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Chapter 1 INTRODUCTION

1-1 STATEMENT OF THE PROBLEM

In static and dynamic analysis of structures, the finite
element method is the most widely used and powerful tool.
However, the disadvantage of this method is that, in the case of
complex and large structures, it is necessary to use a large
number of nodes; resulting in very large matrices which require
large computers for their management and regulation. Furthermore,
in the dynamic analysis of the structures subjected to random
excitations by a direct integration method, these disadvantages
of the finite element method become more serious, because in
these methods the sequence of calculations must be repeated many
times, i.e. small time steps must be used to obtain response of
the structure accurately.

On the other hand, the transfer matrix method of structural
analysis is also applied to many structural problems. Since, in
the transfer matrix method, analysis is performed by the
subsequent multiplication of transfer and point matrices, the
order of final matrix is as same as those of transfer and point
matrices. Hence this method has an advantage over the finite
element method in the number of degrees of freedom of the
structure to be considered and, consequently, the computer memory
requirement.

Although the transfer matrix method is naturally a solution
procedure for one-dimensional problems, this method is applied to
two-dimensional problems by introducing Fourier series into the
governing equations of problems. It’s successful application to
two-dimensional problems is, however, restricted to simple struc-

tures with particular boundary conditions; otherwise considerable



complications arise in the derivation of transfer matrix. In
order to avoid the limitations in the derivation of transfer
matrix, Dokainish proposed a combined use of finite element and
transfer matrix method (FETM), in which transfer matrix was
derived from the stiffness matrix used in the finite element
method.

In this paper, the FETM method is applied to linear and
nonlinear static and dynamic problems of plated structures, and
the accuracy and efficiency of this procedure are also studied.
Furthermore, a combined use of boundary element and transfer
matrix (BETM), in which transfer matrix is derived from the
system of equations obtained by the procedure based on the
boundary element method, is proposed for two-dimensional and

plate bending problens.

1-2 REVIEW OF PREVIOUS RESEARCH

In this section, previous studies of analytical methods of
plated structures are mainly reviewed.

Since Turner (1) presented the concept of the finite element
method(FEM) in 1956, numerous studies for development of this
method have been made by many researchers, and these were summa-
rized in many text books(2-11). On the other hand, many investi-
gations of the boundary element method(BEM) 1in engineering
problems have been also made since the early 1960’s, and these
are summarized in Ref.(12-24). Some of them are mentioned in sub-
sequently related chapters.

In 1968, Cheung(25,26) suggested the finite strip method
(FSM) which was a formulation of combining the finite element
method and Fourier series technique for a plated structure.

Powell and Ogden({27) also reported the same procedure in 1969.



Since then this method was extended to various types problems of
plate structures. Cheung applied this method to folded plate
structures in 1969(28), and free vibration problems in 1971(31).
In 1971, Yoshida(29) presented a buckling analysis of plated
structures by FSM, and Yoshida and Oka(30) described the bending
analysis of plate structures with stiffeners in 1972. A summary
of studies mentioned above is described in Ref. (32). In 1978,
Pardoen and Marienthal (33) presented FSM for a structure in
polar coordinate system. The extension of FSM to sandwich plate
structures was explored by Chan and Cheung in 1972(34), and by
Ibrahim and Monforton in 1979(35).

In 1974, inelastic buckling strength analysis of stiffened
plates by FSM was reported separately by Usami(36) and by
Hasegawa, Ota and Nishino(37). Komatsu and Ushio(38) also studied
the application of this method to inelastic buckling problems in
1978, and Yoshida and Maegawa(39) applied this method to a
orthogonally stiffened plate in 1979.

Ueda, Matsuishi, Yamauchi and Tanaka(40) presented inelastic
large deformation analysis by FSM in 1974. Maeda, Hayashi and
Mori(41) investigated finite displacement analysis by FSM, in
which stiffness matrix was derived analytically to reduce the
computational effort in 1981.

In 1983, Yamamoto, Hotta, Obata and Sakimoto(42) proposed to
reduce the size of the system matrices by using the two types of
element, i.e. the plate element and the beam element. Okamura
and Ishikawa(43) analyzed the multi-span plate structures by the
stiffness matrix method combined with a relaxation technique. In
this approach, the displacement functions in series form and the
point-matching method are adopted to derive the stiffness matrix
of large-size rectangular plate panels in 1984.

Combined use of finite difference and transfer matrix method

was investigated by some researchers{44,45,46). In this method a



partial differential equation for the structure is reduced to an
ordinary differential equation by adopting finite difference
technique. In 1975, a combined use of finite strip and finite
difference was presented by Sundararajan and Reddy(47) for plate
vibration problems. This procedure was also applied to skew
orthotropic plate vibration (48) and buckling problems (49)

Transfer matrix was first applied to plate structures by
Schnell in 1956(50). In this approach, partial differential equa-
tions of plate is reduced to an ordinary differential equation by
adopting continuous functions which satisfying the boundary
conditions in one direction and transfer matrix is evaluated by
numerical integration. Since then, a number of studies for deve-
lopment of this method were investigated by many researchers
{51-58). In 1971, Wurmest(52) applied transfer matrix method to
the plate with shear deformation. In 1972, Dobovisek(56) also
applied this method to shell structures. Shigematsu, Hara and the
author (57) investigated the buckling énalysis of thin walled
members by transfer matrix method in 1984. In 1963, Leckie(59)
applied TMM to vibration problems of plates, in which a plate was
replaced by an equivalent network of beams.

In 1972, Dokainish(60) used the combined finite element -
transfer matrix (FETM) method in the study of the dynamics of
tapered or rectangular plate. McDaniel and Eversole(61) have
proposed a similar approach in treating a stiffened plate struc-
tures along with some numerical values that warrant consideration
in 1977. In 1979, Chiatti and Sestieri(62) introduced isoparamet-
ric shell elements, taking into consideration elements with nodes
situated not only on corners but also on the midpoints of edges
in dealing with complex structures. In 1980, Sankar and Hoa (63)
offered an approach, in which an extended transfer matrix relat-
ing the state vectors which consist of state variables (displace-

ments and forces) and their derivatives with respect to frequency



was used. Mucino and Paveric(64), as a further generalization of
the FETM method, have proposed a method in which structures are
modeled by means of substructures connected in a chain-like
manner. For each of these substructures, a transfer matrix was
derived.

In 1983, Shigematsu, Hara and the author (65) described the
application of the FETM method to bending and buckling problems
of plates, and presented various techniques for treating the more
complicated structures, especially those with +the intermediate
conditions are presented. In 1984, this procedures was applied to
the elastic-plastic large displacement problems(66). In 1986,
the extension of this method to the elastic-plastic large dis-
placement analysis of thin-walled members was presented by Hara
and the author (68). The substructuring procedure was adopted in
order tQ treat complex structures, such as I-section and box-
section plate girders with vertical stiffeners and web perfora-
tions. The application of this procedure to the transient
response of structures under various random excitations was
described by Shigematsu and the author in 1986(69). This
procedure was extended to nonlinear dynamic problems of plate
structures by Shigematsu and the author in 1988(70).

In 1974, Tomlin and Butterfield (71) proposed the procedure,
in which the body was subdivided into some regions and for each
of them system equations were derived, and they applied this
procedure to piecewise homogeneous anisotropic foundation engi-
neering problems. This work was extended to three dimensional
problem by Banerjee in 1976(72) and Lachat and Watson 1in
1977(73), whose main incentive for subdividing the body into
distinct regions was to reduce the bandwidth of the resultant
system of algebraic equations.

Combined use of finite element and boundary element has been

investigated by many researchers (74-76). In 1983, Komatsu, Nagai
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and Nishimaki(77) presented a combined use of boundary element
and block element method for thin-walled box girders.

In 1977, Banarjee and Butterfield(78) proposed the combined
use of boundary element and transfer matrix method, in which the
transfer matrix was derived from the boundary element equations
for a geomechanical problem. Recently, this method was applied
to a two-dimensional problem t79] by Shigematsu, Hara and the
author, and a plate bending problems (80) by Shigematsu and the

author.

1-3 OBJECTIVES AND SCOPE

The aim of this dissertation is to propose the structural
analysis methods based on the combined use of finite element and
transfer matrix method(FETM), and boundary element and transfer

matrix method(BETM) for plated structure problems.

In Chapter 2, a combined finite element - transfer matrix is
applied to 1linear structural problems. Transfer matrix is
derived from linear system matrix used in the ordinary finite
element method. Various techniques for treating the more compli-
cated structures such as those with the intermediate elastic and
rigid columns, and stiffeners are proposed. Numerical examples
for plate bending and buckling problems are presented and the
results obtained by the FETM method are compared with those by

the finite element method and other methods.

A combined finite element - transfer matrix method is
extended to elastic-plastic problems with large displacements.

In the calculation program developed in this chapter, the same



procedures as those used in the finite element method based on
load increment, are applied except for the estimation of approxi-
mate displacements for each specified incremental load. The
Prandtl-Reuss” law obeying the von Mises yield criterion is
assumed, and a set of moving coordinate systems is used to take
geometric nonlinearity into consideration. The results obtained

by the FETM method are compared with those by other methods.

Chapter 4 proposes the linear and nonlinear analysis methods
of thin-walled members by a combined finite element - transfer
matrix method. Transfer matrix is derived from the tangent
stiffness matrix for thin-walled member. To deal with complex
structures such as box-section and I-section plate girders with
stiffeners and web perforations, the transfer matrix for the
substructure, into which thin-walled member is divided, is intro-
duced. The results obtained by the FETM method for thin-walled

members are compared with those by other methods.

In Chapter 5, a linear transient analysis method of the
structures under random excitations by a combined finite element
- transfer matrix method is proposed. Transfer matrix relating
the state vector on the left and right boundaries of a strip at a
certain time is derived from the system of equations of motion
for a strip. An approximation is introduced in the equations of
motion for the case of in-plane excitations in order to reduce
computational efforts, and the technique of exchanging the state
vectors is proposed to avoid the propagation of round-off errors
occurred in recursive multiplications of the transfer and point
matrices. Numerical examples of the plates under out-of-plane
and in-plane excitations are presented and the results obtained
by the FETM method are compared with those by the finite element
method.



A linear transient analysis method based on a combined use
of finite element and transfer matrix methods described in
previous chapter is extended to nonlinear dynamic problems of
plates under random excitations in Chapter 6. Equilibrium itera-
tion based on the pseudo-force method is employed to improve the
solution accuracy and to avoid the development of numerical
instabilities. Numerical examples of the plates under various
excitations are presented for inelastic problems and large defor-
mation problems, and the results obtained by the FETM method are

compared with those by the finite element method.

In Chapter 7, a structural analysis method based on a
combined use of boundary element - transfer matrix method for
two-dimensional and plate bending problems 1is investigated. A
transfer matrix is derived from the system of equations derived
by the procedure based on the boundary element method. The tech-
nique of exchanging the state vectors is proposed to avoid the
propagation of round-off errors occurred in recursive multiplica-
tions of the transfer matrix, and rotation matrix is employed
for axisymmetric structures to reduce computational efforts.
Furthermore, the technique for the structure with intermediate
supports is proposed. Numerical examples of two-dimensional and
plate bending problems are presented and the results obtained by

the BETM method are compared with those by the other methods.

Finally, Chapter 8 consists of a summary of this disser-

tation, conclusions for each chapter.
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Chapter 2 STRUCTURAL ANALYSIS BY A COMBINED FINITE
ELEMENT-TRANSFER MATRIX METHOD

2-1 INTRODUCTION

The finite element method is the most widely used and power-
ful tool for structural analysis. However, the disadvantage of
this method is that, in the case of a complex structure, it is
necessary to use a large number of nodes, resulting in very large
matrices which require large computers for their management and
regulation. In order to reduce the size of the matrices in the
ordinary finite element method, some techniques have been
proposed {(condensation, substructuring method) (7).

One numerical technique for reducing matrix size 1in the
ordinary finite element method is the use of finite strips (FSM)
suggested by Cheung (1). Another is the transfer matrix technique
(TMM). Leckie(b) applied this method to plate vibration problems.
At that time, the problems were formulated by using the
Hrennikoff model. The above techniques (FSM, TMM) can be
successfully applied only for simple structures with particular
boundary conditions; otherwise considerable complications arise
in the formulation of problems.

Dokainish{3) wused the combined finite element - transfer
matrix (FETM) method in the study of the dynamics of tapered or
rectangular plate. Since the size of stiffness and mass matrix,
in his method, was equal to the number of degrees of one strip,
the frequency determinant for a clamped-clamped plate con-
sidered by Dokainish was 18x18 by the FETM method compared to a
108x108 matrix eigenvalue problem obtained wusing the standard
finite element method with the same number of nodes.

McDaniel and Eversole{(6) have proposed a similar approach in
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treating a stiffened plate structures along with some numerical
values that warrant consideration.

In dealing with complex structures, Chiatti and Sestieri(2)
introduced isoparametric shell elements, taking into considera-
tion elements with nodes situated not only on corners but also on
the midpoints of edges.

Sankar and Hoa (15} offered an approach, in which an extended
transfer matrix relating the state vectors which consist of state
variables (displacements and forces) and their derivatives with
respect to frequency was used. In this method, a Newton-Raphson
iterative technique is used to determine natural frequencies.

Mucino and Pavelic(9), as a further generalization of the
FETM method, have proposed a method in which structures are
modeled by means of substructures connected in a chain-like
manner. For each of these substructures, a transfer matrix was
derived.

Application of the FETM method is generally found in litera-
ture concerned with vibration problems of structure. This paper
shows a successful application of the FETM method to other
structural fields, especially to bending and buckling problems.
Also, wvarious techniques for treating the more complicated
structures, especially those with the intermediate conditions are
presented.

Some numerical examples of bending and buckling problems are
proposed and their results are compared with those obtained by

the ordinary finite element method and others.

2-2 FINITE ELEMENT-TRANSFER MATRIX METHOD

Fig.2-1 shows a plate divided into m strips and each of

which subdivided into finite elements. The vertical sides
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dividing or bordering the strips are called sections, while the
horizontal boundaries are the edges. Thus BE is the left section
of strip i+l and the right sections of i. There are a total of
2n nodes on strip i with n nodes on the left section AD and n
nodes on the right section BE.

To derive the transfer matrix relating the left and right
state variables (displacements and forces) of the strip i, it is
required first to determine the stiffness matrix K, of strip 1i:

we obtain
K. & =F e (2_.1)

where K, is the stiffness matrix of strip i, & , Fi are the dis-
placements and forces of strip i, respectively.
Eq.(2-1) holds well for bending problems, but in buckling

problems, the matrix Ki in Eq.(2-1) becomes:
Ki =Ko, - PKoi e (2_2)

where K,; and K,: are the bending stiffness matrix and the
modified stiffness matrix of strip i, respectively; P is the in-
plane load.

Matrix Ki is partitioned into four submatrices. Eq.(2-1)

then becomes:

Kea Kar 82 | OF
] { }: { } ............ (2-3)
KrR Krr i ar i Fr i

where 82, 6, Fo and F. are the left and right displacements and

forces of strip i, respectively. By expanding Eq.(2-3) and
solving for & and F.; in terms of 62y and Fe; the following

equations can be obtained;
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-Kar ' Kagdoi + Ker "'Foy e (2-4a)

6ri
and

Fr Koe — K rKar "Keadoi + Kir Koy " 1Fgey  covveeeeens (2-4b)

which, when arranged in matrix form, become:

ér -Keor "1 Kaz Ker ! 0 82
Fo?> = |K2~K +Kar ' Koo K-rKar-! 0 Fap o (2-5)
1 Ji 0 0 15101 5

On simplifying the notation, we obtain:

8- Tiv Ti2 O 52
Fob= [Tey Too F.b (2-6)
1 ) 0 0 1 )11
or
Zr i = T; Zei . e e (2—7)

Eq.(2-7) can be recognized as the transfer matrix relating
the state vectors z- and z. which consist of the displacements
and forces.

After continuous multiplications of the transfer matrix T,
we obtain the relation between the state vectors at two ends of

the structure:
Zn = U ZzZa : N (2-8)

where U =Ty, To-1---Ti.

In bending problems, on considering the left and right
boundary conditions of the structure, simultaneous equations are
obtained from Eq.{(2-8). The number of these equations is as same

as that of the unknown state variables in zs . Thus, we can evalu-
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ate the unknown elements in z by solving these equations (13}).
On the other hand, in buckling problems, it is essential
that the determinant of a portion U of the matrix U be zero:
det |TI =0 e (2-9)
Now, the matrix T is obtained from the matrix U by deleting the

columns corresponding to zero elements of 2z and the rows

corresponding to the nonzero elements of z..

2-3 TECHNIQUES FOR INTERMEDIATE CONDITIONS

1) Point Matrix for Elastic Columns

Point matrix for treating structure with elastic columns at
the intermediate section, as shown in Fig.2-2, 1is obtained by
taking the elastic support restoring forces into consideration.

Consider, for example, elastic columns attached to nodes 2
and m of section i (Fig.2-2). The relations of the shearing

forces at the left and right of the section i are then,

QiiR= Qi1t, Qi2® = Qiz2t,.e.y Qio® = Qiat + KaWin,oony
QinR = Qinl + KoWin,yenop, QiR = Qist

where ke and k, are the elastic column stiffness; superscripts L
and R indicate the left and right sides of the section. Since
other elements of the state vector are continuous throughout sec-

tion i, the following identity exists:
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In matrix notation, Egs.(2-10) and (2-11) become:

Wi R 1 Wi L
Wz 1 Wo
Wea 1 Wg
Wi 1 Wn
Wj 1 W;
0 I 0«
9, = 1 0, > 0 e (2_12)
Q 0 1 Q
Q> 0 1 Q
Qs ke 1 Q=
Qﬂ'l kITI 1 Qm
Q; 0 1 Q;
M, i I M, i
or
Z R = P oz~ i (2-13)

2) Point Matrix for Ribs

In the orthogonally stiffened plate, as shown in Fig.2-3(a),
the plate is divided into strips containing x-rib (shown in
Fig.2-3(b)) and lines containing y-rib (shown in Fig.2-3(c)).
Therefore, x-rib is included in the transfer matrix described
previously but y-rib must be considered in the point matrix.

Considering the continuous condition of displacements and

equilibrium condition of forces at the y-rib line, we obtain the
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following expression:

wR :WL, o« R :exl‘, 9yR eyL

& Q- + Q*, MR = MLt o+ Mo*, MR = Myt + M, * oo (2-14)

where L and R indicate the left and right sides of y-rib line,
Q*, Mc* and M, * are nodal forces on the y-rib.

Introducing the stiffness matrix for y-rib line, the nodal
forces on the y-rib in Eq.(2-14) are related to the nodal

displacements as follows:

{Q* b‘xa‘E My*}T = K* {w 0. 8, T e e e (2_15)

where K* is the stiffness matrix for y-rib line. Substituting
Eg.(2-15) into Eq.(2-14) and eliminating the nodal forces, Q%,
M. *, Mi*, the state vector at the left and right sides of y-rib

line are related as follows:

w R w L
9){ I 0 ex
99 99
-3 (G i——————=—=——_——-——— I R (2_16)
Q Q
M K* 1 M.
M, M,
or
gk = P 2z e e e (2_—17)

Consequently the matrix P, is referred to as the point matrix for
the y-rib line. Eq.(2-13) relates the left state vectors of the
section which has some elastic columns, to the right state
vectors. Consequently the matrix P« is referred to as the point

matrix for the elastic colunn.
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3) Intermediate Rigid Conditions

Point matrix for elastic columns break down when elastic
columns become infinitely stiff. In this case, since the
deflections at the intermediate rigid columns are zero, the
initial unknowns corresponding to the constrained displacements
can be eliminated and introduced new unknowns.

For example, consider the structure, shown in Fig.2-4, which
has rigid columns at nodes % and m of section i, with its left
boundary simply supported. The equation relating the left state

vector of the section i, z !, to the initial unknowns, z, is

zit = U Ze e (2-18)

From the left boundary condition wo = 60 = Mg = 0, the
elementary form of Eq.(2-18) is

{WL exL egll‘ QL MXL M\)L}iT: Ui {99 Q Mx }QT ""(2_19)

Setting wia = wyn = 0 from the rigid conditions at the node 2 and

m, we obtain the following two equations:

Uei {6, Q Mi}eT = wia =0
Un {99 Q M. }oT wia =0 e (2_20)

where Usi and U, are the 82-th, m-th row of the matrix U,
respectively, w; s and w,, are the deflection at nodes 2 and m of
section i. Solving Eq.(2-20) for Q.» and Q.n, we eliminate these
two shearing forces from the initial state vector z.

Because of the reactions at the rigid columns, the shearing
forces at these points are discontinuous. Introducing the new
unknown V; s and Vi, instead of Q.« and Q.n Jjust above eliminated

the right state vectors of section i are expressed as,
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{(wR 6xR 6,R @ MR MRYT =U "{6, Q M }oT --(2-21)
where
Qo'-:{Qol, Qog,..., Viz,..., V;m,..., Qon}T.

By the above technique, the transfer procedure can be performed
throughout a section having intermediate rigid columns.

The structure which has the intermediate simple support as
shown in Fig.2-5 can be treated as previously described. 1In this
case, the deflections and rotations about the =x-axis are
constrained at the intermediate simple support. By eliminating
the initial shear forces and moments about the x-axis, which
correspond to the constrained displacements, from the initial
state vector z., the new unknown discontinuous shears and moments

can be introduced to the state vector z.

2-4 NUMERICAL EXAMPLES

1) Bending Analysis of a Plate Structure

In order to investigate the accuracy and efficiency of the
proposed method in bending problems of plate structures, the
simply supported rectangular plates subjected to the uniform load
and the concentrated load at the center of the plate are ana-
lysed. A quarter of the plate is divided into 1x1, 2x2, 3x3,:---:-:
and 10x10 elements as shown in Fig.2-6.

The rectangular element with three degrees of freedom per
one node, shown in Fig.2-7, is used in examples of this chapter;

the deflection w is assumed to have the fornm,

W= a + 8%+ a3y + asX + asXy + as¥? + ar®® + az ¥y

+ a.g'x'y—z +a;07; + a11%:7 + 12 XFz 00 crrrereeens (2_22)
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where %=x/a, ¥=y/b and a;,... a2 are unknown coefficients.

Fig.2-8 shows the convergence condition of the deflection at
the center of the plate. Although the results for the uniform
load converge little faster than those for the concentrated load,
the results for both loads in 6x6 mesh pattern converge within 1
%. 1In Fig.2-8 the solutions obtained by the finite element
method are also shown. In the finite element method the same
element and mesh patterns as those used in the FETM method are
employed.  Good agreement exists Between the results obtained by
both methods.

Fig.2-9 shows a comparison of the matrix sizes (sizes of the
resultant system) required in the finite element and the FETM
methods. It is assumed here that in the finite element method
the banded matrix is used. The matrix sizes in both methods
increase as the number of elements increases. Increasing rate of
the matrix size in the FETM method is, however, smaller than that
in the finite element method, because the matrix size in the FETM
method is dependent on the number of degrees of freedom for one
strip in contrast with the finite element method which depends on
that for the entire structure.

The matrix size in the finite element method is given by
{(the number of total nodes) x {(degrees of freedom)} x (the band
width). The matrix to be considered in the finite element method
is, therefore, 48x18=864 for 3-3 mesh pattern .and 363x39=14157
for 10-10 mesh pattern. Thus the matrix size for latter mesh
pattern is 16.4 times larger than that for the former pattern.
On the other hand, the matrix size in the FETM method is given by
{(the number of nodes on a section) x (degrees of freedom) x 2}2.
The matrix to be considered in the FETM method is, therefore,
24x24=576 for 3-3 mesh pattern (3 strips mesh pattern) and 66x66=
4356 for 10-10 pattern (10 strips pattern). The matrix size for

latter mesh pattern is, therefore, only 7.6 times larger than
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that for the former pattern.

A uniformly loaded and simply supported rectangular plate
with rib, shown in Fig.2-10(a), is analysed. In this example, a
half of the plate is divided into 10 strips and each strip into 5
elements as shown in Fig.2-10(a).

The point matrix for the rib, P, is in this example used in
considering the rib. The transformation procedure is performed
by multiplications of not only the transfer matrix, T, but also

the point matrix, P::

Zip = Tig To-+-Ty Ts Prs Ts Toa -+ To Ty 2o  +coceevn (2—23)

In Fig.2-10(a), the deflections along the symmetric line
obtained by the FETM method are compared with those by the finite
element method, in which the same element as that used in the
FETM method is employed. It can be seen that the results obtained
by both methods are in complete agreement with each other.

The matrix to be considered in the finite element method is,
if the banded matrix is used, 198x24, compared to 36x36 for the
FETM method.

The deflections for E. I, = « are also shown in Fig.2-10(a).
In this case, the transformation procedure can be performed in a
simple schematic manner by using the technique for intermediate
simple support described in this chapter. The results by the
FETM method agree well with those by the finite element method.
In Fig.2-10(b), the deflections along the symmetric line for the
case of partial load are shown and similar results to previous
example are obtained.

A partially loaded and all edges clamped rectangular slab
stiffened orthogonally, shown in Fig.2-11(a), is analysed. 1In
this example, the slab is divided into 18 strips and each strip

into 6 rectangular finite elements, as shown in Fig.2-11(a).
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As described in Section 2-3, although x-rib is included in
the transfer matrix, y-rib must be considered in point matrix for
the rib. The transformation procedure for this strips mesh

pattern:

Zig = T1g Tiz-+Tiz Priz Tio-+- T7 Prsg Te+--To T1 %

In Fig.2-11(b), the deflections along the symmetric line
obtained by the FETM method are compared with those by the finite
element method, in which the same element as that used in the
FETM method is employed. It can be seen that the results obtained
by both methods are in complete agreement with each other. The
matrix to be considered in the finite element method is, if the
banded matrix is wused, 399x27 for 18 strips mesh pattern,
compared 42x42 for the FETM method.

The deflections for E-I. = « are also shown in  Fig.2~11(b).
In this case, the transformation procedure can be performed in a
simple schematic manner by using the technique for intermediate
simple support. The deflections by the FETM method agree well
with those by the finite element method.

To illustrate the efficiency of the technique for an
intermediate rigid column and the point matrix for‘ an elastic
one, a bridge deck with four intermediate columns acted upon by
partially distributed loads, shown in Fig.2-12(a), 1is analysed.
It is divided into 16 strips and each strip into 8 elements, as
shown in Fig.2-12(b).

In Fig.2-12(b), the deflections in the case of intermediate
rigid columns by the FETM method are compared with those by the
finite element method. It can be seen that these results agree
well with each other. 1In this example, the matrix size in the

finite element.method is 459x33 for banded matrix, while in the
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FETM method the order of the matrix is only 54x54.

The deflections for the intermediate elastic columns are
shown together in Fig.2-12(b). In this case, the transformation
procedure was performed by introducing the point matrix for the

elastic column P« :
Zs = TS T7 PkG T6"'Pk2 Tg Tl Zo 0 ersececeensn (2_25)

2) Buckling Analysis of a Plate Structure

The same element and degree of freedom in bending problems
are, also, used in buckling problems.

A uniformly compressed rectangular plate supported simply
along two opposite sides perpendicular to the direction of
compression and having two other free sides is analysed. A plate
is, in this example, divided into 6 strips and each strip into 6
finite elements.

In Fig.2-13, the buckling coefficients obtained by the FETM
method are compared with those by the finite element method and
Euler buckling theory (16). In the finite element method the same
mesh pattern as in the FETM method is used. Close agreement
exists between the results of the FETM and finite element
methods and these are agree well with the Euler buckling co-
efficients.

A simply supported rectangular plate under uniform compres-
sion is analysed. The plate is divided into 4, 6, 8, 10 and 12
strips along the direction of compression and each strip into 4
elements, as shown in Fig.2-14(b).

The buckling coefficients obtained by the FETM method and
the finite element method are indicated in Fig.2-14(a). The
accuracy of these results decreases as the ratio of the plate,
a/b, increases, i.e., the number of half-waves of the buckling

mode in the direction of compression increases. The accuracy of
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the results, however, improves as the number of strips, i.e., the
number of elements in the direction of compression increases as
shown in Fig.2-14(a). It becomes clear that, in the buckling
analysis of the long plate, a plate should be divided into many
elements in the direction of compression in the finite element
method, and many strips in the FETM method. Since the matrix
size in the FETM method is dependent on the number of degrees of
freedom for only one strip as mentioned previously, the matrix
size for every mesh pattern employed in this example is same,
30x30. While in the finite element method, if banded matrix is
used, it is 75x21 for 4-4 mesh pattern (4 strips mesh pattern)
and 195x21 for 4-12 mesh pattern (12 strips mesh pattern). The
matrix size in the finite element method is, therefore, 1.75 and
4.55 times larger than that in the FETM method, respectively.

In Fig.2-15 the buckling coefficients of an all edges
clamped rectangular plate under uniform compressions obtained by
the FETM method are compared with the exact solutions and those
obtained by the finite element method. Similar results as in the
previous examples are observed.

Biaxially compressed plate with two adjacent clamped edges
and two other simply supported edges as shown in Fig.2-16 is
analysed. The transfer matrix for the strip subjected to biaxial
compressions is, in this example, employed. The plate is, here,
divided into 6 strips and each strip into 6 finite elements. In
Fig.2-16 the results obtained by the FETM method are compared
with those by Iwato and Ban(4) for the ratios of the 1load g =
P,/P. = 0., 0.5, 1.0 and 1.5. Although the results of the FETM
method are little smaller than other results, good agreement
exists between both results.

As the next buckling problem example, a simply supported
rectangular plate with a longitudinal stiffener(x-rib) under

uniform compression as shown in Fig.2-17 is analysed. The plate
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is divided into 6 and 10 strips, and each strip into 6 elements
in both mesh patterns. The transfer matrix is, in this example,
derived from the stiffness matrices for the strip and x-rib. The
ratio of the cross section area between the plate and stiffener
is 8§ = A, /bt = 0.1 and the ratio of the rigidity is 7 = E.1./D =
5 and 10, where A,, E. and I. = cross section area, modulus of
elasticity and moment of inertia of the rib, respectively, b, t
and D = width, thickness and flexural rigidity of the plate,
respectively.

In Fig.2-17 the buckling coefficients obtained by the FETM
method are compared with those obtained by the finite element
method, and cross agreement exists between both results.

The buckling coefficients for simply supported plate with
intermediate support are given simultaneously in Fig.2-17, +to
provide the upper limit of the buckling coefficient for this
case.

A uniformly compressed rectangular plate clamped along two
opposite sides perpendicular to the direction of compression and
having reinforced free edges by stiffeners along the other two
sides as shown in Fig.2-18, is analysed. The plate is divided
into 6 and 12 strips, and each strip, as in the previous example,
into 6 elements. The ratio of rigidity is ¥ = 0, 1, 3, 5 and the
ratio of area is 6 = 0.1.

As shown in Fig.2-18, close agreement in the results by the
FETM method and the finite element method 1is obtained. The
buckling coefficients for the plate clamped along two opposite
sides perpendicular to the direction of compression and simply
supported along the other two sides are given simultaneously in
Fig.2-18, to provide the upper limit of the buckling coefficient
in this case.

Fig.2-19 shows the buckling coefficients of a simply

supported rectangular plate with a transverse stiffener(y-rib)
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under uniform compression as shown in Fig.2-19, obtained by the
FETM method and the finite element method. A plate 1is divided
into 6 and 10 strips and each strip into 6 elements in both mesh
patterns. The ratio of rigidity is ¥ = b and the ratio of area
is § = 0.1. The transfer procedure is, in this example, performed
by multiplications of the transfer matrix and the point matrix
for the stiffener, and is described for 6 strips pattern as

follows:
Zg = Te Ts Ts Prs Ts To Ty 20 cecessecenn (2-26)

Good agreement exists in the results obtained by both
methods. 1In Fig.2-19 the results for simply supported continuous
plates are given simultaneously to provide the upper limit of the
buckling coefficient for this case.

As the last buckling problem example, a simply supported
rectangular plate stiffened orthogonally under a uniform compres-
sion is analysed. The same mesh pattern as in the previous exam-
ple is employed, and the ratio of rigidity is ¥ = 5, 10 and the
ratio of area is 6 = 0.1. In Fig.2-20 the buckling coefficients
obtained by the FETM method are compared with those by the
finite element method and exact solutions (14}). Although cross
agreement exists between the results by the FETM and finite
element methods, the accuracy of these results decreases as the
buckling mode increases. But it is seen that the accuracy of the

results improve as the number of strips increases.

2-5 CONCLUSIONS

In this chapter, the procedures of the combined finite

element - transfer matrix method are applied to the bending and
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buckling problems of plated structures. Furthermore techniques
for treating the complicated structures such as those with
intermediate elastic and rigid columns, and with stiffeners are
proposed. From the numerical examples presented in this chapter,
following conclusions are obtained.

(1) In bending and buckling problems good agreement exists
between the FETM solutions and the exact solutions, which
demonstrates the accuracy of this method.

(2) Since the size of the transfer matrix in the FETM method
is equal to the number of degrees of only one strip, this method
has the advantage of reducing the size of matrix to less than
that obtained by the ordinary finite element method for 1long
prlated structures.

(3) Point matrices for elastic support and rib make possible
the application of the FETM method to bending and buckling
problems of the plates with intermediate elastic supports and
stiffeners.

(4) By using the techniques for intermediate rigid column
and simple support, the transformation procedure can be performed

in a simple schematic manner.
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NOTATION

The following symbols are used in this paper:

cross section area of rib;
dimension of finite element or plate;
dimension of finite element or plate;

= flexural rigidity of plate (Et3/12(1-v2));

modulus of elasticity of plate;
modulus of elasticity of rib;

= force vector;
= moment of inertia of rib;

stiffness matrix of strip ij;
stiffness matrix of rib;
buckling coefficient (Pb2/#2D);
point matrix for elastic column;
point matrix for rib;

transfer matrix;

thickness of plate;

state vector;

ratio of load (P,/Py);

ratio of rigidity (E. 1./D); and
ratio of area (A, /bt).
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Chapter 3 NONLINEAR ANALYSIS OF PLATES BY A COMBINED FINITE
ELEMENT-TRANSFER MATRIX METHOD

3-1 INTRODUCTION

The finite strip method suggested by Cheung (1) and the
transfer matrix method which was applied to plate vibration
problems for the first time by Leckie (7) have the advantage of
reducing the size of the matrix in the ordinary finite element
method, but these methods can be successfully applied only for
simple structures with particular conditions, otherwise consi-
derable complications arise in the formulation of problems.

The combined finite element - transfer matrix (FETM) method,
which has similar advantages to the previous two methods was
proposed for the first time by Dokainish (3) and has been
successfully applied to various linear problems (2,8,10,13,16).
A combined finite strip - difference calculus technique was
developed by Sundararajan and Reddy {18) and Thangam and Reddy
(19,20). However, there are no studies on the extension of this
method to geometric and material nonlinear problems.

The purpose of this chapter is to propose a method of
analyzing the elastic-plastic large displacement behavior of
structures under various loading conditions by the combined
finite element-transfer matrix method. It is well known that in
the finite element method the computer storage and time requires
for analysis of nonlinear problems are usually more than those
involved in linear problems. Thus it is expected that for long
structures in which these are significantly more strips than
nodes on section, advantages attainable through matrix size
reduction in the FETM method will become more evident.

In this chapter the same incremental procedures in the
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finite element method (5} can be applied, except for the evalua-
tion of incremental displacements for each specified incre-
mental load. The Newton-Raphson method is employed in convergence
procedures of each iterative step. It is assumed that the
Prandtl-Reuss’ law, and the von Mises yield criterion ({21) are
valid in this chapter. 1In order to consider the extent of the
yielded portions in the directions of the cross sections, the
cross section of the structure is divided into some layers, and
geometric nonlinearity is considered by using a set of moving
coordinate systems (11).

Some numerical examples of nonlinear problems are proposed
and their results are compared with those obtained by the

ordinary finite element method and others.

3-2 FINITE ELEMENT-TRANSFER MATRIX METHOD FOR NONLINEAR PROBLEMS

1) Transfer Matrix

The plate, shown in Fig.3-1, is divided into m strips, each
of which is subdivided into finite elements. Although any type
of element may be used, triangular elements illustrated in
Fig.3-1 are used in this chapter. The vertical sides dividing or
bordering the strips are called sections.

Assembling the tangent stiffness matrix of the elements
for each strip, the incremental equilibrium equations for the

nodes on strip i are obtained as follows:

K.as = AF, i e (3_1)
in which Ki = the tangent stiffness matrix of strip i; and A&,
AF; = the displacement and force increment vectors of strip i,
respectively.
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The transfer matrix relating the left and right displace-
ments and forces of the strip may be obtained by suitably
transforming the strip stiffness matrix into four submatrices;

then Eq.(3-1) becomes

Ke: AF
[K;uz L] ] {A_aﬂ} - { R} ............ (3-2)
Kr}z Kr r i Asr i AFr i

in which A$2;, A8, AFe;, and AF,; = the left and right dis-
placement and force increment vectors of strip i, respectively;
and Kee, Kor, Kr2, and K.+ = the submatrices of K.

By expanding Eq.3-2 and solving for A8 and AF. in terms of

Ade: and AFe the following equations can be obtained:

Asr "‘K‘Qr‘xK‘QR K}lr‘] 0 AGR
AFr - Kr R_KrrKRrglKRR KrrKRr_1 0 AFR """" (3_3)
1) 0 0 1 4501 s

On simplifying the notation, we obtain

Ad- Ty T2 O Adq
AF, 8 = |Te1 T2 O AF2S (3-4)
1 /i 0 0 11
or
AZr, = Ti AZgi e s e s e a e (3_5)

Eq.(3-5) can be recognized as the transfer matrix relating
the increment state vectors Az: and Az, which consist of the dis-
placements and forces at a strip.

After continuous multiplications of the transfer matrix T,
the relation between the increment state vectors at two ends of

the structure is obtained (15).
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AzZn = U Aza e (3-6)

On considering the left and right boundary conditions of the

structure, simultaneous equations are obtained from Eq.(3-6)

As the number of these equations is the same as that of the
unknown state variables in Azp, they can be determined from
Eq.(3-7). Matrix U of Eq.(3-7) is obtained from matrix U by
deleting the columns corresponding to zero elements of Az and
the rows corresponding to the nonzero elements of Az,; U- is the

force vector of the external loads.

2) Tangent Stiffness Matrix

In the combined finite element - transfer matrix method, a
transfer matrix is derived from a stiffness matrix used in the
ordinary finite element method. As the derivation of the stiff-
ness matrix is detailed (9,12), brief descriptions which mainly
relate to elastic-plastic problems are given here. It is illus-
trated for the triangular plate element as shown in Fig.3-2 but
is general for the other types of elements.

The displacements at any point within a triangular element,

Fig.3-2, can be represented as

& = Neo &
gB = NB&B ............ (3_8)
in which %, and & = in-plane and out-of-plane displacement at

any point within an element, and & and 8 are nodal displace-

ments defined as follows:
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& =
d =

and No, N are matrices

of

{U1 y Vi yU2 , V2 ,U3 ,V3 3T

interpolating functions

{W1,exl’991,WZ,9x2’9921w3y9x3,993}T

with the corresponding nodal displacements.

associated

For the nonlinear problems, a strain increment vector Ae at

any point within an element is defined in terms of displacements

as follows:

2au
x
A&x
AV
Ae = A&y
Y
Any
y  9x
awe JAW
3x ax
dwWo AW
+
ay ay
ax 3y dy 9x
= BbASp + BsAS: + BaAds
= BAS

in which u, v, and w are the displacements in the x, v,
and Bg
obtained by substituting Eq.(3-8) into Eq.(3-10), and B,

directions,

respectively;

AW
ax
JAW
g
23AW
ax .

92 Aw
ax2
92 Aw
ay?
232 AW
ax3y

+ BsAde

B, Bs, Be,

2

2

BAW

vy

and =z
are matrices

Ad are

defined by identification of terms in Eqgs.(3-11) and (3-12).

Furthermore, a stress increment vector, Ag,

sented as follows:
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AOx
Ao = A0y = DAae e (3-13)
ATxy

in which D = the stress-strain matrix. Details of matrix D will
be described in a later section.

Applying the principle of virtual displacements, and using
the expressions of Egs.3-12 and 3-13, the element tangent stiff-

ness matrix is obtained as follows:

k = J B'DBdv e (3-14)

3-3 STRESS-STRAIN MATRIX

A description of the stress-strain matrices used in the
development of the element tangent stiffness matrix and the
calculation of stress increments due to an increment of load is
presented herein. For the element in the elastic range, the
elastic stress—-strain matrix obtained from Hooke’s law for the

isotropic material is used:

0

in which E = modulus of elasticity, and v = Poisson’s ratio.

The plastic stress-strain matrix for the element in plastic
range is derived by applying the Prandtl-Reuss stress-strain
relation following the von Mises yield criterion; it can be

written as
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{aef {aef
De {(— —> D
do do

Db = Dp—-—————————— e (3-16)

aef 1ot
H'+ {— > De{ —
d0 do

in which ¢ = {0«,0,,7<v}7 = the stress vector; & = (ox2-0x0,+0,2

+37:42)172 is the equivalent stress; and H” = the slope of the
equivalent stress versus plastic strain curve in uniaxial test.
The derivation of D, is given in Appendix 3-1.

In calculation of equilibrating nodal forces at each
iteration step, to reduce the number of iterations required for
convergence to the required accuracy, the stress-strain matrix
D., is applied for the element, which is elastic during the
preceding cycle of the iteration but becomes plastic during the

current cycle. De, is represented as follows:
Dep = rDe + (1-v)Dy e (3-17)

in which r = the weight coefficient given in Fig.3-3.

In order to consider the extension of the yield portions in
the directions of thickness of the element, it is divided into
many layers, Fig.3-4, and linear distribution of the stress and
the stress-strain matrix is assumed to improve the efficiency of
the calculation. Hence, the stress of the k-th 1layer is repre-

sented by the stress at the upper and lower borders of the strip:
4 1
0= (Oks1 = 0k) — + — (Ok=1 + Gc)  ereeeeeeeen (3-18)
L t« 2
Similarly, the stress-strain matrix is
' 1
DC: (Desy - D) — + —é—(Dk+1 + D) e (3-19)

{
tx
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in which t« = the thickness of the k-th layer, { = the distance
from the centroid of the k-th layer; and ox, D« = the stress and
stress-strain matrix at the k-th border line. Integrations of
the stress ¢ and the stress-strain matrix D requires for develop-

ment of the stiffness matrix are given in Appendix 3-2.

3-4 PROCEDURE FOR NONLINEAR PROBLEMS

The procedure for geometric and material nonlinear problems

by the combined finite element - transfer matrix method will now

be described.

1) Transformation of Nodal Displacements

In determining an equilibrium configuration of the structure
under a given set of loads, the current local displacements which
are related to the displaced local coordinate axes x, y, 2z, shown
in Fig.3-5, are used to determine the local nodal forces. The
local displacements are established by the transformation of
nodal displacements from the global coordinate system to the
local coordinate system.

A typical element before and after deformation is shown in
Fig.3-5. Three sets of rectangular cartesian axes: (1) the
global coordinate system X, Y, Z; (2) the initial local coordi-
nate system x*, y*, z*; and (3) the displaced 1local coor-
dinate system x, y, z are defined. The last two of them translate
and rotate with the element. A reference element, 1", 2", 3" is
established on the displaced local axes having the same shape and
size as the original element, 1, 2, 3, and the same relative
orientation to the local axes. The displacements 2"-2’,3"-
3’ and the corner rotations with respect to the x and y axes

represent the local nodal displacement.
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S’ designates a point S after deformation and S’ indicates
a point S in the reference element. As shown in Fig.3-5, the

vector 1S’ may be described in two ways:

F = 1—3) + E-S_;) ........... (3-20)
or
187 = 11° + 17877 + 877°S” e (3-21)

Equating the right hand sides of Eqs.(3-20) and (3-21) and
— ———
solving for the vector S°°S’, local displacement vector 87°S’ is

represented as follows:

—_ S
S°’s” = 18 -1°8”7 + 88’ -117 ..o (3-22)

in which the displacement vector §§7 and II? are related to the
global coordinate system.

Recognizing that the vector Ig related to the initial 1local
coordinate system is equal to the vector 1757? related to the

global coordinate system, we obtain:

u U
{V} = L {V} ........... (3-23)
W W

in which

U U Us
Ve = Le™r = LaTr + ¢Vy = <Vip e (3-24)
W W Wi

—_ .
in which r = the vector 1S; Ls, L= the transformation matrices
relating the global coordinate system to the displaced local one,
and the global system with the initial local one, respectively.

U, V, and W are displacements which refer to the global
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coordinate system and u, v, and w refer to the displaced 1local
one.
The rotations in the local coordinate system may be recover-

ed from the following relationships:

* pap OW L AW
6x = tan 3y " 3y
= —tap8¥ . @AW . -
9, = -tan ax = 9x (3-25)
—_
As shown in Fig.3-5, the vector p = 0S8’ may be described in
two ways:
—_
p =01+ 1S+ 88" e (3-26)
or
— > N
p =01 + 117 + 178”7 + 8778  eesesiaaenn (3-27)

Expressing as components related to the global coordinate system
(X, Y, Z), Egs.(3-26) and (3-27) become:

X X1 Xp U

{Y} {Y1} + LBT{yg} + {V} ........... (3-28)
Z Z1 0 W

X X1 U Xo u

{Y} {Y1 } + {V1 } + LQT{YB} + LBT{V} e (3-29)
YA YA Wi 0 \ii

Solving the last line of Eq.(3-29) for w, and recognizing

or

from Eq.(3-28) that W = Z - Z,, the following expression can be

obtained:

W = Last1 (X-X1-U1 ) + Las2 (Y-Y1-Vi) + Lazas (W-W;) -«---- (3-30)
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in which Les:i, Laszz, and Lazz - the components of the rotation
matrix L., respectively.
By differentiating both sides of Eq.(3-30) by x and Yy,

respectively, the following expressions can be obtained:

aw _ aw X | 3w 3Y

ax 3X ax aY ax

aw _ 9w 3X aw 3y _

ay © X ay t oy ey (3-31)
in which

—% = Laai + Laza g—z, —%-g— = Laze + Lns3“§—¥

Considering that, in the displaced coordinate system (x, y, z), X

= Xp+u and y = ye+v, the following expressions are obtained from

Eq.(3-29):

Xt + Ut + Lat1X + Lac1y + Laziw

Yy + Vi + La12X + Lagey + Lazew  ceeieeeann (3-32)

Differentiating both sides of Eq.(3-32) by x and vy,

respectively, the following expression can be obtained:

g—izmn +Lﬂ3lg—17 g—?;:Lam +Lﬁ3lg—;
%i— = La12 + Ln32“3%, % = Laze + Laszg—; """ (3-33)

Substituting 3X/3x, 3X/3y, 3Y/3x, and 3Y/3y obtained above
into Eq.(3-31) and considering Eq.{(3-25), the rotational trans-

formation are finally established as follows:
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9x = {(Last1-Lass6vy)laz: + (Laze+Llaza6s)lazz}/

6y = ~{{Laz1-Lasz6v)Lars + (Lazo+LlazsOx)lac: }/ux -+ +(3-34)
in which

¢ =1 - (Lost1-Lazz6v)Llast - (Lazz+Lazsfx )Lase

2) Iterative Scheme

The convergence procedures of nonlinear problems by the
Newton-Raphson method, used in this paper, are 1illustrated in
Fig.3-6. If the solution M at load Py is known and incremental
loads are applied to the structure, only approximate displace-
ments in the global coordinate system A8, can be estimated by

solving the next incremental equations:

AZn = Tme—]"'T1AZB = U AZpg reeee e (3—35)

in which Ty, T:--+- are obtained from the tangent stiffness matrix
of the strip at the current stasge.

Transforming the nodal displacements from the global coordi-
nate system to the displaced local one, local nodal forces which
equilibrate the current local displacements are now determined
by premultiplying the local displacement by the element stiffness

matrix as follows:

Afn = ke ASH e (3-36)

in which Afy and A8y are the increment of nodal forces and dis-
placements, respectively; and ks is the element stiffness matrix,
which contains no terms corresponding to the geometric non-
linearity.

The differences between the applied loads and the equili-
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brating forces are the unbalanced loads that must be reapplied to
the structure to estimate the next approximate solution at
load Pns+1. This procedure is continued until the differences
between the equilibrating forces and the applied 1loads become
sufficiently small. The flow diagram of the calculation procedure

developed in this chapter is shown in Fig.3-7.

3-5 NUMERICAL EXAMPLES

In order to confirm the accuracy of the procedure developed
above numerical results are compared with those obtained by the
ordinary finite element method and others.

A square plate under uniform load with all edges clamped is
analysed for the first example. Fig.3-8 shows a comparison
between the FETM solutions with finite element solutions by 1):
Kawai (4}, 2): Schmidt (17}. In the numerical calculation, a
quarter of the plate is divided into 3, 4, and 5 strips,
respectively, as shown in Fig.3-8. Only the geometrical non-
linearity is considered herein. Although the deflections of the
FETM method are a little greater than those of other methods,
good agreement exists between these sets of results.

In Fig.3-9, the stresses obtained from the FETM method for 4
strips are compared with those of the finite element method. The
agreement is good for membrane stress, but the flexural (tension
and compression) stresses of the FETM method are smaller. This is
mainly due to the fact that, in the FETM method, the stresses at
midpoint of the element in which maximum stresses are caused, are
taken.

Fig.3-10 shows the deflections of the same plate as that
used in the previous example. The plate is, herein, divided into

2, 4, 6, and 8 layers and geometrical and material nonlinearity
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are taken into consideration. The yield stress ov is assumed to
be 3100kg/cm2. As shown in Fig.3-10, the effect of the number of
the layers on the result is small, hence, in numerical examples
proceeded in this chapter the 4-layers are used.

Fig.3-11 shows the center deflections of the in-plane
loaded, simply supported rectangular plate with a=b=100cm and
t=lem. The initial deflection of plate bending mode is assumed,

and defined as follows:

Wo = Wpo sinzr—x Sinly ........... (3-37)
a b .

in which W - the maximum value of initial deflection and here %
= t/10 is assumed. A quarter of the plate is divided into 2, 3,
and 4 strips and E=2.1x10% kg/cm?® are used for calculation. In
Fig.3-11, the finite element solutions are also shown, 1in which
the same element and mesh pattern as those used in the FETM
method are employed, and both results coincide completely with
each other.

The matrix to be considered in the finite element method is,
if the banded matrix is wused, 125x35 for 4-strips mesh (8x4
elements), compared 50x50 for the FETM method.

Fig.3-12(b) shows the center line configurations of a uni-
formly loaded bridge deck with four intermediate columns shown in
Fig.3-12(a). The half deck is divided into 4 strips and each
strip into 16 triangular elements. Geometric and material nonlin-
earity are taken into consideration and yield stress oy is
3100kg/cm2. In the transfer procedure, the technique for the
intermediate rigid column proposed in chapter 2 is applied to
overcome the intermediate column located at 2-nd and 4-th nodal
line. In this technique, the initial unknowns corresponding to

the constrained displacements should be eliminated and new
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unknowns introduced.

As shown in Fig.3-12(b), close agreement exists between the
results obtained by the FETM method and the finite element
method. The effect of geometrical nonlinearity is more substanti-
al compared to that of material nonlinearity, and the deflec-
tions obtained by  the nonlinear theory are, therefore,
smaller than those obtained by the 1linear one at both load
levels, and the first yield in the element occurred at qs = 5.
The matrix to be considered in the finite element method is
225x55, compared to 90x90 for the FETM method.

Fig.3-13(b) shows the centerline configurations of a uni-
formly loaded plate with an intermediate simple support shown in
Fig.3-13(a). Half of the plate is divided into 8 strips and
each strip into 6 elements. The transformation procedure at the
intermediate simple supported nodal line can be performed in a
simple schematic manner by using the technique for the
intermediate simple support proposed in chapter 2. As shown in
Fig.3-13(b), both the results of the FETM method and the finite
element method are in good agreement. As in the previous
example, the deflections obtained by the nonlinear theory are
smaller than those obtained by the linear one, and the first
element yielding occurred at gz = 4. The matrix to be considered
in the finite element method is 180x30 for this mesh pattern,
and in the FETM method 40x40.

Table 3-1 shows comparisons of size of matrix and
computation time for the FETM method and the finite element
method in above examples, where it is assumed that computation
time is proportional to Nn2 (N = size of matrix, n = band width
of matrix). It is found from Table 3-1 that in computation time
the FETM has less advantage for example 2 (case of strips <
intervals), no or little advantage for example 1 ( case of strips

= intervals) and some advantage for example 3 (case of strips >
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intervals), but in size of matrix considerable advantage for all

examples.

3-6 CONCLUSIONS

The combined finite element - transfer matrix method for the
elastic-plastic problems with large displacement is studied.
The transfer matrix is derived from the tangent stiffness matrix
used in the finite element method. The Prandtl-Reuss’ law obeying
the von Mises yield criterion is assumed, and a set of moving
coordinate systems is used to take geometric nonlinearity into
consideration.

A computer program based on this theory has been developed.
In this program, procedures used in the finite element method
based on load increment are employed except for the estimation of
approximate displacements for each specified increment load.
From the numerical examples presented in this chapter, following
conclusions are obtained:

(1) Good agreement exists between the results obtained by
the FETM method and the conventional finite element method
based on incremental procedures, which demonstrates the accuracy
of this method in the elasto-plastic problems with large deforma-
tion.

(2) In the nonlinear problems, the FETM method has the
advantage of reducing the size of matrix compared to the ordinary
finite element method as in the linear problems.

{(3) In the plate bending problems, the effect of the number
of the layers on the result is small, thus, in numerical examples

stated in this chapter, 4-layers pattern is used.
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APPENDIX 3-1 DERIVATION OF STRESS-STRAIN MATRIX

The yield condition according to the von Mises criterion may

be represented by the yield surface which is given by

F(o,;) =G =o0ov e (3-38)
where
= (0:2 + 0x0y + 0,2 + 3zxyp2)172 e (3-39)

is an equivalent stress and ov is a yield stress confirmed by a
uniaxial test. If principal stresses g1 and o are taken with
rectangular coordinates, the yielding curve given by Eq.(3-38)
can be an ellipse shown with a solid line in Fig.3-14.

For an isotropic material strain-hardening curve is given by

F(Uij) =Kk i e (3_40)

and this curve can be represented by a dotted elliptic curve as
shown in Fig.3-14 which is similar to the original ‘yielding
curve.

In the plastic flow theory, the incremental plastic-strain

vector de, is assumed to be described as follows:

aF
de, = ———dx e (3-41)
a0

where dx is a non-negative scalar, and o = o ;.
If a structure is in an elastic-plastic state, the incre-
mental strain vector de at any point may be considered as the sum

of an incremental elastic-strain vector de. and an incremental
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plastic-strain vector de, as follows:

de = de. + de&; S e (3-42)

The incremental elastic-strain vector is given for plane stress

situation as follows:

dge =D.-! do e (3_43)
where
1 v 0
E
D. = - v 1 [ (3-44)
oo oo (1-v)/2
is the elasticity matrix for a plane stress. Substituting

Eq.(3-41) and Eq.(3-43) into Eq.(3-42) yields

F
do = D. (ds—g—d)\,) ........... (3-45)
do

When plastic yield is occurring the stresses are on the
vield surface given by Eq.(3-38). Differentiating this we can

write therefore

aF
{—}T da — da = O ........... (3_46)
dao

The value & increases as a function of equivalent plastic strain

&., and the incremental value d& is

dg = H” dg, e (3-47)
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where H” is the strain-hardening rate. Now an increment dW, of
the plastic work done during the plastic deformation is expressed
as follows:

dW, = o" de, e (3-48)

Then, dW, can be represented by an equivalent stress & and an

equivalent strain dg,

dW, = d dg, e (3-49)

Using Eq.(3-38), (3-48), (3-49) in (3-41),

dr = d&, e (3-50)

Thus the increment do can be given by eliminating dé, from

Eq.(3-47) and Eq.(3-50) as follows:

dé = H” dx e (3-51)

Substituting Egs.(3-45) and (3-51) 1into Eq.(3-46), the

following equation for non-negative scalar dix results:

aF
{g 17D, de
a
dx, = - —m———m—— e (3_52)
aF daF
H + {—— 3} D. {—1}
do do

Substituting the above equation into Eq.(3-45) and considering
the identity F = @, the incremental stress vector is then given

by
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do =D, de e (3-53)
where D, = D. - D, * is a plastic stress-strain matrix, and
a0 a0
D. {3—} {'3— }7 De
Dp* = o o (3_54)
a0 o
H + {—1}¥ D. {—1
a0 do
The elements of the matrix D, are given for plane stress situa-
tion in the following form:
1 Sy2 S« Sy Sx Sx y
D, :-é_ Sx Sy 5,2 SuSxy | e (3-55)
Sxng Snyp Sxyz
where
E 20« -0, 20y =0y
S, = ( ! v ’ )
1-p2 3 3
E 20)( -d ZUU_UX
Sy, = (V - + - )
1-vp2 3 3
S _ E
Xy = ™ Tx y
4 . ZUX —0dy ZUL) —Ox
S = —§—UZH’+ Sx~—-§———— + S, +2S8«y Tx v
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APPENDIX 3-2 INTEGRATION OF STRESS AND STRESS-STRAIN MATRIX

Integration of stress o and stress-strain matrix D are as
follows:
[odz ="%' = (.1 4t
.O Z ~k§1 2 (ty-1 k) Ok
Ddz ="§' - (te_:+t,)D
] Z —k§1 9 k-1+Tk Dk
- Ze-1t tr st te
+1 k-1 Lk-1 k~1 k Lk k
zDdz =3 [ + + + D«
J N N 1z )
~ t te Ze 1t
Z2Ddz :nél[k-l(zi_1+ k-1 + k~1 k~—1)
J k=1 12 3
L 2 t Zktk
+ — (z+ + D. e 3-56
5 (zx D 3 )| D« ( )
in which n = the number of layers, and z« = the distance from the

centroid of the structure to the centroid of the k-th layer

(Fig.3-4).

REFERENCES

1. Cheung, Y.K., "Finite Strip Method in Structural
Analysis,” Pergamon Press, Oxford, England 1976.
2. Chiatti, G. and Sestieri, A., "Analysis of Static and

Dynamic Structural Problems by a Combined Finite Element -
Transfer Matrix Method," J. Sound & Vibration, Vol.67,
No.1l, 1979, pp.35-42.

3. Dokainish, M.A., "A New Approach for Plate Vibrations:
Combination of Transfer Matrix and Finite-Element Technique,"
Trans. ASME, Vol.94, No.2, 1972, pp.526-530.

4., Kawai, T. and Yoshimura, N., "Analysis of Large Deflection

of Plates by the Finite Element Method," International
Journal for Numerical Methods in Engineering, Great Britain,
Vol.1l, No.l, 1969, pp.123-133.

...64...



10.

11.

12.

13.

14.

15.

16.

17,

18.

. Komatsu, S., Kitada, T. and Miyazaki, S., "Elasto-Plastic

Analysis of Compressed Plate with Residual Stress and
Initial Deflection,”" Proc. of JSCE, No.244, Dec., 1975,
pp.1-14 (in Japanese).

. Komatsu, S. and Kitada, T., "Refined Finite Element

"

Analysis of Plane Elasto-Plastic Problems,"” Technology
Reports of Osaka University, Vol.25, 1975, pp.415-437.

. Leckie, F.A., "The Application of Transfer Matrices to

Plate Vibrations," Ingenieur-Archiv, Vol.XXXm, 1963,
pp.100-111.

. McDaniel, T.J. and Eversole, K.B., "A Combined Finite

Element - Transfer Matrix Structural Analysis Method,"
J. Sound & Vibration, Great Britain, Vol.51, No.2, 1977,
pp.157-169.

. McGuire, W., and Gallagher, R.H., '"Matrix Structural

Analysis," John Wiley & Sons, Inc., New York, N.Y., 1979.
Mucino, H.V. and Pavelic, V., "An Exact Condensation
Procedure for Chain-Like Structures Using a Finite Element-
Transfer Matrix Approach,'" Trans. ASME, J. Mech. Des.,
No.80-C2/DET-123, 1980, pp.1-9.

Murray, D.W. and Wilson, E.L., "Finite-Element Large
Deflection Analysis of Plates," J. ASCE, Vol.95, No. EMI,
Feb. 1969, pp.143-163.

Nath, B., "Fundamentals of Finite Elements for Engineers,"
The Athlone Press of the University of London, London,
England, 1974.

Ohga, M., Shigematsu, T. and Hara, T., "Structural
Analysis by a Combined Finite Element-Transfer Matrix
Method," An International Journal Computers & Structures,
Pergamon Press, Vol.17, No.3, 1983, pp.321-326.

Ohga, M., Shigematsu, T. and Hara, T., "Structural
Analysis by a Combined Finite Element-Transfer Matrix
Method," J. ASCE, Vol.110, No.EM9, September 1984, pp.1335-
1349.

Pestel, E.C. and Leckie, F.A., "Matrix Method in
Elastomechanics," McGraw-Hill Book Co., Inc., New York,
N.Y., 1963.

Sankar, S. and Hoa, S.V., "An Extended Transfer Matrix-

Finite Element Method for Free Vibration of Plates,"”

J. Sound & Vibration, Vol.70, No.2, 1980, pp.205-211.
Schmidt, B., "Ein Geometrisch und Physikalisch Nichtlineares
Finite Element - Verfahren zur Berechnung von Ausgesteiften,
Vorverformten Rechteckplatten," Der Stahlbau, Heft 1, Januar,
1979, s.13-21.

Sundararajan, C. and Reddy, D.V., "Finite Strip - Difference

-65-



19.

20.

21.

22.

Calculus Technique for Plate Vibration Problems,"
International Journal of Solids and Structures, Vol.l1l,
April, 1975, pp.425-435.

Thangam Babu, P.V. and Reddy, D.V., "Finite Strip -
Difference Calculus Technique of Skew Orthotropic Plate
Vibration," Proc. Int. Conf. on Finite Element Methods in
Engineering, Adelaide, Sydney Australia, 1976.

Thangam Babu, P.V. and Reddy, D.V., "Finite Strip -
Difference Calculus Technique for Skew Orthotropic Plate
Buckling," Proc. Sixth Canadian Congress of Applied
Mechanics (CANCAM), Vancouver, B.C., May-June, 1977.

Yamada, Y., "Matrix Methods of Strength of Materials,"
Baifukan, 1980 (in Japanese).

Yamada, Y., Yoshimura, N. and Sakurai, T., "Plastic
Stress-Strain Matrix and its Application for the Solution of
Elastic-Plastic Problems by the Finite Element Methods,"
Int. J. Mech. Sci., Vol.10, 1968, pp.343-354.

NOTATION

The following symbols are used in this paper

a,b = dimensions of plate;

D:, Do = elastic and Plastic stress-strain matrices;
E = modulus of elasticity;
F = force vector;
Fe, F. = left and right force vectors of strip;
H” = strain-hardening rate;
K = strip tangent stiffness matrix;

k = element tangent stiffness matrix;
kn element tangent stiffness matrix, which contains no
terms corresponding to geometric nonlinearity;

L, L* = transformation matrices relating the global
coordinate system with the displaced local and
initial local one;

T = transfer matrix;

t, t« = thickness of plate and layer;

U,V,W = displacements related to the global coordinate
system;

u,v,w = displacements related to the local coordinate
system;

7z = state vector;
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§ = displacement vector;

82, 8 = left and right displacement vectors of strip;
¢ = strain vector;

<, 6, = rotations about x and y axis;
v = Poisson’s ratio;

= stress vector; and

= equivalent stress.

-87-



_.89._

Table 3-1 Comparisons of Matrix Size and Computation Time

Example 1 Example 2 Example 3
Scheme (4 Strips x 4 Intervals) (4 Strips x 8 Intervals) (8 Strips x 3 Intervals)
Nn an Nn an Nn an
FEM 4375 153125 12375 680625 5400 162000
FETM 2500 125000 8100 729000 1600 64000

N = Size of Matrix; n = Band Width of Matrix
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Chapter 4 NONLINEAR ANALYSIS OF THIN-WALLED MEMBERS BY
A FINITE ELEMENT-TRANSFER MATRIX METHOD

4-1 INTRODUCTION

Thin-walled members are analyzed by the finite element
method, the finite strip method, etc.. Among these methods, the
finite strip method suggested by Cheung (1), which is a
formulation of combining the finite element method and Fourier
series technique, has the advantage of reducing the size of the
matrix in the ordinary finite element method. This method can be
successfully applied for the only simple thin-walled members with
constant c¢ross section and particular boundary conditions;
otherwise considerable complication arise in the formulation of
problems.

The finite element method is the most widely used and
powerful tool for analysis of thin-walled members with complex
cross sections (5,13). However, the disadvantage of this method
is that, in the case of complex and large structures, it is
necessary to use a large number of nodes, resulting is very large
matrices which require large computers for their management and
regulation. In order to overcome this disadvantage of the finite
element method, several technique have been proposed. Sakimoto
et al. (12) proposed to reduce the size of the system matrices by
using the two types of element, i.e. the plate element and the
beam element. The former element was adopted for regions
required to be discretized so refined, and the latter for other
regions. Okamura and Ishikawa (9) analyzed the multi-span plate
structures by the stiffness matrix method combined with a
relaxation technique. In this appfoach, the displacement

functions in series form and the point-matching method are
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adopted to derive the stiffness matrix of large-size rectangular
plate panels.

In this chapter the method described in previous chapter is
extended to linear and nonlinear problems of thin-walled members
under various loading conditions. The substructuring procedure
used in the finite element method (5) is, furthermore, adopted in
order to treat complex structures, such as I-section and
box-section plate girders with vertical stiffeners and web
perforations. In the nonlinear analysis, the same incremental
procedures in the finite element method can be applied, except
for the evaluation of incremental displacements. The Newton-
Raphson method {3) is employed in convergence procedures of each
iterative step. It is assumed that the Prandtl-Reuss” law, and
the von Mises yield criterion (11) are valid in this chapter. In
order to consider the extent of the yielded portions in the
directions of cross sections, the cross section of the structure
is divided into some layers, and geometric nonlinearity is

considered by using a set moving coordinate systems.

4-2 FINITE ELEMENT-TRANSFER MATRIX METHOD FOR THIN-WALLED
MEMBERS

As the derivations of the tangent stiffness matrix and the
transfer matrix for the plate structure and the descriptions
related to the procedure for geometrical and material nonlinear
problems are described in chapter 3, descriptions which mainly
relate to the application of the FETM method to thin-walled

members are given here.

1) Transfer Matrix for Thin-Walled Members

The thin-walled member is, in the FETM method, divided into
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some strips, each of which is subdivided into finite elements as
shown in Fig.4-1. Although two types of strip shown in Fig.4-2
may be used, folded strip shown in Fig.4-2(a) are wused in this
paper, since it is expected that, for long structures, advantages
attainable through matrix size reduction in folded strips pattern
are greater.

Assembling the stiffness matrix of the elements for each
strip, the equilibrium equations for the nodes on strip i are

obtained as follows:

Foo=Ks: & e (4-1)

in which Ks; = the stiffness matrix of strip i; and &6 and F, =
the displacement and force vectors of strip i, respectively.

By expanding Egq.(4-1) and solving for the right displacement
vector & and the force vector F. in terms of the left displace-
ment vector 82 and the force vector Fa, the transfer matrix
relating the left and right displacements and forces of strip can

be obtained:

S- ~Kar "1 Kaxg | O 0 b2
F. > = |K 2K - Ker "1 Kz K- rKer-t O Fap »rvoverees (4-2)
L 0 0 1 )il 4
or
z, =T, =z, -1+ i e i e (4._.3)
in which Kee, Ker, Kr2, and K. = the submatrices of Ks;; and

subscripts 2, r indicate the left and right sides of the strip.

2) Transfer Matrix for Substructures

In the case of complex structures such as I-section plate
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girders with vertical stiffeners and web perforations shown
in Figs.4-4(a) and 4-5(a), these members are divided into not
only strips shown in Fig.4-3(b) but also substructures in which
the vertical stiffeners and web perforations are included as
shown in Figs.4-4(b) and 4-5(b). Since in such substructure,
adding boundary nodes, inner nodes are exist as shown in Figs.4-
4(b) and 4-5(b), the transfer matrix given in Eq.(4-2) can’t be
applied to a substructure. The transfer matrix for a sub~
structure 1is, therefore, derived herein.

By suitably transforming of the stiffness matrix of the sub-
structure, which 1is obtained by assembling the stiffness
matrix of the elements for each substructure, the following

equation can be obtained:

Fq Kee Kai  Kar 8»
Fir= (K K K, Sip e (4-4)
F.ji Kea Koo Ker)i 16}

in which, & , and ¥, = the displacement and force vectors at

inner nodes (Figs.4-4(b) and 4-5(b)), respectively; and Ksz, Kai,
Ker, Kioy Kiiy Kiry, Kiz, Keiy, and K. = the submatrices of the
stiffness matrix of the substructure.

Solving the second line of Eq.(4-4) for the & and sub-
stituting in the remaining equations, the following expressions

are obtained:

{Fg} _ lKRR—KRiKii_1K;2 Knr—KniKii‘iK,r} {6a}

| O Kra—K.«iK;;_lK‘,n Kr 2-K: i Ki i - 1K ¢ 8
Kei Ki i "1
+ <Y e e e e e e (4..5)
K- i Kii ~tF; i

or simplifying the notation:

-80-



{FR} LS K12] {62} + {Fl} [ (4-6)
Fr)i Ke1 Keelilé )i Fe)i .

By expanding and rearranging Eq.(4-6), it can be shown after
various matrix manipulations that the left and right boundaries

can be related by the following expression:

{Gr} _ [ -Kio-1Ki: Kiz-! l {82}
F. )i Ko1-KezKio 'Ki1 KoaKiz-1)i (Fel

-Ki2-1F:
+ { 'e } ............ (4-7)
Fo-KecKio-tFy )

or simplifying the notation:

{Gr} _ [Tll T12] {62} N {TH} .......... (4-8)
F. i Te1  Tez2li (Faly Trz )

Adding one dummy equation to the system, the following equation

can be obtained:

8¢ Ti1 Tie Try b2
Fop = |Tor Tozo Tee Fed e (4-9)
1 i 0 0 1 i ]_ i

which is the expanded transfer matrix relating the state vectors
of the left and right boundaries of a substructure through the
intermediate degrees of freedom. The sizes of the state vector
and transfer matrix in Eq.(4-9) are same as those of the state
vector and transfer matrix in Eq.(4-3) for the strip shown in
Fig.4-3(b). Both transfer matrices can be, therefore, multiplied
each other. I-section plate girders shown in Figs.4-4(a) and
4-5(a) can be analyzed by the combined use of the transfer matrix

for the strip shown in Fig.4-3(b) and that for the substructures
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shown in Figs.4-4(b) and 4-5(b).

3) Transformation for Nodal Displacements

In the determining an equilibrium configuration of the
structure under a given set of loads, the current local displace-
ments which are related to the displaced local coordinate axes x,
y, z, shown in Fig.4-6, are used to determine +the local nodal
forces. The local displacements are established by the trans-
formation of nodal displacements from the global coordinate
system to the local coordinate system. The transformation
procedure for displacements U = {u, v, w} employed in this
chapter is same as that for plate structures, and is described in
Chapter 3. Hence, only descriptions of the transformations of
rotations are presented here.

A typical element before and after deformation is shown in
Fig.4-6. Four sets of rectangular cartesian axes: (1) the global
coordinate system (X, Y, Z); (2) the initial 1local coordinate
system (x*, y*, z*); (3) the displaced 1local coordinate system
(x, ¥, z); (4) the coordinate system (X*, Y*, X*), which is
established by the parallel transformation of the initial local
coordinate system, such that the origin of this coordinate system
is coincide with that of +the global coordinate system are
defined. Assuming that E, e*, e, and E* indicate the unit
orthogonal vectors in above four coordinate systems, respec-

tively, the following expressions are obtained:

e = ILE, e* = IzE, E¥ = LeE e (4-10)
in which Lo, and Ls = the rotation matrices between the global
coordinate system and the displaced coordinate system, and the

global system and the initial system, respectively.

S’ designates a point S after deformation and S°° indicates
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a point S in the reference element (1", 2", 3"), established on
the displaced local axes having the same shape and size as the
original element (1, 2, 3).

As shown in Fig.4-6, the vector p = 6§? may be described

in two ways:

—_— —

q
p =01+ 1S +88 e (4-11)
or
ard >
e =01+ 117 4+ 1°8"7 + 878" e (4-12)

Expressing as components related to the coordinate system {X*,

Y*, Z2*), Eqs.(4-11) and (4-12) become:
X* X * Xp u*
Y* Y:*» + $ya + VXS e (4_]_3)
Z* 71 * 0 W*
X* X1 * U; * Xp u
Y* Yi*p + ¢Vi*p + LT<yp o + LTovy  crvevnenn (4-14)
Z* Z1 * W1 * 0 W

in which L = the rotation matrix between the initial coordinate

H

system and the displaced coordinate system, i.e. L = LalgT.
Solving the last line of Eq.(4-14) for w, and recognizing
from Eq.(4-13) that W* = Z* - Z*, the following expression can

be obtained:

W= Lot (X*= Xo*= Ur*) + La2a(Y*- Y1 *= Vi*) + Las (W*- W; *)

in which Ls1, Lz2, and Lz3 = the components of the rotation

matrix L, respectively. By differentiating both sides of Eq.(4-
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15) by x and y, respectively, the following expressions

obtained:
3w _ 3w 9X*_ 3w Y*
ax  3X* 3Ix  I¥* Ix
gw _ 9w o @X* gw ay*
ay ax* 3y  9Y* 3y
in which
aw EL aw L
BX*:L“ +Lss‘ﬁ“ —BY}:Lw +L33W

can be

Considering that, in the displaced coordinate system (x, vy,

Zz), X = Xp +uand y = y» + v, the following expressions are

obtained from Eq.(4-14):

X* = X%+ Uy *+ Litx + Lovy + Leaw

Y* = Yi*+ Vi*+ LieXx + Loy + Lesaw ceee ERERE

Differentiating both sides of Eq.(4-17) by x

and Y,

respectively, and substituting 3X*/3x, 3X*/3dy, aY*/ax, and 3Y*/3y

obtained above into Eq.(4-16), the rotational transformations are

finally established as follows:

6x = {(Lz1-Laz26v*)Les + (Lao+lsz6x*)le2}/w

8y = —{(Lst-LasOy*)Li1 + (Lao+Llza@x*)Llet Y/ ++vv--
in which

ox * = aW*/ay*, gy ¥ = -3aW*/3ax*

@ = 1-(Lz1 = Las6vy*)La1—(Ls2 + Lzz6x*)Lse

It is confirmed by the authors that the solutions
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by the procedure described here are, in the plate structure

problems, exactly coincide with those obtained by Komatsu’s

procedure (3).

4-3 NUMERICAL EXAMPLES

1) Box-Section Plate Girder

To examine the accuracy and efficiency of the FETM method, a
box-section plate girder loaded at the midspan shown in Fig.4-7
is analyzed, and the results obtained by the FETM method are
compared with those obtained by the finite element method, where
the same element and mesh pattern as those wused in the FETM
method are employed.

In the numerical calculation, a quarter of the entire system
is divided into 4, 6, 8, and 10 strips, and each strip into 8
triangular elements for every dividing patterns as shown in
Fig.4-7. Neither geometrical nor material nonlinearity 1is,
herein, taken into consideration, and both ends of the box-
section plate girder.are fixed in this example.

Fig.4-8(a) shows a comparison between the deflections at the
point C in Fig.4-7 obtained by the FETM method and those obtained
by the finite element method. As shown in Fig.4-8(a), both
results coincide within three significant figures with each
other. Fig.4-8(b) shows a comparison of computation times of
both methods in this example. It can be seen that, in computation
time, although the FETM method has less advantage for the small
number of strips pattern (4 and 6 strips pattern), this method
has much advantage for the large number of strips pattern (8 and
10 strips pattern). Fig.4-8(c) shows a comparison of the matrix
sizes required in both methods. The matrix size in the finite

element method increases as the number of strips, i.e. the number
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of total nodes increases, and if the banded matrix is used, it is
given by {(the number of total nodes) x (degrees of freedom)} x
(the band width). The matrix to be considered in the finite
element method for this example is, therefore, 25x6x42 = 6300 for
4-strips pattern, 35x6x42=8820 for 6-strips pattern, 45x6x42 =
11340 for 8-strips pattern, and 55x6x42 = 13860 for 10-strips
pattern in this example. On the other side, the matrix size in
the FETM method is dependent on the number of degrees of freedom
for only one strip in contrast with the finite element method,
and it is given by {(the number of nodes on a section) x (degrees
of freedom)x2}2. The matrix to be considered in the FETM method
is, (bx6x2)2=3600 for every dividing pattern.

2) Simply Supported Plate with a Perforation
To illustrate the efficiency of the FETM method based on

the substructuring procedure developed in this chapter, the
in-plane loaded simply supported plate with a center perforation,
as shown in Fig.4-9(a) (a=b=100cm, t=1lcm, r=a/10) is analyzed. A
quarter of the plate is divided into two types of strip shown in
Fig.4-9(b), and in the strip including a perforation, 3 nodes

are inner nodes among all the 13 nodes. Geometrical and material
nonlinearity are taken into consideration here, and the modulus
of elasticity E=2.1x10% kg/cm?, the yield stress o¢,=3100kg/cm?,
and the Poisson’s ratio v = 0.3 are used in numerical calcula-
tion. The initial deflection of plate bending mode is assumed,

and defined as follows:

. W 4
W = % sin—=x sin—y e (4-19)
a b

in which % = the maximum value of initial deflection and here %o

= t/10 1is also assumed. In Fig.4-9(a) the out-of-plane
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displacements at point C obtained by the FETM method are compared
with those by the finite element method. In the finite element
method, the same element and mesh pattern as those wused in the
FETM method are employed, and complete agreement exists in both

results.

3) Box-Section Plate Girder with Web Perforations
To illustrate the efficiency of the FETM methods based on

the substructuring procedure for the +thin-walled member, a
box-section plate girder with web perforations 1loaded at the
midspan shown in Fig.4-10(a) is analyzed, and numerical results
are compared with those obtained by the finite element method. A
quarter of the entire system is divided into 10 strips as shown
in Fig.4-10(a). The strip including web perforation (Fig.4-10(c¢))
is divided into 20 triangular elements. Among all the 18 nodes
of this strip, 8 nodes are inner nodes. Geometrical and material
nonlinearity are taken into consideration, and the modulus of
elasticity E = 2.1x10% kg/cm?, the yield stress ov = 2800kg/cm?,
and the Poisson’s ratio v = 0.3 are used for numerical calcula-
tion. Other dimensiohs are indicated in Fig.4-10(a), and both
ends of the box-section plate girder are fixed. The notation
doy indicated in Fig.4-10(a) is the load level corresponding to
the yield stress for the box-section plate girder without web
perforation.

Fig.4-11(a) shows the comparison between the center deflec-
tions of flange at x=0.25L, 0.4L and 0.5L (Points 1, 2 and 3 in
Fig.4-11(a)) obtained by the FETM method and those obtained by
the finite element method. As shown in Fig.4-11(a), good agree-
ment exists between both results.

Fig.4-11(b) shows the comparison between the out-of-plane
displacements of web at points 1 and 2 in Fig.4-11(b) obtained by

both methods, and good agreement exists between both results.
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4) I-Section Plate Girder with Web Perforations

I-section beam loaded at the midspan with consecutive web
perforations, as shown in Fig.4-12(a), is analyzed, and numerical
results are compared with those obtained by the finite element
method. The half member is divided into five same substructures,
and each substructure into 30 triangular elements, as shown in
Fig.4-12(b). Among all the 26 nodes of each substructure, 12
nodes are inner nodes. Geometrical and material nonlinearity are
taken into consideration, and the modulus of elasticity E =
2.1x108 kg/cm?, the yield stress ov=2800kg/cm2, and the Poisson’s
ratio v = 0.3 are used for calculation. Other dimensions are
indicated in Fig.4-12(a), and both ends of the I-section plate
girder are fixed, as in the previous example. The notation auy
indicated in Fig.4-12(a) is the load level corresponding to the
yield stress for the I-section plate girder without web perfora-
tion. ’

Fig.4-13(a) shows the center deflections of the upper and
lower flanges at x = 0.1L, 0.3L, and 0.5L. In Fig.4-13(a), the
finite element solutions are also shown, and both results
coincide with each other. The deflections at x = 0.1L and 0.3L
increase almost 1linearly, and very 1little difference exists
between the deflections of the upper and lower flanges, so that
it can’t be distinct in Fig.4-13(a). On the other hand, 1in the
deflection of the upper flange at x = 0.5L, the material nonlin-
earity becomes significant from load level g.=2.5 and is greater
compared with that of the lower flange.

Fig.4-13(b) shows the out-of-plane displacements of midpoint
of web at x = 0.1L, 0.2L, 0.3L, 0.4L, and 0.5L. Good agreement
exists between the results obtained by the FETM method and the
finite element method as the deflections of the flange.

Figs.4-14(a) and 4-14(b) show the axial stresses of the
upper and lower flange (A and B in Fig.4-14(a)), and the axial

_88_



stresses of the web (C and D in Fig.4-14(b)). Both the results of
the FETM method and the finite element method are also in good
agreement.

The matrix to be considered in the finite element method is,
if the banded matrix is used, 726x84 for this example, compared

to 84x84 in the FETM method.

5) I-Section Plate Girder with Stiffeners Subjected to

Lateral Load

I-section plate girder with stiffeners subjected at the mid-
span to lateral line load across the upper flange, shown in
Fig.4-15(a),is analyzed. The half member is divided into 4 strips
and 2 substructures, and these are into 12 and 36 triangular
elements, respectively, as shown in Fig.4-15(b), (c¢). Among all
the 24 nodes of each substructure, 10 nodes are inner nodes. The
yield stresses of the member is assumed to be oy = 2800kg/cm?,
and other material constants and boundary conditions are same as
those in the previous example. The notation qa, indicated 1in
Fig.4-15(a) is the load level corresponding to the yield stress
for the I-section pléte girder without stiffener.

Fig.4-16(a) shows the center deflections of the upper and
lower flanges at x = 0.267L, 0.4L, and 0.5L. In Fig.4-16(a), the
finite element solutions are also shown, and both results
coincide with each other. Every deflection shows the similar
behavior, and the material nonlinearity becomes substantial from
the load level of gz = 11. In the deflections at x = 0.267L and
0.4L, very little difference exists between the deflections of
the upper and lower flanges, so that it can’t be distinct in
Fig.4-16(a).

Fig.4-16(b) shows the out-of-plane displacements of web at
point A and B in Fig.4-16(b). Point A is a point of the seclion

with the stiffener, and point B a point of center web. In the
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displacement at point B, the material nonlinearity becomes
substantial from the load level of ge=11. Although the displace-
ment at point A is very little until load level gp=3, it becomes
substantial from this load level.

Figs.4-17(a) and 17(b) show the axial stresses of the upper
and lower flange (A and B in Fig.4-17(a)), and the axial stresses
of the web (C in Fig.4-17(b)). Both the results of the FETM

method and the finite element method are also in good agreement.

6) I-Section Plate Girder with Stiffeners under In-Plane

Axial Load

For the last example, stiffened I-section plate girder sub-
jected at the edges to in-plane axial load, as shown in Fig.4-18,
is analyzed. Numerical calculations are, in this example,
proceeding for the following three models. (1) Model I; a model
composed of only a sub-panel between the vertical stiff-
eners, shown in Fig.4-19(a). It is assumed that, in this model,
both side boundaries are simply supported, and upper and Ilower
boundaries are fixed. (2) Model I; a model cut out from entire
structure by two adjacent vertical stiffeners shown in Fig.4-
19(b). In this model, the effects of the flanges on the behaviors
of the structure can be, therefore, taken into cosidera-
tion, and side boundaries are simply supported as in Model
I. (3) Model m; a total system model of the I-section plate
girder, shown in Fig.4-19(c). In this model, not only the effects
of the flanges but also of the stiffeners can be taken into con-
sideration, and both end boundaries are fixed.

In Models I and I, the initial deflection of plate bending
mode defined in Eq.(4-19) 1is assumed, and maximum value of
initial deflection % = t/5 is used here. On the other hand, in
Model W the initial deflection given above is assumed for every

sub-panels between the vertical stiffeners, but no initial
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deflection is assumed for the flange, as shown in Fig.4-20(a).

The yield stresses of the web and flanges are assumed to be oy
2800kg/cm? and the yield stress of the vertical stiffener asv =
4000kg/cm?, and other material constants are same as those in the
previous example. The half member is, in model W, divided into 6
substructures, and each substructure into triangular finite
elements as shown in Fig.4-15(b), (c).

Fig.4-21 shows the out-of-plane displacements at the mid-
point of web, where the displacement for Model M is of the center
web. It is shown from Fig.4-21 that until the load level of about
P/P..=2.0 the load-deflection curves for every model show similar
tendencies, and the deflection for Model I is greatest, and that
for Model m is next. Since over this load level, in Models I and
I, the effects of the geometrical nonlinearity on the behaviors
of the I-section plate girder become substantial, the increasing
rate of the deflections for Models I and I become smaller. On
the other hand, the deflection for Model @ increases suddenly in
contrast with Models I and 1, and the wultimate strength for
Model T is approximately 20% less than that for Model I. In
Fig.4-20(b), the modé of deflection of Model m at the load level
of P/P.. = 2 is shown.

4-4 CONCLUSIONS

The combined finite element - transfer matrix method is ex-
tended to the linear and nonlinear problems of thin-walled
members, and a computer program based on this theory has been
developed. The following conclusions can be drawn from this
study:

(1) Good agreement exists between the results obtained by

the FETM method and the standard finite element method not only
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in the linear problems but also in the nonlinear problems, which
demonstrates the accuracy of the proposed method.

(2) From numerical examples presented in this chapter, it is
shown that this method can be successfully applied to the long
thin-walled members by reducing the size of the matrix and the
computation time relative to less than that obtained by the
finite element method.

(3) By adopting the transfer matrix for substructures
derived in this chapter, complex thin-walled members, such as
I-section and box-section plate girders with vertical stiffeners
and web perforations, can be treated easily.

(4) Considerable differences exist between the results for
the model of entire system and for the model! cut out from the

structure.
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NOTATION

The following

De ,Dp s Do =

£
py
s
o Frx om
t o on K

s
<
=

won

symbols are used in this paper

elastic, plastic and elastic-plastic
stress-strain matrices;
modulus of elasticity;

= force vector;
= left and right force vectors of strip;

slope of the equivalent stress versus plastic
strain curve;

= strip tangent stiffness matrix;

element tangent stiffness matrix;
element tangent stiffness matrix, which contains
no terms corresponding to geometric nonlinearity;

= transformation matrices relating the global

coordinate system with the displaced local and
initial local one;
transfer matrix;
displacements related to the global coordinate
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i

system;

displacements related to the local coordinate
system;

state vector;

left and right ‘state vector of strip;
displacement vector;

= left and right displacement vectors of strip;
= strain vector;

rotations about x and y axis;
Poisson’s ratio;

stress vector; and
equivalent stress.
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Fig.4-1 Subdivision of Thin-Walled Member

(a)

Fig.4-2 Strips for Thin-Walled Member
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(a) (b)

Fig.4-3 I-Section Plate Girder

o boundary node
o inner node

(b)

Fig.4-4 I-Section Plate Girder with Vertical Stiffeners

® boundary node
O inner node

Fig.4-5 I-Section Plate Girder with Web Perforations
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Fig.4-6 Location of Element Before and After Deformation
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Fig,4-7 Box-Section Plate Girder
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Fig.4-8 Comparison of FETM and FEM
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Fig.4-9(a) Displacements of Simply Supported Plate with
Center Perforation

Fig.4-9(b) Strips for Plate with a Center Perforation
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Fig.4-10 Box-Section Plate Girder with Web Perforations
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Fig.4-12 I-Section Beam with Web Perforations
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Fig.4-14(a) Stresses at Upper and Lower Flange

:}5.0 s P
Jf C : Compression
Cj’?}/ M : Membrane

T : Tension

(Lower)

-2.0 -1.0 0 1.0
x103
o (kg/cm?)

Fig.4-14(b) Stresses at Web

-102-



(a) (b) (c)

Fig.4-~15 I-Section Plate Girder with Stifieners
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Fig.4-16(a) Deflections at Upper Fig.4-16(b) Out-of-Plane Displace-
and Lower Flange ments at Web
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Fig.4-18 1I-Section Plate Girder with Stiffeners
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Fig.4-19 Models for Analysis
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Fig.4-20(a) Mode of Initial Deflection Fig.4-20(b) Mode of Deformation
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Fig.4-21 Deflections at Midpoint of Center Web
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Chapter 5 DYNAMIC ANALYSIS OF PLATES BY A COMBINED FINITE
ELEMENT-TRANSFER MATRIX METHOD

5-1 INTRODUCTION

In general, the transient response of complex structures
subjected to random excitations can be obtained by the modal
superposition or direct integration methods. In the modal
superposition method, the eigenvalues and the eigenvectors of the
resulting system are first computed. Then the response of the
structure is formulated as a linear combination of the mode
shapes (8). However, since this method is based on the assumption
of linear behaviour, application of this method is restricted to
a narrow range {1). In the direct integration method, the system
of equations of motion is integrated by a numerical step-by-step
procedure such as the Newmark g, Houbolt, Wilson © and central
difference methods (2, 3, 4, 8, 12, 16). These methods do not
require any restrictive assumptions on the damping properties and
they are widely employed in linear and nonlinear dynamic
problems (19). However, in the case of a complex structure, it is
necessary to use a large number of nodes, resulting in a need of
very large computers for their management and regulation.

In this chapter a method of analyzing the linear transient
response of structures under various random excitations by the
combined finite element - transfer matrix method (FETM) is pro-
posed. The combined use of finite element and transfer matrix
was proposed by Dokainish for the free vibration problems of
plates (7). Since the publication of Dokainish’s paper in 1972,
several authors have proposed refinements and extensions of this
method for static and free vibration problems (5, 6, 9, 11, 13,
14, 18).
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This study is an extension of this method to the transient
analysis of the plate structures subjected to random out-of-plane
and in-plane excitations. The Newmark g method is used for time
integration, but other integration methods such as the Houbolt,
Wilson © and central difference methods may be used. Also the
technique of exchanging the unknown state vectér is introduced to
avoid the propagation of round-off errors occurring in recursive
multiplications of the transfer and point matrices.

Some numerical examples of the plates subjected out-of-plane
and in-plane excitations are proposed and their results are

compared with those obtained by other methods.

5-2 DIRECT INTEGRATION METHOD

The governing equation for a plate subjected to out-of-plane
excitation at time ts.: = (s+1)at, where s is the number of

time steps At, is generally given by
Mier: + Ctlicer + Kusor = Fouy e (5-1)

in which M, C and K are mass, damping, and stiffness matrices;
Us+1, Us+1, 1Us+1, and Fs.1 are the displacement, velocity,
acceleration, and force vectors at time ts.:1, respectively.

As described previously, the Newmark 8 method is used for
time integration. In this method we assumed variations for the
displacement, u, and velocity, G, in the time interval At to be
such that the values at beginning and end of the time step are

related by equations of the form

1
Us+1 = Us + At ils + (—2— - B) At2 i.ls + B At2 '.l.]5+1 ""'(5_2)
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Gs+1 = us + (1 - 7) At Gs + ¥V At Gs+1  eeeen {(5-3)

where B and 7 are parameters that can be determined to obtain
integration accuracy and stability. When g = 1/6 and 7 = 1/2,
this method reduces to the linear acceleration method, and when 8
= 1/4 and 7 = 1/2, to the constant average acceleration method.
Solving Eq.(5-2) for is«: in terms of us.: and then substituting
for G.+: in Eq.(5-3), we obtain equations for us.: and iis.:, each

in terms of the unknown displacement us.: only:

7
Us+1 = Us+1 + ?S ............ (5_4)
BAL
1 _
s + 1 Us+1 + Rs e (5-5)
BAte
where
7 7 7
?S = - u + 1- — s+ 1-— JAttls s v e 5-6
BAt ( 8 J ( 28 )ats (5-6)
1 1 1
B o= - U - ——— s = (—— =1)ls = +ovrrromenns 5-7
pat? ap T (g D (5-7)

The functions Ps and Rs involve variables at previous time
only, and hence can be considered as the historical parf in the
formulation. Substituting Egs.(5-4) and (5-5) into the governing

equations of motion (5-1) at time ts.:, we have:

GUs+1 = Q1 e (5-8)

where G is the effective stiffness matrix, @ is the generalized

external force vector, and these are given as follows:

1 4
G = M+ ———C + K e eee s i e 5-9
pate gAat ( )
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Eq.(5-8) is an equation with unknown wvariables wu-.+: only,
and hence the dynamic analysis of the plates at each time step (s

=1, 2,-+-) can be treated as a static problem.

5-3 FINITE ELEMENT-TRANSFER MATRIX METHOD FOR DYNAMIC ANALYSIS

1) Transfer and Point Matrices

To calculate the dynamic response of the given structure
using FETM method, it is required to formulate first the transfer
matrix which transfers the state variables (displacement and
force) from the left section of strip i to the right section in
Fig.5-1.

The relation between the state variables of strip i can be

described as follows:
N = Gu e (5-11)

where G 1is the effective stiffness matrix for strip i, and N
and u; are force and displacement vectors of strip i, respec-
tively.

Matrix Gi is partitioned into four submatrices. Eq.(5-11)

then becones:

{Gun Ger
GrR Grr

{zf}i: {:?}i ........... (5-12)

where uz, u-, Ne and N are the left and right displacements and
forces of strip i, respectively. By expanding Eq.(5-12) and

solving for uw.; and N;; in terms of us; and Ne; the following
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equations can be obtained;

ur Tv: Ti2 0 s

N- = |T2q i Ned> e (5_13)

1} 0 0 1} 11
or

Zri = Tizey i (5_14)
where

Ti1 = ~Ger "1 Gre, Ti2 = Gar!

Tos = Gra = GrrGar 'Geey, T2 = G Gar-!

and Grz, Gar, G- 2 and G- are the submatrices of matrix G in Eq.
(5-9); uei, u-;, No; and N.; are the left and right displacement
and force vectors of strip i at time ts+«:, respectively.

It should be noted here that the transfer matrix derived
above does not contain a time variable, and so it must be derived
only once at the start of the analysis. This results in
considerable time reduction and accuracy improvement because the
inversion of matrix Gg., which is required in the derivation of
the transfer matrix, is a source of some numerical errors.

It is required next to derive the point matrix which relates
the state vectors just to the left and right of section 1i. The

deflections are continuous across the section, so that

wiR o= wt e e e e (5_15)
where u;! and u;® are the displacement vectors just to the left
and right of section i, respectively.

Considering the equilibrium of forces in Fig.5-2, we obtain

the following expression:
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NR =@ + N e (5-—16)

where Nit and N;R are the force vectors Jjust to the left and
right of section i, respectively, and @ 1is the generalized load
vector acting on section i, which is evaluated from the general
loading function in Eq.(5-10).

These two relations may be expressed in matrix notation as

A O S S PR (5-17)

The two matrix terms on the right-hand side of Eq.(5-17) may

be brought together as a single term in the following way:

ulr 1 0 0 ult
N; = |0 I Q NS e e (5-18)
1) 0 0 1) 1}
or
ZiR = Pi ZiL ........... (5_19)

Once the transfer and point matrices have been formulated
for each strip, the state vectors at the section are determined
by the same procedures as those used in the standard transfer
matrix method (17).

After continuous multiplications of the transfer matrix T
and the point matrix P, we obtain the relation between the state
vector at the section i, z;, and the unknown state vector at left

boundary, Zs:

z: = Uz e e (5-20)

or
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where U, = P T, Pi-1T-1:-'P.T;, and f; is the force vector of the
generalized load. When the last station m is reached, Eq.(5-21)

becomes

The known state variables at the right-hand boundary are
substituted into the above relationship to determine the unknown
state variables in zs. After the initial state vector 1z is
known, the state vectors at the sections can be obtained by
recursively applying Eq.(5-20) until all the state vectors are
known.

Once the displacement of the whole structure at time ts+: is
obtained, the velocities and accelerations at time ts.: are

evaluated from Egs.(5-4) and (5-5), respectively.

2) Improvement for In-Plane Excitation

The formulations described above are concerned with the
plate subjected to out-of-plane excitations. In the case of the
plate subjected to in-plane excitations, some attention is,
however, required. The equation of motion for this case is given

by

Ms+1 + C Gis+1 + (K + F*s+1Kg)us+1 E T R (5_23)

where K; is the geometrical stiffness matrix; F*s.: 1is the
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in-plane excitation at time ts.:. It is apparent that Eq.(5~-23)
is a nonlinear expression because F*..: is a time variable.

In the analysis of plates subjected to in-plane excitation,
the transfer matrix in Eq.(5-13) must be, therefore, evaluated
for every time stage. This results in a considerable increase in
computation time. In order to overcome this disadvantage of the

proposed method, we rewrite Eq.(5-23) approximately as follows:

Miser + Chs+1 + Kuser = Fsur 0 oreenennn (5‘24)
where Fs+; = -F*;.1K,us can be considered as a known variable
evaluated from the displacement at previous time ts. Therefore

the transfer matrix T must be evaluated only once as in the case

of out-of-plane excitation.

3) Exchange of the State Vectors

It is pointed out that, in the standard transfer matrix
method, recursive multiplications of the transfer and point
matrices are sources of round-off errors, and this is also true
in the proposed method. In order to minimize these errors we
introduce the technique described as follows for plates with many
elements. Eq.(5-21), which relates the state vector at the
section 1 and the unknown state vector at left boundary, may be

written as follows:

Solving for za in terms of ui, the following expression can

be obtained:
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gg = Uri-tw; - Uui-1f0 e (5-26)

Substituting in the remaining equation of Eq.(5-25), we

obtain:
N =00 'wy — Ui O 1 F + £ e (5-27)

Eq.(5-27) and the identity w; = uw yield the alternative
expression of Eq.(5-25):

i 0 1 ;
or

%, = U, "2 e (5-29)

Hereafter matrix multiplications continue in the wusual

manner using, however, Z, instead of Zs.

5-4 NUMERICAL EXAMPLES

In order to investigate the accuracy as well as the
capability of the proposed method, some numerical examples of the
plates subjected to out-of-plane and in-plane excitations are
presented, and the results obtained by the FETM method are
compared with those obtained by the ordinary finite element
method. In the numerical examples stated in this chapter, the
triangular element with three degrees of freedom per node is

used, and the effect of damping is neglected.
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1) Transient Analysis of Plates Subjected to Qut-of-Plane

Excitations

A simply supported square plate subjected to the out-of-
plane periodic force at the center (P(t) = Pisinot, P; = 1.0kg, o
= 257rad), shown in Fig.5-3, is analyzed for the first example.
In the numerical calculation, a quarter of the plate is divided
into 1, 2, 3, 4 and 5 strips, and each of which is subdivided
into 2, 4, 6, 8 and 10 triangular elements, respectively. The
results obtained by the FETM method coincide completely with
those obtained by the finite element method for every mesh
pattern. 1In the finite element method, the same element and mesh
pattern as those used in the FETM method are employed.
Figs.5-4(a) and 5-4(b) show, for example, comparisons between the
dynamic responses of the deflections by both methods for 3 and 5
strips mesh patterns, where time step At = 0.00005 sec is used
for 3 strips mesh pattern and At = 0.00002 sec for 5 strips mesh
pattern. In the numerical calculation by the FETM method for 5
strips mesh pattern, the technique of exchanging the state
vectors presented in this chapter is introduced at the third
nodal line to avoid the propagation of round-off errors. In
Fig.5-4(b), the results obtained by the FETM method without
exchanging the state vectors are also shown to illustrate the
efficiency of this technique.

Fig.5-5 shows comparisons of computation time. for the FETM
method and the finite element method 1in this example. It 1is
found from Fig.5-5 that although in computation time the FETM has
less advantage for a small number of elements patterns, it has
much advantage for a number of elements patterns.

Figs.b-6(a) and 5-6(b) show the dynamic responses of an all
edges clamped plate subjected to the out-of-plane excitation at
the center (P(t) = Pisinet, P; = 1.0kg, @ = 257rad). In the

numerical calculation, a quarter of the plate is divided into 3
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and 5 strips and each of which is subdivided into 6 and 10
triangular elements, respectively. Time step At = 0.00005 sec is
used for 3 strips mesh pattern and AtV: 0.00002 sec for 5 strips
mesh pattern. As shown in Figs.5-6(a) and 5-6(b), close agree-
ments exist between the results obtained by the FETM method and
the finite element method. In the numerical calculation for 5
strips mesh pattern by the FETM method, the technique of exchang-

ing the sate vectors is used as in the previous example.

2) Transient Analysis of Plates Subjected to In-Plane Excitations

To illustrate the efficiency of the FETM method based on the

approximate equation(5-24) for in-plane excitations, a simply
supported rectangular plate subjected to in-plane excitation
{(P(t)=Pp 4Py sinet, Pp=100kg, P;=1.0kg, «=257rad), as shown 1in
Fig.b-7, is analyzed. The initial deflection of plate bending

mode is assumed, and defined as follows:

¥4 7
Wwe = Wo sin—x sin—y e (5-30)
a a

in which %o = the maximum value of initial deflection and here %g
= h/10 is assumed. A guarter of the plate is, in numerical calcu-
lation, divided into 1, 2, 3, 4 and 5 strips, and each of which
is subdivided into 2, 4, 6, 8 and 10 triangular elements, respec-
tively.

Fig.b-8(a) shows the dynamic responses of the deflections at
points 8, 12 and 16 in Fig.5-7 for 3 strips mesh pattern, where
time step at = 0.00005 sec is used. In Fig.5-8(a), the result
obtained by the finite element method based on Eq.(5-23) is also
shown, in which the same mesh pattern and time step as those used
in the FETM method are employed. Very little difference exists
between the results, so that the plots in Fig.5-8(a) are not
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distinct. 1In Fig.5-8(b), the response of the deflections at the
center of the plate for 5 strips mesh pattern by the FETM method
are compared with those by the finite element method. In the FETM
method, the technique of exchanging the state vectors is intro-
duced for this mesh pattern.

Fig.5-9 shows comparisons of computation time for the FETM
method and the finite element method in this example, and similar
conclusions to those in the case of out-of-plane excitations are
obtained. In Fig.5-9, computation time for the FETM method based
on Eq.(5-23), in which the transfer matrix in Eq.(5-13) must be
derived for every time stage, is also shown to 1illustrate the
efficiency of the proposed approximation.

Figs.5-10(a) and 5-10(b) show the responses of the deflec-
tions of a all edges clamped square plate subjected to the in-
plane excitation (P(t) = Ps + Pisinet, Ps = 100kg, P; = 100kg, e
= 497rad) for 3 and 5 strips mesh patterns. The same initial
deflection as that assumed 1in the previous example is also
assumed in this example. Similar results to those obtained for a
simply supportéd plate subjected to in-plane excitation are

obtained.

b-5 CONCLUSIONS

A linear transient analysis method of the structures under
random excitations by a combined finite element - transfer matrix
method is proposed. Transfer matrix relating the state vector on
the left and right boundaries of a strip at a certain time is
derived from the system of equations of motion for a strip. An
approximation is introduced in the equations of motion for the
case of in-plane excitations in order to reduce computational

efforts and the technique of exchanging the state vectors is

-118-



proposed to avoid the propagation of round-off errors occurred in
recursive multiplications of the transfer and point matrices.
Although the Newmark g method is employed for time integrations,
other integration methods such as the Houbolt, Wilson @ and
central difference methods may be used. From the numerical
examples presented in this chapter, following conclusions are
obtained:

(1) For the out-of-plane and in-plane excitations, good
agreement exists between the results obtained by the FETM method
and the conventional finite element dynamic analysis, which
demonstrates the accuracy of linear transient analysis by the
FETM method.

{2) In the case of in-plane excitations, the results by the
FETM method based on the equations of motion with an approxima-
tion described in this chapter agree with those based on the
equation without an approximation, and it becomes clear that this
approximation of the equations is efficient to reducing computa-
tional efforts.

(3) The technique of exchanging the state vectors is very
efficient to avoid the propagation of round-off errors occurred
in many strips pattern.

From the mentions above, this method can be successfully
applied to the transient analyses of the plates subjected to
out-of-plane and in-plane excitations by reducing the size of
matrix and relative computation time to less than those obtained

by the method based on the ordinary finite element procedure.
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NOTATION

The following symbols are used in this paper:

= damping matrix;
force vector;
= effective stiffness matrix;
= linear and geometric stiffness matrices,
respectively;
= mass matrix;
= point matrix;
generalized load vector;
= generalized load vector acting on section i;
= transfer matrix;
= displacement, velocity, and acceleration vectors,
respectively;
N = force vector;
Nei ,N-i = left and right force vectors of strip i,
respectively;
Q = generalized force vector;
At = size of time step;

@ = Q0
1t

KK

[
!

= oo X
It

u,u,

e
|
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u = displacement vector;
uei ,u; = left and right displacement vectors of strip i,
respectively;
z = state vector;
zg = unknown initial state vector;
Z2i y% - = left and right state vectors of strip i,
respectively; and
g = stress vector.
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Chapter 6 NONLINEAR DYNAMIC ANALYSIS OF PLATES BY A COMBINED
FINITE ELEMENT-TRANSFER MATRIX METHOD

6-1 INTRODUCTION

Nonlinear transient response of complex structures subjected
to random excitations can be, generally, obtained by the direct
integration method wusing finite element model, such as the
Newmark g, Houbolt, Wilson 0 and central difference methods {2,
3, 4, 8, 13, 18). In these methods, it is, however, necessary to
use a large number of nodes, resulting in a need of very large
computers.

In this chapter the combined finite element - transfer
matrix method (5, 6, 7, 106, 11, 14, 15, 20) described in previous
chapter is extended to nonlinear dynamic problems of structures
under various random excitations. The transfer matrix relating
the state variables on the left and right boundaries of a strip
is derived from nonlinear system of equations of motion for a
strip. The Newmark g method is used for time integration, but
other integration methods, such as the Houbolt, Wilson 6, and
central difference methods may be used. Equilibrium iteration
based on the pseudo-force method is employed to improve the
solution accuracy and to avoid the development of numerical
instabilities. The Prandtl-Reuss’ law obeying the von Mises yield
criterion is assumed, and a set of moving coordinate systems is
used to take geometric nonlinearity into consideration in this
chapter.

Some numerical examples of the plates subjected to out-of-
plane and in-plane excitations are proposed and their results are

compared with those obtained by other methods.
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6-2 FINITE ELEMENT-TRANSFER MATRIX METHOD FOR NONLINEAR DYNAMIC
ANALYSIS

The governing equation for a plate subjected to excitation
at time ts+1 = (s+1)At, where s is the number of time steps At,

generally given by
M iis+1 + C 'l.;ls+1 + A5+1 = F5+1 ............ (6_1)

in which M and C are the mass and damping matrices; is+1, Ts+1,
and Fs+1 are the acceleration, velocity and force vectors at time
ts+1, respectively; As is the equivalent nodal force opposing the
displacement of the structure.

For linear elastic situations
A3+1 = K“z Us+1 e e e (6-—2)
where Ks: is the stiffness matrix; us+: the displacement vector,

but for nonlinear situations As.: must be calculated from the

stress distribution satisfying nonlinear conditions so that
As 49 :J Bs«17T @s+1 dv e (6_3)

where B;.: is the appropriate matrix expressing the strains in
terms of the nodal displacements at time ts+1; o0s+1 the stress
vector.

The equivalent force, As+1, at time ts+1 can be estimated as
As+1 = A + K Au e e e (6—4)

where K is the tangential stiffness matrix evaluated from
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conditions at time ts, Au = us+i1 - Us 1is the incremental
displacement. Assumption (6-4) implies a linearization of the
incremental displacement between times ts and ts.:. Substituting
Eq.(6-4) in Eq.(6-1) gives

Mis+: + C s+ + Ko Au = Fouqy = A ceeeeneean (6_5)

The solution of Eq.(6-5) yields, in  general, approximate
incremental displacement Au. To improve the solution accuracy
and to avoid the development of numerical instabilities, it is
generally necessary to employ iterations within each time step or
selected time steps in order to maintain equilibrium.

As described previously, the Newmark 8 method is wused, in
this chapter, for time integration. In this method we assumed
variations for the displacement, u, and velocity, u in the time
interval At to be such that the values at beginning and end of

the time step are related by equations of the form

1
Us+1 = Us + AL @5 + (—2—-3) At? f1s + B At2 fig.q v ---- (6~6)
'l.ls+1 = 1.15 + (1"7) At ﬁs + 7 At i.:ls+1 """ (6"7)

where 8 and 7 are parameters that can be determined to obtain
integration accuracy and stability. Solving Eq.(6-6) for {#s+: in
terms of us.-: and then substituting for +ds+:1 in Eq.(6-7), we
obtain equations for s+: and u.:+1, each in terms of the unknown

displacement us+; only:

7
Us+1 = Us+1 + B e (6_8)
g At
1 _
ﬁ5+1 Us+1 + Rs . tsseeseenen (6_9)
8 Ate
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where

7 7
B. = - w 4 (1= — )i + (1- ——) At @ --o-eo (6-10)
B At 2
1 1 1
R, = - ———u, - s - (— = Diis e (6-11
Rs 5 At 5 At Us ( 28 it )

The functions P and Rs involve variables at previous time
only, and hence can be considered as the historical part in the
formulation. Substituting Egs.(6-8) and (6-9) into the governing

equations of motion (6-5) at time t..:;, we have

G AUs+1 = AQa+1 e (6—12)
where
S M+ C + K (6-13)
T B At? 8 At
1 1
AQs+1 = Fsuy + M { us (— -1) i1s 1}
At 2
4 4
+ C{(— - 1)a + (— -1)at s } - A ---(6-14)
B 28

Eq.(6-12) is an equation with unknown variables Aus.; only,
and hence the dynamic analysis of the plates at each time step (s
=1, 2, +++) can be treated as a static problem by considering
AQs+: to be a generalized external force acting on the plate.

To calculate the dynamic response of the given structure
using the FETM method, it is required to formulate first the
transfer matrix which transfers the incremental state variables
(displacement and force) from left section of strip i to right
section in Fig.6-1, at time ts.1.

Proceeding as in previous chapter with linear vibration
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problems, we obtained:

Aur Tiy T2 O Ale
AN; = |Tz21 Tz O AN > e (6-15)
1 i 0 0 1 i ]. i

or

AZe i = TiAZ2:i e (6—16)
where

Ti1 = —-Gar~1Geg, Tiz2 = Ger~!

Te1 = Gr 2-Grr Gor ~1Gre, Te2 = G Gar!

and Ger2, Gar, Gre, and G- are the submatrices of matrix G in
Eq.(6-13); Ausi, AU-;, ANe;, and AN,; are the left and right
displacement and force increment vectors of strip i at time ts+«:,
respectively; Aze: and Az-; are the left and right incremental
state vectors of strip i, respectively.

It is required next to derive the point matrix which relates
the state vectors just to the left and right of section i, The

deflections are continuous across the section, so that

AUR = Aut e (6-17)
where Au;l and Au;® are the displacement increment vectors just
to the left and right of section i, respectively.

Considering the equilibrium of forces in Fig.6-2, we obtain

the following expression:

where ANt and AN;R®R are the increment force vectors just to the

left and right of section i, respectively, and AQ 1is the
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increment generalized load vector acting on section i, which is
evaluated from the general loading function in Eq.(6-14). The
above two relations (6-17) and (6-18) may be expressed in matrix

notation as

o S O O e S e RPREREE (6-19)

The two matrix terms on the right-hand side of Eq.(6-19) may

be brought together as a single term in the following way:

Aujlr I 0 0 Au)t
AN =10 I AQ ANS e (6-20)
1) 0 0 1}, 1
or
AzZ; R = Pi AZi (6—21)

Once the transfer and point matrices have been formulated
for each strip, the state vectors at the section are determined
by the same procedures as those used in the standard transfer
matrix method (19).

After continuous multiplications of the transfer matrix T
and point matrix P, we obtain the relation between the state
vector at the section i1 and the wunknown state vector at 1left

boundary, AZa:

Az; = UiAZs e (6_22)
or
Al ) .
Wl o2
1! 0 1j; 1/e
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where Ui = PT;Pi-1Ti-1---Pi1Ti, and f; is the force vector of the

generalized loads. When the last station m is reached, Eq.(6-23)

becomes
au O f) (az
Z
N =} 1< S di i e e 6-24

The known state variables at the right-hand boundary are
substituted into the above relationship to determine the unknown
state variables in Azs. After the initial state vector Az is
known, the state vectors at the sections can be obtained by
recursively applying Eq.(6~22) until all the state vectors are
known. Once, the displacements of the whole structure at time
ts+1 are obtained, the velocities and accelerations at time s+
are evaluated from Egs.(6-8) and (6~9), respectively. The entire

procedure can then be repeated for time ts.» and so on.
6-3 ALGORITHM FOR NONLINEAR ANALYSIS BY FETM METHOD

It is convenient for equilibrium iteration to express
equilibrium equations (6-5) in an alternative form. With the
superscripts i-1 and i being used to denote values at two
successive equilibrium iterations, then the displacement change
occurring between these two stage is

SUs+1! = AUs+1' — AUs+1i -1 e (6—-25)

Then consideration of Eq.(6-5) at iteration i at time ts.: gives,

on use of Eq.(6-25),

M1 + Cag+«1' + K du = Fovq = Ager -1 vmeeeen (6_26)
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Two iteration methods; the pseudo-force method and the
tangent stiffness method, may be employed here. In the pseudo-
force method, the stiffness matrix, Ks, is kept at a constant
(initial) value, with dynamic equilibrium being maintained by
successive iterations with a varying pseudo-force which is the
right~hand-side term in Eq.(6-26). On the other hand, in the
tangent stiffness method the stiffness matrix, K., 1is varied
throughout the computation, with the term Ps.;i-! being replaced
by an equilibrium correction term.

Since, in the FETM method, considerable computation time is
required in the derivation of the transfer matrix, it is
inappropriate to employed the tangent stiffness method for
equilibrium iteration. The pseudo-force method is, therefore,
adopted here. The essential steps in the numerical algorithm
employed in this chapter are outlined below:

1. Calculate the effective stiffness matrix, G, and the

transfer matrix, T, for each strip.

2. Calculate the effective incremental load vector, AQs.:.

3. Solve for the left boundary state vector increments:

AZp = O 1 Ffse0 e (6-27)

4, Calculate the incremental state vector at each strip by
successive multiplications of the transfer and point
matrices.

5. Compute the displacements, velocities and accelerations
at time ts.1.

6. If equilibrium iteration is not considered, go to step
12; otherwise, start the i-th iteration: i+l - i.

7. Evaluate the i-th approximate to the displacements,
velocities and accelerations.

8. Evaluate the i~th residual loads:
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6Q5+1i = Fs+1i_1 - Mﬁs«r»1i'1 - C s+ it - A5+1 "(6"28)
9. Solve for the i-th corrected displacement increments:

§zp = U1 fesq!  eseeeseaen (6-29)
10. Evaluate the corrected displacement increments

Al = Aui -t 4+ osui e e (6-30)
11. Check for convergence of the iteration process:

If |su §i/llus + Au' || = tolerance, go to step 12.

Otherwise, go to step 6 for the (i+1)th iteration.
12. Return to step 2 to process the next time step.

6-4 NUMERICAL EXAMPLES

1) Large Deformation Dynamic Analysis of Plates

In large deformation dynamic problem, the governing equation

(6-5) is written as follows:

Mis+1 + Chs+1 + (Ka + KgsJAu = Foug = As ccovreen (6-31)

where K;s 1is the so-called geometric stiffness matrix evaluated
from conditions at time t..

In the numerical calculation, the same triangular element as
that used in Chapter 3 is used (Fig.6-3), and the effect of
damping is neglected. The transformation of nodal displacements
described in Chapter 3 is also employed for determining an
equilibrium configuration of the plate at time tes.1 .

A plate bending problem is used to investigate the effect of
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equilibrium iterations in the large deformation problem. 1In this
example, a simply supported square plate, shown in Fig.6-4(a), is
loaded suddenly with a uniform out-of-plane load (Fig.6-4(b)).

Fig.6-4(c) shows comparisons between the dynamic responses
of the deflections at the center of the plate obtained by the
FETM method with and without equilibrium iteration. In the
numerical calculation, a quarter of the plate is divided into 3
strips and each of which is divided into 6 triangular elements as
shown in Fig.6-4(a), the size of the time step is taken to be
equal to 4 x 10-4 sec, the maximum number of iterations is
limited to 10 (ITERAM=10), and a convergence tolerance 1is taken
to be equal to 0.000001. In Fig.6-4(c), the response curves with
a time step of 1 x 10-4 sec and equilibrium iterations
(ITERAM=10) are also shown. Considerable damping is observed in
the response without equilibrium iteration. However, the result
is remarkably improved by equilibrium iterations, and the
response with At=4 x 10-4 sec is in good agreement with that with
At=1 x 10-¢ sec. Computation time for the time range shown in
Fig.6-4(c) is 574 sec for At=4 x 10-¢ sec (ITERAM=0), 1,462 sec
for at=4 x 10-4 sec (ITERAM=10), and 4,250sec for At=1 x 10-4 sec
(ITERAM=10).

Fig.6-7~9 show the comparisons of the results obtained by the
FETM and finite element method. The simply supported plate and
all edges clamped plate shown in Fig.6-5 are chosen for the
numerical model, and these plates are assumed to be subjected to
the three types of load as shown in Fig.6-6. 1In these example, a
quarter of the plate is divided into 3 strips and each of which
is divided into 6 triangular elements as shown in Fig.6-5, the
size of the time step is taken to be equal to 4 x 10-4 sec, and a
convergence tolerance is taken to be equal to 0.000001. The
material'properties of the plate are also given in Fig.6-5. In

the finite element method, the same element and mesh pattern as
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those used in the FETM method are employed.

Fig.6-7(a) shows the comparisons of the dynamic responses at
peints A, B and C, those are indicated in Fig.6-5, of the simply
supported plate loaded suddenly with a uniform out-of-plane load
(pe = 0.4kg/cm?) as shown in Fig.6-6(a). The results of both
methods agree with each other within the error of 0.01%, thus can
not be distincted in Fig.6-7(a). In Fig.6~7(a), the response at
point A obtained by the linear analysis are also shown. By the
effects of the geometrical nonlinearity, the amplitude and period
of the deflection by the large deformation analysis are smaller
than those by the linear analysis. Computation time for the range
shown in Fig.6-7(a) is 1120.2sec for the FETM method, 1445.9sec
for the finite element method.

Fig.6-7(b) shows the comparisons of the results of the all
edges clamped plate loaded suddenly with a uniform out-of-plane
load (pa=0.6kg/cm?) as shown in Fig.6-6(a). The similar results
to the previous example are obtained. Computation time for the
range shown in Fig.6-7(b) is 813.7sec for the FETM method, 940.8
sec for the finite element method.

Fig.6-8(a) shows the comparisons of the dynamic responses of
the simply supported plate loaded suddenly at the center of plate
with a concentrated out-of-plane load (Pp=400kg) shown in Fig.6-
6(b). The results of both methods agree with each other within
the error of 0.01%, thus can not be distincted in Fig.6-8(a) as
in the case of a uniform load. In Fig.6-8(a) the results
obtained by the 1linear analysis are also shown. Computation
time for the range shown in Fig.6-8(a) is 1174.9sec for the FETM
method, 1521.4sec for the finite element method.

Fig.6-8(b) shows the comparisons of the results of the all
edges clamped plate loaded suddenly at the center with a
concentrated out-of-plane load (Pa=600kg) as shown in Fig.6-6(b).

The similar results to the previous example are obtained.
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Computation time for the range shown in Fig.6-8(b) is 1031.3sec
for the FETM method, 1199.8sec for the finite element method.
Fig.6-9(a) shows the comparisons of the dynamic responses at
points A, B and C of the simply supported plate subjected to
in-plane excitation (p(t) = pesinet, ps = 60kg/cm?, o = 39.8Hz)
as shown in Fig.6-6(c). The initial deflection of plate bending

mode is assumed, and is defined as follows:

. . A
Wp = Wp Sin—X Sin—y  eeseceeaaan (6-32)
a a

in which % = the maximum value of initial deflection and here %o
= bh is assumed.

Close agreement exists in the results of both methods as in
the case of out-of-plane load. In Fig.6-9(a), the results
obtained by the linear analysis are also shown. In the linear
analysis, the displacement grows rapidly, in the large deforma-
tion analysis, the displacement, however, grows gradually and the
central portion of plate displaces to one side. Computation time
for the range shown in Fig.6-9(a) 1is 970.8sec for the FETM
method, 1260.8sec for the finite element method.

Fig.6-9(b) shows the comparisons of the dynamic responses at
points A, B and C of the all edges clamped plate subjected to
in-plane excitation (p(t) = pesinet, ps = 120kg/cm?, » = 81.5Hz)
as shown in Fig.6~6(c). The same initial deflection of plate
bending mode as that assumed in the previous example is also
assumed in this example.

The similar results to those for the simply supported plate
are obtained. In Fig.6-9(b) the results obtained by the 1linear
analysis are also shown. Computation time for the range shown in
Fig.6-9(b) is 1045.9sec for the FETM method, 1277.6sec for the

finite element method.

-139-



Fig.6-10(b) shows comparisons of computation time in the

FETM method and the finite element method for 1x1 (1 strip with 2

3x3 (3 strips with 6 triangular elements), 4x4 (4 strips with 8
triangular elements) and 5x5 (5 strips with 10 triangular
elements) mesh patterns, and these mesh patterns are illustrated
in Fig.6-10(a). A simply supported square plate loaded suddenly
with a uniform out-of-plane load (po = 0.4kg/cm?) is used in this
example. The size of the time step is taken to be 4x10-4 sec and
a convergence tolerance is taken to be 1x10-7.

It is found from Fig.6-10(b) that although in computation
time the FETM method has less of an advantage for a small number
of element patterns, it has much more of an advantage for a
number of element patterns. In Fig.6-10(b), computation time for
the tangent stiffness iteration method, in which the transfer
matrix must be derived for every time stage, 1is also shown to

illustrate the efficiency of the pseudo-force iteration method.

2) Elasto-Plastic Dynamic Analysis of Plates

In elasto-plastic dynamic problem, the governing equation

(6-5) is written as follows:

M iis*l + C l'ls+1 + Kps AU = F5+1 - A‘S ........... (6_33)

where K,s is the stiffness matrix for inelastic situation evalu-
ated from stresses at time ts.

The Prandtl-Reuss” law and the von Mises yield criterion
(22,23) are assumed in the derivation of the inelastic stiffness
matrix as in the static problem described in Chapter 3. In order
to consider the extent of the yielded portions in the directions
of the cross sections, the cross section of the plate is divided

into some layers as shown in Fig.6-11. In the numerical
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calculation, the triangular element with three degrees of freedom
per one node, shown in Fig.6-12, is employed here, and the effect
of damping is neglected.

Figs.6-14~16 show the comparisons of the results obtained
by the FETM and finite element method. The same plates and mesh
pattern as those used in the large deformation problem are also
used here. These plates are assumed to be subjected to the three
types of load as shown in Fig.6-13. The size of the time step is
taken to be equal to 4 x 10-¢ sec, and a convergence tolerance is
taken to be equal to 0.0001. In the finite element method, the
same element and mesh pattern as those used in the FETM method
are employed.

Fig.6-14(a) shows the comparisons of the dynamic responses
at points A and C, indicated in Fig.6-5, of the simply supported
plate subjected +to the uniformly distributed out-of-plane
excitation (p = pesinet; ps = 0.4kg/cm?, @ = 39.8Hz) as shown in
Fig.6-13(a). The amplitudes of the responses of both methods,
indicated by H in Fig.6-14(a), agree with each other within the
error of 5.2%. In Fig.6-14(a), the results obtained by the linear
analysis are also shown. The displacement of the linear analysis
grows rapidly, that of the elasto-plastic analysis, however,
grows gradually and reaches a steady state. Computation time for
the range shown in Fig.6-14(a) is 788.7sec for the FETM method,
990.3sec for the finite element method.

Fig.6-14(b) shows the comparisons of the results of the all
edges clamped plate subjected to the uniformly distributed
out-of-plane excitation (p = pssinet; ps = 0.6kg/cm?, @ = 81.5Hz)
as shown in Fig.6-13(b). The amplitudes of the responses of both
methods, indicated by H in Fig.6-14(b), agree with each other
within the error of 0.56%. Computation time for the range shown
in Fig.6-14(b) is 801.6sec for the FETM method, 971.9sec for the

finite element method.
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Fig.6-15(a) shows the comparisons of the dynamic responses
of the simply supported plate subjected to the concentrated
out-of-plane excitation (P=Ppsinwt; Pa=400kg, »=39.8Hz) shown in
Fig.6-13(b). The amplitudes of the responses obtained by both
methods, indicated by H in Fig.6-15(a), agree with each other
within the error of 4.43%. In Fig.6-15(a), the results obtained
by the linear analysis are also shown. Computation time for the
range shown in Fig.6-15(a) is 787.9sec for the FETM method,
998.1sec for the finite element method.

Fig.6-15(b) shows the comparisons of the results of the all
edges clamped plate subjected to the concentrated out-of-plane
excitation (P = Pgpsinet; Py = 600kg, « = 81.5Hz) as shown in
Fig.6-13(b). The amplitudes of the responses of both methods,
indicated by H in Fig.6-15(b), agree with each other within the
error of 0.60%. Computation time for the range shown in
Fig.6-15(b) is 825.7sec for the FETM method, 974.9sec for the
finite element method.

Fig.6-16{(a) shows the comparisons of the dynamic responses
at points A and C of the simply supported plate subjected to
in-plane excitation (p{(t) = pesinet, ps = 60kg/cm?, @ = 39.8Hz)
as shown in Fig.6-13(c). The initial deflection of plate bending

mode is assumed, and is defined as follows:

. .7
Wp = We¢ SIB—X SIn—y  rreessesens (6_34)
a a

in which @e = the maximum value of initial deflection and here We
= bh is assumed.

The amplitudes of the responses of both methods, indicated
by H in Fig.6-16(a), agree with each other within the error of
0.60%. In Fig.6-16(a), the results obtained by the linear

analysis are also shown. Computation time for the range shown in
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Fig.6-16(a) is 723.6sec for the FETM method, 868.9sec for the
finite element method. \

Fig.6-16(b) shows the comparisons of the dynamic responses
at points A and C of the all edges clamped plate subjected to
in-plane excitation (p(t)=pssinet, pe=120kg/cm2kg, = 81.5Hz) as
shown in Fig.6-13(c). The same initial deflection of plate
bending mode as that assumed in the previous example is also
assumed in this example.

The amplitudes of the responses of both methods, indicated
by H in Fig.6-16(b), agree with each other within the error of
0.75%. In Fig.6-16(b), the results obtained by the 1linear
analysis are also shown. Computation time for the range shown in
Fig.6-16(b) is 734.0sec for the FETM method, 860.5sec for the
finite element method.

Fig.6-17(b) shows comparisons of computation time of the
FETM method and the finite element method for the elasto-plastic
dynamic problem. The same mesh pattern as used in the large
deformation problem are employed here and these mesh patterns are
illustrated in Fig.6-17(a). A simply supported square plate
subjected to the periodic uniform out-of-plane excitation (p =
pesinet; pe = 0.4 kg/cm?, o = 39.8Hz) is used in this example.
The size of the time step 1is taken to be 4x10-4 sec and a
convergence tolerance is taken to be 0.001.

It is found from Fig.6-17(b) that the FETM method has much
more of an advantage as a number of elements is increases. In
Fig.6-17(b), computation time for the tangent stiffness iteration
method, in which the stiffness and transfer matrices must be
derived for every time stage, is also shown. The computation
time for the pseudo-force iteration method is smaller than that

for tangent stiffness method in every mesh pattern.
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6-5 CONCLUSIONS

A linear transient analysis method based on a combined use
of finite element and transfer matrix methods described in
previous chapter is extended to nonlinear dynamic problems of
plates under random out-of-plane and in-plane excitations.
Equilibrium iterations are employed to improve the solution
accuracy and to avoid the development of numerical instabilities.
The Prandtl-Reuss” law obeying the von Mises yield criterion is
assumed, and a set of moving coordinate systems is used to take
geometric nonlinearity into consideration.

A computer program based on this theory has been developed.
In this program, procedures used in the finite element method
based on load increment are employed except for the estimation of
approximate displacements for each specified time step. From the
numerical examples presented in this chapter, following conclu-
sions are obtained:

(1) In inelastic and large deformation dynamic problems,
good agreemenp exists between the transient responses of the
plates under out-of-plane and in-plane excitations obtained by
the FETM method and the conventional finite element method, which
demonstrates the accuracy of the proposed method.

(2) Equilibrium iteration in each time step is effective to
improve the solution accuracy and to avoid the development of
numerical instabilities.

(3) Since, in the FETM method, considerable computation
time is required in the derivation of the transfer matrix,
the pseudo-force iteration method is more efficient compared to
the tangent stiffness iteration method.

From the mentions described above, it is obtained that the
FETM method can be applied successfully to the nonlinear dynamic

analysis of plates subjected to out-of-plane and in-plane
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excitations by reducing the size of the matrix and computation

time to relatively less than those obtained by the method based

on the ordinary finite element procedure.
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NOTATION
The following symbols are used in this paper:

A = equivalent force vector;

B = matrix expressing the strain in terms of the
displacements;

C = damping matrix;

F = force matrix;

G = effective stiffness matrix;

Ke,Ks = linear and tangent stiffness matrices,
respectively;
K: ,K. = geometric and inelastic stiffness matrices,
respectively;
M = mass matrix;
P = point matrix;
Q = generalized load vector acting on section ij;
T = transfer matrix;
u,u,u = displacement, velocity, and acceleration vectors,
respectively;
AN = incremental force vector;
ANz ;AN. ;. = left and right incremental force vectors of strip i;

AQ = generalized incremental force vector;
At = size of time step;
Au = incremental displacement vector;
Az = incremental state vector;
AZps = unknown initial state vector;
AZ2; ,AZ-i = left and right incremental state vectors of strip i,
respectively;
A8 = incremental displacement vector;
A2 ,A8: left and right incremental displacement vectors of
strip i, respectively; and
o = stress vector.
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Chapter 7 STRUCTURAL ANALYSIS BY A COMBINED BOUNDARY
ELEMENT-TRANSFER MATRIX METHOD

7-1 INTRODUCTION

The boundary element method offers important advantages over
domain-type methods such as the finite element method and the
finite difference method, and has been applied to the solution of
various engineering problems [4, 5, 6, 7, 16). One of the most
interesting features of the boundary element method is that a
much smaller resulting system of equations and a considerable re-
duction in the data required to solve the problem is obtainable.
In addition, the numerical accuracy of the boundary element
method can be greater than that of the finite element method.
The main disadvantage of the boundary element method is, however,
the difficulties that are encountered in non-homogeneous prob-
lems, 1i.e. finding fundamental solutions and defining the
interfaces.

In order to overcome this disadvantage of the boundary
element method, some techniques based on the subdividing of the
body into regions have been proposed. Tomlin and Butterfield (18)
extended the boundary element method to piecewise homogeneous
anisotropic foundation engineering problems. This work was
extended to three dimensions by Banerjee (2) and Lachat and
Watson (9), whose main incentive for subdividing the body into
distinct regions was to reduce the bandwidth of the resultant
system of algebraic equations.

In this chapter, a new approach, based on the combination of
the boundary element and transfer matrix (BETM) methods, is
proposed for the problems where the subdividing of the body into

regions is required. In this method, the system of equations of
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an individual region is determined in the same manner as in the
boundary element method. However, the process of computation of
the displacements and tractions at the boundaries is different
and does not require the assembly of matrices for the entire
structure. This method, therefore, permits the use of a large
number of elements, without getting involved with large matrices.

A much smaller computer is therefore sufficient.

7-2 BOUNDARY INTEGRAL EQUATION FOR IN-PLANE PROBLEMS

1) Two-Dimensional Elasticity

We introduce the rectangular cartesian coordinate system
0-%x1 ,X> in which the axis x; and x2 lie in middle plane of the
plate as shown in Fig.7-1. The inner domain and the boundary are
denoted by { and I', respectively.

If one considers an infinitesimal rectangular parallelepiped
element surrounding a given point within the body, the equili-

brium equation can be written as
oij,; + £ =0 (i,jzl,Z) """""" (7—1)

where ¢,; are the components of the stress tensor and f;, are the
components of the body force. Space derivatives are indicated by
a comma, i.e., 30i;/3%X; = ¢0:;,;. If the components of the streés
tensor are assumed to be known at a certain point, the equivalent
tractions acting on any plane through this point p; can be

computed by
Pi = gi;n; e (7_2)

where n; represents the direction cosines of the normal to the
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plane. The strains at any point &i; can be represented as

follows:

1
g = _E_(ui’J YU L) e (7-3)

where u;, is the displacement component.
For the plane strain problem, the stresses and strains are

related by the constitutive relations as follows :

011 226G X 0 E11
g2z | = )y 2+2G 0 P (7-4)
o 0 0 G 2¢12
where
_ Ey ~ E
Y G L 0T 20

and E, G and v are the modulus of elasticity, the shear modulus
and the Poisson’s ratio, respectively.

Let T. denote the portion of the boundary on which
displacements are prescribed and T, the portion on which surface
forces are prescribed, the boundary conditions are then repre-
sented as follows:

w = (onTu), B =5 (onTp)  ceeeeeeiaan (7-5)
where @ and § are the prescribed displacement and surface

forces. Note that the total boundary T of the body is Qqual to
v + Ty
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2) Integral Equation for Two-Dimensional Elasticity
equilibrium equations (7-1)

into consideration the

Taking
residual state-

and the boundary conditions (7-5), the weighted

ment can be written as

.J(Gij,j+fi)ui*d9 = J(p;~§;)u;*dr + J(ﬁ;-u;)p;*dr '(7—6)
Q Ty Ty
where u; *, p; * are the displacement and surface force corres-
ponding to the weighting field:
p;* = O'ij* n; e e (7_7)
constitutive

The strain-displacement relationship (7-3) and the
equations (7-4) are assumed to apply for the weighting field.
The first term in Eq.(7-6) can be integrated by parts, which

gives

‘JU).SJi*dQ + inu;*dn = —Jﬁ;ui*dr - Jp;ui*dr
QO Q e Tu

+ J(ﬁ;—ui)p~*dr
Ty

Integrating by parts again the first term in Eg.(7-8) and

taking into consideration the reciprocity principle, one obtains

Joij’j*uidﬂ + jfiﬂi*dﬂ
0 Q

= 'JE; u; *dr - Jpa u; *dr + Jﬁ; p: *dr + Jui p; *dr

Te Ty Tu Ty
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and using I = I, +I'y for the right-hand side integrals

Joij:j*UidQ + Jf;u;*dﬂ = ‘inui*df + JUipi*dr """ (7-10)
Q Q T T

The fundamental solution for the two-dimensional elasticity

problem, i.e., the solution corresponding to the equation

iy *(&,m) + 82(&,m) = 0

where 82(&,n) is the Dirac delta function and represents a unit
load at & acting in the xa direction, n is the field point.

The Dirac delta function has the following properties:

6(&,m) =

!
[e]

if &€ #n

!
8

§(£&,n) = if £ =m

J[g(n)ﬁ(é,n)dﬂ S g(6) e (7-12)

Substituting Eq.(7-11) into Eq.(7-10) and taking

into con-
sideration Eq.(7-12), one can obtained
ue(§) + jukpk*(s,n)df
T
= J'pkUk*(E,T])dr + Jfkuk*("é,n)dﬂ ........... (7-13)
Tr Q

where uq(£) represents the displacement at £ in the xo direction,

u. *(&,n) and p*(&,n) are the displacement and traction at n
respectively due to a unit forces acting at point &. If we con-

sider unit forces acting at & in the two directions, Eq.(7-13)
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can then written

U.Q(S) + JUkka *(é,n)dl‘

T
- jpkuak*(s,n)dr + Jfkunk*(s,n)dn ----------- (7-14)
T Q

where pav* and us¢ * represent the tractions and displacements in
the k direction due to unit forces acting in the direction Q.
Eq.(7-14) relates the displacements at any point inside the
domain and the displacements and surface forces on the boundary.
For plane strain problem the fundamental solutions are given

by [4’6]

*(&,m) (34 ) 1n ——gay 4 S22 F2%
u , = e (3~ n— R
R " 8xG(1-v) v r K r2
-1 ar 2r,a2 Ty«
o ’ = {(1-2v)8; ; + ——
pa " (£ TI)‘ dn(l-v)r ( an ( v) r2
—(1-20)(ry2 N,e=Typ D,o)) e (7-15)

where r is the distance between the points £ and n as shown in
Fig.7-2, r,; are the projections of the vector r on the axis x:,
n is the normal to the surface of the body. In order to obtain a
boundary integral equation, we need to take the point ¢ to the
boundary. Considering the singularities existing in the left
hand side integral, we obtained the following boundary integral

equations:

cakly (&) + Jukpkk*(San)dF
r
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= kaunk*(s,n)df + JkaRk*(s,n)dQ """" {7-16)
T Q

For a smooth boundary the c¢; coefficient is equal to 6&av/2.

3) Matrix Formulation of Boundary Integral Equation

Eq.(7-16) can be expressed in matrix form as follows:

f f
cu+ Jp*udr = Ju*pdr + qu*dQ ........... (7-17)
r T Q
where
U1l P1 fy
u = [ p = f =
u: ), pe ), f2J,
w1 * ouw* pii* pig”
u* = p* = | e (7-18)
Jk1* oo ¥ ’ p31* Pae*
The boundary is now divided into elements. These can be

constant, linear, quadratic, or higher order element.
Dividing the boundary into elements as shown in Fig.7-3, we
can obtain the equation for the point i from Eq.(7-17) as

follows:

Ci u +'%1( p*®’ dT )u; :‘%1(Ju*¢TdF)pj +_%1qu*dg cee e (7-19)
3= b =1 j=
I T; Q;
or
ciug + % hju = g gp; +b e (7-20)
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where the summation from j = 1 to m indicates summation over the
m elements on the boundary, T; is the boundary of the j element,
and summation from j = 1 to n indicates summation over the
internal cells, @; is the surface of each of them. & is inter-
polation function.

Eq.(7-20) is a set of equations for node 1 which can be

written as,

= (gi] gi2"gij"gim] PJ. .{,'b| ........... (7—21)
Pn
where u; and p; are the unknowns at nedes j, hi; and g ;, are the
interaction coefficients relating node i with all the nodes on
the boundary. We can write a matrix equation such as Eq.(7-21)

for each of the nodes under consideration. Writing them together

we have,

hiit iz -hij--hy [i8)
hex hee"hej"hem uz
:!ljl ilj’a‘"ilij"iljm l.lJ

l.lml i'lme"i'lmj"i'lmm ilm
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g1 S8 8 Ppi b
gz gee-'gzj--gzm Pz Pz
= gi1 Eiz g Sin PJ. + bJ ........... (7_22)
Eri En2Enj " Lon Pn by
or .
Hou =G qo + by ceeeeeiee (7-23)

where the submatrices hi; on the diagonal are,

hi;, = h,; + ¢

7-3 BOUNDARY INTEGRAL EQUATION FOR PLATE BENDING PROBLEMS

1) Governing Equation for Plate Bending Problems

We introduce the rectangular cartesian coordinate system
O-xyz in which the axis x and y lie in the middle plane of the
plate as shown in Fig.7-4. The inner domain and the boundary are
denoted by @ and T, respectively, and the thickness of the plate
is denoted by h. the applied forces are per unit area inside the
plate and per unit of length along T'. The positive direction for
moments and transverse shear forces is given in Fig.7-5.

From the Krichhoff-Love’s Assumptions for plate bending
problems, the moments and transverse shear forces can be written

in terms of lateral deflection w as follows {17):

32w EERY 92w PERY
M:(% = —D( + v ), Mg)y = "D( + v )
ax2 ay? ay? axe
2w d a°w d=w
Mf uoo= Ml:)‘x = _D(]._V) ) q‘){ = _D_ ( - + v )
X3y ax - gx2 aye
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P 2w 2w
+ v
ay axe ay?

) e (7-24)

where D = Eh# /(1 - v2) is the bending rigidity of the plate, E

and v are the modulus of elasticity and the Poisson’s ratio.
Using the notation described in Fig.7-6(a), the bending

moment M, and the twisting moment Ms on the boundary can be

written as

Mn
Ms

Mox (nx )2 + Miy (2ncn, ) + My, (ny )2
“(Max -Myy )xny + My (ne2-ny2) e (7-25)

t

where n. and n, are the cosines of the normal n with to the x and
¥y axes, respectively.
Using the moments and transverse shear forces the equili-

brium equations are given as follows:

3Qx N 3Qy b q =0
ax 3y

BMX X ¥ HMX Y
Ix ay

1

X

HMv Y + ng 1Y
ay X

0 (7-26)

where q is the transverse load per unit area.
Substituting last two equations of Eq.(7-26) into first of
Eq.(7-26), we can eliminate the shearing forces from Eq.(7-26) as

follows:

2 Mx 92 Mx y . %My,
ax2 ax3y 3y
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Let T. denote the portion of the boundary on which
displacements are prescribed and I’y the portion on which surface
forces are prescribed, the boundary conditions are then repre-
sented as follows:

(i) w

on Ty

i
=

i
oy
)

Bn = fn, Bs

(ii) Q on T, - (7-28)

1
O
=
3
I
=
=
=
)]
I
=
w

where upper bar indicates the prescribed quantities, g, and 8s
are the rotation components normal and tangential to the bound-

ary, i.e., 8 = -3w/3n and B = -3w/3s.

2) Integral Equation for Plate Bending Problems

Taking into consideration the equilibrium equation (7-27)
and the boundary conditions (7-28), the weighted residual state-

ment can be written as

i 3% My« a2 M 92 M
J { +2 - "~ +qIw*do
ax2 ax3y 3y

= J{(Mn —Mn )Bn a‘E‘|'(MS "'Ms )BS *+(Q-6)W*}dr
Tp

- J{ (8n _En WM ¥4 (85 _Es IMs *+(w—a)Q*}dI‘ ........... (7-29)
Ty

where the superscript indicates the quantities corresponding to
the weighting field.

Integrating this equation by parts twice, we obtain

-170-



2 * ggw* agw*
—J{Mxx _'3 l +2Mxy +M9y }dg - qu*dg

2 ‘ 2
ax ax3y y Q
= J{Mn3n+MsBs+Qw}dr + J{ﬁnﬁn*+ﬁsﬁs*+ﬁw*}dr
ru PD
+ J{(Bn—ﬁn)Mn*+(Bs-Es)Ms*+(w—;)Q*}dT ----------- (7-30)
Tu

Using Eq.(7-24) and integrating by parts twice again, we obtain

EMax* o 3EMe, T 3EM,
oty Bt s

IwdQ + qu*dﬂ
ax2 Ix3y ay?
9] ]

—J{Mnﬁn*+Msﬁs*+Qw*}dF - J{Mngn*+ﬁ535*+éw*}dr

Tu FD
+ J{Mn*5n+M5*§s+Q*§}dr + J{Mn*ﬁn+Ms*35+Q*w}dr ----- (7-31)
ru rD

and T =T, + fp for the right side integrals

j{ 2 +2 M, + <My

twdQ + qu*dﬂ
axe 9x3y 9y?
Q Q

= “J{Mn Bn ak'|'Ms Bs *+QW*}dI‘ + J{Mn a‘EBn +Ms *ﬁs +Q*W }dI‘ e (7"32)
T r

Introducing the effective vertical shear force

IM:
s

V= +

and considering Eq.(7-24), Eq.(7-32) can be written for smooth
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boundary as follows:

4 w* 4 w* 4
J{D( W +2 Gl + W wdQ + qu*dn
a x4 3x2dy2 ay4 q

= —J(Mn ﬁn ik"‘V‘f\?’k)dr + J-(Mn a‘eﬁn"'V;"W)d:[‘l """""" (7_34)
T T

The fundamental solution for the plate bending problen,

i.e., the solution corresponding to the equation

4 * ! 4 4
3w+28w +8w+6($m):
ax4 ax2 9y2 Iy D

0 @ e (7-35)

where 6(&,n) is the Dirac delta function and represents a unit
point load (Fig.7-6(b)).
The fundamental solution corresponding to Eq.(7-35) is given

for the displacement as (6, 15)

w*(&,n) = r2 Inr i (7-36)

87D

where r is the distance between the points & and n as shown in
Fig.7-6(b). ‘

Differentiating Eq.(7-36) and using the notations described
in Fig.7-6(b), one can obtain the rotations, moments, and shear
forces corresponding to the fundamental solution as follows
(6, 15):

¥ = 1+ 21n r)rcos

8 8D ( ) 8
1- 1-

Mo * = - d (14 In r) - d cos2p
47
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1_
V¥ = ——EEEE——{2+(1—v)00323} + L o828 e (7-37)
Anr R

where R is the radius of curvature at a regular boundary point.
Substituting Eq.(7-36) into Eq.(7-32) and taking into con-
sideration the properties of the Dirac delta function, one can

obtained

w(g) + J{Mn*ﬁnw*w}dr = J{Mn Bn *+Vw*}dT + qu*dg <.+ (7-38)
r T Q

Eq.(7-38) is the integral equation relating the deflection at the
any point inside the domain w(£) and the deflection w, effective
shear force V, rotation 8., and moment M, on the boundary.

In order to obtain a boundary integral equation, we need
to take the point & to the boundary. Considering the singulari-
ties of the fundamental solutions, we obtain the following bound-

ary integral equation:

cw(g) + J{Mn*8n+v*w}dr = J{Mnﬁn*+Vw*}dr + qu*dﬂ -+ (7-39)
T T 93
We have two unknowns on the boundary, i.e., deflection or

effective shear force, and rotation or moment. Hence we need
another egquation to solve the problem. This equation is given by

differentiation of Eq.(7-39) with respect to the normal,

av*
an

M*
co(g) + J( M+ 2 yar
T an

-a " * *
= J‘(Mn —3 +V Bw
an an
T

a
)dF+Jq "
an
Q
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Using the notations described in Fig.7-6(b), the fundamental
solutions for Eq.(7-40) are given as follows (6, 15):

aw* 1
- = r ln r cosp
an 27D -
3 = {cosp cosg + 1In r cos(e+g)}
an 27D
M, * 1+v  coso 1-yv singp .
= - + sin2g
3n 2n r 27 r
av*
= (cos(g-¢) {2+(1-v)cos28}
an 2xre

1-v
sing cos2g cee o (7-41)
r

+ 2(1-v)sing coss sin23] -

Egs.(7-39) and (7-40) are the boundary integral equations for
plate bending problem.
Proceeding in the similar manner as that in two-dimensional

problem, we finally obtain a matrix equation as follows:

Bou, = Gogy + b e (7-42)

7-4 BOUNDARY ELEMENT-TRANSFER MATRIX METHOD

1) Derivation of Transfer Matrix

As shown in Fig.7-7, a plate is considered as a combination
of a number of separate subregions D¢ (k=1,2,---m). For each of

them the system of equations can be written as

Hiae = Gege + by i e e e (7-43)
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Eq.(7-43) is transformed by inverting G., i.e.

dx G- 'Hewe - Ge-the e (7-44)

or
Kuw - £ e (7-45)

il

L 13

Eq.(7-45) is similar in form to the finite element equation.
Matrix K¢ is partitioned into nine submatrices. Eq.(7-45)

then becomes:

s Ker Kaoe Kar Ue fe
Qe ; = ‘Koo Koo Koo Ue » = {Fo > e (7-46)
q- S« Kie Koo KerJetar Ju £«

where the subscripts 2 and r denote the 1left and right inter-
faces, respectively, and e denotes the external boundary.
Solving for the uw.« and substituting in the remaining equa-

tions, the following expressions are obtained:

{qg} B [Kﬂk“KReKee—lKek Kkr‘KneKee'lKer] {UR}
K k K

qr Ki 2K Koo 1 Ke 2 Ko K eKeoe 1 Ke v ur
Ksae e 1 o +fe )£
N { 2¢ Ke (a ) R} ........... (7-47)
Kre.Kee_i(qe'{'fe)“fr
K
T R UL .
qr )k Ko1  Keo Jk (e S« Qe S«

By expanding and rearranging Eq.(7-48), it can be shown
after a little algebraic manipulations that left and right inter-

faces can be related by the following expression:
{Ur} B [ -Kiz2- 1K Kiz ! ] {Usz}
q- Ke1 -Ke2oKio" 1K1 KeoKio-tJw ldalk
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-Ki»5-1
X { retay } ........... (7-49)
a:-KezKiz-1qu )«

On simplifying the notation, we obtain

- T T2 T
{u, } = [ H : {uﬂ} + { Fl} ........... (7-50)
qr Jx Te1  Tzz e ldelk Tre Ik

Adding one dummy equation to the system, the following equation

can be obtained:

u, Tiv Tiz Tes Ue
g p = |Tor Tee Teo Q¢ e (7-51)
1 )« 0 0 1 w L1 )k
or
Zrk:Tk Zax e e (7_52)

in which z.., zZe. are so called state vectors which consist of
the displacements and tractions at the interfaces of region Di.
Eq.(7-52) can be recognized as the transfer matrix relating the
state vectors of the left and right interfaces.

By applying the interface equilibrium and compatibility

conditions, Eq.(7-52) can be rewritten as

Z. = Tka—l ........... (7_53)
in which z.-: and z« are the right interface state vectors of
region D.-; and D., respectively.

Once the transfer matrix has been formulated for each
subregion, the displacements and tractions at the interfaces are
determined by the same procedures as those used in the standard

transfer matrix method (14).
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Applying Eq.(7-53) to the continuous two regions Di; Di.i,
and eliminating the state vector 2z, we obtain the relation

between the state vectors z.-: and zi+1:

Zk+1=Tk+1Tka_1 ........... (7__54)

Proceeding in the same manner over all the m regions, the

following relation is obtained:

Zo = UnZe e e (7-55)

in which Us = TaTn-1---Ti.

It should be noted that by multiplying the transfer matrices
Tw, the order of matrix U does not increase but remains
compatible with the matrices being multiplied. These are results
in a reduced size matrix which embodies the entire system.

Once the system has been assembled as expressed by Eq.(7-
55), the boundary conditions have to be satisfied by solving for

the unknown terms in the initial state vector za. After the
initial state vectors are known the state vectors at the
interface can be obtained by recursively applying Eq.(7-53) until
all the state vectors at the interfaces are known. The

stresses and displacements at any point within a region can
be obtained in the same manner as that used in the subregions
technique.

The derivation of the transfer matrix for a subregion,
however, requires the inversions of matrix G¢ in Eq.(7-44), sub-
matrix K.. in Eq.(7-47) and Ki>. in Eq.(7-49). These inversions
are sources of some numerical errors. However, these inversions
are done only once for each subregion and are not affected by the
load vector. This is an advantage, especially if all the subre-

gions have the same configuration.

-177-



It may be noted that in the subregions technique the matrix
in Eq.7-73 is banded and it does not require full storage in the
computer memory. It is the assembly of the various subregions
that makes storage requirements increase, since the order of the
global matrices increases too. On the other hand, in the proposed
method the transfer matrix T« is fully populated and requires
full storage in the computer memory, but the global transfer
matrix U does not increase in size, since it results from consec-

utive matrix multiplications as indicated by Eq.(7-55).

2) Exchange of the State Vectors

It is pointed out that, in the standard transfer matrix
method, recursive multiplications of the transfer matrix are
source of round off errors, and this is also true in the proposed
method. In order to minimize these errors we introduce the tech-
nique described follows for the plates with many subregions. The
equation relating the state vector at the section i and the ini-

tial unknown state vector may be written as follows:

Solving for ze in term of u;, the following expression can

be obtained:

Ze = U,~tw, - U,-t8, e (7-57)

Substituting in the remaining equation of Eq.(7-56), we

obtain:

q; = UpUu_IUi - UqUu_1fu + fq """""" (7"58)
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Eq.(7-58) and the identity ui = u yield the alternative
expression of Eq.(7-56):

ol - oo vr. | 1)
q; = (UgU,-t =Uq U, -1t 1, +£, 1/ e (7-59)
1) 0 1 ;
or
zZz, = Ui 'Z; 5 T A R (7_60)

Hereafter matrix multiplications continue in the usual manner

7’

using, however, z;’ instead of zp.

3) Rotation Matrix for Axisymmetric Structure

For the axisymmetric structure, such as the thick cylinder
shown in Fig.7-8, the transfer matrix must be derived for every
strip. To improve the numerical efficiency of this method, we
simplify the derivation procedure of the transfer matrix by using
the rotation matrix of the coordinate system.

Considering that every strip has the same shape as shown in
Fig.7-8, the transfer expression for strip k referred to the
local coordinate system are described by using the transfer

malrix for strip 1, T, as follows:

Zve = TiZur e (7-61)

where upper bar indicates the quantity referred to the 1local
coordinate system. Introducing the rotation matrix, R«, relating
the global coordinate system to the 1local one for strip k,
Eq.(7-61) can be written referred to the global coordinate system

as
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Zvz = RcTTiReZir

T Zer e (7_62)

where Tx is the transfer matrix for strip k referred to the glob-
al coordinate system and it is assumed here that the global coor-
dinate system coincides with the local one for strip 1. Thus the
transfer matrices for every strip can be derived from the trans-

fer matrix for strip 1 by only rotation of coordinate system.

4) Internal Condition

Consider a plate with internal support at section i, as
shown in Fig.7-9. The equation relating the left state vector at
the section i to the initial unknown state vector may be written

as

zi =U =2 e (7-63)

or

{:*} ] [Ei gi] {Z;}B ........... (7-64)

where w; are the displacements at the section i, z* are the
remaining components of the state vector z;, zip are the initial
unknown state variables corresponding to w;,, and 2.z are the
remaining components of the initial state vector ze, From the
intermediate support condition (w; = 0), we can eliminate the
state variables z1 a from the initial wunknown state vector as

follows:

{w } [ 0 (7-65)
= ZE ----------- —
z* )i “UcUa-1Ue+Up J; ’

Because of the reactions at the internal support, the shear-
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ing forces at this section are discontinuous. The equilibrium of
the shearing forces at this section are, then, expressed as

follows:
Vie = ViL + V. e (7-66)
where V, * are the reactions at the internal support. The equation

relating the right state vector at the section i to the initial

unknown state vector is, therefore, written as

W 0 0
B 0

= + <Y e e e e e e e e 7-67
v U Us-1Us4Up | 2° v ( )
M/ i 0 J;

Adding one dummy equation to the system, the following equation

can be obtained:

w 4] ‘ 0
0 Vv, *
8 T (7_68)
\' I |-UcUa-t1Ug+Up Z2 o
M} 0 i
or
z, = U “=Z* e (7-69)

By the above technique, the transfer procedure can be per-

formed throughout a section having internal support.
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7-5 NUMERICAL EXAMPLES

1) Numerical Examples for In-Plane Problem

In order to investigate the accuracy as well as the capabil-
ity of the proposed method for solution of two-dimensional prob-
lems some numerical examples are presented.

A cantilevered plate subjected at the free edge to a
uniformly distributed in-plane load (Fig.7-10(a)), is analyzed
for the first example. In the numerical calculation, the plate is
divided into 1, 2, 4, 6, 8 and 10 regions, respectively, and each
of which is subdivided into 6 (Pattern A) and 10 (Pattern B)
constant elements for every discretizing pattern, as shown in
Fig.7-10(b).

In Table 7-1, the displacement u at the free edge obtained
by the BETM method is compared with those obtained by the
boundary element method and subregions technique. In the
numerical calculation for 10 regions of Pattern A and 6, 8 and 10
regions of Pattern B, the technique of exchanging state vectors
described in this chapter is introduced to avoid the propagation
of round-off errors. In the subregions technique the same
discretizing patterns as those used in the BETM method are
employed, and those for the boundary element method is also shown
in Fig.7-10(b).

The results of the BETM method and subregions technique
agree precisely, and these also agree well with those obtained by
the boundary element method, which demonstrate the accuracy of
the proposed method. Comparisons of computation times for the
BETM method and other methods in this example are shown in Table
7-2. It becomes clear from Table 7-2 that although, in computa-
tion time, the BETM method has 1less advantage for the small
number of regions model (1 and 2 regions of Pattern A; 1, 2, 4

and 6 regions of Pattern B), it has much advantage for the large
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number of regions model (4, 6, 8 and 10 regions of Pattern A; 8
and 10 regions of Pattern B).

Fig.7-11(a) shows a thick cylinder under internal pressure.
The distributions of the displacement in radial direction
obtained by the BETM methods with and without rotation matrix are
shown in Figs.7-11(b) and 7-11(c). 1In the numerical calculation,
a quarter of the cylinder is divided into 4 and 6 subregions,
respectively, and each of which is divided into 10 boundary
elements as shown in Figs.7-11(b) and 7-11(c). Close agreement
exists in the results by both methods, thus can not be distincted
in Figs.7-11(b) and 7-11(c). The results obtained by the
boundary and finite element methods are also shown. Mesh patterns
used in these methods are indicated in Figs.7-11(b) and 7-11(c),
respectively. Although the result of the BETM method is a little
smaller than those of other methods, good agreement exists
between these sets of results.

Fig.7-12(c) shows the comparisons of the displacement in
radial direction at point A, indicated in Fig.7-12(a), obtained
by the BETM methods with and without rotation matrix for wvarious
mesh patterns (Fig.7-12(b)). In the numerical calculation, a
quarter of the cylinder is divided into 4, 6, 8 and 10 subre-
gions, respectively, and each of which is divided into 10
boundary constant elements for every discretizing pattern. Both
results coincide completely with each other for every mesh
pattern, and agree well with other results, which are also
indicated in Fig.7-12(c). Fig.7-12(d) shows the comparisons of
the computation time in this example. Computation time in the
BETM method with rotation matrix is also 67% smaller compared to
that in the BETM without rotation matrix for every mesh pattern.

Fig.7-13(a) shows a foundation supported on a medium in
which the Young’s modulus increases with depth, thus depicting a

very real practical problem. A non-homogeneous medium, in the
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numerical calculation, is considered to be a combination of three
homogeneous subregions as shown in Fig.7-13(a). The vertical and
horizontal displacements of the ground along horizontal lines (y
= 1.0 and 2.5m) are shown in Figs.7-13(b) and 7-13(c), and
compared to the finite element method results. As shown in these

figures, good agreement exists between these sets of results.

2) Numerical Examples for Plate Bending Problem

In order to investigate the accuracy as well as the capabil-
ity of the proposed method for solution of plate bending problems
some numerical examples are presented.

A simply supported plate under uniform out-of-plane load,
shown in Fig.7-14(a), is analyzed for the first example. In the
numerical calculation, the plate is divided into 1, 3 and 5
regions, respectively, each of which is subdivided into 12 con-
stant elements for every discretizing pattern, as shown in Fig.7-
14(b).

In Fig.7-14(c) and Table 7-3, the relation between the
number of regions and the deflection at the midpoint of the plate
obtained by the BETM method is compared with those obtained by
the boundary element method and subregions technique. The discre-
tizing pattern for the boundary element method is also shown in
Fig.7-14(b). As shown in Table 7-3 complete agreement exists
between the results of the BETM and subregion methods, and these
results coincide well with other results for every discretizing
pattern.

In Fig.7-14(d), the center 1line configurations obtained
by the BETM method for 3 regions pattern are compared with
those obtained by the finite element and boundary element
methods. As shown in Fig.7-14(d), good agreement exists between
the results obtained by the BETM method and other methods.

Figs.7-15(c), 7-15(d) and Table 7-4 show the results for a
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plate under concentrate load. The same plate and mesh patterns
as those employed in the previous example are used here. Similar
results to those of previous example are obtained.

A cantilevered plate subjected at the free edge to a line
load, shown in Fig.7-16(a), is analyzed. The same discretizing
patterns as in the previous example are employed here.

In Fig.7-16(c) and Table 7-5, the relation between the
number of regions and the deflection at the midpoint of the free
edge obtained by the BETM method is compared with those obtained
by other methods.

In Fig.7-16(d), the centerline configurations obtained by
the BETM method for 5 regions pattern are compared with those
obtained by other methods. As shown in Fig.7-16(d), good
agreement exists between the results obtained by the BETM method
and other methods.

Figs.7-17(c), 7-17(d) and Table 7-6 show the results for a
uniformly loaded cantilevered plate. The same plate and mesh
patterns as those employed in the previous example are used here.
Similar results to those of previous example are also obtained.

Fig.7-18(c) shows the -centerline configurations of a
cantilevered plate with variable thickness subjected at the free
edge to a line load, shown in Fig.7-18(a). In the numerical
calculation, the plate is divided into 8 strips with constant
thickness (Fig.7-18(b)), and each of which is subdivided into 12
constant elements. In Fig.7-18(c), the results obtained by the
finite element method (5 x 8 mesh pattern) are also shown. As
shown in Fig.7-18(c), good agreement exists between the results
obtained by the BETM method and the finite element method.

Fig.7-18(d) shows the comparison of the centerline config-
urations of a uniformly loaded cantilevered plate with variable
thickness obtained by the BETM method and the finite element

method. The same plate and mesh patterns as those employed in the
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previous example are used here. Similar results to those of the
previous example are obtained.

Fig.7-19(b) shows the centerline configurations of a simply
supported continuous plate with a internal support under uniform
load, shown in Fig.7-19(a). In the numerical calculation, the
plate is divided into 2 strips, and each of which is subdivided
into 12 constant elements as shown in Fig.7-19(b). The technique
for internal condition described in this chapter is introduced to
overcome the section of internal support. In Fig.7-19(b), the
results obtained by the finite element method are also shown.
The mesh patterns employed in the finite element method are shown
in Fig.7-19(b). As shown in Fig.7-19(b), good agreement exists
between the results obtained by the BETM method and the finite
element method.

Fig.7-20(b) shows the results for a uniformly loaded clamped
continuous plate with a internal support(Fig.7-20(a)). The same

mesh pattern as that employed in the previous example is used

1ere. Similar results to those for a simply supported plate are
obtained.

Fig.7-21(b) shows the centerline configurations of a simply
supported continuous plate with 3 internal supports under uniform
load, shown in Fig.7-21{(a). In the numerical calculation, the
plate is divided into 4 strips, and each of which is subdivided
into 12 constant elements as shown in Fig.7-21(b). In Fig.7-
21(b), the results obtained by the finite element method are also
shown. The mesh patterns employed in the finite element method
are indicated in Fig.7-21(b). As shown in Fig.7-21(b), good
agreement exists between the results obtained by the BETM method
and the finite element method.

Fig.7-22(b) shows the results for a partially loaded, simply
supported continuous plate with 3 internal supports (Fig.22(a)).

The same mesh pattern as that employed in the previous example is
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used here. Similar results to those of previous example are

obtained.

7-6 CONCLUSIONS

A structural analysis method based on a combined use of
boundary element - transfer matrix method is proposed for two-
dimensional and plate bending problems. A transfer matrix is
derived from the system of equations derived by the procedure
based on the boundary element method. The technique of exchanging
the state vectors is proposed to avoid the propagation of round-
off errors occurred in recursive multiplications of the transfer
matrix, and rotation matrix is employed for axisymmetric struc-
tures to reduce computational efforts. Furthermore, the technique
for the structure with intermediate supports is proposed. From
the numerical examples presented in this chapter, following
conclusions are obtained:

(1) In the proposed method, the sizes of the matrices
involved in the process of solution depend on the number of
elements of only one subregion; the use of a large number of
elements is therefore permitted without getting involved with
large matrices. A much smaller computer is thus sufficient.

(2) In two-dimensional and plate bending problems, the
results obtained by the BETM method agree well with those by the
boundary element and finite element methods, which demonstrates
the accuracy of the proposed method.

(3) The technique of exchanging the state vectors is very
efficient to avoid the propagation of round-off errors occurred
in many subfegions pattern.

(4) By using the technique for intermediate simple support,

the BETM method can be applied to continuous plate, and results
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obtained by this method are agree well with those by the finite
element method.

(5) To employ the rotation matrix for deriving the transfer
matrix is efficient for axisymmetric structures in reducing
computational efforts.

From the mentions described above, this method can be

successfully applied to the long and non-homogeneous systems.

APPENDIX 7-1 SUBREGIONS TECHNIQUE

A piecewise homogeneous solid may be considered as a
combination of a number of separate homogeneous regions D (k =
1,...., m), each having different elastic constant (Fig.7-7).
For each region D« with boundary surface Sk the resulting system

of equations can be written as

Howe = Geaqx e (7-70)

in which ux and q« are the displacements and tractions over the
surface of the region D.; Hc and G« are calculated using the
elastic constants of region Di.

Eq.(7-70) may be rewritten as

Usr e
(He He Hi)x U = (Ge G G- )x Qe p = srmercenens (7-71)
Ur Jk qr Jk

in which uesr and qa« are the displacements and tractions at the
left interface of region D., u-« and q-« are the displacements
and tractions at the right interface, u.x and q.x are the
displacements and tractions at the external boundary and Hax,

Hov, H- v, Gex, Gex and G, are the submatrices of Hy and G.
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Eq.(7-71) can be assembled in a final matrix for all
individual surfaces S, Sz, ..., Su. During the assembly
process, which is very similar to that used in the finite element
method, the unknown displacements and tractions at the common
interfaces between the regions are eliminated by applying the
interface equilibrium and compatibility conditions, e.g. for all

interface elements between region D« and Dc.1 we have

Uik = Wik = Ueck+1)y Qik = Grk = —dack+1) == (7-72)

For a body divided into three regions, for instance, the

global system of equations can be written as follows:

Ue 1
Hev Hrg i1
Heo Heo H:iz Ue 2
H s Hes a2
e 3
Qe 1
Ge1  Gri qi1
= ~Gee Ge 2 Gr2 T T R (7-73)
-Gez Ges qi:
Qe 3

By imposing the boundary conditions of the problem and
remembering that both the displacements and tractions at the
interface are considered as unknown, the system (7-73) can be

reordered as
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Ue 1
Ui
Hew Heo  -Grg qi 1
HR2 GRE He 2 Hr 2 _Gr 2 Ue 2
Hzas Gze3 He 3 ;2
ai:z
Ue 3
Ge 1 e 1
= Gs 2 Qe 2 R (7_74)
Ge 3 Qe 2
or
Hu=Gq e (7-75)

According to the boundary conditions, the submatrices
corresponding to the external boundary may interchange their
positions. After Eq.(7-75) has been solved, the stresses and
displacements at any peint within a region can be obtained wusing

the interior version of Eq.(7-71) for the appropriate domain.

LR VIS wailT

This subregions technique 1is also required for bodies with

different dimensions in different directions.
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NOTATION

The follqwing symbols are used in this paper:

D -

Mix sMyy s My

ko]
* QT3

Q»,Q

=
ol 2 e QR

* <

1l

flexural rigidity of plate;

= modulus of elasticity;

components of body force;

= shear elastic modulus;

bending moments;
direction cosine;

= surface force;

= prescribed surface force;

= surface force corresponding to weighting field;
= transverse load;

= transverse shear forces;

= rotation matrix;

= transfer matrix;

displacement;

prescribed displacement;

displacement corresponding to weighting field;
effective shear force;

reactions at internal support;

state vector;

= unknown initial state vector;
= rotation normal to boundary;

rotation tangential to boundary;
Dirac delta function;

= components of strain;

components of strain corresponding to weighting

field;
Poisson’s ratio;
components of stress;

components of stress corresponding to weighting

field; and
interpolation function.
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Table 7-1 Comparisons of Displacements for Cantilevered Plate

Subjected to In-Plane Load

Pattern A
Displacement (cm)
Scheme 1 Strip 2 Strips 4 Strips 6 Strips 8 Strips 10 Strips
BEM 0.2245 0.3642 0.3966 0.4099 0.4138 0.4150
BEMS 0.2245 0.3090 0.3831 0.3832 0.3752 0.3690
BETM 0.2245 0.3090 0.3831 0.3832 0.3752 0.3690
Pattern B
Displacement (cm)
Scheme 1 Strip 2 Strips 4 Strips 6 Strips 8 Strips 10 Strips
BEM 0.2438 0.3353 0.4003 0.4155 0.4190 0.4201
BEMS 0.2438 0.2877 0.3531 0.4046 0.4204 0.4112
BETM 0.2438 0.2877 0.3531 0.4046 0.4204 0.4112

Table 7-2 Comparisons of Computation Times for Cantilevered Plate

Pattern A

Computation Time (sec)
Scheme 1 Strip 2 Strips 4 Strips 6 Strips 8 Strips 10 Strips
BEM 0.4 0.6 1.3 2.4 3.8 5.5
BEMS 0.4 0.9 2.5 5.7 11.3 19.9
BETM 0.9 1.0 1.2 1.5 1.7 2.0
Pattern B

Computation Time (sec)
Scheme 1 Strip 2 Strips 4 Strips 6 Strips 8 Strips 10 Strips
BEM 0.9 1.3 2.4 3.0 5.6 7.7
BEMS 0.9 2.4 8.3 12.2 25.6 47.2
BETM 2.9 3.2 3.8 4.4 5.2 5.8
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Table 7-3 Comparisons of Displacements for Simply
Supported Plate under Uniform Load

Displacement (w*)

Scheme 1 Strip 3 Strips 5 Strips
BEM 0.003502 0.003983 0.004000
BEMS 0.003502 0.004001 0.003979

BETM 0.003502  0.004001 0.003979
* D * =

w* = qa4 Wi Wreract = 0.004060

Table 7-4 Comparisons of Displacements for Simply
Supported Plate under Concentrated Load

Displacement (w*)

Scheme 1 Strip 3 Strips 5 Strips
BEM 0.01019 0.01127 0.01134.
BEMS 0.01019 0.01120 0.01110
BETM 0.01019 0.01120 0.01110
D
w* = > Wi Wreyact = 0.01160
pa
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Table 7-5 Comparisons of Displacements for Canti-
levered Plate Subjected to Line Load

Displacement (w*)

Scheme 1 Strip 3 Strips 5 Strips

BEM 0.001680 0.003206 0.003384

BETM 0.001680 0.002923 0.003436
D

W* =-"‘5- w; w*(FEM, 6x6 Elements) = 0.003474
pa

Table 7-6 Comparisons of Displacements for Canti-
levered Plate under Uniform Load

Displacement (w*)

Scheme 1 Strip 3 Strips 5 Strips
BEM '~ 0.058779 0.115954 0.121438
BETM 0.058779 0.107078 0.125253
D
w* = 2 w*(FEM, 6x6 Eiements) = 0.129267
qa
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Fig.7-4 Coordinate System for Fig.7-5 Moments and Shear Forces
Plate Bending Problems
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Fig.7-6 Notations for Plate Bending Problems
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Chapter 8 CONCLUSIONS

In this paper, two structural analysis methods; 1) combined
use of finite element and transfer matrix method, and 2) combined
use of boundary element and transfer matrix method, are studied.

Main conclusions of each chapter have been drawn as follows.

Chapter 2

The procedures of the combined finite element - transfer
matrix method are applied to the bending and buckling problenms.
Furthermore techniques for treating the complicated structures
such as those with intermediate elastic and rigid columns, and
with stiffeners are proposed.

(1) In bending and buckling problems good agreement exists
between the FETM solutions and the exact solutions, which
demonstrates the accuracy of this method.

(2) Since the size of the .transfer matrix in the FETM method
is equal to the number of degrees of only one strip, this method
has the advantage of reducing the size of matrix to less than
that obtained by the ordinary finite element method.

(3) Point matrices for elastic support and rib make possible
the application of the FETM method to bending and buckling
problems of the plates with intermediate elastic supports and
stiffeners.

(4) By using the techniques for intermediate rigid column
and simple support, the transformation procedure can be performed

in a simple schematic manner.

Chapter 3
The combined finite element - transfer matrix method for the
elastic-plastic problems with large displacement is studied. A

computer program based on this theory has been developed.
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(1) Good agreement exists between the results obtained by
the FETM method and the conventional finite element method
based on incremental procedures, which demonstrates the accuracy
of this method in the elasto-plastic problems with large defor-
mation.

(2) In the nonlinear problems, the FETM method has the
advantage of reducing the size of matrix compared to the ordinary

finite element method as in the linear problems.

Chapter 4

The combined finite element - transfer matrix method is
extended to the linear and nonlinear problems of thin-walled
members, and a computer program based on this theory has been
developed.

(1) Good agreement exists between the results obtained by
the FETM method and the standard finite element method not only
in the linear problems but also in the nonlinear problems, which
demonstrates the accuracy of the proposed method.

(2) From numerical examples presented in this chapter, it is
shown that this method can be successfully applied to the 1long
thin-walled members by reducing the size of the matrix and the
computation time relative to less than that obtained by the
finite element method.

(3) By adopting the transfer matrix for substructures
derived in this chapter, complex thin-walled members, such as
I-section and box-section plate girders with vertical stiffeners

and web perforations, can be treated easily.

Chapter 5
A linear transient analysis method of the structures under
random excitations by a combined finite element - transfer matrix

method is proposed. An approximation is introduced in the
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equations of motion for the case of in-plane excitations in order
to reduce computational efforts and the technique of exchanging
the state vectors is proposed to avoid the propagation of round-
off errors occurred in recursive multiplications of the transfer
and point matrices.

(1) In the out-of-plane and in-plane excitations, good
agreement exists between the results obtained by the FETM method
and the conventional finite element dynamic analysis, which
demonstrates the accuracy df linear transient analysis by the
FETM method.

(2) In the case of in-plane excitations, the results by the
FETM method based on the equations of motion with an approxi-
mation described in this chapter agree with those based on the
equation without an approximation, and it becomes clear that
this approximation of the equations is efficient to reducing com-
putational efforts.

(3) The technique of exchanging the state vectors is very
efficient for many strips pattern model to avoid the propagation

of round-off errors.

Chapter 6

A linear transient analysis method based on a combined use
of finite element and transfer matrix methods described in previ-
ous chapter is extended to nonlinear dynamic problems of plates
under random out-of-planhe and in-plane excitations. The Prandtl-
Reuss’ law obeying the von Mises yield criterion is assumed, and a
set of moving coordinate systems is used to take geometric non-
linearity into consideration.

(1) In inelastic and large deformation dynamic problenms,
good agreement exists between the transient responses of the
plates under out-of-plane and in-plane excitations obtained by

the FETM method and the conventional finite element method, which
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demonstrates the accuracy of the proposed method.

{2) Equilibrium iteration in each time step is effective to
improve the solution accuracy and to avoid the development of
numerical instabilities.

(3) Since in the FETM method, considerable computation time
is required in the derivation of the transfer matrix, the pseudo-
force iteration method is more efficient compared to the tangent

stiffness iteration method.

Chapter 7

A structural analysis method based on a combined use of
boundary element - transfer matrix method is proposed for two-
dimensional and plate bending problems. The technique of exchang-
ing the state vectors is proposed to avoid the propagation of
round-off errors, and rotation matrix is employed for axisymmet-
ric structures to reduce computational efforts. Furthermore, the
technique for the structure with intermediate supports is pro-
posed.

(1) In the proposed method, the sizes of the matrices
involved in the process of solution depend on the number of
elements of only one subregion; the use of a large number of
elements is therefore permitted without getting involved with
large matrices. A much smaller computer is thus sufficient.

(2) In two-dimensional and plate bending problems, the
results obtained by the BETM method agree well with those by the
boundary element and finite element methods, which demonstrates
the accuracy of the proposed method.

(3) The technique of exchanging the state vectors 1is very
efficient to avoid the propagation of round-off errors occurred
in many subregions pattern.

(4) By using the technique for intermediate simple support,

the BETM method can be applied to continuous plate, and results
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obtained by this method are agree well with those by the finite
element method.

(5) To employ the rotation matrix for deriving the transfer
matrix 1s efficient for axisymmetric structures in reducing
computational efforts.

From the mentions described above, this method can be suc-

cessfully applied to the long and non-homogeneous systems.

The following subjects are required for future research and

development.

FETM Method in Static Problem

(1) Investigation of efficiency and 1limitation of the FETM
method in more practical problems.

(2) Study of effective nonlinear algorithm for the FETM method.

FETM Method in Dynamic Problem

In addition to the subjects prescribed in statiec problem,
the following subjects are required.
(3) Application of the FETM method to inelastic dynamic
problems with large deformation.
(4) Extension of this method to thin-walled members, such as

box~-section and I-section plate girders.

BETM Method
(5) Extension of the BETM method to nonlinear problems.
(6) Application of this method to thin-walled members, such as
box—-section and I-section plate girders.
(7) Investigation of efficiency and limitation of the BETM
method with other boundary elements, such as linear and

more higher order elements.
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(8) Study of the relation between the discretizing pattern and
the result not only in the BETM method but also in the

boundary element method.

-217-



10.

AUTHOR’S PUBLICATIONS

Publications

"Buckling Analysis of Shear-Elastic Plate with Stiffener",
Proceeding of JSCE, No. 298, June 1980, pp.11-8, (with S.
Misawa, T. Shigematsu and T. Hara, in Japanese).

"Untersuchung der Stabilitit einseitig gedriickter, lingsaus-
gesteifter, orthotroper Rechteckplatten", Der Stahlbau, June
1982, pp.171-176 (with T. Shigematsu and T. Hara).

"Structural Analysis by a Combined Finite Element-Transfer
Matrix Method", Computers & Structures, Vol. 17, No. 3,
May, 1983, pp.321-326 (with T. Shigematsu and T. Hara).

"Zur numerischen und experimentellen Schwingungsuntersuchung
von Bauwerken unter unregelmapiger Belastung",Bauingigenieur,
Vol. 59, 1984, pp.97-101 (with T. Shigematsu and T. Hara).

"Buckling Analysis of Thin Walled Opened and Cross Sectional
Members with Shear Deformation", Trans. of AlJ, No.342,
April, 1984, pp.39-44 (with T. Shigematsu and T. Hara, in

Jahgp =] ).

b
uyuleo'

"A Combined Finite Element - Transfer Matrix Method", Journal
of Engineering Mechanics, ASCE, Vol. 110, No. 9, September,
1984, pp.1335-1349 (with T. Shigematsu and T. Hara).

"Numerische Berechnung bei nichtelastischen Schwingungs-
systemen mit Hilfe von Matrizenfunktionen", Bauingenieur,
Vol. 60, 1985, pp.53-58 {(with T. Shigematsu and T. Hara).

"Dynamische Stabilitit des vorverformten Stabes unter
pulsierender Axialbelastung", Bautechnik, Heft 2, 1986,
pp.95-102 (with T. Shigematsu and T. Hara).

"Analysis of Thin-Walled Members by Finite Element - Transfer
Matrix Method", Structural Eng./Earthquake Eng. Vol. 3, No. 1,
April, 1986, pp.83s-90s (with T. Hara).

"Structural Analysis by a Combined Boundary Element -
Transfer Matrix Method", Computers & structures, Vol. 24,
No. 3, 1986, pp.385-389 (with T. Shigematsu and T. Hara).

-218-



11.

12.

13.

14.

"Transient Analysis of Plates by a Combined Finite Element -
Transfer Matrix Method", Computers & Structures, Vol. 26,
No. 4,1987, pp.543-549 (with T. Shigematsu).

"Dynamic Stability Analysis by a Matrix Function", Journal
of Engineering Mechaniecs, ASCE, Vol. 113, No. 7, July,
1987, pp.1085-1100 (with T. Shigematsu and T. Hara).

Bending Analysis of Plates with Variable Thickness by
Boundary Element-Transfer Matrix Method", Computers &
Structures, Vol. 28, No. 5, 1988, pp.635-640

(with T. Shigematsu).

"Large Deformation Dynamic Analysis of Plates", Journal of
Engineering Mechanics, ASCE, Vol. 114, No. 4, April, 1988,
pp.624-637 (with T. Shigematsu).

Technical Papers in the Memoirs of the Faculty of Engineering,

Ehime University

"On the Buckling Analysis of Shear-Elastic Plate with
Stiffeners", , Vol. 9, No. 1, February, 1978, pp.91-101
(with S. Misawa, and T. Hara, in Japanese).

"On the Buckling Analysis of Sandwich Plate on Elastic Line
Support", , Vol. 9, No. 2, February, 1979, pp.161-173
{with S. Misawa, T. Shigematsu and T. Hara, in Japanese).

"On the Buckling Analysis of Orthotropic Sandwich Plates",
Vol. 9, No. 3, February, 1980, pp.69-77 (with S. Misawa,
T. Shigematsu and T. Hara, in Japanese)

"Large Deflection Analysis of Multilayer Sandwich Plates",
Engineering, Vol. 9, No. 4, February, 1981, pp.79-89
(with S. Misawa, T. Shigematsu and T. Hara, in Japanese).

"On the Buckling Analysis of Thin-Walled Cross Section
Members", Vol. 9, No. 4, February, 1981, pp.101-112 (with
S. Misawa, T. Shigematsu and T. Hara, in Japanese).

"On the Buckling Analysis of Thin-Walled Open and Closed
Cross Section Members", Vol. 10, No. 1, February, 1982,
pp.123-132 (with S. Misawa, T. Shigematsu and T. Hara,

in Japanese).

-219-



10.

11.

12.

13.

. "On the Buckling Analysis of Plates by FE-TM Method",

Vol.10, No.l, February, 1982, pp.133-142 (with S. Misawa,
T. Shigematsu and T. Hara, in Japanese).

. "On the Bending Analysis of Plates by FE-TM Method",

Vol.10, No.Z, February, 1983, pp.151-159 (with T. Shigematsu
and T. Hara, in Japanese).

. "Buckling Analysis of Open Cylindrical Shells with

Stiffener", Vol.10, No.3, February, 1984, pp.187-200 (with T.
Shigematsu, T. Hara and T. Sugiyama, in Japanese).

"Buckling Analysis of Cylindrical Shells with Stiffener", by
Transfer Matrix Method", Vol.10, No.4, February, 1985,
pp.169-177 (with T. Shigematsu, T. Hara and T. Shugiyama,
in Japanese).

"Structural Analysis by a Combined Boundary Element-Transfer
Matrix Method", Vol.11, No.2, February, 1987, pp.141-149
{(with S. Kataoka, in Japanese).

"Numerische Berechnungen der Dynamischen Stabilitat bei
axialbelastetem Stab mit Vorverformung", Vol.l1ll, No.2,
February, 1987, pp.151-159 (with T. Shigematsu and T. Hara).

"Large Deformation Dynamic Analysis of Thin Plates by FETM

Method", Vol.1l1, No.3, February, 1988, pp.201-210 (with
M. Murata, in Japanhese).

~-220-



