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Abstract. We derive higher order variational formulas for the Yamabe functional,
and give an example of infinitesimal deformation of a solution of the Yamabe problem
which does not come from conformal vector field.

The Yamabe theorem, which was proved by Schoen [7], states that for any
conformal class on a compact cnnected manifold there exists a metric of constant
scalar curvature which minimizes the Yamabe functional (see §1) defined on the
conformal class. In this paper, we are interested in the space of solutions of the
Yamabe problem, that is, the space of minimizers for the Yamabe functional. The
conformal transformation group acts naturally on this space, and a naive question
will be whether this action is transitive (up to homothety) or not. We shall show new
necessary conditions for a vector field to be conformal, and give examples which
negatively answer the question at the infinitesimal level.

1. The space of Yamabe metrics. Let M be a compact connected n-manifold,
and C a conformal class of Riemannian metrics of M, i.e., C={e*g; ue C*(M)} for

any fixed metric ge C. Throughout this paper, we assume that the dimension 7 is at
least 3. The Yamabe functional I: C— R is defined as

(n—2)/n
I(g)=f Rgdvg/<J dvg> for geC,
M M

where R, is the scalar curvature function of a metric ge C. We set
S(M, C)={geC; I(g)=uM, C)},
where
u(M, C)=inf{l(g); geC} .

We call a metric in S(M, C) a solution of the Yamabe problem, or simply a Yamabe
metric. Since a Yamabe metric is a minimizer of /: C— R, variational formulas show
the following properties for ge S(M, C):

(1.1) R,=const.
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(1.2) A(=A)ZRy/(n—1),

where 4,(—A)) is the first nonzero (positive) eigenvalue of the Laplacian. Moreover,
it is also known that for ge S(M, C),

(1.3) (M, C)=R, Vol(M, g)*" < n(n—1)Vol(S"(1))*" ,

where S"(1) is the Euclidean n-sphere of radius 1 (cf. [1]).
Since S(M, C) is closed under multiplication by positive constants, it is convenient
to consider

S1(M, C)={geS(M, C); Vol(M, g)=1}

instead of S(M, C). S,;(M, C) is not empty because of the Yamabe theorem.

Let Conf(M, C) denote the conformal transformation group of (M, C). It is
obvious that ¢,geS;(M,C) if peConf(M,C) and geS;(M,C). In this way,
Conf(M, C) acts on S,(M, C). The stabilizer of this action at geS;(M, C) is
Isom(M, g), the isometry group of (M, g). Hence for each ge S,(M, C) we have an
inclusion map

i,: Conf(M, C)/Isom(M, g)—S,(M, C) .

This trivial observation gives us examples of (M, C) for which a solution of the
Yamabe problem is not unique.

ProposITION 1.1 (cf. [6]). Let (M, g,), i=1, 2, be compact connected Riemannian
manifolds with constant scalar curvature. Assume that dim M, =1, R, =20, R,>0 and
that Isom(M,;, g,) acts transitively on M; for i=1,2. Let C, be the conformal class
on M=M,x M, that contains the metric r*g,+g,. Then for sufficiently large r,
Conf(M, C,) is strictly larger than Isom(M, g), where ge S,(M, C,).

PROOF. Suppose on the contrary that Conf(M, C,)=Isom(M, g). Then
Isom(M, g)=Conf(M, C,) > Isom(M, r’g, +g,) > Isom(M,, g,) x [som(M,, g,) .

Therefore g is Isom(M,, g;,)-invariant, i=1, 2. In view of the transitivity of Isom(M,, g,)-
actions, this implies that g is homothetic to r2g, +¢,. Hence the metric r*g, +g, must
be a Yamabe metric. On the other hand, it is easy to see that the metric rg, +g¢,
violates the conditions (1.2) and/or (1.3) for sufficiently large r, though its scalar
curvature is constant, a contradiction.

REMARK. This result is an extension of [2]. See also [4].

We formulate our question as follows:
Q.1. Is i, bijective?
Since a Yamabe metric has constant scalar curvature, we may pose the following
more general question:



YAMABE METRICS AND CONFORMAL TRANSFORMATIONS 253

Q.2. Forg,,g,€C such that R, =R,,=const and Vol(M, g,)=Vol(M, g,), is there a
conformal transformation ¢ € Conf(M, C) such that p*g, =g,?
For each ge C, we have a bijection

C®(M)—C; uwreg,
and can regard S,(M, C) as a subset of C*(M):
S\(M, C)={ue C*(M); R,,=mM,C), Vol(M, e**g)=1} .

Differentiating the equations, we formally compute the tangent space, denoted by
5;(M, C),, to S;(M, C) at ge §;(M, C) as

1
s1(M, C)gg{ueC‘”(M); —Aju= leu, J uduyz()},
n— M

As we shall see later, this formal tangent space can differ from the actual tangent
space. Let conf(M, C) and isom(M, g) denote the Lie algebras of Conf(M, C) and
Isom(M, g), respectively. We have the following identification:

1
conf(M, C)/isom(M, g)= {—~divg X; Xeconf(M, C)}c C*(M).
n

With these identifications we see that the differential (i), of i, is the inclusion map:
(i) : conf(M, C)/isom(M, g) = s,(M, C),

where ge S;(M, C). This inclusion is also a consequence of the well-known formula

—A,div, X=(R,/(n—1)) div, X for a conformal vector field X and ge C with constant

scalar curvature.
In this setting, the following correspond to Q.1 and Q.2, respectively:

Q.1". Is (i), bijective for ge S;(M, C)?
Q.2". If g has constant scalar curvature and ue C*(M) satisfies
1

n—

—Aju= Ryu,

then is there a conformal vector field whose divergence is equal to u ?
In §3 we shall answer these two questions negatively.
2. Conformal vector fields and higher order variations of the Yamabe functional.

THEOREM 2.1. Let (M, g) be a compact Riemannian manifold of dimension n=3
with constant scalar curvature R,. Let X be a conformal vector field and u=div, X. Then,

1 n+2
i Wdv,=0 and <A +— R >v=—--~—~——~—-Ru2
@ JM g T (n—1n-2) *
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is solvable for v,
.. n
(i) 3fMu2vdvg:;?2 utdv,

where v is as in (1).

ProOOF. First we note that all are trivial when R, <0, because div, X=0 if R, <0.
Secondly, if some solution v of the equation in (i) satisfies the equality in (ii), then any
other solution, say v’, satisfies the equality, because then

J w(—v)dv,= — (n=Nn—2) ((Ag + L&,)v)(v —v')dv,
M n+2)R, I n—1

- _(li(”‘ﬂ U<A9+_1_Rg>(v—v’)dvg=0 .
(n+2)R, Im n—1

Let {¢,} be the one-parameter transformation group generated by X. Since X is a
conformal vector field, g,:=¢}g is conformal to g. Define w,e C*(M) by

2.1 g =wn"D4g - w,>0.

Then u=div, X=(2n/(n—2))w,, where - stands for d/dt. The scalar curvature R, of g,
is written as

2.2) R,=wL,w,,
where g=(n+2)/(n—2) and L,= —4((n—1)/(n—2))A,+ R,. Hence we have
(23) Rz = Wt_q_ 1(W1Lg - q(Lng))wt .

Differentiating this repeatedly, we get
. m—1 _ 1 _ 1
(2.4) WHR)™ D =(w, Ly, —q(Lw))w™ + 3 {( " )—( " )q}WS'"""ngﬁ’" .
k=1 m-— k k

Since R, is constant, R,=¢@*R, is a constant independent of ¢. Thus the left hand side
of (2.4) is identically equal to 0. So we expand (2.4) explicitly at t=0 for m=1, 2 and
3, respectively as follows:

(2.5) Ppo=0,
26) P,o=4q(g—DR,#3 .
@7 P,io=q(g— DR, (BWoie +(g—2)#3),

where P,=L,—qR,= —4((n—1)/(n—2))(4,+ R,/(n—1)). Thus we have

(2.8) q(q—l)RgJ wgdvg=f woPgwodvg=J WoPyWodv, =0,
M M

M
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and

2.9  q(g-DR, J (3w0wo+(q—2)w3)dug=j o P, iodn, = j WoPWodu, =0 .
M M

M

Recall that u=(2n/(n—2))Ww,, and we see that our assertions follow from (2.6), (2.8)
and (2.9) by putting v=(2n/(n—2))*W,.

The above result is related to higher order variational formulas for the Yamabe
functional. If the Yamabe functional /: C—R has a relative minimum at g, then the
first and the second variational formulas say that the metric g has the properties (1.1)
and (1.2). As for the third and the fourth variational formulas we have the following:

THEOREM 2.2. Suppose g has positive constant scalar curvature and that the
Yamabe functional I: C— R has a relative minimum at g. Then,

() If uy, u,eKer(A,+R,/(n—1)), then (puiu,dv,=0. In particular, for any
ueKer(A,+ Ry/(n—1)),

1
<Ag+_Rg)v= _;n__i_Rguz
n—1 (n—1)(n-2)

is solvable for v,
(ii) For u, v as above, the inequality

—6
3J‘ uzvdvggn j u*dv,
M n—2J)u

holds.

PrROOF. Let u be an arbitrary function satisfying

1
(2.10) (Ag + *—Rg)u =0.
n—1
We set
1 4/(n—2)
.11 g,=<l+tu+?tzv> g,
where v is any function such that
2.12) J vdv, = —qf uldv, ,
M M
where g=(n+2)/(n—2). Then it is straightforward to see that
d \? d d\?
iVOl(M, g, =<"‘> Vol(M, g,) =—J Rdv, =<_> J R.dv, =0,
dr =0 \dt =0 Al Jy =0 \dt) Ju t=0
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where R, and dv, are, respectively, the scalar curvature and the volume element of the
metric g,. Then it is easy to see that

(2.13) (—d )31( ) —(—d )3<< J Rd >V (M )“”‘”")
’ a) im0 \ d M o JVOUM 6o
=<__d >3<j R,dv,)
dt M

= —2R,q(q—1)Vol(M, g)_‘”_z’/”j wdy, .
M

t=0

3
Vol(, g) ="+ f &d%(%) (Vol(M, g)~*~2")
M

t=0 t=0

Since 7 takes a relative minimum at g, we have

2.14) J wdv,=0.
M

This holds for any ue Ker(A,+ R,/(n—1)). Hence for any u,, u, e Ker(A,+ R,/(n—1)),
we have

1
(2.15) f wluydv,=— f ((uy +uy)* — (uy —uy)* —2u3)dv, =0,
M 6 Ju

which implies u?> e Im(A,+ R,/(n—1)) for any ue Ker(A,+ R,/(n—1)). Hence the equa-
tion

1 _ n+2 2
(2.16) <Ag + n—~—1Rg>v = ———————(n v 2)Ryu

is solvable for v. It is easy to see that this v also satisfies the condition (2.12). So we
assume that the v in (2.11) satisfies the equation (2.16). Then we easily get

d 4
2.17) < 1 ) K(g,)

— =—4Rq(q—1)Vol(M, g)~ "~ 2”"[ Gutv+(g—2)u*)dv, .
M

t=0

(a//dt)“l(g,)],=0 is nonnegative by our assumption, and we get the desired inequality.
3. Examples. By S"(r) we denote the n-dimensional Euclidean sphere of radius
r. We suppose (M, 9)=S?(\/ p) x S" ?(/ n—p—1). Let
M=S8"(/p)x 8" °(/n—p—1)Gs R x R~ P*!

be the canonical isometric embedding, and ue C*(M) be any one of the first p+1
coordinate functions of R?*! x R*~?*1 restricted to M. Then,

(Ag+—]—1Rg>u=(Ag+ Du=0.
n—
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Moreover, u satisfies the equation

w+pldul>=p.
Hence putting
= M_ u2-2),
P+2)(n-2)
we have
(Ag + LR_,,)u "2
n—1 n—1)(n-2)

and

widy, =2 Vol(M, g) .
JVM op+l (M, ¢)

It is also easy to see that

J u“dvy:—}-p—— wdo,=— P Vol(M, g).
M P+3 Ju @+DHP+3)

2

Consequently, we get

J (3u20— n—6 u4>duy= - 24p*(n—p) Vol(M, g) .
M n— (p+D(p+2)(p+3)n—-2)

This is negative if n=3 and 0 < p <n. Therefore it follows from Theorem 2.1 that the
function u cannot be the divergence of any conformal vector field. Thus the answer
to Q.2’ is negative.

If n=3 and p=1, then it can be shown, by using a theorem of Gidas, Ni and
Nirenberg [3], that the metric g is a solution of the Yamabe problem (cf. [5], [8]).
Hence in this case (M, g) is a counterexample to Q.1". In this case, however, i, is
bijective (cf. [S], [8]), and the question Q.1 and Q.2 remain open.
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