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OSAKA UNIVERSITY

Abstract

Graduate School of Engineering

Department of Adaptive Machine Systems

Doctor of Philosophy

by Rawichote Chalodhorn

This dissertation provides the first demonstration that a humanoid robot can learn to

perform human dynamic motion such as walking directly by imitating a human gait ob-

tained from motion capture data without any prior information of its dynamics model.

Programming a humanoid robot to perform an action that takes into account the robot’s

complex dynamics is a challenging problem. Traditional approaches typically require

highly accurate prior knowledge of the robot’s dynamics and environment in order to

devise complex (and often brittle) control algorithms for generating a stable dynamic

motion. Training using human motion capture is an intuitive and flexible approach to

programming a robot but direct usage of mocap data usually results in dynamically un-

stable motion. Furthermore, optimization using mocap data in the humanoid full-body

joint-space is typically intractable. This dissertation purposes a new model-free ap-

proach to tractable imitation-based learning in humanoids. Kinematic information from

human motion capture is represented in a low dimensional subspace. Motor commands

in this low-dimensional space are mapped to sensory feedback to learn a predictive dy-

namic model. This model is used within an optimization framework to estimate optimal

motor commands that satisfy the initial kinematic constraints as best as possible while

at the same time generating dynamically stable motion. The viability of this approach is

demonstrated by providing examples of dynamically stable walking learned from motion

capture data using both a simulator and a real humanoid robot.

http://www.osaka-u.ac.jp/eng/
http://www.eng.osaka-u.ac.jp/en/index.html
http://www.ams.eng.osaka-u.ac.jp/home_eng.htm
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Chapter 1

Introduction

Imitation is an important learning mechanism in many biological systems including hu-

mans [1]. Learning through imitation is a powerful and versatile method for acquiring

new behaviors. In humans, a wide range of behaviors, from styles of social interaction to

tool use, are passed from one generation to another through imitative learning. Unlike

trial-and-error-based learning methods such as reinforcement learning (RL) [2], imita-

tion is a allows fast learning. Learning by imitation is learning from demonstrations.

Solutions of the learning problem were already shown to the learning agent. Thus for

imitation learning, the learning agent only has to search for the optimal solution within a

small search space. The potential for rapid behavior acquisition through demonstration

has made imitation learning an increasingly attractive alternative to manually program-

ming robots. It is straightforward to recover kinematic information from human motion

using, for example, motion capture, but imitating the motion with stable robot dynam-

ics is a much harder problem. Because, not only the kinematic problem is inherited in

imitating dynamically stable motion, but imitation of dynamically stable motion also

involved with deriving appropriate action commands based on dynamic interaction be-

tween the robot and its environment. Sensory feedback data also must be taken into

account for solving the dynamic problem.

Traditional model-based approaches based on zero-moment point (ZMP) [3–5] or the

inverted pendulum model [6, 7] require a highly accurate model of robot dynamics and

the environment in order to achieve a stable walking gait. Learning-based approaches

such as RL are more flexible and can adapt to environmental change but such methods

are typically not directly applicable to humanoid robots due to the curse of dimension-

ality problem engendered by the high dimensionality of the full-body joint space of the

robot. Morimoto et al. [8] demonstrated that stepping and walking policies could be

improved by using RL method on the extracted feature space by using kernel dimension

1



Chapter 1. Introduction 2

reduction (KDR). Their result is shown in a dynamic simulator. This work is a fruitful

result of studying nonlinear dynamics of passive dynamic walking mechanisms [9–11]. In

their work, the nominal stepping and walking controller are provided, and their learning

system improves the performances of these controllers. Our work uses less assumptions.

An assumption of a specific type of nonlinear dynamical system is not employed in the

framework in this dissertation like in [8]. Only Markovian causal relationship of state

and action is assumed. The motion imitation framework in this dissertation is designed

for learning general human motion from demonstrations. It can be used for learning

different gaits for different tasks without redesign the algorithm.

The approach in this dissertation builds on several previous approaches to humanoid mo-

tion generation and imitation. Tatani and Nakamura [12] first applied non-linear prin-

cipal components analysis (NLPCA) [13] to human and humanoid robot motion data.

The work shows that the motions can be kinematically reproduced from low-dimensional

data. The Gaussian Process Dynamical Models (GPDM) by Wang et al. [14], is a di-

mensionality reduction method for modeling high-dimensional sequential data. GPDM

can be analogized to Gaussian process latent variable models (GPLVM) when temporal

sequence of data is taken into account. In this work, a temporal sequence of human

walking data motion was modeled and reproduced without prior information. Dynamic

modeling in GPDM contexts is modeling of temporal sequence of a data pattern. The

word dynamic in contexts of GPDM does not have the same meaning as dynamic in

robotics, which involving with properties that cause interaction between the robot and

its environment such as force, torque, mass and moment of inertia. The word dynamic

in contexts of GPDM is dynamic in computer science aspect, which refers to sequential

data, as opposed to the word static in computer science aspect which refers to concurrent

data. The resulted walking gait of GPDM in this work was reproduced kinematically

in robotics aspect. Low-dimensional data of walking postures in GPDM latent space

do not interact with environment. Our motion learning framework in this paper, learns

a dynamic model of interaction between the robot and its environment through causal

relationship of sensory feedback and low-dimensional posture commands.

The idea of using imitation to train robots also has been explored by a number of re-

searchers. In 1994 Demiris and Hayes [15] introduced the concept of imitative learning by

demonstrating a wheeled mobile robot that learned to solve a maze problem by imitating

another homologous robot. In 1999 Billard [16] showed that imitation is a mechanism

that allows the robot imitator to share a similar set of proprio- and exteroceptions with

teacher. Ijspeert et al. [17] designed a nonlinear dynamical system to imitate trajecto-

ries of joints and end-effectors of a human teacher. In this work, the robot learned and

performed tennis swing motions by imitation. The resulted motions shows robust arm

motion against dynamic perturbation. The mimesis theory of [18] is based on action
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acquisition and action symbol generation but does not address dynamics compensation

for real-time biped locomotion.

1.1 Human motion imitation framework

Mocap

Dimension 
Reduction

Robot
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e
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a
ti
c
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Predictive
Model

Inverse 
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High 
dimensional 
data Low dimensional 

data Low dimensional 
data

High 
dimensional 
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dimensional 
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Predicted 
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Robot

Figure 1.1: A framework for learning human behavior by imitation through sensory-
motor mapping in reduced dimensional spaces.

In this dissertation, an approach to achieving stable gait acquisition in humanoid robots

via imitation is proposes. The framework of the proposing method is shown in Figure

1.1. First, a motion capture system transforms Cartesian position of markers attached

to the human body to joint angles based on kinematic relationships between the human

and robot bodies. Then, linear PCA as dimensionality reduction to represent posture

information in a compact low-dimensional subspace is employed. Optimization of whole-

body robot dynamics to match human motion is performed in the low dimensional sub-

spaces. In particular, sensory feedback data are recorded from the robot during motion

and a causal relationship between actions in the low dimensional feature space and the

expected sensory feedback is learned. This learned sensory-motor mapping allows hu-

manoid motion dynamics to be optimized. An inverse mapping from the reduced space

back to the original joint space is then used to generate optimized motion on the robot.

Several results demonstrating that the proposed approach allows a humanoid robot to

learn to walk based solely on human motion capture without the need for a detailed

physical model of the robot are presented in this dissertation.
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1.2 Dissertation outlines

Chapter 2 is a preliminary study of low-dimensional humanoid motion data, which is the

motivation for the human motion learning framework in this dissertation. The sequence

from a 25 degree-of-freedom humanoid robot performing a ball tracking task is reduced

to its intrinsic dimensionality by nonlinear principal component analysis. The study

demonstrates how a sequence of low-dimensional motion data can be automatically

segmented into a set of circular patterns. Each circular pattern is correspondent with

basic behavior in the motion sequence. Within the study, all of the segmented motion

can be reproduced kinematically. A question was arisen at this point that is it possible

to reproduce a dynamically stable motion from these segmented patterns. If each of

basic motion such as walking straight, turning and sidestepping can be reproduced

dynamically, it could be used as a high-level action commands. These action commands

can be cooperated with visual information to learn a complex behavior such as ball

following by a learning algorithm such as reinforcement learning. Though, a motion

sequence of a complex behavior was successfully automatically segmented in the low-

dimensional subspaces by using NLPCA and circular constrained NLPCA (CNLPCA)

[19] cooperatively, pros and cons of algorithms that were implemented in the studying

were found. The advantages were carried on and the disadvantages were improved in

order to develop a methodology for learning dynamically stable human motion.

One significant disadvantage of NLPCA algorithm for dimensionality reduction is that

construction of the low-dimesional subspaces is a very time consuming process. A

fast and straightforward algorithm was chosen over NLPCA. In Chapter 3, the low-

dimensional subspaces were created by linear PCA. Properties of human motion in

low-dimensional subspaces, which is obtained from PCA will be described. Details of

procedures such as data preprocessing for PCA, PCA transformation, inverse PCA trans-

formation and basic definitions of this framework such as action subspace embedding and

action subspace scaling are described in this chapter. The action subspace embedding is

a set of posture commands that embed in the low-dimensional spaces. By using action

subspace embedding, a complete motion cycle of a periodic motion can be generated

from a single parameter function by varying the parameter from 0 to 2π. This function

is also used for constructing the search-space for motion optimization in later chapters.

The action subspace embedding was designed imitates a characteristic of CNLPCA for

having a single angular parameter that can reproduce a motion pattern. However, an

inability of CNLPCA when using for modeling a highly irregular closed-curve pattern

was improved in action subspace embedding. The action subspace scaling is scaling

the size action subspace embedding in the low-dimensional subspaces, which creates a
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similar motion with different scale of magnitude of movement. This property is used for

creating a smaller scale movement of a motion, which is more dynamically stable.

The motion learning process is explained in Chapter 4. The motion learning strategy

uses a model-predictive motion generator plans an optimal complete cycle of motion

based on sensory feedback prediction of a predictive model. The predictive model is

constructed through a learning algorithm. The time-delay RBF network [20], which is

a learning technique of time-series prediction is implemented for the predictive model.

The predictor derives a state-value of sensory feedback from robot movement of one

time-step ahead in future based on history information of motion commands from the

low-dimensional subspaces and sensory feedback. Then, a motion optimization algo-

rithm searches for an optimal low-dimensional action command, which is subjected to

an objective function to build a cycle of motion. Examples of one-dimensional optimiza-

tion and three-dimensional optimization of a hand-coded walking gait are shown in this

chapter.

Learning of human motion through imitation is introduced in Chapter 5. A method of

kinematic mapping of human motion data to a robot body is introduced to achieve learn-

ing human motion through imitation. A straight-forward human walking motion is the

target motion to imitate. The action subspace scaling technique that described in Chap-

ter 3 is employed to obtain a stable walking gait to start the learning process. Results

of learning the human walking gait by using the three-dimensional motion optimization

is demonstrated in this chapter.

In Chapter 6, an extension for optimization of the motion data in the low-dimensional

subspaces beyond 3-D is introduced. The sidestep human motion is used as the target

imitated motion. In this chapter, sidestep motion data from PCA transformation with-

out dimensionality reduction are optimized to demonstrate an extreme example that the

100% accuracy of original posture of the motion can be recovered and complied with the

motion learning framework. All of the results and the overall framework are discussed

and concluded together in Chapter 7.





Chapter 2

Preliminary Study of

Low-dimensional Humanoid

Motion Data

The aim of developing a humanoid robot is to have a robot that can work cooperatively

with people. Recently, robotics researchers have succeeded in developing mechanical

platforms for humanoid robots. These robots can walk and perform simple tasks. How-

ever, these demonstrations are usually directed by conventional computer programs that

are prepared under specific environmental conditions. The robot may not be able to per-

form properly, if the conditions change. Moreover, a humanoid robot must take account

of too many conditions to perform versatile tasks, and a programmer cannot anticipate

and prepare for all of these conditions [21]. One solution is to develop a robot that can

learn to perform in a human environment.

Reinforcement learning provides a useful method of adapting to environmental change

based on experience. The self-organizing, modular and hierarchical structure of multi-

layered reinforcement learning extends reinforcement learning to more complicated prob-

lems [22]. There are drawbacks to applying conventional reinforcement learning to a real

robot: the requirement of a long learning period and a well-designed state-action space.

By introducing a set of examples to a reinforcement learning system, the learning time

can be shortened [23]. A heuristic algorithm is applied to a sample set to generate a

state-action space and learning modules automatically. The learning modules are also

reusable for learning new complex behavior [24]. The reinforcement learning method

works well with simple robots such as wheeled robots. However, for a humanoid robot

that has a large number of actuators, existing reinforcement learning schemes cannot

deal with its huge state-action space directly. One solution is to apply an abstract

7



Chapter 2. Preliminary Study of Low-dimensional Humanoid Motion Data 8

state-action space to the hierarchical multi-module reinforcement learning method [24]

instead of using the raw state-action space determined by the sensors and effectors.

An approach that segments humanoid motion data automatically is studied in this chap-

ter. The segmentation results can be used as abstract states and abstract actions to facil-

itate the learning of complex tasks by hierarchical multi-module reinforcement learning

method [24]. Nonlinear principal component analysis was used for reducing the high-

dimensional space of humanoid motion data to a tractable three-dimensional feature

space. Then, the algorithm incrementally employs CNLPCA to learn the data points

and divide them into segments. A CNLPCA neural network tries to learn as many data

point in temporal order as its learning capacity can accept. Once the learning capacity

of a network is saturated, the network defines a segment and a new CNLPCA neural

network is employed. The algorithm keeps applying CNLPCA neural networks to the

data in temporal order until the end of the data is reached. As a result, different data

patterns are automatically divided into segments, which match the original patterns.

Some redundant segments may occur in the segmentation result. The algorithm also

minimizes the number of redundant segments by merging segments that are very close

to each other based on the distance between the segments. As a result, automatically

segmented trajectories characterize all the periodic motion patterns.

2.1 Nonlinear principal component analysis with a circular

constraint

The human body has 244 degrees of freedom [25] and a vast array of proprioceptors.

Excluding the hands, humanoid robots generally have at least 20 degrees of freedom.

They are considered high-dimensional systems to which conventional learning algorithm

cannot be applied. Fortunately, from the standpoint of a particular activity, the effective

dimensionality may be much lower.

Given a coding function f : RN 7→ RP and decoding function g : RP 7→ RN that

belong to the sets of continuous nonlinear function C and D, respectively, where P < N

nonlinear principal component networks minimize the error function E :

‖~x− g(f(~x))‖2, ~x ∈ RN (2.1)

resulting in P principal components [y1 · · · yp] = f(~x) in the feature layer. Kramer

[13] solved this problem by training a multilayer perceptron as shown in Figure 2.1
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using backpropagation of error. All of the low-dimensional space representation in this

chapter, the feature data are three-dimesional. The feature data were produced by an

NLPCA neural network that has three nodes at the feature layer.

input layer

output layer

encoding

layer

decoding
layer

feature layer

. . .

. . .

. . .

. . .

Figure 2.1: The structure of the nonlinear principal components network is symmet-
rical with respect to its feature layer. The number of input nodes and output nodes
are set to the number of dimensions of the input data. Target values presented at the
output layer are set to be identical to input values. The number of nodes in the encod-
ing layer and the decoding layer increase with the complexity of the data set. Both the
encoding layer and decoding layer contain nonlinear nodes. In this work, the number
of nodes in the input layer, encoding layer, feature layer, decoding layer, and output
layer are 20, 25, 3, 25 and 20, respectively.

PCA is a special case of NLPCA in which C and D are linear. A straightforward NLPCA

training may not have a unique solution. Correctly setting the initial weights of the

NLPCA network is key for convergence. In 2008 Hinton and Salakhutdinov [26] found

an effective way to initialize the weights of an NLPCA neural network. Unlike PCA and

nonparametric methods such as [27], [28], NLPCA autoencoders give mappings in both

directions between high-dimensional space and low-dimensional space.

From preliminary observation of the humanoid motion patterns in the feature space of

NLPCA, the patterns are appeared to be closed-curves. This is corresponding with the

periodic nature of the data. Conventional NLPCA is unsuitable for learning a closed

or self-intersecting curve [29]. However, nonlinear principle component neural networks

with a circular constraint at the feature layer (CNLPCA) can overcome this difficulty
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[19]. To model these closed-curves, CNLPCA is used for generalization of the periodic

motion patterns in the feature space.

Kirby and Miranda [19] constrained the activation values of a pair of nodes p and q in

the feature layer of an NLPCA neural network to fall on the unit circle:

r =
√
p2
0 + q20, (2.2)

p =
p0

r
and q =

q0
r
. (2.3)

While p0 and q0 are the input activation, p and q are the output of nodes p and q,

respectively. Thus, the pair of nodes p and q act as a single angular variable

θ = arctan
p

q
. (2.4)

input layer

output layer

decoding
layer

encoding
layer

feature layerp q

layer

p q

input layer

output layer

decoding
layer

encoding
layer

feature layerp q

layer

p q

Figure 2.2: The NLPCA network with a circular constrain at the bottleneck layer. In
this work, the number of nodes in the input layer, encoding layer, feature layer, decoding
layer, and output layer of CNLPCA are 3, 3, 2, 3 and 3 respectively as depicted in this
figure.
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2.2 Automatic segmentation algorithm

Automatic segmentation is this study is conceived as the problem of uniquely assigning

a temporal sequence of data points in the feature space to CNLPCA neural networks.

As the robot begins to move, the first network is assigned some minimal number of

data points, and its training starts with these points. This gets the network learning

started quickly and provides it with sufficient information to determine the orientation

and curvature of the trajectory. A network accepts points based on its prediction. Once

data points from a different pattern are assigned to the learning network, its prediction

error rapidly increases, and a new network will be deployed and start learning those

data points. The automatic segmentation algorithm works as follows:

Table 2.1: Psedocode for automatic segmentation

1. Initialize a CNLPCA network.
2. Assign n data points in temporal order to the CNLPCA

network.
3. Let the network learn the assigned data points.
4. If MSEnew < (1 + α)×MSEold go to step 2.
5. End learning of this segment.
6. Go to step 1 until the end of the data set is reached.

From Table 2.1, the automatic segmentation begins to work by deploying a CNLPCA

neural network. Then n points of data along the temporal data sequence in low-

dimensional space are assigned to the network that was created in the previous step.

The value of n is not a critical free-parameter of our algorithm: n could be any positive

integer greater than or equal to one. In other words, the parameter n is the size of the

new data set that is added to the network to learn a pattern for every iteration of the

algorithm. Thus, if we increase n, there will be fewer iterations in Table 2.1. However,

value for n should be a fraction of the total number of data points in a segment to avoid

biasing the segmentation. After n data points have been assigned to the network, the

network training begins. In this work, the terminal criterion of network learning is not

the number of epochs. The variables MSEnew and MSEold in step 4, are the mean

square error values of the learning network at the current step and the previous step,

respectively. Step 4 is a crucial step of the automatic segmentation algorithm, because

the decision to continue learning on the same segment or to begin learning a new seg-

ment is made at this step. The decision is made by comparing the mean square error of

the network before and after it has attempted to learn the additional n data points. The

second free parameter α is introduced the condition. The parameter α is a small positive

real number that is less than one. It indicates how much the mean square error value
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of the learning network is permitted to increase when a new set of n data points are

assigned to it. This condition usually does not lead to a larger value of the mean square

error at the end of segment learning. The mean square error value will decrease again at

the next iteration of the learning of the network, if the n newly assigned data belong to

the same motion pattern. If learning does not decrease the mean square error, and its

value exceeds the condition, the latest n data points will be rejected from the learning

segment, and a new segment will begin to learn the n data points. The algorithm keeps

deploying CNLPCA neural networks and assigning n data points to them until the end

of the data set is reached.

Since the algorithm segments different data patterns in accordance with the temporal

constraint of the data set, if there are repeated motion patterns, for example, if the robot

walked forward, turned right, and then walked forward again, there will be two segments

that represent the walking forward pattern with their corresponding networks. One of

these two segments may be considered redundant. One abstract motion pattern should

be represented by one network. Thus, the redundant networks should be removed or at

least reduced in number. The following steps minimize network redundancy:

Table 2.2: Psedocode for network redundancy minimization

1. For i = 1, . . . n where n is the total number of segments.
2. For each segment i, calculate Dij = 1

d2avg
to segment j, where

i < j ≤ n, and davg is an average distance between the two
segments.

3. For all Dij , if Dij exceeds a threshold, merge and relearn
the segments that Dij refers to.

To calculate the average distance davg between segment i and j, one may calculate the

average value of the output of network j when the output of network i are given as the

input data. The output of network i is obtained by running the angular parameter at

the bottleneck layer of the network from 0 to 2π at small increments. The inverse of

the square of average distance Dij is used for a clearer discrimination of the distance

between segments.

2.3 Automatic motion segmentation of a motion sequence

This section shows the results of automatic segmentation. The accuracy of the results

is assessed based on a manual segmentation of the data and an analysis of how data

points are allocated among the CNLPCA neural networks. The segmentation results

before and after applying network redundancy minimization are also shown.
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A motion sequence data were recorded while a human operator manually controlled a

Fujitsu HOAP-2 humanoid robot to play soccer, as shown in Figure 2.3. The motion

sequences are walking forward, turning right, turning left, walking forward,1 sidestepping

right, sidestepping left, and kicking. Each data point is constituted by a 20-dimension

vector of joint angles.2 After the 20 dimensional joint data were normalized to have

zero mean and unity variance, a standard NLPCA network reduced the dimensionality

of the data from 20 dimensions to 3 dimensions. The 3-dimensional data results can be

visualized in Figure 2.4. These steps are data preprocessing3 for more efficient automatic

segmentation by the CNLPCA algorithm.

Figure 2.3: Fujitsu HOAP-2 robot’s ball following behavior. The Fujitsu HOAP2
robot has 25 DOFs: 6 DOFs at each leg, 4 DOFs at each arms, 1 DOFs at each hand
and 2 DOFs at the neck.

Eight segments of motion data patterns were classified after the automatic segmenta-

tion was performed along the temporal order of the data. An accuracy analysis of the

segmentation results is shown in Figure 2.5. The figure compares the average distances
1To demonstrate that our algorithm is able to handle redundant motion patterns, the walking forward

motion intentionally appears more than one time in the motion sequence.
2The Fujitsu HOAP-2 robot has 25 joints, but two neck joints, two hand joints, and one torso joint

are not used in motion patterns in this study.
3Neural network training can be made more efficient when we perform certain preprocessing steps on

the network inputs and targets.
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between manually and automatically segmented trajectories. A data points allocation

analysis, which indicates the performance of the algorithm at categorizing different pat-

terns of motion data into different segments in the data sequence, is shown in Figure

2.7. After automatic segmentation has completed, the routine for redundant network

minimization searches for segments which positions are very close to each other and

merges them. Figure 2.4 shows the complete automatic segmentation routine success-

fully employed CNLPCA neural networks to separate and generalize five of the periodic

motions without any prior information about the number or type of motion patterns.

 

Figure 3.  The Fujitsu HOAP-1 robots are playing a simplified soccer 

game: RoboCup.  
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Figure 4.  Recognized motion patterns embedded in the dimension of 

the first three nonlinear principal components of the raw proprioceptive 

data. 
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Figure 5.  The average distance between manually segmented networks 

and automatically segmented networks before eliminating redundant 

networks. 
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Figure 6.  The average distance between manually segmented networks 

and automatically segmented networks after eliminating redundant 

networks. 
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Figure 7.  The allocation of data points to each network before applying 

network redundancy minimization. 
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Figure 8.  The allocation of data points to each network after applying 

network redundancy minimization. 

Figure 2.4: Recognized motion patterns embedded in the dimensions of the first three
nonlinear principal components of the raw proprioceptive data.

The average distance can be calculated from a manually segmented data to an auto-

matically segmented data by providing the points of manually segmented data as input

to the target CNLPCA network and calculating the average value of distance between

the input and the output. Figure 2.5 and 2.6 are analyses of average distances from

each automatically segmented pattern to each manually segmented pattern before and

after applying the routine that minimizes redundant segments. There are eight seg-

ments in the automatic segmentation results before applying the network redundancy

minimization algorithm, as shown in Figure 2.5. The lowest bar indicates which known

pattern matches the automatically segmented pattern. We notice from Figure 2.5 that

segment No.1, 5, and 8 match the walking pattern. The redundancy among these seg-

ments occurred, because the robot performed this action three times during different

time intervals when we recorded the data. Thus, this is a correct result of the segmenta-

tion algorithm based on the temporal ordering. Segment No. 2 and 3 in Figure 2.5 are

also redundant. Both represent the turning right action. This is an inaccurate result,
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Figure 5.  The average distance between manually segmented networks 

and automatically segmented networks before eliminating redundant 
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Figure 7.  The allocation of data points to each network before applying 

network redundancy minimization. 

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis after apply spatio-optimization

Segment number

P
e
rc

e
n
t 

o
f 

d
a
ta

-p
o
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis after apply spatio-optimization

Segment number

P
e
rc

e
n
t 

o
f 

d
a
ta

-p
o
in

t

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Point Allocation Analysis after apply spatio-optimization

Segment number

P
e
rc

e
n
t 

o
f 

d
a
ta

-p
o
in

t

 

Figure 8.  The allocation of data points to each network after applying 

network redundancy minimization. 
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Figure 2.5: The average distance between manually and automatically segmented
neural networks before eliminating redundant networks. (A shorter bar indicates greater
similarity with respect to the reference pattern.)
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Figure 7.  The allocation of data points to each network before applying 

network redundancy minimization. 
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Figure 8.  The allocation of data points to each network after applying 

network redundancy minimization. 
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Figure 2.6: The average distance between manually and automatically segmented
neural networks after eliminating redundant networks. (A shorter bar indicates higher
similarity with respect to the reference pattern.)
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because the robot performed the turning right action only once during the recording of

data.

There should be only one network to represent each motion pattern. Increasing the mean

square error value of the learning network parameter α influences the result. The lower

the value of α used, the higher the number of likely segments. Although the motion

sequence might be divided into several segments at this step, segments that represent

the same motion pattern will be merged later by the routine for network redundancy

minimization.

Redundant and fragmented segments that represent the same abstract action share sim-

ilar curvature and lie near each other in the reduced sensorimotor space. The algorithm

in Table 2.2 can search and merge these redundant and fragmented segments. All of

the redundant networks were removed and their data points were reallocated. Figure

2.7 and 2.8 are an analysis of the allocation of data points before and after applying

network redundancy minimization. Each bar represents the percentage of data points

that belong to each known pattern in an automatically segmented trajectory. This value

is the ratio of the number of data points of each of pattern in a segment to the total

number of data points of each pattern in the entire data set. A very low rate of data

point misallocation is observed in Figure 2.7. The allocation of data points after the

removal of the redundant networks is also accurate. From Figure 2.7, segment No. 5

and 8, which are redundant with respect to segment No. 1, were merged into segment

No. 1 in Figure 2.8. Segment No. 3, which is redundant with respect to segment No. 2,

was also merged into segment No. 2 in Figure 2.8.

However, this algorithm could not capture the kicking pattern. The kicking is a none-

periodic motion. A different functional approximation algorithm that works well with

none-periodic motion could be added to the existed algorithm in the future work.

2.4 Summary

In a space of reduced dimensionality, the automatic segmentation algorithm was able

to divide sequences of humanoid motion data into segments of periodic motion. The

first phase is a temporal ordering segmentation process that combines learning and

temporally-constrained data point assignment among multiple neural networks. The

second phase is a process of minimizing redundant networks that merges redundant

networks based on the average spatial distance between patterns. The automatic seg-

mentation results can be used to facilitate the learning of complex tasks performed by
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networks. 
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Figure 8.  The allocation of data points to each network after applying 

network redundancy minimization. 
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Figure 3.  The Fujitsu HOAP-1 robots are playing a simplified soccer 

game: RoboCup.  
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Figure 4.  Recognized motion patterns embedded in the dimension of 

the first three nonlinear principal components of the raw proprioceptive 

data. 
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Figure 8.  The allocation of data points to each network after applying 

network redundancy minimization. 
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Figure 2.8: The allocation of data points to each network after applying network
redundancy minimization.



Chapter 2. Preliminary Study of Low-dimensional Humanoid Motion Data 18

humans by deriving an abstract state-action space for reinforcement learning [24], if

dynamically stable motions can be reproduced from the results.

The feature layer of NLPCA provided a low-dimensional compact representation of mo-

tion data. By using the decoder part of NLPCA as in Figure 2.1, these 3-D feature data

can be used as whole-body joint commands for a humanoid robot. The single angular

parameter at the feature layer can also be considered as an extreme dimensionality re-

duction. The concept of one variable that can govern cycles of motion is very interesting

to be investigated further. However, training the NLPCA network takes very long time

for a large number of data. Results of NLPCA are also not reliable. Different results can

be occurred from different NLPCA networks that were trained from the same data-set.

Performance of CNLPCA is good when it is used for modeling planar circular patterns.

But, when a closed-curve pattern appears to be an irregular shape, the CNLPCA can

not perform well. Even many interesting and useful concepts for motion reproduction

have been arisen from the algorithms that were implemented in the study in this chap-

ter, algorithms that have similar properties without the drawbacks that mentioned here

should be used, instead.



Chapter 3

The Low-Dimensional Subspaces

of Posture

Learning a human motion can be considered as adjusting of whole-body postures. In

other words, learning of human motion is generally a problem of whole-body dynam-

ics optimization. Human body has 244 degrees of freedom [25]. The Fujitsu HOAP2

humanoid robot in figure 2.3 has 25 degrees of freedom. As the number of degrees of

freedom increases, the system dynamic model become very complex and finding an opti-

mal control policy becomes difficult. Attempting to search for an optimal value in such

a high dimensional space is normally a running into the curse of dimensionality problem

[30]. However, particular classes of motion such as walking, kicking, or reaching for an

object are intrinsically low-dimensional. To overcome the curse of dimensionality prob-

lem, a low-dimensional representation of whole-body posture is employed. The compact

representation of whole-body posture in low-dimensional subspaces is described in this

capter. The compact posture representation is achieved through a linear dimensional-

ity reduction algorithm. This compact posture representation will be later combined

with sensory feedback to from an optimal movement policy on the next chapter. The

dimensionality reduction method and the feature space, which the compact postures are

presence as well as properties of posture in the feature space will be depicted mathe-

matically and graphically in this chapter as well.

19
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3.1 Data pre-processing and PCA mapping

Although, nonlinear dimensionality reduction algorithms have been already applied to

representation of human posture such as work in [31] and [32]. However, these meth-

ods have some parameters that have to be well-tuned. Properties of the resulted low-

dimensional space of these algorithms have not well studied. PCA is a non-parametric

linear dimensionality reduction technique. Its algorithm and properties are well stud-

ied. For the purpose of unambiguous presentation of the underlying novel ideas of the

work in this dissertation, the principal components analysis is employed in the motion

learning framework in this dissertation.

Let θ be a vector whole-body of joint angle data of a humanoid robot that has m joints:

θ =


θ1

θ2
...

θm

 . (3.1)

A motion sequence Θ of n joint angle vectors can be described in matrix form as:

Θ =


θ11 θ12 . . . θ1n

θ21 θ22 . . . θ2n
...

...
. . .

...

θm1 θm2 . . . θmn

 . (3.2)

In figure 3.1, recorded trajectories of joint position from Fujitsu HOAP2 robot that

was performing walking motion by a hand-coded program[33] is shown. Note that even

HOAP2 robot has 25 joints, for this walking gait only 20 joints are used. Two joints at

the neck, one joint at each hand and one joint at torso are not used in this gait. The

data were recorded form a standing posture until the robot had walked for five seconds.

A statistical data-preprocessing has to be done before performing PCA mapping. Data

of each row of Θ in equation (3.2) must be normalized such that their mean is zero and

their standard deviation is one. Let µi be average value (mean) of joint i:

µi =
1
n

n∑
j=1

θij (3.3)
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Figure 3.1: Joint angle data of a hand-coded walking gait of HOAP2 robot. This is
figure, x axis is time in second and y axis is joint angle in degree.
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and σi be standard deviation of joint i:

σi =

√√√√ 1
n

n∑
j=1

(θij − µi)2. (3.4)

The normalized joint angle data Q can be derived from Θ by,

Q =


q11 q12 . . . q1n

q21 q22 . . . q2n
...

...
. . .

...

qm1 qm2 . . . qmn

 (3.5)

where

qij =
θij − µi
σi

(3.6)

when i = 1 . . .m joint and j = 1 . . . n number of data. Let qi when i = 1 . . .m be

normalized data of joint i. The normalized data of joint i can be expressed in form of

row vector:

qi =
[
q1 q2 . . . qn

]
. (3.7)

The normalized data Q can be rewritten in vector form as:

Q =


q1

q2

...

qm

 . (3.8)

In figure 3.2, normalized data of joint angle data from figure 3.1 is shown. Notice that

data from each joint are already transformed into the same scale of value.

The covariance matrix of Q can be obtained by:

A = cov(Q)

=


cov(q1,q1) cov(q1,q2) . . . cov(q1,qm)

cov(q2,q1) cov(q2,q2) . . . cov(q1,q1)
...

...
. . .

...

cov(qm,q1) cov(qm,q2) . . . cov(qm,qm)


(3.9)

where

cov(qi,qj) =
∑m

i=1(qi − µi)(qj − µj)
m− 1

. (3.10)
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Figure 3.2: Normalized joint angle data of the joint angle data in figure 3.1

Since, A is a square symmetric matrix. Then, eigenvectors of A can be obtained through

performing eigenvalue decomposition. For i = 1 . . .m each of eigenvalue λi, there is a

corresponding eigenvector (feature vector) vλi
. To construct a transformation matrix

V for PCA mapping, the eigenvectors vλi
must be sorted such that λ1 > λ2 > . . . λm.

Thus, the transformation matrix V can be expressed in term of eigenvectors as:

V =
[
vλ1 vλ2 . . . vλm

]
. (3.11)

Let

P =


p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

. . .
...

pm1 pm2 . . . pmn

 (3.12)

be the data in the feature space. Once the feature space is formed, the normalized data

Q can be transformed into the feature space by:

P = VTQ (3.13)

when VT is transpose matrix of V. Each row of P contains significance of data in de-

creasing order. To transform the dimensions high-dimensional data Q to low-dimensional

data X, let l be the number of dimensions of X where l < m. The feature data X can



Chapter 3. The Low-Dimensional Subspaces of Posture 24

be expressed in term of submatrix of P as:

X =
[
x1 x2 . . . xn

]
=


p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

. . .
...

pl1 pl2 . . . pln

 . (3.14)

Suppose that three-dimensional data (l = 3) in the feature space is the low-dimensional

data of interest. The feature data will be:

X =


x11 x12 . . . x1n

x21 x22 . . . x2n

x31 x32 . . . x3n

 =


p11 p12 . . . p1n

p21 p22 . . . p2n

p31 p32 . . . p3n

 . (3.15)
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Figure 3.3: First three principal components of joint angle data in figure 3.1

Time series of the first three principal components of data is shown in figure 3.3. Notice

that variations of data of each principal component are in decreasing order from the first

principal to the third principal.

Let inverse mapping data Q̃ be an estimation of the normalized data Q. Inverse PCA

mapping from the low-dimensional space back to the original high-dimensional space
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can be done by:

Q̃ = (VT )−1P̃

=


q̃11 q̃12 . . . q̃1n

q̃21 q̃22 . . . q̃2n
...

...
. . .

...

q̃m1 q̃m2 . . . q̃mn


(3.16)

where

P̃ =

[
X

O

]
(3.17)

and

O =


011 012 . . . 01n

021 022 . . . 02n

...
...

. . .
...

0(m−l)1 0(m−l)2 . . . 0(m−l)n

 . (3.18)

The zero matrix O is combined to the low-dimensional data X to make the size of matrix

P̃ to be compatible with (VT )−1 in equation (3.16). To converse Q̃ back to the original

data space, a reverse normalization process also has to be performed by:

Θ̃ =


θ̃11 θ̃12 . . . θ̃1n

θ̃21 θ̃22 . . . θ̃2n
...

...
. . .

...

θ̃m1 θ̃m2 . . . θ̃mn

 (3.19)

where

θ̃ij = q̃ijσi + µi. (3.20)

In the case of data in the feature space X has the same dimension with Q or in the case

of l = m.

Θ̃ = Θ (3.21)

will be the result. If l < m, some accuracy of the data will be lost. Figure 3.4 shows

accuracy accumulation along numbers of principal axes of PCA mapping of the data

from figure 3.1. For example, for using three-dimensional data in the feature space, only

about 88% of data accuracy can be recovered after direct and inverse PCA mapping.

And if one would like to be able to recover 100% of accuracy of data from PCA mapping,

eight-dimensional data in the feature space have to be used.



Chapter 3. The Low-Dimensional Subspaces of Posture 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
 %

Principal components

Figure 3.4: Accuracy accumulation on principal components for hand-coded walking
motion data from figure 3.1
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3.2 Low-Dimensional Representation of Postures

-4

-2

0

2

4

6

-10

-5

0

5

-6

-4

-2

0

2

4

1

2

3

45

6

7

8

-4

-2

0

2

4

6

-10

-5

0

5

-6

-4

-2

0

2

4

1

2

3

45

6

7

8

Fig. 2. Posture subspace and example poses. A three dimensional space
represents the posture of the Fujitsu HOAP2 robot. PCA was used to reduce
dimensionality from robot pose space to the three dimensional space shown.
Blue points along a loop represent different robot postures during a single walk
cycle. Red points mark various example poses as shown in the numbered
images. The first two postures are intermediate postures between an initial
stable standing pose and a point along the periodic gait loop represented by
postures three through eight.

dimensional posture space and expected sensory feedback.

A kernel-based sensory-motor predictor allows for learning

such a non-linear relationship. Finally we select actions that

imitate input postures while maintaining imposed criteria such

as dynamic stability of the body. This procedure is shown in

Figure 1.

II. SENSORY-MOTOR MODELING FRAMEWORK

A. Reduced posture dimensionality

The full posture space Z of a humanoid robot is overly

redundant given a particular class of motion, such as walking,

kicking, or reaching for an object. More precisely, the variance

of posture over time and different styles/instances of an

action is largely distributed in a subspace with far fewer

directions of variance. Thus we apply the well known method

of principal components analysis (PCA) to parameterize the

low dimensional subspace X . Research has revealed that non-
linear methods [11], [12] can also be used to reduce the

dimensionality of Z . For simplicity we use the standard linear
PCA method in this paper.

We construct the reduced dimensionality space or latent

space X using a set of initial training examples Z =
[z1 . . . zL]. Tentatively we are using a rhythmic walking gait
generator [13] for our initial training set. The idea is to use

this motion as a “seed” motion. A reduced set of basis vectors

is obtained corresponding to the m largest eigenvalues of the

covariance of Z after subtracting the mean of each dimension.

The result can be thought of as two linear operators C and C−1

which map from the high to low, and low to high dimensional

spaces respectively. An example of such a space, along with

corresponding postures is shown in Figure 2.

−4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

−5

0

5

X

Y
Z

o
Ψ

θ

θ
θ

Fig. 3. Embedded action space of a humanoid walking gait. Training data
points in the reduced posture space (shown in blue) are converted to cylindrical
coordinates relative on the coordinate frame xθ,yθ, zθ . The points are then
represented by a function of the angle Ψ, which forms an embedded action
space (shown in red). This action space represents a single gait cycle, and
forms the basis for our algorithm which discovers an an optimal trajectory
along this loop.

B. Action subspace embedding

High-level control of a humanoid robot can be seen as

selecting a desired angle for each joint servo. As discussed

previously, complex operations in the space of all joint angles

taken together are often intractable. Again we leverage the

redundancy of the full posture space and use X to constrain

target postures. Any desired posture (also referred to as an

action) can be represented by a point a ∈ X . Further, we
show that space of desired postures can be represented more

compactly by a non-linear manifold embedded in X .
Often the set of desired postures for some motion can be

constrained to fewer than m parameters. Figure 2 illustrates

a fixed periodic movement such as walking represented by a

loop (parameterized by time) in X . In the general case we
consider a non-linear manifold representing the space A ⊆ X
of actions. Non-linear parameterization of the space of desired

postures allows for greatly reducing the number of degrees of

freedom in our model-predictive control algorithm detailed in

Section III.

Experiments presented in this paper embed a one dimen-

sional action space in a three dimensional latent posture space.

Using the latent representation of the set of initial training

examples xi = C·zi we first convert each point into cylindrical

coordinates. This is done by establishing a coordinate frame

represented by three basis directions xθ,yθ, zθ in the latent

space. The zero point of the coordinate frame is the empirical

mean of xi, denoted µ. Thus we first center the data around
this new zero point and denote the centered data x̂i. The next

step is to compute the principal axis of rotation zθ accordingly:

zθ =
∑

i

(
x̂i × x̂i+1

)

||
∑

i (x̂i × x̂i+1)|| . (1)

Next xθ is chosen to align with the maximal variance of xi in

Figure 3.5: Posture subspace and example poses from a hand coded walking gait. A
three-dimensional space produced by PCA represents the posture of the Fujitsu HOAP2
robot. Blue points along a loop represent different robot postures during a single walk
cycle. The first two labeled postures are intermediate postures between an initial stable
standing pose and a point along the periodic gait loop represented by postures three
through eight.

Principal components analysis forms the low-dimensional motion subspace X. Vectors of

joint angle data in the high-dimensional space are mapped to the low-dimensional space

by multiplication with the transformation matrix VT . The columns of V consist of
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the eigenvectors, computed via eigenvalue decomposition, of the motion data covariance

matrix. Eigenvalue decomposition produces transformed vectors whose components are

uncorrelated and ordered according to the magnitude of their variance. These trans-

formed vectors shall be referred as eigenposes.

An example of the three-dimensional representation whole-body posture data (3-D eigen-

pose data) in the feature space of the HOAP-2 robot executing a walking gait of the data

in figure 3.1 are shown in figure 3.5. Data from the first, second and third principal com-

ponents are plotted on x, y and z axes, respectively. Small robot pictures labeled in the

figure are produced by inverse PCA mapping. From this figure, notice that the temporal

sequence of motion data is still preserved in the low-dimensional space. As mentioned

previously at the end of section 3.1 that some accuracy is lost when three-dimensional

feature data are used, and eight-dimensional feature data have to be used for recovery of

100% accuracy of joint angle data. Computation complexity is generally increased ex-

ponentially with number of dimensions. Using high number of dimensions of data could

lead to the curse of dimensionality problem and break the purpose of using dimension-

ality reduction. However, the goal of motion optimization or goal-based learning by

imitation is not mimicking exact kinematic motion. Furthermore, because of differences

in dynamic properties between two robot bodies or human and robot mimicking the same

exact kinematic motion while maintaining in a dynamically stable condition may not

be possible. For dimensionality reduction through PCA, higher number of dimensions

in the feature space can achieve higher accuracy of the data. Three dimensional data

are convenient for visualizing and developing motion optimization algorithm through

analytical geometry. In this dissertation, low-dimensional data have three dimensions

unless state otherwise. Physical meaning or interpretation of parameters in the feature

space will be explained along with simulation and experimental results in Chapter 4.

3.3 Action Subspace Embedding

The redundancy of posture data in high dimensional joint space space has been elimi-

nated by PCA mapping. The reduced dimensional subspace X is used for constraining

postures of a motion pattern.

A periodic movement such as walking can be represented by a closed-curve pattern X.

The periodic part of the data in Figure 3.5 was manually segmented. The blue dots

pattern in Figure 3.6 is the periodic segment of the walking data in Figure 3.5. In the

general case, we consider a non-linear manifold representing the action space A ⊆ X.

Non-linear parameterization of the action space allows further reduction in dimension-

ality. A one-dimensional representation of the original motion in the three dimensional
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Figure 3.6: Embedded action subspace of a humanoid walking gait. Training data
points in the reduced posture space (shown in blue-dots) are converted to a cylindrical
coordinate frame relative to the coordinate frame xθ,yθ, zθ. The points are then rep-
resented as a function of the phase angle ϕ, which forms an embedded action subspace
(shown in red solid-line curve).

feature space is embedded. It is used for constructing a constrained search space for

optimization which will be discussed in Section 4.2. Using the feature representation

of the set of initial training examples xi ⊆ X, we first convert each point to its repre-

sentation in a cylindrical coordinate frame. This is done by establishing a coordinate

frame with three basis directions xθ,yθ, zθ in the feature space. The zero point of the

coordinate frame is the empirical mean of the data points in the reduced space. The

data are re-centered around this new zero point and denote the resulting data x̂i.

Then, the principal axis of rotation zθ is computed:

zθ =
Σi(x̂i × x̂i+1)
‖Σi(x̂i × x̂i+1)‖

(3.22)

Next, xθ is chosen to align with the maximal variance of xi in a plane orthogonal to zθ.

Finally, yθ is specified as orthogonal to xθ and zθ. The final embedded training data

is obtained by cylindrical conversion to (ϕ, r, h) where r is the radial distance, h is the

height above the xθ−yθ , and ϕ is the angle in xθ−yθ plane measured counter-clockwise

from xθ.

Given the loop topology of the latent training points, one can parameterize r and h as

a function of ϕ. The embedded action space is represented by a learned approximation

of the function:



Chapter 3. The Low-Dimensional Subspaces of Posture 29

[r, h] = g(ϕ) (3.23)

where 0 ≤ ϕ ≤ 2π. Approximation of this function is performed by using a radial basis

function (RBF) network. The angle ϕ can also be interpreted as the motion phase angle.

Since, when ϕ sweeps from 0 to 2π, it creates an action subspace A which in our case

is a walking gait. The parameter ϕ indicates how far the current posture is from the

beginning of the motion cycle. The first order time derivative of ϕ also tells us the speed

of movement.

3.4 Action Subspace Scaling

Figure 3.7: Motion scaling of a walking gait. The first row of this figure shows four
different postures of a walking gait. The second row shows coherent postures of the first
row when a multiplying factor f = 2.0 is applying to the low-dimensional representation
of this walking gait.

As described in section 3.1, high-dimensional joint angle data are normalized before they

are processed by a dimensional reduction algorithm. The data among each joint (each

dimension) originally are in different scales of values, but after normalization they are

scaled into the same range. When the normalized data is multiplied by a scalar value, the

results are similar postures with a different magnitude. However, multiplying a vector

of raw joint angles data by a scalar factor does not yield a similar posture. A condition

for producing a scaled similar posture with respect to a particular class of motion is,

the scaling factor must be contributed differently on each joint based on proportion of
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Figure 3.8: Corresponding low-dimensional posture data representation of Figure
3.7. The blue dot makers represent a walking gait of Fujitsu HOAP-2 robot in three-
dimensional feature space at scale = 1.0. The red diamond makers represent the same
data pattern with a multiplying scale 2.0.

motion-range of that joint with respect to the motion. The inverse normalization process

implicitly creates this condition. Thus, we may conclude that the normalization process,

leads to posture scaling ability. The posture scaling yields reasonable results only when

the motion data set contains only one specific type of motion.

From studying of four different motion patterns in the low-dimensional subspace, scaling

up and down the patterns produce similar motion patterns with differences in the mag-

nitude of motion. This means posture scaling ability is preserved after PCA is applied.

Thus, multiplication of a scalar value to the action space A ⊆ X yields a similar action.

If A represents a walking gait, multiplying A by a factor f > 1 will result in a similar

walking gait but with a larger step. Multiplying A by a factor f < 1 results in a walking

gait with a smaller step size. Note that scaling of an action space is always performed

with respect to the mean value of A or the origin of the cylindrical coordinate frame

(xθ,yθ, zθ). In figure 3.7, an example of postures scaling of a walking motion is shown.

And the corresponding three-dimensional data in the feature space, which the posture

are created from are shown in figure 3.8.

However, action subspace scaling only produces similarity of kinematic postures. The

result of scaling may not be dynamically stable, especially when the scaling factor f > 1.

To achieve stable motion, the new motion has to be gradually learned as described in
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chapter 4. Action subspace scaling for f < 1 will used for initializing the learning process

in learning through imitation in chapter 5.

3.5 Summary

In Chapter 3 and the rest of this dissertation, the low-dimensional subspaces are created

by linear PCA. Humanoid motion data in three-dimensional subspaces are defined as 3-D

eigenpose data. Data preprocessing, PCA transformation, inverse PCA transformation,

action subspace embedding and action subspace scaling are described in details in this

chapter. The action subspace embedding is a set of eigenpose data that embed in the

low-dimensional spaces. By using action subspace embedding, a complete motion cycle

of a periodic motion can be generated from a single parameter function in Equation 3.23

by varying ϕ from 0 to 2π. This function is also used for constructing the search-space

for motion optimization in later chapters. The action subspace embedding was designed

imitates a characteristic of CNLPCA for having a single angular parameter that can

reproduce a periodic motion cycle. The action subspace scaling is scaling the size action

subspace embedding in the low-dimensional subspaces, which creates a similar motion

with different scale of magnitude of movement. This property is used for creating a

smaller scale movement of a motion, which is more dynamically stable.





Chapter 4

Learning and Prediction

The methodologies for representing humanoid motion in low-dimensional subspaces have

been developed in chapter 3. In this chapter, the 3-D eigenposes are treated as motion

command or action. The action will be combined with sensory feedback or state to from

a Markovian predictive model. Then, the predictive model will be used for deriving

optimal motion commands or action plan based on a constraint from action subspace

embedding function to acheive dynamically stable motion.

4.1 Learning to Predict Sensory Consequences of Actions

A key component of methodology of this dissertation is learning to predict future sen-

sory inputs based on actions. This learned predictive model is used for optimal action

selection. The goal is to predict, at time step t, the future sensory state of the robot,

denoted by st+1. In general, the state space S = Θ × P is the Cartesian product of

the high-dimensional joint space Θ and the space of other percepts P. Other percepts

could include, for example, measurements of from torso accelerometer or gyroscope, foot

pressure sensors as well as information from camera images. The goal then is to learn

a more compact function F : S×A 7→ S that maps the current state and action to the

next state. For this dissertation, F is assumed to be deterministic.

Often the perceptual state st is not sufficient for predicting future states. In such cases,

one may learn a higher order mapping based on a history of perceptual states and

actions, as given by an n-th order Markovian function:

st+1 = F (st, st−1, ..., st−n−1, at, at−1, ..., at−n−1) (4.1)

33
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In this dissertation unless state otherwise, the time-delay RBF network is used for ap-

proximation of predictive sensory-motor model F . In general case, the RBF network

approximates F by learning a function F ′(α) = β, when:

β =
K∑
k

wk exp(−(α− µk)TΣ−1
k (α− µk)), (4.2)

where K represents the number of kernels, µk and Σ−1
k are the mean and inverse covari-

ance of the k-th kernel respectively. The output weight vector wk scales the output of

each kernel appropriately, and the input and output are

α = [st, st−1, . . . , st−n−1, at, at−1, . . . , at−n−1] (4.3)

and

β ≈ st+1 (4.4)

respectively. Note that the above RBF network can be viewed as a time-delay recurrent

network. The history of previous states and actions is implicitly remembered by the

network. In this work, a second-order (n = 2) time-delay RBF network is used, where

the state vector is the three-dimensional gyroscope signal (st ≡ ωt). As discussed in the

previous section, an action is represented by a phase angle, radius, and height in latent

posture space (at ≡ χt ∈ X). A schematic diagram of predictor learning is illustrated in

Figure 4.1. Predicted gyroscope data versus actual gyroscope data during a motion test

sequence are shown in Figure 4.2. Notice in Figure 4.2 that the predictor has delivered

good prediction of gyroscope signals.

4.2 Motion Optimization using the Learned Predictive Model

The algorithm that is presented in this section utilizes optimization concept and sensory

prediction from the previous section to select optimal an action plan for a humanoid

robot in a closed-loop feedback scenario. Figure 4.3 illustrates the optimization process.

One may express the desired sensory states that the robot should attain during a par-

ticular class of action through an objective function Γ(s). The algorithm then selects

actions a∗t , . . . , a
∗
T such that the predicted future states st, . . . , sT will be optimal with

respect to Γ(s):

a∗t = arg min
at

Γ(F (st, . . . , st−n−1, at, . . . , at−n−1)). (4.5)
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Figure 4.1: Sensory-motor stability prediction module. Motion stability (as measured
by a three-channel gyroscope sensor at the center of the torso) is predicted based
on the input of posture command in the low dimensional space and information of
both gyroscope signals and posture command from previous time steps. The predictor
network is trained by comparing the predicted gyroscope signals to the actual sensor
reading from the robot.
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Figure 4.2: Gyroscope signal prediction. A second-order time-delay radial basis func-
tion network is able to accurately predict gyroscope signals at the next time step. The
plots from top to bottom represent individual gyroscope signals x,y and z during many
periods of walking simulation.
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Figure 4.3: Model predictive motion generator for optimizing motion stability. At
time t, the optimization algorithm generates tentative actions or posture commands
(at ≡ χ ∈ X). The predictive model predicts values of subsequence gyroscope signal
ωp. The optimization algorithm then selects the optimal posture command χ∗ based on
that satisfies the objective condition ωmin based on ωp. The optimal posture command
χ∗ is sent to the execute on a robot/simulator. The actual values subsequence gyroscope
signal are recorded for retraining of the predictive model.
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To allow for efficient optimization, the search space is restricted to a local region in the

action subspace as given by:

ϕt−1 < ϕs ≤ ϕt−1 + εϕ (4.9)

ra − εr ≤ rs ≤ ra + εr (4.10)

ha − εh ≤ hs ≤ ha + εh (4.11)

0 < εϕ < 2π (4.12)

[ra, ha] = g(ϕs) (4.13)

The phase-motion-command search-range ϕs begins after the position of the phase mo-

tion command at the previous time step ϕt−1. The radius search rs range begins from

a point in the action subspace embedding A that is defined by (4.13) in both positive

and negative directions from ra along r for the distance εr ≥ 0. The search range hs
is defined in the same manner as rs according to ha and εh. In the experiments, the

parameters εϕ, εr ,and εh were chosen to ensure efficiency while at the same time allow-

ing a reasonable range for searching for stable postures. A graphical illustration of the

search space for a walking motion is shown in Figure 4.41. For optimization of one cycle

walking gait, the search space will move along the constraint function in (3.23) as vaule

of ϕ is increased.

Selected actions will only truly be optimal if the sensory-motor predictor is accurate.

Therefore, the prediction model is periodically re-trained based on the posture com-

mands generated by the optimization algorithm and the sensory feedback obtained from

executing these commands. After training collectively of three iterations of sensory-

motor prediction learning, an improved dynamically balanced walking gait is obtained.

Figure 4.4 shows a trajectory of the optimized walking gait in the low dimensional

subspace. Note here that the constraint function (3.23) is adapted for every learning

iteration. As a result, the search space, which builds around the constraint function are
1The search space in this Figure 4.4 is only for graphical illustration purpose. It is not an actual

search space.
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changed for every learning iteration. The optimization in this paper is a straightforward

brute-force search.
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Figure 6. Optimization result for a walking motion pattern in a 
low-dimensional subspace based on an action subspace embed-
ding. 

We summarize below the entire optimization and action 
selection process: 

1) Use PCA to represent in a reduced 3D space the ini-
tial walking gait data from human motion capture. 

2)  Employ the non-linear embedding algorithm for pa-
rameterization of the gait. 

3) Start the learning process by projecting actions back 
to the original joint space and executing the corre-
sponding sequence of servo motor commands in the 
Webots HOAP-2 robot simulator [Webots, 2004]. 

4)  Use the sensory and motor inputs from the previous 
step to update the sensory-motor predictor as de-
scribed in Section 4 where the state vector is given 
by the gyroscope signal of each axis and the action 

variables are !,r and h  in the low-dimensional sub-

space. 
5)  Use the learned model to estimate actions according 

to the model predictive controller framework de-
scribed above (Figure 5).  

6) Execute computed actions and record sensory (gyro-
scope) feedback.  

7)  Repeat steps 4 through 6 until a satisfactory gait is 
obtained. 

6 Experimental Results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Motion pattern scaling. The target motion pattern is 

scaled down until it can produce a stable motion to start the motion 

optimization process. 

 
This section explains how the optimization methodology in 
the previous section is used in conjunction with the mocap 
data. From our study of the motion pattern in the reduced 
subspace, we found that we can scale up and down the mo-
tion pattern and get similar humanoid motion patterns ex-
cept for changes in the magnitude of motion. When we scale 
down the pattern in the reduced subspace, it produces a 
smaller movement of the humanoid robot, resulting in s-
maller changes in dynamics during motion. Our strategy is 
to scale down the pattern until we find a dynamically stable 
motion and start learning at that point. We apply the motion 
optimization method in Section 5 to the scaled-down pattern 
until its dynamic performance reaches an optimal point; 
then we scale up the trajectory of the optimization result 
toward the target motion pattern. In our experiments, we 
found that a scaling down of 0.3 of the original motion pat-
tern is typically stable enough to start the learning process.  
Our final optimization result obtained using this procedure 
is shown as a trajectory of red circles in Figure 7. It corre-
sponds to about 80% of the full scale motion. 
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Figure 4.4: Optimization result for a walking motion pattern in a low-dimensional
subspace based on an action subspace embedding.

The entire motion optimization and action selection process can be summarized below:

1. Use PCA to obtain eigenpose data from the joint data.

2. Apply the action subspace embedding convention for parameterization of the pe-

riodic motion pattern.

3. Start the learning process by inverse mapping the eigenpose actions back to the

original joint space and executing the corresponding sequence of servo motor com-

mands in a simulator or a real robot.

4. Use the sensory and motor inputs from the previous step to update the sensory-

motor predictor as described in Section 4.1. In this chapter, the state vector is

comprised of three channels of the gyroscope signal and the action variables are

ϕ, r and h in the low-dimensional subspace.

5. Use the learned model to estimate sequence of actions according to the model

predictive controller scheme described above (Figure 4.3).

6. Execute computed actions and record sensory (gyroscope) feedback.

7. Repeat steps 4 through 6 until a satisfactory motion is obtained.
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4.3 One-dimensional Optimization
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Figure 4.5: Motion-phase optimization.

The first experiment is simulation in Webots dynamic environment [34]. And, a real

robot can be interchanged with the simulator. This simulation is an experiment to

increase the stability of a regenerated hand-coded walking gait shown in Figure 3.5 by

using the motion optimization technique in the feature space. This experiment also

demonstrates the utility of action subspace embedding and the physical meaning of the

parameter ϕ. Since this experiment is one-dimensional optimization the parameters εr
and εh in equations 4.10 and 4.11 are set to zero. Then, equation 4.7 becomes:

ϕ∗t = arg min
ϕt

Γ(F (ωt, ωt−1, ϕt, ϕt−1)). (4.14)

This process can be referred as motion-phase optimization. Because, only the parameter

ϕ is optimized while values of r and h are implicitly optimized through equation 3.23. At

the first learning episode, joint angle data that are approximated from an inverse PCA

mapping from the three-dimensional feature data in Figure 3.6. Then, their subsequent

gyroscope signals were recoded. In this experiment according to equation 4.14, the three

channels gyroscope signals are regarded as state and the ϕ is regarded as action. These

state-action data then were used for the time-delay RBF network (depicted in figure

4.1) to learn a predictive model of the gyroscope signals at the next time step. The

optimization algorithm used the predictor to obtain a new optimized action plan. The

algorithm samples points in the search space defined by equation 4.9 uniformly. Values

of gyroscope signals of the sampled points are then calculated. An optimized action

command of the action plan is found by selecting a point that gives the minimal sum
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Fig. 10. Comparison of gyroscope signals from initial and optimized walk

The plots from top to bottom show the gyroscope signals for the axes X,Y, and Z recorded during initial and optimized

walking motions. Root mean squared (RMS) of the gyroscope readings are also indicated in the plot legends. Notice that for

the Y (vertical direction) the RMS values are significantly reduced for the optimized motion.

[2] S. Kajita and K. Tani, “Adaptive gait control of a biped robot based on
realtime sensing of the ground profile,” IEEE Conference on Robotics

and Automation, pp. 570–577, 1996.

[3] J. Yamaguchi, N. Kinoshita, A. Takanishi, and I. Kato, “Development
of a dynamic biped walking system for humanoid: development of a
biped walking robot adapting to the humans’ living floor,” pp. 232–239,
1996.

[4] Y. N. M. Okada, K. Tatani, “Polynomial design of the nonlinear
dynamics for the brain-like information processing of the whole body
motion,” in IEEE International Conference on Robotics and Automation,
2002, pp. 1410–1415.

[5] M. Kirby and R. Miranda, “Circular nodes in neural networks,”
Neural Comp., vol. 8, no. 2, pp. 390–402, 1996. [Online]. Available:
http://neco.mitpress.org/cgi/content/abstract/8/2/390

[6] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for
imitation with nonlinear dynamical systems,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001, pp. 752–757.

[7] K. F. MacDorman, “Feature learning, multiresolution analysis, and
symbol grounding,” vol. 21, 1998, pp. 32–33.

[8] T. Inamura, I. Toshima, and Y. Nakamura, “Acquiring motion elements
for bi-directional computation of motion recognition and generation,” in
Siciliano, B., Dario, P., Eds., Experimental Robotics VIII. Springer,
2003, pp. 372–381.

[9] O. C. Jenkins and M. J. Mataric, “Automated derivation of behavior
vocabularies for autonomous humanoid motion,” in AAMAS ’03: Pro-
ceedings of the second international joint conference on Autonomous

agents and multiagent systems. New York, NY, USA: ACM Press,
2003, pp. 225–232.

[10] R. Chalodhorn, K. MacDorman, and M. Asada, “Automatic extraction
of abstract actions from humanoid motion data,” 2004.

[11] K. F. MacDorman, R. Chalodhorn, and M. Asada, “Periodic nonlinear
principal component neural networks for humanoid motion segmenta-
tion, generalization, and generation.” in ICPR (4), 2004, pp. 537–540.

[12] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovic, “Style-based
inverse kinematics,” ACM Trans. Graph., vol. 23, no. 3, pp. 522–531,
2004.

[13] M. Ogino, Y. Katoh, M. Aono, M. Asada, and K. Hosoda, “Reinforce-
ment learning of humanoid rhythmic walking parameters based on visual
information,” in Advanced Robotics, vol. 18, no. 7, 2004, pp. 677–697.

[14] K. J. Lang, A. H. Waibel, and G. E. Hinton, “A time-delay neural
network architecture for isolated word recognition,” Neural Networks,
vol. 3, no. 1, pp. 23–43, 1990.

[15] Webots, “http://www.cyberbotics.com,” commercial Mobile Robot
Simulation Software. [Online]. Available: http://www.cyberbotics.com

Figure 4.6: The plots from top to bottom show the gyroscope signals for the axes
X,Y, and Z recorded during initial and optimized walking motions. Root mean squared
(RMS) of the gyroscope readings are also indicated in the plot legends. Notice that for
the y-axis (vertical direction) the RMS values are significantly reduced for the optimized
motion.

of square of the gyroscope signals according the the objective function in equation 4.6.

The algorithm iteratively calculate another optimal point based on the previous action

command and predicted gyroscope signals until the motion cycle is completed. Then,

the optimal action plan is executed in the simulator.

The optimization result after three episodes of learning is shown in Figure 4.5. As

shown in the figure, motion-phase optimization is especially a line-search. The result

of the optimization remains on the constraint pattern. Thus, no new posture is derived

from this optimization. However, the phase of the motion is altered in an optimal way

of learning based on sensory feedback. The algorithm selects actions that minimize

gyroscope signal oscillation. The plots of gyroscope signals and their root mean square

(RMS) values for the original walking gait and the optimized one are shown in Figure 4.6.

The RMS values of the y-axis gyroscope (vertical direction) for the optimized walking

gait are significantly lower than for the original one (0.3221 vs 0.4509 respectively). This
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Fig. 7. Simulated HOAP2 robot and gyroscope signal. At left a view of
the Fujitsu HOAP2 robot as simulated by the Webots simulation package [15].
The right side shows the simulated gyroscope signal during several phases of
an training walking gait based on a rhythmic gait generator [13].

lower part of Figure 8, and the corresponding gyroscope data

is shown in the bottom of Figure 10. The root mean square

(RMS) values of the gyroscope reading of these two walking

motions are indicated in Figure 10. The RMS value of the

Y-axis gyroscope (vertical direction) of the optimized walking

gait is significant lower than the original walking gait (0.3221
vs 0.4509 respectively). This indicates that the robot can walk
straighter forward with less unexpected turn. The RMS values

of the X-axis and Z-axis of the optimized walking gait are

also lower than in the original walking gait, indicating that

the optimized walking gait achieves higher dynamic stability

than the original one.

We were also able to show that the optimized walking gait

in Figure 8 is able to achieve a significantly faster walking

speed. Thus, our second experiment was to increase walking

speed of our optimized walking gait, by reducing the time

allowed for one period of the walk cycle. We reached three

times faster speed than the original one, while the original

walking gait failed to perform (often going backward) at that

speed because of the unmatched body dynamics. Figure 9

illustrates that the optimized walking gait achieves less body

oscillation by optimizing the trajectory in the latent space. The

intuition that we have about this result is that the optimization

is able to skip certain actions in the loop that will lead to large

oscillation of the body.

V. CONCLUSION

We have proposed a model predictive control scheme for

dynamic humanoid motion based on sensory-motor mapping

in a low dimensional space. The key contribution of our work

is the sensory-motor mapping in low dimensional space which

greatly reduced computational complexity. Further, we obtain

non-linear dynamic compensation of the biped locomotion

based on purely learning approach.

However, we have not yet tested our algorithm with a data

set from human motion. We are looking forward to test that

in the near future. Due to the non-linear embedding constrain

the optimization algorithm that we implemented in this paper

also simply optimized expected sensory feedback along the a

fixed set of posture only. So, only the sequence of the posture

Fig. 8. Initial and optimized walking gait comparison The top image
depicts the robot for 20 seconds of executing the initial walking gait. Utilizing
our motion optimization framework we achieved the faster and walking gait
shown in the bottom image. In the same time period the optimized motion is
able to walk further and straighter.
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Fig. 9. Optimal action selection in gait stabilization

is modified in order to achieve higher dynamic stability, but

the posture itself is not modified at all. We also plan to extend

our optimization algorithm to be able to perform optimization

in the full reduced space. Then, we can expect new postures

that lead to better dynamic performance of the robot.
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Figure 4.7: Initial and optimized walking gait comparison. The top image depicts
the robot performing the initial walking gait for 2 seconds. Motion-phase optimization
results a faster walking gait as shown in the bottom image.

indicates that the robot has learned to walk forward with greater stability. Figure 4.7

shows that the optimized walking gait is significantly faster than the original one. The

walking speed of the optimized walking gait were able to increased to three times the

original gait in further optimization. Thus, a conclusion is that ϕ is controlling the

timing of the motion.

4.4 Three-dimensional Optimization

The second experiment is focused on three-dimensional optimization of the initial walk-

ing gait based on Equations 4.7 to 4.13. Since the optimization process is performed

in the three-dimensional of φ, r and h, in cylindrical coordinate system Φ novel pos-

tures resulting from optimized actions that do not lie on the constraint pattern shall be

expected.

The trajectory of the optimized walking gait in the low dimensional subspace of Figure

4.8 was obtained after three episodes of sensory-motor prediction learning. An improved

dynamically balanced walking gait is achieved. The new trajectory has a similar shape to

the initial one. It has a larger magnitude and is shifted down from initial pattern. After
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Figure 4.8: Three-dimensional optimization results for a walking motion pattern in
a low-dimensional subspace based on an action subspace embedding constraint.
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Figure 4.9: Comparison of gyroscope signals from initial and optimized walk. The
plots from top to bottom show the gyroscope signals for the axes x, y and z recorded
during initial and optimized walking motions. Notice that all of the Root mean squared
(RMS) values are significantly reduced for the optimized motion.
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Figure 4.10: Three-dimensional optimized walking gait on the Fujitsu HOAP2 robot.

remapping this trajectory back to the high dimensional space, The optimized motion

pattern is tested with the simulator and the real robot. The gyroscope reading of the

new walking pattern is shown in Figure 4.9. The RMS values of the optimized walking

gait along the x, y and z axes are 0.0521, 0.0501 and 0.0533 respectively, whilethe

values for the original walking gait were 0.3236, 04509 and 0.3795. The RMS values

from the optimized walking gait are significantly less than the original walking gait.

This indicates significant improvement in the dynamic stability of the robot. These

results are consistent with Equation 4.7. The robot walks with larger step but slower

walking speed than the original walking gait. The optimized and original gaits are shown

in Figure 4.10. The optimized walking gait has a different balance strategy from the
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original walking gait. For the original gait, the robot quickly swings the whole body

on the side of the support leg while it moves the swing-leg forward. For the optimized

gait, the robot leans on the side of the support leg, bends the torso back in the opposite

direction while it moves the swing leg forward slowly. With the optimized gait, the robot

also keeps its torso straight up in the vertical direction all the time. Figure 4.9 confirms

that the algorithm was able to optimize the motion in such a way that the gyroscope

signals of the optimized motion are almost flat.

4.5 Summary

The model-predictive motion generator plans an optimal complete cycle of motion based

on sensory feedback prediction of a predictive model. The predictive model is con-

structed by time-delay RBF network.The predictive model learns to predict future sen-

sory inputs based on history information of states and actions. Then, a motion optimiza-

tion algorithm searches for an optimal eigenpose action command, which is subjected

to an objective function to construct a cycle of motion. One-dimensional optimization

or motion-phase optimization is a line-search. The result of the optimization remains

on the constraint pattern. No new posture is derived from this one-dimensional opti-

mization. However, the motion phase angle was adjusted in an optimal way of learning

based on sensory feedback. A set of novel postures were derived from three-dimensional

optimization. Gyroscope signals of the 3-D optimized motion shown how effective the

motion optimization is.



Chapter 5

Learning to Walk through

Imitation

In previous chapters, the methodology of whole-body optimization of humanoid motion

in low dimensional subspaces has been created. Joint angle data recorded from a hu-

manoid robot were transformed into 3-D eigenposes by using PCA. A predictive model

of causal relationship between three-dimensional posture commands and their conse-

quent gyroscope signals was obtained through the time-delay RBF network. Then, an

optimization algorithm utilized the predictive model to derive a new optimal walking

gait. In this chapter, instead of using data that were recorded from a robot, human

motion captured data (mocap data) are used, instead. There are two problems that

make the mocap data can not be applied directly on a humanoid robot. First, number

of joints and joint type between a humanoid robot body and a human body are generally

different. This problem is known as the correspondence problem in imitation learning

literatures. Second, there are high degree of differences of dynamics between the two

bodies, the mocap data initially generate dynamically unstable motion on a robot. In

this chapter, a heuristic kinematic mapping technique for solving the correspondence

problem is explained. The action subspace scaling in section 3.4 is employed to initial-

ize and facilitate the learning process. A result of learning a human walking gait via

imitation is shown in this chapter.

5.1 Human Motion Capture and Kinematic Mapping

The correspondence problem is a crucial problem in the research area of learning by

imitation. It is the problem of searching for the best match of the features of interest. For

our particular case here, the problem is kinematic mapping of the whole-body postures

45
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Robot skeletonHuman skeleton

Figure 5.1: Human skeleton (left) and robot skeleton (right) for kinematic mapping.

between a human demonstrator and a Fujitsu HOAP-2 humanoid robot. The human

subject and the robot share similar humanoid appearances, however their kinematic

structure (skeleton) are dissimilar. In this dissertation, the correspondence problem is

solved by searching for a set of joint angle data of the robot that generates the best

match poses to the human demonstrator. The solution is simply obtained by solving

inverse kinematics (IK) of correspondent marker positions on the human body and body

of the robot. Initially, a set of markers is attached to the human subject and the 3-D

positions of these markers are recorded for each pose during motion. A Vicon optical

system running at 120Hz and a set of 41 reflective markers were used. These recorded

marker positions provide a set of Cartesian points in the 3D capture volume for each

pose. To obtain the robot’s poses, the marker positions are then assigned as positional

constraints on the robot’s skeleton to derive the joint angles using standard IK routines.

As depicted in Figure 5.1, in order to generate robot joint angles, the human subjects

skeleton is replaced with a robot skeleton of the same dimensions of human skeleton. For

example, the shoulders were replaced with three distinct 1-dimensional rotating joints

rather than one 3-dimensional human ball joint. The IK routine then directly generates

the desired joint angles on the robot skeleton for each pose. There is a limitation of

this technique. There may be motions which the robots joints cannot approximate the

human pose in a reasonable way. This means we should only demonstrate action that

the target robot can perform. For example, using toes in the demonstrated walking gait

is avoided. In the case of the arms movement, the target robot is HOAP-2 robot, which

has only four degree of freedoms at each arm, demonstration of actions that require

six degree of freedoms is also avoided. However, only in classes of human motion that

the robot can handle are considered, this method proved to be a very efficient way of
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generating large sets of human motion data for robotic imitation. Figure 5.2 shown 3-D

eigenposes with some examples of the corresponding human pose of a walking cycle from

motion capture data.

1

2
3

4

2

1

4

3

Figure 5.2: Posture subspace and example poses from mocap. Linear PCA was ap-
plied to joint angle data that is mapped from a human kinematic configuration through
motion capture system as described in Section 5.1. Blue diamonds along the function
approximated trajectory represent different human postures during a single walking
cycle. Red circles mark various example poses as shown in the numbered images.

5.2 Optimization of motion capture data

This experiment focused on making robot learns how to walk using human mocap data.

Optimization of the walking pattern from human mocap data is difficult because the

initial gait is initially unstable. Thus, a motion scaling strategy in a low-dimensional

subspace as described in section 3.4 is employed. When the initial walking pattern in

the low-dimensional subspace is scaled down, it produces a smaller movement of the

humanoid robot, resulting in smaller changes in dynamics during motion. The initial

pattern is scaled down until a dynamically stable motion is found and the learning

process is started. The motion optimization method in Section 4.2 is applied to the

scaled-down pattern until its dynamic performance reaches an optimal level; the trajec-

tory of the optimization result is gradually scaled up toward the target motion pattern.

In this experiment, the scaling of 0.3 of the original motion pattern is typically stable

enough to start the learning process. The final optimization result obtained using this
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Figure 6. Optimization result for a walking motion pattern in a 
low-dimensional subspace based on an action subspace embed-
ding. 

We summarize below the entire optimization and action 
selection process: 

1) Use PCA to represent in a reduced 3D space the ini-
tial walking gait data from human motion capture. 

2)  Employ the non-linear embedding algorithm for pa-
rameterization of the gait. 

3) Start the learning process by projecting actions back 
to the original joint space and executing the corre-
sponding sequence of servo motor commands in the 
Webots HOAP-2 robot simulator [Webots, 2004]. 

4)  Use the sensory and motor inputs from the previous 
step to update the sensory-motor predictor as de-
scribed in Section 4 where the state vector is given 
by the gyroscope signal of each axis and the action 

variables are !,r and h  in the low-dimensional sub-

space. 
5)  Use the learned model to estimate actions according 

to the model predictive controller framework de-
scribed above (Figure 5).  

6) Execute computed actions and record sensory (gyro-
scope) feedback.  

7)  Repeat steps 4 through 6 until a satisfactory gait is 
obtained. 

6 Experimental Results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Motion pattern scaling. The target motion pattern is 

scaled down until it can produce a stable motion to start the motion 

optimization process. 

 
This section explains how the optimization methodology in 
the previous section is used in conjunction with the mocap 
data. From our study of the motion pattern in the reduced 
subspace, we found that we can scale up and down the mo-
tion pattern and get similar humanoid motion patterns ex-
cept for changes in the magnitude of motion. When we scale 
down the pattern in the reduced subspace, it produces a 
smaller movement of the humanoid robot, resulting in s-
maller changes in dynamics during motion. Our strategy is 
to scale down the pattern until we find a dynamically stable 
motion and start learning at that point. We apply the motion 
optimization method in Section 5 to the scaled-down pattern 
until its dynamic performance reaches an optimal point; 
then we scale up the trajectory of the optimization result 
toward the target motion pattern. In our experiments, we 
found that a scaling down of 0.3 of the original motion pat-
tern is typically stable enough to start the learning process.  
Our final optimization result obtained using this procedure 
is shown as a trajectory of red circles in Figure 7. It corre-
sponds to about 80% of the full scale motion. 
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Figure 5.3: Motion pattern scaling and optimization of human mocap data. The
target motion pattern is scaled down until it can produce a stable motion to start the
motion optimization process.

procedure is shown as a trajectory of red circles in Figure 5.3. It corresponds to about

80 % of the full scale motion from mocap data.

For the results in Figure 5.3, five learning iterations for scale 0.3, 0.5 and 0.7 were

performed. And, ten learning iterations were performed for the final results for the scale

0.8. The optimization time also depends on parameters εϕ, εr and εh. The parameter

εϕ must be defined such that value of ϕs is greater than the maximum difference of

motion-phase-angle of the original mocap data. This will ensure that the optimization

algorithm is allowed to search for a pose in a range that the original movement achieved.

The longer range of ϕs is the better exploration. For r and h, the same parameter setup

with ϕ could be applied. The value of εr and εh were set to 0.5 for all of the optimizations.

The objective function in (4.6) has three tuning parameters, which are λx, λy and λz. At

the beginning, values of these parameters are usually set to 1. From observation of the

first learning iteration, the parameters may be tuned. After that values of parameters

are maintained for the rest of learning iterations. In this dissertation, λx and λz were set

to 1.0. While λy, which correspondent to the vertical direction was set to 2.0. Because,

a lot of unexpected turns during the first learning iteration motion were noticed.

Simulation and experimental results are shown in Figure 5.4. The learning process is

performed in the simulator [34] and tested the resulting motion on the real robot. The

walking gait on the real robot is not as stable as the results in the simulator because

of differences in frictional forces modeled in the simulator and in the floor. However,
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Figure 5.4: Learning to walk through imitation. The pictures in the first row show a
human subject demonstrating a walking gait in a motion capture system. The second
row shows simulation results for this motion before optimization. The third row shows
simulation results after optimization. The last row shows results obtained on the real
robot.
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performing further learning directly on the real robot (if permissible) should rectify this

problem and improve performance. Note that the learned motion is indeed dynamic and

not quasi-static motion because there are only two postures in our walking gait that can

be considered statically stable, namely, the two postures in the walking cycle when the

two feet of the robot contact the ground. The rest of the postures of the walking gait

do not need static balance condition to maintain balance.

5.3 Summary

Learning of a human walking gait through imitation was demonstrated in this chapter. A

heuristic method for solving the correspondence problem was implemented for mapping

of human motion data to a robot body. The action subspace scaling technique that

diescribed in Chapter 3 was employed to obtain a stable walking gait to start the learning

process. After the first small scale motion was learned, the same action subspace scaling

technique is used to scale-up the motion pattern toward the original pattern to achieve

the original motion as much as possible.



Chapter 6

Motion Optimization in

Hyperdimensional Subspaces

Since the beginning of this dissertation, the eigenpose data that have been used for mo-

tion learning are three dimensional. As described previously, 3-D data are convenient for

visualizing and developing motion optimization algorithm through analytical geometry.

Periodic motion patterns such as hand coded walking gait and human mocap walking

gait were successfully learned by the algorithm that uses 3-D eigenposes. However for

some motion patterns, using only three dimensions of eigenposes can not preserve sig-

nificant characteristic of the original motion. In this chapter, number of dimensions of

the eigenpose data for motion optimization will be extended beyond three-dimensional.

The phase-motion optimization concept in section 4.3 will be implemented along with a

newly developed cylindrical coordinate transformation technique for hyperdimensional

subspaces. The extended algorithm will be used for HOAP-2 robot to learn a sidestep

motion from a human demonstrator through a motion capture system.

6.1 Human motion capture data of sidestep motion

A motion capture session of a human demonstrator performing a sidestep motion that

is used as the target imitated motion is shown in Figure 6.1. In the figure a human

demonstrator was sidestepping to the right hand side of himself. The motion sequence

can be divided into four major steps starting from a standing posture. First, the right

leg swings off. Second, the right leg lands to the ground. Third, the left leg takes off

the ground. And fourth, the left leg swings in toward the right leg. For purposes or

later discussion, the sidestep motion shall be defined in four phases, which are swing-

off, landing, take-off and swing-in. After the kinematic mapping process in section

51
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a) b) c)

d) e) f)

Figure 6.1: Motion capture session of sidestep motion. Six samples of a right-hand
side sidestep motion sequence are shown in subfigure a), b), c) to f), respectively. A
human demonstrator was sidestepping to the right hand side of himself. The motion
sequence can be divided into four major steps starting from a standing posture in
subfigure a). First, the right leg swings off in subfigure b). Second, the right leg lands
to the ground in subfigure c). Third, the left leg takes off the ground in subfigure
d). Fourth, the left leg swings in toward the right leg in subfigure e). And come
back to a standing posture in subfigure f). Note that the subfigure f) is a standing
posture after one more sidestep motion cycle was performed. And each sidestepping
cycle takes about 1 second. The sidestep motion shall be defined in four phases, which
are swing-off, landing, take-off and swing-in.

5.1 was applied to the mocap data, 20 dimensions of joint angle data were obtained.

Subsequently, the joint angle data were transformed into orthogonal principal axes as in

PCA mapping in section 3.1.

The accuracy accumulation along number of principal components are plotted in Figure

6.2. From this figure, when the first three principal axes are used, reverse PCA mapping

can recover only 81.38% of accuracy of the original joint angle data. More than 98% of

accuracy can be recovered when more than 10 dimensional eigenposes are used. And,

100% of accuracy can be obtained only when all of 20-dimensional eigenpose data are

used. In this chapter, 20-dimensional eigenposes are used for learning.

Three-dimensional eigenpose data of the first three principal components of the sidestep

motion are plotted in Figure 6.3 as black diamond markers. The pattern of blue dot

markers in Figure 6.3 is the sidestep motion pattern when a scaling factor 0.5 (described

in section 3.4) was applied, which found to be stable enough to begin the learning

process. The phase-motion optimization will be performed on this 0.5 scaled pattern of

the full scale motion.
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Figure 6.2: Accuracy accumulation along principal components of sidestep motion
data in figure 6.1. When the first three principal axes are used, reverse PCA mapping
can recover only 81.38% of accuracy of the original joint angle data. In order to recover
more than 98% of accuracy, more than 10 principal axes have to be used. And, 100%
of accuracy can be obtained only when all of 20 principal axes are used.
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Figure 6.3: First three dimensions of sidestep eigenpose data at scale 1.0 and 0.5.
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6.2 Cylindrical coordinate transformation of hyperdimen-

sional subspaces

The motion-phase optimization must be performed in a cylindrical coordinate system.

Transformation of data from a 3-D Cartesian coordinate system to a 3-D cylindrical

coordinate is straightforward. However, that is not the case for transformation of data

that have more than three dimensions. In this section, a newly developed concept of

cylindrical coordinate transformation for a hyperdimensional data is introduced.

For f ∈ Rn when n = 3, transformation from a Cartesian space X to a cylindrical

coordinate system Φ is mapping:

f(x, y, z)→ f(ϕ, r, h) (6.1)

where

ϕ = arctan(
y

x
), (6.2)

r =
√
x2 + y2, (6.3)

and

h = z. (6.4)

For f ∈ Rn when n > 3, a function of n-dimension may be written by

f(d1, d2, d3, . . . , dn) (6.5)

where di when i = 1, . . . , n and n > 3, represents a variable in an orthogonal axis in Rn.

We can also express function (6.5) in a form of:

f(x, y, z1, . . . , zn−2) (6.6)

where zi when i = 1, . . . , n− 2 and n > 3.

Since, the cylindrical coordinate system is a 3-dimensional coordinate system. Trans-

formation of a hyperdimensional function f ∈ Rn where n > 3 to cylindrical coordinate

system Φ is undefined. However, the hyperdimensional function f can be represented

by a set of multiple cylindrical coordinate frames. Suppose that f is a 5-dimensional

function, f can be express in the form of Equation 6.6 by:

f(x, y, z1, z2, z3). (6.7)
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Mapping of f in (6.7) can be regarded as:

f(x, y, z1)

f(x, y, z2)

f(x, y, z3)

⇒
f(ϕ, r, h1)

f(ϕ, r, h2)

f(ϕ, r, h3)

(6.8)

where transformation of ϕ and r follow equation (6.2) and (6.3). And, the transformation

of h1, h2 and h3 is shown in equation (6.4). Thus, mapping of a n-orthogonal dimensions

of f to multiple cylindrical coordinate systems can be defined as:

f(x, y, z1, . . . , zn−2)→ f(ϕ, r, h1, . . . , hn−2). (6.9)

For the 20-dimensional of sidestep eigenpose data, 18 cylindrical coordinate frames are

needed to describe the data-set. Example of the first six cylindrical coordinate frames

of the sidestep motion are shown in Figure 6.4. Let fsidestep(ϕ, r, h1, h2, . . . , h18) be

a function in the cylindrical coordinate systems that describes the sidestep motion.

Subfigure a), b), . . . , f) depicts fsidestep(ϕ, r, h1), fsidestep(ϕ, r, h2), . . . , fsidestep(ϕ, r, h6),

respectively. Notice that both subfigure a) in Figure 6.4 and the bule dot makers in

Figure 6.3 represent fsidestep(ϕ, r, h1) but at different perspective. An opened gap can

be observed in the subfigure a) as well as in the subfigure c) and f). This is because the

data pattern was manually segmented from a human motion capture data sequence that

contains multiple periods of sidestep motion. And because of a nature of data which

were recorded from human movement, each period of motion is not exactly the same

throughout the motion sequence. Even the data are not a perfect closed-cruve pattern,

its embedded action subspace is modeled as a closed-curve function.

6.3 Motion-phase optimization of hyperdimensional eigen-

poses

The curse of dimensionality problem will occur, if one try to perform optimization

for all of the orthogonal components of the hyperdimensional eigenposes. Thus, the

one-dimemsional motion optimization that has been explored in section 4.5 of the 3-

D eigenposes shall be extended for the hyperdimensional case in this chapter. For

three-dimensional case, the action subspace embedding(described in section 3.3) is a

single parameter function of motion-phase angle ϕ that can derive values of the radius

r and the hight h of a periodic motion pattern in a cylindrical coordinate system Φ.

For a hyperdimensional case of n dimensions eigenpose data, the action subspace em-

bedding is a single parameter function of motion-phase angle ϕ that derives values of
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Figure 6.4: First six cylindrical coordinates of sidestep hyperdimensional eigen-
pose data. Let fsidestep(ϕ, r, h1, h2, . . . , h18) be a function in the cylindrical coordi-
nate systems that describes the sidestep motion. Subfigure a), b), . . . , f) depicts
fsidestep(ϕ, r, h1), fsidestep(ϕ, r, h2), . . . , fsidestep(ϕ, r, h6), respectively.
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r, h1, h2, . . . , hn−2 of a periodic motion pattern. For the sidestep motion pattern, the

action subspace embedding is one-to-nineteen mapping:

[r, h1, h2, . . . , h18] = g(ϕ). (6.10)

Note that the cubic spline algorithm is used for modeling the action subspace embedding

function in this case instead of the RBF network. The nonlinear autoregressive network

with exogenous inputs (NARX) [35] [36] is used for prediction of gyroscope signal instead

of the time-delay RBF network. The NARX network is a recurrent dynamic network,

with feedback connections enclosing several layers of the network. The NARX model is

based on the linear ARX model, which is commonly used in time-series modeling. In

this dissertation, the model of NARX for predicting gyroscope signal from motion-phase

angle input is:

ωt+1 = f(ωt, ϕt, ωt−1, ϕt−1). (6.11)

Block diagram of the NARX predictor is shown in Figure 6.5. The details of feed-forward

neural network structure in Figure 6.5 is shown in Figure 6.6.

Feed 
Forward 
Network

Time 
Delay

Time 
Delay

ωt+1

ωt−1

ωt

ϕt ϕt

ϕt−1

Figure 6.5: NARX predictor for motion-phase optimization.

The embedded action in Equation 6.10 and the NARX predictor model in Equation 6.11

can be directly applied to the motion-phase optimization in Equation 4.14:

ϕ∗t = arg min
ϕt

Γ(F (ωt, ωt−1, ϕt, ϕt−1)).

Optimization result after five learning episodes is shown in a 3-D coordinate frame of

the first three principal axes in Figure 6.7. From this figure, the optimized eigenposes

are points on the original motion pattern, but the optimized postures are distributed

differently from the original pattern. This is because, the motion-phase optimization is
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Input layer

Output layer

Hidden layer

Figure 6.6: Feed-forward neural network for NARX predictor. Numbers of node at
input layer, hidden layer and output layer are 12, 5 and 3, respectively.
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Figure 6.7: Phase-motion angle optimization result of sidestep hyperdimensional
eigenpose data.
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a) b) c)

Figure 6.8: Simulation result of sidestep hyperdimensional eigenpose data optimiza-
tion. Subfigures in column a) shown, original sidestep motion sequence of the human
demonstrator. Subfigures in column b) shown, the sidestep motion sequence on HOAP-2
robot in a dynamics simulator without optimization at the motion scale 0.5. Subfigures
in column c) shown, the sidestep motion after five learning episodes at motion scale
0.5.
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one-dimensional optimization on the parameter ϕ of Equation 6.10. Then the optimized

eigenposes are strictly constrained within the original set of postures. Difference of data

distribution between the original pattern and the optimized pattern, means timing of

postures during the motion have been altered. Notice in the figure that the opened gap of

the original pattern is now closed by the optimized postures. There are of two reasons for

this phenomena. One is that, the action subspace embedding or the constraint pattern is

modeled as a closed-curve. The other is that, based on sensory feedback during learning

episodes, the optimization algorithm found that it can achieve a lower gyroscope signal

oscillation. Thus, the algorithm assigned some postures in the opened gap. As a result,

the movement during the previous opened gap is smoother. Another attempt of the

algorithm to obtain smoother movement can be noticed from the most lower-left conner

of the pattern in the figure that the algorithm decided to plan the trajectory across an

irregular conner of the original pattern.

Simulation results of sidestep motion are shown in Figure 6.8. Column a) in Figure 6.8

shows original sidestep motion sequence of a human demonstrator. Column b) shows

HOAP-2 robot performing the sidestep motion sequence at motion scale 0.5 without

optimization in a dynamics simulator. Column c) shows the sidestep motion after five

learning episodes at motion scale 0.5. In Figure 6.8, the first row and the last row of

subfigures in every column are the standing postures at the beginning and the end of

the motion sequence, respectively. The second row is the swing-off phase. The third

row is the landing phase. The fourth row is the take-off phase. And the fifth row is

the swing-in phase. At column b), right foot and left foot of the robot were bouncing

at the landing phase and the take-off phase, which caused the robot could not lift its

left foot up in the subsequent take-off phase. As a result, the robot dragged its left

foot along the ground during the swing-in period. This made the whole body of the

robot turned as can be observed from the last two rows of column b). At column c), the

robot could perform the sidestep motion without unexpected turn of the body. While,

all of the key postures in the figures of column c) look very similar to the postures

in column a), timing of movements are significantly different. The landing phase and

the swing-in phase of the optimized motion in column c) are relatively slower than the

original human motion. These can also be observed in Figure 6.7. In Figure 6.7, there

are two parts of the motion pattern that there are high density of the optimized postures

distribution. These are corespondent with the slow landing phase and swing-in phase.

The slow landing phase and swing-in phase also prevented the robot from dragging its

left foot on the ground. As a result, the unexpected turned was not presence. And the

robot learned the sidestep motion successfully.
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6.4 Summary

In this chapter, conventional 3-D transformation from Cartesian space to cylindrical

coordinate system has been extended to be able to work beyond 3-D. The extended

transformation can map an n-orthogonal-axes coordinate system into multiple cylindrical

coordinate frames. The one-dimensional motion-phase optimization was demonstrated

to work along with the hyperdimensional action subspace embedding. This yields a fast

learning and very accurate motion imitation.





Chapter 7

Discussion and Conclusion

In this dissertation, a framework for a humanoid robot for learning periodic-type of

human motion through imitation has been developed. Human motion data from motion

capture system are mapped to the robot body. Motion data in joint space of the robot

are transformed into orthogonal axes of principal components using linear PCA. The

motion data that were obtained by PCA are called eigenpose data. For periodic-type

of motion, the eigenpose data are transformed again into a cylindrical coordinate frame

or multiple cylindrical coordinate frames depends on whether 3-D eigenposes or beyond

3-D eigenposes will be used for imitation learning. The eigenpose data in the cylindrical

coordinate system are then modeled as a single parameter closed-curve function called

action subspace embedding. The single parameter of the action subspace embedding ϕ is

defined as motion-phase angle. The motion-phase angle is the parameter that has direct

effect to timing of movement during the motion. Motion learning in this dissertation is

an optimization of sensory feedback from executing the eigenpose motion commands. At

the beginning of the learning process, sensory feedback might be recorded from motion

that is reproduced via the eigenpose commands from the mocap data. Generally, the

reproduced motion is not stable enough to begin the learning process. In order to

be able to get a complete cycle of stable motion to begin the learning, the unstable

motion must be scaled down. The motion will be scaled down until a complete cycle of

stable motion is found. After sensory feedback from the first motion trial is obtained,

a predictive model can be formed. The predictive model is trained to predict sensory

feedback of the next time step based on history information of the eigenpose command

and the sensory feedback itself. Once the sensory feedback of the next time step can

be predicted, the eigenpose commands for a complete motion cycle is planed such that

for each action command executed its consequence feedback is optimal subject to the

objective of the motion. An optimal action plan can only be obtained when sensory

prediction is accurate. The predictive model can deliver more accurate prediction only

63
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when it has more history information of action and feedback. Thus, through a number

of learning trails an action plan for a good complete motion cycle will be achieved. This

is a brief summary of the overall motion imitation learning framework. Subsequently,

each individual part of the framework will be discussed in details based on all of the

results in this dissertation.

7.1 PCA for dimensionality reduction of motion data

Dimensionality reduction techniques are normally used for visualization of high-dimensional

data. There very few to none of work that further uses reduced-dimensional data. Be-

cause, there is a presumption that essential properties of the data may not be preserved

after dimensionality reduction. The work in this dissertation demonstrated merit of

the low-dimensional data. The compact representation of whole-body posture in low-

dimensional subspaces is the first key component the framework. It allows a tractable

motion optimization. The conventional linear principal components analysis is used in

the framework for dimensionality reduction of the high dimensional joint data. Linear

PCA was first chosen at the beginning of this study for a number of reasons. First,

it is a nonparametric algorithm. Its outcome is very reliable. Second, its computation

operation is relatively low. So, it is a fast algorithm. Third, it is a well-known algorithm.

Thus, it is suitable for serving with a novel idea such as the work in this dissertation.

From results of studies of 3-D posture data from PCA transformation or eigenposes can

be concluded that temporal sequence of postures during motion is preserved in the PCA

low-dimensional subspaces. Manipulations of eigenpose data such as generalization,

scaling and sensory feedback mapping can be used for improving dynamic stability of

the motion. It will be very interesting to extend this result for different kind of data

and in different application other than human motion learning. Manipulation of 3-D

eigenpose data such as translation and rotation of the motion pattern have not been in-

deep studied. Without a cylindrical coordinate system, eigenpose data of each principal

component can be plotted as a function of time. Periodic eigenpose data will be shown as

periodic signal with time as in Figure 3.3. From some preliminary results 1, translation

of the eigenpose data along an principal component axis is shifting mean value of a

principal axis, which could lead to posture shifting. While rotation of the 3-D eigenpose

pattern, is a complicated case of magnitude projection between orthogonal axes of the

principal components. These hypothesises of translation and rotation of 3-D eigenpose

data should be further study in further works.
1Not present in this dissertation
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From Figure 3.4 and 6.2, accuracy of data that PCA can preserve increases in order

with the number of principal components. The motion optimization algorithm in this

dissertation used only three principal components in Chapter 4 and 5. However, Figure

6.2 in Chapter 6 shown that using only 3-D eigenpose data may not sufficient originality

of the prototype motion to learn the motion. Thus, the motion optimization algorithm

was extended to work with eigenpose data that have number of dimensions beyond three

by using the rest of the principal components. This demonstrated flexibility of linear

PCA algorithm. Nonlinear PCA (NLPCA) algorithm, which provides better accuracy

data from dimensionality reduction does not have the same flexibility. The nonlinear

principal components are not arranged in order. And in the case that more number

of nonlinear principal components are required, the auto-associative NLPCA network

has to be retrained. Moderns dimensionality reduction algorithms such as locally linear

embedding (LLE) [27] and ISOMAP [28] provides choices of number of dimensions of

the feature data. However, these two algorithms are not nonparametric algorithms. The

results are sensitive to some their tuning parameters. Adding new data to the already

learned data set may also involve relearn all of the data set. For linear PCA, the an

existed transformation matrix can be used with new data immediately. The Gaussian

process latent variable method for dimensionality reduction [32] provides robustness

against missing data issue. However, its latent space is not continuous. This could

fail the action subspace scaling. Furthermore, an assumption of linear combination of

principal components of linear PCA also supports optimization of individual dimension

of eigenposes. This will prevent the number of computational operations of exhaustive

search (optimization), which is used in this framework to grow exponentially. Thus,

linear PCA is the most suitable dimensionality reduction algorithm for human motion

learning application.

7.2 CNLPCA for periodic motion recognition

In the preliminary study of this dissertation, CNLPCA is proposed for motion recogni-

tion of a humanoid robot. In a space of reduced dimensionality, the algorithm is able to

divide sequences of humanoid motion data into segments of periodic motion. The motion

recognition algorithm has two phases. The first phase is a temporal ordering segmenta-

tion process that combines learning and temporally-constrained data point assignment

among multiple neural networks. The second phase is a process of minimizing redundant

networks that merges redundant networks based on the average spatial distance between

the periodic trajectories in the feature space.
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CNLPCA performs well for periodic humanoid motion patterns. Note that, although

the joint angle space used in this research is 20 dimensional, the proposed algorithm can

deal with more than 20 dimensions. The algorithm abstracted five out of six types of

humanoid motion without any prior information about the number or type of motion

patterns. There are three tuning parameters: n, α, and the threshold for Dij in the

algorithm. While values for these parameters cannot be randomly assigned, the auto-

matic segmentation results are not sensitive to them. One may refer to the guideline for

assigning values to these parameters in section 2.2.

Although a CNLPCA neural network divides and conquers the low-dimensional data in

the feature space along the temporal sequence, it cannot distinguish motion patterns

that only differ in frequency, because a CNLPCA network is a static network. In other

words, our algorithm cannot recognize the differences between fast and slow motion

patterns that are otherwise kinematically identical, if such patterns exist. However in

practice, a fast walking gait and a slow walking gait have different postures because

of the change in dynamics. This produces different low-dimensional data patterns in

the feature space. Thus, the algorithm will be able to distinguish these data patterns.

The automatic segmentation results can be used to facilitate the learning of complex

tasks performed by humans by deriving an abstract state-action space for reinforcement

learning [24].

The fundamental concept of CNLPCA that one variable can govern cycle of periodic

motion is an interesting idea. In this dissertation, this concept was later used for con-

struction of action subspace embedding. In the preliminary study, training the NLPCA

network takes very long time for a large number of data. Results of NLPCA are also

not reliable. Different results can be occurred from different NLPCA networks that were

trained from the same data-set. Performance of CNLPCA is good when it is used for

modeling planar circular patterns. But, when a closed-curve pattern appears to be an

irregular shape, the CNLPCA can not perform well. Many interesting and useful con-

cepts of low-dimensional human posture have been arisen from the preliminary study in

Chapter 2. Consequently, algorithms that have similar properties without the drawbacks

that mentioned here were developed in later chapters of this dissertation.

7.3 Cylindrical coordinate system for periodic motion

The eigenpose data pattern of periodic motion always appears as a closed-curve. The

NLPCA with circular constraint (CNLPCA) is able to model and generalize a closed-

curve pattern. However generalization of CNLPCA can be suffered, when variation of

data on the vertical axis is high. This is due to the nature of the underlying single
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parameter at its feature layer. A 3-D closed-curve in Cartesian coordinate system can

be considered as an opened-curve function in polar coordinate system. Thus, various

function approximation techniques can be applied. Cylindrical coordinate system and

spherical coordinate system are both polar coordinate system. However, the cylindrical

one are more relatively intuitive for transformation back and forth to the cartesian

system. In Chapter 6, a concept for transformation of an n-orthogonal axes coordinate

system when n > 3 to multiple cylindrical coordinate frames was introduced. This

allows eigenpose data that have number of dimensions more than three dimensions to

be used for the motion learning framework in this dissertation. The hyperdimensional

coordinate transformation in section 6.2 can not be done, If the spherical coordinate

system was used instead of the cylindrical coordinate system.

7.4 Action subspace embedding

In section 3.3, action subspace embedding models a motion pattern (3.23) as a single

angular parameter function in cylindrical coordinate system. It is designed to imitate

a characteristic of CNLPCA that can generate a complete periodic function by varying

the angular parameter that constrains its feature layer from 0 to 2π. While function

approximation of CNLPCA is auto-associative neural network, for the action subspace

embedding any function approximator can be used. For a three-dimensional case, the ac-

tion subspace embedding is constructed to map ϕ to r and h. The single angular param-

eter ϕ is defined as motion-phase angle of a periodic motion pattern. The motion-phase

angle has direct effect on timing of posture during the motion. This property is used

for one-dimensional motion-phase optimization in section 4.3 and 6.3. Unlike the case

of three-dimensional optimization (section 4.4 and 5.2), the search space of the motion-

phase optimization is only one-dimensional. Its number of calculations does not grow

exponentially when the size of search space is increased. Because of the rest of motion

parameters in other dimensions are constrained to the motion-phase angle, adjusting

the motion-phase angle effects overall movement of the motion. Thus, the motion-phase

optimization is fast and effective. However, for learning motion that is highly dynamic,

motion scaling and 3-D optimization is unavoidable. For 3-D optimization, the action

subspace embedding is used for constructing the 3-D search space as described in section

4.2.
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7.5 Action subspace scaling

The action subspace scaling is performed in eigenpose space. This property is not

occurred from PCA transformation process. The scaling ability is inherited from a stan-

dard statistical data normalization process that is performed as the data preprocessing

for PCA. Note that multiplying a vector of raw joint angles data by a scalar factor does

not yield a similar posture. Because, the data among each joint originally are in differ-

ent scales of values. But after normalization, the data are scaled into the same range.

When the normalized data is multiplied by a scalar value, the scaling factor contributes

proportionally to ranges of the motion of each joint. This makes similar postures to

be produced with different magnitudes. The posture scaling yields reasonable results

only when the motion data set contains only one specific type of motion. In a general

case, motion scaling might be performed directly by scaling the normalized data without

involving a manipulation in the eigenpose space as the action subspace scaling. However

for motion learning using eigenposes, optimized postures are derived from the eigenpose

space. Thus, the action subspace scaling concepts must be employed.

The action subspace scaling is used for increasing or decreasing size of action subspace

embedding. To be able to begin learning from human motion data which initially pro-

duces an unstable motion, the action subspace scaling technique in section 3.4 must be

employed. The action subspace scaling creates a similar motion pattern with smaller

scale of movement. A smaller motion pattern produces less dynamic perturbation. An

unstable motion pattern is scaled down until at one point, that the motion is stable

enough to begin learning process. Scaling down a motion pattern can be done without

much precaution. On the other hand, scaling up the magnitude of motion for motion

generalization or parameterization purposes, the joint limits of the robot have to be con-

cerned. Dynamically stable motion should not be expected directly from motion scaling

process without optimization.

7.6 The predictive model

A predictive model is used for model-predictive motion planing in this framework. It

predicts sensory information of the next time step based on history information of

sensory-state and action-command. Learning algorithms for time series prediction were

implemented to constructed the predictor.

In Chapter 4 and Chapter 5, the predictive model was obtained by training second-

order time-delay RBF network. The second-order predictive function was justified by

simply testing prediction by increasing the order of the function from first-order function.
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Prediction results of second-order function was found to be satisfied as shown in Figure

4.2. A model that has order higher than two are not tested. Because, the second-order

function has already give us good results. Moreover, increasing of the order of the

function is increasing number of dimensions of the input vector of the predictor. In this

case, the number of dimensions of the input vector is increased by six dimensions when

an order of the function are increased. To avoid unnecessary computation complexity,

the function are kept to be as simple as possible. However, a first-order function was

implemented the work in [37], when center-of-pressure was used as the sensory state

instead of gyroscope signals. Thus, an appropriate order of the function also depends

on the state variables in the model. Different kinds of state variable can be applied to

this framework. The time-delay RBF network that was used in this dissertation has

3,000 kernels, which is the maximum number of kernels that can be implemented in the

computer, which was used in experiments. A higher number of RBF kernels may result

better prediction. But this will increase computational cost, especially when it is used

in our optimization routine, which is a brute-force search.

In Chapter 6, the nonlinear autoregressive network with exogenous inputs was used for

training the predictive model. Training time and forward calculation time of the NARX

are much shorter than the RBF. The prediction results of NARX algorithm are less

accurate than results from RBF. However, the NARX network are much more robust

when out-of-range input data are presented. The robustness against out-of-range input

is very beneficial for predictive motion generator that is used for motion optimization

part in this framework. Because larger search-space can be used in the optimization

process. As a result, the overall learning process will be accelerated.

7.7 Motion optimization

The predictive model is combined with an optimization algorithm to form a model pre-

dictive motion generator. The predictive motion generator resembles the model predic-

tive control scheme [38]. The predictive motion generator with time-delay RBF predictor

currently does not work fast enough to be used for online motion controller. For the

simplest one-dimensional optimization (in section 4.3), the algorithm took three minutes

for optimization of one walking gait cycle. Thus, motion planing process in this disser-

tation is considered to be batch planing. For three-dimensional optimization (in section

4.4), one walking cycle took about 20-30 minutes. Because the optimization algorithm

that is used in this dissertation is a straightforward brute-force search, the overall op-

timization time is increased exponentially when number of dimensions is increased. A

more sophisticated optimization algorithm is planned to use in the future work.
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Ten learning iterations were performed to get the optimization result of the hand-coded

walking gait in Figure 4.8. For the results of human walking gait from motion capture

data in Figure 5.3, five learning iterations for scale 0.3, 0.5 and 0.7 were performed.

And, ten learning iterations were performed for the final results for the scale 0.8. The

optimization time also depends on parameters εϕ, εr and εh. The parameter εϕ must be

defined such that value of ϕs is greater than the maximum difference of motion-phase-

angle of the original mocap data. This will ensure that the optimization algorithm is

allowed to search for a pose in a range that the original movement achieved. The longer

range of ϕs is the better exploration. For r and h, the same parameter setup with ϕ

could be applied. The value of εr and εh were set to 0.5 for all of the optimizations. The

objective function in (4.6) has three tuning parameters, which are λx, λy and λz. At the

beginning, values of these parameters are usually set to 1. From observation of the first

learning iteration, the parameters may be tuned. After that values of parameters are

maintained for the rest of learning iterations. In this dissertation, λx and λz were set to

1.0. While λy, which correspondent to the vertical direction was set to 2.0. Because, a

lot of unexpected turns during the first learning iteration motion were noticed.

Note that even, all of the motion optimization in this dissertation was initially performed

in a simulator then tested with the real robot, the learning can be performed directly

on the robot as depicted in Figure 1.1. Computer simulations were used for accelerating

the result and safety reasons.

7.8 Further research and development

The human-motion learning through imitation framework described in this dissertation

demonstrated how a humanoid robot can learn basic human motion. It is aimed to

serve as a tool for learning complex human behavior. One immediate application of

this work is replacing the hand-coded motions in Chapter 2 with the imitation human

motions. A further implementation could be using the imitation human motions as high-

level actions for learning complex behavior by learning algorithm such as reinforcement

learning. To learn actions other than walking and sidestepping, the objective function

in (4.6) could be modified to accommodate different sensory variables such as foot-

contact pressure or ZMP. This research direction are currently being studied. Modern

learning algorithm such as nonparametric probabilistic inference and learning [37] is also

explored to improve performance of the predictive model and the optimization process.

The proposed framework work as an off-line motion generator rather than an on-line

feedback control. Thus, it cannot be applied directly to the problem of navigation on

non-uniform uneven terrain. To effectively navigate on uneven terrain, a higher degree
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of compliance control is needed in the leg and foot actuators. Robustness of motion can

be added to an off-line motion generator by using a motion stabilizer [39], which is a

combination of simple force/torque and gyroscope-based feedback controllers. Possibility

for develops a real-time feedback controller based on learning inverse model of predictor

(Equation 4.1) is also currently under study. A method based on concepts in this

dissertation for learning none-periodic human motion as well as motion parameteriation

using eigenposes are also currently study. The researches based on the results in this

dissertation are on-going researches.

7.9 Conclusion

A humanoid robot that learns how to perform bipedal locomotion by imitation through

representation of whole-body posture in low-dimensional subspace and hyperdimensional

space of eigenpose data is successfully demonstrated. The low-dimensional subspace that

is used in this work does not only contain sample of demonstrated postures, but also

consist of none demonstrated poses. The none demonstrated poses are constructed by

variation of the values of the principal components. The none demonstrated poses can

be clearly observed from the optimization result in section 4.4. And, notice that the

low-dimensional subspace only contains poses those are relevant to the target imitated

motion.

A humanoid robot learn to walk by combining a learned sensory-motor model with im-

itation of a human gait is a result of this work. This approach does away with the need

for detailed, hard-to-obtain, and often fragile physics-based models that previous meth-

ods have relied on for stable gait generation in humanoids. The results also demonstrate

that the physics of a complex dynamical system can be learned and manipulated in a

low-dimensional subspace. Using a low-dimensional subspace greatly reduces computa-

tional complexity and facilitates the learning process. Since all of the joints are always

constrained to encode postures near the ones to be imitated, the low-dimensional sub-

space reduces the occurrence of unmeaningful or potentially harmful actions such as

self-intersection in the learning process. The action subspace embedding in cylindrical

coordinate system not only further reduces the dimensionality and complexity, but also

provides meaningful variables in the low-dimensional subspace such as motion-phase-

angle ϕ and r. Optimization of the motion-phase-angle was shown to be equivalent to

optimizing posture timing during the motion, while the radius of the action subspace

embedding r reflects magnitude of the motion, which is contributed by the first two prin-

cipal components of the motion pattern. However, an absolute magnitude of a posture in

a motion pattern is ‖x‖, where x is an n-dimensional eigenpose vector. The parameter
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h in a cylindrical coordinate system is equivalent to the i-th principal component of n

components of PCA transformation, where i > 2 and i 6 n. In other words, there is no

transformation for h. Thus, shifting level of action subspace embedding up or down in

h direction is changing the mean value of a principal component. It depends what basis

movement that the principal component represents. The result of shifting value of h is

shifting all posture which that principal component produces.



Appendix A

Principal Components Analysis:

Direct and Inverse Mapping

This appendix describes how to perform PCA mapping in this dissertation as well as

how to perform inverse PCA mapping.

Computing PCA using the covariance method can be perform by the following steps:

Sort data in a form of column vector: Let θ is a vector whole-body of joint angle

data of a humanoid robot that has m joints:

θ =


θ1

θ2
...

θm

 . (A.1)

The time series of joints angle data of a motion segment Θ can be described in

matrix form:

Θ =


θ11 θ12 . . . θ1n

θ21 θ22 . . . θ2n
...

...
. . .

...

θm1 θm2 . . . θmn

 (A.2)

where n is number data at each joint.
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Normalized the data: Each row of Θ must be normalized such that it has zero mean

and unity standard deviation. Let µi be average value (mean) of joint (row) i:

µi =
1
n

n∑
j=1

θij (A.3)

and σi be standard deviation of joint i:

σi =

√√√√ 1
n

n∑
j=1

(θij − µi)2. (A.4)

Let Q be a normalized version of Θ:

Q =


q11 q12 . . . q1n

q21 q22 . . . q2n
...

...
. . .

...

qm1 qm2 . . . qmn

 (A.5)

where

qij =
θij − µi
σi

(A.6)

when i = 1 . . .m joint and j = 1 . . . n number of data.

Calculate the covariance matrix of Q: Let qi when i = 1 . . .m be normalized data

of joint i. The normalized data Q can be rewritten in vector form:

Q =


q1

q2

...

qm

 . (A.7)

The normalized data of joint i can be expressed in form of row vector:

qi =
[
q1 q2 . . . qn

]
. (A.8)

Thus, covariance matrix of Q is:

A = cov(Q)

=


cov(q1,q1) cov(q1,q2) . . . cov(q1,qm)

cov(q2,q1) cov(q2,q2) . . . cov(q1,q1)
...

...
. . .

...

cov(qm,q1) cov(qm,q2) . . . cov(qm,qm)


(A.9)
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where

cov(qi,qj) =
∑m

i=1(qi − µi)(qj − µj)
m− 1

. (A.10)

Calculate the eigenvectors and eigenvalues of the covariance matrix: An eigen-

vector of the covariance matrix A is a nontrivial vector v such that

Av = λv (A.11)

for some scalar λ. And, λ is the corresponding eigenvalue. Let I be an identity

matrix that has compatible size with A and v. Equation (A.11) can be rearranged

as follow:

Av − λIv = 0, (A.12)

(A− λI)v = 0. (A.13)

For a non-zero eigenvector v to satisfy equation (A.13), the condition:

det(A− λI) = 0 (A.14)

or

∣∣∣∣∣∣∣∣∣∣∣

(a11 − λ) a12 . . . a1m

a21 (a22 − λ) . . . a2m

...
...

. . .
...

am1 am2 . . . (amm − λ)

∣∣∣∣∣∣∣∣∣∣∣
= 0 (A.15)

must be held. So, the eigenvalues λi|i = 1 . . .m can be solved from this polynomial

equation:

cmλ
m + cm−1λ

m−1 + · · ·+ c0 = 0. (A.16)

A corresponding eigenvector v of each eigenvalue λ can be found by substitute a

value of λ into equation (A.11).

Sort the feature vectors: For i = 1 . . .m each of eigenvalue λi, there is a corre-

sponding eigenvector (feature vector) vλi
. To construct an eigenspace V for PCA

mapping, the eigenvectors vλi
must be sorted such that λ1 > λ2 > . . . λm. Thus,

the eigenspace can be expressed as:

V =
[
vλ1 vλ2 . . . vλm

]
. (A.17)
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Transform the normalized data to the feature space: Let

P =


p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

. . .
...

pm1 pm2 . . . pmn

 (A.18)

be the data in the feature space (eigenspace). Once the feature space is formed,

the data can be transformed into the feature space by:

P = VTQ (A.19)

when VT is transpose matrix of V. Each row of P contains significance of data

in decreasing order. To transform the dimensions high-dimensional data Q to an

dimensions low-dimensional data X, let l be the number of dimension of X where

l < m. The feature data X can be expressed in term of submatrix of P as:

X =
[
x1 x2 . . . xn

]
=


p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

. . .
...

pl1 pl2 . . . pln

 . (A.20)

Suppose that the low-dimensional data of interest has three dimensions (l = 3).

The feature data will be:

X =


x11 x12 . . . x1n

x21 x22 . . . x2n

x31 x32 . . . x3n

 =


p11 p12 . . . p1n

p21 p22 . . . p2n

p31 p32 . . . p3n

 . (A.21)

Inverse mapping Let inverse mapping data Q̃ be an estimation of the normalized data

Q. Inverse PCA mapping from the low-dimensional space back to the original

high-dimensional space can be done by:

Q̃ = (VT )−1P̃

=


q̃11 q̃12 . . . q̃1n

q̃21 q̃22 . . . q̃2n
...

...
. . .

...

q̃m1 q̃m2 . . . q̃mn


(A.22)
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where

P̃ =

[
X

O

]
(A.23)

and

O =


011 012 . . . 01n

021 022 . . . 02n

...
...

. . .
...

0(m−l)1 0(m−l)2 . . . 0(m−l)n

 . (A.24)

The zero matrix O is combined to the low-dimensional data X to make the size of

matrix P̃ to be compatible in equation (A.22). To converse Q̃ back to the original

data space, a reverse normalization process also has to be performed by:

Θ̃ =


θ̃11 θ̃12 . . . θ̃1n

θ̃21 θ̃22 . . . θ̃2n
...

...
. . .

...

θ̃m1 θ̃m2 . . . θ̃mn

 (A.25)

where

θ̃ij = q̃ijσi + µi. (A.26)

In the case of data in the feature space X has the same dimension with Q or in

the case of l = m.

Θ̃ = Θ (A.27)

will be the result. If l < m, some accuracy of the data will be lost.





Bibliography

[1] Rajesh P. N. Rao, Aaron P. Shon, and Andrew N. Meltzoff. Imitation Learning

inInfants and Robots: Towards probabilistic Computational Models. Cambridge

University Press, 2004.

[2] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA, 1998.
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