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                   By Osamu KOBAYASHI 

                          (Received Oct. 4, 1983) 

   A spacelike surface in the 3-dimensional Minkowski space L3=(R3, dx2+dy2 
-dz2) is said to be maximal if the mean curvature vanishes identically. Any 
spacelike surface in L3 can be represented locally as the graph {z=u(x, y)} of 
a smooth function u with u x + u y <1. Then the surface is maximal if u satisfies 
the equation : 

                  (1-ux)uyy~2Zlxuyuxy+(1-'uy)uxx=0 . 

This equation is elliptic when ux+uy<1, but the ellipticity degenerates when 
ux+uy tends to 1. Related to this fact, maximal surfaces often have singulari-
ties which are of different kinds from those appearing in minimal surfaces in 
the Euclidean space. For example, consider a surface S in L3 defined by 

  x(p, B)= 1 sinh ((k-~-1) ) cos ((k-F 1)B)-}- 1 sink ((k-1)p) cos ((k-1)B) ,          k~1 p k-1 

       = 1 sinh 2p cos 20 p, if k=1 , 2 

  y(p, B)= 11sinh ((k+1)p) sin ((k+1)0)- 1 1sinh ((k-1)p) sin ((k-1)0) ,             k-~- k-

       = 1 sinh 2p sin 20, if k=1 , 

2 

  z(p, 0)=- 2 sinh(kp)cos(k0), (=-2p, if k=0), p>0, 0<8<2w, 

k
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where k is a nonnegative integer. Then S is a maximal surface, and the origin 

(x, y, z)=(0, 0, 0), which corresponds to the limit p-~O, is an isolated singularity. 
It may be clear that this type of singularities never appear in minimal surfaces. 
Among such singularities of maximal surfaces, we shall consider in this paper 
especially those singularities that are similar to the above example for k =O, 
which will be called conelike singularities. 

   DEFINITION. Let S be a maximal surface in L3, and p=(xo, yo, zo) be a point 
of the closure of S in L3. Then p is called a conelike singularity of S if the 

following conditions are satisfied : 

   (i) In a neighbourhood of p, S is the graph of a smooth function u defined 
on Uv(xo, yo), where U is a neighbourhood of (xo, yo) in the (x, y)-plane; 

   (ii) On Uv(xa, y1,\ u <zo (or u >z0). By setting u(xo, yo)=zo, a is con-
tinuous on U ; 

    (iii) lim(x,~,~txu YJ)(ux±uy)=1. 

   It is known that every complete maximal surface in L3 is a plane, which is 
a great difference from minimal surfaces; there are numerous examples of com-

plete minimal surfaces in the Euclidean 3-space. So, we want to modify the 
notion of completeness as follows : Let S be a maximal surface in L3, and { p k } 
be the set of all conelike singularities of S. At each P k, we round out S as 
shown below.

Then we obtain a spacelike surface S'. The maximal surface S will be said to 
be complete if S' is complete in the usual sense (cf, the proof of Lemma 2.6). 

   The purpose of this paper is to show the following : 

   THEOREM. Let S be a complete maximal surface in V with at least one 
conelike singularity. Suppose that the Gauss map of S is 1:1. Then S is con-

gruent to the surface defined by / F-y2+asinh(z/a)=0, where a is a nonzero 
real constant. 

   REMARK. Without the assumption on the Gauss map, the result is not true. 
An example will be given in § 1.
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   § 1. Preliminaries. 

   Let H be a spacelike surface in L3 defined by x2 ; y2-z2=-1, z<0. Natu-
rally, H is considered as the target space of the Gauss map for spacelike sur-
faces in L3. H is conf ormal to the unit disk 4= {~ C I I l I <1} in the complex 
plane. Indeed, the following gives a conformal isomorphism between them : 

                          2Re~ 2Im~ _ 12                                             2 1-                    ICI ICI                                ICI 

Hereafter, through this identification, we regard 4 as the target , space of the 
Gauss map. 

   PROPOSITION 1.1 ([2]). Let S be a maximal surface in V and D (C4) the 
image of the Gauss map of S. Assume that the Gauss map is 1:1. Then there 
exists a holomorphic function f defined on D with no zeros in D such that S is 
represented as 

(1.2) (Re 1 f()(1±2), f (d~ D.      ̀~ 2 2 

(To simplify notation, we denote F(w)dw simply by \F)d.) <iY~Moreover the 
Gauss map is then the inverse of ~b : D--S. 

   REMARK. A surface given by (1.2) for a holomorphic function f is always 

a maximal surface, but the expression (1.2) sometimes represents a maximal 

surface whose Gauss map is not injective. For example, f()==1/(22-1) (C2-1) 

on D=4\ {±1/~/ 2 } is the case (see Figure 3).

Figure 3.



           cos (a-;--B) -sin (aH-B) 0\ 

(1.4) ~= sin (a ; B) cos (a+0) 0 

          0 0 1i 

where a=arg B=arg w and p=log 

   PROPOSITION 1.2. Let S be a max 
Then, the maximal surface ~(S) is rep; 

(1.5) ( )=Re l f(~)(1±2),^~        ~' 2 2 

where =4(D), and 

                     (~+w~ 

N 

   PROOF. Define a surface S in L3 

(1.7) ~~(~)=Re 1 d f()(1± 2),               ~ 2 d ~ 2 

where =~4(~)_w Then, if g                     1--w~ 

mental forms of S respectively, a dire 

           ~^ 1 d~ f 2 11--11212             4d~ 

and 

~                     d~2        h =Re (f4) 
             d~ ~ , 

where g and h are the first and sec 

Hence, by the fundamental theorem of 

the variable ;, (1.7) is written as
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   Next, we consider how the formula (1.2) changes by a transformation of L3. 

Let cP : L3->L3 be an isometry of L3 with P(0)=0. Such ~'s form a group 

denoted by 0(2, 1). 0(2, 1) is a Lie group with four connected components. 
Let Oo(2, 1) be the identity component of 0(2, 1). Then, E 0(2, 1) if and only 

if b is orientation preserving and ~(H)=H. Thus, using the identification (1. 1), 

   0(2, 1) induces a linear fractional transformation 1i4 of 4: 

                                 1-w~ 

for some E and w with s =1 and 1 w <1. Conversely, given a linear trans-
formation ~~ defined by (1.3), we get the isometry 'D of L3 by

cosh p 

0 

sinh p

0 

1 

0

sinh p 

0 

cosh p

p=log (1- w I)-log (1-F- w i 

P  a maximal surface given b 
 is represented as 

      f)(i), (-2-f() , 

2 s2(1_ I w 12)2 Ew+~ 

 (~+wC)4 --f +iC . 

 in L 3 by 

v2-l d 2 ~~ f ()d , d~ , D, 

N gin, if g and h denote the first and second funda-

 a direct calculation yields that 

-ICI2I2Id~ 2_ If i2 1--i~ 2 2-g 
4 

d~)d2)=Re(fd2)=h, 

and second fundamental forms of S respectively. 
~rem of surfaces, S and S are congruent. Using

   cos 

0 

y (1.2),

a sin a 0 

a cos a 0 , 

    0 1 

    E Oo(2,1). and 

N ~~D
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(1.8) ~(C)=Re (1(d)2 f (~)(1H-2),-1 d 2 f (Z)(1-C2), - d 2 f ()d,                                               d,     ~' 2 d~ 2 d~ d~ 

N From this expression, we can regard as the Gauss map of S. Since =&().                                                               ~
we see easily that S=~(S). Now the assertion follows immediately. D

   § 2. Proof of Theorem. 

   Let S be a maximal surface satisfying the assumption of Theorem, and 

p=(x0i yo, z0) a conelike singularity of S. By the definition of the conelike 
singularity, we have a continuous function u(x, y) defined on a neighbourhood 
U of (x0, y0) such that 

   (a) around p, S is the graph o u U\(xo, Yo); 
   (b) u(x0i y0)=z0 and u(x, y) <z0 for (x, y) E U\(xo, yo); 

   (c) lim(x,Y)-,(xo,yo)(ux+u~)=1. 

From (a), the normal vector of S is given by 

1 
                                    u, 1). 

Hence by (1, 1), : S-o4 denoting the Gauss map, we get 

                            -u 

(2.1) 2= 1-/1-ux y                         I 1+/1 -ux-u 2 

y 

   LEMMA 2.1. The image D (C4) of the Gauss map of S contains {~E4I ICI >o 

for some o <1. 
   PROOF. Take a small r0>0 such that {(x-x0)2+(y-y0)2<_ro} CU. For r<ro, 

set Cr= {(x, y, u(x, y)) I (x-x0)2+(y y0)2-r2} and Ar= {(x, y, u(x, y))14<(x-x0)2 

N +(y - yo)2 < r2} . Both Cr and Ar are contained in S. Let Cr (C4) be the Gauss-
ian image of Cr. Since the Gauss map of S is 1:1, Cr is a simple closed curve 

in 4. Ar0 denotes the outer part of Cr0 in 4. By (c) and (2.1), it is obvious 

N that the Gaussian image of Ar0 is contained in Ar0. Suppose that there is a 

N point ~o E Ar0 which is not in the Gaussian image of Ar0. Then, C0 lies in the 
outer part of Cr0, and hence ~0 must lie in the outer part of Cr for any r with 
0<r<r0. But, from (c) and (2.1), we have C C { I I > I ~o I } for sufficiently small 
s>O. This is a contradiction, and thus Ar0 coincides with the Gaussian image 
of Ar0, which shows the assertion. D 
   By Proposition 1.1, there is a holomorphic function f defined on D which has 

no zeros in D, and S is given by (1.2) using f. By the above argument, we see 

(2.2) lim,~,~1~b(~)=p .
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So, we need to observe the behavior of f near a4= { I I =1} . 

   LEMMA 2.2. f has a holomorphic extension to a neighbourhood of dJ in C, 

and then f(2 is real on ad. Moreover, f has no zeros on ad. 
   PROOF. From (1.2) and (2.2), we have 

(2.3) 

Hence, by the reflection principle, Re has a harmonic extension to a 

neighbourhood of ad. Therefore, f also has a holomorphic extension. Put 

~=e10, p+where p and o are real parameters, and we have 

            Re f (~gd~=Re f (2d(log ~) 

                     = (Ref (O2)dp-- (Im f (2)do . 

This, together with (2.3), shows that Im f (2=0 for ~Ead. That is, f(2 is 

real on ad. By the property (b) of conelike singularity, Re (f(gd)> ~~ -zo for 
any D with I I Hence, f(, the derivative of f (~gd~, cannot vanish 

1 at each EE ad. Therefore, f has no zeros on ad. 0 

   By the above lemma, it is easy to see that in a neighbourhood of ad, ~2f()                                                                 ~
can be expanded as 

(2.4) 2f()= ... +a~- +b+a~+ ... , 

where b is a nonzero real. 

   LEMMA 2.3. In (2.4), b2> I a 12 

   PROOF. First, recall the formulas : 

         a= 1 ~2 f(~)d~ and b= 

By Lemma 2.2, y2f() ~is real on ad, and may be assumed to be positive on ad. 

Hence, putting F(o)=(e2ie f(eis)/2rr)1i2, we have 

             a= 2~ei°F(o)2do and b= 2T F(o)2do . 
                         0 0 

Therefore, by the Schwarz inequality,         

l a I2= 2?t(ei0F(o))F(o)do 2c 2 r                                   I eiOF(o)I2do. 27rF(o)2do 
                       0 0 0 

               F(o)2do 2=b2. 

0
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Since F(6) is real valued and positive, the strict inequality holds. 
   Next, we make use of an isometry of L 3 to simplify the function f. Remark 
that Lemmas 2.1, 2.2 and hence 2.3 are valid for D, f in Proposition 1.2. 

   LEMMA 2.4. There is a E Oo(2, 1) such that , j()dC=0, where f is the 

function defined by (1.6). 

   PROOF. If a =0 in (2.4), then obviously f d=0, hence P=identity is the 

desired isometry. So we assume a ~zo. Consider a quadratic equation 22-2b2 
+ I a 12=0. By Lemma 2.3, the discriminant b2- a 1 2 is positive. Hence, we 
have two distinct real roots 2+ and L. Since 2+•L= I a12 and 2+ * L, 2+ or L, 
say L, satisfies the inequality L I < I a 1. We put w=L/d. Namely, w satisfies 

(2.5) awe-lbw+d=0 

and 

(2.6) wj<1. 

It follows from (2.4) that the left hand side of (2.5) is exactly the coefficients 
of -1 in the Laurent expansion of (1--~ )2 f (~). Therefore 

(2.1) (1-~~)2f (~)d~=0 . 

Now, let ~a(~)=(~--w)/(1-w~), and 0 be as defined by (1.4). Then, from (1.6), 
we have 

(2.8) ?(()2f ( ~)= d~ (~)=-d~ 1--lwl2 f(~), 
where =0a(~). Hence by (2.7) and (2.8), we get 

            f()d= ~~f(~)d~ 
                                                            b,-

                            1-- - 2 (1-~b)2f(~)d~=0 .                            1- I w l =1 

   By the above lemma and Proposition 1.2, we may assume without loss of 
generality that 

(2.9) f (~)d~=0 . 

   From (2.2), S has only one conelike singularity. Hence, by the completeness 
of S, it is easy to see that . S must be represented globally as the graph of a 
unction u(x, y) defined on R2\(xo, yo). That is, S is homeomorphic to 51 X R, 

hence, so is D. Thus, (2.9) implies that the following is a well-defined holomor-
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phic function on DUa4: 

(2.10) F : DUad --~ C ; i > ~f (w)dw . 

   LEMMA 2.5. The image r o f a4 by F is a regular simple closed curve in C. 

 PROOF. Put T(O)=F(ee), and we have - d -i(O)=if(e10)e'°. By Lemma 2.2, 
                           d8 

f(etio)e2tie is real, hence, the Frenet frame of r is given by e1(8)=ie-ie, 
e2(B)=-e-i°. Then the curvature of r is easily computed and ic(B)= 

-1/ f (e10) I <0 . On the other hand, the rotation index of r is (1/2r) (6) 
0 

d 

  d B r(O) d B = -1. Therefore, r is a regular simple closed curve. 0 

   LEMMA 2.6. Let c : [0, 1]-~C be a smooth curve such that c(0) E r and c(t) 
lies in the outer region of r in C for t>0. Then, along c, the inverse function 
o f F can be defined. 
   PROOF. From the proof of Lemma 2.5, F is invertible in a neighbourhood 
of a4, and an inward normal vector of a4 is carried to an outward normal vector 
of r by dF. Hence, for a sufficiently small t>0, F-1 can be defined along 
c I [0, t). If F-1 is defined on c I [0, to], then ~o=F-1(c(to))ED and f (~o)~O. 
Therefore, by the inverse function theorem, F-1 can be extended to cI [0, t0+E) 
for a sufficiently small E > o. Hence, T = {t E [0, 1] I F-1 can be defined along 
c [0, t]} is a nonempty open set in [0, 1]. 

   Next, suppose that F-1 is defined on c I [0, t,). From (1.2), the first funda-

mental form of S is I f 1211 - 112 21 d~ 2. That is, s is isometric to (D, I f 12 
             4 4 

 1- 112121 d~ 12 . Let d be the distance function defined by the Riemannian metric. 

Then, for s,, s2 [0, t1), 

              d(~1, ~2)~ X21 I f I 11- I ~ I 2 I l dl 
                                ~1 2 

                     1 ~2 f d~ = 1 L(c I [s, , s2])                           2 ~1 2 

where ~1=F-1(c(si)), i=1, 2, and L(c I [s,, s2]) is the Euclidean length of c I [sl, s2] 
in C. Hence, for any sequence {sn} C[0, t1) with limsn=tli {F-1(c(sn))} is a 

Cauchy sequence of (D, d). On the other hand, there is a a > 0 such that 

 F-1(c(s))I <1--o for any s sufficiently close to tl because c(t2) r and F(ad)=r. 
That is, F-1(c(sn)) keeps away from the conelike singularity for large n. Hence, 

by the completeness of S, {F-1(c(s~))} converges to some ~, in D, which shows 

that F-1 can be extended to c I [0, t1]. Thus T is closed, hence T = [0, 1]. C] 

   LEMMA 2.7. There is a ~o E 4 such that D=4\{0}, ~and f is meromorphic
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on 4. 
   PROOF. Let Dr be the outer part of r in C. From Lemmas 2.5 and 2.6, 
F-1 is a well-defined holomorphic function on D1. Since F-1(D7)CDC4, c is a 
removable singularity of F-1. Set ~0=F(c)4. Then it is easy to see that 
D1 u {oo} and 4 are biholomorphic. Hence, F has a meromorphic extension to 4 
with a pole at ~o. Consequently, D=4 \{}, and f is meromorphic on 4. LII 

   It follows from Lemmas 2.2, 2.7 and the argument principle that f has a 

pole of order 2 at ~o. Moreover by the reflection principle, f has a meromorphic 
extension to CU {co} and satisfies f (~)=f (1/). Hence, f has a zero of order 
4 at co and poles of order 2 at ~o and 1/Cp. Therefore, f must be of the form ; 

(2.11) f (~)=a/(1-b/b~)2(bOb-1)2 for some nonzero constant a, if ~~t0; or 

(2.12) f (C)=a~-2 for some nonzero real constant a, if =0. 

However, in the case of (2.11), a direct calculation shows f (~)d t 0, which 

contradicts (2.9). Hence, ~0=0, and f (~) =a~-2, a R \{0} . Then by Proposition 
1.1, it is immediately seen that our maximal surface S is just the maximal sur-
face defined by x2+y2+asinh(z/a)=0, which completes the proof of Theorem. 
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