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Preface

The systematic study of queueing theory was on the design of automatic telephone
exchanges at the beginning of this century. It is Erlang [6] who may be considered
as the founder of queueing theory. Queueing theory then developed extensively with
the progress of operations research. Various queueing systems appeared in technology
and management, such as production lines, transportation systems, data processing,
computer systems and telecommunication systems, are recognized as a new fields of its
application. A vast amount of literature on queueing theory is growing rapidly as the
fields of application expand.

In most of the published studies of queueing systems, it has been assumed that
the service times of all servers are mutually independent. In some practical situation,
however, this assumption is not realistic, because of the competition or cooperation
among servers . In this sense, it has been expected to develop the analysis of queueing
systems with correlated service times. On the other hand, when describing a queueing
system, the concept of customer types is very useful. For instance, most retrial queueing
models deal with one type of calls. But there are some practical models which deal with
several types of calls. Roughly speaking, this thesis provides explicit solutions for these

two problems.

The main theme of this thesis is twofold: first, to introduce the multivariate exponen-



tial distribution of Marshall and Olkin [58] as the correlated service time distribution
of multiserver and tandem queueing systems and investigate the effect of correlated
service times comparing with the independent case; second, to propose several types of
tandem queueing systems with the number of customers and study the sensitivity of
performance measure for these systems. Some kind of matters which are concerned with
queueing theory, such as jockeying, blocking and switching rule etc., are also consid-
ered to advance the above work. A multiserver queueing system with additional service
channels added to the thesis is such a topic, where the number of channels depends
on the present number of customers. The author hopes the works contained in this
thesis will contribute to the development of analytical approaches for queueing systems
with correlated service times and several types of customers, and be used for practical
applications.

Kanji YONEYAMA

December, 1996
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Chapter 1.

INTRODUCTION

1.1. Review of Correlated Queueing Systems

With few exceptions, queueing theory has progressed under three sets of independence
assumptions; an arrival process is a renewal process, a service time process is a sequence
of i.i.d.(i.e. independent and identically distributed) random variables, arrival processes
and service time processes are independent processes.

First, we review the literature on queueing systems which relaxes the assumption of
an independent interarrival time.

It is not uncommon, in computer system modelling, to assume that the arrivals of
jobs follow a Poisson process. Although this hypothesis is usually chosen because of
the resulting tractability, it is recognized that the Poisson process is often a realistic
representation of actual arrival process.

Mathematically, this can be explained as follows. In some circumstances, the jobs
arrival process actually results from superposition of several independent process. It is
well known that the superposition of n renewal processes yields a new process, which
is asymptotically a Poisson process, as 7 increases to infinity, provided that suitable

conditions are satisfied (Cox and Smith [15]). If this limiting property does not hold,



one concludes firstly that the combined process is not necessarily a Poisson process;
then it is not solely characterized by the mean interarrival time. Secondly, the combined
process is not necessarily a renewal process, in which case the interarrival times are not
independent identically distributed random variables.

Latouche [55] considered a simple queueing system for which the arrival process
departs slightly from the Poisson process; the standard deviation of the interarrival
time distribution is approximately equal to its mean, and successive interarrival times
are almost non-correlated. He showed that the system has a stationary probability
vector of matrix-geometric form.

Latouche [56] considered the M/PH/1 queueing system whose arrival process is the
same as the above. He showed how the stationary probability distribution may be
studied by a perturbation analysis.

Szekli et al. [98] considered Markov renewal arrival processes with particular transi-
tion matrix for the underlying Markov chain which allow to change dependency proper-
ties without changing distribution conditions at the same time. He studied the effects
of dependency (such as association) in the arrival process to a single server queueing
system on the mean queue length and the mean waiting times.

Daganzo and Diez-Roux [16] examined the infinite-server queueing model with a
stationary but arbitrarily correlated arrival process. Their research was motivated by a
container storage problem at seaports. They assumed that the arrival process is a point
process. They presented exact expressions for the variance of the number of customers
in the system.

Next, we survey the study of queueing systems with correlated service times.



As far as we know, Mitchell et al. [60] were the first to investigate the effect of
correlation between service times at successive stages on the physical characteristics of
tandem queueing systems. That correlation is intuitively clear from the supermarket
example where most customers who spend a long time in the shopping area also ipso
facto require a long check time. And a patient with unknown disease may spend a long
time at each of a series of investigative stages until the disease is identified, followed
perhaps by a long period of treatment and convalescence. Mitchell et al. [60] simulated
a correlated two-stage tandem queueing model in which their service distribution is a
special case of the bivariate exponential distribution discussed by Wicksell {101] and
Kibble [45] and more generally by Krishnamoorthy and Parthasarty [50] and Paulson
[85]. Their simulation indicates that the expected waiting time at the second stage with
infinite intermediate buffers is smaller than in the case of independent service times.

Choo and Conolly [11] studied analytically the above model and showed that the
mean waiting time in queue decreases as correlation between the service times increases,
for light as well as heavy traffic.

These papers, and development of large-scale data transmission systems, renewed
interest in obtaining analytical results for this problem.

The transmission of messages over a network was modeled by Kleinrock [46] as a net-
work queue, where the transmission time of a message at a station is the service time
there. Kleinrock observed that the service times of the same customer at different sta-
tions are dependent because the transmission time of a message is roughly proportional

to message length.

Pinedo and Wolff [87] considered a two-stage tandem queueing system in which a



given customer has equal service times at each station. They established that for heavy
traffic, the mean waiting time in queue is lower when service times are dependent (equal)
than when they are independent, but for light traffic, the reverse is true. They showed
that the crossover between these two modes of behavior occurs at server utilization of

approximately 0.58.

Wolff [102] obtained light traffic results about the mean waiting time in queue for
r-stage tandem queueing system with Poisson arrivals where the r service times of the
same customer at different stations have an arbitrary joint distribution. He showed that
for r = 2, when service times are positively quadrant dependent, the mean waiting time
in queue is greater than when service times are independent. He pointed out that both
the results and derivation of some equations in Choo and Conolly [11] are incorrect
and simulation results in Mitchell et al. [60] for the same model shed no light on the

conflicting results in Choo and Conolly [11] and Pinedo and Wolff [87].

Finally, we review the literature on queueing models in which arrival processes depend

upon service processes.

Though admittedly the assumption of independence between arrival and service pat-
terns in queueing models results in a simpler analysis of the processes most commonly
studied, it is by far less justifiable from the viewpoint of modelling realistic queueing
phenomena. In practice some kind of relationship often exists between arrival and ser-
vice mechanisms. There are essentially two ways of building models which do not include
this basic assumption: either the arrival and/or service parameters are managed to vary
with the present number of customers, or consecutive interarrival and service times are

not to be statistically independent. The former implies a semi-Markov process for the



system state, in the simpler case a generalized Markovian birth and death process for
the arrivals and services. The latter means assuming a 2k-dimensional random variable
with positive correlation between components for k consecutive interarrival intervals
and the corresponding service times. While numerous special cases of the former exist
in the literature, the latter seem to have by and large been ignored.

Conolly [12] and Conolly and Hadidi [13] proposed a new model in which the service
time S of any customer is considered to be directly proportional to the interarrival
interval 7' preceding his arrival.

Mitchell and Paulson [61] in a simulation study assumed, for the first time, a kind
of stochastic dependence between T' and S. Their model is a generalization of the
M/M/1 in which a correlated pair (T, S) of random variables is now associated with
each arriving customer. This pair follows the bivariate exponential distribution which
is the so-called Wicksell-Kibble distribution as the same as used in Mitchell et al. [60].
For more details on the concept of correlation and the properties of its bivariate density
see [14].

A simulation study of the waiting time process of such a model is reported in Mitchell
and Paulson [61] while a mathematical analysis of the customer’s waiting time has been
given by Conolly and Choo [14] and by Hadidi [31]. Furthermore Hadidi [32] used
formulae for the waiting time distribution and its moments, so far obtained, to examine
the sensitivity of this distribution to the value of the correlation coefficient.

Langaris [53] obtained a closed-form expression for the Laplace transform of the joint
probability and probability density function of the busy period duration and the number

of customers served in it.



In those papers the authors considered a single server queue and assumed that the
interarrival and service times take the class of Wicksell-Kibble bivariate exponential
distribution which is defined using Bessel functions. The Laplace transform of the
waiting time distribution is obtained in terms of the solution of some recursive equations,

hence it is hard to derive the effect of the correlation.

Chao [9] assumed that the interarrival and service times have the class of bivariate
exponential distributions defined by Marshall and Olkin [58]. He showed that the cus-
tomer waiting time is monotonically decreasing in the dependency in increasing convex
ordering sense.

All the above studies considered a single server queue, but Langaris [52] considered
the same correlated queue as treated in Langaris [53] with infinitely many servers and
derived explicitly formulae concerning the system state probabilities and the output

process.

1.2. Review of Queueing Systems with Several Types of Cus-
tomers

When describing the queueing model of a computer system, a manufacturing system
and a telecommunication system, the concept of customer types is very useful. In a com-
puter system, customer types are called as job classes or task classes. Cpu-bound jobs
(e.g., numerical analysis, batch, and production jobs), I/O-bound jobs (e.g., interactive,
spreadsheet, editing, and game-playing jobs), and mixed jobs (e.g., student, database,
and maintenance jobs) represent a few of the common customer classes. In manufac-

turing system, examples include production facilities which manufacture batch orders



for a number of distinct products with the same equipment and/or operators. Often,
different service level requirements and/or holding cost rates apply to different items,
so that significantly different economic consequences result from the delays or sojourn
times experienced by the various items. In a telecommunication system, beterogeneous
data types (e.g., interactive message, computer outputs, file transfer, facsimile, etc.)
complete with voice for the limited availability for shared transmission equipment, e.g.,
buses in a local area network or frequency bands in a satellite channel.

Ancker and Gafarian [3] discussed a single server queueing system for m different
types of customers having independent Poisson arrivals and exponential service times.
Neuts [70] studied an M/G/1 queue with m types of customers in which the server is
assumed to expend a random length time in change-over from one type of customer to
another.

A multiserver queueing system in which the customers are of several different types
have been analyzed in Homma and Fujisawa [36], Kotiah and Slater [49], Slater and
Kotiah [96], Smit [97], and Federgruen and Groenevelt [25].

Shioyama [94] studied a two stage tandem queue in which two types of customers are
first served at the first stage server and subsequently proceed to the queue at the server
corresponding to their types in the second stage.

A closed queueing network system in which the customers are of several different
classes have been studied by Kelly [44], Lavenberg and Reiser [57], Bronshtein et al. [7],
and Dowdy et al. [20].

Retrial queueing systems are characterized by the feature that arriving calls who find

the server busy join the retrial group to try again for their requests in random order and



at random intervals. Retrial queues have been widely used to model many problems
in telephone switching systems, computer and communication systems. Most retrial
queues deal with one type of calls. But there are some practical models which deal with

several types of calls. Choi et al. [10] explained two examples as follows.

One example is a telephone switching system (Falin et al. [24]). In modern telephone
exchanges, subscriber lines are usually connected to the so-called subscriber line mod-
ules. These modules serve both incoming and outgoing calls. An important difference
between these types of calls lies in the fact that in the case of blocking due to all chan-
nels busy in the module, outgoing calls can be queued, whereas incoming calls get busy
signal and must be retried in order to establish the connection. As soon as the channel is
free, an outgoing call, if present, occupies the channel immmediately. Therefore incoming
calls may not establish the connection as long as there are outgoing calls waiting. This

fact implies that outgoing calls have non-preemptive priority over incoming calls.

Another example is a mobile cellular radio communication system (Yoon and Un
[103]). For an effect use of frequency channels, the service area is divided into a certain
number of cells so that the base station in each cell can reuse the channels used in
the other cells at the same time. The base station in a cell handles two types of calls.
One type is the call initiated in its cell (originating cell). A subscriber with a blocked
cell usually reinitiates his attempt after random time. The other type arises when a
subscriber holding the line enters the cell from adjacent cells (handoff call). If the base
station fails to assign an idle channel until the subscriber gets out of the overlap region
of the cells, he suffers from a breakdown during the conversation. The degradation of

the quality of the telephone service caused by such a breakdown is more serious than



caused by a blocking of an originating call. Thus the base station may give priority to
a handoff call by assigning a queue. In the mobile cellular radio communication, the
loss of handoff call and the time needed for an originating call to get a channel are the
important factors for the quality of service.

A retrial queueing system with two types of customers have been analyzed in Kulkarni

[51], and Choi et al. [10].

1.3. Multivariate Exponential Distribution of Marshall and
Olkin

There have been several formulations of bivariate exponential distributions. These
include the distributions of Gumbel [29], Freund’s bivariate extension [26), the distribu-
tions of Downton [21] and Hawkes [34]. Marshall and Olkin [58] have proposed a very
important bivariate exponential distribution, the BVE. One of the derivations of the
BVE is based on a generation of the complete memoryless property of the univariate

exponential distribution. This generalization is given in the following definition.

Definition 1.1. A bivariate random variable (X,Y") is said to have the loss of memory

property (LMP) iff
F(sy +t,80+1) = F(s1,82)F(t,t) for s1,85,t >0, (1.1)

where

F(s,t) = P(X > s,Y > 1). (1.2)

Marshall and Olkin showed that by assuming exponential marginals and the LMP.

the BVE is obtained. In the first place, Marshall and Olkin proposed the BVE as a



dependent life time distribution in reliability theory. Another derivation of the BVE is
given by the following fatal shock model (see Barlow and Proschan [5]).

Suppose three independent sources of shocks are present in the environment. A
shock from source 1 destroys component 1; it occurs at a random time U;, where
P(U; > t) = e #1t, A shock from source 2 destroys component 2; it occurs at a random
time U,, where P(U; > t) = e #2t. Finally, a shock from source 3 destroys both
components; it occurs at a random time Uj2, where P(Uyz > t) = e #12t. Thus the

random life length 7} of component 1 satisfies

T1 =mjn(U1,U12), (13)

while the random life length 75 of component 2 satisfies

Ty = min(Us, Uy2), (1.4)

Hence the joint survival probability

F(tl, tz) = P(T1 > tl, Tz > tz) = exp{—p,ltl — [thz — K12 max(tl,tz)} (15)

for t; > 0,13 > 0. The joint distribution F(t;,12) with survival probability given by
(1.5) is called the bivariate exponential distribution (BVE). The nonfatal shock model
also yields the BVE, as well as fatal.

The BVE has exponential marginal distributions with survival probabilities given by:

Fi(th) = P(Ty > t3) = exp{—(p1 + p12)t:1} fort; >0,

Fi(t2) = P(T > t3) = exp{—(u2 + p12)t2} fortz > 0. (1.6)

10



Similarly, we shall treat the multivariate exponential distribution (abbreviated as MVE)
of Marshall and Olkin. To fix ideas, consider first an extension of fatal shock model to
a three-component system.

Assume the Poisson Z;(t) with rate p; governs the occurrence of shocks fatal to com-
ponent ¢ for ¢ = 1,2, 3, the Poisson process Z;;(t) with rate u;; governs the occurrence
of shocks fatal to components ¢ and j simultaneously for 1 < i < 5 < 3, and the Pois-
son process Zj123(t) with rate pj23 governs the occurrence of shocks fatal to all three
components simultaneously. Assume all the Poisson processes are independent. Let 7;

denote the life length of component ¢ for : = 1,2,3. Then the joint survival probability

F(ty,t,t3) = P(Ty > t1,To > t2,T3 > t3)
= P[Z;(t;) = 0, Z;j{max(t;, 1;)} = O,

Z123{max(t1,t2,t3)} = 0], 1<i< ] < 3. (17)
Thus

F(t1,t2,t3) =exp{—p1t1 — pat> — pats
— prz max(t1,t2) — piz max(ty, t3)
— po3 max(t2,t3) — p12s max(ty, ta,t3)}- (1.8)

By similar arguments we obtain the n-dimensional multivariate exponential distribution

(MVE) with joint survival probability:

n
—F(tl) Tt tn) =exp{— Z /‘L'iti - Z)u'l] ma‘x(ti) t])
=1

i<j

— Y pijrmax(ti,tj,te) — - - - — p12amax(ty, - - tn)}.
i<j<k (1.9)

11



By setting t; = 0, we obtain an (n— 1)-dimensional MVE in the remaining variables. By
iterating this process, we see that the marginal distributions of all orders are MVE; in
particular, the two-dimensional marginals are BVE, and the one-dimensional marginals
are exponential.

In the bivariate case, the BVE results when shocks are nonfatal, as well as fatal. In
a similar fashion, the MVE may be obtained when shocks are nonfatal.

On the other hand, Assaf et al. [4] showed that the BVE is a bivariate phase type
(abbreviated as BPH) distribution and its multivariate extension is a multivariate phase
type (abbreviated as MPH). Raftery [88] introduced a continuous multivariate exponen-
tial distribution and O’Cinneide and Raftery [80] showed that it is MPH and derived
its MPH representation.

Now, we derive the standard MPH representation of the MVE and get the BVE for
the simplest case.

The random vector S = (S,- - -,S,,) is said to have the multivariate exponential
distribution (MVE) of Marshall and Olkin if there exist independent exponential random
variables X7, - -, X} such that for i = 1,---,n, S; = minjcj, X; where J; C {1,---,k}
(see Esary and Marshall [23]).

Assaf et al. [4] first formulated a multivariate phase type (MPH) distribution in the
following way. Suppose {V () : t > 0} is a regular Markov chain with finite state-space
E. Let I'y, - -, I';, be n non-empty subsets of F such that once V enters I'; it never
leaves. Suppose that (., I'; consists of one state A into which absorption is certain.
Let (3 be an initial probability vector on E which puts all its mass on states in '\ {A}.

The infinitesimal generator ) of V is of the form

12



Q= ['Or _OT‘*], (1.10)

where T is a square matrix, e is a column vector of ones, and 0 is a column vector of
zeros. Define Y; = inf{t : V(t) € [;} (¢ = 1,---,n). Then the distribution of (Y1,---,Y,,)
is MPH.

Assaf et al. [4] showed that since each X; is PH, S; is PH and, hence, the MVE is
MPH. It is of interest to give the standard MPH representation of the MVE, using the
results of Assaf et al. [4].

To derive the standard MPH representation of the MVE, we specify explicitly the
ingredients F,Tq,- - -, T, T and 3. The statespace is £ = {1,- - -,m,A}, with 2"
elements q = (g1, - -, ¢n), where ¢; € {0,1}. We have I'; = {q,A} (i =1, --,n), where

¢, =0, so that {A} =7 ; T;. T has the following block partitioned structure:

-dO Bl B2 B3 e Bk .. Bl e Bn——l 7
D; Ciz2 Ciz -+ Cix -+ Cuy -+ Cyng
Dy Cz3 -+ Co --- Co --- Can-1
D3
T= Dy Cu Cxn-1 ,  (1.11)
D, Cin-1
Cn—2n—1
L Dn—]_ J
where
n n n
do = — ( Zﬂi +lefij + Z Pijk + - - - + p123-n ), (1.12)
=1 1<j i<j<k

13



and all the unmarked entries are zeros.

The submatrices are defined as below. The dimensionality of B is 1 x (’l") 1<i<
n—1),Cis (P)x(}) 1<k<n-22<Ii<n-1)andDis () x(}) A <k<n-1).
Ifq=(q1, --,¢,) and r = (rq, - - -,7,) are two states in E'\ {A}, we denote by by, Cqr
and dgr the corresponding element of submatrices B, C and D, respectively. bgr, cqr

and dgr will be zero unless one of the following holds:

@D rgyy=riy=---=r;,, =01 <u<l).
Then

bar = Miyig---is> 1<I<n—-1. (1.13)

(ii) There exists u such that ¢;, =r;, =0 (1 <u <k), and g;, #rj,,7j, =0(1 <
v <Il—k).

Then

k
Car = Hj1---j; +Z/‘l‘iujl"'jz_k Rl [ TRTT A SO N 1<k<n-22<Ii<n-1. (1.14)

u=1

(iii) There exists u such that ¢;, =r;, =0 (1 <u < k).

Then

k k
dor =do+ Y iy + I Pigiy ++ - +Hizin, 1<k<n—1, (1.15)
u=1

u<v

where i,, C {1,---,n} and 5, C {1,---,n}.

To define 3, let Y = (Y3, - -, Y, ) be a random vector taking values in {1,---,m} and
Djr--jn = P[Y1 = J1,- - -, ¥Yn = Jn], where jj ranges over 1,---,m foreach h=1,---,n.

Thus if B4 is the element of 3 corresponding to the state q, we have

14



ﬁq — { Par---qn if qi 7& 0 (Z = 17 - '7n)7 (116)

0 otherwise.

This completes the specification of the standard MPH representation of the MVE.
Consider the simplest, bivariate case, where n = 2 and m = 3. Then the state-space
consists of the four elements (1,1),(1,0),(0,1) and (0, 0), where I'y = {(0,1),(0,0)},

and I'; = {(1,0), (0,0)}, so that A =(0,0). Then T is 3 x 3 matrix

—(p1 + p2 + p12) 1 75
T= 0 —(11 + pa2) 0 - (1.17)
0 0 —(p2 + pi2)

The initial distribution may be written in the form 8 = (1,0, 0,0). From the results

of Assaf et al. [1], F(t1,t2) = P(Yy > t1,Y3 > t2) has the following closed form

F(tl,tz) = Q eT t2 g2 CT (t1—t2) g1 © if tl > tz > 0,

= aeTt g el (t2—t1) g2 e if to>t >0, (1.18)
where
1 0 O 1 0 0 1
a=(1,0,0), gg=|0 1 0|, g2={0 0 O, and e=[1]. (1.19)
0 0O 0 01
They yield

F(ty,t2) = e~ (p1+p12) ti—patz if 1t >ty >0,

— e—Hiti—(p2tpaz) ta if 1, >t >0, (1.20)
consequently we get

F(tl,tz) = e Mi1ti—pata—p12 max (tl,tz), (1.21)

15



which agrees with the bivariate exponential distribution (BVE) obtained in (1.5).

1.4. Purpose of the Thesis

The purpose of this thesis is to provide explicit solutions for three types of queueing
models as follows. First, we pay attention to relaxing the assumption of independent
service times out of three sets of independence assumptions in queueing theory and
analyze both multiserver and tandem queueing systems with correlated service times.
To relax independence of service process, we introduce the multivariate exponential
distribution of Marshall and Olkin described in the previous section as the joint service
time distribution. We investigate the effect of correlated service times both for several
kind of multiserver and tandem queueing models comparing the independent case.

Secondly, we analyze tandem queueing systems with several types of customers. An
extension from single to several types of customers is one simple assumption of a tandem
queueing model, but we study as a research of a tandem queueing system by considering
some kind of matters which are concerned with tandem queueing systems, such as service
order, blocking and switching rule etc..

Thirdly, we investigate a multiserver queueing system with additional service chan-
nels. As mentioned above, there exists the assumption of independence between arrival
and service patterns in queueing theory. One of ways to relax this assumption is to
manage to vary service parameters with the present number of customers under the
fixed number of channels . We change this point of view and analyze a queueing model
whose number of channels are managed to vary with the present number of customers

under fixed service parameters.
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1.5. Outline of the Thesis

This thesis consists of seven chapters. Chapter 2, 3 and 4 are concerned with queueing
systems with correlated service times. Chapter 5 discusses queueing systems with several
types of customers. Chapter 6 treats a queueing system with additional service channels.

In what follows, we shall summarize the contents of each chapter.

In Chapter 2, we consider a multiserver queueing system with correlated service
times whose distribution is the multivariate exponential distribution of Marshall and
Olkin discussed in the previous section of Chapter 1. We treat both jockeying and no
jockeying cases for this model. The steady state probabilities and the waiting time
distribution are derived for the no jockeying case using a generating function approach,
whereas the steady state probability vector is obtained for the jockeying case using a

matrix-geometric approach.

In Chapter 3, we analyze a tandem queueing system with correlated service times
whose distribution is assumed to follow the multivariate exponential distribution of
Marshall and Olkin. We investigate both ordinary and commutative tandem queueing
systems. In ordinary tandem queueing systems, customers are processed through the
ordered sequence of stages, whereas, in commutative tandem queueing systems, cus-
tomers are served by an empty channel in disregard of the ordered sequence of stages.
It has already been shown that the mean queue length of a commutative tandem model
is smaller than that of an ordinary tandem model in the case of independent exponential
service times. In the case of correlated service times, we study the monotonicity of both
the mean number of customers for an ordinary tandem model and the throughput for a

commutative tandem model with respect to the correlation coefficient of service times.
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Finally, considering the results obtained in Chapter 2 and the former section of Chapter
3, we study the effect of correlated service times on a two-server parallel and two-stage

tandem queueing system, respectively.

In Chapter 4, we consider an interchangeable parallel two-stage tandem queueing
system in which each stage consists of two channels in parallel. The service times of
two channels in the first and second stage are assumed to be the bivariate exponential
distribution of Marshall and Olkin. Interchangeable means that a customer who finished
the first stage service can enter both of the second stage channels. On the other side,
the operation that after completion of the first stage service, each customer can enter
only the second stage channel which is located on the same line as his first stage channel
is called as ordinary in this chapter. We calculate the throughput for four models in
which either of an interchangeable or ordinary operation and either of correlated or
independent service times are combined, and compare with these four throughput one

another.

In Chapter 5, we analyze a tandem queueing system with several types of customers in
which the service distribution is exponential or general. Two cases of finite and infinite
intermediate buffers are treated in this chapter. The former case causes the blocking
phenomenon which is important in tandem queueing systems. We calculate the mean
queue length both for a two-stage ordinary and commutative tandem queueing system
with several types of customers, and establish the concavity or convexity of performance
measures such as the mean number of busy stations for a two-stage ordinary tandem
queueing system with no queues ahead of the first stage. The latter is used for modelling

operating systems in computer and switching systems. For this purpose, the assumption
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that the system is served by a single server is added. We calculate the mean number of
customers for a multi-stage tandem queueing system with zero switchover time, which
is served according to a exhaustive service.

In Chapter 6, we consider a multiserver queueing system with additional service
channels, whose service times is exponentially distributed. We give a explicit expression
for the steady state probabilities.

Finally, in Chapter 7, we summarize the results obtained in this thesis and discuss

further directions of the analysis for queueing systems with correlated service times.
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Chapter 2.

MULTISERVER QUEUEING SYSTEMS
WITH CORRELATED SERVICE TIMES

2.1. Introduction

This chapter deals with a correlated multiserver queueing system in which their
service distribution is the multivariate exponential distribution of Marshall and Olkin
discussed in Chapter 1.

Nishida et al. [74] considered a two-server queueing system in which the interarrival
distribution is exponential and their service distribution is the bivariate exponential
distribution of Marshall and Olkin with the same service rate and obtained the steady
state probabilities.

In Section 2.2, as an extension of the above system, we shall consider a multiserver
queueing system which has arbitrary ¢ servers, and show how to get the steady state
probabilities, and calculate them explicitly in the case ¢ = 3. Furthermore, for this
model, we shall derive the queueing time distribution and the waiting time distribution,
and show that the consequent result agrees with the so-called Little’s formula.

On the other hand, jockeying among queues with servers operating in parallel is an

interesting topic in queueing theory. The problem has been studied by Haight [33] and
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Koenigsberg [47] for two-server case, and Disney and Mitchell [18], Elsayed and Bastani
[22], and Kao and Lin [38] for multiserver case. All these authors considered only
models with independent service times. Pivotal to these papers was the assumption
of instantaneous jockeying under exponential queue-namely, jockeying when deemed
advantageous would occur immediately after service completion. Kao and Lin [38]
proposed a matrix-geometric formulation of the jockeying problem considered by Elsayed
and Bastani [22]. By exploiting the structure of the model, they developed a simple
procedure for computing the stationary probability vector underlying continuous time
Markov chain.

In Section 2.3, we shall extend the work of Kao and Lin [38] to compute the stationary
probability vector of the correlated multiserver case where the service distribution is the
multivariate exponential distribution of Marshall and Olkin. In Section 2.4, we give a

summary of Chapter 2.

2.2. Correlated Multiserver Queueing System with Random
Input
2.2.1. Model

Fig. 2-1 shows a multiserver queueing system with correlated service times. As in
the case of ordinary M/M/c(N), it is assumed that the successive customers arrive
according to a Poisson law with parameter A > 0, and the system is able to hold a
maximum N of customers, and the ordinary queue discipline is being employed. Assume
the Poisson process Z;(t) with rate p governs the occurrence of service completion to

server ¢ for 1 <i < ¢, the Poisson process Z;;(t) with rate a governs the occurrence of
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service completion to server 7 and j simultaneously for 1 <z <c¢—1,i+1 < j <¢, and
more than two simultaneous service completion to servers cannot occur since it is not

realistic. The joint distribution of service times X; (1 < i < ¢) is given from (1.9) as

follows:
c c c—1
PriXi > z1,X2 > za,- - -, X¢ > 2] = exp[—p Zx, —a Z Zmax(a:,-,zj)], (2.1)
=1 J=1+12=1

which is the service distribution we shall adopt throughout this section. The correlation

coefficient of X,, and X,,, m # n, is

P Xm, Xn] = a/[21 + (2¢ — 3)a]. (2.2)

arrivals u —

A, r

Fig. 2-1. The M/MVE/c(N) queueing system.
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Calculating the r-dimensional marginals from (2.1), we obtain

expl— (s + (e —r)a} Yan —a 37 3 maxtam,a,)] (23)

j=i+1i=1
Especially the one-dimensional marginals of the MVE are exponential. On the other
hand, the r-dimensional random variable min(X7, X5, - -, X;-) has the following distri-

bution from (2.3):
Primin(X1, Xa, -, X,) > a] = exp[—%r{2u +@c—r—1)a}a].  (24)

The fact that the r-dimensional random variable min(X3, Xo,- - -, X;.) is exponential is

an important property, which will be useful in later discussion.

2.2.2. Steady State Probabilities
Let P,(t) denote the probability that the number of customers in the system is n at
the time ¢ > 0. Then we may write down the differential-difference equations for this

system as follows:

Po(t) = —APo(t) + a1 Pi(t) + ba Pa(t),
Pr(t) = APac1(t) — (A + @n) Pa(t) + (ant1 — bnt1) Pata(t)
+bnt2Prya(t), 1<n<c-2,
Pi_1(t) = APe—2(t) — (A + ac—1)Pe—1(t) + (ac — be) Pe(t) + bePeya(t),
P(t) = APn_l(t)' — (A + o) Pa(t) + (ac — bo) Pay1(t) + boPry2(t), c<n< N -2,
Ply_1 () = APn—2(t) — (A + ac) Pv—1(t) + (ac — be) Pn(2),

Pi(t) = APn_1(t) — acPr(2), (2.5)
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where

a, = %n[2u +(2¢c—n—1)aj, b, = %n(n —1a, 1<n<ec (2.6)
From (2.5), one can readily obtain the following set of difference equations for the steady
state probabilities p,, = tl_ifgo P, (t).
— APn + @y 1Pni1 +bnyopriz =0, 0<n<c—-2
— APn + @cPnt1 + bePri2 =0, c—1<n<N-=-2,
— ApN-1+acpy =0. (2.7)
Also the normalization condition yields

N
Y pa=1 (2.8)
n—0

In order to solve (2.7) under the condition (2.8), we shall define the generating function

N
F(z) = anz”. (2.9)
n—=0
Multiplying the equations in (2.7) successively by 1, z, - - -, 2 and adding them up yield
c—3
F(z) = Apnz™"2 = (pz 4 be)2° pe1 — (acz +be) 2" pe—az + f(2) ) _ 2"pal/1f (2)],
n=0
(2.10)
where
f(2) = Az2 —ac.z —b,. (2.11)
The condition (2.8) gives
FQ) =1,
so that we get from (2.10),
c—3
—/\pN + (/L + bc)pc—l + (ac + bc)pc—2 + (a'c + bc - /\) an =a.+ bc — A (2-12)
n=0 :

25



The denominator on the right-hand side of (2.10) has two real zeros, namely,
€ = [ac — (a2 +42b)2]/(2)), ¢ =[ac+ (a2 +4\bc)Z]/(2)). (2.13)

Since the generating function F'(z) is regular on z-plane, the zeros of the numerator
and the denominator of the right-hand side of (2.10) must coincide with each other.

Therefore, it follows that

ApNEN TS — (1€ + be)pe—1 — Mépe—2 =0, (2.14)

and

Apn ¢T3 — (1€ + be)pe—1 — APe—2 = 0, (2.15)

where € and ( are given by (2.13).

We notice the numerator of the right-hand side of (2.10) involves the c+1 unknowns
Pn- In order to determine p, (0 < n < ¢— 1) and py and thus be able to determine
pn (¢ <n < N — 1), we require ¢ + 1 equations involving the ¢ + 1 unknowns p,,. Now
(2.12), (2.14) and (2.15) are three such equations and the first ¢ — 2 equations in (2.7)

are the remaining. These ¢ — 2 equations are

_Apn +ant1Pnt1 + b‘n+2pn+2 =0, 0<n<c-3, (216)

which is valid only when ¢ > 3. We treat the case ¢ = 2 separately. The case ¢ = 2
requires (2.12), (2.14) and (2.15) alone, from which pg, p; and py are determined.
Returning to (2.10) we note that the remaining p,, (¢ <n < N — 1) may be obtained

as the coefficients of z™. To do this, we write down the numerator as follows:

[22 = (+ )z + E&C[ANZY + An_12V 14+ A (2.17)
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Comparing the coefficients of z¢11, 22 ... 2N we obtain the difference equations:

ECAn —(E+QAn—1+An—2=0, c+1<n<N,
—(+ AN+ An—1 =0,

AN = Apn. (2.18)
Solving (2.18) and using the relation A, /A = p,,

Po =pN(EVHIT (V) (€~ (), e<n<N-1, (2.19)

is derived, where py is obtained as the solution of the previous equations.

We shall investigate two extreme systems in which the capacity of waiting room is
zero and infinity, respectively. We set N = ¢ in (2.12), (2.14) and (2.15) and solve
these three equations together with (2.16), which results in the case of M/MV E/c(c)

queueing system. We next consider the case N = co. It is first to be noted that

1€l < ¢, (2.20)

and
¢>1 ifandonlyif X\ <c[p+ (c—1)a]. (2.21)
Therefore, as N — oo in the probabilities p,(0 < n < N) of M/MV E/c¢(N), supposing

A\ < ¢[p+ (c—1)a], we have the steady state probabilities of M/MV E/c(c0). If, on the

other hand, A > ¢[x + (¢ — 1)a], then

lim p,=0, n=0,1,---, (2.22)
N—oo

which implies that the steady state conditions are not satisfied. Also, since the term with

PN in the numerator of the right-hand side in (2.10) vanishes, the generating function
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of M/MVE/c(c0) is
c—3
G(2) = [~ (42 + be) 2 pe1 — (acz +b0) 2" 2pe ol /[f ()] + ) 2"Pn, (2.23)
n=0

where f(z) is given by (2.11). The above generating function will be used for calculating
some average characteristics for M/MV E/c¢(o0).

Let us treat the case ¢ = 3. From (2.6) and (2.10), the generating function

F(z)
_ w22 — pupa2® — (2aps +2pp1 + apr)2® — (3apy + 3upo + 3apo)z — Bapg
Mz=8)(z— <) (2.24)
where
€ = [3(n + &) — {9(1 + @) +1201}3]/(2)), (2.25)
and
¢ = [3(p+a) +{9(u+a) +12a7}3]/(2)). (2.26)

Solving (2.12), (2.14), (2.15) and (2.16) for ¢ = 3 and substituting the obtained py into

(2.19), we get

po = (6a +3p — A\)B1/Bs,

P = ABa(€N — V) +pg¢(EV ™ — ¢V )lpo/ By,

P = 3oV _ (NHI=my 5, /B, 2<n <N, (2.27)

where

B1 =3a(2a + p) (€N — V) + €€V = ¢V TY (U + 2ap — ad), (2:28)
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and

By = (20 + p)[Ba(6a + 3p 4+ 2X0) (&N — ¢N)

+ EC(EN T — (VY (6ap + 3p® + 2p) — 3ok — A?)] — 3aA?(€ - ().

(2.29)
Upon setting N = 3 in (2.27), (2.28) and (2.29), we obtain
Do = Cl/C27
p1 = 3A(3a? + 242 + 5ap + ad)py /Ch,
p2 = 3X*(a + p)po/Ch,
p3 = Apo/Ch, (2.30)
where
C) = 320 + ) (3a?® +2u® + 5ap + al) + 3a(a + u),
Ca =3(2a + p+ A)(Ba? + 2p% + 5ap + aX) + 3M(a + p)(a + \) + A3,
(2.31)

which results in the case of M/MVE/3(3). Noting (2.20), we find from (2.28) and

(2.29) that as N — oo,

B . (£® + 2ap — aA)€ + 3a(2a + p) _D (2.32)
By  (2a+ p)[(Bap + 3u2 +2u) — 3aX — N2)€ +3a(ba+3u+2)\)] D
Therefore, supposing A < 3(i + 2a), we have
po= lim py= (6a+3u— A)D1/Ds,
N—-oo
p= lim py = A3a+ pé)po/ D,
N-oox
pn = Jlim p, = 3aX(! " pg/ Dy, n>2, (2.33)



which are the steady state probabilities of M/MV E/3(co). Also, from (2.23), the

generating function G(z) of M/MV E/3(c0) is given by

G(z) — _ll'pZZS — (2aﬁ2 + 211'];1 + aﬁ1 )22 — (3aﬁ1 + 3/1,}70 + 3aﬁ0)z — 3ap”0

Az -8 —0) (2:34)

Using the generating function (2.34), the mean number of customers is

L=G'(1)

_ (6p2 + 1802 + 21ap — pA)p2 + 3(aX + 2p2 + Tap + 60%)p1 + 3\ (1 + 3a)po
= = _
(A —3p —6a) (2.35)

If @ = 0, the service times of three servers are mutually independent, hence by letting
a — 0in (2.27), (2.28) and (2.29), one will get the results of ordinary M/M/3(N) with
independent servers which we shall see below.

We shall write £(a),((a), B1(a) and By(a) respectively for £,{, B; and B;. From

(2.25) and (2.26), it is easily seen that
£0)=0, &0)=-1/p, ¢(0)=1/p, (2.36)
where we put p = A/3p. Hence B;(0) = Bz(0) =0, but
B3(0) = —2u/p", (2:37)

and

B5(0) = —3u(2 + 4p + 3p” — 9™ 1) /p", (2.38)

from which, employing L’Hospital’s rule, we have

. . 2(1 — p)
= hm = . 2.39
Po= T Po 2 +4p + 3p2 — 9pN+1 (2:39)
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Similarly,

‘liiﬂ)pl = 3ppo, (2.40)
. 9 ..
hn%pn = Ep"'po, 2<n <N, (2.41)

which agrees with the solution of M/M/3(N) queueing system[28].

2.2.3. Waiting Time Distribution

First, we shall obtain the queueing time distribution of the M/MV E/c(c0) system.
Since the generating function G(z) given by (2.23) is regular in the domain |z| < 1, the
root of the numerator and the denominator of the first term of the right-hand side of
(2.23) must coincide with each other.

Therefore,

(€ +be)E T pet + (ack + b)E % pe—z = 0. (2.42)

From (2.20), (2.21) and (2.42), the generating function (2.23) is

e +be)z + be(p + be) N ymnte? | S o
G(z) = M (aof + be) ~pc—1§(1/4) Z +,§)Z P (243)

Comparing the coefficients of z™(n > c¢) and using the equations (2.13), we obtain

the steady state probabilities p,,(n > c) as follows.

Pn = Pc—1 (I/C)n+1_c’ n2e, (2'44)
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where how to get p._; has been given in Section 2.2.2.

If = 0, the service times are mutually independent, hence by letting o — 0 in

(2.13),
im ¢ = &
lim ¢ = %, (2.45)
so (2.44) yields
A n+l—c
P = Por (—) , n>e (2.46)
cu

which agrees with the solution of ordinary M/M/c(00) queueing system [28].

We define the events B; and B;; in order to derive the queueing time distribution as
follows:

B; (1 <i<c): the event that only one the i-th channel finishes service,

Bij (1<i<c—-1,i4+1<j<c): the event that two the i-th and the j-th channels
finish service at the same time.

By the definition of the multivariate exponential distribution (MVE), the events B;

and B;; are mutually independent, and

Pr{the event B; does not occur in <t} =e™#, 1<i<gc,

Pr{the event B;; does not occur in <t} = e 1<i<e—-1i+1<j3<ec

(2.47)
Therefore,
c c c—1 B
Pr{none of channels completes in < t} = Pr( n B; ﬂ n B;;)
i=1  j=it+li=1
— e—(cC1u+cha)t, (2.48)

where B; denotes that the event B; does not occur in < t.
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Thus, we get

c c c—1
Pr{just one channel completes in < t} = Pr(B; n B; n ﬂ Bij)
i=2  j=itli=1
= CCI(“te_ﬂt)e—(c—l)p,te_cc2at

= Cypte (cCruteCao)t (2.49)

and
c c c—1 _
Pr{two channels complete in < t} = Pr(B2 ﬂ B; ﬂ ﬂ Bij)
i=2 j=itli=1
c c c—1 B
+Pr{(BinB:)(B: () () Bis}
=3 J=i+l=1
c c c—1 N
+ PT(Blz ﬂ B; n ﬂ B,,;j}

=1 j=i4l,j#2i=1

1
= [(—2-001 + C2)(pt)? + Co(at)]e™ (CruteCaat,

(2.50)
By the same manner,
Pr{n channels complete in < t}
[n/2] —92 i
_ (cCl/Lt)n Z . (cCZQt) . ~(cCip+cCaa)t 2.51
3 G | @51)
par (n — 2:)! 2!

Now, let T, represent the random variable ”time spent waiting in the queue” and
W,(t) denote its CDF.

Therefore, from (2.44) we have
W,(0) = Pri{T, — 0}

= Pr{c—1 or less in the system}
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o0
=1- an
n=c

=1-Y pe-1(1/Q)"7°

_ Pc—-1

=1 -1

For T, > 0, then, from (2.13), (2.44) and (2.51)

W,(t) = Pr{T, <t}

(2.52)

(e ]
=1-— Z Pm+c Pr{m completions in < ¢ | arrival found m + c in the system}

m=0

m  [n/2]

(n — 24)! 2!

> n—2 i
=1— Z Prmte Z Z (cclllft) . (ch.at) . e_(cclll'+cc2a)t
m=0

n=0 =0

—1_ Pl a¢-ne

=1-775

If @ =0, from (2.45) and (2.46), (2.52) and (2.53) yield

. . Apc—l
I WaO)=1-2 =%

and

. _ APe—1 —(cp—N)t
olzl—%Wq(t)_l_cu—)\e ’

which coincide with the ordinary case [28].

From (2.53), we have the mean queueing time

W= BT = [ taw,t) = 2=
0

On the other hand, from (2.44) the mean queue length is
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(2.53)

(2.54)

(2.55)
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Ly= 3 (n—)p, = L=t (2.57)
n§1 N (EE

Consequently,

L, = AW, (2.58)
q q

which implies that Little’s formula is valid.
Next, we shall direct our attention to the waiting time distribution. The probability

that a customer who arrives at ¢ = 0 joins in any channel between time y and y +dy is
wq(t)dy, (2.59)

where w, (%) is the queueing time density function. And the probability that a customer

who arrives at time y completes a service between time = and z + dx is
{p + (c — Va}e~ WtV ==v) 4y (2.60)

since the r-dimensional marginals of the service distribution is given by (2.3). Thus,
the probability that a customer who arrives at ¢ = 0 departs from the system between

time z and = 4 dz is

[+ (e ajer e D, )y (261)

On the other hand, the probability that there is no queue and any arriving customer

can immediately receive a service is

c—1
> pn, (2.62)
n=0

and at the time the probability that the waiting time is greater than ¢ is

e~ {utle—1)a}t, (2.63)
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Consequently, the waiting time distribution W (t) is given as follows.

c—1 oo T
1= W@ = e 0 S ot [ (ot (o= Dagem DD )iy o
t 0

n=0
_ {p+(c—Na}p.—1 o~ {nHe=1a}t
[14—(C-—l){A(C-l)—-M-—(C-l)a}]
{n+(c—1atpes —M¢-1)t, (2.64)

T DD —p—(c—Da}®

If a = 0, from (2.45) and (2.46), (2.64) yields

)

. _ _ Ap‘pc—--l e—yt_ AI‘LPC—I e—(cp.-—)\)t
iji%{l W)} [1 + (cp —A){(c—=1)u— /\}} (e — A){(c — 1) — A}

(2.65)

which agrees with that of the ordinary case. From (2.64), we obtain the mean waiting

time

W:/?mm)

_ 1 Pe—1
T pte-Da M -1

1
T e . 2’
“+@—na+W5 (2.66)

Now, in order to calculate the mean number of customers L, we shall derive a few
equations.

Thus, defining the generating function

c—3
Q(z) =Y _ 2"pa, (2.67)
n=0
then the equation given by (2.16):
bnt2Pn+2 + @nt1Pnr1 — AP =0, 0<n<c-3 (268)
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yields
1
‘2“1(1 —2)Q"(2) + a1Q'(z) — AQ(2)
= —(be—1Pe—1 + Qe—2Pe—2)2"3 — be—2pe—22°"%.

Puttung z=1 in (2.69), we have the equation

Q,(l) = {AQ(]') - bc—»lpc—l - (ac——2 + bc—2)pc——2}/a'1-

The normalization condition from (2.23) gives the equation

(U' + bc)pc—l + (ac + bc)pc—2

Q) =1- et b2

Using the equations (2.70) and (2.71), the mean number of customers is

o0
L= Z NPpn
n=0

) c o0
= Z (n_c)pn+znpn+c Z Pn
n=0

n—c+1 n—=c+1
= Lq+Q'(1) — cQ(1) = 2pe—2 — Pe—1 + ¢
A
S S T —
T uF - Da’

which implies that Little’s formula is valid.

2.3. Correlated Multiserver Queueing System with
Instantaneous Jockeying

2.3.1. Model and QBD Formulation

(2.69)

(2.70)

(2.71)

(2.72)

Fig. 2-2 shows a queueing system with ¢ servers and Poisson arrivals of rate A > 0.

The joint distribution of service times X;(1 < i < c¢) is assumed to follow the multivariate

exponential distribution of Marshall and Olkin.
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Each server has a separate waiting line. Customers do not renege or balk. The

jockeying rules are:
(1) A new arrival joins any of the empty queues with equal probability.
(ii)If there is no empty queue, the arrival joins the shortest queue.

(iii)If the shortest queue is not unique, the arrival joins any one of them with equal

probability.

[ M1 —

«(
a a (L2 —

«(
> @3 —>

arrivals
 ———

he-2 >

a a ULe-l >

Fig. 2-2. The M/MVE/c(0c0) queueing system with instantaneous jockeying.
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(iv)A customer in a given queue will jockey to a shorter queue as soon as the
difference in the number of waiting customers between the two queues becomes
two.

(WIf there are two or more queues with equal length which are shorter than a given
queue, then the last unit in the longer queue jockeys to any one of the shorter
queues with equal probability.

As Kao and Lin [38], for the notational convenience we consider the case for ¢ = 3 in
detail. Each state of the QBD process is triplet with each element denoting the number
of customers including the customer receiving service in the respective queue.

Let Q denote the infinitesimal generator of the underlying QBD process. Corre-

sponding to this Q matrix, we order the states as follows:

{(0,0,0)}, {(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)},
{(2,1,1),(1,2,1),(1,1,2),(2,2,1),(2,1,2),(1,2,2), (2, 2,2)},
{(8,2,2),(2,8,2),(2,2,3),(3,3,2),(3,2,3),(2,3,3),(3,3,3)},
{(4,3,3),(3,4,3),(3,3,4),(4,4,3),(4,3,4),(3,4,4),(4,4,4)},- - - (2.73)

In the above listing of states, we use pairs of braces to demarcate the submatrices

constituting the infinitesimal generator Q shown below:

[Ao1 Aoo i
A2 Ajx Ao
Ay A, Ao
Q= Az A Ao ’ (2.74)
A Ay

where A.01 iSle, A.ooiSlX7, A.12 is7x1 a.ndAn,Ao,Al,Ag areall 7x 7. Deﬁnmg

row vector w = {A/3,1/3,1/3,0,0,0,0}, we have Ag; = {—\}, Ago = w. The matrix
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Ay is a zero matrix except the last row is given by w. Other matrices are

A2 =

A-11 =

A,

where

40

K5
Ug
us
a b
a
a
L 0
- —0 0 0 A2 A2
0 —vg 0 A/2 0
0 0 —v3 0 A/2
Uy — Q@ U — 0 —VU12 0
U3 — o 0 U — 0 —v31
0 Uz — Q& Uy —Q 0 0
a a a 253 5]
[ —V123 0 0 )\/2 )\/2
0 —V123 0 /\/2 0
0 0 —7V123 0 /\/2
wa3 w13 0 —V123 0
w32 0 w12 0 —w123
0 w31 W1 0 0
L «a «a K3 M2
"0 0 0 3X\/2 3A/2 0 T4
0 0 0 3)\/2 0 3x/2 o
0 0O 0 3\/2 3\/2
0 0O 0 0 0 3a |,
0 0 O 0 0 0 3a
0 0 O 0 0 0 3«
[0 0 O 0 0 0 0
uy = 1 + 20,
uz = p2 +2a,
uz = pu3 + 2(1,

0
A/2
A/2

0

0
—vV23

H1

0
A/2
A/2

0

0

—V123
M1

> > >» O OO

—V123 4

> > >0 0O 0O

—V123 4

(2.75)



v1 = A+ p1+ 2a,

ve = A+ pg + 2a,

v3 = A+ pu3 + 2a,

vi2 = A+ p1 + p2 + 20,
vo3 = A+ p2 + p3 + 2a;,
v31 = A+ p3 + p1 + 2a,
V123 = A+ p1 + p2 + 3 + 3a,
wig = 1+ p2/2,
woy = po + p1/2,
w3 = pa + 43/2,
w3z = p3 + p2/2,
w31 = p3 + p11/2,

w13 = p1 + p3/2, (2.76)

and

# = p1+ p + p3. (2.77)

The generator Q, partitioned as shown in (2.74), indicates that the continuous time
Markov chain is a QBD process. Thus it is easy to apply the results developed by Neuts
[71]. Specifically, the process is positive recurrent if and only if TAse > mAge, where
m is the stationary probability vector of A = Ag + A; + Ao and the transpose of e is
(1,1,---,1) with a proper size.

Equivalently, the system is stable if and only if the traffic intensity p < 1, where
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p = mAge/mAze. For this model, it is easy to verify that

A‘ll'7

p= (' +3a)(mwy + mo + m3) + 3a(my + 75 + 76) (2.78)
Solving the equations mA = 0 and me = 1, we obtain
7r1+7r2+1r3=7r4+7r5+7r6=7r7=%. (2.79)
Hence
b= i 6a’ (2.80)

If 1 = po = p3 = u, then it is identical to the traffic intensity of M/MV E/3(co) with

equal service rate given by (2.21) for ¢ = 3.

2.3.2. Stationary Probability Vector
Because of the boundary conditions, the stationary probability vector x = [xg, X1, -]
is a modified matrix-geometric invariant vector with x; = x; R*™1 k= 1,2,.. ., where

the rate matrix R is the minimal nonnegative solution of the matrix-quadratic equation
R2A> +RA; +Ap =0, (2.81)
(e.g., see Neuts [71, 72]). To find (xo,X1), we use the boundary conditions

Xo0Ao1 +x1A12 =0,

Xo0Aoo +X1A11 +Xx2A2 =0, (2.82)
and the normalization condition

xo+x1(I-R) le=1. (2.83)
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Using (2.82) and (2.83), we solve the following system of linear equations for (xo,x1):

(x0,x2) [AniooRAz (- rlt)—le} =01, (2:84)

where 0 is a zerovector.

The rate matrix R is generally found by a number of iterative methods (e.g., see
Ramaswami [90]). However, the generator Q defined by (2.74) has a very special struc-
ture. But the structure does not enable us to use the results obtained by Gillent and
Latouche {27], and Ramaswami and Latouche [89] in the same manner as Kao and Lin
[38], because the matrix Ag is given by Ap = p - m but the matrix A is not given by
A, = q-n, where p and q are column vectors, and m and n are row vectors. Using the
results given by Adan, Wessels and Zijm [1], the matrix R can be determined explicitly
and many interesting features about the model can be explored conveniently.

We have Ag = e7-w, where e7 is a column vector of zeros except its last (the seventh)

element is a one. We write the equation (2.81) as follows:
R=—-Ap(A; +RA,) L (2.85)

Since Ag = ey - w, (2.85) implies that all rows of R are zero except the last—an
observation to be expected from Theorem 1.3.4 of Neuts [71]. Denote the last row of R

by r = {r;,---,77}. It is easy to verify that
T = x1(r)F 2y, 1<i<T k>2 (2.86)
Let 7 be the spectral radius of R, then

n=x;R*"e/xyR¥e =17, k>1, (2.87)
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(e.g.,see Neuts [73]).

This system can be represented by a continuous time Markov process whose state
space S consists of the vectors (s1, s2,53) where s; is the length of queue 7,7 = 1,2, 3.
Let V; be the set of states (s1, s2,53) € S satisfying s; + s3 + s3 = [ and P(V}) be the
steady state probability for the set 1]. Similarly to the equal case described in Section
2.2, the steady state probabilities of M/MV E/3(oco0) with different service rate are given

as follows:
Pats = (1/0)°pn, n 23, (2.88)
where
¢ = [ +p2 + p3 + 3a+ {(p1 + p2 + p3 + 3)? + 12aX}2]/(2)). (2.89)
Therefore, by balancing the flow between the sets V; and V43 it follows that
P(Viys) = 1/)°P(V3), 12>3. (2.90)
On the other hand, (2.86) implies that if max(s;, s2,53) > 1
P(s; +1,82 41,83 +1) =77P(s1, 82, 53), (2.91)

so it follows that [ > 3

P(Viy3) = mP(WY). (2.92)
Combining (2.90) and (2.92) yields
re = (1/¢)%. (2.93)

The remaining components of r are obtained from the equation (2.81). By insertion of

the special forms of R and Ag (2.81) is simplified to

w4+ I‘(A1 + 7‘7A.2) =0. (2.94)
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Finally, substitution of (2.93) into (2.94) leads to
r = —w{A; + (1/¢)3A2} 1. (2.95)
These results are summarized in the following theorem:

Theorem 2.1.  The rate matriz R which is the minimal nonnegative solution of
(2.81) is given by

R=e7-r, (2.96)

where

r=—w{A; +(1/¢)%A2} .

The rate matrix R is given in an explicit form by the above theorem and can be
found without having to use any iterative method. Hence, by solving equations (2.82)
and (2.83), we can find (xg,X1), and also xx(k > 2) from (2.86). Consequently, by
using these stationary probabilities and R, we can calculate not only the mean queue
length but also the mean waiting time in the same manner as Kao and Lin [38].

Further though we have developed the solution for jockeying problem for the case
of three servers (c = 3), the generator Q of the continuous time Markov chain for the
general case with ¢ > 3 can be similarly constructed once the state space is defined, and

our results follow accordingly.

2.4. Conclusion
We considered a multiserver queueing system with correlated service times whose

distribution is the multivariate exponential distribution of Marshall and Olkin in this
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chapter. Both jockeying and no jockeying problems for this model were analyzed. For
the no jockeying problem, we obtained the steady state probabilities, the queueing and
waiting time distribution and showed that Little’s formula is valid for their mean, by a
traditional generating function approach. On the other side, for the jockeying problem,
we showed how to calculate explicitly the rate matrix R using the results derived in the

no jockeying problem by a matrix-geometric approach.
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Chapter 3.

TANDEM QUEUEING SYSTEMS
WITH CORRELATED SERVICE TIMES

3.1. Introduction

This chapter discusses a correlated two or three stage tandem queueing system with
a single station in which the service times of each station have the bivariate or the
multivariate exponential distribution of Marshall and Olkin discussed in Chapter 1.

In many tandem queueing models having been investigated by several researchers,
customers on arrival must wait when the station in which service is performed in the
usual order is on service. Customers are processed through the ordered sequence of
stages. We call this model as an ordinary tandem queueing system in this thesis. How-
ever, in practical situation, there are some cases where empty stations can be used for
customers regardless of the ordered sequence of stages in order to increase the perfor-
mance of the system. We call this model as a commutative tandem queueing system.
Commutative tandem queueing systems can be explained precisely as follows: When
the station in which service is performed in the usual order is busy, a customer can
enter the other station if it is empty, and after completion of this service, he can enter

any other empty station.
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Nishida et al. [76] first considered a two-stage commutative tandem queueing system
with no intermediate buffers. The mean queue length in the queue was obtained in
the case of infinite possible queue ahead of the first stage. Nishida and Hiramatsu [77]
also derived the mean queue length in the case of finite possible queue in front of the
first stage. Furthermore, Nishida and Hiramatsu [78] analyzed a two-stage commutative
tandem queueing system in which the service times of each station have the bivariate
exponential distribution of Marshall and Olkin, derived the mean queue length and
showed that it decreases when the correlation parameter increases as some numerical
results.

In Section 3.2, we consider a two-stage ordinary tandem queueing system with no
intermediate buffers. The successive customers arrive according to a homogeneous Pois-
son process. An unlimited queue is allowed in front of the first stage. The service times
of two stages are assumed to follow the bivariate exponential distribution of Marshall
and Olkin. For this model, we calculate the mean number of customers and show

analytically that it decreases when the correlation parameter increases.

In Section 3.3, we consider a three-stage commutative tandem queueing system in
which the service times of each stage are exponentially distributed and the assumption
of waiting spaces and arrival process are as the same as treated in Section 3.2. For
this system, we get the critical input rate, i.e., the throughput rate of the system using
a matrix-geometric approach, and compare the throughput of this system with that
of a three-stage ordinary tandem queueing system with correlated service times whose

distribution is the multivariate exponential distribution of Marshall and Olkin.

In Section 3.4, first we consider a correlated two-server parallel queueing system dis-
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cussed in Section 2.2 and secondly a correlated two-stage ordinary tandem queueing
system which will be discussed in Section 3.2 for both cases where their service distri-
bution is the bivariate exponential distribution of Marshall and Olkin. We show that
the mean number of customers in the system is greater in the parallel case but lower in
the tandem case than under the assumption of mutually independent service times when
the system can finish 2y customers’ service per unit time on the average. In Section

3.5, we have a summary of this chapter.

3.2. Two-Stage Tandem Queueing System with Correlated Ser-

vice Times

3.2.1. Model

a
arrivals '
A
. > U > u >
1 2

Fig. 8-1. Correlated two-stage tandem queueing system.

Fig. 3-1 shows a tandem queueing system with two stages numbered 1,2. Stage
i(¢ = 1,2) has a single server and the service times are assumed to follow the bivariate

exponential distribution of Marshall and Olkin.
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Namely, denoting by X;(i = 1, 2) the service times of two stages, its joint distribution

is defined as follows:

PriXi > z1, X2 > 23] = exp[—p(z1 + 22) — amax(z, z2)]. (3.1)

The correlation coefficient of X; and X, is

plX1, Xo] = o/ (2p + o). (32)

An unlimited queue is allowed in front of stage 1. The successive customers arrive
according to a Poisson process with rate A > 0. Customers require service from all
stages in the order 1,2. No queues are permitted between stage 1 and stage 2. This
restriction results in the blocking of stage 1 whenever a customer having completed his
service in stage 1 cannot move into stage 2 due to the presence of another customer
there. It is also assumed that customers can transfer between stages instantaneously.
Service to a customer at any stage, once initiated, is completed without interruptions.

A queue discipline is first-come first-served.

3.2.2. Calculation of Mean Number of Customers

At any time t the customer who has not yet finished service in stage 1 is called a
type 1 customer while one who has finished service in stage 1 but not yet in stage 2 is
called a type 2 customer.

Let Y;(t)(i = 1,2) be the number of type i customers in the system at any time ¢.
Let also

Pnm = PriY1(t) =n,Y2(t)=m], n>0, m=0,1,2. (3.3)
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As the Markov process governing the states of one system irreducible, the limiting value

tlim pn,m(t) = Pnm (3-4)
—00

always exists. Thus connecting, as usual, py, ., (t-+dt) with py, ., (t) and assuming that the
system has reached statistical equilibrium we obtain the following system of difference

equations.

Apo,o = (1 + a)po,1,
A+ p+a)po, = (p+a)poz + (b + a)pro + api i,
(A+p+ a)po2 = pp1,1,
A+ K1+ )Pno = APr—1,0 + BPn,1, n >0,
A+2p+)pa1 =Apn—11+ (B +)prz + (£ + X)Pry1,0 + APry1,1, 120,

A+p+a)ppz = Apn-12+ UPn+1,1, n > 0. (3.5)

Introducing now the generating functions

[e o]
Frti(z) = an,mz"er, m=0,1,2;|z| <1, (3.6)

n=0

we obtain from (3.5)
z{p(l — Z) +14+ H}Fl(Z) - F2(Z) = (1 + 0)2}70’0 + Ozpo,l,
(1 4+0)zF1(2) — {pz(1 — 2) + (2 +0)z — O} F2(2) + (1 + ) F3(2)
= (14 0)zpoo + 2(0 — 2)po1,

Fy(z) — {p(1 — 2) + 1 + 0} F5(z) = zpo 1, (3.7)

where

(3.8)
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From (3.7), we have
_ Hi(z)

F;(2) NOK i=1,2,3, (3.9)
where
z{p(1—2)+1+6} -1 0
A(z) = (1+4+0)z —{pz(1-2)+(2+6)z— 6} 1406
0 1 —{p(1—2)+1+06}

=2(1 — 2){p(1 — 2) + 1 + 0}{p?2(1 — 2) + p(3 +20)z — (1 + 6)(2 + 0) — pb},
(3.10)

and H;(z)(z = 1,2,3) is the determinant obtained from A(z) by replacing the i-th
column by a column vector

(1 +0)zpo,0 + 6zpo,
(1 + 0)zp0,0 + 2(0 — Z)pO,l . (311)
ZPo

From (3.10), it is easily verified that

[Hl(z) ] > 0. (3.12)
1-2 z=1
Hence, since
0< Fi(z) <1, (3.13)
we obtain
[A(z)} > 0, (3.14)
1-2 z=1
namely

_1+02+0)

3.15
3+0 (8.15)

If o = 0, the service times are mutually independent, hence by letting § — 0 in (3.15),

p < g, (3.16)
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which agrees with the steady state condition of the ordinary tandem queueing system
[86]. Therefore, it follows that compared with the ordinary case, the maximum utiliza-
tion of this system is increased when a > 0.

Returning to (3.7), we get the generating functions F;(z)(i = 1,2,3) by elementary

but a little troublesome calculation as follows.

Fi(2) = 2(1 = 2)[(1 + 0){p*2(1 — 2) + p(3 + 20)z — (1 + 0)(p +2 + 0) } P00
+{p%02(1 — 2) + p(1 + 0)(1 +20)z — (1 4+ 0)* — pO(1 + 0)}po 1]/ A(2),
Fy(2) = —2%(1 — 2){p(1 — 2) + 1 +0}{p(1 + O)po,o + (1 + 6 + pb — pz)po,1 }/A(2),

F3(2) = —2°(1 — 2)[p(1 + O)poo + {p?2(1 — 2) + 2p(1 + 0)z — (1 + 0)2}po,1]/A((z),17)
3.

where A(z) is given by (3.10).

To determine unknowns pg ¢ and pp 1, we may use the normalization condition

Z Frnt1(l) =1, (3.18)
m=0
hence
14+0)(2+0)poo+(1+ 0)2p0,1 =(1+6)2+0)—p(3+0). (3.19)

From (3.19) and the first equation in (3.5), we find

_(1+6)(2+6) —p(3+6)

= 3.20
Foo (1+0)(p+2+9) (8:20)
If 6 = 0, (3.20) yields
. 2—-3p
lim = 3.21
0_)0100,0 240’ ( )

which coincides with that of the ordinary case [86].
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Now we shall derive the mean number of customers in this system. In order to
determine this, we must obtain F](1)(¢ = 1,2,3) explicitly. Differentiating F;(z) and

letting 2 = 1, we can solve F!(1) by some calculations and the mean number of customers

L is given by
oo 2
L=3_ 3 (n+m)pnm
n=0m=0

3
=Y R
=1

_ 2p(1+6)*(2+6)* +p%0(1 +6)(2 +0) — p(4 +30 +6°)

(1 +0)2(p +2+0){(T+6)(2+6) — p(3+0)} (3:22)

If = 0, (3.22) is identical with

__4p(2-p%)
L= Bt -2 (3.23)

in the ordinary case [86].

3.2.3. Monotonicity of Mean Number of Customers

Let L = L(6) be the mean number of customers. We then have the following theorem.
Theorem 3.1. L is strictly decreasing with respect to 6.

Proof. Differentiating L in (3.22) with respect to 6 and considering the steady state
condition (3.15), we have

—P
14+0)3(p+2+60)2{(1+0)(2+6)—p(3+6)}?

{2(1 +60)3(2+ 0)* +20(1 + 6)2(2 + 0)%(1 + 30 +- 6?)

') =

— P2(1+6)(2 + 0)(14 4+ 110 4 26% + 6%) + 2p3(17 + 200 + 962 + 263)

+ p*(19 + 150 + 56 + 6%)}
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—p?
< (146033 +0)(p+2+0)2{(1+0)(2+0) — p(3+0)}2

{1 +0)%(2 +6)%(28 + 510 + 2607 + 30%) + 2p%(3 + 0) (17 + 200 + 96° + 26°)

+p3(3+0)(19 + 150 +56° + %)} <0. O (3.24)

Since we put § = a/u, we find that L(«) is strictly decreasing with respect to
the correlation parameter o when p is constant. Consequently, from (3.2) positive

correlation is found to decrease the mean number of customers in this system.

3.3. Three-Stage Commutative Tandem Queueing System with
Correlated Service Times
3.3.1. Model

Fig. 3-2 shows a tandem queueing system consisting of three single-server stations
with no intermediate buffers, where customers arrive at the queue, which is assumed to
be infinite, according to a homogeneous Poisson process with rate A > 0. Each customer
must enter the first station if it is free, and he joins the queue if it is not free. After
completion of service in the first station and when the second station is busy, he can
enter the third station if it is free, and after completion of this service, he can enter
the second station. If a customer has already completed service of three stations, then
he departs the system. If a customer has already completed the first service and both
the second and third station are busy, he has to stay in the first station, that is to say,
the first station is blocked. If he has not completed all service of three stations and the
station in which he receives the third service is not free, he has to stay there, that is to

say, this station is blocked, and when it has completed service, he can enter that station.
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The service time for station 7 (i = 1,2, 3) is exponentially distributed with parameter
;- It is assumed that customers can transfer between stations instantaneously. Service
to a customer at any stage, once initiated, is completed without interruptions. The
queueing discipline is first-come first-served.

The queueing model under consideration can be studied as a continuous time Markov
chain with state-space {(0,7) : 1 < j <mo}U{(¢,5) : 4> 0,1 < j < m} The state (0, 5)
denotes that the system is in the boundary state and m denotes the number of the
boundary states. In the state (¢, j), ¢ denotes the number of customers in the queue,
whereas j denotes the state of the network consisting of three stations and m denotes
the number of states in the network.

The states of the network are described by the vector:

(51,82, 53) (3.25)

where s; (¢ = 1,2, 3) can take any value from 0 to 4 with

( 0 -the ¢-th station is idle,

1 -the i-th station is in the first service,

s; = { 2 -the i-th station is in the second service, (3.26)
3 -the i-th station is in the third service,

\ 4 -the i-th station is blocked.

(2)

arrivals (1) (1) -
A (2) (2) (1) (1)

—_— M1 > Uz us —>

T (2)
l (2)

Fig. 3-2. Correlated three-stage commutative tandem queueing system.
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Then the boundary states are

(0,0,0),(0,2,0),(0,0,2), (0,3,0), (0,0, 3), (0,2,2), (0, 3, 3),

(0,2,3),(0,3,2),(0,2,4), (0,4, 2), (0, 3,4), (0,4, 3)), (3.27)

whereas the states of the network are

(17 07 0), (17 2’ 0)’ (1, 07 2)7 (17 37 0)) (1’ 07 3)7 (17 27 2)7 (1’ 37 3)7
(17 27 3)’ (1’ 37 2)7 (1, 27 4)’ (17 47 2)7 (17 3, 4)’ (11 4’ 3)’ (47 2’ 2)7

(4,3,3),(4,2,3),(4,3,2), (4,2,4), (4,4,2), (4,3,4), (4,4, 3). (3.28)

By ordering the states as described above, the infinitestimal generator of the continuous

time Markov chain has the following block partitioned structure:

[Ao1 Aoz ]
Aoz A1 Ao
Az A; A
Q — A2 A1 AO (329)

where all the unmarked entries are zeros.
The submatrices are defined as below. The dimensionality of Agy is 13 x 13, Agz is

21 x 13, Apz is 13 x 21, Ag, A; and A2 are 21 x 21. More specifically,

A-Ol = dla'g (_A7 —Ug, —U3, —Uz, —U3z, —U23, —U23,
— U23, —U23, —U2, —U3, —U2, —'LL3)

/ / /
+ p2 (eg-€1; +e7-e5 +eg-ej3
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U li i
+eg-e3+ein-€7 +e12-€y)
/ / /
+ 13 (eg €19 + €7 €4 +eg- €y

/ ! /
+eg-e;5+e€11-€7+e13- 95),

Agz = (e1-€5 +ez-€g+eg-€g
+eq-€g+e5-ep)
+ po (e15 - €5 + €17 - €g +ez0 - €p)

! li /
+ U3 (915 -€g + €18 -€¢ + €21 - e8),

Ags=(AI13 Ox),

A, = diag (—ui, —u12, —u31, —U12, —U31, —U123, —U123,
— U123, —U123, —U12, —U3]1, —UI2, —U3]1, —U23,
— U3, —Ug3, —U23, —Ug2, —U3, —U2, —U3)

8
/
+ E €i+5 "©i113
i=1
/ / /
+p2(e2-e5+e4-€) +eq-eq;

! / /
+e7-e5 +eg-e;3+eg-eg3

/ / !
+ei10-€e; +e12-e4+e€14- €19
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/ /

+e]_6 ‘621 +E]_8 '615)
/ / /

+p3 (eg-e,+es-e] +eq-€jp

U / /
+er-ey+eg-e, +e€g-€15

/ / /
+e1;1-e;+e13-e5+€14-€43g

/ /
+e17 - ey + €19 - €)5),

Az =(Ao2 Oy), (3.30)
where
ur = A+,
uz = A+ g,
uz = A+ 3,

u12 = A+ p1 + po,
uz3 = A+ pg + p3,
uzl = A+ p3 + pa,
U123 = A+ py + p2 + p3, (3.31)

and I3 is (13 x 13) unit matrix, Oy is (13 x 8) zero matrix, Oy is (21 x 8) zero matrix,

e; is a column vector of zeros except the i-th element is a one and €] is its transpose.

3.3.2. Calculation of Throughput
Let p equal the steady state probabilities of the network, assuming that the queue

is never empty, which has elements p(j) (1 < j < 21). We can determine p, by solving
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the system

pPA=0, pe=1 (3.32)

where A is the conservative matrix given by
A=Ag+A; +A,> (3.33)

and e is (21 x 1) column vector with all elements equal 1. The equilibrium condition is
given (see Neuts[71]) by

PAge < pAgze. (3.34)

From this relationship the critical input rate, A\*, to the system can be determined. In

the steady state, this critical input rate is identical to the maximum throughput rate of
the system.

The conservative matrix of our model becomes

A =diag (—p1, A —u12, A —u31, A — w12, A — ugy, A — w23, A — w123,
A — U123, A — U123, A — u12, A — ua1, A — u12, A — uzy, A — ugs,
A —u23, A — u23, A — ug3, —fip, —3, — 2, —}3)

/ / /
+p1(e1-e3+ez-eqg+e3-eq
8
+ ry / . ! 1a)
€4-€gt+e5-€g+ ) €115-€5 3
i—=1
/ / /
+p2 (e2-e5+eq-e; +eg-ely
/ / 7
+e7-e5+eg-ej3+eg-€3

/ / /
+eip-e; +e12-€4 +€e14-€19

/ / /
+e15-eg+e16-€3; + €17 €¢
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/ /

+e1s-e15 + €20 -€g)
/ / /

+p3(es-ey+e5-e; +eg-€g

/ / /
+e7r-ey4t+eg-e;+eg-e5

/ / /
—|—e11 -e.,+e13-e5 +e14-e18

/ 7 /
+e15’e9+316'e6 +el7'ezo

+e19 - €15 + 21 - €3). (3.35)

Putting pu; = pe = p3 = p and solving the system (3.32), we obtain:

P1) = Ton p2) = 2 p) = e
pE) = ot P = sy p(19) = foee
p(®)= p12) = p17) = oo,
p(6) = p18) = p(19) = =,
p(10) = p(1) = p(14) = 1o,
p(®) = p21) = o,
pO) = P20) = oo,
p(13) = p(16) = %- (3.36)

The equilibrium condition (3.34) in this case is given by
X < [ p(1)+p(2) +p(3) +p(4) +p(5) +2p(15) + p(16) +-p(17) +p(20) +p(21) ]. (3.37)

If u=1, we get

798

MELAPNY 3.38
< Tog7r (8.38)
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3.3.3. Throughput of Ordinary Tandem Queueing System with Correlated
Service Times

We consider a correlated three-stage tandem queueing system in which services are
performed in the usual order and their service distribution is the multivariate exponen-

tial distribution of Marshall and Olkin as follows:

PT[Xl > xq1, X2 > x2, X3 > 1‘3] = exp [—;1,1.’131 — U2T2 — U3T3

— amax (z1,z2) — amax (z2,zr3) — amax (r3,r1) ]
(3.39)

The remaining assumptions are just as same as the above three-stage commutative
tandem queueing system. Using the results obtained by Papadopoulos and O’Kelly(83],
the infinitesimal generator of the continuous time Markov chain has the following block

partitioned structure:

[Ao1 Ao T
A A; Ap
Q= Az A1 Ao . (3.40)

Az A Ao

I Do

The submatrices are defined as below. The dimensionalities of Ag;, Ag, A; and Ay

are 8 x 8. More specifically,

= 0 0 0 0 0 0 0
0 —vy Wy +a 0 0 0 0 0
w3 + 0 —V3 0 0 0 0 0
. 0 w3 0 —vg3 W 0 0 0

Aor = 0 0 ws+a 0 —w3 O 0 0o |’

0 0 0 wy+a 0 —vg 0 0
0 0 0 o 0 w3 ~—~Vg3 — X Wy

L 0 0 0 w3 + o 0 0 0 —v3 J

Ap = A I7
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M —v; 0 0 0 0 0 0 0 7
0 —Vijg — & w2 0 0 0 0 0
w3 0 —v31 — Q& 0 0 0 0 0
A= | 9 M3 o —V123 — Q& H2 0 0 0
171 o0 0 ws 0 —vg1—a 0 0 o |’
0 0 0 wo + 0 —vq 0 0
0 0 0 a 0 w3 —Uaz3—Qa W2
) 0 0 ws + a 0 0 0 —v3 |
0 wi+a 0 0 0 O O 01
0 0 0 o 0 wy O 0
0 a 0 wu 0 0 O O
10 0 0 0 0 a m a
Az= | 0 00 a 0 0 0 w|’ (3.41)
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
[ 0 0 0 0 0 0 O 0.
where
v = A+ + 2a,
vy = A+ pg + 2a,
'U3:/\+;U'3+2aa
vi2 = A+ p1 + p2 + 2a,
v23 = A + p2 + p13 + 2a,
v31 = A+ p3 + p + 2a,
V123 = A+ Uy + p2 + p3 + 2a,
w =y t+a,
Wy = Uy + @,
w3 = U3z + o. (3.42)

Let q equal the steady state probabilities of the subnetwork, assuming that the queue
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is never empty, which elements q(j) (1 < j < 8). We can determine q, by solving the

system

gA =0, ge=1

where A is the conservative matrix given by

A:A0+A1+A2

(3.43)

(3.44)

and e is (8 X 1) column vector with all elements equal 1. The equilibrium condition is

given by

qApe < qAge.

The conservative matrix of this queueing system becomes

f—w, —a W) +a 0 0 0 0
0 —T12 wao o 0 un
ws [s1 —T31 w1 0 0
A= 0 M3 a  —Tiz M2 o
0 0 w3 a —T31 0
0 0 0 w2 + 0 —wWg — &
0 0 0 «a 0 w3
| 0 0 0 w3 + o 0 0
where

r12 = M1 + p2 + 3a,
To3 = 2 + u3 + 3a,
r31 = p3 + p1 + 3a,

T123 = M1 + p2 + p3 + 3o
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o

(3.45)
0 -
0
0
(04
w1 ’
0
w2
—wgz — & J
(3.46)
(3.47)



Putting p1 = po = p3 = p and § = a/p and solving the system (3.43), we obtain:

~ (1+6) (30°+49+2)

MW = {T520) (12 + 90 +3) 1
L
9@ = D2 ),

a(4) = (1 +20) (2 + 30) (767 +90+3),

D

46) = 4N = 55 - a4,

1 140  (146)2 (662 + 120 +5)
q<6)“1+29'[0 2+30  (2+30) (792+9o+2)}“4)’
2
q(8) = —o L2 4w, (3.48)

(1 +260) (2 +30)

where

D =(1+6) (2+30) (30% + 40+ 2) + (1 +6) (14 20) (66* +120 +5)
+ (1 +26) (2+30) (302 + 46+ 2) + (1 +26) (2 +30) (76* + 90 + 3)
+2(1 +20) (76% +90 +3) 4 0 (2 + 36) (76° + 90 + 3)
+ (1 +6) (76% +90 + 3) + (1 + 0) (66% + 120 + 5)

+ (362 + 46 + 2) (76 + 96 + 3). (3.49)
The equilibrium condition (3.45) in this case is given by
A <p(1+20) [9(2) + q(3) +q(6) + q(8)] + p [9(2) + ¢(5) +¢(7)]- (3.50)

If u=1, we get

(1 +20) (816* +2316° + 25062 + 1216 +22) _ A

A<
12964 + 372603 + 41262 + 2060 + 39

(3.51)
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When 6 = 0, that is, the service times of three stations are independent, the maximum
throughput rate (3.51) yields
22

A== 3.52
= (352)

which coincides with the result given by Papadopoulos and O’Kelly[83].

3.3.4. Comparison of Throughput

Let the maximum throughput rate A\* in (3.38), (3.51)and (3.52) denote A¢ 1,Ap g
and Ag j, respectively.

If

0 = 0, ~ 0.045, (3.53)

then

AZ',I == )\*O,R' (3.54)

Consequently, since AD,r is increasing function with respect to # > 0, we obtain the

following result.

Theorem 3.2. If0 <0 <86y, then
20,0 <A0.r S A - (3.55)

And if 0 > 0o, then

Nos < Aop < Ao (3.56)

The following explanation is derived from the above theorem. When the cor-
relation parameter is small, a commutative tandem queueing model with independent

service times improves the throughput of the system better than an ordinary tandem
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queueing model with correlated service times, by utilizing an empty station. When
the correlation parameter is large, an ordinary tandem queueing model with correlated
service times improves it better than a commutative tandem queueing model with inde-
pendent service times, by the frequent occurrence of the event that two stations finish

service at the same time.

3.4. Effect of Correlated Exponential Service Times on Queue-

ing Systems

3.4.1. Two-Server Parallel Case

U _—
arrivals
A
_.____) a
U ——

Fig. 3-3. The M/BVE/2(c0) queueing system.

Fig. 3-3 shows the M/BV E/2(00) queueing system which is a special case of the
queueing system described in Section 2.2. The service distribution of two servers is

given by (3.1). We shall denote this system by M/BV E(u, i, &) /2(00). Letting c=2 in
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(2.57) and (2.72), the mean number of customers in this system is

le= et e 1)235 fi;{(zi_—?)a Toap 5D
where
¢ =[2p+a—{(@2p+0)? +4a)}]/(2N), (3.58)
and
¢ = [2u+a+ {@2p+ a)? +4a)}3]/(2N). (3.59)
From (2.21), the steady state condition is
A< 2(u+ a). (3.60)

On the other hand, we shall denote the ordinary two-server parallel queueing system

by M/M(p, 11)/2(c0). The mean number of customers in the M/M(p, 11)/2(c0) system

[28] is given by
Li= s, (361)
where
p= % (3.62)

Since the event that two channels finish service at the same time occurs according to
the rate « in addition to the occurrence of the event that only one channel finishes each

service according to the rate y independently, we can conjecture intuitively that
Lc < Ly for any p. (3.63)
And we find that when the event that two channels finish service at the same time

occurs according to the rate «, then this system can finish 2 customers’ service per
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unit time on the average. Consequently, it is natural that we should compare the
mean number of customers of the M/BV E(u — o, 1 — a, &) /2(c0) system with that of
the M/M (1, 1) /2(o0) system. Hence, replacing p by 1 — a in (3.60) the steady state

condition of the M/BVE(u — a, p — a, a)/2(c0) system is

A< 2u, (3.64)

which coincides with one of the M/M(u, 1) /2(co) system. Then we have the following

theorem:

Theorem 3.3.  The mean number of customers L¢ of M/ BV E(p—a, p—a, c)/2(c0)

is larger than Ly of M/M(p, 11)/2(00) if 0 < @ < p.

Proof. Replacing u by p — a in (3.57), and from (3.61) we have

_ _ 2p- AL
Li=Le = G c —12(@ — 26 — p)e + 28} (8.65)
where
AL = p2(¢ — 1)2{(1 — 28 — p)¢ + 28} + (1 — )1 — p2)E,
£ =[1-8—{(1-B)%+46p}2]/(2p),
¢ =[1-B+{(1—B)2+4Bp}?]/(2p),
8= 5 (3.66)

Putting {(1 — 8)2 +48p 3 = ~ and calculating AL in the straightforward manner, and
g g g

if 0 < B < 1, then we get

(4B +MNE -8+ +B—7)?
8(1-B+7)

AL = < 0. (3.67)
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Since the second term of L¢ in (3.57) is the mean queue length, hence it is positive and
£ <0and p <1,

(1-28—p)+28>0. (3.68)

Consequently, from (3.65) we find

Lc>Ly. O (3.69)

3.4.2. Two-Stage Tandem Case

a
arrivals
A
_— > u u Emamee——

Fig. 3-4. Correlated two-stage tandem queueing system.

Fig. 3-4 shows the two-stage tandem queueing system with correlated service times
described in Section 3.2. The service distribution of two stages is given by (3.1). We
shall denote the mean number of customers in this system by L¢(u, u, a). From (3.22),
it is given by

LC (y" H, a)

_ 2(p+ )’ (2 + )®A + a(p +a)(2p + a)A? — (44 + Bap + )N
B (k+ )22 +a+ M{(p+a)(2p+ @) — Bu+a)r} " (3.70)
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And the steady state condition is

(1 +a)(2p +a)
A< 3+ o . (3.71)

On the other hand, we shall denote the mean number of customers in the ordinary

two-stage tandem queueing system [86] by Lr(p, p). It is given by

4p(2 — p?)
Ly(p, p) = G+ )2 —3p)’ (3.72)

where

A
p=2C. (3.73)
7 ,

The steady state condition in the ordinary case [86] is p < 2. Then, we do not have the

same result as Theorem 3.3 as follows.

Theorem 3.4.  The mean number of customers Lo (1 — o, pp — a, @) in the two-stage
tandem queueing system with correlated service times is smaller than Ly(u,p) in the

ordinary two-stage tandem queueing system if 0 < o < p and p < %
Proof. Replacing p by pp — a in (3.70), and from (3.72) we have

LI(/“‘)I"‘) _LC(H'—aHu’_aaa)_

_ 00°[{60° +3p° +2(2— 3p)}(1 - 0) + (1 + p)(0* — 2p +4)]
2+p)(2—3p)(2 -0+ p){(2—0) — p(3 —20)} © (374)

where

(3.75)

If0 < 6 <1, then we have

=< —= <1, (3.76)
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and when p < % we find

(2—0) — p(3—20) > 0. (3.77)

Thus, the steady state condition of the correlated queueing system is satisfied.

Consequently, if 0 < # < 1 and p < % in (3.74), then

Le(p—o,p—a,p) < Li(p,p). O (3.78)

3.5. Conclusion

We considered a tandern queueimg system with correlated service times whose distri-
bution is the multivariate exponential distribution of Marshall and Olkin in this chapter.
Both ordinary and commutative tandem queueing systems were discussed. For a two-
stage ordinary tandem queueing system, we calculated the mean number of customers
in the system by a generating function approach and showed analytically that it de-
creases according to the increasing of the correlation coefficient. On the other side, for
a three-stage commutative tandem queueing system, we obtained by a matrix-geometric
approach the throughput rates for three models which either an ordinary or commuta-
tive service operation and either of correlated or independent service times are combined
and compared with one another. We established that for a small correlation coefficient,
the throughput rate of the system is lower in the case of an ordinary service operation
and correlated service times than in the case of a commutative service operation and
independent service times, but for a large correlation coefficient, the reverse is true. We

showed that the crossover between these two modes of behavior occurs at the ratio 6
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of (approximately) 0.045, where § equals the correlated service rate per two channels
divided by the independent service rate per one channel.

Finally, we considered a correlated two-server parallel queueing system discussed in
Section 2.2 and a correlated two-stage tandem queueing system discussed in Section
3.2. We showed that in the case of a two-server parallel system, the mean number
of customers is greater when service times are correlated than when service times are
independent, but in the case of a two-stage tandem system, the reverse is true, if the

system can finish 244 customers’ service per unit time on the average.
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Chapter 4.

INTERCHANGEABLE PARALLEL
TANDEM QUEUEING SYSTEMS
WITH CORRELATED SERVICE TIMES

4.1. Introduction

Nishida et al. [75] obtained the optimal allocation of service rates for a two-stage
ordinary tandem queueing system with a single station, where optimality means that
this allocation of service rates minimizes the rate of loss calls. Nishida [79] considered
an interchangeable parallel two-stage tandem queueing system with no waiting room,
where each stage consists of two stations in parallel. He called the discipline that a
customer who finished the first-stage station can enter both of the second-stage stations
as an interchangeable queueing system. He found the optimal allocation of service rates
for the first and second stage stations in the sense of minimizing the rate of loss calls.

In this chapter, as an extension of the model introduced by Nishida [79], we consider
an interchangeable parallel two-stage tandem queueing system in which the service times
of each two stations in the first and second stage are assumed to follow the bivariate
exponential distribution of Marshall and Olkin. For this system we get the throughput

of the system using a matrix-geometric approach and compare the throughput of the
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system with those of an ordinary parallel two-stage tandem queueing system and an
interchangeable parallel two-stage tandem queueing system whose service distribution
is exponential.

A closely related model is that of Latouche and Neuts [54]. They considered a two-
stage ordinary tandem queueing system with a feedbackloop, where each stage consists
of a number of stations and one immediate finite waiting room exists between stages.
They showed that their stationary probability vector has a matrix-geometric form.

An approach is closely related to Heavey et al. [35], Papadopoulos et al. [81,82]
and Papadppoulos and O’Kelly [83]. They described the queueing system by a quasi-
birth-death process and obtained the exact procedure of calculating the throughput.
Similarly to the definition by the above four papers, the throughput treated in this
chapter is defined as a critical input rate on the assumption that the first queue is never
empty.

In Section 4.2, we describe our model fully, calculate the throughput rates four models
and compare with the four throughput rates one another. In Section 4.3, we give a

sumnmary of Chapter 4.

4.2. Analysis of Model
4.2.1. Model

We consider a two-stage tandem queueing system with no intermediate buffers, in
which each stage consists of two channels in parallel. Customers arrive at the queue,
which is assumed to be infinite, according to a homogeneous Poisson process with rate

A > 0. After completion of the first stage service, each customer can enter both of
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the second stage channels. Namely, when the second stage channel which is located
on as the same line as his first stage channel is busy, he can enter another channel in
the second stage if it is free. We call this operation interchangeable. On the other side,
after completion of the first stage service, each customer can enter only the second stage
channel which is located on as the same line as his first stage channel if it is free. We
call this operation ordinary. If a customer has already completed service of two stages,
then he departs the system. But if he has not completed service of the second stage and
his second stage channel is not free, he has to stay there, that is to say, this channel
is blocked, and when his second stage channel has completed service, he can enter that
channel. In the interchangeable case, a blocking occurs only when both of the second
stage channels are busy, whereas in the ordinary case, it always occurs when the second
stage channel which is located on as the same line as his first stage channel is busy.

The service times of each two channels in the first and second stages are not inde-
pendent but depend upon each other. It is assumed that their service distribution is
the bivariate exponential distribution of Marshall and Olkin. We call this model corre-
lated. On the other side, we call a model in which their service distribution is an usual
exponential distribution independent.

It is assumed that customers can transfer between channels instantaneously. Service
to a customer at any channel, once initiated, is completed without interruptions. The
queueing discipline is first-come first-served.

As shown in Fig. 4-1, the model I is interchangeable and correlated. We denote the
throughput of this system by A . Similarly, the model I, III and IV are interchange-

able and independent, ordinary and correlated and ordinary and independent.
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Model | (Interchangeable, Correlated)
first stage second stage

1 3 F—

Model || (Interchangeable, Independent)
first stage second stage

1 3 +—

A*¥ Yy, —

Model Il (Ordinary, Correlated)
first stage second stage

1 > 3 —

A* 0,0 —>

Model v  (Ordinary, Independent)
first stage second stage

1 3 ——

A¥ o1 —>

Fig. 4-1. Interchangeable paralle]l two-stage tandem queueing system.
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We denote the throughput of the model II, III and IV by A} ;, A5 ¢ and Ap

respectively.

4.2.2. Calculation of Throughput
We give numbers 1, 2, 3 and 4 to channels in the first and second stagel as shown

in Fig. 4-1. The joint service distribution of channel 1 and 2 and channel 3 and 4 are

respectively given as follows:

Fi(ty,t2) = e™™ (t1-+z)—a max (t1,t2)

Fo(ta, ta) = etz (tatta)me max (is,ta), (4.1)

The model I under consideration can be studied as a continuous time Markov chain with
state-space {(0,7) : 1 < 7 <mo}U{(i,7): ¢ > 0,1 < j < m}. The state (0, j) denotes
that the system is in the boundary state and m( denotes the number of the boundary
states. In the state (4,7), ¢ denotes the number of customers in the queue, whereas j
denotes the state of the network consisting of four channels and m denotes the number
of states in the network.

The states of the network are described by the vector:

(81182, 83, 34) (42)

where s; (1 = 1,2,3,4) can take any value from 0 to 2 with

0 -the i-th channel is idle,
s; = ¢ 1 -the z-th channel is in service, (4.3)
2 -the 2-th channel] is blocked.
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Then the boundary states are
(0,0,0,0),(1,0,0,0),(0,1,0,0), (0,0,1,0), (0,0,0,1),
(0,0,1,1),(1,0,1,0),(1,0,0,1),(0,1,1,0), (0,1,0,1),
(1,0,1,1),(0,1,1,1),(0,2,1,1),(2,0,1,1). (4.4)
The states of the network are
(1,1,0,0),(1,1,1,0),(1,1,0,1),(1,1,1,1),(2,1,1,1),
(1,2,1,1),(2,2,1,1). (4.5)

By ordering the states as described above, the infinitesimal generator of the continuous

time Markov chain has the following block partitioned structure:

"Ao1 Aos i
Aoz A; Ay
Aos A2 A; A,
Q= Az Az A; Ao (4.6)
Az Az A; Ao
As A A

where all the unmarked entries are zeros.

The dimensionality of Ag; is 14 x 14, Ag2 and Agg are 7 X 14, Agq is 14 X 7, Ao,
A, Ay and Agare 7 x 7.

Let p equal the steady state probabilities of the network, assuming that the queue is
never empty, which has elements p(j) (1 < j < 7). We can determine p, by solving the
System

pA=0, pe=1 (4.7)

where the conservative matrix is given by

A=Ag+A; +A>+Ag (48)

80



and e is (7 x 1) column vector with all elements equal 1. The equilibrium condition is
given (see Neuts [71]) by

pAge < P (A2 + 2A.3) e. (49)

From this relationship the critical input rate, A\*, to the system can be determined. In
the steady state, this critical input rate is identical to the maximum throughput rate of
the system.

The conservative matrix of the model I becomes

T —uy 21 0 a 0 0 0 7
Ug — [2 —U1 0 2, 0 a 0
ug—pz 0 —u 241 0 o 0
A= a B2 p2 —Uvi—p2 g1 M a ; (4.10)
0 o 0 2110 vy 0 up—m
0 a 0 2119 0 —v uy—
. 0 0 0 o B2 Mo —ug
where
u; = 2/1/1 + «,
Uz = 2/1'2 + o,
vy = 2p1 + p2 + 2a,
v2 = p1 + 2u2 + 2a. (411)

When p; = py = p and 6 = a/p, the equilibrium condition (4.9) in this case is given

by

A<p 2+ [1-p(4) ] +p0[p1)+p(7)]. (4.12)
By solving the system (4.7) and substituting p(j) into (4.12), if u = 1, we obtain

4(1+0)2(6+0) |,

A At
S 1612104302 IC

(4.13)
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When 6 = 0, that is, the service times of each two channels in the first and second stage
are independent, the maximum throughput rate (4.13) yields

3
Tr== 4.14
I,I 21 ( )

which gives the maximum throughput rate of the model II.

Next, we shall calculate the maximum throughput rate of the model III.

As additional boundary states, the states (2,0, 1,0) and (0, 2, 0, 1) are combined with
the boundary states of the model I. Similarly, the states (2,1,1,0) and (1,2,0,1) are
combined with the states of the network of the model I. The infinitesimal generator of
the continuous time Markov chain has the same block partitioned structure as that of
the model I. The dimensionality of Ag; is 16 x 16, Agz and Ags are 9 x 16, Ag, is
16 x 9, Ap, A1, A2 and Az are 9 x 9.

Let p equal the steady state probabilities of the network, assuming that the queue
is never empty, which has elements p(j) (1 < j < 9). The relationship (4.7), (4.8) and
(4.9) also hold for the model III.

The conservative matrix of the model III becomes

A=
[ —uy U1 M1 a 0 0 0 0 0 1
Up —~ P2 U 0 P 2 0 a 0 0
uz — P2 0 - p1 0 p1 0 a 0
o K2 ) —vy—p2 0 0 751 1 o
0 Ug — U2 0 0 —V12 0 Uy — Ui 0 0
0 0 Ug — [ho 0 0 —V1g 0 Uy — 0
0 a 0 K2 M2 0 —vUy 0 U — M1
0 0 a K2 0 p2 0 —vy Uy —
L 0 0 0 (84 0 0 H2 2 —Ug J
(4.15
where
vi2 = Py + p2 + 20 (4.16)
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When gy = p2 = p and 6 = a/p, the equilibrium condition (4.9) in this case is given
by

A<p(1+0) [1+p(1)+p(5) + p(6) + p(9) — p(4) ]. (4.17)
By solving the system (4.7) and substituting p(j) into (4.17), if 4 = 1, we obtain

4(1+0)

A<=~ =X (4.18)

When 0 = 0, that is, the service times of each two channels in the first and second stage

are independent, the maximum throughput rate (4.18) yields

4
N = = (4.19)
’ 3
which gives the maximum throughput rate of the model IV.
4.2.3. Comparison of Throughput
If
0 = 0y = 0.125, (4.20)
then
A;,I = A*O,C (421)

Consequently, since both A} - and A}, - are increasing function with respect to 8 > 0,

we obtain the following result.

Theorem 4.1. If0 <6 < 8y, then

Xor <Aoo < Mo < Abc. (4.22)
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And if 0 > 0o, then

Aog <A1 <XAoc <Alc (4.23)

The following explanation is derived from the above theorem. When the correla-
tion parameter is small, an interchangeable parallel two-stage tandem queueing model
with independent service times improves the throughput of the system better than an
ordinary parallel two-stage tandem queueing model with correlated service times, by
utilizing an empty channel. When the correlation parameter is large, an ordinary par-
allel two-stage tandem queueing model with correlated service times improves it better
than an interchangeable parallel two-stage tandem queueing model with independent
service times, by the frequent occurrence of the event that two channels finish service

at the same time.

4.3. Conclusion

We considered an interchangeable parallel two-stage tandem queueing system in
which the service times of two channels in the first and second stage follow the bi-
variate exponential distribution of Marshall and Olkin in this chapter. The throughput
rates were obtained by a matrix-geometric approach for four models which either of an
ordinary or interchangeable service operation and either of correlated or independent
service times are combined and compared with one another. It was a proper result that
the throughput of a model with an interchangeable service operation and correlated
service times is the greatest of the four and that of a model with a ordinary service op-

eration and independent service times is the lowest of the four. More important result
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was that for a small correlation coefficient, the throughput of the system is lower in
the case of an ordinary service operation and correlated service times than in the case
of an interchangeable service operation and independent service times, but for a large
correlation coefficient, the reverse is true. We showed that the crossover between these
two modes of behavior occurs at the ratio ¢ of (approximately) 0.125, where § equals
the correlated service rate per two channels divided by the independent service rate per

one channel.
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Chapter 5.

TANDEM QUEUEING SYSTEMS
WITH SEVERAL TYPES OF CUSTOMERS

5.1. Introduction

A common assumption made when analyzing tandem queueing systems is that the
capacity of each station is infinite. That is, a station can accommodate any number of
customers waiting to receive service. However, in real-life systems frequently the storage
space in front of a station is finite. Due to this limitations imposed on the capacity,
the flow of customers through one station may be momentarily stopped if a destination
station has reached its capacity. This is known as blocking, and in view of this, a tandem
queueing system with finite capacity is referred to as a tandem queue with blocking.
A tandem queue with blocking have proved useful in modelling production systems,
computer systems, and telecommunication systems (see Buzacott and Shanthikumar
[8], and Papadopoulos et al. [84]).

Tandem queueing systems with finite capacity in which blocking and starvation are
important is difficult to calculate performance measures explicitly because it has large
state spaces (see Disney and Konig [19], and Perros [86]). Consequently, consider-

able attention has been focussed on the development of approximations whose method
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is cornmonly used by decomposition for evaluating performance measures. Several re-
searchers, including Dijk and Lamond [17] and Shanthikumar and Jafari [93] have devel-
oped bounds for performance measures of tandem queueing systems with finite capacity.
Another attention has been focussed on the establishment of convexity or concavity of
performance measures (see Shaked and Shanthikumar [92]). There have been attempts
to establish proof about similar problems for tandem queueing systems. Independently,
Anantharam and Tsoucas [2] and Meester and Shanthikumar [59] demonstrated that the
throughput of a tandem queueing system with finite capacity is increasing and concave

with respect to the vector of capacity sizes.

On the other hand, in a conventional tandem queueing system, each customer requires
several sequential types of service, each of which is performed by a different server
who attends at each station. However, there are several practical examples of tandem
queueing systems served by a single server: a labor and machine limited production
system [69], a repairable system with a repair man [100], and operating systems in
computer and telephone switching systems [39,40,41,64]. All the queues are served by a
single server that moves among the stations according to a cyclic switching rule. That
is , when the queueing system has N stages in series, a station S; and a queue with
infinite capacity, the server advances to the next station in cyclic order, S5; — S, —
.-+ — Sy — S1 —, and so on. The following switching rules [99] will be considered for

each station.

(a) Ezhaustive service, also called a zero switching rule : when the server visits a

queue, its customers are served until that queue is empty.

(b) K-limited service, also called a non-zero switching rule : when the server visits a
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queue, it is served until either the queue becomes empty, or at most, a fixed number of
customers, say K, are served, whichever occurs first.

(c) Gated service : when the server visits a queue, the customers found upon arrival
at the queue are served.

Moreover, the server’s walking time (sometimes known as switchover time of overhead
time) is required, whenever the server moves from one station to the other.

Katayama [40] analyzed a two-stage tandem queueing system with walking time,
which is served according to a gated service. Katayama and Kobayashi [43] and Nair
[67] treated a two-stage tandem queueing system with zero switchover time and a K-
limited service. Katayama [41] investigated a two-stage tandem queueing system with
walking time and a K-limited service. Nair [66,68] and Taube-Netto [100] analyzed a
two-stage tandem queueing system with zero switchover time and a exhaustive service.
Murakami and Nakamura [64] studied a three-stage tandem queueing system with zero
switchover time and a exhaustive service. Katayama [42] and Kénig and Schmidt [48]
studied a multi-stage tandem queueing system with zero switchover time, which is served
according to several switching rules.

In Section 5.2, we investigate a two-stage ordinary tandem queueing system with two
types of customers having independent Poisson arrivals and exponential service times,
and obtain the mean queue length. An unlimited queue is allowed before the first stage
but no queues are permitted between two stages. This second restriction results in the
blocking of the first stage, whenever a customer who requires service in both stages
having completed his service in the first stage cannot move into the second stage due

to the presence of another customer there.
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In Section 5.3, we consider a two-stage commutative tandem queueing system in
which other assumption are the same as the model which will be discussed in Section
5.2. The blocking phenomenon occurs whenever a customer who requires service in both
stages having completed his service in one stage but has to stay there because the other
stage is still occupied.

In Section 5.4, we analyze a multi-stage tandem queueing system with zero switchover
time, which is served according to a exhaustive service. Each arriving customer requires
a certain number of sequential types of service, all of which are performed by a single
server. We calculate the mean number of customers in the system and compare with
the feﬁult in the case where each customer receives service in all stages.

In Section 5.5, we consider a two-stage tandem queueing system with no queues
ahead of the first stage and finite intermediate buffer storage spaces. Each stage has
a single station and the service times are independent and exponentially distributed
with different parameters. For this system, we obtain the mean number of busy service
stations, the rate of loss calls and the mean number of customers explicitly and establish
tha concavity or the convexity of these performance measures. In Section 5.6, we have

a summary of this chapter.

5.2. Two-Stage Tandem Queueing System with Two Types of
Customers
5.2.1. Model

Fig. 5-1 shows a ordinary two-stage tandem queueing system. Two types of cus-

tomers, namely type 1 and type 2 customers, arrive randomly and independently at
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stage 1. Interarrival times are exponentially distributed within classes with arrival rates
A1 and A;. Each type 1 customer requires only one type of service and leaves the system
without moving into stage 2 when he has completed his service in stage 1. Each type 2
customer requires two sequential types of service and leaves the system after completing
his service in both stages. The service time distributions in the first and second stages
are also exponential with service rates y; and po, respectively, and the service rate of
type 1 customers in the first stage is the same as that of type 2 and a queue discipline is
first-come first-served. An unlimited queue is allowed before stage 1 and no queues are
permitted between stage 1 and stage 2. This second restriction results in the blocking
of stage 1 whenever a type 2 customer having completed his service in stage 1 cannot
move into stage 2 due to the presence of another type 2 customer there. If type 1 cus-
tomers do not arrive at the system described above, it reduces to the ordinary two-stage

tandem queueing system.

arrivals
A1, 22 (1) (2) (2) (2)
_— L1 Uz >

Fig. 5-1. Two-stage tandem queueing system with two types of customers.

5.2.2. Mean Queue Length

We define the following steady state probabilities:

91



P™1,0) (n>0,i=1,2):

AM(1,1) (n>0,i=1,2):

n customers in the queue and a type ¢ customer in service
in stage 1;
n customers in the queue, a type ¢ customer in service in

stage 1 ,and a type 2 customer in service in stage 2;

p(®)(b,1) (n > 0) : n customers in the queue, a type 2 customer in stage 1 with

service completed, and a type 2 customer in service in stage 2;

Po : no customers in the system ;

p1 : no customers in the queue or in stage 1 and a type 2 customer in service

in stage 2.

The steady state equations may be constructed in the usual manner. They are

(A1 +X2)po = papy )(1 0) + pap1,

(A1 4+ A2+ p2)pr =

(A1 4 Ag + )P0 (1,0) =

(M + Az 4+ p)ps(1,0) =

(A1 + Az + p2)p@(b,1) =
M+ +pm+ ﬂz)P1 )(1 1)=
(M + Az + 1 +p2)ps¥ (1,1) =

(A1 + Az + p)pi™(1,0) =

papt” (1, 1) + papy (1,0) + pap® (b, 1),

A1po + Hap; )(1 1)+ Ulﬁlpg )(1 0),

Xopo + 12 (1,1) + 1 Bapt” (1,0),

mpy (1, 1),

M1+ p1Bip (1,1) + paBip (b, 1) + pBrps (1,0, |
Aapr + 11 BopY (1, 1) + 2B (6, 1) + 1 Bap” (1,0),

(1 +A2)p™" 0 (1,0) + papi™ (1, 1)

+ #1ﬁ1P§n+1)(1, 0)7 n 2 1,

A1+ Az + p1)PY(1,0) = (A 4+ A2)p (1, 0) + pop™ (1, 1)

+ paBap™ (1, 0), n>1,
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A1+ A2 + p2)p™ (B, 1) = (M + A)p™ D0, 1) + mpi”(1,1),  n>1,

(At + A2+ pr + p2)pi™ (1,1) = O+ 22)p" (1, 1)+ Bip™ (1, 1)
+ 2B (b, 1) + mBipy (1, 0), n>1,

(A1 + Az + 1 + p2)pS (1, 1) = (Mg + A2)p8 (1, 1) + p Bopt™ (1, 1)

+ paBap™ D (b, 1) + pa Bopy TV (1,0), n>1
(5.1)

We introduce the following generating functions:
Fy(z) =Y p{™(1,0)2", i=1,2,
n=0
o0
F3(2) = Zp(")(b, 1)z",
n=0
o0
Fi(2) =Y "1, 1)2",  j=4,5. (5.2)
n=0

Multiplying the equations (5.1) by appropriate powers of z and adding them up, we

have

{p2? —vz + b1} Fi(2) +v2F4(2) = Prp(1 — 2)po — 1Py,
BaF1(2) + z(pz — v)Fa(z) +v2F5(2) = B2p(1 — 2)po — B2vp1,
{pz — (p+7)}F3(2) + F5(2) = 0,
BLFa(2) + B1yFs(2) +{pz* — (v +v)z + B1} Fu(2) = B1(7 + p — p2)p1,

BaFa(2) + BoyFa(2) + B2 Fy(2) + 2{pz — (v + V)} F5(2) = Ba(y +p — p2z)p1, 653

where

A A
A=XitX, Fi=5, k=3, 1= p=—, v=p+l (54
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From (5.3), we obtain

Fi(2) i((zz)) , 1<i<5, (5.5)
where
A(z) =
p2?2 —vz+ 0 0 vz 0
B2 z{(pz — v) 0 0 vz
0 0 pz —(p +7) 0 1
0 B By pP—(y+v)z+ By 0
0 B2 B2y Be z{pz — (v +v)}
= 132%(z = 1)(pz — v){oz — (v + 1)} [0*z* — 20%(v +v)Z°
+p{p® +2(B1 +7 + o +7° + 3y +1}2° — {210* + (261 + 27 + Biy)p
+y(y + 1)}z + Bi(Brp +7)], (5.6)

and H;(z) is the determinant obtained from A(z) by replacing the i-th column by a

column vector

B1p(1 — 2z)po — B1ym

B2p(1 — 2)po — Baym
0 . (5.7)

By +p—pz)p
Ba(y +p — p2);1

From (5.6), it is easily verified that

[H—l@] > 0. (5.8)
1-2 z=1
Hence, since

0< Fi(1) <1, (5.9)
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we obtain

A
[ (2)} >0, (5.10)
1-2 z=1
namely
Bay +7°
p< . 5.11
B3 + Bay + 2 (5.11)
Note that for 85 =1
v+
L . 5.12

In this case the above system reduces to that of the ordinary two-stage tandem case
with different service rates.

Then, allowable utilization factor p of each queueing system is given as follows;

Ordinary system: 0<p< , 5.13
RS PET/(+) (5:13)
This system 0<p< ! (5.14)
S . . .
Y 1+ B3/ (B +77)

Therefore, it follows that compared with the ordinary case, the maximum utilization of
this system is increased when 0 < 3 < 1.

Now the equation

P22t — 2p%(y +v)22 + p{p® +2(B1 + 7+ 1)p+7* + 3y +1}2°

— {26102 + 2B+ 2y + By +¥(y + D}z + B1(Brp +7) =0 (5.15)

has one and only one real root in 0 < z < 1 under the condition (5.11). Hence it turns

out that A(z) = 0 has one and only one real root in 0 < |z| < 1 since the equation

(02— v){pz~ (Y+)} =0 (5.16)
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has no root whose absolute value is less than unity.
Let us denote this root by 7. Since the generating functions F;(z) = H;(z)/A(z)(1 <
i < 5) are regular in the domain |z| < 1, the root of the numerator and the denominator

of the right-hand side must coincide with each other. Therefore, it follows that
H;(z) =0, 1<:<5. (5.17)
Using the relation
PPt — 20 (y + )P + p{p® + 2B + Y+ Dp +4° + 3y + 1}
—{261* + 2B + 2y + BiNp+y(y + DIn+ Bi(Brp +7) =0,  (5.18)

we notice that when any one of equations (5.17) holds, another four equations follow

from it. This shows that a relation between pp and p, is given as follows;

Bappo — {00 — p(y +v)n + Brp +v}pr = 0. (5.19)

Taking account of the total probability, it holds that

5
p+m+Y F()=1 (5.20)
=1

From the equations (5.3), we have
BoF1(1) —vF4(1) = (p — 1)F1(1) + vFa(1) + Bropo,
—BoF1(1) + F3(1) — vF5(1) = (p — 1)F2(1) + vF5(1) + Bappo,
YF3(1) - F5(1) = pF5(1),
—B1F3(1) — BryF3(1) + (B2 + ) FL(1) = (p — v — 1)F4(1) + Brppy,
—B2F3(1) — BayF3(1) — BaFi(1) + (v + 1) F5(1) = (p — v — 1) F5(1) + Bappr.

(5.21)
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Addition of these equations and substitution of the normalization condition (5.20) yield

Fi(1) + F(1) + Fy(1) + F(1) = p. (5.22)

Similarly from the equations (5.3), we have

B2FY' (1) — vFy (1) =2pF1(1) +2(p — 1) F{(1)
+27F(1),
—BaFy' (1) + F3' (1) — vF§ (1) =2pF>(1) +2(p — 1) F3(1)
+2vF5(1),
vF3 (1) — F' (1) =2pF3(1),
—B1F (1) ~ B1vF5 (1) + (B2 +7)F{ (1) =2pF4(1) + 2(p — v — 1) Fy(1),

—B2F3 (1) — By F5 (1) — BoFy (1) + (v + 1) F5 (1) =2pF5(1) +2(p — 7 — 1)Fé(g- 23)

Addition of these equations and substitution of the relation (5.22) yield

(p — D)F{(1) + (p — 1)F3(1) + pF3(1) + (0 — DF,(1) + (p — DF5(1) = —p°.  (5.24)

Moreover, from the first four equations of (5.3), it is evident that F;(1)(1 < ¢ < 5)

satisfy the following relations;

B2 F1(1) — vF4(1) = Biype,
—B2F1(1) + F2(1) — vF5(1) = B2vm,
YF3(1) — F5(1) =0,

—B1F2(1) — B1yF3(1) + (B2 + V) Fu(1) = —B1yp1- (5.25)

97



Solving the above equations and (5.22) for F;(1)(1 <¢ < 5) in the usual way, we have

_ Bulp+m) _BRQ1) _ Ba(Bep —vp1)
Fl(l) - ,32 +'Y b F2(1) ,Bl ) F3(1) ,Y(ﬂz +'Y) )
r = 2220 R0 - om0, (5.26)

Substituting the above results into the normalization condition (5.20), we get the fol-

lowing relation between py and p;;

(B2 + )P0 +72p1 = Loy + 7% — p(B3 + B2y + 7). (5.27)

Thus, by (5.19) and (5.27), we find that

_ By + 7% — p(B + Boy +7)HP*n? — p(y + )0 + Bup + 7}
(B2 +Y)H{p?n? — p(y +v)n + Bip + 7} + B2py?

?

Pappo (5.28)

P = .
p*n? —p(y +v)n+Brp +7

Note that for B =y =1

n=0, (5.29)

and therefore

po = ——F, (5.30)

which coincides with that of the ordinary case [86]. Because, in this case the equation
(5.15) yields

z h(z) =0, (5.31)

where

h(z) = p32® — 2p%(p +2)2% + p(p* +4p +5)z — 2(p + 1). (5.32)
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Now we shall derive the expected number of customers in the queue. In order to
determine this, we must obtain F](1)(1 < ¢ < 5) explicitly. The first four equations of
(5.21) are four such equations and the equation (5.24) is remaining. These equations
can be solved for F}(1)(1 < i < 5) by elementary but a little troublesome calculations

and the mean queue length L, is given by

5
Ly = Z F;(1)
=1

1
(v + D{B2y + 2 — p(B5 + B2y + %)}

(@ = p)(Bay + 262 +¥)F1(1) + (1 — p)(B2 + 7) Fa(1)
+ p(B3 + B2y + 7% + B37)F3(1) + {B2 + v — p(Bay + B2 + )} Fu(1)
—~ (B2 +Y)Fs(1) + p?(v + 1) (B2 + Boy +72) + p(B3y + B3 — By — 282 — Y)po

— B1p(B27 + B2 +¥)p1l- (5.33)

The result (5.33) holds, of course, for 3, =~y =1. Let 82 =+ =1 in (5.26), then

Fl(]-) —_ F4(1) —_ O,

2p?

2+p

B =220, R =R - (5.34)

Thus, from (5.30) the result (5.33) is

_ 4p°(1 +2p)
T 2+p)(2-3p)

(5.35)

which is identical with the mean queue length in the ordinary case.
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5.83. Two-Stage Commutative Tandem Queueing System with

Two Types of Customers

5.3.1. Model

arrivals 2
1,22 (1) (2) (2) (2)
—_— N u ) u

13)

Fig. 5-2. Commutative tandem queueing system with two types of customers.

Fig. 5-2 shows a two-stage commutative tandem queueing system, where type 1
and type 2 customers arrive according to a Poisson stream with parameter A\; and Az,
respectively. Each type 1 customer requires only one service, can receive service in
either stage and leaves the system without moving into the other stage when he has
completed service in one stage. In a word, type 1 customers intend to behave as like in
the M/M/2(0o) queueing system. Each type 2 customer requires two types of service
and leaves the system after completing service in both stages. Each type 2 customer
on arrival enters stage 1 if both stages are free, and enter stage 2 if stage 1 is busy. In
a word, type 2 customers intend to behave as like in the usual commutative tandem
queueing system as mentioned above. Each service time of both stages is exponentially

distributed with parameter y. Infinite queue is possible ahead of stage 1, but no queues
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are permitted between both stages. The second restriction causes the phenomenon
of blocking which means the situation that takes place when a type 2 customer has
completed service in one stage but has to stay there because the other stage is still
occupied. Each type 2 customer transfer between stages instantaneously if other stage
is vacant. The queueing discipline is first-come first -served. If type 1 or type 2 customers
do not arrive at the system, it reduces to the two-stage commutative tandem queueing

system with infinite waiting rooms or the M/M/2(co0) queueing system, respectively.

5.3.2. Mean Queue Length

The notation p(s1, $2, s3) will be used to denote the steady state probability, where
sy is the length of queue, s, is the state of stage 1 and s3 is the state of stage 2. We
define the following labels to denote the state of each stage.

0 : no customers,

1: atype 1 customer in service,

2 : a type 2 customer in the first service,

3: a type 2 customer in the second service,

b: a type 2 customer is blocked.

Viewing the nature of this system, the steady state equations can be easily con-

structed in the usual manner. But, for simplicity, we shall set as follows:

Po= p(07 07 0)1
b1 = p(07 17 0) + p(O’ 0, 1),

P2 = p(oa 27 0) + p(07 01 2)7
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s = p(0,3,0) +p(0,0, 3),

p(n,1) =p(n,1,1), n >0,
p(n,2) = p(n,2,2), n >0,
p(n,3) = p(n,3,3), n >0,
p(n,4) = p(n,1,2) + p(n, 2, 1), n >0,
p(n,5) = p(n,2,3) +p(n, 3,2), n >0,
p(n,6) = p(n,1,3) + p(n, 3, 1), n >0,
p(n,7) = p(n,1,b) + p(n, b, 1), n >0,
p(n,8) = p(n,2,b) + p(n, b, 2), n >0,
p(n,9) = p(n, 3,b) + p(n, b, 3), n > 0. (5.36)

Then the steady state equations are written in a simple manner as follows:

Apo + pup1 + pp3s =0,
—(A+p)p1 + Apo +2pp(0,1) + pp(0,6) =0,
—(A 4+ p)p2 + Agpo + pp(0,4) + pp(0,5) = 0,
—(A + p)p3 + pp(0,6) + pp2 + up(0, 7) + pp(0, 9) + 21p(0,3) =0,
—(A+2p)p(0,1) + Mp1 + pB1p(1,6) +3pBip(1,1) =0,
—(A +2p)p(0,2) + Aap2 + pfep(1,4) + pB2p(1,5) = 0,
~(A+2p)p(0, 3) + pp(0,8) =0,
—(A+2u)p(0,4) + A1p2 + Aapr + 1B1p(1,4) + pB1p(1,5) +2uB2p(1, 1)

+uB2p(1,6) =0,
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~(A+2u)p(0,5) + Aap3 + pPap(1,6) + 2uB2p(1, 3) + pfap(1,7)
+ufB2p(1,9) =0,
~(A +21)p(0, 6) + Mps + pBip(1, 6) + 2uB1p(1, 3) + pB1p(1,9)
+upp(1,7) =0,
—(A+p)p(0,7) + pp(0,4) =0,
—(A +u)p(0, 8) +21p(0,2) =0,
—(A+ p)p(0,9) + 1p(0,5) =0,
—(A +2p)p(n, 1) + Ap(n — 1,1) + pfip(n +1,6) + 2uBip(n +1,1) =0, n=>1,
—(A +2p)p(n, 2) + Ap(n — 1,2) + pBep(n 4+ 1,4) + pBep(n +1,5) =0, n>1,
—(A+2p)p(n,3) + Ap(n — 1,3) + pp(n,8) =0, n=>1,
—(A +2p)p(n, 4) + Ap(n — 1,4) + pfip(n + 1,4) + ppip(n + 1,5)
F2uBap(n +1,1) + pBop(n +1,6) =0, n>1,
—(A+2p)p(n, 5) + Ap(n — 1,5) + pBap(n +1,6) +2pB2p(n + 1, 3)
+ufop(n +1,7) + pfep(n +1,9) =0, n=1,
—(A +2p)p(n, 6) + Ap(n — 1,6) + pBip(n +1,6) + 2pB1p(n + 1, 3)
+uBip(n +1,9) + pfip(n +1,7) =0, n=>1,
—(A+pp(n,7)+ Ap(n — 1,7) + pup(n,4) =0, n =1,
~(A+ w)p(n,8) + Ap(n —1,8) +2up(n,2) =0, n=1,

—(A+ wp(n,9) + Ap(n — 1,9) + pp(n,5) =0, n=>1,
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where

A A
A=A+, Bi=2L By=22. (5.38)
A A
We introduce the following generating functions:
oo
Fi(z) =) _ p(n,i)z", 1<i<9. (5.39)

n=0
Multiplying the equations (5.37) by appropriate powers of z and adding them up, we

have

(fz+2B1)Fi(2) + 1 Fo(z) = —Bippo — Brgpr,
f2F2(2) + B2 Fa(2) + B2 Fs(2) = —B3ppo — Bagp2,
fF5(2) + Fa(2) =0,
2B2F1(2) + (fz + 1) Fa(2) + B1F5(2) + B2 Fe(z) = —2B1B20pP0 — B2gp1 — Prgpe;
2B2F3(2) + fzF5(2) + B2Fo(2) + PoFr(2) + B Fo(z) = —B2p2 — Pagpa,
281 F3(2) + (fz + B1)Fo(z) + BrFr(2) + B1Fo(2) = —Bip2 — Brgps,
Fy(z) + gF7(z) = 0,

2F2(Z) + gFg(Z) =0,

F5(2) + gFy(2) = 0, (5.40)
where
A

f=pz—(p+2), g=pz—(p+1), p= (5-41)

From (5.40), we obtain

H;(z) .
(z) = <i<

F;i(2) A)’ 1<:<09, (5.42)
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where
fZ + 2,61

A(z) =

OOOOO@OO

= 22(z — 1) f2¢%(fz + B1)[p*2® — p3(3p + 7)2*

+p2{3p% + (361 + 14)p + 18}z — p{p* + (61 + 7)p*

0 0 0 0 6
fz 0 B2 B2 0

0o f 0 0 0

0 0 fz+fB1 B B2

0 206, 0 [z B2

0 260 O 0 fz+p
0 0 1 0 0

2 0 0 0 0

0 0 0 1 0

Poocooo

B
[}
0

0

O OO OoCOoO OO

+ (146; + 19)p + 20} 2% + {3610° + (287 + 14B; + 1)p°

+ (2081 + 4)p + 8}z — (262p* + 687p + 861 — 4)],

© ocoRPPoooo

(5.43)

and H;(z)(1 < i < 9) is the determinant obtained from A(z) by replacing the i-th

column by a column vector:

—B3ppo — Brgp1
—B3ppo — P2gp2

0

—201B20p0 — P29 — P1gp2

—Bep2 — P29p3
—prp2 — B1gps

0

0

0

From (5.42), if the system is in steady state,

0< F;(1) <1,

Therefore, the steady state condition should be

2(3 —261)
(2—B1)(4—361)

p <
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1<2<0.

(5.44)

(5.45)

(5.46)



Substituting $; = 0 in this inequality, we get
3

which is the steady state condition for the usual commutative tandem queueing system
[76).

On the other hand, let 8; =1 in (5.46), then
p<2 e, =— <1, (5.48)

which coincides with that of the M/M/2(00) queueing system.

Now the equation
fz+B1=0 e, pz®—(p+2)2+p1 =0 (5.49)

has one and only one real root in 0 < z < 1, namely

P2 (PP + 4B+ 1)t
_ 2 .

(5.50)

Also, the equation

p*25 — pP(3p + 7)2* + p?{3p% + (361 + 14)p + 18} 2% — p{p* + (661 + 7)p”
+ (1481 +19)p + 20} 22 + {381p% + (282 + 148, + 1)p° + (2081 +4)p + 8}z
— (263p° +667p +801 —4) =0 (5.51)
has more than one real root in |z| < 1 under the condition (5.46). Let 7 be one of such

roots. Hence it turns out that the equation A(z) = 0 has more than two real roots in

[z] <1 since the equation

P =0 e, {pz—(p+1)}{pz—(p+2)}*=0 (5.52)
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has no root whose absolute value is less than unity. Since the generating functions (5.42)
are regular in the domain |z| < 1, the root of numerator and the denominator of the

right-hand side must coincide each other. Therefore,

H;(x) =0, 1<:2<9, (5.53)
and
Hi(n) =0, 1<i<0o. (5.54)
Using the relation
oK% — (p+2)K + By = O, (5.55)

and

p*° — p*(Bp + )t + p?{3p% + (361 + 14)p + 18}1° — p{p® + (661 + 7)p?
+ (141 + 19)p + 20} + {3B10° + (267 + 1481 + 1)p* + (2081 + 4)p + 8}

— (2B70° +607p + 801 —4) =0, (5.56)

we notice that when any one equation holds, another eight equations follow from it.

This shows that two relations are given as follows:

B2p1 — P1p2 =0, (5.57)

and

Bap{p®n* — p(20 + 3)n + p® + (B1 +2)p + 2}po + {pn — (p + D} p*n?

—plp+3)n+2(Bip+1)}p2=0. (5.58)
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Taking account of the total probability, we have

3 9
Y m +Z F;(1) =1. (5.59)

=0
Now, we shall derive the mean queue length.
Differentiating both sides of (5.40) with regard to z and then substituting z = 1, we

have

—2B:Fi(1) + B Fg(1) = (2 = p)F1(1) — Bipp1,
~2F3(1) + B2F4(1) + B2F5(1) = (2~ p)F2(1) — Bapp2,
~2F4(1) + Fy(1) = —pFa(1),
2B2F{(1) + (Br — 2)F4(1) + B1F5(1) + B2 Fg(1) = (2 — p) Fu(1) — Bapp1 — B1pop2,
26, F3(1) — 2F5(1) + B2 Fg(1) + B2F7(1) + B2 Fy(1) = (2 — p) F5(1) — B2pps,
261 F3(1) + (B — 2)Fg(1) + B1F7(1) + BrFo(1) = (2 — p) Fo(1) — Brpps,
Fi(1) - F7(1) = —pF(1),
2F3(1) — Fg(1) = —pF3(1),

Fy(1) - Fy(1) = —pFa(1). (5.60)
Addition of these equations and substitution of the normalization condition (5.59) yield
() + B(1) + Fa(1) + Fo() + Fo(1) = 2p(1 — o). (5.61)
Similarly from the equations (5.40), we have
2B F}/(1) + By (1) = —20F1(1) — 2(p — 2)F(1),

—2F (1) + /(1) + FY (1) = ~2pF5(1) — 2(p — 2)F3 (1),
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—2F(1) - Fg' (1) = —2pF3(1),
26, FY (1) + (B1 — 2)F{ (1) + BF5 (1) + B2 Fg (1) = —2pF4 (1) — 2(p — 2) Fy(1),
262F% (1) — 2F5 (1) + BaFg (1) + B2F7 (1) + B2 Fy (1) = —2pF5(1) — 2(p — 2)F5(1),
261F5 (1) + (B1 — 2)Fg (1) + B F7 (1) + B Fg (1) = —2pF5(1) — 2(p — 2) F5(1),

F{ (1) - F{/(1) = —2pF7(1),

2F5 (1) — Fg' (1) = —2pF3(1),

Fg(1) — Fg (1) = —2pFy(1). (5.62)
Addition of these equations and substitution of the relation (5.61) yield

(0~ DLFL) + Fy(1) + Fi() + F(1) + Fs(D)}
+P{FY() + Fy(1) + F(1) + Fy(} = —20°(1 — o). (563)

Moreover, from the first four and the last four equations of (5.40), it is evident that

equations F;(1) (1 <z <9) satisfy the following relations:

—26:F1(1) + B Fs(1) = —Biopo + Bup1,
—2F3(1) + B2F4(1) + BoFs(1) = —B3ppo + Bap2,
—2F3(1) + Fa(1) =0,
262F1(1) + (81 — 2)F4(1) + B1F5(1) + B2 Fo(1) = —2B182pp0 + B2p1 + P12,
281 F3(1) + (81 — 2)Fs(1) + 1 F7(1) + B Fo(1) = —S1p2 + Srps,
Fy(1) — F7(1) =0,
2F5(1) — Fy(1) =0,

F5(1) — Fo(1) = 0. (5.64)
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Solving the above equations and (5.61) for F;(1) (1 <4 < 9) in the usual way, we obtain
Fi(1), F5(1) and Fg(1) as follows:

B2p + Bippo — 261p1

A1) = 2(3 —206y) ’
p() = Z50,
Bi
Fs(1) = P11 —B)p ;{122&— B1)ppo +p1 (5.65)

From (5.59), (5.61) and (5.65), we get the following relation between pg and ps:
{2—B80)p+2(8—261)}po +282p2 =23 - 281) — 2 — B1)(4 - 3B1)p.  (5.66)
Thus, by (5.58) and (5.66), we find

po ={2(3—261) — (2— B1) (4 - 3B1)pHpn— (0 + YH{p’n® — p(p+3)n+2(B1p + 1)}/ D,

(5.67)
where
D ={(2 - )p +2(8 —26)Hen — (0 + He*n” — p(p + 3)n + 2(Brp + 1)}
—265p{p*n* — p(2p + )+ p* + (51 + 2)p + 2}. (5.68)

So letting 3; = 0 and 33 = 1, we have

po = {— (40" =3p®)1°+(8p* +10p> —12p%)*— (4p* +13p°+8p° —15p)n+8p° +2p—6} / Dy,
(5.69)

where

Dg = (p*+3p%)> — (2p* +11p> +12p2) 1 +(p* +9p> +20p% + 15p)n— (p* +4p* +10p+6),

(5.70)
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which agrees with the empty probability of the commutative tandem queue [76].

Now we shall derive the expected number of customers in the queue. In order to
determine this, we must obtain F}(1) (1 < 7 < 9) explicitly. The first four and the
last four equations of (5.60) are such eight equations and the equation (5.63) is remain-
ing. These equations can be solved for F!(1) (1 < ¢ < 9) by elementary but a little

troublesome calculation and the mean queue length L, is given by

Lq =[(2 — B1)(4 — 3B1)p® + (683 — 2187 + 3081 — 20)p°po + 4(1 — B51)(5 — 361)p’p2
+2(5 — 361)(2 — p)pFi(1) +2{(967 — 3801 + 37)p — 2(4 — 3B1)}pF2(1)

+2(5 - 361)(2 — p)pFs(1)]/12{2(3 — 261) — (2 — B1)(4 — 3B1)p} 0] (5.71)

Since type 1 customers don’t arrive at the system in the case 3; = 0, ie,, fo =1, it
should be noted that

Fi(1) = Fs(1) = 0. (5.72)
Hence, letting 8; = 0 and 8, = 1 in (5.65) and (5.71), we have
Lg = {(8p* — 6p +16)py — (39p” — 38p + 16)} /{4(4p — 3)}, (5.73)

which coincides with the mean queue length of the commutative tandem queue {76].

Similarly, since type 2 customers don’t arrive at the system in the case 3; =1,
p2 = F5(1) = Fs(1) = 0. (5.74)

Hence, let 3; = 1 in (5.66), then

_2—p 2u—A
24p 2u+XN

(5.75)

111



which coincides with the probability that the system is empty in the M/M/2(c0).

Moreover, letting 3; = 1 in (5.65) and (5.71), we obtain

P
L,= : 5.76
I CE TR (5:76)
which coincides with the mean queue length of the M/M/2(c0).
5.4. n Queues in Tandem Attended by A Single Server
5.4.1. Model
arrivals Y I
A
_> Si(t) — S:z(t) P - > S. (1)

l 11 i) )

(1) (2) (n)

Fig. 5-3. Multi-stage tandem queueing system attended by a single server.

Fig. 5-3 shows an ordered sequence of n single service stations and n types of cus-
tomers arrive according to a Poisson process of density A. Independently of the others,
an arriving customer is of type [ (1 < I < n) with probability 3; where Y, 6 = 1.
Each customer of type [ requires ! sequential types of service. For example, each cus-

tomer of type 1 requires only service in stage 1 and each customer of type n requires
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service in all stages. All of service are performed by a single server, who switches instan-
taneously from one stage of the system to another whenever the number of customers
in the present stage is zero. The service time processes in each stage are assumed to
constitute independent renewal processes with arbitrary distribution Si(t) (1 < k < n),
with finite moments. These processes are also assumed to be stochastically independent
of the arrival and switching time processes. The queue capacities in front of service
stations are assumed to be infinite. A customer arriving at the system waits for service
in stage 1 unless the server is ready to serve him in that stage, in which case service
immediately begins. When a customer of type 1 completes service in stage 1, he leaves
the system. On the other hand, when any other type of customer completes service in
stage 1, he immediately goes to stage 2 and joins queue 2. However, if the server moves
with him to stage 2 and no other customer is already waiting there, then his service in
stage 2 commences immediately. When the server attends stage 1, he takes two follow-
ing switching way: if stage 1 is empty and queue 2 accumulates, then he switches to
stage 2 and if the system is empty, then he remains in stage 1. Next, when the server
attends stage 2, a customer of type 2 leaves the system and any other type of customers
goes to stage 3 after completing service in stage 2. In this stage the server takes three
following switching way: if stage 2 is empty and queue 3 accumulates, then he switches
to stage 3 and if both stage 2 and stage 3 are empty and queue 1 accumulates, then he
switches to stage 1 and if the system is empty, then he remains in stage 2. Similarly,
when the server attends somewhere through stage 3 to stage n — 1, the above fashion is
also followed. Finally, when the server attends stage n, each customer leaves the system

after the completion of his service. In this stage the server takes two following way: if
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stage n is empty and queue 1 accumulates, then he switches to stage 1 and if the system

is empty, then he remains in stage n. When the server switches from stage n to stage

1, the above is repeated.

5.4.2. Mean Number of Customers

The following symbols will be used as follows;

Sk (1 £k < n): arandom variable representing service time in stage k,

Sk(t) (1 < k < n): the distribution of Sk,

E[Sk] (1 £ k < n): the expected value of Sy,

Sk(s) (1 < k <n): the Laplace-Stieltjes transform of Sk(t),

m(m;i1,82, + in—1,%) (1 < k,1,m < n): the steady state probability that stage k
has i, customers just after a customer of type ! has just completed service in stage m
and leaves stage m,

,Bl(k) (1 € k < n,k <1 < n): the probability that a customer of type ! demands
service in stage k,

Ql(’;)l (1 € k,m < n,m <1 < n): arandom variable representing the number of
customers in stage k just after a customer of type ! departs from stage m.

We also define
) = / (@) (At) exp(—At)dSk(t), 1<k<n, (5.77)
0

as the probability of having 7 arrivals during a service time of a customer in stage k.

The corresponding generating function is

Po(z) =Y _p et =5D1-2), 1<k<n, (5.78)
=0
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which converges for || < 1. Note that the first and second derivatives of Px(z) at z =1
are py = AE[Sk] and A\2E[S?], respectively.

Assuming that a steady state exists, we have the following balance equations;

m1(1531,0,- - -,0) = p BV an(m 0,--,0)
11+1 1) )
+ Zpu a.+113§ ) Zﬂm(m;a,o,---,O), 7:1 207
a— m=1
11+1 n
7('1(1; il’iz’o’ T Z p(il) at+1 il) Z ’ﬂ'm(l; a, i2a0, o '70), Z.1 > 0,i2 > 17
m=1
7Tl(l;i17 1,0, T pzll)/Bl(l) Z Fm(m 0 )

21+1
+Zp1(,})a+]_,31(1)Zﬂ'm(m;a,o,"',O), 2Sl§n,2120,
m=1

11+1 n
7!'1(1; z.1a2.2707' . 70) = prll) a,+1131(1) Z 7T'rn(]-;awi2 - 170) o ',0))
m=1

2Sl§n7i1207i2221

n
7('2(2;'&.1,1:2,0, o 70) P,?ﬁém Z ﬂ'm(]-, 0, i2 + 1,0, .- ,0)

m=1

%
+ 30 B 75(2; 0,52 + 1,0, - -,0), 1,02 > 0,

11—a
a=0

n
71'2(2;2.1,7:272'3,0, . ,0) = Z 512)_a13(2) Z 7Tm(2;a'a io + 1,2'3,0’ .. .’O),

a=0 m=2

Z'172.2 2 Oai3 Z 1a
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7(1(2; Z.l’i2, 1, 0, « e

7!'[(2; Z‘l,Zz, 2.3, O’ ...

7 (k;%1,0,

ﬂ-k(k; ila 07

7rl(k;il)())

n
,0) = P,f)ﬁlm) Z Tm(1; 0,45 + 1,0, - - -, 0)

m=1
21
+prf)_a (2)71'2(2 a,ip +1,0,---,0),
a=0
3< ! Sn7i17i2 > 0,

i n
,0) = sz(lz) aﬂl(Z) Z TTm(2;a,i2 + 1,43 — 1,0, - - -,0),
a=—

m=2
3< ! Sn,ilin > 0,i3 22,

')Oikyo "',0)

n
-Zp(k) (k) Z ﬂ’m(k_l;a)of"70’ik+1707""0)

m=k—1

+Z:D(k) (k)ﬂk(k a,0,---,0,7; +1,0,---,0),
a=0

3Sksn_1ail,ik20,

.70 ik7ik+170,' . .,0)

Z 1('?) a v Z ﬂm(k a, 0 O7ik + 11ik+17 07' ) 0)’

3£k3n_1)i17ik zoaikJ-lZl,

-,0,ix,1,0,- - -, 0)

n
prf’_,, ® 3 (k= 1,0,0,-0,ik +1,0,-,0)
m=k—1

+ prf)_a (k)ﬂ-k(k a,0,---,0,7 +1,0,---,0),

3<k<n—-1,k+1<1<n,i1,ix >0,
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ﬂ-l(k;ih 01

7r‘n(n; Zlaoa T

')O)ikaik—Fl)O, Y 0)

1 n
= prf) BN Tnlk; 0,0, -0,k + 1,541 — 1,0, - -,0),
- -

3§k5n—1,k+1Slﬁn,il,ikZO,ik+122,

0,in)

"'prl aAmn—1(n —1;0,0,---,0,i, + 1)
a=0

+7rn(n—1;a,0,---,0,z'n+1)+7rn(n;a,0,- ’ ’,Oain_’_l)}'

Also the normalization condition yields

We introduce the generating functions:

Ul(:c’ y) =

Vl(k) (z,y,2) =

W(z,z) =

(5.79)
n n o0 o0 (o o)
SINYSN D mmsinsde, - ia) =1 (5.80)
=1 m=1723=012=0 =0
[e o] o0 ) )
3N ahym (i, i0,0,-4,0),  1<I<nle] <1l <1,

11=0122=0
oo

w w . . .
Z Z Z mzlylkzzk+l7rl(k;i170) o '707ik')ik+170’ t '70)’

11=0145=012x41=0
2<k<n-1L,k<l<n|z|<1,ly| <1,]z| £1,

Z Z zilzinﬂn(n;ilaoa "o '707in)a |$| S 1’ ‘ZI S' L
11=02,=0 (581)
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Then, the equations (5.79) give

U@ y) = BO P2y 54 3 VA (2,0,0) + Wi(z,0) + (z — 1)E

m=2

— Z U (0,) + U1(0,0)}]/I {Z By} Py (2)),

1<I<n,
VP (z,y,2) = B2 Pa() 251 Y Un(0,) — U1(0,0)
m=1
n n 2
— S V(0 2)}/ly — (Y B 1%} Py (),
m=2 7j=2
2l <n

®@,0,2) = BOR@AL Y VED(E,05) - VD (@,0,0

m—=k—1

-3 V9,0, - {Zﬁ(") =043} Py (e,

m=k

3<k<n—1k<l<nm,

W(z,2) = [Pa@){Vo"1"(2,0,2) + V" V(z,0,2) - V"1 V(2,0,0)

~ W(z,0)}/{z — Pu(z)}, (5.82)
where
E =Uy(0,0) + Ti: v.t™(0,0,0) + W (0, 0), (5.83)
m=2

and §; ; is the Kronecker delta.

The condition (5.80) is

n—

ZU1(1 1)+ Zn:vl(’“)(l 1,1) + W(1,1) = 1. (5.84)
=k

1
k=2
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In order to characterize completely the distribution {m;(m;i;,42,- - -,4,)} by the trans-
forms U)(z,y), Vl(k) (z,y,2) and W(z,z), we need to determine the unknowns on the
numerator of the right-hand side in each transform, but though we may not do that, we
can attain our objectives by deriving some relation from its regularity in the domain.
Since each customer of type | (1 <! < n) leaves the system after the completion of

his service in stage I, we have the following relation about ﬁl(k) :

8P =8/ 8, 1<k<nk<I<n,
i=k
sV =g, 1<1<n,
B =1, S =1 (5.85)
=k

Ui(1,1) (1 < I < n) is obtained from U,(z,y) in (5.82) by applying L’'Hopital’s rule as

follows:

Ul(17 1) = ;.l_l’{_‘i Ul(17 y)

n d n
= |5 mZ:I{d—yUm(o, y)}y:1] / jz:;ﬁj. (5.86)
Similarly, applying L’Hopital’s rule to Vl(k)(:c,y,z) 2<k<n—-1,k<!l<n)and

W(z, z) and considering (5.85), we get

Ui(1,1) = VP (1,1, 1), 2<1<n,
v 1,1 =v®a,1,1), 3<k<n-1k<l<n,
vin-(1,1,1) = w(1,1). (5.87)
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Then, the condition (5.84) is rewritten as

zn:lUl(l, 1) =1. (5.88)
=1

Therefore, Uy(1,1), V;*)(1,1, 1) and W(1, 1) is determined from (5.86), (5.87) and (5.88):

Uz(1,1)=ﬂl/2jﬂj, 1<1<n,
Jj=1
v, 1) =8/ 8, 2<k<n-Lk<ISn-1,
j=1
n
V(1,1,1) = W(1,1) =8,/ DB, 2<k<n-1 (5.89)
=1

The probability that the system is empty is given by F in (5.83) and its value is found
from (5.82) by applying L’Hopital’s rule in the same manner.
n n n
E={1—Z (kaﬂ,-)}/Zjﬁj- (5.90)
k=1 =k Jj=1
From this, we see that the condition for nonsaturation is
n n
1-) (pk ﬁi) > 0. (5.91)
k=1 i=k
Here, we shall derive some relation between the generating functions in order to cal-
culate the mean number of customers. Using Rouche’s theorem, we can show that the
denominator of the right-hand side of U)(z,y) (1 <! < n) in (5.82), for each y in the
domain |y| < 1, has just one root in the domain |z| < 1. Denote this root by §(y).

When z = §(y), that is,

z={Y_ 4"y} Pi(z), (5.92)
i=1
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the numerator of the right-hand side of U;(z,y) (1 <! < n) in (5.82) must be zero, since

|U(z,y)] <1 (1 <1< n)in the domain |z| < 1,|y| < 1. Thus, we get

3 Un0,3) = 3 VE(6(9),0,0) + W), 0) + (5(5) — DE +U1(0,0).  (5.93)

m=2

A similar discussion is also followed in the cases of Vl(k) (,9,2) 2<k<n-1,k<1<n)

and W(z, z). Thus, from (5.82), we have

n n
Z Um(oa A2($7 Z)) = Z V'n(12) ($7 07 Z) + Ul (07 0)7
m=1 m=2

> VEDE,0, Az, 2) = Y ViP(2,0,2) +EV(2,0,0), 3<k<n-1,

m=k—1 m=k

n

Y VO (2,0, Au(z, 2)) = W(z,0) + V"7 V(=,0,0), (5.94)
m=n—1
where
Ap(z,2) = {3 AP} P(z),  2<k<n. (5.95)
i=k

Using the above relation and considering (5.85), we obtain

n—1 n
3" Vi (2,0,0) + W(z,0) = Y Un(0,Q(z)) — U1(0,0),
' m=1

m=2

n n—2

Z vir-(z 0,2) + Z Vim)(z,0,0) = Z U (0, R(z, 2)) — U1(0,0),
m=1

m=n—1 m=2

(5.96)

where

n k
Q) =Y P[] A=),
= 1=2

k=2
n-—1

k n—1
R(z,2) = Y 8P [] Pi@) + BP= ] Pio). (5.97)
] =2

k=2 =2
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Now, we have reached a position to calculate the expected number of customers. This
system has n(n + 1)/2 kinds of instants of departure from a stage by combining a stage
and a type. The average number of customers in a stage just after each departure can
be obtained in the same manner. Thus, our objective is limited to calculating E| ﬁ],
the mean number of customers in stage 1 just after a customer of type 1 has completed
service in stage 1 and departs from stage 1 and F [Qs,l,zl] + E[Qg?n], the mean number of
customers in the system just after a customer of type n has completed service in stage

n and departs from stage n.

We have

ap__1 9
E[Ql,l] - U1(1, 1) a:cUl(-T’ y)|z=y=1’

Qn = E[Q{)] + E[QT)]

1 o )
= WD [(—,)EW(a:,z)lm:zzl +5. Wi, z)[,;:zzl} : (5.98)

The partial derivatives of U;(z,y) and W (z, z) are obtained from (5.82). The limits of
these derivatives as z,y and z tend to one are determined; however, L’Hopital’s rule
can be applied in order to resolve the indeterminacy. The first and second derivatives
of some unknowns that we need to calculate (5.98) can be obtained from (5.93), (5.96)

and (5.97). The derivatives of §(y) are found, by implicit differentiation, from

8(y) = {>_ By 5} Pi(6(y)). (5.99)
j=1

122



We get the following results:

)y _ = p){P'(1) +bn +201(1—p1)}
E[Q1 TR " (5.100)

Qn = pn + [(2an—1 + ﬂnpn + ﬁn){ﬁ’(l) + bn—l + :B'n-P:;,’(l)

+2p1(1 = p1)} +2{(1 — p1 — an-1)(1 — p1 + an-1)

+B2pn} (i p,-) J/H2(1 = p1 —an)( = o1+ an)}, (5.101)
where -
£ (5)
=f:{ (I)Zﬂl}+2z (Z ) (kiépj) P (5.102)
Let - i
pr = PI'(1) =0, 2<k<n, (5.103)
then (5.100) yields
p1+ %i% (5.104)

coincides with the mean number of customers in the M/G/1(co) system. Also, let
Bp=1 and (=0, 1<k<n-1, (5.105)
then (5.101) yields
Qn = Pn+ [ @in-1+ po + D{PY (1) +bumr + P(D)
+2p1(1 = p1)} +2{(1 — p1 — Grn—1)(1 — p1 + dn-1)

+pn} (i Pi) ]/{2(1 —p1 —@n)(1 = p1+én)}, (5.106)

1=2
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where

m
Qm = Zpk,
k=2

m m k—1
b =Y P()+2) (Pk Zpi) , (5.107)
k=2 k=3

=2

which gives the mean number of customers in the system just after a departure from
stage n in the case that each customer receives service in all stages.
Let n =2 in (5.106), then

(p2 + D{P' (1) + Py (1) +2p1(1 — p1)}
2(1 — p1 ~ p2)(1 — p1 + p2)

Qz=p2+ , (5.108)

which agrees with the result of Taube-Netto [100].
The steady state condition of the system in which each customer receives service in
all stages, from (5.91), is
1- zn:pk > 0. (5.109)
k=1

It is easily seen that (5.109) implies (5.91). If (5.109) holds and total arrival rate A has
the same value in both systems, then it can be proved that (),, is smaller than Q... This
fact is natural since some customers leave the system without receiving service in all

stages in our model.

5.5. Concavity or Convexity of Performance Measures of Two-
Stage Finite Tandem Queueing System
5.5.1. Model and Steady State Probabilities

Fig. 5-4 shows a tandem queueing system with two stages numbered 1,2 . Stage j

has a single server and the service times are independent and exponentially distributed
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with mean 1/p; (j = 1,2) . The buffer storage capacity between stages 1 and 2 is
N —1(N > 2) , consequently there are more than one buffer space between two stages.
No waiting is allowed in front of stage 1 . Therefore, if stage 1 is occupied, then an
arriving customer cannot enter stage 1 . The successive customers arrive according to
a Poisson law with parameter X . Customers require service from all stages in the order
1,2 and the service to a customer at stage 1 is initiated even if the intermediate buffer
is full. In this case, a server at stage 1 is blocked only if the customer it served cannot
be advanced to stage 2 . This is called manufacturing blocking ( or production blocking
). Arrivals at stage 1 when a server is blocked are turned away. Service to a customer
at any stage, once initiated, is completed without interruptions.

We now define the following steady state probabilities :

pij(0<i<1,0<j<N): icustomers are in stage 1, and 7 customers are in stage
23

Pp,N : a server at stage 1 is blocked ;

Po : no customers are in the system.

The steady state difference equations may be constructed in the usual manner.

arrivals

A
—_—— M1 M2 —>

Fig. 5-4. Two-stage tandem queueing system with finite intermediate buffers.
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They are

(A =+ p2)Poi = H1P1,i—1 + H2Poit1, 1<i<N-1,
(1 + p2)P1i = Apo,i + H2P14+1, 1<i<N-1,
Apo = H2Po,1,

(A + p2)po,N = 1p1,N—1 + 2P N,
H1P1,0 = APo + M2P1,1,
(1 + p2)p1,N = Apo,N,

H2Pb,N = H1P1,N- (5.110)

Also the normalization condition yields

N N
Po+Y poi+ Y prit+mN =1 (5.111)
We have put
A
p=——
H1
H2
= 5.112
K 1 ( )
and
ao =1, a; = (p+7)b; — ¥pbi_1, 121,
1 -
bo=—, bi=1+7 bi=(1+7a-1— o2, 22 (5.113)
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Thus, solving (5.110) and (5.111), we can determine the steady state probabilities

for N > 2:
Poi = 7P*bn—iy1/D, 1<i<N-1,
p1i =vp lan_i/D, 0<i<N -1,
pon =v(1+7)p"/D,
N ="/ D,
mn =pV1/D,
po ="°bn/D, (5.114)
where
po Ye+layi— (0 + ay — pN+2 (5.115)
{(x-Dp+7} ’
and
/2] . |
a; =+ Z(_1)k( )pk(p+’y+ 12k i>1. (5.116)
k=0 k

The above explicit results of the steady state probabilities owe to the recursive relation

(5.113) about a; and b;. By mathematical induction, we can obtain the following lemma,

which will be useful in later discussion.

Lemma 5.1.  If the recursive relation (5.118) holds, then we have for ¢ > 1 and

y21,
(@) i1 =7 +v+1a; —v?pais. (5.117)
(i) a;—1>0,b;—1 > 0,a; > pa;_;. (5.118)
(6ii) a? > a;—1ai11. (5.119)
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5.5.2. Concavity of Mean Number of Busy Service Stations

From (5.114), the mean number of busy stations is derived as

N N
B=Y poi+po+mn+2(_ p1s)
i=1 i=1
1 _ A2 _ oN+2
_ (v + )(pan+1 —vipan — p ) (5.120)
{r-Dp+~}-D
Hence, .
( %p, p<l,

(v +1)(any1 —Y2an — 1)
B , =1, ;
B BT e el (5.121)

(y+1)(yN*t-1)
4 AN+2 1 ’

Substituting N = 2 and v = 1 in (5.120) and (5.121), we get the results given by Morse

p>1.

[63].
On the other hand, the utilization per one station is

B (5.122)

and comparing the coefficients of p?¥*2 in both the numerator and the denominator of

(5.122), the maximum allowable p for steady state existence in this system is

N
g G pa(py  —pp t)
Pmaz = lim : - N2

p—00 (1 + Uo py T C =

, (5.123)
py 2

and for p; = po this reduces to

N +1

mazr = = 5.124
p N3 (5.124)

Results in (5.123) and (5.124) on py,,, coincide with ones given by Hunt [37].

Now let us return to a discussion of the concavity.
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Theorem 5.1. Let B(N) = F(N)/G(N) be a function of the discrete variable N,

then B(N) is strictly increasing and concave for v > 1.

Proof. Proof is given by elementary but a little troublesome calculation as follows.

From (ii) in Lemma 5.1,

G(N +2),G(N +1),G(N) > 0. (5.125)
Now, using the recursive formula (i) in Lemma 5.1,
AB(N)=F(N +1)/G(N +1) — F(N)/G(N)

Oy ){(y =D+ v}V PPania
= SN +1 GV >0, (5.126)

and hence

N+3 N+
pN+

2
aN42 1Y AN +1 }

A*B(N) = (v +1D{(v - 1)p+7}2{G(N+2) ‘G(N+1) G(N+1)-G(N)

_ =P+ 1{(v - Do+
GIN+2)-G(N +1)-G(V)

[P (e + D{(y — Dp +}anr1bni1 +720% (0 + (v — 1)ak .y

+7p(p + Vanani2 +pV 3 (ani2 — pany1)l- (5.127)

From (ii) in Lemma 5.1, if v > 1, then

A’B(N)<0. O (5.128)
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5.5.8. Convexity of Rate of Loss Calls

Similarly from (5.114), we have the rate of loss calls (i.e., the equilibrium probability

that an arrival is lost) ;

N
Po=pN+ Y prs
=0
{(v-Vp+7}-D ' '
Hence,
(p—p? p<l,
Yan+1 —Yan +y -1 1
P.— ¢ 2yany1 —2v3an —1"° p="5 (5.130)
y(yNH -1)
e oy p>1

Substituting N = 2 and y = 1, (5.129) and (5.130) yield to the results given by Morse

[63].

Then, we shall show the following convexity property for P..

Theorem 5.2. Let P, be a function of the discrete variable N, then P, is strictly

decreasing and convex for v > 1.

Proof. Some calculations yield

AP.(N) = _G{T)p . AB(N), (5.131)

where AB(N) is given by (5.126). Since AB(N) > 0 and A2B(N) < 0 for v > 1 from

Theorem 5.1, we get for y > 1

AP.(N) < 0and A’P.(N)>0. O (5.132)
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Here we shall end this section to demonstrate a similar property for other performance

measure. It is the mean number of customers given by calculating from (5.114)as follows.

N N
L= Zipo,i + Z(Z + 1)P1,i + (N + l)pb,N

=1 1=0

= [yp(vp + Dany1 — Y (2y — Dp%an

—{(v=DN + (P +v =1} — (N +2)p" 2 /[{(v —1)p+~}* - D].

(5.133)
Hence,
1
(YL, p <1,
¥
+Dans1 —Y>@2y—Day —yY2— (2N +3)y+ N +1
Lo ) Yo+ Dany =72y —ay —7° — )y D p=1, (5.134)

2y - D(2van+1 — 2v3an — 1)

AN+ 42 _(N+1)y+N+1 -1
S A E re

Substituting N = 2 and v = 1 in (5.133) and (5.134), we get the results given by Morse

[63].
The equation (5.133) is too complicated to handle in a straightforward manner. But

we find the following property after a troublesome calculations.

Theorem 5.3. Let L(N) be a function of the discrete variable N, then L(N) is

strictly increasing for y > 1 and p < 1.

Proof. In a manner similar to Theorem 5.1 and Theorem 5.2, we calculate AL(N). And

if we use (i) and (iii) in Lemma 5.1, N > 1 and p < ppqer < 1, then we can derive

AL(N)>0. O (5.135)
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5.6. Conclusion

We consider a tandem queueing system with several types of customers in which
service distribution is exponential or general in this chapter. First, both for a two-
stage ordinary and commutative tandem queueing systems with two types of customers
and independent service times, we obtained the mean queue length by a generating
function approach and showed that when a customer departs from the system without
receiving the second service does not arrival, i.e., the arrival rate of a customer of type
1 equals zero, then the consequent result agrees with the results which have already
been derived. Secondly, for a multi-stage tandem queueing system attended by a single
server with general service times, zero switchover time and a exhaustive switching rule,
we calculated the mean number of customers in the system just after a customer of type
n by utilizing the relation between the generating functions and showed that it is lower
than in the case of a model with one type of customers if the steady state condition
holds. Finally, for a two-stage tandem queueing system with independent service times,
no queues ahead of the first stage and finite intermediate buffers, we obtained by an
elementary calculation the mean number of busy service stations, the rate of loss calls
and the mean number of customers in the system and established the monotonicity and
concavity of the mean number of busy service stations, the monotonicity and convexity
of the rate of loss calls and the monotonicity of the mean number of customers in the

system with respect to intermediate buffer spaces.
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Chapter 6.

MULTISERVER QUEUEING SYSTEMS
WITH ADDITIONAL SERVICE CHANNELS

6.1. Introduction

We described in Chapter 1 that there is one of ways building models which do not
include the assumption of independence between arrival and service patterns: service
parameters are managed to vary with the present number of customers. This implies
a semi-Markov process for the system state. However, in practice, many situations
are found in which service parameters, when assuming that the number of channels is a
constant, do not vary with the present number of customers, but the number of channels
vary with the present number of customers when assuming that service parameters are
constant. A typical example would be a tool crib that has two clerks but usually keeps
only one at the service window. When arrivals happen to occur close together and a
queue of undesirable length develops, the second clerk leaves his other work and helps
at the window.

Romani [91] considered the process in which the queue is never allowed to grow
beyond a specified length M. Whenever M customers are in the queue and there is an

arrival, the number of channel is increased by one. There is no limit to the number of
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ckannels that may be added. When there are no customers in the queue and service are
completed, the channels that are empties are cancelled.

Morder and Phillips [62] studied the process in which the number of channels is
limited and the queue is unlimited. The number of manned channels increases from
a fixed minimum number, o, when the queue reaches a given length N. When the
maximum number of channels S(> o) are operating, no further increases are possible
and the queue is unbounded. Channels are cancelled when the number of customers in
the queue drops to ¥(0 < v < N — 2) and a service is completed.

Murari [65] considered the queueing problem with variable number of channels as-
suming that when the queue length increases to some undesirable number m, then
another channel is called for its help, and if in spite of two channels operating the queue
length increases to some undesirable number my(> m;), then the third channel is called
for their help and so on, and in all cases when there is a demand of an additional chan-
nel it is made available instantaneously and is cancelled at the termination of service if
there are no customers waiting, with exception of one channel which remains open at
all times.

Singh [95] studied the steady state behavior of the M/M/1(M) system assuming that
when the queue length reaches M, then a search for an additional service facility is
started and the availability time is exponentially distributed.

In this chapter, we deal with a modification of Murari’s model including the search
of an additional channel. In Section 6.2, we describe our model fully and give a explicit
expression that formulate all of the steady state probabilities. In Section 6.3, we have

a summary of this chapter.
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6.2. Analysis of Model

6.2.1. Model

© T
J7i
r
arrivals .
A — - -
_—-——9 .
L - —
my+1 m., m.-1 .
u —

Fig. 6-1. Multiserver queueing system with additional service channels.

Fig. 6-1 shows a multiserver queueing system with additional service channels, which
is the modification of the model in Murari [65] as follows. When the queue length
increases to some undesirable number m;, then a search for another channel is started

and the availability time of another channel is exponentially distributed. The search
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continues till the queue length reduces to mg (< mq). If the search is fulfilled, another
channel is available and it takes in the head of the queue for service instantaneously. If
in spite of two service channels operating the queue length increases to some undesirable
number mg (> m,), then a search for the third channel is started and so on.

Thus, we study the steady state behavior of a queueing system under the following
assumptions:

(1)Customers arrive at a service facility in a Poisson strearn with mean rate A and
form a queue.

(2)The queue discipline is first-come first-served.

(3)The service facility consists of one regular service channel and ¢ additional service
channels (abbreviated as a.s.c.’s). The regular service channel is always at the disposal
of customers, irrespective of the queue length. However, the number of operating a.s.c.’s
at any instant is dependent of the queue length:

(3.1)If the queue length is zero and the regular service channel is idle, it takes in a
unit for service instantaneously on arrival.

(3.2)If the queue length is m,. (1 <7 <¢),and 0 <m; < mg < ... < m, and the
number of operating a.s.c.’s is 7 — 1, then a search for the next a.s.c. is started and the
availability time (the time when the next a.s.c. is made available, measured from the
instant that a search is started) is exponentially distributed with parameter V. The
search continues till the queue length reduces to m,_; (1 < r < ¢). If during the small
interval [t,t + At) the search is fulfilled, that is , the next a.s.c. is available, the head
of the queue gets service from the next a.s.c..

(3.3)If the queue length is zero at the completion of service at a service channel
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(regular or additional) then one of the operating a.s.c.’s, if there is any, stops operating.
(4)All service channels have the same exponential service time distribution with mean
service time 1/p.

(5)If at any instant the queue length is m, or K (> m.) and the number of operating

a.s.c.’s is r —1 or equal to c, respectively, then the arriving customers will be considered
lost for the system.

(6)The stochastic processes involved are independent of each other.

We define the following steady state probabilities:

Q : the queue length is zero and no service channel is operating;

p,(_f:l) : the queue length is n, the regular service channel is busy, the number of

operating a.s.c.’sis 7 (0 < 7 < ¢ — 1) and a search for the next a.s.c. is in progress;

pf.ﬁ) : the queue length is n, the regular service channel is busy, the number of

operating a.s.c.’s is 7 (0 < r < ¢) and no search for the next a.s.c. is in progress.

Thus by the assumptions imposed on the system

pﬁﬁ,)= \ 0<n<<m,,,0<r<e—1,
pia) =0, 0<n<K,
B ., =0, 0<r<ec-—1. (6.1)

6.2.2. Steady State Probabilities

The steady state equations may be constructed in the usual manner. For 0 < r < ¢—1,
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we have

DA+ +)p+ V3B, = 0+ Dup3 .,

D+ +0)p+VIBD =3 e+ Dupl®, 1, 24+m <n < —1+mey,
A B
{+Du+VIPA =22 AP

AQ = upl),

A+ u)pg,%) = AQ + upéﬁ) + 2up§§>) ,

B B
(A + 1)) = APy + 1P 1<n<—24my,n #mo,

B B B A
A+ )P0 = APO1 1o + PG mo + G2 o

B B
(’\ + p’)pg),-gl—l—ml = Ap((),—)Z—}—ml

and for1<r<e-1,

A+ e+ D3 = (r + Vel + (r +2)upl3) o,

B
A+ (r+1)p}pB) = /\piﬁ)_l +(r+ 1)/1'p1(-,n)—|—1,

1SnS—1+mr—1,1+mrén5—2+mr+1,

A
O+ r+1)3pB = 2B 4 (r + D + VO i1,

Mp—1 <N < -1 + my,,
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B A
A+ @+ upB) = )‘pff—)l—kmr + (r + 1)/1?5,1)+m, + (r + 1)up§,1)+m,.,

B B
{A + (7' -+ 1)/11}pf.,_)1+mr+1 = Ap-f-’_)2_{_."'1,,,\4_1 ’

and

D+ e+ = (c+ D)upl?,

B B
O+ e+ Dupp® = A5 |+ e+ DpplB),,

15”3_1+mc—17mCSnSK—17

B B
O+ e+ DB =A%) |+ (e + DuplB) ) + Vieoini1,
me—1 <n—1+mg,

(c+ 1)#1)23} = /\piﬁz_l- (6.2)

We introduce the following generating functions:

mMria
PM) = 3 2l 0<r<ec—1,
n=1l4m,
—14m.p
PP = Y ), 0<r<ec—1,
n=0
K
PB)(z) = Z Z"sz)- (6.3)
n=0

Multiplying the equations (6.2) by appropriate powers of z and using (6.3), we have
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A1 — 2)ztFmripy (A Al (B — (r + D pttmr (4)

P(A)(Z) = Primeia Pr—1+m, 4y Pritm,
T DA+ (r+1)pu+Viz—Az22 —(r+1)p ’
0<r<c-1,
A B B
%m&%=MQ+%wﬂuwf“W£ﬁm HPGg — M”méfum’

A+p)z—Az2—p

P®B)(2) = {(r + 2)pzpl) o + (r + DuztmrplD L + VP (2) — (0 + Dupl)
—AMmerip e WA (4 Dz — A2 — (4 Dy,

1<r<c—1,

A(l — z)=K+1p (B) %+ VP( 1(2) — (e + l)up(B)
{A+(c+ 1)#}2 —Az% — (c+ 1)

P®)(z) = (6.4)

Since P\ (2) (0<r<c¢—1)and P,SB)(z) (0 < r < ¢) are regular on z-plane, the zeros
of the numerator and the denominator of the right-hand side of P (z) and p® (2),
which are given in (6.4), must coincide with each other, giving 4c+2 equations. Solving

this set of equations together with the steady state equation

AQ = MP(()%) , (6.5)

we can determine the 4c+3 unknowns occuring on the numerator of the right-hand side

of (6.4) as follows.
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For0<r<e-1,

(4)

pr,1+mr -

(A)

pr,m,._,.l

(B)

p«r’ - 1+m1‘—|—1

(B)

Pry1,0 =

{(Cc - bcdc)<f_19i)Q}/{ﬂf+l(bo + ¢o — bodo — 1)},

{(ng)Q}/{(T + 1)130(b0 +co — bodo — 1)},
=1

=(r+ 1)ﬂoarp§ﬁ)+m,,

=(r+ 1)ﬂobrp£ﬁ)+mr,

{(r +1)(b, — 1)p{n 3/ (r +2),

(6.6)

and
pg?)) = Q/ 130)
PR =
where

—1-myt+mri1

L - r+ T
ar = { Z (’Yr-{-l/ﬂr-i—l)z}/(fﬁr—i—l’yrﬂ e
i=0

),

—Mr+MmMeria

br = {"31-+1 Z (Yr41/Kr1 )i

1=0

- 1_mr+mr+1

>

=0

1 - r+ T
(’Yr+1/’€r+1)l}/(f€r+1%ﬂ mr

)7

0<r<e—1,
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™mo ) ma .
co=1-Y B, do=1-) P,

my, Mri1 ]
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ke =A+ru+V —{(A+ru+ V)2 —4rau}3]/@2)), 1<r<ec
(6.7)
and () can be determined by the normalization condition
c—1 c
Q+Y PN+ PB1) =1 (6.8)
r=0 =0

Comparing the coefficient of 2™ on both sides of (6.4) and using (6.6), we have, for

c>1,

n—1-m, i "
) = [{ > (wri/mr) }pﬁ,ﬁmr] [,
=0

0<r<e—124+m, <n < Mypy1,
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P((),n) = bo( Z B — Z ﬁa)pg,la_mo, 1<n<—14+myg,
(B 4y =
Pon) = bopS e Y. B mo <n < —1+my,
=1
pB) = pE—pB), l+m,<n<K,  (6.9)

and specially, in the case ¢ =1 and my =0,

B5Y = Q/{B(b — bodo — 1)},

n K

A=A+ { 3w}/ d, tsnsm, 610

=1 j=K+i—n-—1
where
. nti— K . . . A
R = { —(V/Nbo Y v+ (A —bo)(1 — k) ”"_’}ﬁoﬂi_K_lpé,l)’
=1
B = (bo — a7 (6.11)

The results due to Murari [65] can be obtained by exchanging p,(g,) 0<r<e-10<
n<~14+mpyr=¢0<n<K)and —1+myp1 (0 <7 < c—1) with pr, and my 4y,

respectively, and letting V' tend to infinity in our model.

6.3. Conclusion
We considered a multiserver queueing system with additional service channels in
which service times is exponentially distributed. This model was a modification of

Murari’s model [65] including the search of additional channel like Singh [95]. We
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gave the explicit expression of the steady state probabilities by a generating function
approach and showed that we can obtain the results due to Murari [65] by exchanging

the definitions and letting a parameter V of the availability time tend to infinity.
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Chapter 7.

CONCLUSION

In this thesis, we have discussed three types of queueing systems, i.e., correlated ser-
vice times, several types of customers and additional service channels. Various explicit
solutions have been provided for these three types of queueing systems. Here we sum-
marize the obtained results and discuss the further direction of an analysis for queueing

systems with correlated service times.

In Chapter 2 through 4, we have dealt with queueing systems with correlated service
times whose distribution is the bivariate or multivariate exponential distribution of

Marshall and Olkin discussed in Chapter 1.

Chapter 2 discussed a multiserver queueing system both for no jockeying and jockey-
ing cases. For the no jockeying case, the steady state probabilities and the queueing and
waiting time distribution have been derived and it has been proved that the consequent
result agrees with the so-called Little’s formula. For the jockeying case, an explicit
solution of the rate matrix R has been derived by utilizing the results obtained in the
no jockeying case and enabled us to calculate the steady state probability vector, the

mean queue length and the mean waiting time.
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Chapter 3 has discussed a two-stage ordinary tandem queueing system and a three-
stage commutative tandem queueing system. For the ordinary tandem case, the mean
number of customers in the system has been obtained and it has been shown analytically
that it decreases as the correlation coefficient increases. For the commutative tandem
case, the throughput rate of the system has been calculated by a matrix-geometric ap-
proach. Further it has been established that when the correlation coefficient is small,
the throughput rate is lower in the case of an ordinary service operation and correlated
service times than in the case of a commutative service operation and independent ser-
vice times, but when the correlation coefficient is large, the reverse is true. Furthermore,
this chapter has discussed the effect of correlated service times. It has been proved that
in the case of a two-server parallel queueing system treated in Section 2.2, the mean
number of customers is greater when service times are correlated than when service
times are independent, but in the case of a two-stage ordinary tandem queueing system
discussed in Section 3.2, the reverse is true, if the system can finish 2y customers’ service

per unit time on the average.

Chapter 4 has discussed a interchangeable parallel two-stage tandem queueing sys-
tem. The throughput rate of the system has been obtained by a matrix-geometric ap-
proach and it has been established that for a small correlation coefficient, the throughput
rate is lower in the case of an ordinary service operation and correlated service times
than in the case of an interchangeable service operation and independent service times,

but for a large correlation coefficient, the reverse is true.

Chapter 5 has discussed tandem queueing systems with several types of customers

for two cases of finite and infinite intermediate buffers. First, both for a two-stage
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ordinary and commutative tandem queueing system with no intermediate buffers, the
mean queue length has been obtained by an elementary but troublesome calculations.
Secondly, for a multi-stage tandem queueing system attended by a single server with
infinite intermediate buffers, general service times, zero switchover time and a exhaustive
switching rule, the mean number of customers has been calculated by utilizing the
relation between the generating functions. Finally, for a two-stage tandem queueing
system with finite intermediate buffers, the mean number of busy service stations, the
rate of loss calls and the mean number of customers have been calculated by solving
balance equations directly. And it has been proved that the mean number of service
stations is strictly increasing and concave, the rate of loss calls is strictly decreasing
and convex and the mean number of customers is strictly increasing with respect to

intermediate buffer spaces.

Chapter 6 has discussed a multiserver queueing system with additional service chan-
nels. The explicit expression of the steady state probabilities has been derived by a

generating function approach.

As mentioned in Section 1.3, the multivariate exponential distribution of Marshall
and Olkin we adopted as the service distribution in Chapter 2 through Chapter 4 is
no more than a multivariate phase type distribution. Many researchers have studied
parallel or tandem queueing systems whose service distribution is phase type. But
most of queueing systems with phase type service times are for the univariate cases,
or although they are for the multivariate cases, the service times are assumed to be
independent (see Neuts [71], and Giin and Makowski [30]). Therefore, the further

development of the analysis for queueing systems with correlated service times treated
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in this thesis is expected to be done for a multivariate phase type distribution which

includes a wide class of distribution.
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