

Title	RH、DHの大型化に伴う脱ガス反応の促進効果
Author(s)	中里, 英樹; 田尻, 浩之; 碓井, 建夫 他
Citation	鉄と鋼. 2003, 89(11), p. 1113-1119
Version Type	VoR
URL	https://hdl.handle.net/11094/26378
rights	©日本鉄鋼協会
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

RH, DHの大型化に伴う脱ガス反応の促進効果

中里 英樹*·田尻 浩之*²·碓井 建夫*·田中 敏宏*·丸川 雄浄*³

Rate Enhancement of the Degassing Reaction by the Enlargement of RH and DH Reactors

Hideki ONO-NAKAZATO, Hiroyuki TAJIRI, Tateo USUI, Toshihiro TANAKA and Katsukiyo MARUKAWA

Synopsis : Many techniques have been developed on the vacuum degassing of molten steel. The RH and DH reactors, which are suitable to the high productivity of converter, have occupied the mainstream. The DH process had constantly been installed until the latter half in 1970's, but has not been set up since 1980's. On the other hand, the RH process has continually been installed up to the present. The reason why RH has occupied the mainstream and has been developed further is examined from the viewpoint of the rate enhancement of the degassing reaction by the enlargement of RH and DH reactors. With the enlargement of the RH and DH reactors, the ratio of the upper surface area of steel in vacuum vessel to total reaction area decreases. On the other hand, the surface area of bubbles by Ar injection increases. Accordingly, the contribution of bubbles to the A/V (reaction area/metal volume) value becomes larger than that of the upper surface of steel in vacuum vessel. Although the argon gas can be also injected in the DH process, it is rather difficult to conduct the Ar injection in DH reactor. Accordingly, from the viewpoint of the A/V value, the enlargement of the reactor is more advantageous to RH reactor. On the other hand, the circulation mass flow rate of steel similarly increases with increasing the heat size in both RH and DH reactors. It can be concluded that, with the enlargement of the RH and DH reactor, the vacuum vessel repeats the periodic (uncontinuous) up and down. In this respect, the RH process is superior to the DH process. It can be considered that this is one of the reasons why the RH process is superior to the DH process. It can be considered that this is one of the reasons why the RH process is superior to the DH process. It can be considered that this is one of the reasons why the RH process has been more developed.

Key words: RH; DH; degassing; secondary refining; reaction area; circulation flow rate; steelmaking.

1. 緒言

溶鋼の真空脱ガス法は多種の方式が開発されているが. その中でもRHおよびDH真空精錬法は転炉の高生産性に 適合しているために, 主流を占めるに至った。 溶鋼を真空 脱ガス処理することによって, 脱水素, 脱炭, 脱酸が進行, 非金属介在物の減少、成分微調整による品質の安定化、添 加合金歩留向上への効果が著しい等、その進歩の過程につ いて多くの報告がある¹⁻⁴⁾。RH法は、2本の浸漬管の一方 に Ar ガスを吹き込んで溶鋼を取鍋から真空槽内に吸い上 げ,他方から取鍋内へ排出する連続処理である。一方, DH法は取鍋又は真空槽を上下させて、1本の吸い上げ管 を通じて溶鋼を真空槽内へ出入りさせる。日本では、DH 法は1959年に八幡製鉄(株)(現新日本製鐵(株))によ り、またRH法は1961年に富士製鉄(株)(現新日本製鐵 (株))により技術導入されて以来,転炉とともに大型化し て多数建設されてきた。日本でのRH, DH設置数および溶 鋼処理量の推移^{2.4)}をFig. 1に示す。DH設備は1970年代後 半までは順調に設置されてきたが、1980年代からは新設 は見られない。一方RH設備は1980年以降も継続して設置

されている。元来,真空槽寿命,環流能力,成分的中率等 においてDHの方がRHよりも優れているとされてきたが, DH,RH法が導入後約20年間の開発を経て機能的に大きな 差がなくなり,溶鋼の環流に関して周期的なDH法よりも 連続的なRH法の方が選択されている,またDHの槽昇降

Fig. 1. The transition on the heat size of RH and DH reactors installed in Japan.

平成15年6月2日受付 平成15年8月19日受理 (Received on June 2, 2003; Accepted on Aug. 19, 2003)

[★] 大阪大学大学院工学研究科 (Graduate School of Engineering, Osaka University, 2-1 Yamadaoka Suita 565-0871)

^{* 2} 大阪大学大学院生 (Graduate Student, Osaka University)

^{*3} 大阪大学先端科学技術共同研究センター (Collaborative Research Center for Advanced Science and Technology, Osaka University)

法においては,酸素吹込みでは槽内溶鋼面が変化し,パウ ダー吹込みでは鍋内までパウダーが循環しないなど2次製 錬設備の一元化の点で不利があるとの指摘⁴⁾がある。本研 究では,RHが主流を占め,さらに発展するに至った点に ついて,RH,DHの大型化に伴って生じる脱ガス反応の促 進効果に着目して考察する。一般に,脱ガス速度は反応界 面積や溶鋼の環流速度の寄与が大きいと考えられる。これ ら二つの因子に着目し,DHおよびRH真空脱ガス装置の 大型化の効果を検討した。

2. 反応装置寸法

本研究で考察した RH, DH装置の外観および寸法をそれ ぞれ Fig. 2, Table 1に示す。本研究では、50 tから300 tへの 大型化を想定し、RH および DH それぞれに対して 50 tの処 理設備⁴⁻⁶⁾をベースにして、寸法を比例的に大きくして装 置寸法を定めた。このとき 50 tから300 tに溶鋼処理質量が 6倍になるため、一辺の寸法倍率はr=1.82 ($r^3=6$)となる。

3. 反応界面積

脱ガス反応の促進効果について,大型化に伴う反応界面 積の変化に着目する。脱C反応を例にとると,その反応速 度式は一般に,以下の通り表される。

$$\frac{d[\%C]}{dt} = -\frac{A}{V} \cdot k \cdot ([\%C] - [\%C]_i) \cdots (1)$$

ここで, Aは反応界面積(m²), [%C], [%C], idそれぞれメタ ル中,反応界面における炭素濃度(mass%), kは速度定数 (m/s), Vは溶鋼体積(m³)を表す。(1)式より, A/Vの値が大 きい方が脱ガス反応速度は大きくなる。DHおよびRH真 空脱ガス装置における反応界面積Aをそれぞれ以下のよう に定義し,それぞれの項の寄与について検討する。

DH: $A_{DH} = (A_v : 真空槽上面の溶鋼表面積)$ RH: $A_{RH} = (A_v : 真空槽上面の溶鋼表面積)$ $+k_1 \times (A_B : 気泡表面積)$ $+k_2 \times (A_S : スプラッシュによる溶鋼滴表面$ 積)

ここで, k_1, k_2 :補正の係数(後述)。

3.1 真空槽上面の溶鋼表面積

真空槽上面の溶鋼表面積 A_{ν} は寸法倍率rの2乗に比例 し、一方溶鋼体積 ν は寸法倍率rの3乗に比例する。した がって A_{ν}/ν はrに反比例し、以下の式で表される。

 $\frac{A_V}{V} = \frac{c}{r} \quad (c: \neq \underline{X}) \quad \dots \quad (2)$

Table 1に50tの場合の装置寸法を定め,300tの場合の各値

Fig. 2. Schematic cross section of the RH and wide DH reactors.

Table	1.	Dim	en	sions	of	the	RH	and	wide	DH	reacto	ors	in
		Fig.	2	and	the	est	imat	ed o	circula	tion	mass	flo)W
		rates											

		50 t, <i>i</i>	r =1.0	300 t, r =1.82		
		RH	DH	RH	RH	
	а	132	202	240	368	
	b	22	18	40	32	
Size	с	27.7	61.6	50.3	112	
(cm)	d	60.5	70	110	128	
	е	176	176	320	320	
	f	220	220	400	400	
Ar flow rate		0.154		0.517		
$Q_{\rm b}$ (m ³ /min (s.t.p.))		0.134		0.517		
Inner diamter of immersed tube		0.277		0.503		
<i>D</i> (m)		0.277		0.505		
Depth of injection nozzle		0.605		1.1		
<i>H</i> (m)		0.005		1.1		
Up and down of		15		27		
N (s)		15		27		
Mass of steel sucked into vaccum			5.43		32.6	
vessel (t)			5.45		52.0	
Circulation mass f	14.8 ¹²⁾	21.7	60.1 ¹²⁾	717		
W (t/min)	19.714)	21.7	67.8^{14}	/1./		

r : Magnification ratio of one length

を例示したが, A_{ν}/V 値の溶鋼処理質量に対する変化をFig. 3 に示す。大型化に伴って A_{ν}/V 値は小さくなり、また, DHの方が真空槽内径が大きいため A_{ν}/V 値は大きい。

3・2 気泡の表面積

真空槽の表面積は装置の大きさで決まるが、ガス吹込み による生成気泡表面積 A_B あるいはスプラッシュによる溶 鋼滴表面積 A_s を正確に知ることは難しい。ここでは、生 成する気泡がすべて単一気泡であると仮定して、(3)式に 基づき、気泡表面積 A_B (m^2)を計算した。

 $A_B = 4\pi (d_B/2)^2 \times N \cdots (3)$

ここで, d_Bは生成気泡平均直径(m), Nは浸漬管の気泡数を

Fig. 3. The variation of A_V/V value with heat size for the upper surface area of steel in vacuum vessel.

表す。ガス吹込みによる生成気泡平均直径の推算式はいく つか報告されている^{7,8)}。本計算のガス流量で適用できる (4)式⁸⁾を用いて,生成気泡径*d*_Rを求めた。

 $d_B = 0.091 (\sigma/\rho_I)^{1/2} v_S^{0.44} \cdots (4)$

ここで、 v_s はガス空塔速度 (m/s)、 σ は溶鋼の表面張力 (N/m)、 ρ_L は溶鋼の密度(kg/m³)である。また、ノズル1本あ たりの気泡数N'は(5)式で表される。

 $N' = f \times H/u_G \cdots (5)$

ここで, $f (\equiv 6Q'_b/(\pi d_B^3))$ は生成気泡頻度(1/s),HはArガス吹込深さ(m), u_G は気泡上昇速度(m/s)を表す。気泡上昇速度 u_G は液上昇速度 u_L およびスリップ速度 u_S を用いて,(6)式で表される⁹⁻¹¹。

$u_{\rm G} = u_L + u_S \cdots \cdots$
$u_L = 1.17 (Q_{\rm m} \cdot g \cdot H/A_P)^{0.346} \dots (7)$
$A_P = \pi \cdot (0.37H)^2 / 4 \cdots (8)$
$u_{S} = u_{B0} / (1 - V_{S} / u_{B0}) \cdots (9)$
$u_{R0} = \sqrt{0.5d_Rg} \cdots \cdots$

ここで、 A_p は気泡上昇領域の断面積(m²)、gは重力加速度 (m/s²)、 Q_b はArガス流量(m³/min STP)、 Q'_b (= Q_b/n , n: ノズ ル本数)はノズル1本あたりのArガス流量(m³/min STP)、 Q_m はノズル1本あたりのガス吹込位置での圧力と雰囲気圧 力から求められる対数平均圧力におけるガスの流量(m³/s)、 u_{B0} は単一気泡の上昇速度(m/s)を表す。50t、300tそれぞれ に対して、Ar吹込量は最大環流量の90%を得るのに必要 な Q_b^{12} として0.154、0.52 m³/min STP、ノズル本数はそれぞ れ10、35本とした¹³⁾。(3)~(10)式を用いて求めた、RH真 空脱ガス法における生成気泡表面積 A_B を Fig. 4に示す。気

Fig. 4. The variation of $k_1 \cdot A_B/V$ value with heat size for the surface area of the forming bubbles.

Fig. 5. The variation of $k_2 \cdot A_5/V$ value with heat size for the surface area of the steel drops.

泡表面は真空槽上面に比べて、物質移動は活発であるが、 反応の駆動力は小さくなると考えられ、単位面積あたりの 脱ガスへの寄与が変化する可能性がある。そこで係数 k_1 を かけて $k_1 \cdot A_B/V$ で評価し、Fig. 4では k_1 =0.5、1の場合を示し ている。Fig. 4より溶鋼質量の増加に伴って、溶鋼単位体 積あたりの気泡表面積 A_B/V は上昇する傾向がある。すな わち、装置の大型化により気泡による表面積の寄与が大き くなることがわかる。これは上昇管内において気泡の上昇 速度が小さくなり、それに伴いガスホールドアップが増加 するためである。

3・3 溶鋼滴の表面積

スプラッシュによる溶鋼滴表面積*A*_sは生成気泡の体積 分が溶鋼滴になると仮定し、気泡の表面積と同様に評価し た。したがって、Fig. 5に示す溶鋼滴表面積*A*_sの溶鋼質量 依存性は気泡の場合と同じである。真空槽内反応面積とし て真空槽上面の溶鋼表面積と合わせて評価すると、質量増

Fig. 6. The variation of A/V value with heat size for the total surface area.

加に伴い真空槽上面の溶鋼表面積に基づく A_{ν}/V 値が減少 するのを補う効果があり、係数 k_2 =0.5の場合、 $(A_{\nu}+k_2\cdot A_s)/V$ は溶鋼質量に依存せずほぼ一定の値をとる。

3.4 DH および RH 真空脱ガス装置の A/V 値

これまでの検討に基づき,DHおよびRH真空脱ガス装置のA/V値に及ぼす処理質量の影響をFig.6に示す。ここで溶鋼滴表面積の寄与は、気泡の表面積に比べて小さいと考え、 $k_1=1, k_2=0.5$ として計算した。真空槽と気泡による表面積を合わせて評価することにより、装置の大型化に伴い、RHの方がDHに比べて有利になる傾向があることがわかる。すなわち、大型化に伴って、気泡表面積の寄与が相対的に大きくなるため、ガス吹込みの効果が大きくなることがわかる。実際にはDHにおいても、RHのArガス吹込みを基にしたDH吸上管からのArガス吹込みで、脱Cに効果をあげている。

4. 溶鋼環流量

溶鋼の環流量は溶鋼の脱ガス反応を促進する重要な因子 である。環流量が増大するほど,その反応効率が大きくな るため、これまでに,RH真空脱ガス法の環流量特性に関 するいくつかの研究が行われてきた^{12,14)}。既往の研究に基 づき,DHおよびRH真空脱ガス時の質量環流量W(t/min) を以下のように推算した。

(1) DH 真空脱ガス法

昇降周期M (s/回),真空槽容積V (m³),溶鉄の密度 ρ_L (kg/m³)から,DH真空脱ガス法における質量環流量W (t/min)を(11)式より求めた。ここで昇降サイクルM (s/回)は,吸上速度一定と仮定し寸法倍率rに比例させ ($V \propto r^3$,浸漬管断面積 $\propto r^2$),50tの場合M=15,300tの場合M=27として計算した。

Fig. 7. The variations of the circulation mass flow rate of steel in RH and DH reactors with heat size.

$$W = \frac{6 \times 10^{-2}}{M} \times \rho_L V$$
(11)

(2) RH真空脱ガス法

田中ら¹²⁾は駆動力モデルに基づき上昇管と下降管のガス 吹込み位置での圧力差を考え,水モデル実験から,溶鋼の 質量環流量を表す(12)式を導出した。

 $W = 150(H \cdot Q_b^{5/6} \cdot D^2)^{1/2} \cdots (12)$

ここで、Dは浸漬管内径(m)、HはArガス吹込深さ(m)、 Q_b はArガス吹込量(m³/min STP)を表す。また、(13)式から求められる最大質量環流量の90%を得るのに必要な流量をArガス吹込量 Q_b [m³/min(s.t.p.)]}とした¹²⁾。

 $Q_{h(90)} = 2.34 \cdot 10^{-2} \cdot 0.83 \cdot (10D)^{2.03} \cdots (13)$

Kuwabara et al.¹⁴⁾は気泡の浮力によるエネルギーと摩擦損 失により失われるエネルギーのバランスに基づき,実機測 定データから,(14)式を導出した。

 $W = 11.4 \times 10^{-3} \cdot Q_b^{1/3} \cdot D^{4/3} \cdot \{\ln(P_1/P_2)\}^{1/3} \cdots (14)$

ここで、P₁, P₂はそれぞれガス吹込み位置および真空槽内の圧力(Pa)を表す。(12),(14)式より、質量環流量増大には 浸漬管径を大きくした方が環流ガス流量を増すよりも効果 的であることがわかる。(11),(12),(14)式を用いて計算し た、DH, RH装置の質量環流量に及ぼす溶鋼質量の影響を Fig. 7に示す。Fig. 7から,RHに対して(12),(14)式を用い た場合、質量環流量に若干の差は見られるが、質量環流量 に及ぼす溶鋼質量の影響の定性的な傾向は同様であり、溶 鋼質量増大に伴い溶鋼質量環流量は大きくなることがわか る。また、本計算条件においてはDHの方がRHに比べて 質量環流量は若干大きいことがわかるが、DHは真空に触 れている時間が出入りのため1/2 しかないため必ずしも DHが有利とはいえない。

5. DHの大型化

DHを大型化することは、鍋の大きさとDH槽の大きさ との関係から吸い上げ量に制限が出て、従来通りの溶鋼質 量循環流量では循環能力が大幅に減少し十分な脱ガス能を 発揮できず不利である。実際 DHの大型化に際し、槽の昇 降速度の高速化や槽の形状を縦長型にして槽の外径を取鍋 の内径よりも小さくし槽を取鍋内に挿入可能とし、槽の昇 降ストロークを大きくして,一回の吸上量を増大させる手 法が取り入れられている4)。その観点から大型化に関する 寸法を定め直し,同様の計算を行った。その円筒型DHの 反応装置外観および寸法をそれぞれFig. 8, Table 2に示す。 円筒型DHのA/V値, 溶鋼質量環流量に及ぼす処理質量の 影響をこれまでの結果と合わせてそれぞれ Fig. 9, 10 に示 す。ここで、円筒型DHに対する溶鋼質量環流量について、 大型化しても昇降周期Mは小さくならず, M=15s/回 (一定)として計算した。Fig. 9において,円筒型DHの A/V値は小さい。実際には、DHにおいても吸上管からの Arガス吹込みが行われている。したがって,DHの場合も,

DH (cylindrical)

Fig. 8. Shematic cross section of the cylindrical DH reactor.

Table 2. Dimensions of the cylindrical DH reactor in Fig.8.

		(cm)
Size	50 t	300 t
а	160	291
b	17.6	032
с	70	127
d	50	91
e	176	320
f	220	400

これら気泡や溶鋼滴の影響を考慮すると大型化に伴う A/V 値の減少はなくなり,RHと同様な傾向になることが期待 される。しかしながら,周期的(非連続)な槽昇降にAr ガス吹込みを併用すると吸上管を通過する溶鋼流動に遅れ が生じる。この点について,さらに槽の上昇時にはArガ スを低圧で少量とし溶鋼の吐出にガスが抵抗にならないよ うにして槽の下降時はArガスを高圧で多量として槽内に 入る溶鋼のスプラッシュ発生を増加させ,脱ガスがいっそ う進行するような工夫も施されているが⁴⁾,循環流のRH に比べると気泡の効果を十分に引き出すのは難しいと想定 でき,A/V値による比較ではRHの方が有利になると思わ れる。Fig.10に示す質量環流量に関しては,大型化に際し 上述のようにDHの機能を極限まで高めることによって, RHを上回ることが可能である。

Fig. 9. The variation of A/V value with heat size for the total surface area of RH and two kinds of DH.

Fig. 10. The variations of the circulation mass flow rate of steel in RH and two kinds of DH reactors with heat size.

6. 実測値との比較

本研究では脱ガス反応の促進効果について、大型化に伴う反応界面積の変化に着目した。その妥当性について検討するため脱C反応を例にとり、実測値^{4,15-18)}との比較を行た。実測値に対して、以下の反応速度式を用いて見かけの脱C容量係数を求めた。

$$\frac{d[\%C]}{dt} = -K([\%C]-[\%C]_i)$$
 (15)

ここでKは見かけの脱C容量係数(1/s)であり、A/V値に比例する($K=(A/V)\cdot k$)。得られた見かけの脱C容量係数に及 ぼす溶鋼処理質量の影響をFig.11に示す。Fig.11より溶鋼 処理質量の増加に伴い、見かけの脱C容量係数は、RHの 場合増加傾向にあり、DHの場合減少傾向にあることがわ かる。この傾向は、Fig.9に示したDHおよびRH真空脱ガ ス装置のA/V値に及ぼす溶鋼処理質量の影響と同様であ り、反応界面積の変化に着目した本検討が妥当であること を示唆している。

大型化に伴う脱ガス反応の促進効果をTable 3に要約する。大型化により, A/V値は真空槽上面の寄与が小さくな

Fig. 11. Dependence of the apparent volumetric coefficient of the decarburization on heat size for RH and DH reactors.

り、気泡の効果が大きくなる。DHの場合は循環流のRH に比べると気泡の効果を十分に引き出すのは難しいと想定 でき、A/V値による比較ではRHの方が有利になると思わ れる。溶鋼質量環流量は、RH、DHともに大型化に伴い上 昇し、同様の傾向を示す。以上より、大型化に伴って、脱 ガス反応の促進効果に関して、特に反応界面積に及ぼす気 泡(Arガス吹込み)の効果が重要な役割を占めるように なり、その点で周期的(非連続)な槽昇降のDHよりもAr ガス吹込みが溶鋼を連続的に環流させる役割も果たしてい るRHの方が適合しており、より発展するに至った理由の 一つであると考えられる。

7. 結論

RHおよびDH真空脱ガス装置に関して,RHが主流を占め,さらに発展するに至った点について,RH,DHの大型 化に伴って生じる脱ガス反応の促進効果に着目して考察を 行い,以下の結論を得た。

(1) 大型化により,溶鋼単位体積あたりの反応界面積 *A*/V値は真空槽上面の寄与が小さくなり,気泡の効果が大 きくなる。DHの場合は循環流のRHに比べると気泡の効 果を十分に引き出すのは難しいと想定でき,*A*/V値による 比較ではRHの方が有利になると考えられる。

(2) 溶鋼質量環流量は,RH,DHともに大型化に伴い 上昇し,同様の傾向を示す。また,槽の昇降速度の高速化 や1回の吸上量を増大させるなど機能を極限まで高めた円 筒型DHでは,溶鋼質量環流量についてRHを上回ること が可能である。

(3) 大型化に伴い,脱ガス反応の促進に関してArガス 吹込みの効果が重要な役割を占めるようになる。その点で 周期的(非連続)な槽昇降のDHよりもArガス吹込みが溶 鋼を連続的に環流させる役割も果たしているRHの方が適 合しており,より発展するに至ったと推察される。

献

 H.Matsunaga, T.Tominaga, M.Ohji and F.Tanaka: *Tetsu-to-Hagané*, 63 (1977), 1945.

文

Table 3. The effect of the enlargement of RH and DH reactors on the rate enhancement of the degassing reaction.

		RH	DH (Wide)	DH (Cylindrical)	RH		DH (Wide)		DH (Cylindrical)	
					50 t	300 t	50 t	300 t	50 t	300 t
A / V (1/m)	$A_{\rm V}/V$	$\propto r^{-1}$	$\propto r^{-1}$	$\propto r^{-1}$	0.19	0.11	0.45	0.25	0.28	0.15
	$k_1 \cdot A_B / V$	$\propto r^{1.5}$	-		0.08	0.21	-	-		
	$k_2 \cdot A_s / V$	$\propto r^{1.5}$	-		0.04	0.10	-	-		
	Total	-	-	-	0.31	0.42	0.45	0.25		
Circulation mass flow rate W (t/min)		$\propto r^2$	$\propto r^2$	$\propto r^3$	17	64	22	72	15	92

^{*} $k_1 = 1$, $k_2 = 0.5$, r: Magnification ratio of one length

- 2) T.Kuwabara: Tetsu-to-Hagané, 73 (1987), 2157.
- R.Tsujino, M.Kojima, K.Endo, M.Okimori, J.Ogura and J.Nakashima: *Tetsu-to-Hagané*, **76** (1990), 1948.
- 4) M.Okimori: Tetsu-to-Hagané, 79 (1993), 1.
- J.Nakashima, R.Tsujino, M.Hirai and M.Uchimura: *Tetsu-to-Hagané*, 73 (1987), S178.
- 6) Handbook of Iron and Steel, 4th ed., Vol. 2, ed. by N. Sano et al., ISIJ, Tokyo, (2002), 13 · 1 · 1. (CD-ROM).
- 7) M.Sano, K.Mori and T.Sato: Tetsu-to-Hagané, 63 (1977), 2308.
- 8) M.Sano, K.Mori and Y.Fujita: Tetsu-to-Hagané, 65 (1979), 1140.
- 9) M.Sano and K.Mori: Tetsu-to-Hagané, 64 (1978), 1714.
- 10) M.Sano and K.Mori: Tetsu-to-Hagané, 68 (1982), 2451.
- 11) Y.Higuchi and Y.Shirota: Tetsu-to-Hagané, 86 (2000), 748.

- 12) H.Tanaka, M.Sakakibara and J.Hayashi: *Seitetsu Kenkyu*, **293** (1978), 12427.
- 13) T.Saeki: Private communication.
- 14) T.Kuwabara, K.Umezawa, K.Mori and H.Watanabe: Trans. Iron Steel Inst. Jpn., 28 (1988), 305.
- 15) M.Ikeda, Y.Miyawaki, M.Hanmyo, T.Anzai, H.Tanabe and T.Usui: *Tetsu-to-Hagané*, **69** (1983), S880.
- 16) Y.Kato, T.Fujii, S.Suetsugu, S.Ohmiya and K.Aizawa: *Tetsu-to-Hagané*, **79** (1993), 1248.
- 17) H.Matsuno, T.Murai, T.Ishii, E.Sakurai, H.Kawashima and K.Murakami: *Tetsu-to-Hagané*, **85** (1999), 216.
- T.Hiraoka, K.Ohnuki, H.Fujii, K.Fukuda and Y.Hoshijima: *Tetsu-to-Hagané*, 89 (2003), 252.