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l. ITntroduction

This dissertation is a compilation of the author's works on the problem
of estimating the spectral density of a stationary process which are conta-
ined in the papers [23] through [30]. In order to provide a perspective
on the whole theory with a wide coverage of topics in a limited space, all
lemmas and theorems are stated with only explanation of their implications
but without proofs. Readers who are interested in technicalVdetails are
referred to the original papers.

In the usual estimation theory for independently and idenfically distri-
buted random variables, asymptotic effects of small perturbations in the
underlying model on an estimate have been investigated in detail (e.g.,
Beran{3] ). But, in time series analysis, discussion of this type seem to
have been barren, thus we shall develop some discussions of this type for
a stationary process.

Let Z be the set of all integers. Suppose that { X(t); t € 2 } is a
stationary Gaussian process with zero méan and a spectral density g(x).
Then g(x) contains all the information about the process.. Assuming that
the true spectralvdensity g{x) can be expressed as a parametric form fe(x),
many papers have dealt with the problem of estimating ﬁhe unknowﬁ parameter
6. However ' the true structure ' g(x) would be rarely prescribed exactly
by any parametric model. Thus a discussion will be needed under the situ-
ation that a parametric family of spectral densities does not necessarily
contain the true one. The aim of this dissertation is to develop a discu-
ssion on fitting the parametric spectral density fe(x) to the true spectral
density g(x);

In Section 2, we propose two estimates of 6 by fitting fe(x) to g(x),



say 61 and @2, which minimize two criteria Dl(fe,g) and Dg(fe,g) respect-—-
ively, which measure the nearness of fe(x) to g(x). Then we investigate

some asymptotic behavior of the estimates with respect to efficiency and

robustness. We see there a necessity to estimate two types of the integrals

T T v
J ni(x) g(x) ax and I ¢(x) log g(x) dx, where n(x) and ¢(x) are
=T T ’ ’ :
continuous functions. If we consider fitting by another criterion, we

T

are required to estimate the integral J P(x) @(g(x)) dx for some func-

=T

tion ®(.) and for each continuous function P(x). Thus, in Section 3, we

shall propose

N i 1y 1
Hn - J_ﬂ plx) LA ®(6° B.}<In(x)> dx,

as such an estimate under some assumptions on ®(x), where L—l{ F(w) }<u>

denotes the Laplace inverse transform of F(w) at the argument u, and

In(x) is the periodogram of the process.

In Section 4, we propose an estimate of & to fit fe(x) to g(x), say Gn .

by minimizing the criterion

™
Dlegee) = | [ o(g,(x))? - 2 alzg(x)) 8(e(x)) 1 ax.
=T

As a parametric family { fe(x) }, we shall propose the following type of

spectral model D
£o(x) = 07 ] @

e.(x) },
3=0 J

J

where 8 = ( 0 8 )', while { ej(x) s 3 =11,...,p } is an orthonormal

12000
basis of continuous functions in L2[-ﬂ,ﬂ]. In general the above model is

" non-structural " in the sense that the parameter vector 6 is not necess-

arily explanatory. But it has an advantage that the estimate én can be



easlly expressed in an explicit form. Further we shall study the asympt?
otic efficiency of the estimate.

The estimate @l introduced in Section 2 1is to be called a quasi—éaussian
maximum likelihood estimate. In Section 5, we shall éive its asymptotic
distribution under the condition that the underlying process is not necess=
arily Gaussian, and discuss a non-Gaussian robustness.

Up to now Qe have proceeded under the assumpﬁion that the order of the
fitted spectral model is known. In Section 6 we assume that the true
spectral density g(x) is described by an infinite set of parameters and
that the fitted kth order model fT(k)(X) tends to g(x) as k > ©.  Then
we show that the choice of the order of the model by Akaike's iﬁformation
criterion which is constructed by the Gaussian likelihood is optimal in a
certain sense.

In Section 7, we shall point out a kind of similarity between the esti-
mation problem in a time series regression model and the interpolation
problem in a stationary process. From a unified view we shall again look
at the estimation problem in the time series regression model and propose
a parametric method which gives an efficient estimate of the regression
coefficient vector involved in the medel. Also we shall consider the
interpolation’ problem and the regression problem under the condition that
the spectral density of the underlying stationary process ié vagueiy known
( i.e., Huber's e-contaminated model ). Then we can get a minimax robust

interpolator and a minimax robust estimate of the regression coefficlent.



2. Two estimates of parameters of a Gaussian stationary process

Let F denote the set of all spectral densities with respect to the
Lebesgue measure on the real line. For a parametric family of spectral
densities { fG ; 60}, @CZRP, and for g € F, wé shall propose the foll-
owing criterion :

m : .
D (£5.e) = j_ﬂ { log £4(x) + g(x)/£4(x) Jax .

Since we can show that for each x & [-mw,m] ,

log fg(x) + g(x)/fy(x) 2 log g(x) + 1,
and the equality holds if and only if fe(x) = g(x), the criterion can serve
as a measure of the nearness of fe(x) to g(x). The functional T, on F is
defined by the requirement that '

(2.1) Dl(fT (g),g) = min Dl(fe,g) for every g € F.

1 Bed
Now we shall define a convergence in the set F.. If, for a sequence { gn },
g, €F.

T T
J P(x) gn(X) dx -~ J P(x) g(x) d&x as n > o

-7 ~T
for every continuous function {(x), then we say that { g, } converges weakly
to g and denote by g, ¥ g

-

Lemma 2.1.( Taniguchi[24] ). Suppose that © is a compact subset of RP,

91 # 62 implies fe # fe on a set of positive Lebesgue measure and that
1 2 ]

fe(x) > 0 and also is continuous in ® and x. Then

(i) For every g € F, there exists a value Tl(g) € 0 satisfying (2.1).
(ii) Assume Tl(g) is unique for every g ; then if g Y¥e, Tl(gn) +‘Tl(g)
as n > o, .

(iii) Tl(fe) = 8 uniquely for every 6 € O. ll



Now we impose further assumptions on fe that two pxp matrices of the
second partial derivatives 9%log fe(x)/BGBG' and azfe(x)‘l/aeae‘ (8"
denoting the transpose of 6 ) exist and are continuous in 0 and x. Then

~

we have the following lemma.

Lemma 2.2.( Taniguchi[2Lk] ).  Suppose that Tl(g) exists uniquely and lies

in Int(0) and that the matrix

T - 32%log fe(x) Bzfe(X)—l
[ { g - + g(x) }6=T ( ) dx
— 36 26~ 30 96~ 1'8

is non-singular. Then for every sequence of spectral densities { gn }

satisfying g, ¥ g , Wwe have

(
e = 1) + [ 00 (gl - sl ) ax

(g (x) - a(x) ) ax,

-T 26 ,6=Tl(g)

where pg(x) is a pxXp matrix defined by

-1 09 -1
pg(x) == 8- 55 fpx) o=T, (g) °

and { a, } is also a sequence of real pXp matrices which tends to zero as

n <> o, ﬂ

Remark 2.1. If g = fy, then Tl(g) = 0. Thus we have

T dlog £o(x) dlog Ty(x) A (x)T
op () = - I | ax L2
) : -T 93 36" 30. i

Let { X(t) ; t € Z } be a stationary Gaussian process with zero mean and

a spectral density g(x).  Suppose that a stretch, X(0),...,X(n-1) of the



n-1 ‘
series X(t) is obserbed. Put In(x) = (2ﬂn)*l[ Y x(t) exp(-itx) |2,
} =0

~-

which is the periodogram of X(t). Define

™ RS ™
o= vwewa, o= vwrmae,
-~Tr B ) . - .

where P(x) is a p-vector valued continuous function on [-m,w] such that
P(x) = P(-x). We shall impose the following.
Assumption 2.1.

o o]

Yolt]] R(t) | <, where R(t) = E[ X(t+s)x(s) 1. I

t==c0

Then we have the following lemma.

Lemma 2.3.( Brillinger[51,[6] and Walker[31] ). If Assumption 2.1 is
satisfied, then Gn is a consistent estimate for G, and the distribution of

the vector vn( G -G ) tends to the normal distribution

m 2
NCo, zm[ 0(x) B(x)" g(x)? ax )

-

as n =+ «©, where P(x)' stands for the transpose of Y(x). I

In view of this lemma we can recommend Tl(In) as an estimate of Tl(g).
Under the assumption that g = fe, Dl(fe’In) is known to be an approximation
(‘neglecting constant term and multiple ) for the logarithm of the likelihood
of the Gaussian data X(0),...,X(n-1) ( c.f., Walker[31], Clevenson[T7],
Dzhaparidze[11], Hosoya[16], Dunsmuir and Hannan[10] and Dunsmuir{9] ).
Hereafter we call Tl(In) a quasi-Gaussian maximum likelihood estimate under

the model fe. Then we have the following theoren.



Theorem 2.1.( Taniguchif[2k] ). Under Assumption 2.1 in addition to the

conditions in Lemma 2.2 and as n -+ «, the distribution of the vector

vn( Tl(In) - Tl(g) ) tends to the normal distribution

1T .
N(o,un[ o (x) p (x)" g(x)? ax ). u
b - g g
Remark 2.2.. It g = fe, the above asymptotic covariance matrix is equal
to -
™ dlog fy(x) dlog fy(x) 1
(2.2) k| j - ax 178,
~T 36 36~

which is inverse to the limit of Fisher's information matrix( e.g.,
Dzhaparidze[11l] and Clevenson[7] ). If the asymptotic variance matrix of
an asymptotically unbiassed estimate of 6 attains the matrix (2.2) as Tl(In)

does, we say that the estimate is asymptotically efficient. 0

Now we consider another type of approach which proceeds quite similarly.
For the parametric family of spectral densities { fe; 8 e 0}, @(Z.Rp? and

for g € F, we shall propose the following criterion:
T .. 2
D2(fe,g) = f " { 1og fe(x) - 2 log fe(x) log g(x) }tax ,
—T

which also measures the nearness of f,(x) to g(x). The functional T, on

6 2
F is defined by the requirement that
(2.3) D2(fT2(g)’g) = g;g Dz(fe,g) for every g € F.

Here we define a convergence in F. If, for a sequence { g, 1, g, € F,

(i

T
J $(x) log gn(x) dx - J d(x) log g{x) dx as n > =
T -T

for every continuous function ¢(x), then we say that { g, } converges ' log-



L.W
weakly' to g and denote by gn — g.

Lemma 2.4.( Taniguchi[2k] ). Suppose that O is a compact subset of Rp,

91 # 92 implies fe # fe on a set of positive Lebesgue measure and that
l 2 ’ 7’

fG(X) > 0 and is continuous in 9 and x. Then

(i) TFor every g € F, there exists Tz(g) € 0 satisfying (2.3).
. L.W
(ii) Assume Te(g) is unigue ; then if g — g , Tg(gn) > Tz(g) as n > o,

(iii) Tg(fe) = 6 uniquely for every 6 e 0O, I

Now we impose further assumptions on fe(x) that log fe(x) has the deri-

vatives dlog fe(x)/Be and 3%log fe(x)/BGBG' which are continuous in 8 and x.

Lemma 2.5.( Taniguchi[24] ).  Suppose that Te(g) exists uniquely and lies

in Tnt(0) and that
_Jﬂ 3%1og fe(x) 1 azlonge(x)

Q =

5 { ————— 1og g(x) - 5 } ax

— 38 39~ 30 807 0=T,(g)

is non-singular. Then for every sequence of densities { gn } satisfying

L.W
gn -> g , we have

T
Tg(gn) = T2(g) + J_ﬂ Og(x) ( log gn(x) - log g(x) ) ax

T Jlog fe(x)
+b J —— ( log g_(x) - log g(x) ) ax,
D )_r 30 6=T,(g) . :

1 dlog fe(x)

where Og(x) = - Q2

20 6=T2(g) >

and { bn } is a sequence of pxp matrices which tends to zero as n » «. |

Remank 2.3. If g = fo» then Tg(f) = 0. Thus we have
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T dlog fe(x) dlog fe(x) o ]—l dlog fe(x)

= a0 96~ a0

Ofe(x,) ) [ J

Let ¢(x) be a p-dimensional vector consisting of continuous functions

on [-m,7] such that ¢(x) = ¢(-x). Define

all T
H= [ ¢(x) log g(x) ax, H = J ¢(x) log o In(x) ax,
- —T

where o = exp Y, ( Y ~ 0.57721..., Euler's constant ). Comparing Taniguchi

[23] and Davis and Jones[8], we have the following lemma.

Lemma 2.6.( Taniguchi[24] ). If Assumption 2.1 is satisfied, then H is
a. consistent estimate of H, and the distrivution of the vector v ( Hn - H)
tends to the normal distribution

N o, 2—“3-JW o(x) o(x)" ax )
1Y 3 ) 4

as n > o, 1
From the above three lemmas we obtain the following theorem.

Theorem 2.2.( Taniguchi[2h] ). Under Assumption 2.1 together with the
conditions in Lemma 2.5, the distribution of the vector vn( Tz(aIn) - Tg(g) )

tends to the normal distribution

m
N(C 0, Ly I g (x) o (x)' ax )
P - 8 g

as n > o, I
Remark 2.4, If g = f@’ the above asymptotic covariance matrix is equal to
o3 : T dlog fe(x) dlog fe(x) 1
3 a1
-7 90 26~

which, combined with Remark 2.2, implies that the estimate Tl(In) is better
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than TE(aIn) so long as g belongs to the parametric family { £ ; 6 € 6 }. |

6

On the contrary, if the true spectral density is not contained in the

parametric family { fo s 8 € © }, we shall show that Tg(.) is optimally

insensitive to perturbations of its argument in some sense. To make this
assertion precise, consider the set of all functionals U defined on F that
have the following two properties for every 6 € Int(Q);

(1) u(f) = 8,

: kil
(1) 0le) - Ulgg) = | nlx) ( log glx) - log To(x) ) ax
-1 v

T
+ a J P(x) ( log gl(x) - log fe(x) ) ax,
-T

L.W

where a > 0 as g — f, and both n(x) and Y(x) are p-vector-valued continuous

functions on [-mw,T]. From Lemma 2.5, the functional T2 has these properties

The requirement (i) imposes a further comstraint on n(x) ; i.e., for every

8 e Int(0),
T dlog £ (x)
[ n{x) dx = I , the pxp identity matrix.
~T 98~ P
Put A(fe,g) = || 1og fy - log g || , where [|.]| denotes the 12 norm. The

requirement (ii) then can be rewritten as

v

Mrge) | mlx) 86x) ax + olalzg.6),
=T

U(g) - 6

il

where 6&(x) {‘log g(x) - log fe(x) }/A(fe,g) with ”6][= 1. For small

and fixed value of A(fe,g), the behavior of U(g) - 6 is determined primarily

. T
by the term f ‘n(x) 8(x) dx. Since n(x) is a vector function, we shall
-

investigate -
L(n,8) = | J ern(x) §(x) ax |
~T
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for a constant vector ¢ in Rp.

Theorem 2.3.( Taniguchi[2h] ).  Suppose that § € L2, I8l =1, ne L2
and that - dlog fe(x)
I nx) ————ax = I_.
~T 90~ P
Then for every c € RP,
(2.4%) max min L(n,8) = min max L(n,S8) = L<n0’60)’
S n n §
where T dlog f,(x) dlog f,(x) dlog f,(x)
) &) -1 0
noz[ d_X] T
- 36 36~ 90
-1
50 = ||e N, ™ e ny - I
‘Remanh 2.5. The above theorem, Lemma 2.5 and Remark 2.3 mean that the

functional T, ia locally minimax robust at f, in the sense of (2.k4).

2
That is, for the least favourable &

8
0 the functional which minimizes

L(n,éo) is T,. But T, does not have this type of robustness. I
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3. Estimation of the integrals of certain functions of spectral density

In view of Lemmas 2.2 and 2.5, we can see that Tl(g) and Tg(g) are

continuous functions of J nix) g(x) dx and J d(x) log g(x) ax,
- -T

respectively, for some continuous functions n(.) and ¢(.) on [-mw,m].

Thus it is suggested that estimates of Tl(g) and Tz(g) can be obtained by

. ) SR (m g
finding estimatés of | n(x) g(x) dx and J d(x) log glx) dx,
Jom : -

respectively. In the previous section we have proposed

T (m
J n(x) In(x) dx and J $(x) log uIn(x) dx as such estimates. In
—T7 =T

Section U, we shall consider a criterion D as a generalization of the

r']T

criterion D,, which requires us to estimate the integral J P(x) o(g(x)) ax
-

for some function ®(.) and for each continuous function Y(x). Thus we

consider to eétimate it in this section.
Let { X(t); t € Z } be a stationary Gaussian process with zero mean and
a continuous spectral density g(x) such that 0 < g(x) < «» for any x. We
shall denote the Laplace transform and the Laplace inverse transform of any
. -1 4
function F(w) at the argument u by L{ F(w) }<u> and L { Flw) }<u>

-

respectively, i.e.,

L F(w) b, = F ™™ F(w) au,
_ 0

L (OFie "
J e™ Flw) aw,

L~l{ Flw) }<u> = Bmi
g-i

where 0 is a real number greater than the abscissa of absolute convergence.

Now we shall impose the following assumptions on ®(w).



~ 1k -

Assumption 3.1.

Let ®(w) be a function on (0,®) such that the Laplaée

inverse transform L—l{ d(1/w) 1/w }<u> exists and is continuous in u €

(0,). |

Assumption 3.2.

For every positive integer m, the Laplace transform

UL L e(u/e) 1w Y P ]

<> <x>

exists and is continuous in x & (0,®). 1

Suppose that a stretch, X(0),...,X(n-1) of the series X(t) is observed.
Put nzt

I() = (em)™ | ] X(6) exp(-itx) |7
£=0

For a function ®(w) which satisfies Assumptions 3.1 and 3.2, we shall define

v
H = J ¥(x) 8(g(x)) ax,

-m

i) l R
B - j 00x) 1Y 8(1/w) 1w ) ax,

< >
-~ In(X)

where W(x) is a p-vector valued continuous function on [—ﬂ,w] such that

Pix) = P(-x).

Then we have the following theoremn.

Theorem 3.1.( Taniguchif25] ).

If Assumptions 2.1, 3.1 and 3.2 are satisfied,

-

then Hn is a consistent estimate for H, and the distribution of the wvector

vn( Hn'— H ) tends to the normal distribution

T
NC o, b J, wlx) vlx)' o?(x) ax )
D - |

as n > «©, where

o*(x) = =iy LU0 L7 0(1/w) 1w b 1P1 g1y = ole(x))®. 1

Now we shall consider some examples of the function ®(w) which satisfy
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Assumptions 3.1 and 3.2.

Exampfe 3.1. Let us put ®(w) =-w8 (0< B <o), Then we have
B8

LHoe(/w) 1w Yy = FreEy

?(x) = { TEBLL, _q ) 5(0)%P.

Thus as a consequence of Theorem 3.1, we obtain the following.

Conollary 3.1. The distribution of the wvector

o {1 (x) 38 _ .
Jal f ox) —B T gy J (x) &00)Bax ]
~1r T(B+1) -7

tends to the normal distribution

m
NG oy, € B ) J_ﬁ TEIRTEINNIEIRL N

as n > o, 1
Exampfe 3.2. Let us put ®(w) = log w . Then we have

LM e(1/w) 1w b, = log ou ,

where o = exp Y ( ¥ =~ 0.57721, Euler's constant ), and
o?(x) = n?/6.
Application of Theorem 3.1 to this example yields Lemma 2.6, which also

agrees with the results of Hannan and Nicholls[157]. I
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L. An estimation procedure of parameters of a certain spectral density model
In this section we shall use the same notations and assumptions as in
Section 3. Let ®(w) be a continuous bijective function on (0,®) satisfying
Assumptions 3.1 and 3.2 and denote by ®—l the inverse function of &. We
shall fit a parametric spectral model fe(x) to the true spectral density

g(x) by the eriterion

™

D(fg8) = J [ o(£y(x))? - 2 8(r,(x)) (g(x)) T ax
-1

and define the functional T on F, the set of all spectral densities, by the

requirement that for { £, ; 6 ¢ © }, O C.Rp,

0
D = mi .
(fT(g)’g> min D(ft,g) for every g € F
€l
Now we shall define a convergence in F. If , for a sequence { g, 1,
g_¢&F,
n . T :
J $(x) @(gn(x)) dx - I d(x) ®(g(x)) dx as n > «
-~ -
oW
for every continuous function ¢(x), then we denote by g, > & In the

sequel in this section we often use the:function

K(w) = L7 o(1/w) 1/w 3, -

Replacing log(.) in Lemma 2.4 by &(.) we. have analogous results for T(.).

Suppose that @(fe(x)) is twice differentiable with respect to 0, and that

the derivatives are continuous in © and x. Then we have the following
lemma.
Lemma 4.1. ( Taniguchi[27] ). Suppose that T(g) exists uniquely and lies

in Tnt(O) and that '
Ty P ) 8l (x) o s

G = L 8 T 8 e _ dx
LT 2 3p 36” 30 26~ *7 Te=1(g)
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is a non-singular matrix. Then for every sequence of spectral densities
. o.w h
{ g, } satisfying thatvgn —> g, we have

(
ey - 2e) = [ 0G0 elg,(0) - ole(x) } ax

-Tr

T aé(fe(x))
+a f T {olg, (x)) - 8(g(x)) } ax,

- 28 6=T(g)
30(r,(x))
where n (x) = G_l. -———ii;i—* s
& 96 8=T(g)

and { a, } is a sequence of pXp-matrices which tends to zero as n - . I

Remark L.1. Theorem 3.1 implies that as n > o,
. oW , ' ‘
o ki In(x)} ] — g(x), in probability. i

Noting Lemma 4.1, Remark 4.1 and Theorem 3.1, we shall recommend

Tn = T{ ®—l[ x{ In(x) }1] as an estimate of T(g).

Theorem L.1.( Taniguchi[27] ). If, in addition to the conditions of

Lemma 4.1, Assumptions 2.1, 3.1 and 3.2 are assumed, then the distribution

of the vector vn ( Tn - T(g) ) tends to the normal distribution

ki)

N o, b f ng(0) m ()" o%(x) ax )

=T

as n > ©, where 02(x) is defined in Theorem 3.1. I

Remasrk 4.2. Ifg=7° the covariance matrix of the above normal distri-

e)

bution is equal to

T a@(fe) 3®(f6)

=1

T 30(f,) 90(f,) T 3d(f,) 90(f,)
hw[J o2 T8 ax]“lf[ o’ T8 ax]

Gz(x)dx][J
-7 98 38~

-7 .98 28” - 98 28~

In this section we shall propose a certain parameterization of fg(x),



and then give an explicit estimate of 6 which can be expressed in a closed
form. As we said in the Introduction we shall fit the following spectral

model :

-1, 2
(4.1) falx) =0 {) o
J=1

3 ej(x) }.

Of course we assume that &®(.) and ej(x) are chosen in advance so that fe(x)
= fe(—k), fe(x) >0 for all x € [-m,7]. Tt may be noted that in the spec-

ial case that ®(w) = log w , el(x) = 1/V/27 and ej(x) = cos{(j-1)x}/vV7

(j=2,...,p ), the model (4.1) becomes Bloomfield's [4] exponential model.

A

In general, the model (4.1) is " non-structural" in the sense that the

parameter vector 6 is not necessarily explanatory. But it has an advantage

that the statistic Tn can be expressed in an explicit form as follows.

T
el(x) K{ In(x) tax, ..., J—ﬂ ep(x) K{ In(x) Yax ]°.

(h.2) = [ Jﬂ

-7
If we cannot compute the above integral easily &e shall approximate the
integrals by discrete sums.
Hereafter in this section we assume g = fe, and discuss the asymptotic

B

w”, 0 < B<w}, i.e., fe(x) =

]

efficiency of T for a class ¥ = { o(w)

{ E Gj ej(x) }1/6. By Example 3.1 and Remark 4.2, we can see that the
f=1 -

asymptotic covariance matrix of Tn is equal to

o .
(Ll-.3) L { I%%%z -1 } J-'H fe(x)gs F(x) dx ’

where F(x) = e(x) e(x)', e(x) = ( el(x),...,ep(x) )'. On the other hand,
the asymptotic covariance matrix of the efficient estimate given in Remark

2.2 1s written in the present case as
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T
-2 -1
(b.k) wmg? [ [ £4(x) B r(x) ax 7L,
. - ‘
The following theorem provides a condition for (L.3) to be identical with

(h.h).

Theornem 4.2.( Taniguchil[27] ). Let ®(w) = wB, 0 < B < ®  Then Tn is

asymptotically efficient if and only if B = 1 and fe(x) is constant on

[- m,m]. 0

This theorem means that the estimate Tn is not recommendable except for
a trivial case from the point of view of the efficiency. But it has an
advantage that it can be expressed in the explicit form given by (L.2).
Thus we can also use this estimate for an initial consisfent esfimate of 0,
which will be useful iﬁ getting the efficient estimate discussed in Section
2. Finally we wish to see how inefficient it can be. ~ We introduce

asymptotic variance of a'(m.l.e.)

eff(a) =
asymptotic variance of a'(T(.))

where o is a p-vector with o' = 1.

Theorem 4.3.( Taniguchi[27] ). For any p-vector a, eff{e) is bounded

below by ) .
2r T(2B+1) -1 28 2B 2B 28 (=2
B { I'(B+l)2 -~ 1 } ()4 fﬂ,,e fu’e )( fz,e + fu’e ) ?
where f = min f.(x), f =  max f.(x). I
2,8 xe[-m,m] 0 u,9 xel-m,7] ®

The above lower bound has a property that it tends to zero if f£ 5 << fu 5
2" 2
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5. Asymptotic properties of the quasi-Gaussian maximum likelihood estimate

for a non-Gaussian linear process

In Section 2 we have investigated some asymptotic properties of the g-
G.M.L.E. ( quasi-CGaussian maximum likelihood estimate ) for a scalar Gaussian
process. In this section we shall investigate some asymptotic properties’
of the g-G.M.L.E. when the underlying process is not necessarily Gaussian.

"Let { X(t) = ( Xl(t),...,X () )' 5 t € Z } be a vector time series with

S

s components generated by

(5.1) x(t) = c(3) e(t-3), c(o) =1_,

S

f t~1 8

J=0

where { e(t) = ( el(t),...,:es(t) )' } satisfies E e(t) = OS,.

Ee(t) e(t)' =X and E e(t) e(u)' = 0SXS , b # u. It will be assumed
that

tr c(3) KC(y) < =,

Il o~1 8

J=0

and that { e(t) } is strongly stationary. Then the spectral density matrix

of X(t) is
' - L %
glx) = S k(x) K k(x)*,
where k(x) = ) C(J) etIX | Now we set the following conditions (5.2)
J=0
- (5.5) :

(5.2) The spectral density matrix g(x) is positive definite for all x €
[-mw,7m].

(5.3) Every element of g(x) belongs to Aa’ the Lipshitz class of degree
o, 1/2<a g 1.

(5.4)  The process { X(t) } is uniformly mixing.

(5.5) Yyl | cumabcd(O,n,p,q) | < o,
nap:q_="°°
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where cumab9d<07n,p,Q) = cumulant{Xa(t),Xb(t+n),Xc(t+P),Xd(t+Q)}-

Let P be the set of all spectral density matrices which satisfy (5.2)
and (5.3). ' For a parametric family of spectral density matrices { fe ;'

8e0}, 0 CR®, we define

™

D(ft’g) = J { log det ft(x) + tr ft(x)—l g(x) } ax
-
and then the functional T by

(5.6) D(fT(g),g) = iig D(ft,g) for every g € P.

If for a sequence { g, }, g, € P,

T ™
J tr P(x) gn(x) ax - J tr P(x) glx) dx ‘as n > ®
-7 =T
for every continuous sXs matrix function P(x), then we denote g, ¥ g.
Suppose that a stretch, X{(0),..., X(n-1) of the . series X(t) is observed.
We define the periodogram matrix by
-1 n-1 n-1
I (x) = (2mm) { Z X(t) exp(itx) H Z X(t) exp(itx) }*.
n
t=0 t=0
Now we assume that every element of the matrix fe(x) is a twice conti-
nuously differentiable function of 8 € 6, and that the second derivatives

of these elements are continuous in x € [»W,W]. Then we have the follow-

ing theorem.

Theorem 5.1.( Taniguchi[30] ). Suppose that T(g) exists uniquely and lies

in Int(0) and that

T a2 -1 32
M, = J_ { 555~ tr fo(x) T 8(x) + 3555~ log det £o(x) Fg_p( ) &
is a non-singular matrix. Assume that { X(t) } defined by (5.1) satisfies

the conditions (5.2) - (5.5). Then
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(1) T(In) - T(g) a.S., and
(2) +the distribution of the vector va( T(In) — T(g) ) tends to the normal

distribution

as n > o , wvhere V = { ij }, a pxp matrix, is defined by

(T '\ 9 “.—l o0 -1
Vg = b J tr{ g(x) 3. £a(x)7 glx) 55 f4(x) }6=T(g) dx
-7 3 £
S . i
o -1 9 -1
tem] )1} ” a el 2 ey
r,t,u,v=1 //-7m 3 L 8=T(g)
X £ (7XeYs=y) dxdy,
. (r,t), -1 . . -1
for which fg (x) 7 is the (r,t)th element of the matrix fG(X) , and
1 T . .
SCR RIS Ceth P11l cum (0,n,p,q) éxp{ul(xn+yp+zq»- [

n,p,g=->

Also we have the following theorem.

Theornem 5.2. ( Taniguchi[30] ). In addition to the assumptions of Theorem

5.1, furthermore if

(5.7) cum{ ea(nl), eb(ng), ec(n3), ed(nh) }
‘{ Kabed if my =n, =ng=a,
0 otherwise ,

then the asymptotic covariance matrix of the quasi-Gaussian maximum like~

lihood estimate is written as

where U = { U:
3L

}, a pxp matrix,
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m 3 -1 ] -1
UjQ, = Lt J__," tr{ g(x) —a‘e‘jfe(x) g(X) ﬁgfe(x) }9=T(8) dx

° A R B (x>“11;(x)dx ]
+a§b§c§d§l “apea ' 2w | | F 96,7 @ a0

2" o 2 e (0 k(x0ax )
x Loy *7" 58,0 cd |6=T(g),
[ ] b’denoting the (a,b)-element of the matrix in the brackets. 0
a ‘
Suppose that fe(x) can be expressed as
1 ix ix
= = k. *,
To0x) = gk (e7) Ky Ky (e
3 w l.X
oy L1 _ .
where kl(elx) = ;Xo Cl(J) e I* Cl(O) =I,, and det kl(z) is
J:

bounded and bounded away from zero for IZ| <1 , and Kl is a positive

. definite sxs-matrix. If the unknown parameter vector € specifies only

kl(.), then we say that © is an innovation free Parameter. If 0 is
inn6§;tion free, thé%jfherrelation'
B u,a ﬁ i
.8 g - _
(5.8) Y J_W tr fe(x) g(x) dx 6=T(g) Op

is satisfied. Under the condition (5.7) we consider to estimate the inn-

ovation free parameter.

Remark 5.1. Under the assumptions of Theorem 5.2, in the case of g(x)

= fe(x), we can show that if 0 is the innovation free parameter, then

(s : " 3 i _
[ k(x) [ ) fe(X) 1 ] kx(x) dx = x> 4 = Loeeesbe
=TT j

Thus the asymptotic covariance matrix of the ¢q-G.M.L.E. of the innovation

free parameters is independent of the fourth cumulant Kabcd ( i.e., non-

Gaussian robust ). However, in the case of g(x) # fe(x), it is noted -
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that the relation

gl
(5.9) I K(x)" { %g-fe(x)—l}ezT(g) k(x) dx =0, J = 1,...,p,
-1 j

is not satisfied generally. For example, suppose that the true spectral

density matrix is

1 0O 1 1/2 . 1 0 1 1/2 .
glx) = {(0'1>-+<_M@ 1)JXH (o 1) +<.4j2 1>enc}*’

(MA(1)), and the fitted spectral model is

1 O 0 e . 1 0 6 B, .
wrt = () ) (2 2l e () e
o 1 93 62 0 1 0 8

3 2

(AR(1)). Then it is not difficult to show

s5hr/65 8hm/65

i * .93 -1 _
J_Tr k(x) { 3~§3fe(x) Yoap(g)yk(x)ax = # 0,0

8Lm/65 . -5h1/65
This implies that, in the case of g(x) # fe(x), even if (5.7) is satisfied,
the g~-G.M.L.E. of the innovation free parameters is not always non-Gaussian

robust. 0

If s =1, i.e., the underlying process is scalar, then we have the

following unified result.

Remark 5.2.  Assume that (5.7) is satisfied for s = 1. Then g-G.M.L.E.
of the innovation free parameter is non-Gaussian robust even if g(x) # fe(x),
In fact if O is the innovation free parameter, then (5.8) is satisfied and

it implies (5.9) for s = 1. 0
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6. Selection of the order of the spectral density model for a stationary .

process

Let { X(t) } be a stationary process with zero mean and a specral density
g(x), to which we shall fit a kth order parametric spectral model fT(k)(X)'
Without assuming Gaussianity we can obtain an estimate of T(k), say %(k), -
by maximizing»the quasi—Gaussiaﬁ likelihood of the model.  We can then
construct the best linear predicfor of X(t), which is computed on the basis
of the estimated spectral density f%(k)(x). An asymptotic lower bound of
the mean square error of the predictor will be given. The bound is atta-
ined if k is selectéd by using Akaike's information criterion.

Now we shall assume that { X(t) : t € Z } is a scalar linear process

(6.1) X(t) =

Y aly:8) e(t-3), a(03;0) =1,
J=0

satisfying

(6.2) ) jB | a(j;e) | < o for some B > 1,

J=0

where a(j;0) are known functions of an infinite dimensional parameter vector

B = ( 61, 5 ,... )", and e(j) are independently and identically distributed

25
with finite cumulant KS, s=1,...,16. The spectral density of x(t) is

then written as

0.2
(6.3) g(x38) = >

a(33;0) exp(ijx) |2,

il o~1 8

J=0

where 02 = E[ e(j)e]. For notational convenlence, we write sometimes
simply g(x) in the place of g(x3;8). We need the following éssumptions
(6.4) - (6.6) :

(6.14) g(x36) is three times differentiable with respect to each coordinate

of & € O, and the third order derivative is a continuous function of (x,0)
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g [~m,m]X0 , where O is a compact set in R .
(6.5) The associated power series
A(z) =1 + a(1;8) z + a(2;8) 22 + ...
is not zero for IZ! <1 ‘and for any 6 € O.
(6.6)‘ The true value of 6 belongs to the interior of O, and it has inf-

nitely many nonzero elements.

Suppose that a stretch, X(t) ( t = 0,...,n-1 ) of the time series X(t)

is observed. Let fT(k)(X) be a spectral model with (k+1)-dimensional un-

known parameter vector T(k) = ( o%(k), 8(k)")', o3%(x) > 0, (k) =
( Gl(k),...,ﬁk(k) )'.  We assume that fT(k)(X) is parametrized so that
_ o%(k) _oi(x) . i
fT(k)(X) Tooon he(k)(x) T oorw | he(k)(elx) %

where he(k)(o) = 1. When the spectral model fT<k)(x) is applied to { X(t)},

we define the parameter vector T(k) = ( o%(k), 6(k)')' by

T
(6.7) : j [ 1og £, \(x) + glx)/f \(x) } ax
e ) U e+ 60 e

]

i .
[_ﬂ {108 240 (0) + 80/E () () ) o,

k+1

where 6k+ is a compact set in R . We can estimate Iﬂk) by the quasi-

1

Gaussian maximum likelihood estimate T(k) = ( 62(k), 8(k)')' which is a
solution of

(T

(6.8) in { log £, \(x) + I (x)/f . (x) } ax
T(k?le ek+l Jom (k) n (k)

i

Jom
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n-1
where In(X) = (QWH)_l | 7 x(t) exp(-itx) |? is the periodogram of x(t).
e t=0
Now we postulate the following assumptions (6.9) - (6.15):
(6.9) The number of the parameters, k+l, is in the range 1 < k < K s

where Kn > o and Kn//ﬁ - 0 as n > =,

(6.10) The spectral density f )(x) is three times differentiable with

™k v
respect to T(k) € ek+l' The third order derivative is a continuous fun-
ction of (x,t(k)) € [—ﬂ,ﬂ]X@k+l, and as a function of x € [-m,m], the first
and the second derivatives satisfy the Lipshitz condition of order 1.

(6.11) | he(k)(z) | is bounded and bounded away from zero for |z| < 1.

(6.12) For any 1 £ k £ Kn, the kxk matrix

m Bzhe(k)(x)_l

-1 98(k) 96(k)''8(k)

g(x) ax,

- |

is non-singular.
(6.13) The absolute sums of all the elements in each row of the matrices

T 9h, . (x)" dn. .\ (x)T
0(k) 8(x) g(x)2dx

Hk; H£1/2 and J

~T 98 (k) 38 (k)’ (k)

are bounded uniformly with respect to each row as k + o,

(6.14) Let

v 83he(k)(x)’l
w(r,j,m) = I g(x) ax .
-m 38 (k)28 (k)38 (k) '6(x)
r 3 mo =
k
Then Y | w(r,j,m) | is bounded uniformly in r as k - .
J,m=1

(6.15) For B in (6.2),

[ fT(k)<X) - glx) | = O(k_B) for all x € t—ﬂ,ﬂ];
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Example 6.1. Suppose that the true spectral density g(x;0) is parametr-
ed so that T
s a .
reed 8o |1 ow . ewm(isx) [*
a2 J=0 =’
g(x;0) = 5= - i
| 1w, exn(igx) |?
j=0 =2J
= = = 2 e | ! s s
ul,o u2,o l’ e ( 9] b Ul’l: u2,19 ul,zﬂ u2,2,... ) 3 Satleylng
v .8 v B
Y3 Wy | < o, z 37 Uy | < © . Also we assume that
j:O >d j=0 5d
[ee] . (o] .
z S 29 and Z Y, s z9  are not zero for IZI < 1. We choose
j=0 12d je0 2°9

_o2(x)  g=0 1o ,
e %) = T l J% T
8. . (igx) -
L 2.3 exp{ijx
8 =9 =1, 7t(k) = ( o%(k), 6 8 9 8 ),

1,127 P1,p® V2,177 V2.q

b . q s ’
p + g =k , where Yoo, . z9 and Y e, . zY  are not zero for |z]
¥ .8
< 1. Further assume that .} 3" | 8, ., | and
.= 1,3
J=0
bounded as p = p(k) and q = q(k) tend to infinity so that p(k)/q(k) - 1.

Then it is not so hard to show that f )(x) satisfies (6.4) - (6.15). |

w(k

Let X(t) be a predictor obtained by fitting the spectral density fa

(k)(X)'

Then the mean square error is

El x(t) - X(+) |2
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(T g(x) ‘ i £ (x)
= El-J dx expf 5%-[ log (k) dx } - 1 lo? + o?

-7 f"(k)(X) Sl g(X)
( Grenander and Rosenblatt[12] ). We can measure the goodness of the
estimated spectral model fA(k)(x) by

| T g(x) | u £a, 1 (x)

= El-{ ——————— ax } expf{ *l-f log (k) ax } - 1.

v 21
=T f"(k)( x) =T g(x)

Theorem 6.1.( Taniguchi{[28] ). Assume (6.4) - (6.6) and (6.9) - (6.1L).
Then
(6.17) D(f%(k),g) = M(f%(k),g) + higher order terms,
where
M(E2(yy58) = Dlngyyoe) + gl 8(k) - 0(k))E,( B(x) - 8(k))

l T h__e_(k)(X)
xexp{ = 5 J log ——————— dx }
=T g(x)

and " higher order terms "

means stochastically higher order terms as n -
w compared with the second term in the right hand side of M(f%(k),g)

uniformiy in k. 0
From Theorem 6.1, neglecting the higher order terms, we can measure the
goodness of f%(k)(x) by M(f%(k),g). Putting

K T f_’[_(k)(x)
R(n,k) = = exp{ = o [ log

dx } + D(n 58) 5
n _m £(x) 8(x)

we have the following theorem.

Theorem 6.2.( Taniguchi[QB] ). Assume (6.4) - (6.6) and (6.9) - (6.15).
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Then-
' M(f~,. \,g) b
p~lim { max | B 169 | } =o. i
n->oo 1<k <K R(n,k)

We shall define a sequence { kz } by

R(n,kz) = min R(n,k).
1<k <K

Define an asyﬁptotically efficient order selection extending the concept

of Shibata[22] in the case of autoregressive model.

Definition 6.1.  An order selection k is said to be asymptotically

efficient if

P—’lim M(f,\(l‘;) :g)/R(n:kfl) = 1. ﬂ

100 T

Now let us select the order of f )(x) by the criterion AIC ( Akaike's

T(k

information criterion, Akaike[2],[1] ), although Gaussianity on which AIC

is based 1s not assumed here. The AIC for f (x) can be written as

(k)
ATC(k+1) = n log 62(k) + 2k.

Define Q(n,k) by

n exp{ %=AIC(k+l) } = n 02(k) exp g%

n R(n,k) + Q(n,k).

Theonem 6.3.( Taniguchi[28] ). Assume (6.4) - (6.6) and (6.9) - (6.15).
Then

p-lim max | aln,k) - Q(n,x*) |/{ n R(n,k) } = 0. I
no 1<k< Kn

Let ﬁ be the order which is selected by minimizing AIC(k+1). By

Theorems 6.2 and 6.3, we can show
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~11 ~, A ¥) =
p\ Illizno M(fT(k),g)/R(n,kn) 1.

That is, the order selection ﬁ is asymptotically efficient in the sense of

Definition 6.1 although Gaussianity of { X(t) } is not assumed.

Remark 6.1. Shibata[22] showed that a kth order autoregressive model -
fitting by Akaike's information criterion fdr a Gaussian linear process

with infinite‘unknown parameters 1s asymptotically efficient in the sense

of Definition 6.1. - Needless to say our results can be applied to the
fitting of ARMA spectral density médel described in Example 6.1. Thus

we have extended his results to the case when the process is not necessarily

Gaussian and the model is not necessarily autoregressive. 0
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T. Applications for time serieg regression and interpolation

There is a kind of similarity between the estimation problem in a time
series regression model and the interpolation problem in a stationary pro-
cess. From a unified point of view we shall again look at the estimation
problem in the time series regression model, and propose a parametric method
which gives an efficient estimate of the regression coefficient vector in
the model.

Let { X(+); t € Z } be a non-deterministic stationary process with zero
mean and a spectral density g(x). Suppose that values of X(t) are observed
for all t except t € Ap, where Ap ={1,...,p }. We shall interpolate
the unknown values X(t), t € Ap. That is, we seek a p-vector ﬁhose com-—
ponents are linear combinations of X(t), t € Z — AP, and which minimizes
the error of interpolation in the mean square sense. Let M{...} denote
the closed linear manifold generated by the eleﬁents in the braces with
respect to the norm |.[}? = fﬁﬂ|.|2g(x)dx. For the present we assume

that g(x) belongs to the class

vo= [ g 8(x)™ e Ml e 5 s e ~A  -R 1T
where Ep—l ={ -1,...,-p+1 }. If p=1, i,e,, the usual interpolation
problem with one missing time point,bwe define AO = KO = §. Mathématically
our problem can be deseribed as follows. We seek a response function E(X)
such that

™
(1) e | et - 500 160 [ ) - nGx) I* ax
-

is minimized. Here e(x) = ( e—lx,..., e "% Y1 and each component of
n(x) belongs to M{ e ™% ; 5 ez - AP }. For our multiple time points

interpolation we have the following theorem.
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Theorem 7.1.( Taniguchi[26] ). Let { X(t) } be a stationary process with
zero mean and a spectral density g(x) which belongs to ¥,.  Then the res-

ponse function h(x) of the optimal interpolating filter and the interpolation

error matrix 2 are given by

. _
(1:2) 50 = L1 - ent [ (FG/eta) ) ax el 1 eta),
-7
i3
(7.3) ) = 2uf E%J ( F(x)/g(x) ) ax 175,
-1
where F(x) = f(x) E(X)*‘ I

In most natural phenomena, the true spectral density is not known a priori.
Thus it is of considerable interest to see what happens when an interpolator
is computed on the basis of a ' pseudo ' spectral density fe(x) € WO instead
of the true one, g(x), belonging to the class ¥ = M{ o 1% s Je 2 ).

In this situation we can show the following theorem.

Theornem 7.2.( Taniguchi[26] ). Let { X(%t) } be a stationary process with
zero mean and a spectral density g(x) € V. If the interpolator is computed

on the basis of a pseudo spectral density fg(x) e V¥ then the response

OD
function h. (x) of the pseudo interpolation filter and the pseudo interpola- .

tion error matrix Zi are given by

m
(1) om0 = LT -l | R/l ) ax Y0 T e,

=TT

1 (T 4 (7 elx)
(1.5) G =g | (Fa/ggl0 ) ey o ey Pl ax)
‘ - 8

1 T -1
< { EE'J_H (FGa/ggGa ) ax
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Hereafter we shall look at the results of Grenander and Rosenblatt[12]
and Rozanov[20] in relation to the previous interpolation problem. Let
(7.6) y(t) = z(t) + ult)

be a process in discrete time, where z(t) = o,z (t)+...+ apzp(t) with

1
known functions zl(t),...,zp(t) and an unknown parameter o = ( ul,...,ap)'~

and { u(t) } is a stationary process with zero mean. Let wj n(x), j=1,
b

...»D, Dbe solutions of the equations

™ .
[ e_lXt P, (x) a&x =z.(t), 0<t < n-1,
L jsn J
k 1 n-l -isx
i.e., wj,n(x) = on Sgo Zj(S) e .

The observed random process is harmonizable, that is, we can express y(t)
_ fﬂ e—lXt

= ; i = T
i zy(dx) with stochastic measure zy(dx) [ alwl,n(x)

apwp,n(x) ] Qx + zu(dx), where zu(dx) is the stochastic spectral measure
of the process u{t). We assume that u{t) has the spectral density g(x),
which is continuous and positive. Further we assume that the functions
Zl(t),...,zp(t) satisfy Grenander's conditions with the regression spectrum

- "N
matrix H(x). Now we seek a linear unbiased estimate o of o, which can be

represented in the following spectral form ;

(7-7)

1R

Jﬂ ( )
= r(x) z_(dx),
T Zy

where r(x) is a p-vector function. We denote ¥ (x) = ( ¥, (x),..., 0  (x))?
~ n 1l,n P.n

~

n~1 n-1
ana D_ = atsel (] |z ®)2OYE, (T |z 0)]2 )R
m £=0 t=0 P

Substituting

e(x) = [ D" | a0 (0% ax 2]

and
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™

R0 = D070 | 9, g (e ax o)

n ~n ~1
-

D nn(x)

2
into (7.1), where nn(x) is orthogonal to wn(x) with respect to the L™ -

~.

norm, we can see that the best linear unbiased estimate for o is given by

~ i ) ™
(1.8) & = I J_ﬂ 560 ) 1w T | ™y, 5 e,

~ - ~

Replacing F(x)dx by H(dx) in (7.3), we have the following classical result,

Theorem T.3.( Grenander and Rosenblatt[12] ). The asymptotic coyariance

matrix of Dn( &l ~ 0 ) is given by

™ 1 1
on J H(ax) 170 I
-1 gl(x)
Now we shall proceed to the non-standard situation. Assuming that the

process u(t) has a pseudo spectral density fe(x) although the true one is

g(x), and replacing g(x) in a, by fe(x) we have the pseudo best linear un-

biased estimate of o which is given by

i m .
~ -1 % -1 -1
(1:9) Gy = 1 [ 2,607 960 3, G0% ax 17| 2,607 g, 00 2 (a0
-7 -1 .
We can see that &2 is essentially equivalent to the R-estimate of Rozanov

[20] ( ef. also Rozanov and Kozlov[21l] and Kholevo[19] ). In relation
to Theorem 7.2, replacing F(x)dx by H(dx) in (7.5), we have the following

theoremn.
Theorem T.4%.( Rozanov[20] ). The asymptotic covariance matrix of &2 is
given by

1 (" 1 1. 1 (M elx) 1 (T -
[ 5;‘J~ﬂ 55(;7-H(dx)] [ §E'J_W *EETESQ H(dx) [ EE-J*W *}gT;) ﬁ(dx)] .0
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In general the true residual spectral density g(x) is unknown. In
this case Hannan[13] and [1}4] proposed a nonparametric efficient estimate

of o by the following

‘ soor A % amiloaomyy -l
x [ 1 If "(Ei)"l 2 '(IT_Q'_) ]
2m Jj=-m+1 * o ~Yy o ’

where é(.), %ww(.) and %wy(.) are nonparametric consistent spectral estimates
for g(x), ?n(’)%n(')* and gn(x)zy(dx)/dx respectively. Of course these
estimates depend on their window designs. It is obvious that {7,10) is
an estimated approximation for (7.8). Hannan[l3] and [14] showed that
(7.10) is asymptotically efficient.

Now we consider a parametric efficient method. Suppose that u(t) in

(7.6) is a linear process which satisfies the equation

(7.11) u(t) = Y al3:0) e(t-3) a(038) = 1,

wvhere a(3;06) ( j = 0,1,2,... ) are known functions of an infinite dimens-

ional unknown parameter 6 = ( 61,62,... )', and e(3) (3 =0,1,2,... )

. _ 5
are independently and identically distributed with E[e(3)] = 0 , Ele(j)"]

= g% > 0, and E[e(j)h] < ©, We impose the previous assumptions (6.L) -
(6.6) on the spectral density g(x) of u{t). Since u(t) is not observable

we shall fit a k-th order parametric spectral model f )<x), (k) = ('Sl(k),

8(k
cees Gk(k))', to the observed residual process a(t) = y(t) - &lzl(t) —.e.

&Pzp(t), 0 £+t £n-1l, where &l""’&p are the least squares estimates

for al,...,ap. Suppose that @k is a compact set in Rk. Since a in

~1



(7.8) is independent of innovation variance of the residual process, we

assume the parameter vector 8(k) does not contain the innovation parameter.

When fG(k)(X) is applied we shall define a pseudo true value of 6(k), say
8(x), by
0 g(x) m g(x)
min —_— dx = j —— dx
J_ -
e(k) € ek m fe(k)(X) i f@ﬂk)(x)
and estimate 8(k) by 8(k) satisfying
r T (x) I (x)
nin S - dx = J -z dx,
8(k) € 0, /- fe(k)(x) - fé\(k)(x)
~ _1 n-1 )
where In(x) = (21n) | Z u(t) exp(-itx) il.
t=0

Suppose that the number of the parameters, k = k(n), is chosen so that
{ x(n) } is a sequence which tends to infinity and k(n) = o( min( vn, K M,
n-1

whére K = o[ min { Z I z.(t) l2 }1/2 1.
1<j5<p t=0 .

Also we set the previous assumptions (6.10) - (6.15) for fe(k)(x). Now
we propose an estimate of o by

n

d = L A E_cl"l (il V H* -1
(1.12) o =[5 [ g5 w, (B0 9 (5D ]
J=~n+l
= 1 o ()L (my LTy 1t (1)
x [ 2n j=§n+1 fe(k)( n ?n( n) o tzo y(t) e n’ J.

Then we have the following result.

Theosrem 7.5. ( Taniguchi[26] ). The distribution of Dn( &h - 0 ) converges

~

as n > o to a multivariate normal distribution with zero mean vector and

covariance matrix
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()

__]:. _._l . -1
(2| e 17
-
i.e., &u is asymptotically efficient. I
Remark 7.1. We can choose the order k = k(n) by Akaike's information

eriterion which was shown to be optimal in a certain sense in Section 6. [

Remarnk 7.2. - In constructing the parametric estimate (7.12), we are free

from the problem of choosing window. f

Remark 7.3. Of course we can apply this method to the construction of

a parametric optimal interpolator. 0

As the last topic we shall consider the interpolation problem and the
regression problem under the condition that the spectral density of a sta-
tionary process concerned is vaguely kunown ( i.e., Huber's e-contaminated
model ( Huber[18] )). In this situation Hosoyal[l7] considered the problem
of linear prediction for a stationary process. Our approach goés in line
with the discussion of robust estimation due to Huber[18] and Hosoyal[1T7].
We shall show that we can get a minimax robust interpolator and regression
coefficient estimate for the class of spectral densities S = { g : g(x)

=(1-¢) f(x) + € hix), nix) €D 0 <€ <11}, where f(x) is a known

O 5
spectral density and DO is a certain class of spectral densities. At
first we consider the case p = 1. If the pseudo interpolation error (7.5)

and the asymptotic covariance matrix for the R-estimate are computed on
the basis of a pseudo spectral density ¢{(x), then they can be expressed
as the following form

m ‘ T
Vo) = €| oy nte 12 ([ EE w1
—Tr v

=T
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Thus we shall investigate a minimax property of V(¢,g). Let

D={g: glx)is continupus and piecewise smooth on [-7,m], g(x) = g(-x)
> 0, for all x € [-w,7] }. TIn the first place we assume that H(x) is
dominated by the Lebesgue measure such that H(dx) = n(x) dx, n(x) € D.

Let DO ={elx)eD; ffw ce(x)/n(x) dx = 1 }. Suppose that the true
spectral density g(x) belongs to S ={g : g(x) = (1L -¢ ) £f(x) + € h(x),
h(x) € DO’ 0 <e <11}, where £f(x) is a known spectral density and belongs
to DO' Here we adopt the minimax principle as the measure of robustness.

That is, we seek an interpolator and a regression coefficient estimate

which minimize max V(¢,g) with respect to ¢ € DO' Let m be a positive
geS

number, and put

E_ = {xefl-mm]l: m2(1-¢) £f(x)/nlx) 1},
F o= {xel-m,m] : m<(1-¢) £(x)/nlx) }.
We set (1-¢) £x), xe?
fm(x) =
m U(X) s X € Em.

Then we have the following theorem.

-

Theorem 7.6. ( Taniguchi[29] }.  The function V(d)»,g) has a saddlepoint :

there exists ¢O and 8 such that

max  V(¢.,8) = V(¢,,8,) = min V(d,g.),
g eSS 0 070 ¢ € DO 0
where ¢O(x) = go(x) = fm(x)- 0

Tmmediately this theorem means that
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min max V(¢3g) = max V(d)o:g)'
¢ € DO geS geS

Therefore in the case p = 1 we have a minimax robust regression coeffici-

ent estimate

A—[(ﬂi ()l-’-/f()axer( (x)/r (x) ) z_(ax)
OLn - Jn wl,n x m'* T lIJ].,n * m Zy :

when the residual spectral density g(x) ranges over S. As for the inter-
polation problem, putting n(x) = 1 in the construction of fm(x), we can

get a minimax robust interpolation response function

™
hix) =1 - 271 { j f_%}j dx }"l /fm(x) .
-T m

when the spectral density g(x) of the process concerned ranges over S.
Also, in a particular situation, Taniguchi[29] applied the above theorem

to the cases . that p > 1 or H(x) is not dominated.
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