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Abstract

Ballistic electron transports in a submicron-sized mesoscopic structures made from the
saAs/AlGaAs two-dimensional electron gas (2DEG) are investigated. The electron trans-
port in mesoscopic structure is influenced by the sample boundary and by a small amount
of residual impurities in GaAs/AlGaAs heterostructure. In this thesis, we investigate
[. magnetic electron focusing effect, I1. electron emission distribution from an oblique wire,
[II. transport property in the lateral antidot lattice. The outlines of these experiments are
shown as follows.
I. Study of Magnetic Electron Focusing Effect (Section 4.1)

The magnetic electron focusing effect has been investigated in a multi-terminal device.
From decaying behavior of the magnetoresistance peaks owing to the focusing effect with
several separation lengths between an electron emitter and a collector, we deduce the
ballistic mean free path (l,) which is considerably shorter than the conventional one (/.)
determined by the Hall measurement. The ratio of l, to [, is almost the same, and both
mean free paths increase with increasing carrier density of 2DEG (ns). The specularity
of the sample boundary is determined by the damping ratio of the peak heights when
the electrons are reflected at the sample boundary.

Furthermore, even in a configuration, where the focused electrons can enter into a
extra probe which is located between the emitter and the collector probe, the focusing
effect can be clearly observed. By the examinations of a new type of device with a byway 2
which connects two extra probes through a 2DEG path, it is found that the “extra probe
reflection” stems from the electrons re-emitted from the extra probe whose chemical
potential is increased by the entering electrons.

IIL. Investigation of Electron Emission distribution from Oblique Wire (Section 4.2)

Electron stream emitted from a narrow wire to the wide 2DEG region distributes
in forward directions. Electrons are collimated with decreasing width of the emitter
which is gradually connected to 2DEG. By wheeling the electron stream in the magnetic
field, we investigate the angular distribution of electrons from an oblique wire which is

obliquely connected to wide 2DEG region. The average direction of electron stream from

the oblique wire shifts from the wire direction. It is found that the electron angular
distribution depends not merely on the wire direction but also on the structure just at
the orifice of the wire.

III. Transport Property in Lateral Antidot Lattice (Section 4.3)

In lateral antidot superlattices, in which the potential modulated pillars (antidots)
are regularly superimposed on 2DEG, the magnetoresistance shows characteristic peaks
of the arrangement of antidots. Because the origin of peaks seem to be ascribed to the
cyclotron motion with the encircling orbit around some antidots, the magnetoresistance

has been called “commensurability oscillations”.
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In this description, we examine the behaviors of oscillations by changing the current
flow direction with relation to the anisotropic lattices. Investigated anisotropic antidot
lattices are the one-directionally disordered ones, several rectangular ones, and several
isosceles triangular ones. The fluctuation of the antidot location generally suppresses the
peaks of commensurability oscillations, although the fluctuation parallel to the current
flow direction is not effective in the suppression of the peak. In several rectangular lat-
tices, the peaks appear at the cyclotron diameters with the lattice spacing perpendicular
to the current. Moreover, in several isosceles triangular lattices, the peak fields are de-
termined by the nearest neighbor distance between the antidots. From the experimental
results, we find that the commensurability oscillations in the high fields originate from
the electrons on “runaway trajectory” in which the electrons skip away along the antidot

array perpendicular to the current flow direction.
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Chapter 1

Introduction

In a recent quarter of a century, a lot of novel quantum transport phenomena have been
discovered in the solid mesoscopic systems: Mesoscopic structures are larger than the atomic
scale system but smaller enough than the macroscopic system, which cannot be treated by
the familiar statistical physics.'™® The mesoscopic systems can be obtained owing to the
developments in lithographic technique fabricating the submicron structures accurately.’)
Below the liquid helium temperature (4.2 K), the phase coherent length of electrons is of the
order of a few micron, and in very high quality semiconductors the mean free path exceeds
decamicron. Thus, the transport properties in these systems are characterized by the specific
structure in the sample owing to the order or the disorder of potential near the conduction
channels of electrons.

Remarkable phenomena in the mesoscopic region and the related historical events are
shown in Table 1.1. It is surprising that some effects in the table can be described accurately
by the two physical constants: single electric charge “e” and Plank’s constant “A”, although i
the electrons transmit in the various kinds of structures. Some of important mesoscopic

phenomena in Table 1.1 are introduced below.

o Al'tshuler-Aronov-Spivak (AAS) effect.® 7
The conductivity of a small metal tube oscillates as a function of the magnetic flux i

threading through the tube with a period of h/2e. |

B ——
U 3

e Universal conductance fluctuations.®?

In a narrow wire containing some potential disorders, its conductance fluctuates with

et

magnetic fields in the amplitude of square root average by 2¢*/h.

e Aharonov-Bohm (AB) effect.!® V)

Conductance through a ring structure oscillates with the period corresponding with

L

N e

h/e as the magnetic flux through the area encircled by the ring increases.

e Quantized conductance through a point contact.!? %

Conductance through a narrow channel is quantized at the multiple of 2¢*/A.

NG




e Single electron tunneling.'*

Single electron tunnels a small dot structure sequentially.

Most of the origins in above phenomena can be understood by staring from the Landauer

Formula, which relates the conductance to transmission probability.!) Details of the Landauer

Formula are introduced in the next chapter.

Moreover, in the mesoscopic structure, the boundary between the sample bulk region and
the probe regions is indistinct and “non-locality” coming from the outside regions between
the voltage probes becomes pronounced.

In this thesis, we focus on the ballistic electron transports in mesoscopic structures made
from GaAs/AlGaAs two-dimensional electron system. By utilizing the magnetic electron
focusing effect, we investigate the scattering mechanisms in the 2DEG and at the sample
boundary. We also investigate nonlocal effect by the extra probes. (Chapter 4.1) The an-
gular distribution of electrons emitted from a narrow wire is examined. (Chapter 4.2) We
investigate the electron transport properties in the antidot lattice by studying the influence
of the anisotropy, the disorder effect of antidot location. From the relation between commen-
surability oscillations and current flow direction, we find the origin of the commensurability

oscillations. (chapter 4.3)

2
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Table 1.1: Recent topics in mesoscopic physics and the related historical events. In the table, “Ex”
shows experiment and “Th” theory.

year
1931 Th | Reciprocal relations in irreversible process (L.Onsager)'®
1945 Th | Onsager’s principle of microscopic reversibility (H.B.G.Casimir)
1956 Th | Fermi Liquid Theory (L.Landau)'”
1957 Th | Kubo formula (R.Kubo)'®
Th | Landauer formula (R.Landauer)")
1958 Th | Anderson localization (P.W.Anderson)'?)
1959 Th | Aharonov-Borm effect (Y.Aharonov and D.Borm)!?)
1965 Th | Electron focusing effect (Yu.V.Sharvin)?)
1970 Th | Semiconductor superlattice (L.Esaki and R.Tsu)*"
1974 Ex | Electron focusing effect in Bi-crystal (V.S.Tsoi)??
1978 Ex | Modulation doping (R.Dingle et al.)*®
1979 Th | Scaling theory (E.Abrahams et al.)*?
1980 Ex | HEMT (T.Mimura et al.)*)
Ex | Integer quantum Hall effect (K.von Klitzing et al.)
1981 Th | AAS effect (Al'tshuler et al.)®
Ex | AAS effect in Mg tube (D.Yu.Shervin and Yu.V.Shervin)” I
1982 Ex | Fractional quantum Hall effect (D.C.Tsui et al.)*")
1983 Th | Fractional quantum Hall effect (R.B.Laughlin)®®)
1984 Ex | UCF in Au-Pb wire (C.P.Umback et al.)®
1985 Th | UCF theory (A.D.Stone)®
Ex | AB effect in Au ring (R.A.Webb et al.)')
1986 Th | Landauer-Biittiker formula (M.Biittiker)®
1988 Ex | Quantized conductance through a point contact
(B.J.van Wees et al., D.A.Wharam et al.)'*1?
Ex | Quenching of Hall effect (M.L.Roukes et al.)?*
Ex | Bend resistance (Y.Takagaki et al.)*®
1989 Th | Composite Fermion (J.K.Jain)3"
Ex | Composite Fermion (H.W.Jiang et al.,R.L.Willet et al.)**3)
Ex | Commensurability oscillations in washboard potential
(D.Weiss et al.)*
Ex | Commensurability oscillations in antidot potential (E.S.Alves et al.)
Ex | Single electron tunneling (U.Meirav et al.)'¥
1992 Ex | Quantum chaos in stadium structure (C.M.Marcus et al.)*®)

16)

26)
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Chapter 2

Review of Transport Properties in
Mesoscopic Systems

2.1 Introduction

In the classical approach, the current through the system is proportional to the average
of electron velocities which are determined by the time between collisions with scatterers.
Thus, the resistances of any piece of a system may be predicted. The resistance is calculated
usually by the Boltzmann approach.?” In the mesoscopic system, however, the velocity
averaging approach breaks down, because the electron mean free path or coherent length are
comparable to the system size and the number of scatterers vary in piece of a system. This
means that “an electron stream” in a piece of system much differs from the average current
which flows through the whole system. Furthermore, electron trajectories are also influenced
by the fine structure of the system boundary. Thus, we must treat the conductance of the
system as a result of the propagation of the electron wave and the wave interference. This
conductance can be described by the Kubo formula and the Landauer formula.

The standard framework for the description of the conductivity is given by the Kubo
formula, which describes the linear response to an electromagnetic potential. This formula
is more convenient for analytic calculation. It is suitable for relatively wide system, e.g.,
periodic potential system, to apply this formula. On the other hand, it is good approach for
the Landauer formula and the Landauer-Biittiker formula to treat the mesoscopic system
with multi-probe or with the effective boundary, because these systems can be determined
by the electron transmission probabilities from one probe to another probe. It is proved that
the Kubo formula and the Landauer-Biittiker formula are equivalent and complement each
other 339
In this chapter, we introduce the Kubo formula and the Landauer formula as a review

for the transport properties in the mesoscopic system.
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2.1.1 Kubo formula

The external field is treated as a small perturbation on the equilibrium state of many
particle systems, eliciting a linear response, whose magnitude measures the corresponding

transport coefficient. The electrical conductivity tensor may be expressed absolutely by the

Kubo Formula'®:
1 oo 7. .
- — =] A ) [ — g - : 2‘
=g, GOHO)E (i =2.2) (2.1)

In other words the conductivity depends on the time correlation between a component of the
current operator j_,((}) at zero and the component j;(t) at the some later time ¢, integrated
over all time and evaluated as the average of the expectation value of the product over the
equilibrium ensemble. The average value of j is zero, but the decay of fluctuations in the
current precisely depends on the features of the impurity scattering which would govern the

response to an external field.

2.1.2 Landauer formula

The Landauer formula has been originally derived for a strictly single channel conduc-
tance.!) To derive this conductance, we consider the steady state of electrons among the
sample and the various chemical potential in the leads (Fig. 2.1(a)). In the assumption i
of ideal leads, the scatterings of the electrons due to the random potentials occur only in
the sample and the inelastic collisions occur mainly in the contact pads outside the sample.
When the small chemical potential difference (uL, ur) is applied to two current probes, the
conductance (G), defined as the current flow level by the voltage drop (V'), is proportional |
to the transmission coefficient of the sample (T"). Under the voltage drop (V = uL — pur), 3

the number of electrons (An) approaching the sample from the left side in one dimension

- -k

—r=eV ki

a R :.; . :
e - (b) Lead L Lead R F

s

vﬂ’ I-_

Contact L| M |4~ we | Contact R channel o | :

Lead k€ L 2 Lead
Sample

Sample

Figure 2.1: (a) Geometry in the considerations for the Landauer formula. (b) A model for trans-
mitting electron through the sample. There are some channels in leads and the electron transmits

from channel e in lead L to channel 3 in lead R through the sample with transmission probability
Tjss-

""I



Figure 2.2: Sample with multilead. An electron
from lead j transmits to lead ¢ with the proba-
bility T3;. T;; represents a reflection probability

in lead 1.
(On/OFE = 2/hv) in an unit time is
. . 1 eV frat s .
An=72 X 5 X (&) X vp =2eV/h (2.2)

where up and down spins are considered. Since only 7'An electrons can transmit the sample,
the current flow level I is given by I = eT'An = (2¢*/h)TV. Thus, the conductance is

determined by
G=1/V=(23/hT . (2.3)

The measured resistance is proportional to 1/7T. If there are some channels in leads and
the electron transmits from channel « in lead L to channel 7 in lead R with transmission

probability T, (Fig. 2.1(b)), this equation is written as
G=1/V=(2h)Y Tsa . (2.4)
a,f

When the scattering in the sample is rare, transmission probability T3, is Tgs ~ 654. If

N-channels exist below the Fermi energy, the conductance is
G =1V =2 /AN . (2.5)

This equation shows that the conductance is quantized at (2¢*/h)N under N-channels con-

ductor without scattering.'® 13

2.1.3 Landauer-Buttikker formula

The Landauer formula has been extended by Biittiker to the multilead case.?) We consider
a scatterer with multilead. (Fig. 2.2). The transmission coefficient T}; is defined as the
probability that the electron transmits from lead j to lead ;. When the electrons approaching
a sample region from one lead j transfer to the other lead i, total current I entering in to

lead 7 is given by

Ii= (2e/k) I:N,-;J,- — Z .T,-J-,uj:[ , (2.6)

FES




where /V; is the channel number below the Fermi energy in lead i. This equation is known as
the Landauer-Bittiker formula. This formula is advantageous for conceptual understanding
and numerical calculation in a scatterer with multilead.

Moreover, the transmission probability is correlated with the magnetic field (B). Owing
to current conservation and time-reversal invariance, transmission probability is T;(B) =

T

;i(—B). Consequently, from this magnetic reversal relation, the measured magnetoresis-

tance has the relation

RiJ.kI(B)z Rk!.i;(_B) 1 (

(SV]
-]

where R;; i shows a four-terminal measurement configuration (Ri;x = (ur — p1)/(eli—;)).

This result also satisfies the Onsager-Casimir symmetry relations.




Chapter 3

Experimantal procedure

3.1 Introduction

Owing to the development of the epitaxial growth of the crystal by the molecular beam
epitaxy (MBE)*® and the modulation doping technique,?® the mean free path of elec-
trons in the semiconductor has been remarkably enhanced. Recently, in GaAs/Al.Ga;__As
(=GaAs/AlGaAs) heterostructure obtained by MBE, the electron mobility well exceeds
10 cm™?/Vsec.®'™*3) Moreover, owing to the recent remarkable progress of the fabrication
technique,® we can make a mesoscopic-sized sample readily. In this study, a high-quality
crystal, the micro-fabrication and the low temperature measurement are necessary. In this

chapter, details of the experimental procedure are introduced.

3.2 Sample preparation

3.2.1 GaAs/AlGaAs heterostructure

Our devices with a mesoscopic size were made from a modulation doped GaAs/AlGaAs
heterostructure so-called “HEMT (High Electron Mobility Transistor)”.?*41:49) Fig.
ure. 3.1(a) shows a typical layer diagram with a single-hetero junction providing 2DEG
which consists of the following layers; 600 nm of GaAs followed by 15 nm of undoped Al-
GaAs spacer, then 40 nm AlGaAs doped by 2x10'® cm™>-Si and finally a 5 nm AlGaAs cap.
The fundamental structures used in this thesis are similar ones but each layer thickness is
changed slightly. The conduction band profile is shown in Fig. 3.1(b). The energy difference
between the bottom of the conduction band of AlGaAs and GaAs allows the electrons to
fall into the GaAs from the donors in the AlGaAs. Because the electrons are separated
from the ionized donors, the mobility of the electrons is much higher than that of a bulk
GaAs. Moreover, the mobility is enhanced by the AlGaAs spacer inserted between the elec-

41,45-47) The electrons are

trons and the ionized donors, whereas the carrier density decreases.
confined strongly near the spacer layer by the “space charges” which are ionized donors in

Si-doped AlGaAs layer, and are quantized in the confined potential. When the Fermi energy

v ]
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(2) (b)aiGaas! Gaas

n-GaAs Snm  (cap) $ A

Electron Ditribution

n-AlGaAs 40nm (Si-dope)

60nm

e

AlGaAs I5nm (spacer)

2DEG ................................................... i

GaAs 600nm

semi-insurating

Electron Energy

E:
Er p

A
7

Conduction Band

GaAs 600nm H )

5~10 nm

Figure 3.1: (a) Typical layer diagrams of GaAs/Al.Ga,_,.As heterostructure (HEMT# 2). The
ratio of z is 0.265. In another wafer, each layer width is varied slightly whereas the layer order is
not changed. The substrate is (311)A-orientated GaAs crystal. (b) Conduction band diagram in
GaAs/AlGaAs heterostructure.

Table 3.1: Electronic characteristics of the heterostructures. Carrier density (ns), mobility (x) and
mean free path (l.) are appraised by Hall measurement in Type C sample.

dark illumination
HEMT-No. ng i [ N 1 le
10" /cm? cm?/Vsec pum | 10" /cm? cm?/Vsec pum
1 3.2 140 13 4.1 186 20
2 3.8 al 5.8 5.2 104 12

determined by the carrier density is below the bottom of second subband level, the electrons
occupying the conduction band form a two-dimensional electron gas (2DEG).

Moreover, the mobility of 2DEG grows by decreasing phonon scatterings.*! 478 Electron
mobility of our heterostructure exceeds 10° cm®/Vs at low temperatures. The electronic
characteristics of the heterostructure are shown in Table 3.1. These values are derived from
the Hall effect measurement and the zero-field resistance at 1.5 K. Carrier density of 2DEG
is controlled by the illumination from the light emitting GaAs diode (LED: wave length =
950 nm). When the illumination supplies the extra conduction electrons from D X-centers in
the Si-doped layer, the atomic configuration around each donor atom changes, because the
charge state of the DX level is changed.* At low temperatures where k7 is smaller than an
activation energy for the capture of an electron from the conduction band to the D X-center,
electrons conduct persistently. Thus, the carrier density do not change for a long time after
putting out the light. This effect is known as “persistent photoconductivity (PPC) effect”.
Consequently, the carrier density.in 2DEG increases by illumination.

The used HEMT in each experiment and the sample type are shown in Table. 3.2.

T
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Table 3.2: Sample type and used HEMT in each experiment.

Section and Experiment Sample Type | HEMT#
Evaluation of HEMT wafer Type C - 2
Electron focusing effect Type A # 1
with byway Type B 22
Electron emission angle
with gate Type E # 2
Antidot lattice Type D # 2

(a) Deep mesa etch  (b) Shallow mesa etch (c) Metal gate structure

Y S,

* Ar ion bombardment - Arjon bombardment * Depletion control
* Chemical etch by gate voltage

Figure 3.2: Typical mesoscopic structures fabricated by different techniques. (a)Deep mesa struc-
ture by Ar ion etching or chemical etching, (b) shallow mesa structure by Ar ion bombardment,
and (c) gate-controllable structure by applying suitable negative voltage to the metal for depleting
the electron beneath the gate.

3.2.2 Fabrication of mesoscopic structure

Typical sample structures are shown in Fig. 3.2. A deep mesa structure by chemical etch-
ing (Fig. 3.2(a)) has little damage in its fabrication, but is not suitable for the fabrication of
the structure smaller than 1 um size. So, it is used for appraising the electric characteristics
of the wafers. By using conventional electron beam (EB) lithography and Ar ion bombard-
ment, we can make the fine structure with sub-micron size (Fig. 3.2(b)). The 2DEG region
irradiated by Ar ions is depleted. Because only surface of the heterostructure is etched to
avoid the unnecessary damage in the sample by Ar ion bombardment, this technique is called
“shallow etching”. Gate structures are made by the EB lithography, metal deposition, and
lift off technique (Fig. 3.2(c)). Gate structure is transferred by applying suitable negative
voltage to metal gate for depleting the electron beneath it, and can control the wire width
satisfactorily.

General fabrication process consists of the etching of crystal, the construction of metal
gates, and the make of ohmic contacts. Figure 3.3 shows a flow chart for making various

type of samples (Type A—E). Samples could be made by the combinations from mesoscopic

10
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GaAs/AlGaAs
Heterostructure

PMMA(%)| 3 4 5 6
2DEG depth (nm) | 50 100 150 250

PMMA coating (250nm) Mesa etch
EBL AuGe/Ni/Au deposition
Al deposition Alloy

Type C

I—J%LV

M PiNA

PMMA lift off

Dry etch (1kV Arion )

+ PMMA coating (100nm) PMMA coating
2 1Ek;vl EAE'E Pl EBL E}(}is()nm}
R R L Dry etch (1kV Arion
=N ' | Au deposivon

Al removal 1kY Ar+
AuGe/Ni/Au
deposition By g i PMMA Ti/Au
Alloy
Gt r_jE!fEEEfE]gﬂrA
F~ooee | :
I PMMA removal I PMMA. lift off
Au deposition

Type B) e D Type E
Tl SR Y i il
| 2DEG | [__f’;BE;“’”l__]

Figure 3.3: A flow chart for sample fabrication.

region, wide region, gate region and ohmic contact.

1. Fabrication of mesoscopic (submicron) region
The pattern with submicron region is drawn by using EB lithography on the PMMA
(=PolyMetylMethacrylate: weight-average molecular weight~ 9 x 10°) resist coated on
the heterostructure. After evaporating thin Al film on it and lifting the resist off, the
patterns are transferred to the heterostructure by 1 kV accelerated Ar ion. The etching
rate is about 4nm/min. In other case, the trench patterns on the resist are directly
transferred to heterostructure by Ar ion bombardment. This technique is known as

“trench etching”.?)

" e
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2. Fabrication of wide (above 10 um) region
The wide patterns are transferred to a negative or positive photo-resist film by using
UV lithography. Those resist patterns are used for the etching mask. In the case of wet
etching, we use an etching solution (H,PO4(85% ): H,0,(30% ): H,O0=1:1:30). The

etching rate is about 100nm/min at room temperature.

3. Fabrication of gate region
Schottky gates are made by evaporation of metal. Gate patterns on the resist are also
formed by using EB or UV lithography. The confinement potential at the boundary
of electron channels is formed by electrostatic potential from the gates in the case of
mesoscopic pattern. The wide gate patterns are used to control the carrier density of

channel beneath the gates.

4. Fabrication of ohmic contact
The contact metals are deposited by successive metal evaporations. The metal layers
are Au/Ge(Ge-12%: 100 nm), Ni(300 nm) and Au(500 nm). Anneal is performed in

flowing H,/Ar (H,-80 % ), and the anneal condition is chosen to be 350°C for 4 min.

Bombardment by accelerated Ar ion is performed at room temperature in an dry etching
apparatus. A conventional Kauffman-type ion source is used to generate Ar ions. Pure-Ar
gas is introduced during the irradiation in the chamber at about 7x10~° Torr after the
evacuation by 2x107® Torr. A sample is located at 25cm away from the ion source and

is rotated to avoid inhomogeneous bombardment. Accelerated voltage of Ar ion is chosen

to be 1 kV. Although accelerated Ar ions etch only surface of the sample at the rate of 4
about 4 nm/min under this condition (etching time~3 min), the 2DEG region irradiated ;*.
by the ion beam is depleted. The characteristics of Ar ion have been studied in detail. !
Following previous experiments,® %) the range of defects extends more than 100 nm from [‘t

the sample surface. According to calculations by Monte Carlo simulation techniques, the
projected ranges of Ar at 1 kV are about 2.5 nm.>*%®) The discrepancy of more than an ’
order of magnitude may be explained by mechanisms such as channeling along the suitable
crystal direction,*” enhanced diffusion of implanted species by ion bombardment, and rapid

propagation of defects such as vacancies, Frenkel pairs, and dislocations.

3.2.3 Measurement system

After Pt-wires are connected to the metal pads of sample contacts through conductive
silver paint, the sample is mounted on the holder in the cryostat and electric leads are
derived out. Whole measurement system is shown in Fig. 3.4. The magnetoresistance up to
13kG is measured at the temperature below 4.2 K. The temperature below 4.2 K is obtained

by pumping *He gas out, or by pumping *He gas out from the sample room through *He

12
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Figure 3.4: Measurement system for transport properties in mesoscopic GaAs/AlGaAs device.

handling system.

The measurement is made by using a four-terminal resistance method: Two of these
contacts are used to supply and draw current from the sample, and the potential difference
is measured between another pair of probes. Resistance is measured by an ac resistance
bridge (RV Electroniikka AVS-46) operated at 15 Hz. The magnetic field in the sample is
monitored by the Hall probe in the back side of the sample. A light emitting diode (LED)
is set near the sample to control the sample carrier density. Data of the magnetoresistance

are taken into a computer and are stored.
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Chapter 4

Results and Discussion

In this chapter, we describe the three experimental results: I. Magnetic electron focusing
effect (Section.4.1), II. electron angular distribution emitted from an oblique wire (Sec-

tion.4.2), III. transport property in lateral antidot lattices (Section.4.3). Also discussions

are included.
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4.1 Magnetic Electron Focusing Effect

4.1.1 Introduction

The electrons in the 2DEG at low temperatures can go straight for more than the scale of
microns until those are scattered by residual impurities.*” 4% 43) In such 2DEG, the transport
properties show the curious and interesting electron propagation phenomena. An electron
focusing effect is one of them. The electrons emitted from a narrow wire to a wide 2DEG
have a peculiar angular distribution. The electron distribution becomes wider as electrons
go away from the orifice of the wire. (This problem is discussed in next chapter.) The
emitted electrons can be “focused” by the “electrostatic lens”**%) or by the “magnetostatic
lens”?0:22:60°75) (Fig. 4.1). In the case of the electrostatic lens (Fig. 4.1(a)), emitted electrons
are focused by a spatial modulation of electrostatic potential along the electron trajectories
(Fig. 4.1(a-2)) in analogy with modulation of the dielectric constant in conventional light-
wave optics. Spector et al. and Sivan et al. have succeeded in controlling ballistic carriers via

electrostatic gates which can act as refractive elements for the electron path. Spector et al.

(a) Electrostatic Lens

(a-1) B=0
Gate

(a-2)

2DEG -
sinB1/sinB2=(1-¢/EF) ~

(b) Magnetostatic Lens
(b-1) B=0 (b-2) B=Btoc E)(b-3

< AL>

®

|
Broc=2hke/eAL  ~AL(1-672)

T

Figure 4.1: Schematic view of mechanism of electron focusing effect. (a)Electrostatic focusing effect
and (b)magnetostatic focusing effect.
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also have made an electrostatic “prism” by using the same technique,®® ™) and have showed
its usage to switch the path of electrons among several collectors. On the other hand,
in the case of magnetic field lens (Fig. 4.1(b)), the electron trajectories in the magnetic
field (B = Bre) reach the collector when the cyclotron diameters approach a separation
between the emitter and the collector (AL). At B = By, emitted electrons (spreding
angle=#) finally focus on the collector (Fig. 4.1(b-2,b-3)), because the distance between
the emitter and the electron reaching points (ALy) changes within the second order of 6
(ALg = ALcosf ~ AL(1—0%/2)). This “self-gathering effect” are called “magnetic electron
focusing effect”. The magnetic field By is 2hkp/eAL, where kp is the Fermi wave vector.

The magnetic electron focusing effect has been first developed by Sharvin in 1965°?) and
has been used to explore the Fermi surface of several pure metals and semimetals.?? 51:52)

Most of these experiments show the very high specular reflection coefficient (specularity :

p) of electrons at the sample boundary, where a surface roughness is the scale of the Fermi

" —

wavelength of the conduction electrons. Beenakker and van Houten et al. have observed this

effect in high mobility GaAs/AlGaAs heterostructure with point contact gates.®*®% Using |
similar technique, Spector et al. have evaluated a ballistic elastic scattering length (/s), and
have revealed that [y is much less than the conventional elastic scattering length (l.), and
have explained this reduction in a way that l, is much sensitive to small angle scattering.5®)
Churchill et al. have investigated the 2DEG on (311)B GaAs substrates by the magnetic
focusing effect, and have showed that the mobility defers in different directions in (311)B

because the interface roughness is anisotropic in (311)5.%%)

In this report, we have studied the magnetic electron focusing effect by paying attention
to the dependence of the electron density (ns) and the separation length (AL) between the l
electron emitter (£) and the collector (C'). With increasing ns, the ballistic mean free path [, 'E
increases, and the specularity p at the boundary of 2DEG decreases. Even the extra electrode
is placed between E and C, the focusing peak which seems apparently to be reflected at the i

extra probe is clearly observed.

4.1.2 Experiment ‘

Our device was made from a GaAs/AlGaAs heterostructure (HEMT# 1) and fabricated
by EB-lithography and 1 kV Ar ion milling (Type A). Figure 4.2 presents the sample image

by scanning electron microscope (SEM).

The intervals between adjacent probes are 8 um : 2 ym : 4 pm, and the up-side is mirror
image of down-side (Fig. 4.2. The geometrical width of each probe is about 1 um, but the
effective width is narrower due to the depletion layers. The width of the device is wide
enough (20 pm) in comparison with the largest cyclotron radius of the magnetic electron
focusing effect for the maximum FE-C distance (AL=14 pym). The magnetoresistance was

measured at 1.5 K by using a resistance-bridge operating at 300 nA AC current at 30 Hz. The
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Figure 4.2: Image of sample sur-
face by SEM. The interval between
the adjacent probes in down-side is
8 um : 2 pum : 4 pm, and the up-side
is mirror image of down-side.

measurement was made by using a four-terminal measurement method. The nominal current
flowed straightly from an upper to a symmetrically placed lower probe, and the voltage was
measured parallel to the current path (inset of Fig 4.3). The negative current probe (/—) is
the electron emitter and the negative voltage probe (V' —) is the collector. When the electron
emitted from the emitter is focused into the collector by the magnetic fields, the resistance
peaks are observed. In this electrode configuration, the magnetic electron focusing effect is
symmetric between positive and negative magnetic fields because of the symmetry of the

device.

4.1.3 Results and discussion
4.1.3.1 Ballistic elastic scattering length estimated from electron focusing effect

Figure 4.3 shows the focusing effect for six different AL from 2 — 14 um at ns = 4.1 x
10" ¢m™2. The fundamental focusing peak appears near zero-magnetic field where the
cyclotron diameter accords with AL. The other peaks appear via the reflection at the
sample boundary. The magnetic fields (Brer) of these peaks are integer multiples of Broc
(Bret = Broe x M: where M — 1 is the number of the reflection). The oscillations in higher
magnetic fields (| B |> 3 kG) are the Shubnikov-de Haas (SdH) oscillations.

The negative resistance between the focusing peaks is also explained by the classical view
as follows. When the condition of the focusing effect is not satisfied, that is, the electron is
not focused into the collector, the electrons emitted from E pass the collector probe. These
electrons are diffusively scattered until reaching the other voltage probe (V'+ probe), and
a part of them enter into V+ prove at all times. Thus, the voltage difference between two
voltage probes becomes negative. As the separation AL increases, the passing electrons
decrease and the negative resistance becomes smaller.

In Fig. 4.4(a). the amplitude of the peak-to-valley of the focusing effect is plotted v.s.
AL on semi-logarithms. As AL becomes larger, the scattering probability of the electron

increases, and the amplitude of the peaks decreases. If the decay of the amplitude would
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Figure 4.3: Magnetoresistances for var-

I 'ré“; 2DEG B ® i ious AL at ng = 4.1 x 10! cm~2. The
L A [y 1l oscillations in higher magnetic ﬁi.’.‘l(l.‘i
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tions. Inset shows a schematic view
e o il h g | of device with multiprobe. Separation
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by changing combinations of current
and voltage probes.
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Figure 4.4: (a) Peak amplitude of magnetic focusing effect is plotted with respect to the emitter-
collector separation length (AL). Line is a least square fit to ezp(—7AL/2ly) form with lp=5.2 pum.
(b) Electron density dependence of ballistic scattering length [/, and conventional elastic scattering

length (l).
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g Figure 4.5: Magnetoresistances of AL=8 um
v ¥ with different electron density (ns). Ampli-
2 tude of focusing effect becomes larger with
increasing ns.
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be assumed to decrease as an exponential function of the electron trajectory path length
(#AL/2) between E and C, a decay constant ly is defined, so that the amplitude is pro-
portional to exp(—mAL/2lp). At this electron density (4.1 x 10" em™?2), I is 5.2 um. This
length is much less than /e (20 pm), which is determined by the conventional resistivity
measurement of the sample fabricated from the same wafer. The trends are similar to the
previous experiments.5® 577 The reason of the shorter /y than . is that ly is sensitive to the
small angle scattering. The damage of the micro-fabrication may also reduce /.

Until now, it has been reported that [}, increases rapidly with increasing ns, but this mech-
anism has not been clear.f”™ In our experiment, in order to investigate the ns dependence
of Iy, we irradiate the sample by LED and increase ns. With increasing ns, the amplitude of
peak at Bp,. becomes larger (Fig. 4.5). We plot the dependence of Iy on ns in Fig. 4.4(b).
We can find the increase of Iy, with increasing ns. The mean free path /. also becomes longer
with increasing ns. As the ratios of ly to . with respect to various ns is almost the same,
we deduce that the increasing of ly and [. is due to essentially the same mechanism, such as
increasing of the Fermi velocity and the screening effect of the impurity scattering.

Hirayama et al.””) have showed that the values [, estimated from the bend resistance at
the crossed junction are approximately equal to le. Following their explanation, the difference
in the ratio of ly/l. stems from the sensitivity in the evaluation method of /. The signal
intensity of the electron focusing effect is determined by the concentration of trajectories
at the collector as shown in Fig. 4.1(b-2). In addition, when emitter-collector separation is
varied, it is difficult for the electron focusing method to correctly treat the electron spreading
effect because the number of small angle scattering may vary at the trajectories with the

different curvature, and the ratio of the collector width to the separation between E and C

T e e S e e M S e — e . S
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Figure 4.6: (a) Peak amplitude of focusing effect of AL=8 pm via reflection at the sample boundary
with ng = 4.1 x 10" e¢m™2. Line is a least square fit of p™ form with specularity p ~ 0.8. (b)
Electron density dependence of specularity p.

changes too. Consequently, although further studies are necessary for Iy evaluation from the

electron focusing effect with consideration of above points, I is closely related to [e.

4.1.3.2 Specular reflection at the 2DEG boundary

The focusing peaks via the reflection at the 2DEG edge are reduced by the diffused
reflection (Fig. 4.3). The specularity p is defined by the ratio of the intensity of the peak
M to M + 1. We deduce p ~ 0.8 from the slope of Fig. 4.6(a) of the signal of AL=8 um.
It have been reported that p relates with the fabrication method.5® ™ 7™) Figure. 4.6(b)
shows the dependence of p on ns. With increasing ns, p decreases. Since the increasing of
the electron density makes the width of the depletion layer at the sample boundary thinner

and the effect of roughness introduced by the fabrication becomes more bare, the electron

e R T T —

is more diffusively scattered. This n, dependence agrees with the result by Wakaya et al.™

Their experiment shows that p increases with increasing width of depletion layer which is
controllable by the side-gates voltage. In addition to this depletion layer effect, the Fermi [
wavelength is reduced due to increasing of ns. When the wavelength is comparable with the
roughness, the electron with shorter wavelength tends to be scattered more diffusively than ‘

the one with the longer wavelength. If this effect is dominant, the order of the boundary |

roughness may be the order of the Fermi wavelength (~30 nm).

4.1.3.3 Reflection by the extra probe

In the cases of AL=6 um, 10 um, and 14 pm, the extra probes, which are not related to

the voltage measurement, exist in the E-C' separation. When the electrons from emitter can

20

e L T



—
-
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enter the extra probe (Fig. 4.7: inset), the focusing peak is also clearly observed (Fig. 4.7(a)).
It can be confirmed that the electrons contributing to the focusing peak are coming from the
extra probe because its peak magnetic field corresponds to that of AL = 4um as shown in
Fig.4.7. This extra probe reflection is explained in the following way. The electrons focused
on the extra probe pile up there and make the chemical potential of the extra probe higher.
This extra probe would emit other electrons, most of which would be emitted near the

perpendicular direction to the boundary,™ then these electrons are focused on the collector

by the magnetic field.

4.1.3.4 Electron focusing effect via a byway channel

To confirm the mechanism mentioned above, we made a device with a byway channel as
shown in Fig. 4.8.™) This sample is made from HEMT# 2. The distances of AL’ are 3 um.
The length between the emitter (£) and collector (C') is 31 um, therefore, the electron
trajectory (31 pm x m/2) is much longer than l. = 10 pum. At B = 2hkp/(e x AL'),
the conventional electron focusing effect occurs between E and byway entrance (W;) and
between byway exit (W,) and C, simultaneously (Fig. 4.8(b)), because the distances of
E-W; and of W,-C are the same. When the focusing effect occurs at E-W; at W,-C, if
the chemical potential of W; is propagated to W, through the byway channel, the focusing
peak can be observed at E-C. Magnetoresistances due to the focusing effect are shown in
Fig. 4.9(a). The peaks are observed as shown in Fig. 4.9(a)(I) in the configuration with
a byway. Peak magnetic fields correspond to those of the conventional electron focusing
effect with AL’ =3 um (Fig. 4.9(a)(I1I)). That is, the peak at 0.8 kG stems from the direct |
focusing effect (Bfoc) and the one at 1.6 kG one-time reflection at 2DEG boundary (Bref).

T e
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Figure 4.8: (a) Schematic view of the sample with two byway channels. Upper byway is wide
(17 pm) and lower is narrow (1 pm). All widths of electrodes is 1 um. (b) The distances between
emitter (E) and byway entrance (W;) and between byway exit (W,) and collector (C') are the same
at 3 pm.
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Figure 4.9: (a) Magnetoresistances with wide byway channel (I), without any extra probe (II) and
the conventional electron focusing effect (III). (b) Magnetoresistances due to the magnetic electron
focusing effect through the wide (I) and narrow byway (II).

The peak magnetic fields agree with the calculated B (= 2hkp/eAL) and Bt (= 2 % By,.).
Obviously, any peaks do not appear without the byway (Fig. 4.9(a)(II)).

We also investigate the dependence of the peak heights on the byway width (Fig. 4.9(b)).
The width of wide byway is 17 gm and that of narrow one is 1 um. The peak through the
wide byway is higher than that through the narrow one. This difference is attributed to
the resistance of byway. Thus, the focusing peak height may depend on the transmission

probability of electrons from W; to W, through the byway. Consequently, it is obvious that
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Figure 4.10: (a) Schematic view of
| sample with a gate-controllable byway
channel. Notations “1-6” denote cur-
rent or voltage probes and “G1-G4”
denote Schottky gates. Probe 3 is an
emitter (E), and probe 4 a collector
(C'). Gate G3 can control the by-
way resistance (Rg). (b) Magnetoresis-
tances of magnetic electron focusing ef-
fect with various Rp. Inset: Schematic
electron trajectory between the emit-
ter (F) and the byway entrance (W;)
abBi—="Bc.
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the peaks in the magnetoresistance of Fig. 4.9(b)(I) is derived from the electrons passing

through the byway.

4.1.3.5 Direct measurement of byway current

In order to measure a current through the byway, we made a sample with a gate-
controllable byway (Fig. 4.10(a)) from a GaAs/AlGaAs heterostructure (HEMT# 1).7
Sample was fabricated by the Type B process (p.11). In Fig. 4.10(a), the notations “1-6”
denote current or voltage probes and “G'1-G4" denote Schottky gates. In the measurement,
we use probe 3 as an emitter (£) and probe 4 as a collector (C). Both distances AL’ of
E-W; and of W,-C are 3 um. The E-C separation length is 31 pum. The electron path
from E to C (=31 um xm/2) is also much longer than the mean free path (18 um). The
geometrical width of the narrow part of the channel is about 1 gm, and that of the wide
region is 4 pum. The width of Schottky gates is 8 um. Applying negative voltage to G3, we

can control the byway channel resistance. The notation “R(ij.kl) : Gm” shows the following
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measurement configuration; the nominal current flows from probe i to probe j, the voltage
is measured between probe k and probe /, and the gate voltage (V) is applied to gate Gm.
At Vg = —1.0 V, the resistance of the byway exceeds 2 Mf2 and the byway is pinched off.
The unused gates are connected to ground potential.
The magnetoresistances in R(53.64) : G3 with various byway resistances (Rg) are shown :
in Fig. 4.10(b). We define Rp as R(43.21) : G3 with pinched-off G4 (Vg4 = —1.0 V). Two
focusing peaks (Broc and Brer) appear clearly. When the cyclotron diameter of the electrons
coincides with AL’, the electrons from E are directly focused into W; (inset of Fig. 4.10(b)).
The peak at B = 0.7 kG (Bfoc) comes from the electrons which are directly focused (
between E and W; and between W, and C. The peak at B = 1.4 kG also appears via the |

one-time reflection at the sample boundary at Bref = 2 X Bge. With increasing Rg, two

peaks decrease, and almost vanish when the byway channel is pinched off (Rp = o0).

Now we consider the relationship between the peak height at B = By, and the byway
resistance (Rg). As shown in Fig. 4.11, the peak height is inversely proportional to the total
resistance of the byway (Rg + Ry), where Ro is the residual resistance of the byway. The
relationship can be explained as follows. Af first, we estimate the current in the byway (/).
By measuring R(43.21) : G3 with the pinched off gate G4 (= Rg) and R(53.21) : G3, we
obtain I'g/lo from the ratio of R(53.21)/Rg, where Iy is the total current from the emitter
(inset of Fig. 4.11). Since the resistance of the wide 2DEG region is much lower than that
of the byway channel, the potential difference between W; and W, is almost constant. The
current Ip is inversely proportional to the total resistance of the byway (R + Ro). The
peak height is proportional to 1/(Rs + Ro), as shown in Fig. 4.11. The fitting parameter
Ro is 0.7 kQ at ns = 3.9 x 10" cm~2 and 1 k) at ns = 3.5 x 10 cm~2. Resistance Rp is r
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Figure 4.12: Magnetic field dependence of the Figure 4.13: Schematic view for understand-
ratio of Ig to [p with various Rg, where [y is ing an origin of the subpeak. The chemi-
the byway channel current and Iy is the total cal potential of “electron excessive region” is
current. Inset: Schematic electron trajectory slightly higher than the Fermi energy.

at' B = B (3) and Bge < B < Bt (b)-

a reasonable value in comparison to a half of two-terminal resistance between probe 6 and |
probe 4 (about 1.5/2 kf2). With larger ns, the slope increases and Ry decreases, because .
the mean free path increases. We conclude that these focusing peaks come from the current
through the byway.

Moreover, we investigate the behavior of Ig/Io in the magnetic field. Figure 4.12 shows
that Is/Io with various Rp oscillates in the magnetic field. The two peaks at B = Broc
and By decrease with increasing Rg. This trend coincides with the result already shown
in Fig. 4.11. Here, we consider the electron flow direction in the byway. At B = Bioc, the
electrons from E are directly focused into Wi and the chemical potential of probe 1 (y)
becomes higher than that of probe 2 (y3), as shown in inset(a). The electrons (e~) flow in

the byway in the direction of the arrow (inset(a)). At most, about 9 % of the total current I
[ 80-86)

e ——

flows in the byway. Because of the angular distribution of emerging electrons from
the scattering on the focusing trajectories,®®5% ™) and the reflection at the W,,™™ a
small part of the electrons from the emitter contribute to the byway current. In the regions
of 0 <« B < Bfoe and Bgoe < B < Brer, the electrons from the emitter do not enter Wi, as

shown in inset(b). On the other hand, the amount of electrons which enter W, negligibly
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depends on the magnetic field, since the E-W, distance (28 pm) is much longer than the
electron mean free path (18 um) and the most electrons are scattered before reaching the
byway exit. The chemical potential of probe 2 (u;) becomes higher than that of probe 1
(p1). As a result, in 0 < B < Bfoc and Broe < B < Bhrer, the electrons (e~) flow inversely in
the byway.

Furthermore, the subpeaks in Fig. 4.10(b) are observed in 0 < B < B and Bioc <
B < Bref where the focusing effect does not occur. Since such peaks are also observed in
the device without the gate (Fig. 4.9(b)),”™ the peaks are not caused by the gate. As we
mentioned above, the counter current flows in the byway at the subpeak fields (Fig. 4.12).
At W, the electrons are pulled into the byway because the chemical potential of W is lower
than the that of W, (Fig. 4.13). A part of these electrons emitted from Wj is scattered in
2DEG again and enters into the collector. The electrons enter into the collector excessively
in comparison with the case of without byway. These excess electrons are the origin of the

subpeaks.

4.1.4 Conclusion

In conclusion, we have investigated the magnetic electron focusing effect in a
GaAs/AlGaAs 2DEG with multiprobe. With increasing electron density, the ballistic elastic
scattering length increases and the specularity at the sample boundary decreases. Further-
more, even in a configuration where the focused electrons can enter an extra probe located
between the emitter and the collector probes, the focusing effect can be clearly observed.
By the experiment of the byway, we conclude that the extra probe reflection originates in

the re-emission of electrons from the extra probe where the electrons enter by the electron

focusing effect.

26




4.2 Investigation of electron emission distribution
from oblique wire

4.2.1 Introduction

When the electron travels adiabatically from the narrow to the wide region in the gradu-
ally widening channel (Fig.4.14), the transverse quantum state is conserved. In this situation,
its transverse momentum k; is gradually transferred into the longitudinal momentum k|,
and Ay increases. Thus, the electron stream through a narrow channel is collimated in the
forward direction of channel, and this effect is called “electron collimation effect”. In ac-
cordance with the collimation effect, the angular distribution is expected to be narrower as
the channel width becomes narrower. In the early stage of this investigation, the various
crossed junctions have been studied.?3%57-9) The collimation effect is observed as follows:
The Hall resistance is suppressed around zero field (quenting of Hall effect),?®8738) and
“bend resistance” in which the electron stream passed around the corner at a junction is ob-
served.?® In the calculation by the recursive Green’s-function method, Baranger and Stone
have showed that generic quenching is found when the width of the wire is gradually in-
creased near the junction to the Hall probes.?” Beenakker and van Houten have calculated
the electron distribution near the orifice of the narrow channel in the classical billiard ball
view and also have showed that the rounded corner collimates the electron stream more
than the abrupt corner.”” These effects are interpreted as that at the rounded corner the
spreading electrons are bounced back to the forward direction by the rounded wall. Usuki

et al. have showed, in the calculation, that the existence of the collector also influences the
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Figure 4.14: Adiabatic propagation of Figure 4.15: Schematic view for an in-
electron wave function through a gradu- vestigation of angular distribution of elec-
ally widening wire. The wavelength along tron from wire. The relation between the
the transverse direction parallel to k; be- angle (#) of emitted direction and B is
comes broader as it propagates to wide re- 6 = arcsin(eBL/2hkp).
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angular distribution of electron stream by the reflections, whereas the fundamental symme-
try is conserved.? In the recent experiments, the angular distribution is measured in the
transfer resistance configuration with a series of emitter (£) and collector (C') point contacts
facing each other across 2DEG®*%¢:%) (Fig. 4.15). The electron stream from F can enter C
because of the overshooting effect of electrons in the high quality 2DEG. By wheeling the
electron stream from E in magnetic field (B), the angular distribution of electron stream
can be deduced. The relation between the angle () of emitted direction of electron and B is
given as ) = arcsin(eBL/2hkg), where L is separation length between E and C. Following
Cumming et al., however, the angular distribution is destroyed occasionally by the single
impurity in front of E or C.%

The magnetic electron focusing effect?®?%:61°7) is also useful method to see the electron
distribution from a wire. The peak magnetic field is apparently determined by electrons I
emitted at & = 0°, where # is a tilted angle of the emission direction from the channel

direction.:%6)

[n this section, we investigate the angular distribution from the narrow oblique wire 1
which is tilted to the 2DEG boundary. In this experiment, it is expected that the peak of
magnetoresistance of the transfer resistance would shift from the case of vertical wire if the
electron collimation along the wire direction occurs. Moreover, we investigate the electron
distribution in magnetic electron focusing effect. The experimental data are also compared

with the calculated ones by a classical billiard model. '.

4.2.2 Results and discussion l

4.2.2.1 Direct measurement of angular distribution of electrons from narrow
wire

To directly observe the angular distribution of electrons emitted from wires, magnetore-
sistance is measured in the configuration of Fig. 4.15.8°%) The device was fabricated by the
process of “Type E” from a heterostructure (HEMT# 2). Schottky gates were made by
evaporation of Ti/Au metals. The SEM (scanning electron microscope) image of the sample
surface is shown in Fig. 4.16(a), and a schematic view is in the inset of Fig. 4.16(b). An
upper wire “E1” is connected vertically to the 2DEG boundary (vertical wire), while a lower
wire “E2" is tilted from the vertical direction under an angle of 45° (oblique wire). Each
emitter has a collector across 2DEG away from 4 pm, whose distance is shorter than a mean
free path (~ 6 um). Resistance was measured at 0.4 K by operating an excitation current
30 nA.

Figure 4.16(b) shows gate-voltage dependence of resistances at zero-magnetic field. The
emitter and the collector channels are formed at V, ~ —0.6 V. Since the resistance of wire

is much lower than the quantized value h/2e? ~ 12.9 k), the wire width is much wider than
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Figure 4.16: (a)SEM image of the surface of device. Gray regions are Schottky gates, and darken
regions are connected to ohmic contacts. (b)Two-terminal resistances of each gate. “FE1” is a
vertical and “FE2" is an oblique emitter wire. “C'1"” and “C'2"” are collector point contacts. Inset:
A schematic view of sample.

the Fermi wavelength. So, the electrons will behave like a pinned ball. From the assumption
that the resistance is proportional to the ratio of wire width to the length from the resistance
at V, ~ —0.6 V, the E1 width is estimated as 0.7, 0.6, 0.2 pm at V, = —1.0,-2.0,-3.0 V,
and the E2 width as 0.4, 0.3, 0.2 um at V; = —1.0,—1.5, —=2.0 V, respectively. The C'1 width
and the C2 width are 0.05 um at the gate voltage V; = —2.0 V.

An angular distribution of emitted electrons from the vertical wire (E1) or oblique wire
(E2) are investigated as shown in Fig. 4.17. The configurations of electrodes are shown in
each inset. The magnetoresistances are plotted as a function of #. In the case of vertical
wire (Fig. 4.17(a)), the peaks are almost symmetric in 4. With decreasing gate voltage for
E1, the angular distribution becomes slightly sharper. This is because the electron angular
distribution is slightly collimated along the wire direction. Moreover, the fine structures
grow around # = 0°. The angles of the fine structures does not shift in the different C1
width. These may be caused by the electron reflection at the emitter orifice or by the
influence of impurities.®>®? Ando points out that the reflection wave between E and C
plays an important role in the electron transport, and it makes a complex shape on the
magnetoresistance.”®)

Similarly, the angular distribution from the oblique wire (E2) is investigated
(Fig. 4.17(b)). If the electrons from E2 go straight along the wire direction, the angular
distribution would shift by 45° from the vertical direction. In Fig. 4.17(b), however, the

measured shift is about 10° from the vertical direction. The result shows that the angular
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Figure 4.17: The angular distribution of electrons emitted from the vertical probe (a), and from the
oblique probe (b). Insets show the configuration of electrodes. Unused two gates were connected
to the ground potential.

distribution depends on the wire direction but the value of peak shift is not determined only
by the wire direction. Following the consideration by Nixon et al., the random potential
causes the wire to break up before it can be made narrow enough to remain lowest subband
state.?®1%) In our experiment, some parts of wire may be squeezed by the random potential
before wire width reaches narrow enough to collimate the electron stream. Consequently, the
angular distribution may depend on the structure just at the orifice of the wire. It should be
noted that at the orifice of the oblique probes the escaping electron waves feels asymmetric

termination of the wire.

4.2.2.2 Investigation by magnetic electron focusing effect

We also investigate the influence of the peak shift of about 10° in the angular distribution
from the oblique wire on the electron focusing effect. A SEM image of a sample is shown in
Fig. 4.18(a), and a schematic view in the inset of Fig 4.18(b). The separation AL between
the emitter and the collector is 6.5 um. The lower wires are tilted under an angle of +45°
from the vertical direction. In the electron focusing effect, the peak shift from oblique wire
would be also expected.

Figure 4.18(b) shows the two-terminal resistance of an oblique wire as a function of the

gate voltage. Since the 2DEG under the gates is depleted and the wire channel is constructed
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Figure 4.18: (a) A surface image of a sample by SEM. The gray regions is Schottky gates. (b)
Two-terminal resistance of an oblique wire versus applied voltage to the gate-electrodes. Estimated
widths at each gate voltage are shown in figure. Upper inset: Schematic view of the sample. Solid
and broken lines show the electron trajectory for the first peak of the electron focusing effect.
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Figure 4.19: (a) Magnetic electron focusing effect at three gate voltages. The electron focusing
effect with vertical probes appears in the region of negative magnetic fields, while that effect with
oblique probes in positive magnetic fields. The arrows indicate the positions of first peak. (b) First

peak positions at various gate voltages.

at gate voltage Vg = —0.6 V, the channel width could be estimated at 1.0 pm which is the
gap width in the SEM image. Since the wires are much wider than the Fermi wavelength
and have dozens of subbands in each wire, the electrons behaves like a pinned ball. From an
assumption of the proportional relation between the conductance and the wire width, the

wire widths are 1.0, 0.5 and 0.4 ym at Vg = —1.0, —=2.5 and —3.5 V, respectively.
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Figure 4.20: Calculated electron focus-
ing effect with the angular distribution of
cos(f) or cos(8 — 45°). Broken lines are
drawn at Bp,.
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The magnetoresistances due to the magnetic electron focusing effect are shown in
Fig. 4.19(a). The first peak is observed at B ~ Bgc (shown by allows) and some peaks
due to the boundary reflections are also observed. Here, we focus on only first peak because
these peak fields are directly influenced by the electron angular distribution at the emitter.
The peak positions from the vertical and oblique wires are plotted against gate voltage in
Fig. 4.19(b). The peak positions in both sides are not apparently affected by the gate voltage
and are almost same within an experimental error.

To confirm the experimental result, we simulate electron motions by using a classical
billiard model under a consideration of the random scatterers in 2DEG (I, ~ 7 pum) and
a real shape of sample boundary.®®%) An electron density is 4.3 x 10 cm™2. We also
consider the 2DEG boundary specularity p ~ 0.7 which is derived from the experiment of
this sample. More than 5x10% trajectories have been calculated for each magnetic field.
Figure 4.20 shows the magnetic field dependence of a difference between the number of
electrons entering the probe V+ and the probe V—. The broken lines indicate B, where
the electrons emitted to the vertical direction are focused. The position and shape of the first
peak in f(0) = cos(#), are almost the same as those in f(#) = cos(0 — 45°). If a collimation
occurred, the peak from oblique wire would shift significantly. Because the peak shift from
the oblique wire tilted under 45° is not clear in the focusing calculation, the influence by
the emission shift under 10° cannot be observed in the focusing experiment (Fig. 4.19).
Consequently, no experimental peak shift in the magnetic electron focusing effect can be

observed if the remarkable collimation does not occur.
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4.2.3 Conclusion

In conclusion, the electron angular distributions from narrow oblique wires, which are
connected to the 2DEG region under an angle of 0° (vertical wire) and 45° (oblique wire),
are investigated.

In the measurement by transfer resistance configuration, we find that the shift of electron
distribution from the oblique wire is not 45° but about 10°. The reason may be that the
angular distribution strongly depends on the orifice structure of the wire rather than the
wire direction.

From the investigation of the magnetic electron focusing effect, both peak positions from
oblique and vertical wires are almost same. We also calculate the focusing effect with a
classical billiard model. The experimental peak shift can be observed in the magnetic electron

focusing effect only if the remarkable collimation occurs.
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4.3 Transport property in antidot lattice

4.3.1 Introduction

Electron transport in lateral antidot superlattices, in which the potential modulated pil-
lars (antidots) are regularly superimposed on the two-dimensional electron gas (2DEG), has
been attracting much attention in recent years.®!°1"129) I the antidot lattice, various phe-
nomena, e.g., the Aharonov-Bohm (AB) effect,'**1%) the Al'tshuler-Aronov-Spivak (AAS)
effect,'® and the negative magnetoresistance due to the weak localization by the specular
scattering at antidot walls,'27129) have been observed. In low magnetic fields, some maxima
in the magnetoresistance appear.®®!%-118) The magnetic fields of the peaks almost corre-
spond to the cyclotron motion (cyclotron diameter=2R,) with the encircling orbit around
some antidots. The oscillations are called “commensurability oscillations”, which have been
intuitively interpreted by the trapped electrons on pinned electron orbits around some anti-

dots (Appendix A).1%%1%) However, in an antidot lattice composed of anisotropic unit cell;
107-110)

e.g., a rectangular cell, the peak magnetic fields depend on the current flow direction.

This anisotropy dependence can not be explained by the pinned electron orbit model because

in the pinned electron model the electrons should be trapped around the antidots irrespective

of the current flow direction. Theoretically, Fleischmann et al.''® have solved the classical

equations of electron motion and have applied the linear response relation'® to the square :

antidot lattice (Appendix A). The result of the calculation suggests that the commensura- '

bility oscillations are not caused by the varying of pinned orbits, but by correlations within

the chaotic trajectories. l
In this section, we consider in more detail the relation between the commensurability |’

oscillations and the current flow direction in anisotropic antidot lattices where the fluctua-

tions either parallel or perpendicular to the current flow direction is introduced into antidot {

locations. We also investigate various rectangular or isosceles triangular lattices.

4.3.2 Potential modulation on 2DEG (sample preparation)

Our devices are fabricated from a wafer of GaAs/AlGaAs heterostructure (HEMT# 2).
The electrons are confined to a 2DEG about 60 nm beneath the surface. Antidot structures

are made by the technique of “trench etching”(Type D). After the writing of the dots by

EB-lithography on the PMMA resist which was coated on the mesa-etched Hall bar, the
patterns were transferred to the heterostructure by the bombardment using 1 kV Ar ions. -
The etched hole depth was about 15 nm. Since the accelerated Ar ions penetrated well {
beyond 100 nm from the sample surface, many defects were introduced, and electrons were
trapped there.’%%1:57) The carrier density was also changed by the modified potential profile

when the cap layer was removed. Thus, the areas of 2DEG under the etched holes were ‘
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Figure 4.21: Images of sample surface of Fig.4.24. These are observed by atomic force microscope
(AFM). Ordered square lattice (a) and disordered lattice (b). Fundamental period (a) is 0.8 pum
and antidot diameter is about 0.15 gm. The disorder due to Gaussian distribution (standard
deviation=¢) is introduced into the antidot location. In this picture, ¢ = 0.25a. (c¢) Enlarged

image of typical hole for an antidot.

depleted and “antidots” were constructed. The images of the sample surface by atomic force
microscope (AFM) are shown in Fig. 4.21. Although the circumferences of the holes are not
perfect circle and the shapes of individual one in the sample surface differ, the boundary
of the depleted area in 2DEG may be smoother than the surface holes, because the 2DEG
plane is located at several nano-meter beneath the holes and the depletion layer spreads

around the antidot. In order to measure the smoothness of 2DEG boundary, we appraise

the specularity by the magnetic electron focusing effect.® 7™ ™) [n one sample, the device
for the magnetic electron focusing effect and that for the commensurability oscillations are
contained: The device for the focusing effect is about 20 ym away from the antidot lattice
whose commensurability oscillations are shown in Fig 4.22. From the dumping ratio of the
focusing peaks through the boundary reflection, more than 70% of electrons are bounced
specularly by the 2DEG boundary. Thus, the specularity of antidot boundary, which are
made in same fabrication process, may also exceed 0.7.

There are two or five antidot regions in the same device. It is desirable that the peaks due
to the commensurability oscillations are compared in one sample, because the peaks strongly
depend on the antidot diameter!®® 1% as shown in Fig. 4.23. The antidot period is changed
from 1 pm to 4 um, and the antidot diameter 0.2-1.2 um in the ordered triangular antidot
lattices. The typical antidot arrays are shown in the upper illustration of Fig. 4.23(a) and (b).
The peak heights drastically depend on the ratio of antidot diameter to the period. The peak

amplitude of the oscillations also depends on the carrier density (Fig. 4.22). Moreover. the
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Figure 4.22: Magnetoresistance at various carrier density (ns). Antidots form square lattice (@ =
1 pum, d = 0.1 pgm). Carrier density is controlled by the persistent photo conductivity effect under
the light from LED (see p.9).
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Figure 4.23: Magnetoresistance for various antidot arrays. Period dependence (a), and diameter
dependence (b). Rc is cyclotron radius. The dependence on the ratio of the diameter to the period
is measured in one sample.
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antidot diameter is easily varied by slight change in the fabrication process. It is necessary
to measure them under the same condition.

The carrier density and the electron mean free path, which are deduced from the SdH
oscillations and the zero-field resistance in the unpatterned 2DEG region in the sample
(inset of Fig. 4.24), are 5.2 x 10 ecm~2 and about 12 um, respectively, at 1.5 K and under
illumination. Since these values are almost the same as the intrinsic values of the starting
heterostructure in the same environment, most of the accelerated Ar ions stop in the PMMA
resist. The magnetoresistance was measured by an ac resistance bridge at 15 Hz. The peaks
due to the commensurability oscillations did not depend on the current level between 30 nA

and 1 pA.

4.3.3 Results and discussion
4.3.3.1 Fluctuation of antidot location due to disorder

The schematic view of the sample is shown in the inset of Fig. 4.24. A fundamental
unit cell is a square. The period (a) of the antidot cell is 0.85 pm and the designed antidot
diameter (d) is 0.1 um. We introduce the fluctuations to all directions of antidot location'**) ‘
in the Gaussian distribution (standard deviation = o, a typical antidot group is shown in the
right-upper frame of the inset of Fig. 4.24). In the disordered antidot lattice, o is one-quarter
of the lattice period. Antidot areas are 170 gum x 150 pm. The magnetoresistances of the

ordered lattice, disordered lattice, and unmodified 2DEG region are shown in Fig. 4.24.

——

The 2DEG region shows only SdH oscillations. In both antidot lattices, at higher magnetic
fields where the cyclotron diameter becomes smaller than the period, the resistance rapidly
decreases and the SAH oscillations appear. From the magnetic fields (3.5-4 kG) at which
the resistance decreases, the effective antidot diameter of both lattices can be roughly esti-
mated!??) as 0.14-0.17 um. Since the resistances of two lattices drop at same magnetic field,
the effective diameter is not changed appreciably by the fluctuation due to the disorder. In
the magnetoresistance of the ordered lattice (¢=0), the peaks due to the commensurability |
oscillations clearly appear at the corresponding magnetic fields to the encirclement of the '
electron orbit around one or four antidots (lower inset in Fig. 4.24). In the disordered lattice
(¢ = 0.25a), the peaks vanish, although the average of antidot separation is almost same
and there is enough space for the electrons to encircle the antidot (right-upper frame of
Fig. 4.24). In an antidot lattice with triangular cell, the trend is same (Fig. 4.25). The peak
due to the encirclement orbit around one antidot almost disappear at o = 0.25a. As a re-
sult, no commensurability oscillations are observed in the absence of the ordering of antidot
location.

Moreover, we investigate the directional dependence of the fluctuation with respect to the

current flow direction. The fluctuation is introduced either in the X-direction (X-disorder)
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Figure 4.25: (a) Schematic view of sample.
There are five antidot lattices in the same I
sample. (b)Magnetoresistances of triangu- 1
larly arranged antidot lattices with various
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Figure 4.24: Magnetoresistances of the or-
dered (0=0) and disordered (¢ = 0.25a) anti-
dot lattice, and unpatterned region (2DEG).
The fundamental antidot cell is square. The
schematic pinned electron orbits (lower inset)
correspond to the two maxima (1 and 4) in
the magnetoresistance. Upper inset: Sample
layout. The two frames of this inset are typ-
ical parts of respective antidot lattices. "

or in the Y-direction (Y-disorder) (upper inset of Fig. 4.26). The X-direction is parallel to
the current flow direction. The period is 1 gm and the designed diameter is 0.15 gm. The
value of ¢ is 0, 0.1a, or 0.25a.

The magnetoresistances of these antidot lattices are shown in Fig. 4.26. In the ordered

antidot lattice (0=0), two peaks.due to the commensurability oscillations clearly appear. It

is surprising that the clear peaks are observed the X-disordered lattices (0.1a(X), 0.25a(X))
in spite of the fact that the all-directional fluctuation with o = 0.25a suppresses the peak

as shown in Fig. 4.24. We also find that the amount of decrease depends on the direction
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of the antidot fluctuations. The peaks in the X-disordered lattices (0.1a(X), 0.25a(X)) are
higher than those in the Y-disordered lattices (0.1a(Y’), 0.25a(Y’)). The replotted traces in
the lower inset of Fig. 4.26 show the situation more clearly. Because the X-direction and
the Y-direction are originally equivalent in the square lattice and the X-disordered lattice
and Y-disordered lattice are essentially equivalent under 90° rotation, the commensurability
oscillations of the two lattices must be the same in the light of the pinned electron model

where the current flow direction is not considered.!®®

4.3.3.2 Anisotropic antidot lattice with rectangular or isosceles triangular cell

To confirm the importance of the order along the Y-direction, we investigate the several

antidot lattices with rectangular or isosceles triangular cell. Fundamental cell in each lattice

is shown in Fig. 4.27. The ordered 9000 antidots are arranged in each lattice.

| Figure. 4.28 shows the magnetoresistances in the several rectangular antidot lattices.

Figure 4.28(a) presents the magnetoresistances of antidot lattices with several a. at a,=1 um
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Figure 4.27: Several antidot lattices with rectangular (a) or isosceles triangular cell (b). There are
9000 antidots in each antidot lattice. In the lattice with rectangular cell, a, is 1 pm (a-1), or a,
1 pm (a-2). Similarly, in the antidot lattice with isosceles triangular cell, a, is 1 pm (b-1), or a,
1 um (b-2). Bold lines show the effective distances for the main peaks.

(Fig. 4.27(a-1)). The principal peak, at which the cyclotron motion is commensurate with
the circumference around one antidot, does not shift in spite of varying a, from 0.8 um to
3 um. A bold line in Fig. 4.28(a) shows a magnetic field predicted from 2R.=1 pym(=a,),
which agrees with the peak position. However, in the 90° rotated antidot lattices, in which
a; is 1 pm and a, varies between 0.8 ym and 3 pm (Fig. 4.27(a-2)), the commensurate peak
shifts drastically to low fields with increasing a, (Fig. 4.28(b)). The peak magnetic fields :
are in close agreement with the magnetic fields predicted from each 2R. = a,. l

In the triangularly arranged antidot lattices, however, the peak magnetic fields are not
determined only by a, (Fig. 4.29). In Fig. 4.29(a), a, is 1 um and a, varies (Fig. 4.27(b-
1)). The main peak does not shift for a, = 0.866-3 um. In these three antidot lattices
(a, < \/a,*+ (a,/2)?), the nearest neighbor distance between antidots are the same (a, =
1 pm). In other antidot lattices of a; = 0.683 ym and 0.5 pm (a, > /a2 + (a,/2)?), the
peak shifts to higher magnetic field. In the squarely arranged lattice (a, = 0.5 pm), the
nearest neighbor distance is the side (1/v/2 um) of square, not the diagonal (a, = 1 pm). [
These effective distances are presented by bold lines in Fig. 4.27(b-1). The results indicate

that the nearest neighbor distances determine the commensurate condition. Similarly, in the ‘
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Figure 4.28: Magnetoresistances of various rectangular lattices. (a) Distance of a, is 1 pm, and
a, varies between 0.8 um and 3 pum. The bold line shows the magnetic field calculated from
2R. = 1 pum. (b) Distance of a, is 1 ym and a, varies between 0.8 pum and 3 pm. Each bold line

shows 2R, = a,. Insets show a, or a,.
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Figure 4.29: Magnetoresistances of several antidot lattices with isosceles triangular cell. The bold [
lines show the magnetic fields where 2R, is equal to the nearest neighbor distance between the |
antidots. (a) Distance of a, is 1 um, and a, varies between 0.8 um and 3 um. (b) Distance of a, ;
is 1 um and a, varies between 0.8 um and 3 um. Insets show a; or ay. |
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lattices where a, is 1 pm and a, varies between 1 gm and 3 pm (Fig. 4.27(b-2)), the nearest
neighbor distance is also effective in emerging the principal peak (Fig. 4.29(b)). Without
lattice of @, = 1 um, the nearest neighbor distance is the diagonal (y/a2 + (a,/2)?). The
nearest neighbor distance becomes smaller in correlation with the decrease of a,. In the
triangular lattices, the principal peak appears in the condition that the cyclotron diameter

is commensurate to the nearest neighbor distance.

4.3.3.3 Dependence on current flow direction in rotated rectangular antidot

lattice

In the next experiment, we investigate the dependence on the current flow direction in
the rectangular antidot lattice. A schematic view of the sample is shown in the inset of
Fig. 4.30. The antidot lattices are composed of rectangular unit cells (2 gmx1 pgm) where
the longer side of a fundamental cell (#= 0) is parallel to the current flow direction. The

lattices are rotated in five tilted angles (#=0-90°) as shown in the inset of Fig. 4.30. There
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Figure 4.31: Magnetoresistance of various line numbers of antidot arrays (V). The line number N
is 1, 2, 5, 10, or 50. Fundamental cell of the antidot lattice is square (a), triangle (b) or rectangular
(c). Typical arrays of the lattices and the defined lengths are shown in upper inset. Lower inset:
Zero-field resistance ( Rp) of each antidot lattice.

are 9000 antidots in each segment of the sample. In the magnetoresistance of the antidot
lattice at =0, the peaks due to the commensurability oscillations appear when the cyclotron

diameter (2R,.) is 1 pm, 2 gm or 3 pm. Each cyclotron diameter corresponds to the integral

multiple of the lattice period of the shorter side. Bold lines in Fig. 4.30 show the calculated

R o i

magnetic fields corresponding to 2R.=1 pm and 2 um. Except for the antidot lattice of
0= 90°, the peak of 2R.= 1 um appears at all angles, but decreases with increasing 6.
Moreover, we pay attention to the zero-field resistance. With increasing 0, the zero-field
resistance decreases (Fig. 4.30). Few electrons can go through the antidot area without being
scattered by the antidots because the length of antidot segment (120 pm) is much longer
than the electron mean free path (12 um). The electrons selectively flow along the wide J
channel rather than along the narrow channel. The result shows that the resistance of the
antidot area is not determined by the density of antidots, but by the channel width along

the current flow direction.

4.3.3.4 Antidot array number dependence

In order to examine the dependence of the peak of the commensurability oscillations

on the lattice size, we change the antidot array number (V) along the X-direction (=the

current flow direction; Fig. 4.31). If the electrons traveling complexly ( e.g., the trajectory II
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Square Lattice SR
I (ah=a Figure 4.32: Schematic electron trajectories in
\ square lattice when the semiclassical cyclotron
W&“ X orbit is commensurate with the period. Some
' o o o ° .{%{ of the trajectories are shown: I. Steady tra-
[(\ )7 jectory pinned around an antidot, II. ordinary
.. o Qﬁ{ diffused trajectory on which a electron travel
around complexly in lattice, III. skipping trajec-

tory which is called “runaway trajectory”. (See

Appendix A.)

in Fig.4.32) are effective and increase the resistance of the system at the commensurate peak,
the peak height is expected to strongly depend on N.

Figure 4.31 shows the magnetoresistances with several N (N= 1, 2, 5, 10, and 50). The
antidot number in the Y-direction is 150 per array. There are three antidot arrangements of

the fundamental cell: square arrangement (Fig. 4.31(a)), triangle arrangement (Fig. 4.31(b))

e —— ——

and rectangular arrangement (Fig. 4.31(c)). At N= 1, three types are coincident. Zero-field

resistances (Fp) are shown in the insets. The resistance Ry is in linear proportion to N. At H

N= 50 in square lattice (Fig. 4.31(a)), some peaks due to the commensurability oscillations

appear, and their heights decrease with decreasing N. However, even at N= 1, the peaks do
not vanish. The tendency is similar in other lattices (Fig. 4.31(b) and (¢)). In single antidot
array, the complex trajectories such as trajectory Il is absent. In this single array lattice,
following the suggestion by Baskin et al.,'*®) the “runaway trajectories” (trajectory III) are
only considered as the chaotic trajectories. In rectangular lattice with 50 antidot arrays
(Fig. 4.31(c)), complex trajectories (trajectory II) are also not so considerable, because the
separation between the adjacent antidot arrays are enough large in comparison with the
electron cyclotron diameter at the main peak. In the square lattice with N= 50, however, we
cannot distinguish the contributions to the commensurability oscillations from the runaway
trajectories or the complexly traveling trajectories, and cannot distinguish the two runaway

trajectories along X- or Y-direction.

4.3.3.5 Conductivity in antidot lattice

Because the electron stream responds to the externally applied electric field linearly
through the conductivity tensor, if we get the conductivity of the system, we can imagine
the electron stream. Thus, we convert the experimental resistivity into the conductivity!V
as shown in Fig. 4.33 and Fig. 4.34.

In the square lattice (¢ = lpm, d ~ 0.1um; Fig. 4.33), we consider conductivities 0., and

0y, Which are calculated from the standard formula for the homogeneous two-dimensional

Tys
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Figure 4.33: (a) Magnetoresistivity p,, and
Hall resistivity pz, in the square antidot lat-
tice (a =1 pm, d ~ 0.1 um). (b) Solid lines
show the experimental o;;, 0zy, and dot-
ted line shows classical magnetoconductivity
0%, = a/(1 + BB?) where a and 3 are fit-
ting parameters (a =11.2 and 8 =432). (c)
Different conductivity (Acz, = 04z — 02,).
(d) Resistivity re-constructed from a',:,,/criy
(solid line) and p., (dotted line). A vertical
dotted line is drawn at 2R. = 1 um.

Figure 4.34: (a) Magnetoresistivies pyz, pyy
and Hall resistivity p;, in rectangular lattice
(1 pmx0.8um, d~ 0.1 pm). (b) Solid lines
show the experimental ¢z, oy, and o4y, and
dotted lines show classical magnetoconduc-
tivities 02, and agy. (c) Different conductiv-
ities (AGzz = Ozz — 00, AGyy = Oyy — Tyy)-
(d) Solid lines are resistivities re-constructed
from oy, /02, or 0.z/02,, and dotted lines
are prr Or prz. I'wo vertical dotted lines are
drawn at 2R. = 1 pm and 0.8 pum.
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conductor (see Appendix B). The experimental conductivity o,, and o,, converted from
the experimental resistivity p.- and p., are shown in Fig. 4.33(b). The conductivity ..
has some structures on a background which decreases with increasing magnetic fields. If
the background is determined by the pure classical effect in a homogeneous 2DEG, it may
be given by o), = a/(1 + 8B*). The parameter “a” and “f” are determined by fitting
procedure with the experimental conductivity at zero-field and that at B = 4.5 kG where
the deviation of p,, from Hall resistance of 2DEG region is little. To see the structures of
0z, We subtract 02 from o,,. A peak of Ao,, (=0,, — %) at B ~ 0.8 kG may be trivial
because it depends on two fitting parameters. However, another structures undoubtedly
stem from o,,. The pronounced peak of Ac,, appears at the vicinity of the peak of p.,
(~ 2.2 kG). As shown in Fig. 4.33(b), 0., is much larger than o, in the region ~ 2 kG.
Thus, the resistivity component p., is per = 02:/(02, + 02y?) ~ 0zz/0z,. Resistivities
re-constructed from o,,/0,,% and p,, are plotted in Fig. 4.33(d). The curves of o,./0.,*
and p; almost coincide near the main peak as is expected.

In a rectangular antidot lattice (a; = 1 pym, a, = 0.8 um, d ~ 0.1 um), the anisotropy
effect is clearly observed (Fig. 4.34). As shown in Fig. 4.34(b), o,, is much larger than
o5 and o, near the pronounced peaks of the resistivities. Because of the anisotropy of
the rectangular lattice, we get the relation p,, = 0y,/(0220yy + 02%) ~ 0,y/02,> In the
same way, pyy iS 0zz/0z°. From these relations, pz; (or pyy) depends on o,y (or o). That
is, in the case of o,y > 0., and o,,, the peak of the resistivity must be determined by
the diagonal conductivity perpendicular to the current flow direction. Near B=3 kG in
Fig. 4.34, the magnetic field of the pronounced peak of p., (or p,,) corresponds to the one of
a peak of oy, (or o,.). Following the consideration by Baskin et al., in which the “runaway
trajectory” is effective at the commensurability peaks (Appendix A),'*% the peak of oy,
(or o;;) can be explained. When the cyclotron motion is commensurate with the period
perpendicular to the current flow direction, the electrons on the runaway trajectories are
diffused along the Y-direction (Fig. 4.35(a)). Thus, the conductivity o,, increases. At this
condition, o,; is not enhanced. On the other hand, at 2R, = a, where the electrons are
guided along the X-direction (Fig. 4.35(b)), the peak of 0., appears and the peak of p,, is
observed. Here, we emphasize that it is important that the electrons are diffused along the
antidot arrays perpendicular to the current flow direction. Recently, Nagao has performed
a numerical simulation on a rectangular antidot lattice and has showed that anisotropic
behavior of the most pronounced peak can be explained by the diffusion of electrons along
the antidot array perpendicular to the current when the cyclotron diameter is commensurate
with that period.'??) The calculation by Fleischmann et al. have showed that the trajectories
belonging to a “pinned orbit” are not effective (Appendix A).!'®) Their result agrees with
our consideration because the electrons on “runaway trajectory” do not stay at an antidot

for a long time. However, in the case of 0,y < 0., 7, the resistivity p,, is proportional to
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Figure 4.35: Schematic electron trajectories in Figure 4.36: Schematic view of one-
rectangular lattice. At the 2R. = a, (a), con- directional disordered lattices (X- or Y-
ductivity oy, is enhanced. In the same way, at disorder).

the 2R. = a (b), conductivity o, is enhanced.

1/ozz. At this condition, Schuster et al. suggests that the pinned orbits may be dominant
at the peaks of the commensurability oscillations.''!)

Our model of the commensurability oscillations can explain the previous experimental
results described in previous paragraphs. In rectangular lattices, the peak position is de-
termined only by a, (Fig. 4.28). When the rectangular lattice is tilted, the peak, which
appears at 2R.=shorter period, decreases with increasing tilted angle (Fig. 4.30), because
the contribution of the electron diffusion to o,, decreases in the tilted antidot arrays. In
the one-directionally disordered lattices (Fig. 4.26), the lengths between the antidots along
Y -direction vary more with Y-directional disorder than with X-directional disorder, because
Y -directional disorder changes these widths more directly (Fig. 4.36). Thus, the peaks in
X-disordered systems are larger than those in Y-disordered systems. In the same way, in the
triangular lattices, the main peak fields are determined by the nearest neighbor distance in
the lattice (Fig. 4.29), because the commensurate condition is determined by the electrons

l
!
diffusing along the nearest neighbor distance between the antidots. -

4.3.3.6 Negative magnetoresistance due to Anderson localization |

In the antidot system, the negative magnetoresistances and strongly temperature |
dependent resistances have been observed in various antidot lattices at low tempera-
ture, !4 16, 117,127,128) Gome of these experiments have been made in the systems produced
by focused ion-beam (FIB) techniques. Since the energy of FIB is so high that the dam-
age around the antidots could not be avoided, the antidot diameter is large enough to be
comparable to the period. In the narrow structure, the boundary scattering of electrons by i
the walls becomes prominent. The negative magnetoresistances have been interpreted as an

weak localization by the electron-electron scattering, which is extended from the Al'tshuler-
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Figure 4.37: (a)Inelastic scattering length in the ordered and the disordered antidot systems. Inset:
Magnetoconductance of ¢ = 0.25a in very low magnetic field for differing temperature with the
theoretical curves (solid lines). (b)Temperature dependence of the conductance change in the
absence of magnetic field.

Aronov'®® and Dugaev-Khmel'nitskii'®!) theories in including the specular boundary scat-

tering,'*® and the one-dimensional weak localization by the boundary scattering.'?®1%%) [n

116,117) * the negative magnetoresistance has been explained by a nu-

other antidot systems,
merical calculation based on a classical model in which the external electric field and Hall
field are explicitly taken into account.

The negative magnetoresistance in the very low magnetic field (less than 100 Gauss) is
observed both in the ordered and in the disordered antidot system (Fig. 4.37). The nega-
tive magnetoresistance is not observed in magnetic field parallel to the plane of the 2DEG.
Because of temperature dependence of low field magnetoresistance (shown in Fig. 4.37(a)
inset, three symbols) and the disappearance above 10 K, we fit the negative magnetoresis-
tance following the two dimensional weak localization theory of Hikami-Larkin-Nagaoka'®®)
(Fig. 4.37(a) inset, solid line). The estimated inelastic scattering length from the fitting
is about 1 um at 0.4 K, and decreases with increasing temperature. Since the apparent
difference between antidot systems with different o is not observed, the negative magnetore-
sistance may be caused by the defects around the antidots.

With decreasing temperature below 20-40 K, the zero field conductance decreases, while,
the conductance of the 2DEG (without antidots) region increases (Fig. 4.37(b)). In the
two dimensional weak localization theory, the relation between the temperature and the
conductance change is expressed as Ao = ag(e?/272h)InT."*" In our experiments, the value
of the coefficient ap is 3-6. This is much larger than ar ~1 which is expected by the

conventional week Anderson localization.!*!%) The origin of the temperature dependence

in the high temperature region have not yet been revealed.




4.3.4 Conculsion

We investigate the transport properties in the various antidot lattices. The clarified
properties are as follows.

In the disordered antidot lattices, the peak heights of the commensurability oscillations
decrease with increasing the fluctuations of the antidot location. In an all-directional disor-
dered lattice, the peaks of the commensurability oscillations are suppressed. However, the
peaks are scarcely affected by the fluctuation along the X-direction (parallel to the current
flow direction). From these results, it is appears that no commensurability oscillations occurs
in the absence of the ordering of the Y-direction arrays. In the rectangular antidot lattice,
the peak magnetic fields of the commensurability oscillations are determined by the period
along the Y-direction. When the rectangular antidot lattice is tilted (tilted angle=#), the
peak magnetic field is determined by the shorter period at 0 < # < 90°. However, with
increasing 0, the peak height decreases. In the isosceles triangular lattice, the commensu-
rate condition is determined by the nearest neighbor distance between the antidots. The
dependence of the commensurability oscillations on the number of antidot arrays (V) and
the relationship between the current flow direction and the tilted rectangular antidot cell are
investigated. With decreasing N, the peaks of the commensurability oscillations decrease.
However, even at N= 1, the peaks do not vanish. In the case of o,y > 0., and oy, it is
found that the fundamental peak on resistivity is determined by the peak on the conductivity
perpendicular to the current flow direction. Consequently, we find that the behavior of the
conductance perpendicular to the current flow direction determines the oscillations of the
resistivity of system. This is the origin of the fundamental peak in the commensurability
oscillations.

The negative magnetoresistance in very low magnetic field (less than 100 Gauss) is ob-
served both in the ordered and the disordered antidot lattices due to the two dimensional
weak localization effect. Moreover, the large temperature dependence of the conductance,

which can not be explained by the conventional localization theory, is observed.
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Chapter 5

Summary

In this thesis, several ballistic electron transport properties in GaAs/AlGaAs mesoscopic

structures are studied.

e Study of Magnetic Electron Focusing Effect
Magnetic electron focusing effect is investigated by paying attention to its electron
density (n,) dependence in a GaAs/AlGaAs device with multi-parallel-terminal. With
increasing n,, a ballistic elastic scattering length increases, but a specularity at bound-
ary decreases. In a configuration in which a extra probe is located in between emitter
and collector probes, electrons entered the extra probe are “reflected”, and the fo-
cusing peak can be clearly observed. The “extra probe reflection” is revealed as the
re-emission of electrons from the piled up extra probe by the experiment of the devices

with “byway channel”.

e Investigation of Electron Emission Distribution from oblique wire
Electron angular distribution from a oblique wire which is tilted under 45° from vertical
direction to 2DEG boundary is investigated. A shift of angular distribution from the
oblique wire is not 45° but about 10° from perpendicular direction to the 2DEG.
The result shows that the electron distribution depends on the ansymmetry just at
the orifice. In the investigation of the magnetic electron focusing effect, both peak
positions from oblique and vertical wires are almost same. From the simulation of the [
focusing effect with a classical billiard model, no experimental peak shift is observed |

in the magnetic electron focusing effect if the remarkable collimation does not occurs.

e Transport Property in Lateral Antidot lattice
We investigate the commensurability oscillations paying attention to the relationship
between the lattice anisotropy and the current flow direction. It is found that the
oscillation peaks in rectangular antidot lattices is determined by the order perpen-

dicular to the current flow direction. When the rectangular antidot lattice is tilted

(tilted angle=#), the peak magnetic field is determined by the shorter period of the
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cell at 0 < 0 < 90°, while, at 6 = 90°, the peak field is determined only by the pe-
riod perpendicular to the current flow direction. In the isosceles triangular lattice,
the field of the pronounced commensurate peak is determined by the nearest neigh-
bor distance between antidots. Moreover, the peaks do not vanish even in the single
array perpendicular to the current flow direction. Consequently, we find the that the
commensurability oscillations are determined by the conductivity perpendicular to the
current flow direction, and peak on the conductivity is explained by the electron dif-

fusion along its period on the runaway trajectory.
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Appendix A: Existent models for the commensurabil-
ity oscillations

In this appendix, we introduce the two models to illustrate the commensurability oscil-
lations in the square antidot lattice. First model has been proposed by Weiss et al. Their
model stems from the trapped electrons by “pinned orbit”.'®®) However, there are no reason
that the electron can stay near antidot for a long time because the potential of antidot pillars
repulses the electrons. This model is not adequate for the electron transport property. But, it
is useful to predict the peak magnetic fields. Second model is derived by the classical chaotic
dynamics.!'® 129 By the numerical calculation in the cos-function like soft wall potentials,
Fleischmann et al. have classified the electron trajectories into two kinds of trajectories: the
pinned trajectory and the chaotic trajectory. As the result, they emphasize that the chaotic
trajectories is the majority in the contribution to the resistance peaks. From the standing
point of dynamics chaos theory, Baskin et al. have also calculated the electron trajectories
in an antidot lattice with hard wall.'®®) They calculate the diffusion coefficient of the lattice,

and analyze the association between the coefficient and the resistance peak.

Pinned orbits model

This model is based on the classical electron movement like a pinball in the periodic hard
wall pillars.’®) From the fact that the peak magnetic fields of the oscillations correspond to
the fields where the classical cyclotron motions encircle some antidots, it appears intuitively
that the electrons are trapped by antidots. The model involves three different electron orbits:
pinned, scattered and drifting one. Electrons with Fermi energy are divided into three kinds
of orbit fraction ( fp, fs, fa) in accordance with electron position and moving direction. Since

the conductance is assumed to be determined by the fraction of fs and fa, the resistance

1.0

(a)

ORBIT DENSITIES
0.5

0

CYCLOTRON RADIUS, P

Figure 5.1: (a) Real space diagram which is divided into three zone: pinned, scattered or drifting
orbit. Electrons are divided into three kinds of orbit fraction ( fp, fs, fa) in accordance with electron
position and moving direction (b). (From Ref.105.)
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peak appear at the field where f, increases.

This model can be successively applied to square lattice and triangle lattice.19%1%) How-
ever, in an antidot lattice with anisotropic cell; e.g., a rectangular cell, the peak magnetic
fields depend on the current flow direction.'97119) This anisotropy could not be explained by
the pinned electron orbit model because the electrons should be trapped around the antidots
irrespective of the current flow direction in the pinned electron model.

Weiss also has suggested that the validity of the pinball model becomes questionable for
large d/a, and the electron dynamics in a “soft” antidot potential can not be described in

terms of conventional circular cyclotron motion (2R. = 2hkr/eB).

Chaotic Orbits Model
Fleischmann et al.''?) applied a periodic potential system to Kubo-type linear response

system.'® They have solved the classical Hamiltonian of electron motion

1 -
H=—(5—ed) +U(z,y) (5.1)

2m

under a model potential
U(z,y) = Up [cos(2nz) cos(27y)]” (5.2)

where p is the electron momentum and A the vector potential. The parameter 4 control
the steepness of antidot wall. Trajectories z(t), y(t), and corresponding velocities v.(t) = &,
v,(t) = y are obtained in the numerical results. The phase space is generally divided into
two regions: regular cyclotron like motion and chaotic motion. Figure 5.2 shows the poincaré
surface of section (y,v,) at z = 0. The electrons belonging to the island behave as regular

motion around the antidot, that is, behave as the pinned electrons in the Weiss's model.

a

Figure 5.2: (a)Model potential (y=4) of an-
tidot. (b)Phase space map for regular or
chaotic motion. The electrons belonging to
the island stay around antidot for a long time,
whereas the electrons belonging to chaotic
sea travel around in antidot lattice. Exam-
ples of trajectories in real space for incom-

1.5] e mensurate (R. = a) (c) and commensurate
d?a'_‘?“f?,sf-‘_a, (2R.=a) (d) in the antidot lattice with pe-
v | 3% r._\ riod a. (From Ref.119,108.)




These electrons do not contribute to the conductance. In accordance with velocity correlation

(;(t)0;(0)) in the Kubo-type formula, the conductivity o;; can be expressed as
0;; f e=t7) (,(¢)9;(0)) dt. (5.3)
0

Because only chaotic trajectories contribute to the conductivity, the integral is taken only
over chaotic trajectories. These numerical results are in good agreement with experiments
in the square antidot lattice. Consequently, Fleischmann et al. conclude that the magne-
toresistance peaks mainly are not caused by the varying number of pinned (regular) orbit,
but by correlations within the chaotic region.

On the other hand, Baskin et al.'*® have calculated the electron trajectories in an antidot
lattice with hard wall from the standing point of dynamic chaos theory. They find that the
diffusion coefficient (D,,) of the lattice is enhanced at 2R. = a by the contribution of the
“runaway trajectories” (trajectory II in Fig.4.32). They argue that the oscillation peaks of

D, coincide the peaks of measured resistance in the antidot lattice.

Appendix B: Conductivity and resistivity tensor
In the two-dimensional case, the relation between the external electric field (£) and the

current density (f) in the magnetic field are

- iE] el e
Jy Oyzr Oyy E, ' E, Pyz  Pyy Jy '

At J, =0 (Jz: #0), J; and p,. in the anisotropic lattice are expressed as :

2
o o
i Sl SR b e A i (5.5)
: Ozz0yy 220y + 02,
In this equation, the Onsager relation (0., = —0y;) and E, = (04 /0yy,) E; are used. At the

peak of commensurability oscillations in the higher magnetic fields, 0., is larger than o, or
Oyy (Ozy > Oz, 0yy) as shown in Fig. 4.33; we approximate J, and p,, as

2
Try Tyy

2

o R, (Toy > Gty i) - (5.6)

Tyy Ty
This equations show that a peak of o, makes a peak on p,,. At low magnetic fields (o, <
Oz Oyy); DOWEVET, e = Oy (02204, + crxy?') ~ 1/, approximately.

On the other hand, in the classical Drude model, o, and o3, are

o0 = —2° e e (5.7)
B gt - R 1 +w.tr? '
where op = nse?*r/m™ and w. = eB/m". Then, p,, and p,, are
m 1 2
pm': — 2 L .OJ:y = B L (jb)
W7 ne

The resistance p,. is independent on the magnetic field (B), and p., is proportional with B.
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Ns

p

RB

Rc

PMMA
SdH oscillations
VF

o

oo

Oz, Oyy; Tzy
Pzzs Pyys Pry
7

We

AL

T

Two dimensional electron gas

Period of antidot lattice

Diameter of antidot

Magnetic Field

Peak Magnetic Field in Magnetic focusing effect (= 2hkr/eAL)
Single electron charge

Electric field

Electron beam lithography

Fermi energy (= (hkr)?/2m")

Fermi distribution function

Plank’s constant (= 27h)

GaAs/AlGaAs heterostructure with high mobility two-dimensional
electron gas (grown by MBE)

Fermi wave vector (= (27ns)!/?)

Byway current

Elastic mean free path of electron derived from px and ns
Ballistic elastic mean free path of electron

Light emitting diode (GaAs, A ~950 nm)

Effective mass in GaAs (= 0.067me.)

Carrier density of 2DEG

Specular coefficient (=specularity) of 2DEG boundary
Byway resistance

Semiclassical cyclotron radius (= hkr/eB)

Organic resist material for EB (=PolyMetylMethacrylate)
Shubnikov-de Haas oscillations

Fermi velocity (= hkrp/m*)

Standard deviation in Gaussian distribution

Seat conductance

Conductivity tensor

Resistivity tensor

Hall mobility

Cyclotron frequency (= eB/m~)

Separation length between emitter and collector
Scattering time of electron

o
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