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A Variational Problem for Affine Connections

Osamu Kobayashi

Abstract. We give a variational problem for affine connections which characterizes the
Riemannian connection of an Einstein metric of negative scalar curvature.

1. Introduction
Let A(M) denote the sapce of all torsion free affine connections of a compact connected manifold M ,

each of which preserves a volume element of M . Every affine connections is projectively equivalent to such
a connection. For ∇ ∈ A(M) we can define the Ricci curvature tensor Ric. Since ∇ preserves a volume
element, Ric is a symmetric 2-tensor. Moreover using the volume element we can define the determinant
detRic of the Ricci tensor. We put for ∇ ∈ A(M)

E(∇) =

∫
M

detRic dµ

∫
M

dµ.

It is easy to see that the right hand side is independent of the choice of a volume element dµ which is
preserved by ∇. Moreover E(∇) depends on ∇ differentiably. This functional may be compared with the
normalized Einstein-Hilbert functional of the total scalar curvature of a Riemannian metric ([1]). In this
paper we will show the following:

Theorem. Let M be a compact connected manifold. Suppose ∇ ∈ A(M) is a critical point of E, and
its Ricci curvature is negative semidefinite and negative definite somewhere. Then ∇ is the Riemannian
connection of an Einstein metric of M .

Remark. A Ricci flat connection ∇ ∈ A(M) is a critical point of the functional E. It is known [2; p. 211]
that there is a Ricci flat affine connection which is not a Riemannian connection.

I would like to thank the referee for useful comments on the paper.

2. Projective equivalence of affine connections
Given two affine connections ∇ and ∇̃ on M , we say that they are projectively equivalent if geodesics

ignoring their parameters are the same for ∇ and ∇̃. That is to say, there is a function λ:TM → R such
that

∇̃XX = ∇XX + 2λ(X)X (2.1)

for X ∈ TM . Then it is immediate to see that λ is linear if we put λ(0) = 0, and thus λ is a smooth 1-form
of M .

We will see that any affine connection of M is projectively equivalent to some connection in A(M).
Let ∇ be an arbitrary affine connection of M . Then an affine connection ∇′ defined as ∇′

XY = 1
2 (∇XY +

∇Y X + [X,Y ]) is a torsion free connection which is projectively equivalent to ∇. So we assume ∇ is torsion
free. Let ∇̃ be another torsion free connection which is projectively equivalent to ∇. Then from (2.1),

∇̃XY = ∇XY + λ(X)Y + λ(Y )X
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for some 1-form λ. Take a volume element dµ and u ∈ C∞(M), we then have

∇̃X(e(n+1)udµ) = e(n+1)u∇Xdµ+ (n+ 1)e(n+1)u(du− λ)(X)dµ, (2.2)

where n = dimM . Hence if we choose u = 0 and λ to be such that (n + 1)λ(X)dµ = ∇Xdµ, we have
∇̃dµ = 0, i.e., ∇̃ ∈ A(M).

The formula (2.2) says more and we have the following.

Lemma 2.1. Suppose that ∇, ∇̃ ∈ A(M) are projectively equivalent. Then there is a u ∈ C∞(M) such that

∇̃XY = ∇XY + (Xu)Y + (Y u)X.

Moreover if ∇dµ = 0, then ∇̃(e(n+1)udµ) = 0.

Corollary 2.2. Suppose ∇, ∇̃ ∈ A(M). Then we have

∇̃XY = ∇XY + (Xu)Y + (Y u)X + S(X,Y ), (2.3)

where u ∈ C∞(M) and S = (Si
jk) is a (1, 2)-tensor such that Si

jk = Si
kj and Si

ji = 0. The tensor S is

uniquely determined by ∇ and ∇̃, and u is determined up to a constant.

Proof. Let T = ∇̃ −∇ be the difference of the two connections. Put Si
jk = T i

jk − 1
n+1 (T

l
jlδ

i
k + T l

klδ
i
j). Then

∇+ S ∈ A(M) is projectively equivalent to ∇̃. []

Corollary 2.3. Denote by V(M) the space of smooth volume elements of M . Then we have a smooth map
φ:A(M) → V(M) such that ∇φ(∇) = 0.

Proof. Fix ∇ ∈ A(M) and dµ ∈ V(M) such that ∇dµ = 0. Fix a point x ∈ M . Then any ∇̃ ∈ A(M) is
given as in (2.3), and we can determine a unique u on condition that u(x) = 0. Then put φ(∇̃) = e(n+1)udµ.
[]

3. The variational formula for the functional E
First we note that the Ricci curvature of ∇ ∈ A(M) is a symmetric 2-tensor.
Let ω ∈ ΛnT ∗

xM \ {0} be a volume form at x ∈ M . Define ω∗ ∈ ΛnTxM by ω(ω∗) = 1. Then we have
(aω)∗ = 1

aω
∗ for a ∈ R \ {0}. Thinking of the Ricci tensor as Ric:TxM → T ∗

xM , we define detω Ric as

Ric∗ω∗ = (detωRic)ω.

For a ∈ R \ {0}, we have detaω Ric = 1
a2 detω Ric. In particular det−ω Ric = detω Ric. Hence we can define

detRic = detdµ Ric with respect to a volume element dµ.
Now suppose ∇dµ = ∇dµ′. Then dµ′ = adµ for some positive constant a since M is connected. So we

have
∫
M

detdµ′ Ric dµ′ = 1
a

∫
M

detdµ Ric dµ. Thus E(∇) =
∫
M

detRic dµ
∫
M

dµ depends only on ∇ ∈ A(M),
and E:A(M) → R is differentiable by virture of Corollary 2.3.

We define a contravariant symetric 2-tensor R̂ic = (R̂ij) as the cofactor tensor of Ric = (Rij). Namely

R̂ikRkj = (detRic)δij . (3.1)

We remark that this tensor field depends on the choice of a volume element dµ. We also define ρ and ρ◦ as

ρ = detRic

and

ρ◦ = detRic−
∫
M

detRic dµ∫
M

dµ
.
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With these notations we can state the first variational formula of the functional E.

Proposition 3.1. ∇ ∈ A(M) is a critical point of E:A(M) → R if and only if the following two conditions
are satisfied:

R̂ij
;ij = −n+ 1

n− 1
ρ◦ (3.2)

and

R̂ij
;k =

1

n+ 1
(R̂il

;lδ
j
k + R̂lj

;lδ
i
k), (3.3)

where n = dimM .

Proof. Fix ∇ ∈ A(M) with ∇dµ = 0. We first consider a projective variation of ∇. Let t∇ be defined as

t∇XY = ∇XY + t(Xu)Y + t(Y u)X,

where u ∈ C∞(M) is an arbitrary function. Put

dµ(t) = e(n+1)tudµ,

and we have t∇dµ(t) = 0. The Ricci curvature is calculated as

Rij(t) = Rij − (n− 1)(tu;ij − t2u;iu;j).

Since
detdµ(t)Ric(t)dµ(t) = e−(n+1)tudetdµRic(t)dµ,

we have
d

dt |t=0
detdµ(t)Ric(t)dµ(t) = −(n+ 1)uρdµ+ R̂ij d

dt |t=0
Rij(t)dµ

= −(n+ 1)uρdµ− (n− 1)R̂iju;ijdµ.

Hence,
d

dt |t=0

∫
M

detdµ(t)Ric(t)dµ(t) =

∫
M

u(−(n+ 1)ρ− (n− 1)R̂ij
;ij)dµ.

On the other hand,
d

dt |t=0

∫
M

dµ(t) = (n+ 1)

∫
M

u dµ.

Therefore we get
d

dt |t=0
E(t∇) =

∫
M

u(−(n+ 1)ρ◦)− (n− 1)R̂ij
;ij)dµ

∫
M

dµ.

The equation (3.2) follows from this formula.
From Corollary 2.2, we have only to check the variation of ∇ in the direction of S = (Si

jk) with Si
jk = Si

kj

and Si
ji = 0. Now we put

t∇XY = ∇XY + tS(X,Y ).

We have t∇dµ = 0 for any t. The Ricci curvature is then

Rij(t) = Rij + tSk
ij;k − t2Sk

ilS
l
jk.

Hence we have
d

dt |t=0
E(t∇) =

∫
M

d

dt |t=0
(detRic(t))dµ

∫
M

dµ

=

∫
M

R̂ijSk
ij;kdµ

∫
M

dµ

= −
∫
M

R̂ij
;kS

k
ijdµ

∫
M

dµ

= −
∫
M

(R̂ij
;k − 1

n+ 1
(R̂il

;lδ
j
k + R̂lj

;lδ
i
k))S

k
ijdµ

∫
M

dµ
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The equation (3.3) follows from this formula. []

The equations (3.2) and (3.3) are not independent. In fact we can show the following.

Proposition 3.2. On a connected manifold, the equation (3.3) implies the equation (3.2).

Proof. The derivative of the determinant ρ is given as ρ;k = R̂ijRij;k. This together with (3.1) yields

(n− 1)ρ;k = R̂ij
;kRij . (3.4)

Applying this to (3.3) we have
n2 − 1

2
ρ;k = R̂ij

;iRjk. (3.5)

Then we get

R̂ij
;ijk − R̂ij

;ikj = R̂il
;iR

j
lkj = −R̂il

;iRlk = −n2 − 1

2
ρ;k. (3.6)

On the other hand we have

R̂ij
;ikj − R̂ij

;kij = (R̂ljRi
lki + R̂ilRj

lki);j

= (−R̂ljRlk + R̂ilRj
lki);j

= −ρ;k + R̂il
;jR

j
lki + R̂ilRj

lki;j

= −ρ;k +
1

n+ 1
(R̂im

;mδlj + R̂ml
;mδij)R

j
lki − R̂il(Rj

lij;k +Rj
ljk;i)

= −ρ;k − 1

n+ 1
R̂ml

;mRlk + R̂ilRli;k − R̂ilRlk;i

= −ρ;k − n− 1

2
ρ;k + ρ;k − (R̂ilRlk);i + R̂il

;iRlk

=
(n+ 1)(n− 2)

2
ρ;k,

(3.7)

where in the fourth equality we used the equation (3.3) and the second Bianchi identity. Hence from (3.6)
and (3.7) we have

R̂ij
;ijk − R̂ij

;kij = −n+ 1

2
ρ;k. (3.8)

From (3.3) and (3.6) we have

R̂ij
;kij =

1

n+ 1
(R̂il

;lik + R̂lj
;lkj) =

2

n+ 1
R̂ij

;ijk +
n− 1

2
ρ;k. (3.9)

Then it is easy to see from (3.8) and (3.9) that

R̂ij
;ijk = −n+ 1

n− 1
ρ;k,

which implies the condition (3.2). []

4. Proof of Theorem
It follows from (3.5) and (3.1) that

ρ;iR̂
ij =

2

n2 − 1
ρR̂ij

;i. (4.1)
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Hence using (3.2), we have

ρ;ijR̂
ij +

n2 − 3

n2 − 1
ρ;iR̂

ij
;j = − 2

(n− 1)2
ρρ◦. (4.2)

The proof is divided into two cases. One is the case when n = dimM is even. Then since Ric ≤ 0, we
have ρ ≥ 0 and R̂ic ≤ 0. At a point where ρ◦ and therefore ρ too take their maximums, the left hand side
of (4.2) is nonnegative because R̂ic ≤ 0, and the right hand side of (4.2) is nonpositive. Hence we conclude
that ρ◦ = 0, that is, ρ is a constant, which must be positive.

The other is the case when n is odd. Then since Ric ≤ 0, we have ρ ≤ 0 and R̂ic ≥ 0. At a point where
ρ takes its minimum, the left hand side of (4.2) is nonnegative, because R̂ic ≥ 0, and the right hand side of
(4.2) is nonpostive. Hence we have ρ◦ = 0, that is, ρ is constant.

In both cases we have that ρ is a nonzero constant. Then it follows from (4.1) that R̂ij
;j = 0. Hence

from (3.3), we have ∇R̂ic = 0. This implies ∇Ric = 0 because ρ ̸= 0. Now put g = −Ric, which is a
Riemannian metric, and is parallel with respect to ∇. Therefore ∇ is the Riemannian connection of g.
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