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   Gao and Yau have constructed metrics of negative Ricci curvature on every 
compact 3-manifold ([1], [2], [3] ). They however used techniques peculiar to 
3-manifolds and it is hard to see how their method is applicable to general 
higher dimensional manifolds. In this paper we use simple triangulation argu-
ment to construct metrics of negative Ricci curvature on the complement of a 

point, which will be a partial evidence for affirmative answer to the question 
whether every manifold with dimension > 3 can admit a metric with negative 
Ricci curvature (Problem 24 of [4]). 

   THEOREM. For any connected closed manifold M of dimension >_2 and a 

point p o f M, M\ { p } admits a complete metric o f negative Ricci curvature. 

   Note that the conclusion is false if Ricci curvature is replaced by sectional 
curvature. For example, take M=RPT, n >_ 3. 

   § 1. Preliminaries 

   LEMMA. Let g and g be metrics on an n-manifold which are conf ormaly 
related as =e-tug for some smooth function u. Then, 

(1) Ric(g) <_ (n--2)O2u+(Du)g--Ric(g), 

where Hessian etc. in the right side are taken with respect to g. Assume further 
that n>_2, u=u(t) for some other function t and that u=(d/dt)2u<_0. Then, 

(2) Ric (g) <_ ill dt 2g±ic((n-2)a2t+(at)g)+Ric (g). 

   PROOF. Both inequalities follow immediately from the formula; Ric (g)= 

(n-2)02uH-(Du)g+(n-2)(du®du- du 2g)+Ric(g). 

   PROPOSITION 1. Let D be a d-dimensional disk in Rn and g a metric of Rn. 

Suppose n > d, n ? 2 and Ric (g) <0 in a neighborhood o f &D. Then, there exists 
another metric g such that g=g near aD and Ric (g)<0 in a neighborhood of D. 

   PROOF. Put D(r)={(x, 0)CRdxRn-d; lxi<r}CRn, where ixi=(1(x,)2)"2. 
We may assume D=D(3) and Ric (g)<0 on D\D(1).
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   Define vE C°°(Rn)=C°°(Rd X Rn-d) as v(x, y)= y j 2=~,_ ~(y,)2. Since dv=0 
on D, V2v 1 D is independent of the choice of the metric. The Hessian of v with 
respect to the Euclidean metric is >_ and *0. Therefore, V 2v 0 on D, and 
~v ? a > 0 on D for some constant a. 
   Let wEC°°(Rn) be a nonnegative function such that w(x, y)=0 if I x I 

and w(x, y)=b if ( x I <1, where b is a constant such that Ric (g)<abg on D. 
   Now put u(x, y)=-v(x, y)w(x, y) and g=e~2ug. Note that v=0 and dv=0 
on D, and we have from (1) of Lemma 

     Ric (g) _<_ -(n-2)wV2v-(wav)g+Ric (g) -awg-FRic (g) on D. 

Therefore, Ric (g)<0 on D\D(1) since Ric (g)<0 on D\D(1). Also Ric (g)<0 on 
D(1) since w=b on D(1). Thus g has negative Ricci curvature in a neightbor-
hood of D. Clearly g=g in a neighborhood of D\D(2). 

    REMARK. If the proposition is true in the case when n = d >_ 3, our theorem 
implies the existence of negatively Ricci curved metrics on any compact mani-
fold of dimension >_3. 

   PROPOSITION 2. Let N be a compact manifold with boundary aN and g a 
metric of N with Ric (g)<0. Then there is a u F C°°(N\aN) such that e-tug is 
a complete metric of N\a1V with negative Ricci curvature. 

   PROOF. Let 6NX [0, 1)CN be a collar neighborhood of 6N, and t : &NX [0, 1) 
-*[0, 1) be the projection. Let a>0, b>0 and 0<<1/2 s be constants such that 
a < I dt ~ 2, (n-2)V2t+(at)g<bg on 6NX [1/2, 1]CN and e <a/b. 
   Define u C°°(N\6N) as 

                 - _e2IF E ie1R8ds -`'if x~aNX(0, s)CN               u(x) - t(x) s 

                  0 otherwise. 

It is easy to see that u is smooth and e-u(x'>e/2t(x) if t(x)<s/2, which implies 
that e-2ug is a complete metric of N\aN. On the other hand, i =du/dt>0 and 
i <0 on &NX (0, ~). Hence, it follows from (2) of Lemma that 

      Rice-tug)<(aii~bu)g< 1 e2~Ee1~(t-E' - a +b g<0 on aNX(0, e). 
                        t t 

Therefore Ric (e-2ug)<0 on N\6N because Ric (e-2ug)= Ric(g)<0 on N\dNX [0, s). 

     2. Proof of Theorem 

   We fix a triangulation of M and denote its d-skeleton by Md ; M0CM1C 

 CM -M, n>_2. Obviously we have a metric go of M which has negative 
 curvature in a neighborhood of Mo. Suppose that d < n and gd _ 1 is a metric
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of Al with Ric(gd_1)<0 on Md_1. We apply Proposition 1 to each d-dimensional 

simplex to get a metric gd of M with Ric (gd)<0 on NTd. Thus, by induction, 

we get a metric g=gn_1 whose Ricci curvature is negative in a neighborhood 

U of .Mn_1. We may assume U=M\disjoint open n-balls. Removing further a 
neighborhood of curves each of which connects one of the removed balls with 

every other ball, we have NCU such that N=Man open n-ball. Applying 

Proposition 2 to (N, g I N), we have a complete metric of N\6N with negative 
Ricci curvature. Clearly, N\&N is diffeomorphic to M\a point, and the proof 

is completed. 
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