

Title	A variational problem for Affine Connections
Author(s)	Kobayashi, Osamu
Citation	Archiv der Mathematik. 2006, 86(5), p. 464-469
Version Type	VoR
URL	https://hdl.handle.net/11094/26340
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

A Variational Problem for Affine Connections

Osamu Kobayashi

Abstract. We give a variational problem for affine connections which characterizes the Riemannian connection of an Einstein metric of negative scalar curvature.

1. Introduction

Let $\mathcal{A}(M)$ denote the sapce of all torsion free affine connections of a compact connected manifold M, each of which preserves a volume element of M. Every affine connections is projectively equivalent to such a connection. For $\nabla \in \mathcal{A}(M)$ we can define the Ricci curvature tensor Ric. Since ∇ preserves a volume element, Ric is a symmetric 2-tensor. Moreover using the volume element we can define the determinant det Ric of the Ricci tensor. We put for $\nabla \in \mathcal{A}(M)$

$$E(\nabla) = \int_M \det \operatorname{Ric} d\mu \int_M d\mu.$$

It is easy to see that the right hand side is independent of the choice of a volume element $d\mu$ which is preserved by ∇ . Moreover $E(\nabla)$ depends on ∇ differentiably. This functional may be compared with the normalized Einstein-Hilbert functional of the total scalar curvature of a Riemannian metric ([1]). In this paper we will show the following:

Theorem. Let M be a compact connected manifold. Suppose $\nabla \in \mathcal{A}(M)$ is a critical point of E, and its Ricci curvature is negative semidefinite and negative definite somewhere. Then ∇ is the Riemannian connection of an Einstein metric of M.

Remark. A Ricci flat connection $\nabla \in \mathcal{A}(M)$ is a critical point of the functional *E*. It is known [2; p. 211] that there is a Ricci flat affine connection which is not a Riemannian connection.

I would like to thank the referee for useful comments on the paper.

2. Projective equivalence of affine connections

Given two affine connections ∇ and $\hat{\nabla}$ on M, we say that they are *projectively equivalent* if geodesics ignoring their parameters are the same for ∇ and $\tilde{\nabla}$. That is to say, there is a function $\lambda: TM \to \mathbf{R}$ such that

$$\tilde{\nabla}_X X = \nabla_X X + 2\lambda(X)X \tag{2.1}$$

for $X \in TM$. Then it is immediate to see that λ is linear if we put $\lambda(0) = 0$, and thus λ is a smooth 1-form of M.

We will see that any affine connection of M is projectively equivalent to some connection in $\mathcal{A}(M)$. Let ∇ be an arbitrary affine connection of M. Then an affine connection ∇' defined as $\nabla'_X Y = \frac{1}{2}(\nabla_X Y + \nabla_Y X + [X, Y])$ is a torsion free connection which is projectively equivalent to ∇ . So we assume ∇ is torsion free. Let $\tilde{\nabla}$ be another torsion free connection which is projectively equivalent to ∇ . Then from (2.1),

$$\nabla_X Y = \nabla_X Y + \lambda(X)Y + \lambda(Y)X$$

Mathematics Subject Classification(2000): 53C05

for some 1-form λ . Take a volume element $d\mu$ and $u \in C^{\infty}(M)$, we then have

$$\tilde{\nabla}_X(e^{(n+1)u}d\mu) = e^{(n+1)u}\nabla_X d\mu + (n+1)e^{(n+1)u}(du-\lambda)(X)d\mu,$$
(2.2)

where $n = \dim M$. Hence if we choose u = 0 and λ to be such that $(n+1)\lambda(X)d\mu = \nabla_X d\mu$, we have $\tilde{\nabla}d\mu = 0$, i.e., $\tilde{\nabla} \in \mathcal{A}(M)$.

The formula (2.2) says more and we have the following.

Lemma 2.1. Suppose that ∇ , $\tilde{\nabla} \in \mathcal{A}(M)$ are projectively equivalent. Then there is a $u \in C^{\infty}(M)$ such that

$$\tilde{\nabla}_X Y = \nabla_X Y + (Xu)Y + (Yu)X.$$

Moreover if $\nabla d\mu = 0$, then $\tilde{\nabla}(e^{(n+1)u}d\mu) = 0$.

Corollary 2.2. Suppose ∇ , $\tilde{\nabla} \in \mathcal{A}(M)$. Then we have

$$\tilde{\nabla}_X Y = \nabla_X Y + (Xu)Y + (Yu)X + S(X,Y), \tag{2.3}$$

where $u \in C^{\infty}(M)$ and $S = (S_{jk}^i)$ is a (1,2)-tensor such that $S_{jk}^i = S_{kj}^i$ and $S_{ji}^i = 0$. The tensor S is uniquely determined by ∇ and $\tilde{\nabla}$, and u is determined up to a constant.

Proof. Let $T = \tilde{\nabla} - \nabla$ be the difference of the two connections. Put $S_{jk}^i = T_{jk}^i - \frac{1}{n+1}(T_{jl}^l \delta_k^i + T_{kl}^l \delta_j^i)$. Then $\nabla + S \in \mathcal{A}(M)$ is projectively equivalent to $\tilde{\nabla}$.

Corollary 2.3. Denote by $\mathcal{V}(M)$ the space of smooth volume elements of M. Then we have a smooth map $\varphi: \mathcal{A}(M) \to \mathcal{V}(M)$ such that $\nabla \varphi(\nabla) = 0$.

Proof. Fix $\nabla \in \mathcal{A}(M)$ and $d\mu \in \mathcal{V}(M)$ such that $\nabla d\mu = 0$. Fix a point $x \in M$. Then any $\tilde{\nabla} \in \mathcal{A}(M)$ is given as in (2.3), and we can determine a unique u on condition that u(x) = 0. Then put $\varphi(\tilde{\nabla}) = e^{(n+1)u} d\mu$.

3. The variational formula for the functional E

First we note that the Ricci curvature of $\nabla \in \mathcal{A}(M)$ is a symmetric 2-tensor.

Let $\omega \in \Lambda^n T_x^* M \setminus \{0\}$ be a volume form at $x \in M$. Define $\omega^* \in \Lambda^n T_x M$ by $\omega(\omega^*) = 1$. Then we have $(a\omega)^* = \frac{1}{a}\omega^*$ for $a \in \mathbf{R} \setminus \{0\}$. Thinking of the Ricci tensor as Ric: $T_x M \to T_x^* M$, we define det_{ω} Ric as

$$\operatorname{Ric}^* \omega^* = (\operatorname{det}_\omega \operatorname{Ric})\omega.$$

For $a \in \mathbf{R} \setminus \{0\}$, we have $\det_{a\omega} \operatorname{Ric} = \frac{1}{a^2} \det_{\omega} \operatorname{Ric}$. In particular $\det_{-\omega} \operatorname{Ric} = \det_{\omega} \operatorname{Ric}$. Hence we can define $\det \operatorname{Ric} = \det_{d\mu} \operatorname{Ric}$ with respect to a volume element $d\mu$.

Now suppose $\nabla d\mu = \nabla d\mu'$. Then $d\mu' = ad\mu$ for some positive constant a since M is connected. So we have $\int_M \det_{d\mu'} \operatorname{Ric} d\mu' = \frac{1}{a} \int_M \det_{d\mu} \operatorname{Ric} d\mu$. Thus $E(\nabla) = \int_M \det_{d\mu} \operatorname{Ric} d\mu \int_M d\mu$ depends only on $\nabla \in \mathcal{A}(M)$, and $E: \mathcal{A}(M) \to \mathbf{R}$ is differentiable by virture of Corollary 2.3.

We define a contravariant symmetric 2-tensor $\hat{Ric} = (\hat{R}^{ij})$ as the cofactor tensor of $Ric = (R_{ij})$. Namely

$$\hat{R}^{ik}R_{kj} = (\det \operatorname{Ric})\delta^i_j. \tag{3.1}$$

We remark that this tensor field depends on the choice of a volume element $d\mu$. We also define ρ and ρ° as

$$\rho = \det \operatorname{Ric}$$

and

$$\rho^{\circ} = \det \operatorname{Ric} - \frac{\int_{M} \det \operatorname{Ric} d\mu}{\int_{M} d\mu}$$

With these notations we can state the first variational formula of the functional E.

Proposition 3.1. $\nabla \in \mathcal{A}(M)$ is a critical point of $E: \mathcal{A}(M) \to \mathbf{R}$ if and only if the following two conditions are satisfied:

$$\hat{R}^{ij}_{;ij} = -\frac{n+1}{n-1}\rho^{\circ}$$
(3.2)

and

$$\hat{R}^{ij}_{;k} = \frac{1}{n+1} (\hat{R}^{il}_{;l} \delta^{j}_{k} + \hat{R}^{lj}_{;l} \delta^{i}_{k}), \qquad (3.3)$$

where $n = \dim M$.

Proof. Fix $\nabla \in \mathcal{A}(M)$ with $\nabla d\mu = 0$. We first consider a projective variation of ∇ . Let ${}^t\nabla$ be defined as

$$\nabla_X Y = \nabla_X Y + t(Xu)Y + t(Yu)X,$$

where $u \in C^{\infty}(M)$ is an arbitrary function. Put

$$d\mu(t) = e^{(n+1)tu} d\mu$$

and we have ${}^{t}\nabla d\mu(t) = 0$. The Ricci curvature is calculated as

$$R_{ij}(t) = R_{ij} - (n-1)(tu_{;ij} - t^2 u_{;i}u_{;j}).$$

Since

$$\det_{d\mu(t)} \operatorname{Ric}(t) d\mu(t) = e^{-(n+1)tu} \det_{d\mu} \operatorname{Ric}(t) d\mu,$$

we have

$$\frac{d}{dt}_{|t=0} \det_{d\mu(t)} \operatorname{Ric}(t) d\mu(t) = -(n+1)u\rho d\mu + \hat{R}^{ij} \frac{d}{dt}_{|t=0} R_{ij}(t) d\mu$$
$$= -(n+1)u\rho d\mu - (n-1)\hat{R}^{ij} u_{;ij} d\mu.$$

Hence,

$$\frac{d}{dt}_{|t=0} \int_{M} \det_{d\mu(t)} \operatorname{Ric}(t) d\mu(t) = \int_{M} u(-(n+1)\rho - (n-1)\hat{R}^{ij}_{;ij}) d\mu.$$

On the other hand,

$$\frac{d}{dt}_{|t=0} \int_M d\mu(t) = (n+1) \int_M u \, d\mu.$$

Therefore we get

$$\frac{d}{dt}_{|t=0} E({}^t\nabla) = \int_M u(-(n+1)\rho^\circ) - (n-1)\hat{R}^{ij}_{;ij} d\mu \int_M d\mu$$

The equation (3.2) follows from this formula.

From Corollary 2.2, we have only to check the variation of ∇ in the direction of $S = (S_{jk}^i)$ with $S_{jk}^i = S_{kj}^i$ and $S_{ji}^i = 0$. Now we put

$${}^{t}\nabla_{X}Y = \nabla_{X}Y + tS(X,Y).$$

We have ${}^t\nabla d\mu = 0$ for any t. The Ricci curvature is then

$$R_{ij}(t) = R_{ij} + tS_{ij;k}^k - t^2 S_{il}^k S_{jk}^l.$$

Hence we have

$$\begin{split} \frac{d}{dt}_{|t=0} E({}^t\nabla) &= \int_M \frac{d}{dt}_{|t=0} (\det \operatorname{Ric}(t)) d\mu \int_M d\mu \\ &= \int_M \hat{R}^{ij} S^k_{ij;k} d\mu \int_M d\mu \\ &= -\int_M \hat{R}^{ij}_{;k} S^k_{ij} d\mu \int_M d\mu \\ &= -\int_M (\hat{R}^{ij}_{;k} - \frac{1}{n+1} (\hat{R}^{il}_{;l} \delta^j_k + \hat{R}^{lj}_{;l} \delta^i_k)) S^k_{ij} d\mu \int_M d\mu \end{split}$$

The equation (3.3) follows from this formula.

The equations (3.2) and (3.3) are not independent. In fact we can show the following.

Proposition 3.2. On a connected manifold, the equation (3.3) implies the equation (3.2).

Proof. The derivative of the determinant ρ is given as $\rho_{k} = \hat{R}^{ij}R_{ijk}$. This together with (3.1) yields

$$(n-1)\rho_{;k} = \hat{R}^{ij}{}_{;k}R_{ij}.$$
 (3.4)

Applying this to (3.3) we have

$$\frac{n^2 - 1}{2}\rho_{;k} = \hat{R}^{ij}{}_{;i}R_{jk}.$$
(3.5)

Then we get

$$\hat{R}^{ij}_{;ijk} - \hat{R}^{ij}_{;ikj} = \hat{R}^{il}_{;i}R^{j}_{lkj} = -\hat{R}^{il}_{;i}R_{lk} = -\frac{n^2 - 1}{2}\rho_{;k}.$$
(3.6)

On the other hand we have

$$\hat{R}^{ij}_{;ikj} - \hat{R}^{ij}_{;kij} = (\hat{R}^{lj} R^{i}_{lki} + \hat{R}^{il} R^{j}_{lki})_{;j} \\
= (-\hat{R}^{lj} R_{lk} + \hat{R}^{il} R^{j}_{lki})_{;j} \\
= -\rho_{;k} + \hat{R}^{il}_{;j} R^{j}_{lki} + \hat{R}^{il} R^{j}_{lki;j} \\
= -\rho_{;k} + \frac{1}{n+1} (\hat{R}^{im}_{;m} \delta^{l}_{j} + \hat{R}^{ml}_{;m} \delta^{j}_{j}) R^{j}_{lki} - \hat{R}^{il} (R^{j}_{lij;k} + R^{j}_{ljk;i}) \\
= -\rho_{;k} - \frac{1}{n+1} \hat{R}^{ml}_{;m} R_{lk} + \hat{R}^{il} R_{li;k} - \hat{R}^{il} R_{lk;i} \\
= -\rho_{;k} - \frac{n-1}{2} \rho_{;k} + \rho_{;k} - (\hat{R}^{il} R_{lk})_{;i} + \hat{R}^{il}_{;i} R_{lk} \\
= \frac{(n+1)(n-2)}{2} \rho_{;k},$$
(3.7)

where in the fourth equality we used the equation (3.3) and the second Bianchi identity. Hence from (3.6) and (3.7) we have

$$\hat{R}^{ij}{}_{;ijk} - \hat{R}^{ij}{}_{;kij} = -\frac{n+1}{2}\rho_{;k}.$$
(3.8)

From (3.3) and (3.6) we have

$$\hat{R}^{ij}_{;kij} = \frac{1}{n+1} (\hat{R}^{il}_{;lik} + \hat{R}^{lj}_{;lkj}) = \frac{2}{n+1} \hat{R}^{ij}_{;ijk} + \frac{n-1}{2} \rho_{;k}.$$
(3.9)

Then it is easy to see from (3.8) and (3.9) that

$$\hat{R}^{ij}{}_{;ijk} = -\frac{n+1}{n-1}\rho_{;k},$$

which implies the condition (3.2).

4. Proof of Theorem

It follows from (3.5) and (3.1) that

$$\rho_{;i}\hat{R}^{ij} = \frac{2}{n^2 - 1}\rho\hat{R}^{ij}{}_{;i}.$$
(4.1)

Hence using (3.2), we have

$$\rho_{;ij}\hat{R}^{ij} + \frac{n^2 - 3}{n^2 - 1}\rho_{;i}\hat{R}^{ij}_{;j} = -\frac{2}{(n-1)^2}\rho\rho^{\circ}.$$
(4.2)

The proof is divided into two cases. One is the case when $n = \dim M$ is even. Then since $\operatorname{Ric} \leq 0$, we have $\rho \geq 0$ and $\operatorname{Ric} \leq 0$. At a point where ρ° and therefore ρ too take their maximums, the left hand side of (4.2) is nonnegative because $\operatorname{Ric} \leq 0$, and the right hand side of (4.2) is nonpositive. Hence we conclude that $\rho^{\circ} = 0$, that is, ρ is a constant, which must be positive.

The other is the case when n is odd. Then since $\operatorname{Ric} \leq 0$, we have $\rho \leq 0$ and $\operatorname{Ric} \geq 0$. At a point where ρ takes its minimum, the left hand side of (4.2) is nonnegative, because $\operatorname{Ric} \geq 0$, and the right hand side of (4.2) is nonpositive. Hence we have $\rho^{\circ} = 0$, that is, ρ is constant.

In both cases we have that ρ is a nonzero constant. Then it follows from (4.1) that $\hat{R}^{ij}_{;j} = 0$. Hence from (3.3), we have $\nabla \hat{Ric} = 0$. This implies $\nabla Ric = 0$ because $\rho \neq 0$. Now put g = -Ric, which is a Riemannian metric, and is parallel with respect to ∇ . Therefore ∇ is the Riemannian connection of g.

References

- [1] Besse, A. L., Einstein manifolds, Springer, 1987
- [2] Kobayashi, S. and Nomizu, K., Foundation of differential geometry, Vol. 1, Interscience publishers, 1963

Department of Mathematics Kumamoto University Kumamoto 860-8555, Japan e-mail: ok@math.sci.kumamoto-u.ac.jp