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   Introduction. 

   Let ) i(M) be the space of all C~ Riemannian metrics on a compact n-

dimensional manifold M, and v : 94(M)-->R be a functional of 5Jt defined by 

v(g)=(2/n) W I n'2dv, where W is the Weyl conformal curvature tensor. Our 

main subject in this paper is to determine inf {v(g) ; g E 1} , which will be 

denoted by v(M). A little consideration shows that v(M) > 0 if some Pontrjagin 

number of M is not zero. Thus, in general, v(M) is a nontrivial invariant of a 

manifold. 

   In § 2, we shall show two general properties of v(M). One is that v(M)=0 
for the total space M of a principal circle bundle (Theorem 2.1). This provides 

examples of M for which v(M)=0 but which has no conformally flat metric. 
The other is an inequality for connected sum ; v(M1#M2) <_ v(Ml)+v(M2) (Theorem 

2.2). This is useful for computing v(M) for certain M. 

   However, to determine v(M) for general M seems to be not so easy. Even for 
S2 X S2, (S2 x S2) is not known (to the author). We want to show that the stan-

dard Einstein metric go of S2 x S2 is a candidate at which v takes a minimum, 

if v : 5I(S2 x S2)--R has a minimum. In fact, go is a minimum point of v restricted 
to Kahler metrics (Proposition 1.4). Moreover, we shall prove that go is a 

strictly stable critical point of the functional v (cf. Definition 4.1 and Theorem4.2). 

   In the course of proof of stability of go 51(S2 x S2), we establish the first 

and the second variational formulas of v : 5t (M) --*R for 4 dimensional M (Prop-

ositions 3.1 and 3.7; The first variational formula has already appeared in [2]). 

From these formulas, we can also see that other than conformally flat metrics, 

Einstein metrics are critical points of the functional v, and Ricci flat metrics 

are stable critical points of v.

and

§ 1. Preliminary definitions and remarks. 

Throughout this paper, M denotes a compact C°° manifold of dimension n, 

51(M) denotes the space of C°' Riemannian metrics on M. For g .511(M),
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the curvature tensor R ti3 k 1, the Ricci tensor Rij = Rki k j and the scalar curvature 

R=gi'Rij are defined. Our concern in this paper is the Weyl tensor defined by 

1 (1
.1) W ~jk1=Rijk1- 

n-2 (L2kgjl+gikL,1-Lilgjk-g21l jk), 

where Lij=Rij-(R/2(n-1))g1 j (we put W=0 if n<2). From the second Bianchi 

identity, we have Ri j k I; i = R j 1; k - R j k; l and hence, 

                             n-3 (1
.2) Wijkl;i= 

n-2 CjkI 

where Cjk1=Lj1;k-Ljk;I• 

   DEFINITION 1.1. We define a functional v : ~i(M)-~R by v(g)= 2 ~W n'2dvg, 

where ~W I'112=<W, W>n,4=(gipgjggkrglSYVijklWpgrs)n~4• For a subset U of M and 

gE~1(M), we write v(g; U)=? IW n12dvg. 
                              nu 

   LEMMA 1.2. (i) v(e2f g)=v(g) for any f E C°°(M) and g at(M). (ii) v(~o*g) 
=v(g) for any diffeomorphism cp of M. (iii) v=o if dim M3. 

   PROOF. Let W and W' be the Weyl tensors of the metrics g and g'=e2f g, 
respectively. Since the Weyl tensor is invariant under a conf ormal change of 
metric, we have <W', W'>g, =<W, W>g, =e-4 f <W, W>g. Hence, from dv'-e' dv 
for the volume elements, we get 1W' "12dv'= 1 W n12dv, which proves (i ). (ii) 
is trivial, and (iii) is well-known. i 
   For the dimensions higher than three, we first remark the following : 

   PROPOSITION 1.3. I f dim M>_4, then sup {(g); g E ~t(M)} =c. 
   PROOF. Let Tn=Rn/Zn be the n-dimensional torus. If n>-4, there exists 

a metric g E Jl(T n) with c :=(g)>O. vThen, g 5I(R71) denoting the lift of g 
to the universal covering, we have v(g; [0, l]n)=lnc for IEN. Now, let (U, cb) 
be a chart of M such that cb(U)=R'. Then, for each l EN, we can take a 
metric g1 on M which coincides with g in [0, l]T CRT =U, i. e., (~L'*g1) I [0, l]n= 

N g I [0, l]n. We thus have v(g1) >_ v(g1 ; U) >_ v(cb g1 i [0, l]n)=l'~c and hence, 
lim1, (g1)=co. 
   On the other hand, there are non-trivial topological lower bounds for v : 

Any Pontrjagin class is represented by a differential form composed of only the 

Weyl tensor ([1]). Namely, the m-th Pontrjagin class pmEH4m(M) (cf. [5]) is 

given inductively by Hm=-(p1IIm_1+ ... +pm_l1l)-2mpm, where Jim EH4m(M) 
is represented by the following differential form; 

                                                                    

a o 0 

                   (2)-2mQq, n Qi~3n ... 

0 where Q i j = (1 /2)W i j k 1 e k A e 1. So we can see that any Pontrjagin number of a 4k-
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dimensional M is dominated by v(g) multiplied by some universal constant. For 
example, the following is well-known. 

   PROPOSITION 1.4. I f dim M=4, then 1 pl[M] I <v(g)/872 for all g c ~i(M). 

Hence, i f furthermore M is oriented, z 1 <v(g)/2472 for all g E 5i(M), where v 

is the signature of M. Equality holds if and only if g is a half conformally 

flat metric. 
   Thus, unlike sup v, inf v reflects certain global properties of a manifold. 

   DEFINITION 1.5, v(M) := inf {v(g) ; g ~l(M)} . 

   Here are some examples : 

   1. v(g)=0 if g is conformally flat. Hence, if M carries a conformally flat 

metric, then v(M)=0. However, v(M)=0 does not imply in general that M 

admits a conformally flat metric (see § 2). 
   2. The Fubini Study metric go of CP2 is half conformally flat. Hence, by 

Proposition 1.4, v(CP2)=v(go)=2472. For the connected sum kCP2 of k copies 

of CP2, Proposition 1.4 gives only v(kCP2)>_2472 I z(kCP2) l =24k7r2. We shall 

show in § 2 that v(kCP2)<_kv(CP2)-24kTr2. Hence, we have v(kCP2)=24k72. 

   3. Although the author does not know the value v(S2 x S2) at present, there 
are partial results which suggest that v(S2 x S2) may be positive. Let g, g be 

two Riemannian metrics on S2 with the Gauss curvatures K, K, respectively. 

Consider the product metric g=+ gg on S2 x S2. Then, v(g) = (128/3)72+ 

(2/3) S2XS2(K-K)2dv. 

   PROOF. The Weyl tensor is computed as W mi jk =(1/6) (K+K)(2gm jgi k -

2gijgkm-gmjgik+gijgkm+2gmjgik-2gijgkm-gmjgik+gijgkm). Hence, we have 

 W 12/2=2(K+K)2/3=8KK/3+2(K-K)2/3. Then, from the Gauss Bonnet for-

mula, v(g)=(8/3) KKdv+(2/3) (K-K)2dv=1287r2/3+(2/3)(K_ K)2dv. 

    So, among the product metrics of 52 X S2, the standard Einstein metric attains 
the smallest value 12872/3. This is generalized as follows : 

   PROPOSITION 1.6. Suppose that dim M=4 and g Ji(M) is a Kahler metric 

for some complex structure of M. Then, 

               v(g) >_ 2472 z + 16 72 min {2X-6z, 2X+3z}, 3 

where v and X are the signature and the Euler number of M respectively. The 

equality holds if and only if g is an Einstein Kahler metric. 

   PROOF. By the four dimensional Gauss Bonnet theorem, 

(1.3) v(g)=1672X-+- E 12dv- 1 R2dv, 
                             12~
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where E is the traceless part of the Ricci tensor ; E1 =R-(R/4)g1. 

   Let p be the Ricci form of the Kahler metric g ([5]). Then, it is easily 

seen that 

(1.4) pnp= 1 R2-2 E 12 dv . 

2 

   Since the first Chern class is represented by p/42. we have 

                     p A p=16rc2ei=16n2(2X+3~ . 

This, together with (1.3) and (1.4), yields 

          i(g)=-8~r2z+322X+ E 2dv 
                 3 3 

2 1                 24
n2 ~ z 1-~- 3 ~c2(2X-6T)-I- 3 I E 2d ~, if O; 

              242 16 2 2 ~r z+ 3 (2X+3r)+ 3 I Ej2dv, if v<O. 

Now, we get the desired inequality. 
   Applying this proposition to S2 x S2, we have v(g)>_ 128ir2/3 for any Kahler 
metric g of S2 x S2, because v(S2 x S2)=0 and X(S2 x S2)=4. Thus, the standard 
Einstein metric go of S2 x 52 attains the smallest value of v also in the class of 
Kahler metrics. Moreover, we shall show in § 4 that the functional v : 4t(S2 x S2) 
-R has in fact a local minimum at go. 

   § 2. Two general formulas for v (M). 

   THEOREM 2.1. If S1 acts freely and differentiably on M, then v(M)=0. 
   PROOF. Let K denote the vector field on M which generates the S1 action. 
Since S1 is compact, there is an S1 invariant Riemannian metric h on M, for 
which K is a Killing vector field. Since the action is free, h(K, K) is nowhere 
zero, hence, g=(h(K, K))-'h defines a Riemannian metric. Then we have 

(2.1) £Kg=O and g(K, K)=1. 

  Now, consider a family of Riemannian metrics {g(t) ; 0<t1} defined by 

(2.2) g~,(t)=g~,-(1-t2)a~a,, 

where a is the 1-form associated with K with respect to g=g(1), i. e., ai=gti;K~. 
The inverse matrix g1(t) is easily seen to be g~~-(1-r2)KiK'. Then, using 

(2.1), we get the relation between the Christoffel symbols of g(t) and g : 

(2.3) I'i,(t)-rk~=__(1-t2)(Kk;ia,+Kk;jati),
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where the covariant derivation in the right hand side is taken as one with 

respect to g. From this and (2. 1), we have 

(2.4) R1Jkl(t)-R2jkl=-(1-t2) {(K2;jal);k-(K1;jak);ITKmR2mklaj 

               +Kz;laj;k-K2;kaj;l} +(1-t2)2K1;maj(akKm;l -alKm;k) 

Then, again using (2.1), we have 

(2.5) gjh(t)(Rijkl(t)-R1Jkl)=-(1-t2) {(Ki'hal);k-(Ki'hak);l 

                      +Kti;ZKh;k --Ki;kKh;l} +(1- t-2)KhKmRimkl • 

On the other hand, g' L(t)Rijkl=R2nkl --(1-t-2)KjKnRijk1. Hence, we get 

(2.6) g'n(t)Rtjkl(t)- Rznkl -(1-t2) {(K2'nal);k-(Kak);I 

                                           +K1;1Kn;k-K~;kKn, }• 

Note that (2.6) does not contain terms of t-2 and that both sides of (2.6) are 

tensors of type (2, 2). So, there is a constant c such that I R'... .(t) I <c for all 

t E (0, 1]. In particular, W (t) (t) <c. On the other hand, the volume form dv(t) 

relative to the metric g(t) is easily computed as dv(t)=t dv. Thus, we get 

limt,ov(g(t))=0. Hence, v(M)=0. n 

   REMARK. There is no conformally flat metric on Sp x T', p, q>_2, i. e., v(g) 

> 0 for any g ll(Sp x T a), p, q>_ 2, because, by a theorem of Kuiper [6; Theo-

rem III], the universal covering space of a compact conformally flat space with 
an infinite Abelian fundamental group must be Rn or R x S'1. However, the 

above theorem asserts that v(Sp x T)=0. So, in general, v(M)=0 does not imply 

the existence of a conformally flat metric of M. 

   THEOREM 2.2. For any compact manifolds M1 and M2 of the same dimension, 

v(M1 M2) ~ . (M1)+v(M2)• 
   For the proof, we prepare the following lemma. 

   LEMMA 2.3. Let g E 5 l (M) be given. Then, for each £>0, there is a g E 

5t(M) such that v(g)-u() I <s and g is flat in an open subset of M. 

   PROOF. Let (U, cb) be a chart of M such that ~b(U)~ {x R'; I x I <1} and 

in the coordinate expression of the metric g I U=gij(x)dxidxj, 

(2.7) g1(0)=o1j 

holds. Take a nonnegative smooth function cp : RTh-~R such that cp(x)=1 if x 

<1/2, and cp(x).0 if I x >_1. We set cpt(x)=c (x/t). The support of cDt is con-

tained in B t = { x e Rn ; I x <t}. For 0<t<1, we define a metric g E 5l (M) by 

g (M\U)=g (M\U) and
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(2.8) 

in U. We shall show that g has the desired properties for a sufficiently small t. 
   It follows from (2.7) and the definition of cpt that 

(2.9) I cot(gi j-Ui j) I < c1t, I acot I < c1t-1, I a2~t I < c1t-2, 

for some constant c1 where a is the Euclidean gradient. Hence, I agi; ( < c2 and 

I a2gi; I <c2(t-1+1) for some c2. Then, putting f =(W, W)n'4(det(gi;))hI2, w&can 
easily see that 

(2.10) f t < c3(t-1 + 1)n f2 . 

Thus, we get 

(2.11) ft_ c3(t-1+1)n'2 dx 
                         Bt Bt 

                          =c4(t-1+1)n'2t'=c4(t2+t)1'2. 
On the other hand, 

         v(g)-v(g) I = I 2)(g; ~Li-1(Bt))-v(g ; c1-1(B)) I 

                     ~v(g; -1(Bt))++ f tdx. 
                                                 n Bt 

Therefore, from (2.11), we conclude that I v(g)-v(g) I <E for a sufficiently small 
t. It is obvious from (2.8) that g is flat in c-1(Bt). 0 
   PROOF OF THEOREM 2.2. Let be an arbitrary positive number. Take gi 
E 5i(M1) so that v(g1)<v(M1)+E, i=1, 2. By the above lemma, we can choose 

gi E 5t(Mi) such that v(gi) <v(Mi) 2s and gi is flat in some neighbourhood of 
Mi. Suppose that for some r > 0 and pi E M1, gi is flat in Ui(pi ; [0, 2r)) := 

{x E Mi ; di(x, pi) E [0, 2r)}, wherei is the distance function of the metric gi, 
i=1, 2. 

   We define a diffeomorphism cp : U1(p1 ; (r/2, 2r))-~U2(p2 ; (r/2, 2r)) by 

~o(expp1X) =expp2(-(r2/g1(X, X ))cooX), where coo: T p1M1-OT p2M2 is a linear iso-
metry and exp pi denotes the exponential map at p, E Mi with respect to gi. 
Then we can regard M1 M2 as {M1\U1(p1; [0, r/2])} U~ {M2\U2(p2; [0, r/2])}, 
   Let f i be a positive smooth function on Mi such that fi(x)=(di(pi, x))-2 if 

r/2<(l i(pi, x) <2r. Then, f is a Riemannian metric on Mi and is conformally 
flat in U1(pi ; [0, 2r)). Moreover, co : (U1(p1 ; (r/2, 2r)), f 1 1)-+(U2(p2 ; (r/2, 2r)), 

f 2g2) becomes an isometry. Hence, we can define a Riemannian metric g on 
M1 M2 by g I (M1\U1(pi ; [0, r/2])) :=f1 I (M1\U1(pi ; [0, r/2])), i=1, 2. Then, 
we have 

      v(g)=v(f 1 1 , M1\U1(p1 , [0, r/2]))+v(f 2g2 , M2\U2(p2 , [0, 2r])) 

         -y(f lg1)~v(f 2g2)
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          =1)+i 2) 

         cy(M~)-~-v(M2)~4E. 

Therefore, v(Ml#M2)<_v(M1)~v(M2}-3-4~ for arbitrary >O. That is, v(Ml#M2) 

   § 3. Variational formulas in dimension four. 

   In this section, we use the following abbreviation for shortness' sake ; 
1. Omitting the summation sign, e. g., Cijk;k+LmkW m jk stands for L.~k, dg' Cijk;c+ 
~k,c, mgkcLmkW' ~jl. 2. Identification through the duality defined by metric, e. g., 
Skj=(1/2)(hjk;i+hki;j-hij;k) stands for Szj=(1/2)gkc(hjc;i+hci;j-hij;c)• 

   PROPOSITION 3.1 ([2]). Suppose that M is a compact manifold of dimension 
4. Then for a smooth curve g=g(t) in 5l(M), we have 

                  d v(g)=3\X, dgdv,                     dt M dt 

where X is a symmetric 2-tensor defined by Xi j=Ci j k; k + Lm kW m j k (see § 1 for 
C, L and W). 
   PROOF. We set hij=(d/dt)gij and Sij=(d/dt)I'. Then, 

(3.1) Skj (h                            - 1 jk;i+h ki;j j;-hi•k)• 

Hence, 

d (3
.2} dt Rm~k _(S k;j-Sj;k. 

Then, from (1.1) and elementary algebraic properties of curvature tensor, we 
have 

                 WmIJkd WmI,k_Wm                       dt ijk(2hzj;km+Lmkhij) • 

Therefore, using (d/dt)gij=-h1 j and (d/dt)dv=(1/2)hiidv, we get 

       d v(g)= W ~'ijk(2hij;km-{- Lmkhij)_WmijkWmijchkc+ 1 W 2hii dv 
      dt 4 

                Xi hi -(Wm kWm c- 1 (W 2gkc)hkc dv,                          ~ 3 1 J 4 

where we use Stokes' formula and (1.2). Thus, we have only to prove 

Wm jkWm jc=(1/4)~WI2gkt. 
   It is known that a symmetric linear transformation on the space of 2-forms 

A2 commutes with the Hodge star * : A2-A2 (since the argument is local, we
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need not assume M is orientable) if and only if its Ricci contraction is propor-

tional to g (cf. [7; Theorem 1.3]). Viewed as a symmetric transformation on 

AL, the Weyl tensor commutes with the Hodge star, because the Ricci contrac-

tion of W is zero. Hence, so does W 'W, and the Ricci contraction of W °W is 

proportional to g. That is, Wi abW abjk =Agij for some scalar A, which implies 
W7Th jkW m ijt=(1/4) I W Zgkt• 

   That X is symmetric is not difficult to see. 

   COROLLARY 3.2. I f dim M=4, the tensor X has the following properties; 

(i) Xii=O ; (ii) Xi j; j=0 ; (iii) X ®g is con f ormally invariant. 
   PROOF. Easy consequence of Lemma 1.2. 

   COROLLARY 3.3. I f dim M=4 and g E ~2(M) is con f ormal to an Einstein 
metric, then g is a critical point of v : 

   PROOF. Obviously, X=0 if g is an Einstein metric. Thus, the assertion 

follows from Corollary 3.2 (iii). n 

   Next, we shall compute the second variational formula. To do this, we 

review the Lichnerowicz Laplacian and decomposition of the space of symmetric 
2-tensor fields (cf. [3]). 

   DEFINITION 3.4. The tangent space T g511(M) of 5t(M) at g is naturally 

identified with the space of C°° symmetric 2-tensor fields on M. The Lichnero-

wicz Laplacian & : T g 5 i *T g8kI is defined by 

              (~Lh)ij •-

where : T g8i T g&f4i is the rough Laplacian ; (Sh)i j= hi j; k k (our sign convention 

of Laplacians is opposite to that used in [3]). 

    LEMMA 3.5. (i) (dLh)ij=(ah)ij-hikRkj-Rikhkj-2hmkRm jk. Hence, if 

dim M=4, then 

           (QLh)ij=(Qh)ij-2(hikEkj+Eikhkj)+<E, h>gij 

                  +(tr h)(Eij-f-(R/6)gij)--(2R/3)hij-2hmkWmijk 

where Ei j=Ri j-(R/4)gi j. 

    (ii)(h ,aLh )dv= {~h ,dh >-I-(hij;kj)k-hik;jij;jhik;k} dv 
for h', h"ETg52. 

    (iii) M<h', &h">dv= M{h~j;k(hjk;i;j-h2hij;jhik;k} dv, for h', h" 

 ETgY1I. 

    PROOF. Easy and omitted. 0
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   LEMMA 3.6. I f M is a compact manifold, T g32(M) has the following decom-

position; T g 5 i So(g) G3 Si(g), where so(g) _ {h E T g5l ; tr h =0, div h =0} and 
si(g)= {h E Tg~l ; h=Cug± f g for some u E (M) and f E C°°(M)} . This decom-

position is orthogonal with respect to the L2 inner product defined by g. 
   PROOF. Put P(u)=J'ug-(1/n)(tr £ug)g for a vector field u. Then, it is 
easy to check that the principal symbol of the linear differential operator P : 
-+T gel is injective. Hence, T g5l=Ker P*13Im P (cf. [3]), where P* is the ad-
joint operator of P. P* is computed as P*(h)=-2(h1-(1/n)(tr h)gij);j. From 
this, we have Ker P*=SoEC°°(M) • g. Then, putting si=C°~(M) • gE'3Im P, we 

get the desired decomposition. 0 
   REMARKS. 1. Let G be the semi direct product of the cliff eomorphism 

group D(M) and C°°(M) with multiplication ; (cpl, f i) • (~o2, f 2)=(c1 °~o2, f i °~02+ f 2) 
for ~t2i, cp2 E D(M) and f i, f 2 E C~(M). Then, G acts on 5l(M) on the right as 
follows ; (g, (co, f )) H elf cp*g, g E ~%t(M), co E ~D(M) and f E C°~ (M). Lemma 1.2 
says that v is constant on every G-orbit in 511(M). S1(g) in the above lemma 
is regarded as the tangent space at g of the G-orbit of g. 
   2. Using the orthogonality between So and Si, we have an isomorphism 

s0(g) N So(e2f g) ; hHe c2-n' f h. In particular, we see that S0(g) =So(e2f g) if dim M 
=2, S0(g)®g=So(e2f g)~e2f g if dim M=4, and so on. 

   PROPOSITION 3.7. Suppose that M is a compact manifold of dimension 4, and 

gE 5l(M) is a critical point of v : 5Jl(M)->R. Let gt be a smooth variation of 
g with go=g. Then, 

      d 2
v(gt) -- 1 aLh~ R h,1 Lh+ R h        dt 

t=o ~~ 2 2 3 

       +E°h, 2aLh+3h°E+Rh 1 IE 2Ih12-~-~ IE°hi2-2~E, h>2 
                2 2 2 3 

         +5 (2Emkhij);k-1 hijR;m^ 1(E°h-h°E)mi;j+2hikCmjk-hk'Ckmi 
                  3 2 

          _hiihk mC2jk;m dv, 

where h is the S0(g) component o f (dg/dt) t=o E T gel (cf. Lemma 3.6), (E ° h)ti j= 
E1khkj and 3ij=(1/2)(hjk;ti-l-hkt;j-hij;k)• 

   PROOF. From the first variational formula (Proposition 3.1), (dv(gt)/dt)= 

M~Xt, (dgt/dt)>tdvt. Since XtES0(gt) (Corollary 3.2), we have (dv(gt)/dt)= 

     ht>tdvt, where ht is the S0(g) component of (dgt/dt). Thus, since X= 

Xo=O, we get
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(3.3) d 2v( t) = ~, h>dv,                          dt g t=a M 

where ' means (d/dt) I t=o, i. e., X =(dX1/dt)1 t=o. If we write X =(DX)(g), we 
can see X=(DX)(h), because that X=0 is a conformally invariant property by 
Corollary 3.2 (iii). Hence, it suffices to prove the formula under the assumption 
that g= h E $0(g). So, we assume in the following that and h i i =0, 
hij;j=0. 
   From the definition of X, 

(3.4) Xij=(gkmcijk;m)+(gklLmlWmijk)
m m                                  kr'hkm ijk;m-SkiCmjk-Sk)Cimk 

                     +LmkWmi'jk+LmkW Ijk"-hklLmlW ijk 

From the definition of C, 

(3.5) Cijk-\Lik);j-(Lij);k+SkiLmj-'S2Lmk 

From the definition of L and the Lichnerowicz Laplacian, and (3.2), 

(3.6) h>gi .                  2 6 6 ' 

From this and Lemma 3.5 (ii), 

                      1 R 1 (3.7) (Lij);k(hij;k--hik;j)= 4 (aLh 2                             + +12<h' ~Lh>+ 4 <dLh, ah> 

                     +R <h, 4h>, 
                      12 

where the meaning of the notation = is as follows ; for f 1 and f 2 E C°°(M), we 

write f1=f2 if 
Mfldv= Mf2dv. 

   Then, from (3.5), (3.6), (3.7) and Lemma 3.5 (i ), 

(3.8 C h L Wm h=-C h L Wm h     ) ( ijk);k ij+ mk ilk ijk ij 

                ((Li ); k +Sk Lmk)(hik-hi k)+L Wm h                       = j j j; 
,j mk ijk ij 

             -=1 I OLh (2+ <h, aLh>+ 14<~Lh, ~h>+R Ch' ~h> 
              4 12 12 

m 

                           ij mk hij;k~'hik;j) 

                     1 (QLh)ijhkrWmi'k-R hi'hmiWniik 
                   Z ~ 6 ~ . 

              =1 taLh 2+ R <h, aLh>+ 1 R2 h f 2 
              2 3 18
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                 + E°h, QLh+R h +SLmk(hi'';k-hik;j). 3 

From (1.1) and (3.6) 

(3.9) hi LmkW"~ k=hijLmk Rm k-1(Lmjhik-I-Lmjgik 

           -hmzLljgik+gmjLik-Lmkhij-Lmkgij+hmlLlkgij-gmkLij) 

     =hi'jLmkEi~k-1 L°h12+2<L°h, L>-<L°h, h°L>-IL121h12-R<L, h> 
              2 3 

     =hijLmk j' ~k-R<h, aLh>+ E°h, 1~Lh+1 h°E+Rh 
              24 2 2 6 

        + 1 IEI21h12-1 IE°h12-1 (E°h>2.          2 2 6 

From Lemma 3.5 (i ),

(3.10)

From                                                         e get

(3.11)

           R R 1 -hijhklLmIWYk=
24<h, aLh>-24(h, C~h>+36R2I h I2 

               1 h+h°E+R h + IE°h I2_ 1 <E, h>2. _ 1 <E°h, ah>+ E°h, aL  2 2 2 2 

(3.2), Bianchi's identity Li;; j=R;i/3 and using Lemma 3.5 (iii), 

w SijLmk(hij;k-hik;j)+hijLmkRmtijk 

   -S (Lmkhij);k-S jLmk;khij-Sij(Lmkhik);j+SijLmk;jhik 

    +h ( m m )           ij mk ik;j- ij;k 

1    =S ;(Lmkhij);k- 3 S hijR;m 

     -1 Sm(Lmkhik+hmkLik);j-1 S (Lmkhik-hmkLik);j        2 ' 2 

     +Sj mk;jhik-SikLmk;) ij+Stjj(hijLmk);k 

   =2S ;(Lmkhij);k- 1 hmi;j(Lmkhik+hmkLik);j 

4 

     -Sm 1 hiiR;m+ 1(E°h-h°E)mi;j-hikGm'k         ~ 3 ~ 2 ~ 

    2Sm(Emkhi) k+ 1 Szj(Rhij).k-I-1 ~L°h, ~h> 

     -Sm 1 hijR;m+ 1 (E°h-h°E)mi;j-hikCmjk         '3 2
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            Ch, &h>+1 <E°h, 4h>+ <h, ah> 
           12 2 24 

             +S {2(Emkhij);k-1 hijR;m-1 (E°h-h°E)mi;j+hikCmjk .                       3 2 

   Summing up (3.8), (3.9) and (3.10), then substituting (3.11), we obtain from 
(3.4) the following : 

     Xi .hi ,_ + aLh 2+ 5 R<h, aLh>+ 1 R2 h 2 
         2 12 12 

       + (Eh, 2&h+3h°E+Rh ++ IEI2 h12++ IE°hI2_2 <E, h>2 
                 2 2 2 3 

         +Sm {2(Emkhi3'), ;k_ 1 hijR;m- 1(E°h-h°E)mi;j+2hikCmjk-hkjCkmi             J 3 2 

          -hijhkmCijk;m. 

Thus, from (3.3), we have the desired formula. 

   COROLLARY 3.8. Under the same assumptions and notations as in Proposition 
3.7, the second variational formula at an Einstein metric g (cf. Corollary 3.3) is 

as follows : 

           d (_7)22)(g) t =o =1 ZMQLh+R h, aLh+-h) dv.             d t 2 3 

   § 4. Stability of the standard Einstein metric of S2 x S2. 

   DEFINITION 4.1. Let g E 5 l (M) be a critical point of the functional 

v : 51(M)-~R. Then g is said to be stable if 

(4.1) d (j)2l)(gt) >_0                                    d t=o 

for all smooth variation gt with go=g. Moreover, g is said to be strictly stable 

if g is stable and if equality of (4.1) holds only when (dgt/dt) t=oESl(g) (cf. 

Lemma 3.6). 

   REMARK. It follows from Lemma 1.2 that if g is a (strictly) stable critical 

point of v, then so is any metric conformal to g. 

   EXAMPLES. 1. Any conformally flat metric is stable. Any half conformally 

flat metric of a compact orientable 4-manifold is stable (cf. Proposition 1.4). 
   2. Setting the scalar curvature R=0 in Corollary 3.8, we see that any Ricci 

flat metric of a compact 4-manifold is stable. 

   3. Let g li(S4) be the standard metric of constant curvature 1. Then, g 
is strictly stable.
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   PROOF. Since g is an Einstein metric, we have only to prove that 

                     4QLh+R h, QLh+Rh dv>_-0 

1 

                2 s 2 3 

for all h E so(g) and that equality holds only when h =O (cf. Corollary 3.8). 
   We have R=12 and zLh=~h-8h for h~S0(g) (cf. Lemma 3.5 (i)). Hence, 

     1 QLh+R h, QLh+R h dv=1 (h-2h, ah-4h>dv 
     2 2 3 2 

         =1 { I ~h 12-6<h, ah>+8 I h 2} dv 

2 

         =1 (Ioh12+6IVhi2+8IhI2)dv>0. 

2 Obviously, equality implies that h=0. 
   The purpose of this section is to prove the following : 

   THEOREM 4.2. Let g be the standard Einstein metric on S2 x S2, that is, g= 
     where g and g are Riemannian metrics on S2 with constant Gauss curvature 
1. Then, g is a strictly stable critical point of the functional v : 5t(S2 x S2)-~R. 
   PROOF. First, we remark that g and g are parallel tensor fields, and the 
curvature tensor is given as 

(4.2) Rmijk-(gmj~ik gijgkm)+(gmjgik gijgkm) 

   For h E 80(g), we define f E C°°(S2 x S2) and h, h, h E T gel as follows : 

        1 1 =                f = hijgij- _ hijgij ,             2 2 

(4.3) - - -              hij=gakhkmgmj-fgij, hij=gikhkmgmj+fgij, 

              hij=gikhkmgmj+gijhkmgmj 

Then, h = h + h + h + f g- f g and this decomposition is orthogonal. By (4.2), we 
have 

(4.4) hmkRmijk=hij 

Then, a straightforward computation gives 

                hmkRmijk 12= h 12+ I h 12+4f 2 

                 hii mkRmijk= I h 12+IhI 2-4f 2, 

(4.5) (ah)ijhmkRmijk-<h, h>+<,h>-4faf, 

             14h 12= I ~h 12+ I ~h 12+4(&f)2+ I ~h 12,               

I Vh 12= I Vh 2+ I Vh 12-x-4 I V f 2+ I Vh 2.
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Then, using Lemma 3.5 (i ), (4.2) and (4.4), we get 

(4.6) 1 &h+2h, LLh+4 h dv      2 3 

   = 21 hmkRmijk 12+ 3 hmkhijRmijk-2(!~h)ijhkmRmijk+ Z I h 12+117h 2 dv 

    8 Ih I2-2<h, ah~+ 1 ah 12+ 1 Ioh IZ 
     3 3 2 

   + 8 I h I2-2<h, ~h~+ 1 lah I2+ 1 IOhIZ 
     3 3 2 

   ~ 1 ivhl2+ 1 lohI2+16 f2+gfaf+ 4 lof IZ+21of IZ dv 
     3 2 3 3 

  = s (Ih12+Ih12)+? (Iahl2+lahl2)-+-1(lahl2+lahl2) 
     3 3 2 

   + l Iah I2+ 1 lah I2+ 4 (4f +2f)2+ 2 4f (4f -f-2) dv      3 2 3 3 f 

because the first eigenvalue of the Laplacian -~ of (S2 x 52, g) is 2, and hence 

a f (a f +2 f )dv>_O. 

   Next, we consider when the equality of (4.6) holds. Obviously, the equality 
holds if and only if h=h=0, ah=0 and 4 f +2 f =0. Since div h=0 (see the 

                                                                      a v 

definition of S0(g) in Lemma 3.6), the conditions h==0 h and Vu i=0 yield f = 
constant. Then from f +2 f =0, we have f n0. That is, h=h and ah=0. 
In particular, Z Lh =~h =0. Then from Lemma 3.5 (i) and R1 1=g,, we get 

(4.7) hij+hmkRmijk=0. 

On the other hand, from (4.4), h m k Rmi j k =0, since h = h. Hence, from (4.7), 
we have h=0. Thus, the equality of (4.6) holds only when h=0. 

   Now the assertion follows from Corollary 3.8.

    5. Additional remarks. 

   LEMMA 5.1. Suppose that dim M=4 and g E .51t(M) is a metric with nonnega-

tive sectional curvature. Then the following pointwise inequality holds; 3IWI2<2R2. 
   PROOF. Let {e1, e2, e3, e4} be an orthonormal frame. Then, f 1=e1 A e2+ 
e3Ae4, f2=e1Ae3+e4Ae2, f3=e1Ae4+e2Ae3, f4=e1Ae2-e3Ae4, fb=e1Ae3--e4Ae2 

and f 6=e1 A e4-e2 A e3 form an orthonormal frame of 112 (in our convention, e1 A 
e;=(1/2)(ei®ej-e;®ei)). We regard the curvature tensor as a linear transforma-
tion of A2. Then, with respect to the frame { f a}, we have the following
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matrix representation of the curvature tensor ; 

                       A B 

                              tB C 

where A and C are 3x3 symmetric matrices with trA=tr C=R/2, and 

                              E11-F-E22 E23-E41 E42-E13 

               B-(Bap)- E23+E41 E11+E33 E43-E21 

                                E42-E13 E43+ E21 E11-1-- E44 

where It is known that A and C can be diagonalized for 
some orthonormal frame {ei} ([7; Theorem 2.1]). So, we write 

      (R/6)±A1 0 0 (R/6)+p1 0 0 

   A= 0 (R/6)+A2 0 , C= 0 (R/6)+p2 0 

        0 0 (R/6)+A3 0 0 (R/6)+p3 

Then, A1+22+A3"p1+p2+p3-0 and 

                                            3 3 

(5.1) W 12= A«+ p~ .                                                  a=1 ~=1 

   A 2-form corresponding to a plane section is of the form ~a=1Ea f a + 

~~=11~af ft+3 with ~a=~rj~=1/2. Therefore, if the sectional curvature is non-
negative then, 

(5.2)                 6 
~rla 6 ~ a~ r1~ ~ 

a for all {a} and {r~ } with ~ «=i=1/2. From this, it is easily seen that 

                  R +A
a-}f`0 for all a, j3. 3 

Hence, 

2 2                 R +A1+p2 + (-+A2+ P3 + (-+A3                 3 3 3 

2 

                    R +A
1+p3+ +„2+1+-+A3 1p2                  3 3 ~` 3 

2 

                                   a, ,8 3 

Therefore, from (5.1), we have 2R2>3IWI2. 0
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   PROPOSITION 5.2. Let M be a compact 4-dimensional manifold. 
   ( i ) If M admits an Einstein metric, then v(M)16~r2X; 
   ( ii ) I f M admits an Einstein metric with nonnegative sectional curvature, 

then v(M)<_(64/5)n2X, where X is the Euler characteristic of M. 
   PROOF. ( i ) follows from the Gauss Bonnet formula (1.3). 

   (ii) : If g E 11(M) is an Einstein metric with nonnegative sectionaljcurvature, 
then from (1.3) and Lemma 5.1, we have 

              v(g)=162r2X- 1 R2dv<l6ir2X- 1 W 2dv 
                             12 - 8 

                 =167r2X- 1 v(g). 

4 Hence, v(M)<_v(g)<_64ir2X/5. D 

   COROLLARY 5.3. Let M be a compact oriented 4-dimensional manifold. I f M 
admits an Einstein metric with nonnegative sectional curvature, then z <_8X/15, 
and equality holds i f and only i f M has a flat metric. 
   PROOF. Let g E 1(M) be the Einstein metric with nonnegative curvature. 

Then by Propositions 1.4 and 5.2, ~v <_v(M)/242r2<_v(g)/242r2<_8X/15. 
   If the equality holds, then g is half conf ormally flat. So, we assume that 

*(Wm2,keinek) =Wmzjke~ A ek (resp. *(W mz,kej A ek) = -W mti,ke~ A ek). From the 
Weitzenbock formula, we have for any harmonic 2-form a, 

                                 R 
k km                                       iJ a mW i j                             ail; k k- 3 a + 

Hence, if furthermore *a=-a (resp. *a=+a), then 

                       _R (5.3) aij; k k = a12. 

   Now, suppose that g is not flat, i. e., R>0. Then, from (5.3), a=0 for 
any harmonic 2-form with *a=-a (resp. *a=a). Therefore, z=±2nd Betti 
number of M. The 1st Betti number is zero since the Ricci curvature is positive. 
So, z =X-2. It is easy to see that z =X-2 with I z I =8X/15 does not have 
integral solutions. This is a contradiction. Hence, g is flat. 

   REMARK. This proposition slightly improves Theorem 2 of [4], where 8/15 
is replaced by (2/3)1.5 (>8/15). 
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