Title	Apollonius Points and Anharmonic Ratios
Author(s)	Kobayashi, Osamu
Citation	Tokyo Journal of Mathematics. 2007, 30(1), p. $117-119$
Version Type	VoR
URL	https://hdl.handle.net/11094/26351
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. Library.osaka-u.ac.jp/

Apollonius Points and Anharmonic Ratios

Osamu KOBAYASHI

Kumamoto University
(Communicated by Y. Maeda)

Abstract

We give a characterization of Möbius transformation by use of Apollonius points introduced by Haruki and Rassias [2]. Our result is stronger than theirs.

1. Introduction

In their paper [2], Haruki and Rassias introduced a concept of Apollonius points for three distinct points z_{1}, z_{2} and z_{3} in the complex plane. $z \in \mathbf{C}$ is called an Apollonius point of z_{1}, z_{2}, z_{3} if

$$
\left|z_{1}-z_{2}\right| \cdot\left|z_{3}-z\right|=\left|z_{2}-z_{3}\right| \cdot\left|z_{1}-z\right|=\left|z_{3}-z_{1}\right| \cdot\left|z_{2}-z\right| .
$$

It is easy to see that this equation is equivalent to

$$
\begin{equation*}
\left[z_{1}, z_{2} ; z_{3}, z\right]=\frac{1 \pm \sqrt{3} i}{2} \tag{1.1}
\end{equation*}
$$

where the left hand side is the anharmonic ratio of z_{1}, z_{2}, z_{3} and z. Namely, by definition,

$$
\left[z_{1}, z_{2} ; z_{3}, z\right]=\frac{z_{1}-z_{3}}{z_{3}-z_{2}} \cdot \frac{z_{2}-z}{z-z_{1}}
$$

Thus there are generally two Apollonius points for z_{1}, z_{2} and z_{3}; one inside the circle through z_{1}, z_{2} and z_{3}, and the other outside the circle.

Haruki and Rassias have proved that a complex analytic univalent function $w=f(z)$ which preserves Apollonius points must be a Möbius transformation. Here we say that f preserves Apollonius points if $f(z)$ is an Apollonius point of $f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right)$ whenever z is an Apollonius point of z_{1}, z_{2}, z_{3}. We extend this result and will prove the following.

Theorem. Let $U \subset \mathbf{C}$ be a domain and $f: U \rightarrow \mathbf{C}$ be a C^{1}-mapping (may not necessarily be complex analytic). If f preserves Apollonius points, then f is a Möbius transformation or its conjugate.

2. Functions which preserve an anharmonic ratio

In this section we will prove the following theorem from which together with (1.1) Theorem in Introduction follows immediately.

THEOREM 2.1. Let $\lambda \in \mathbf{C} \backslash \mathbf{R}$ be not a real number. Suppose $f: U \rightarrow \mathbf{C}$ is a C^{1} mapping such that $\left[f\left(z_{1}\right), f\left(z_{2}\right) ; f\left(z_{3}\right), f\left(z_{4}\right)\right]=\lambda$ if $\left[z_{1}, z_{2} ; z_{3}, z_{4}\right]=\lambda$. Then f is a Möbius transformation.

The proof of Theorem 2.1 is divided into two steps. One is the following.
Proposition 2.2. Let $\lambda \in \mathbf{C} \backslash \mathbf{R}$ be not a real number. Suppose $f: U \rightarrow \mathbf{C}$ is a C^{1}-mapping such that $\left[f\left(z_{1}\right), f\left(z_{2}\right) ; f\left(z_{3}\right), f\left(z_{4}\right)\right]=\lambda$ if $\left[z_{1}, z_{2} ; z_{3}, z_{4}\right]=\lambda$. Then f is complex analytic.

The latter half is the following.
Proposition 2.3. Suppose $\lambda \in \mathbf{C} \backslash\{0,1\}$, and $f: U \rightarrow \mathbf{C}$ is a complex analytic function such that $\left[f\left(z_{1}\right), f\left(z_{2}\right) ; f\left(z_{3}\right), f\left(z_{4}\right)\right]=\lambda$ if $\left[z_{1}, z_{2} ; z_{3}, z_{4}\right]=\lambda$. Then f is a Möbius transformation.

Proof of Proposition 2.2. Choose $a, b, c, d \in \mathbf{C}$ such that $a, b, c \in \mathbf{R}$ and $[a, b ; c, d]=\lambda$. The condition that λ is not real means that d is not real. Let $z \in U$ and $t \in \mathbf{C} \backslash\{0\}$ be small enough so that $z+t a, z+t b, z+t c, z+t d \in U$. We remark that $[z+t a, z+t b ; z+t c, z+t d]=\lambda$. From the Taylor development,

$$
f(z+t a)=f(z)+\partial_{z} f(z) t a+\bar{\partial}_{z} f(z) \bar{t} \bar{a}+o(t)
$$

Hence we have

$$
\begin{aligned}
& {[f(z+t a), f(z+t b) ; f(z+t c), f(z+t d)]} \\
& \qquad=\frac{\partial_{z} f(z) t(a-c)+\bar{\partial}_{z} f(z) \bar{t}(\bar{a}-\bar{c})}{\partial_{z} f(z) t(c-b)+\bar{\partial}_{z} f(z) \bar{t}(\bar{c}-\bar{b})} \cdot \frac{\partial_{z} f(z) t(b-d)+\bar{\partial}_{z} f(z) \bar{t}(\bar{b}-\bar{d})}{\partial_{z} f(z) t(d-a)+\bar{\partial}_{z} f(z) \bar{t}(\bar{d}-\bar{a})}+o(t) .
\end{aligned}
$$

Since a, b and c are real, we obtain

$$
\begin{aligned}
& {[f(z+t a), f(z+t b) ; f(z+t c), f(z+t d)]} \\
& \quad=\frac{\left(\partial_{z} f(z) t+\bar{\partial}_{z} f(z) \bar{t}\right)(a-c)}{\left(\partial_{z} f(z) t+\bar{\partial}_{z} f(z) \bar{t}\right)(c-b)} \cdot \frac{\left(\partial_{z} f(z) t+\bar{\partial}_{z} f(z) \bar{t}\right) b-\left(\partial_{z} f(z) t d+\bar{\partial}_{z} f(z) \bar{t} \bar{d}\right)}{\left(\partial_{z} f(z) t d+\bar{\partial}_{z} f(z) \bar{t} \bar{d}\right)-\left(\partial_{z} f(z) t+\bar{\partial}_{z} f(z) \bar{t}\right) a}+o(t) \\
& \quad=\left[a, b ; c, \frac{\partial_{z} f(z) t d+\bar{\partial}_{z} f(z) \bar{t} \bar{d}}{\partial_{z} f(z) t+\bar{\partial}_{z} f(z) \bar{t}}\right]+o(t) .
\end{aligned}
$$

From the assumption we see that the first term must converge as t goes to 0 and hence be equal to $\lambda=[a, b ; c, d]$. That is, we have

$$
\frac{\partial_{z} f(z) t d+\bar{\partial}_{z} f(z) \bar{t} \bar{d}}{\partial_{z} f(z) t+\bar{\partial}_{z} f(z) \bar{t}}=d
$$

This implies $\bar{\partial}_{z} f(z)=0$ because $d \neq \bar{d}$. Thus f satisfies the Cauchy-Riemann equation.
Proof of Proposition 2.3. Choose $a, b, c, d \in \mathbf{C}$ such that $[a, b ; c, d]=\lambda$. The condition $\lambda \neq 1$ implies $a \neq b$ and $c \neq d$. The formula (11) of Ahlfors [1] says that for a complex analytic function f

$$
\begin{aligned}
& {[f(z+t a), f(z+t b) ; f(z+t c), f(z+t d)]} \\
& \quad=[a, b ; c, d]\left(1+\frac{1}{6}(a-b)(c-d) S f(z) t^{2}+o\left(t^{2}\right)\right),
\end{aligned}
$$

where $S f$ is the Schwarzian derivative of f defined as

$$
S f=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}
$$

Therefore $[f(z+t a), f(z+t b) ; f(z+t c), f(z+t d)]=\lambda$ yields $S f(z)=0$. This implies that f is a linear fractional function.

References

[1] Ahlfors, L. V., Cross-ratios and Schwarzian derivatives in \mathbf{R}^{n}, Complex Analysis (J. Hersch and A. Huber, eds.), articles dedicated to Albert Pfluger on the occasion of his 80th birthday, Birkhäuser, 1988, 1-15.
[2] Haruki, H. and Rassias, T. M., A New Characteristic of Möbius Transformations by Use of Apollonius Points of Triangles, J. Math. Anal. Appl. 197 (1996), 14-22.

Present Address:
Department of Mathematics,
Kumamoto University,
Kumamoto, 860-8555 Japan.
e-mail: o-kbysh@kumamoto-u.ac.jp

