization was 

repeatedly observed. 
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Figure 7-3. 

1H NMR spectra of synthesized poly(methacrylic acid) on the reused 
it-PMMA film after methylation by diazomethane (in nitrobenzene-d, 110 ºC). (a) 
Secondly synthesized PMAA, (b) thirdly synthesized PMAA, and (c) fourthly 
synthesized PMAA. 

 

Finally, the alternative assembly of it-PMMA/st-PMAA onto macroporous silicagel 

with 40 cycles was examined with acetonitrile/water (2/8, v/v) for the st-PMAA solvent 

(Table 7-1, entry 5). The reused template polymerization on the macroporous silicagel 

provided almost the same yield. Solvent effect on the amount of stereocomplex 

formation by layer-by-layer was reported.10 When acetonitrile/water (3/7, v/v) was 

employed, the stereocomplex amount decrease almost two-thirds of that with 

acetonitrile/water (4/6). Thus, the result (Table 7-1, entry 5) is understandable because 

of the solvent effect and twice layer-by-layer assembly. The molecular weights were 

controlled, and they were highly syndiotactic (rr = 90%) as measured by 1H NMR after 

methylation with diazomethane for all of the obtained PMAAs (Table 7-1). These 
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reproducible results suggest that the template polymerization of methacrylic acid with 

it-PMMA/macroporous silicagels has practical applications for manufacturing using 

HPLC systems. 
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Chapter 8 

Template Polymerization in Porous Isotactic Poly(methyl 

methacrylate) Thin Films by Radical Polymerization and 

Post-polymerization of Methacrylate Derivatives 

 

8. 1 INTRODUCTION 

The development of controlled polymerization methods is an important research 

area because physical and chemical characters of polymers are influenced by their 

structures, such as molecular weight and stereoregularity. G. Challa et al. investigated 

the stereospecific polymerization of methyl methacrylate (MMA)1,2 and methacrylic 

acid (MAA)3 in the presence of stereoregular poly(methyl methacrylate) (PMMA) 

because isotactic (it) PMMA and syndiotactic (st) PMMA form stereocomplexes whose 

structures were reported as double-stranded helices by X-ray4 and triple-stranded helices 

by AFM measurements.5 In 2004, almost perfectly controlled radical polymerizations of 

methacrylates were reported in porous thin films.6,7 Surprisingly, free radical 

polymerization principally controlled both molecular weights and stereoregularities, 

although little stereoregularity control was achieved in solution. Therefore, the 

elucidation of template polymerization mechanisms in thin films would provide 

significant finds. These aforementioned complexes were prepared by layer-by-layer 

(LbL) assembly as a critical approach. 

LbL assembly, which is achieved by simple alternative immersions, was first 

reported by G. Decher et al.8,9 as a convenient technique for fabricating thin films using 
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polycation-polyanion interactions. Because of its simplicity and high applicability, the 

LbL assembly method is applied to a wide research area such as multilayer 

preparations,10 metal particles,11 virus,12 proteins,13 silica colloids,14 and so on. However, 

weak polymer-polymer interactions, such as van der Waals interactions of it-PMMA 

and st-PMMA in stereocomplex formation,15 were applied to LbL assembly by our 

group.16 Then, thin films were successfully fabricated on quartz crystal microbalance 

(QCM) substrates by it-PMMA/st-poly(alkyl methacrylate) stereocomplexes17 as well 

as it-PMMA/st-PMMA stereocomplexes. Among the successive research, 

it-PMMA/st-poly-(methacrylic acid) (PMAA) stereocomplex formation18 was the most 

important because the polymer possesses quite differentsolubilities in organic/alkali 

water solvents, which enabled us to extract only one component from stereocomplex 

thin films. Therefore, porous it-PMMA thin films were prepared, bearing 

st-PMAA-shaped nanospaces inside,19-21 to lead the isospecific polymerization of MMA 

with porous st-PMAA thin films6 and the syndiospecific polymerization of MAA.7 

To investigate the mechanism of template polymerization, molecular weight growth 

during polymerization was monitored,6 and oligomeric adsorption behaviors in porous 

it-PMMA thin films were analyzed.22 These studies showed that the system proceeds in 

a living radical polymerization manner; however, the stereospecific mechanism has 

attracted attention for the possibility of stereocontrol of other polymers bearing similar 

structures. 

Usually, molecular designs of monomers, catalysts, and additives are important to 

achieve stereospecific polymerization, which is why the molecular design of 

substituents23-26 and the structural design of catalyst ligands27-30 has been intensively 

researched for controlled polymerization. The use of porous reaction fields is another 
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important approach for the controlled polymerization.31-33 Basically, the aforementioned 

strategies are based on constructing and curving nanospaces at the molecular level along 

polymer main chains. In previous work, it was reported that porous it-PMMA thin films 

could partially associate with st-PMAA derivatives, such as st-PMMA, st-poly(ethyl 

methacrylate), and st-poly(propyl methacrylate).19 Therefore, the application of other 

vinyl monomer polymerization to the template polymerization system would provide 

useful information on the mechanism. 

In this study, we first confirmed the living manner in porous it-PMMA thin films by 

postpolymerizing of MAA on QCM substrates. Then, radical polymerizations were 

performed on MAA, MMA, acrylic acid (AA), and methacrylamide (MAm) with 

it-PMMA thin films on QCM substrates (Scheme 8-1). The polymerizability was 

compared on QCM, and 1H NMR spectra were measured for the obtained PMMA to 

discuss the template polymerization mechanism. 

 

Scheme 8-1. Preparation of Porous it-PMMA Thin Film and Post-Polymerization 

of Methacrylic Acid and Its Derivatives 
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8. 2 EXPERIMENTAL 

Materials MMA (Tokyo Chemical Industry), MAA (Tokyo Chemical Industry), 

AA (Tokyo Chemical Industry), trimethylsilylmethacrylate (Aldrich), and toluene 

(Tokyo Chemical Industry) were distilled just before use. MAm (Tokyo Chemical 

Industry), anhydrous acetonitrile (Wako Pure Chemical Industries, Japan), and 

anhydrous methanol (Wako Pure Chemical Industries, Japan) were used without further 

purification. Ultrapure distilled water was provided by the MILLI-Q laboratory 

(MILLIPORE). it-PMMA in this study was synthesized by anionic polymerization of 

MMA in toluene at -78 °C for 5 days with t-BuMgBr34 (mm:mr:rr = 96:3:1, Mn = 36000, 

Mw/Mn = 1.20 was used for QCM substrate, mm:mr:rr = 96:2:2, Mn = 22900, Mw/Mn ) 

1.21 was used for silica gels substrate). st-PMAA was synthesized by anionic 

polymerization of trimethylsilylmethacrylate with t-BuLi/Bis(2,6-ditert-butylphenoxy)- 

methyl aluminum,35 and the obtained polymerwas methylated by diazomethane to be 

characterized (mm:mr:rr =1:6:93, Mn = 32400, Mw/Mn = 1.59 was used for QCM 

substrate, mm:mr:rr = 1:5:94, Mn = 33700, Mw/Mn = 1.45 was used for silica gels 

substrate). Tacticities of polymers were determined by 1H NMR spectra of alpha methyl 

protons in nitrobenzene-d5 at 110 °C. 

Polymerization on a Quartz Crystal Microbalance Substrate The preparation of 

porous it-PMMA thin films on a QCM by LbL assembly and the subsequent template 

polymerization on a QCM were conducted as reported in the literature.6,7 A typical 

experimental procedure of postpolymerization is described for the polymerization in 

MAA. A QCM substrate was immersed in an it-PMMA solution in acetonitrile (0.017 

unitM) for 5 min at 25 °C, washed gently with acetonitrile, and dried with nitrogen gas 

to measure the frequency. The substrate was immersed in a st-PMAA solution in 
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acetonitrile/water (4:6 v/v; 0.017 unitM) for 5 min at 25 °C. Alternate immersions were 

repeated for 16 steps (8 cycles); the selective extraction of st-PMAA in a 10 mM NaOH 

aqueous solution for 5 min was performed to obtain the porous it-PMMA film as a 

template polymerization field. This film was immersed in 6.8 mL of degassed ultrapure 

water with 85 mg MAA (1 mmol) in a glass vial capped by a septum rubber for 30 min 

at room temperature; then, 3.2 mL of radical initiator VA-044 (16.5 mg, 0.05 mmol) 

solution in the degassed ultrapure water was combined to heat up to 70 °C for 

polymerization reactions. The additional 2.5 mL of MAA solution in ultrapure water 

(8.5 mg/mL) was introduced to the reaction glass vial after 30 min and kept at 70 °C for 

more than 2.5 h. The QCM substrate was gently washed by ultrapure water to measure 

frequency. 

Polymerization on Macroporous Silica Gels The preparation of porous it-PMMA 

thin films on silica gels, and subsequent template polymerizations on silica gels were 

conducted as reported in the literature.6,36 LbL-assembled it-PMMA/st-PMAA 

stereocomplex on macroporous silica gels (2.0 g) was introduced to 300 mL of ampule, 

and 250 mL of aqueous 10 mM NaOH solution was introduced to purge nitrogen for 2 h. 

After removed of NaOH solution by syringe, the silica gels were washed by ultrapure 

watertwice to obtain porous it-PMMA film on silica gels. MeOH (50 mL) and ultra pure 

water (50 mL) were then combined with silicagels in ampule, and MMA (0.3 mL, 2.8 

mmol) was introduced and nitrogen was purged for 1.5 h. VA-044 (37.9 mg, 0.14 

mmol) was added to the mixture, and an additional 10 min of nitrogen purge was 

performed. The polymerization was initiated by heating up to 40 °C. After 3 h of 

reaction and removal of the supernatant solution, the ampule was cooled to room 

temperature, and silica gels were washed by 40 mL of acetonitrile three times. After 
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centrifugation, the separated silica gels were then washed by 40 mL of chloroform three 

times again. The recovered solutions by each step were condensed to obtain polymers: 

the extracted NaOH(aq) soluble part, 318 mg (100 mg NaCl was included); supernatant 

solution part, 35 mg; acetonitrile soluble part, 71.3 mg; chloroform soluble part, 95.4 

mg. 

Quartz Crystal Microbalance An AT-cut quartz crystal with a parent frequency of 

9 MHz was obtained from USI (Japan). A crystal (9 mm in diameter) was coated on 

both sides with gold electrodes 4.5 mm in diameter, which was of mirrorlike polished 

grade. The frequency was monitored by an Iwatsu frequency counter (model SC7201) 

and was recorded manually. The amount of polymers adsorbed, ∆m, could be calculated 

by measuring frequency decreases in the QCM, ∆F, using Sauerbrey’s equation37 as 

follows 

∆F = 2F0
2/(AFq µq)1/2)∆m 

where F0 is the parent frequency of the QCM (9 MHz), A is the electrode area 

(0.159 cm2), Fq is the density of the quartz (2.5 g cm-3), and µq is the shear modulus 

(2.95 × 1011 dyn cm-2). This equation was reliable when measurements were made in 

air as described in this study because the mass of solvent is never detected as frequency 

shifts, and the effect of the viscosity of the absorbent on the frequency can be ignored. 

Measurements Attenuated total reflection (ATR) IR spectra of the thin films were 

obtained with a Spectrum 100 FT-IR spectrometer (Perkin-Elmer). The interferograms 

were coadded 64 times and were Fourier transformed. 1H NMR spectra were measured 

by JNMGSX400 system (JEOL, Japan). Static contact angles were measured using an 

automatic contact angle meter apparatus (Drop Master 100, Kyowa Interface Science, 

Japan) at room temperature. A drop of ultrapure water was introduced to the film using 
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a microsyringe. 

 

8. 3 RESULTS AND DISCUSSION 

The stereospecific template polymerization of methacrylates using the 

complementary interaction of stereocomplex formation is significant because of the 

simple free-radical polymerization without any harmful organometal reagents under 

strict polymerization conditions.6 However, the stereocomplex film formation prior to 

the polymerization by LbL assemblies was affected by subtle condition changes such as 

molecular weights of template polymers, the combination of polymers, concentrations, 

solvents, temperatures, and so on. On the research series of polymerization mechanistic 

studies, we initially had difficulties in controlling and estimating polymerizations. 

Besides, it- PMMA and st-PMAA did not form clear 2:1 stereocomplexes on the QCM 

in all cases, but 1.22 ± 0.34:1 (n = 29), implying a mixture of 2:1 and 1:1 

stereocomplexes.15,18,38 Therefore, the complex efficiency (C.E.) was determined to 

evaluate the polymerization value in this study as the following 

C.E. = (increased weight after polymerization)/(extracted st-PMAA weight) × 100 

The results of template polymerization of methacrylate derivatives are listed in 

Table 8-1. 
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Table 8-1. Radical Polymerization with Porous it-PMMA Film on QCMa 

 

 

Because every LbL assembly step and extraction step differed for each substrate, it 

would be difficult to compare polymerizabilities with frequency changes when only 

small amounts of monomer polymerized. For this reason, blank polymerizations were 

run to check if the defined C.E. formula (8-1) was appropriate for evaluations. 

Following the reported polymerization conditions,7 MAA in ultrapure water (0.1 mol/L) 

was heated to 70 °C for 3 h on QCM substrates with porous it-PMMA films without an 

azo-initiator (VA-044) (Table 8-1, entry 1). The resulting QCM analysis showed a -3% 

C.E. value, suggesting that there was no polymerized PMAA incorporated into the 

porous it-PMMA film and that very slight it-PMMA peeled on the substrate. The 

aforementioned tendency was also confirmed under conditions with an azo-initiator but 

without an MAA monomer to obtain -4% C.E., as depicted in Figure 8-1a (Table 8-1, 

entry 2). These data show that porous it-PMMA thin films are relatively stable, and 

most host template polymers remained on QCM substrates. 
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Figure 8-1. QCM analyses of LbL assembly, selective extraction, and template 
polymerization with (a) blank (Table 8-1, entry 2) and (b) 27% yield (Table 8-1, entry 
5). 

 

First, MAA polymerizations were performed under diluted conditions (0.02 M) for 

the purpose of polymerization analyses with low conversions. At both 40 and 70 °C, 2% 

C.E. valueswere observed (Table 8-1, entries 3 and 4). Considering the slight it-PMMA 

peeling (Table 8-1, entries 1 and 2) and oligomer adsorptions,22 the C.E. values were 

appropriate to the explanation that the initially generated oligomers immediately 

adsorbed into porous it-PMMA thin films, and there were no further polymerizations 

that proceeded in the film, whereas the MAA monomer was consumed in solution. 

Under five times concentrated conditions (0.1 M), the increased value was apparently 

confirmed with 27% C.E., which demonstrated that actual polymerizations in films had 

taken place. (Table 8-1, entry 5). In Figure 8-2, the speculation of FT-IR/ATR spectra of 

the films with 27% C.E. are shown and compared with those of porous it-PMMA films 

and st-PMAA cast films. 
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Figure 8-2. (a) FT-IR/ATR spectrum of the porous it-PMMA. The differential 
FT-IR/ATR spectra of (b) it-PMMA/st-PMAA, (c) MAA polymerized on it-PMMA 
film with 59% C.E. (Table 8-1, entry 8), and (d) MAA polymerized on it-PMMA film 
with 27% C.E. (Table 8-1, entry 5), which were obtained by the subtraction of the 
porous it-PMMA (a). (e) FT-IR/ATR spectrum of the st-PMAA cast film. 

 

Because of the fact that the amount of polymerized MAA was smaller than that of 

originally attached it-PMMA films, it was difficult to find changes in spectral patterns. 

Then, the differential spectrum (Figure 8-2d) was compared with that of 

it-PMMA/st-PMAA stereocomplex films (Figure 8-2b), which were obtained by 

subtracting the IR spectrum of porous it-PMMA films (Figure 8-2a) from those of 

originally measured IR spectra. Whereas the spectrum of st-PMAA cast film, which 

should possess a random conformation, showed a peak at 1695 cm-1, differential spectra 
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of both template polymerized films (27% C.E., Figure 8-2d) and stereocomplexes 

(Figure 8-2b) exhibited peaks at around 1720 cm-1. This result shows that the 

circumstances of carbonyl groups of the obtained PMAA are similar to those of 

stereocomplexes, suggesting that stereocomplex formation is achieved during MAA 

polymerization. 

However, the C.E. value in this study remained lower than that in a previously 

reported case,7 probably because different stereoregular polymers were employed for 

stereocomplex formation and because the structure of the resulting porous it-PMMA 

film had variant balances of the oligomer adsorption, the mobility of it-PMMA chains, 

and the porosity that allowed monomer supply. In the solid polymer matrix, it is known 

that radicals are entrapped and gradually react.39 To investigate the possibility of further 

polymerization, postpolymerization was applied because the polymerization system was 

reported in a living radical polymerization manner. 

Additional MAA solution (2.5 mL, 8.5 mg/mL) was added 3 h, 4 h, and 0.5 h after 

initiation, respectively (Table 8-1, entries 6-8). In all cases, increased weights compared 

with that without added monomer were observed. Because no increasing weights were 

observed without radical initiators (Table 8-1, entry 1), 50% C.E. (Table 8-1, entry 6), 

65% C.E. (Table 8-1, entry 7), and 59% C.E. (Table 8-1, entry 8) increasing weights 

should be attributed to the postpolymerization in porous it-PMMA thin films, implying 

that polymer radicals inside it-PMMA films still possessed reactivity and were ready to 

react if monomers were supplied (Figure 8-3a). To add to this, the intensity of 

differential IR spectra increased from that with 27% C.E. (Figure 8-2c,d). Furthermore, 

the contact angle on the surface changed from 49.2 ± 1.9 to 36.7 ± 2.8° compared with 

porous it-PMMA thin films, which hint that the surface hydrophilicity change came 
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from stereocomplex formation. Therefore, postpolymerization would be a good 

approach to improving C.E. in this template polymerization system. 

 

 
Figure 8-3. (a) QCM analyses of LbL assembly, selective extraction, and template 
polymerization of methacrylic acid with C.E. ) 59% (Table 8-1, entry 8) and (b) 
template polymerization of methyl methacrylate with C.E. ) 90% (Table 8-1, entry 13). 

 

Another approach to investigating polymerization mechanisms is to change 

monomer structures and evaluate the effects of substituent bulkiness and polarities. 

Especially in this template polymerization system, van der Waals interactions were 

considered to be strong driving forces in stereocomplex formation, in which the 

molecular shape is very important. Porous it-PMMA thin films have incorporated 

st-PMAA derivatives to some extent,19 and MAm and MMA were absorbed and acrylic 

acid (AA) was not absorbed into it-PMMA thin films when vinyl monomer 

concentrations were condensed (2 M).22 Therefore, those MAA derivatives were applied 

to template polymerization of it-PMMA/st-PMAA systems (Table 8-1, entries 9-13). 

MAm is a monomer with similar adsorption into porous it-PMMA thin films as 

MAA22 because of its structural similarity with R-methyl groups, which should be 
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associated with it-PMMA polymer chains.40 However, the result of radical 

polymerization resulted in 8% C.E. (Table 8-1, entry 9), and it was slightly improved to 

12% C.E., even when a postpolymerization was applied (Table 8-1, entry 10). It would 

be difficult for nonstereocomplex formation polymer combinations, such as 

it-PMMA/poly(MAm), to polymerize, although the monomer and limited oligomers 

were able to be incorporated. Reversely, polymerization using a smaller vinyl monomer, 

AA, made the weight increase to 71% C.E. (Table 8-1, entry 12), although AA itself did 

not incorporate into porous it-PMMA thin films.22 Therefore, the size of porosity might 

strictly affect the polymerizability of MAA derivatives. However, a slightly bigger 

structure, MMA is expected to completely polymerize because of it-PMMA/st-PMMA 

stereocomplex formation as a driving force. After polymerization of MMA on QCM 

substrates, C.E. was 192% C.E. at first because of the adsorption of atactic (at) PMMA 

synthesized in MeOH/water (1:1, v/v). When the QCM substrate was rinsed with 

acetonitrile, which dissolved not only at-PMMA but also it-PMMA on the QCM, 

polymer still remained with 90% C.E., and it was stable in acetonitrile at 25 °C 

overnight (Figure 8-3b; Table 8-1, entry 13). Because it-PMMA/st-PMMA 

stereocomplexes do not dissolve in acetonitrile, the template polymerization of MMA in 

porous it-PMMA thin films was suggested. 

To study the stereoregularity of obtained polymers, we chose the MMA 

polymerization on macroporous silica gels because the tacticity study of poly(AA) was 

difficult. Prior to the polymerization, we investigated the effect of steps in 

stereocomplex formation on silica gels by FT-IR/ATR spectra (Figure 8-4). 
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Figure 8-4. FT-IR/ATR spectra of it-PMMA/st-PMAA stereocomplex film on silica 
gels and the porous it-PMMA films on silica gels with (a,b) 20 steps, (c,d) 40 steps, (e,f) 
60 steps, and (g,h) 80 steps. 

 

On the basis of the absorption intensity of silica gels at 1057 cm-1, the relative IR 

intensity of carbonyl groups at 1720 cm-1 proportionally grows, depending on the 

number of the alternative LbL assembly steps (Figure 8-4a,c,e,g), whereas each cast 

film of it-PMMA and st-PMAA has a peak at 1726 and 1695 cm-1, respectively. The 

peak at each LbL step shifted to 1721 cm-1 with the same spectral patterns (Figure 

8-4b,d,f,h), showing that the complete extraction of st-PMAA at each step and that the 

porous it-PMMA thin film do not depend on the thickness of the film. The stepwise 

weight increase to 80 steps was also confirmed by QCM analysis. 
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MMA was then polymerized with porous it-PMMA thin films on 2 g of 

macroporous silica gels, prepared by an 80 step LbL assembly. The polymerization was 

conducted in MeOH/water (1:1 v/v) at 40 °C for 3 h. After polymerization, the 

supernatant was removed, and the polymer films on silica gels were washed with 

acetonitrile because at-PMMA and it-PMMA are soluble in acetonitrile, but the 

stereocomplex is insoluble. After it was separated from acetonitrile solution, the silica 

gel was then washed with chloroform to recover the rest of the polymers as an 

acetonitrile insoluble part. In this way, the reaction mixture was fractionated and 

separately analyzed as (1) the supernatant solution part, (2) the acetonitrile-soluble part, 

and (3) the chloroform-soluble part. Prior to the polymer analyses, the reaction was 

monitored by FT-IR/ATR spectra, as shown in Figure 8-5. The IR intensity of the 

polymer film on silica gels after MMA polymerization apparently increased compared 

with that of initial porous it-PMMA thin films on silica gels (Figure 8-5b). Silica gels 

with polymers were washed by 40 mL of acetonitrile three times, and IR spectra were 

measured again for carbonyl peaks in PMMA to see if they remained (Figure 8-5d), 

whereas initial porous it-PMMA films on macroporous silica gels totally washed away. 

This result indicates thesynthesized PMMA formed stereocomplex with the initial 

porous it-PMMA. Finally, 40 mL of chloroform was used to recover PMMAs from 

silica gels (95 mg). 
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Figure 8-5. FT-IR/ATR spectra of the polymer film on silica gels, whose intensity 
corresponded at 1057 cm-1: (a) it-PMMA/st-PMAA stereocomplex, (b) porous 
it-PMMA film, (c) MMA polymerized in the porous it-PMMA film, (d) acetonitrile 
insoluble part after the MMA polymerization in the porous it-PMMA film, and (e) after 
washing with chloroform on silica gels. 

 

1H NMR spectra of fractionated PMMAs are depicted in Figure 8-6. Together with a 

slight amount of it-PMMA, PMMAs recovered from supernatant solution showed 

typical at-PMMA (Figure 8-6a). However, the acetonitrile soluble part showed only 

it-PMMA, which was used to build the porous it-PMMA host film (Figure 8-6b). At last, 

1H NMR spectra of the rest of the film, collected as an acetonitrile-insoluble and 

chloroformsoluble part, showed that the equivalent amount of it-PMMA existed as 
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slightly syndiotactic enriched PMMA (Figure 8-6c). The chloroform-soluble part 

(mm:mr:rr = 49:22:29) includes the synthesized PMMA with radical method and the 

original it-PMMA host as template film. The aforementioned experimental data suggest 

that enough MMA could be polymerized in it-PMMA film nanospaces and that the 

partially stereocomplex formed to change the total solubility in acetonitrile. However, 

taking the amount of it-PMMA host into account, the syndiotactic selectivity in Figure 

8-6c was not so high, although almost perfect selectivities were achieved in the previous 

work.6,7 The reason why selectivities varied between MMA and MAA polymerizations 

is that MMA possesses abulky methyl group. Stereospecific template polymerization 

has been achieved only when the same polymer was synthesized as the polymer 

extracted from stereocomplex.6,7 In this study, the porous nanostructure was created not 

by PMMA but by PMAA. In short, the porous nanostructure itself played an important 

role in stereoregulation in addition to stereocomplex formation. The substituent effect is 

supported by the fact that the porous it-PMMA film can incorporate st-PMAA with 

around 80% C.E., whereas st-PMMA and st-poly(ethyl methacrylate) are incorporated 

with only 43 and 8% C.E., respectively.19,22 Therefore, the strict stereoregular control of 

PMMA during the polymerization was difficult under the present conditions. It is 

noteworthy that MMA was also polymerized in acetonitrile/water (4:6 v/v) and resulted 

in the same insoluble PMMA (13 mg), which was equivalent to the remaining 

it-PMMA. 
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Figure 8-6. 
1H NMR spectra of PMMA obtained with it-PMMA thin film on 

macroporous silica gels in MeOH/water (1:1 v/v). (a) The supernatant solution part of 
the template polymerization, (b) the acetonitrile-soluble part of the host it-PMMA, and 
(c) the acetonitrileinsoluble and CHCl3-soluble part of the obtained PMMA with the 
host it-PMMA (400 MHz, in nitrobenzene-d at room temperature). 

 

SEC charts of the resulting polymers are shown in Figure 8-7. The SEC analysis of 

the acetonitrile-soluble part depicted a unimodal pattern (Mn = 11000), indicating 

it-PMMA host in accord with 1H NMR spectrum (Figure 8-7b). However, bimodal 

distribution was observed from the analysis of the chloroformsoluble part (Mn = 330000, 

Mn = 18000) (Figure 8-7c). The low-molecular-weight part (Mn = 18000), attributed to 

the rest amount of the it-PMMA host and associated with the synthesized PMMA, and 

the high-molecular-weight part (Mn = 330000) could be assigned to the synthesized 

PMMA. The value does not correspond to the expected molecular weight when the 1:2 

stereocomplex formed with the it-PMMA host, suggesting that the methyl group of the 

MMA monomer also disturbed the molecular weight control in the template 
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polymerization system as well as stereoregulation. Therefore, strict monomer structure 

is necessary for stereoregular control and molecular weight control at the same time, 

although the active living radicals cause postpolymerization. 

 

 

Figure 8-7. SEC traces of PMMA obtained with it-PMMA thin film on macroporous 
silica gels in MeOH/water (1:1 v/v): (a) The supernatant solution part of the template 
polymerization, (b) the acetonitrile-soluble part of the host it-PMMA, and (c) the 
acetonitrile-insoluble and CHCl3-soluble part of the obtained PMMA with the host 
it-PMMA. 

 

 

8. 4 CONCLUSIONS 

LbL assemblies led to the successful formation of it-PMMA/st-PMAA 

stereocomplex films on QCM substrates and on silicagels to create the porous it-PMMA 

thin films as polymerization fields, although MAA polymerizability inside might 

depend on LbL assembly conditions. Without both azo-initiator and MAA monomer, 

blank polymerizations with the porous it-PMMA thin films showed that template 

polymerization fields, which created porous films, were stable in water at 70 °C for 3 h 
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and that increased weights on substrates after polymerization were ascribed to the 

polymer associated with the host it-PMMA. The postpolymerization of MAA in porous 

it-PMMA thin films was successfully achieved, implying that the polymer radical in the 

film possessed an adequate activity in a living polymerization manner. When MAA 

derivatives were polymerized, the smallersized monomer (AA) was polymerized in 

good C.E. yield, whereas the bigger size monomer (MAm) remained a low C.E. value. 

Those substituent effects proposed that very slight size changes affected the 

polymerizabilities inside porous it-PMMA films during polymerization, although the 

adsorption at monomer structures resulted in differences. When MMA was polymerized, 

an almost equivalent amount of PMMA was obtained as an acetonitrile-insoluble part 

with the host it-PMMA, implying that the stereocomplex was partially formed. It was 

also revealed that the strict monomer structure was necessary for the stereocontrol and 

molecular weight control, whereas the active radical was entrapped in the porous 

it-PMMA host film. The mechanism investigation of template polymerization in this 

study should supply useful information on future template polymerization systems. 
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Concluding Remarks 

 

In this thesis, the molecular recognition and structural change of porous isotactic (it) 

poly(methyl methacrylate) (PMMA) thin films were investigated in order to understand 

the stereospecific template polymerization in the porous it-PMMA thin films. 

First, the effects of the solvent on the motion of the polymer chains in the porous 

films were studied to obtain knowledge on nanospaces as a reaction field for template 

polymerization. The effect of acetonitrile solvation on porous it-PMMA films were 

analyzed at the nanolevel scale. 

Second, morphological observations were used to confirm the stability (structural 

change) of the porous films. Surface analyses of the films were performed at the 

microlevel by scanning electron microscopy (SEM), atomic force microscopy (AFM), 

X-ray photoelectron spectroscopy (XPS), and static contact angles. 

Third, the mechanisms responsible for template polymerization and the nanospaces 

of the porous it-PMMA thin films were investigated. The effects of the molecular 

structure on the porous films were analyzed by investigating the interactions (molecular 

recognition) between the template polymer it-PMMA and methacrylic acid (MAA), the 

oligomer, or syndiotactic (st) poly(methacrylic acid) (PMAA) in the porous thin films 

under hypothetical conditions as a model of template polymerization  

Analyses of the dynamics of the polymer chains in porous thin films at the nano- and 

microlevel revealed that the stereoregular nanospaces, which were essential for the 

structural control of synthesized polymers during template polymerization, changed in 

the presence of acetonitrile. It was also revealed that template polymerization would 
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proceed via the Pick-up mechanism according to the adsorption tests of various 

methacrylate derivatives and the oligomers. The findings obtained from this thesis are 

summarized as follows. 

In Chapter 1, the porous structure of it-PMMA films with stereoregular (st-PMAA) 

nanospaces was confirmed by X-ray diffraction (XRD). Furthermore, the polymer chains 

moved slightly at the interface, changing the packing distances. The porous it-PMMA 

films not only incorporated st-PMAA, but also slowly crystallized. Therefore, unlike the 

case of deoxyribonucleic acid (DNA) double-stranded helix formation from the same 

helices, competition between the formation of the double-stranded-helix of 

it-PMMA/st-PMAA and the double-stranded helix of it-PMMA/it-PMMA occurred 

when the porous films were immersed into an st-PMAA solution. 

In Chapter 2, the structure of partially crystallized it-PMMA thin films and the 

mechanisms of st-PMAA incorporation into these films were nvestgated. The 

incorporation percentages of st-PMAA into the porous films decreased as the it-PMMA 

films crystallized, or with an increasing thickness of the porous it-PMMA films, probably 

due to the entanglement of the it-PMMA chains. The st-PMAA incorporation into the 

porous films gradually improved when the acetonitrile contents of the st-PMAA solution 

increased from 20 to 40 vol %. In contrast, it-PMMA crystallization as well as st-PMAA 

incorporation did not occur using only water, which is a nonsolvent for it-PMMA. Thus, 

it was revealed that the acetonitrile concentration in water is important for the dynamics 

of the it-PMMA chains in porous thin films. 

In Chapter 3, it was demonstrated that st-PMAA incorporation in porous it-PMMA 

films depended on the stereoregularity, temperature, and solvent using quartz crystal 

microbalance (QCM) and infrared (IR) analyses. The first case of stereocomplex 
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formation using st-PMAA with lower tacticity (rr = 73%) in LbL films was reported. It 

was recognized that van der Waals interactions between it-PMMA and st-PMAA at the 

interface were important, because the lack of stereoregularity of st-PMAA decreased the 

incorporation percentage. The maximum st-PMAA incorporation increased from 25 to 40 

ºC, but there were almost no differences between 40 and 55 ºC. This is likely because not 

only stereocomplex formation, but also it-PMMA crystallization, were promoted with 

increasing temperature. The studies on st-PMAA incorporation with various complexing 

solvents also revealed that the host it-PMMA in the porous films could only form the 

original stereocomplex with a 2/1 unit-molar stoichiometry (st-PMAA/it-PMMA) in 

acetonitrile/water or ethanol/water. 

In Chapter 4, the morphological changes of porous thin films on a QCM substrate 

during it-PMMA crystallization were demonstrated, along with the subsequent st-PMAA 

incorporation. Dotted aggregates of crystallized it-PMMA appeared on the films on SEM 

and AFM images, although the films were not dissolved in a mixed solvent of 

acetonitrile/water. Gold substrate peaks were observed on the crystallized it-PMMA 

films using XPS. Therefore, this indicated that the absorbed it-PMMA spontaneously 

localized in the films to reform the surface profile. On the other hand, networks of 

crystallized it-PMMA and the stereocomplexes appeared on st-PMAA incorporated 

films. 

In Chapter 5, the fusion of porous it-PMMA thin films prepared on silica 

nanoparticles was observed after gentle shaking in acetonitrile/water (4/6, v/v) and 

subsequent drying on a SEM stage, although dynamic light scattering showed only a few 

aggregates of silica particles in solution. These results suggest that leaving the solution at 

rest is important for film fusion on these particles, and that multiple spherical substrates 
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would promote the cross-linking of the it-PMMA chains on the particles. 

In Chapter 6, the mechanism responsible for template polymerization was 

investigated using oligomers as an active intermediate model species. From the results of 

monomeric and oligomeric adsorption behavior, the template polymerization followed 

the Pick-up mechanism, in which the growing oligomer radical interacts with the 

template polymer, and monomers are freely supplied from the solution. 

In Chapter 7, the syndiospecific template polymerization of MAA with it-PMMA 

films on silicagel was successfully achieved, although not all stereocomplex films were 

effective for template field creation deep inside the pores. The tacticity of the PMAA 

collected from solution was atactic, because a large amount of monomer polymerized as 

compared to the template thin films, which also decreased the yield in the template films. 

The template polymerization was repeated two times with almost the same yield. These 

reproducible results suggest that the template polymerization of MAA with it-PMMA 

on macroporous silicagels has practical applications for manufacturing using 

high-performance liquid chromatography systems. 

In Chapter 8, the postpolymerization of MAA in porous it-PMMA thin films was 

successfully achieved, implying that the polymer radical in the films possessed adequate 

activity in a living polymerization manner. When MAA derivatives were polymerized, a 

smaller-sized monomer, acylic acid (AA), was polymerized wth good complex 

efficiency (C.E.) yield, whereas the bigger-sized monomer, methacrylamide, had a low 

C.E. value. Those substituent effects suggested that very slight size changes affected the 

polymerizabilities inside the porous it-PMMA films during polymerization. It was also 

revealed that a strict monomer structure was necessary for stereocontrol and molecular 

weight control, whereas the active radical was entrapped insde the porous it-PMMA 



 165 
 

host film. 

As a final conclusion of this thesis, first, the author hypothesized that 

macromolecules were dynamically moved and rearranged into the most stable 

conformation in the porous it-PMMA films by the effects of the solvent and temperature 

as well as complementary polymer-polymer interactions. Second, the author also 

demonstrated the importance of structural fitting between monomers and nanospaces in 

the porous films. The rearrangement and structural fitting of these complementary 

polymers would make it possible to synthesize stereoregular polymers by free-radical 

polymerization at the solid-liquid interface. 

From the aforementioned findings in this thesis, I suggest a novel reaction field 

suitable for the template polymerization of vinyl polymers utilizing 1) a stereocomplex 

of polymethacrylates, and 2) nucleic acid bases. 
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Future Perspective 

 

1. Utilizing Stereocomplex of Polymethacrylates 

In order to prevent the aforementioned crystallization of the template polymer and 

closing of the nanospaces, I suggest a novel reaction field for template polymerization, 

where the template polymers are immobilized by modification of their functional 

groups. 

1) In the case of isotactic (it) poly(methyl methacrylate) (PMMA), the template 

polymers are fixed through termination by CO2 bubbling to the α-end of the it-PMMA 

chains in anionic polymerization, which produces a carboxyl group, and the subsequent 

amidation with amino groups connected on the silicagel surfaces.1 The distance between 

each it-PMMA brush should be controlled to prevent it-PMMA crystallization. For 

instance, the chain length of it-PMMA whose number-average molecular weight is 

20000, is about 18 nm, since the pitch of the 10/1 it-PMMA helix is 0.92 nm. Therefore, 

it is necessary that the it-PMMA chains are fixed on the silicagel at least 36 nm away 

from one another. 

Alternatively, a good solvent of it-PMMA such as chloroform could unravel the 

double-stranded helix of it-PMMA connected to the silicagel on the occurrence of 

it-PMMA crystallization, whereas porous it-PMMA films fabricated on the substrate 

will dissolve out with chloroform (Chapter 2). In other words, the reversible 

transformation between the single-stranded helix and the double-stranded helix forms of 

it-PMMA would become possible in this method. 

2) The structure of the it-PMMA connected to the silicagel surface is considered to 
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be a single strand. Therefore, the polymerization of methyl methacrylate (MMA) onto 

the it-PMMA brushes in acetonitrile will reveal whether the double-stranded helix of 

crystallized it-PMMA or the stereocomplex of it-PMMA/syndiotactic (st) PMMA will 

form, since acetonitrile promotes both it-PMMA crystallization and stereocomplex 

formation (Chapter 1). Furthermore, the structural effects of the template it-PMMA will 

be confirmed by investigating its ability to form triple-stranded helical stereocomplex 

by the polymerization of MMA after the formation of the double-stranded helix of 

it-PMMA by crystallization of the it-PMMA brushes with normal linear it-PMMA. 

3) In the case of st-poly(methacrylic acid) (PMAA), crosslinked assemblies may 

contain stereoregular nanospaces would be applicable for template polymerization. 

These assemblies are formed by a crosslinking reaction with the external carboxylic 

acid groups of helical st-PMAA in the it-PMMA/st-PMAA stereocomplex using 

1,11-diamino-3-6-9-trioxaundecane and water soluble carbodiimide, and the subsequent 

it-PMMA removal under alkaline conditions.2 

However, precise control of the thermal motion of guest polymer would be difficult 

on the polymer brushes or in the crosslinked assemblies. Thus, a precursor is formed 

between the template polymer and a PMMA macromer (Mn~2000) with a high tacticity 

(Chapter 6), which is synthesized by previously-reported methods,3 in a strongly 

complexing solvent such as acetonitrile. This is based on the idea that deoxyribonucleic 

acid replication also needs a primer. Next, template polymerization would proceed by a 

reaction between the PMMA macromer and the supplied monomers on the it-PMMA 

brushes, or in the crosslinked st-PMAA assemblies with acetonitrile. 

On the other hand, the it-PMMA films fabricated on a substrate could also open new 

doors for the template polymerization of methacrylates using the knowledge obtained 
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from this thesis. 

4) The porous it-PMMA films prepared from the stereocomplex films of it-PMMA 

and st-PMAA with a lower stereoregularity (Chapter 3) would be useful for novel 

template polymerization in terms of technological applications.4 This is because the 

syntheses of template polymers with high stereoregularities by conventional anionic 

polymerizations are very complex. Therefore, stereocomplex assemblies in which one 

component polymer is synthesized by radical polymerization are more desirable for 

repetitive synthesis, whereas polymers with the highest tacticity should be employed as 

the other component. However, the stereocomplex films of it-PMMA and st-PMAA 

with the lowest stereoregularity (rr = 62%) were not obtained under the same condition 

(Chapter 3). In order to increase the interaction points of the stereocomplex, it-PMMA 

with a lower molecular weight and st-PMAA (rr = 62%) with a higher molecular weight 

should be employed. 

5) The removal of silica particles from the nanostructures prepared by the fusion of 

it-PMMA films (Chapter 5) will lead to a novel reaction field such as nanotubes5 

formed through one-dimensional fusion of hollow capsules.6 If methacrylic acid (MAA) 

is included into the hollow capsules or nanotubes, then polymerization efficiency could 

be improved because the lost MAA polymerized in solution would be strongly 

suppressed. In addition, the template matrices and the assemblies after polymerization 

on the nanotubes will be more stable and easier to collect from solution than those on 

hollow capsules. 

Controlling monomer sequences by template polymerization still remains 

challenging. The most simplified model of the sequence is a block copolymer composed 

of only two monomer units. I suggest a novel system to control the tacticities of the 



 169 
 

block copolymer using radical polymerization in porous it-PMMA thin films. 

6) The radical polymerization and postpolymerization of MAA and AA in the 

porous it-PMMA films yielded good complex efficiency (Chapter 8). Therefore, the 

tacticities and molecular weights of the block copolymer could be controlled by 

template polymerization of MAA, and the subsequent postpolymerization of AA in the 

porous it-PMMA films. Furthermore, the differences in surface morphologies like the 

smooth surface of porous it-PMMA films versus the dotted pattern of the crystallized 

it-PMMA films could be helpful in sorting out the copolymer from the homopolymer 

depending on the adsorption capabilities (Chapter 4). 

7) In order to improve the yields of template polymerization in the porous thin films, 

I also suggest another new reaction field. Stereocomplex assemblies formed in a 

microchannel would have a larger surface area than those formed on a substrate of 

silicagel (Chapter 7). In addition, the process of the layer-by-layer assembly would 

become an easier system, because it is only flowing solutions or solvents alternately, 

and the amount of sample used will be less than a conventional LbL method. 
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2. Utilizing Nucleic Acid Bases 

Designing novel monomer structures to control the tacticity of the obtained 

polymers by template polymerization is very difficult, because very few helical 

stereoregular polymers with vinyl polymer backbones have been reported in the 

designed synthetic polymer literatures. For example, poly(triphenylmethyl 

methacrylate), poly(N-triphenylmethylmethacrylamide), and their derivatives form 

helices by steric hindrance and in chiral solvents.7,8 Almost all of the other reports are 

based on conjugated double bonds such as polyacetylene or polypeptide backbones. 

Therefore, a more rigid backbone should be designed in the case of the template 

polymerization of methacrylates bearing complementary nucleic acid bases connected by 

ethylene linkers.9 

 

Figure 6. Schematic representation of the template polymerization of norbornene 
bearing nucleic acid bases and polynorbornene bearing the complementary nucleic acid 
base as a template polymer. 

   

8) I suggest a polynorbornene backbone bearing a nucleic acid base as a template 

because the pentagonal ring of polynorbornene directly connected to the base is more 

rigid than the backbone of polymethacrylates. Thus, the polymerization of norbornene 
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bearing the complementary base could be achieved by template replication (Figure 6). 

Indeed, the ring-opening metathesis polymerization of a bisnorbornene derivative with a 

ferrocene linker yielded a double-stranded ladder polymer.10) Polynorbornene as the 

template bearing pendant norbornene units also yielded the corresponding 

double-stranded ladder polymer by a ring-opening metathesis polymerization.11) 
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