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1. Introduction

Sulfide capacity (Cs) modeling is of great interest in met-
allurgical engineering, since it’s aim is to predict the desul-
furization power of slags which directly affect the metal
quality during the production stage. There are many empiri-
cal, semi-empirical and theoretical sulfide capacity models
in the literature.1–5) For example, Reddy and Blander (RB)
developed a model, a priori, based on a simple solution
model and on knowledge of the chemical and solution
properties of sulfides and oxides.2,3) Moretti and Ottonello
proposed a model for calculating the sulfide capacity of
simple and complex silicate melts using different polymeric
solution theory.5) Both models are purely theoretical and do
not require any experimental data. Sosinsky and Som-
merville first proposed a Cs prediction model using optical
basicity concept which is related with the ratio of electron
donor power of the oxides in the glass to the electron donor
power of “free” oxide ion defined by Duffy and Ingram.1,6)

KTH model is based on an optimization of the experimen-
tally determined Cs values of simple systems in order to
obtain those of multicomponent slags.7) However, above
models are in good agreement with experimental results
only within a certain composition and/or temperature range
due to either lack of thermodynamic data or complexity of
the mathematical equations which are required in the
model. There are also a number of derived equations mostly
based on simple regressions of experimentally obtained Cs
values of simple as well as complex melt systems.8–10)

However, these equations are not flexible enough to pro-
duce reliable data far from the experimental zone, such as
for predicting Cs iso-contours in complex systems. In the
present study, an advanced empirical approach, neural net-
work computation will be described briefly and applied for

the estimation of sulfide capacities (Cs) in multicomponent
slags and flux systems which consist of SiO2, CaO, Al2O3,
FeO, MgO, MnO, Na2O, CaF2, CaCl2 and TiO2 at different
temperatures.

2. Neural Network Computation for Cs Calculations

Neural network computation can be defined as a process-
ing method which imitates the features of the human
brain.11–13) The human brain contains approximately 10 bil-
lion nerve cells (neurons). A biological neuron which is a
functioning unit of the nervous system consists of dendrite,
soma, axon and synapse (Fig. 1(a)). A simplified artificial
equivalent of a biological neuron is shown in Fig. 1(b).
Neurons communicate via input signals. A neuron accepts
inputs associated with different weights from multiple neu-
rons. The summation of the inputs (intensity) is multiplied
by their associated weight. When the intensity of the signal
is high enough to pass over a certain critical value (thresh-
old), then an output signal is transmitted through axon and
synapse to the next neuron. The state that the intensity of
signal exceeds the threshold is called “ignition” and it can
be expressed in a sigmoid function shown in Eq. (1) in the
neural network concept.

..................(1)

Here, x is an input value and y is the output. h is a coeffi-
cient which determines the shape of the sigmoid curve. Fig-
ure 2 represents a schematic diagram of the back propaga-
tion method in a three layers-type neural network computa-
tion which consists of an input layer, a middle (hidden)
layer and an output layer. The units in the middle layer are
connected with the input and output units. However, there
are no connections within a layer. The final result “y” in the

y f x x� � � �( ) /[ exp( )]1 1 η ⋅

Sulphide Capacity Prediction of Molten Slags by Using a Neural
Network Approach

Bora DERIN,1) Masanori SUZUKI2) and Toshihiro TANAKA2)

1) Metallurgical and Materials Engineering Department, Istanbul Technical University, Maslak 34469 Turkey.
2) Division of Materials and Manufacturing Science, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan.

(Received on December 28, 2009; accepted on April 28, 2010 )

In the present study, the neural network approach was applied for the estimation of sulfide capacities (Cs)
in binary and multi-component melts at different temperatures. The calculated results obtained using neural
network computation were plotted against the experimental values for comparison comparative purposes.
Besides, iso-sulfide capacity contours on liquid regions of some ternary melt phase diagrams were gener-
ated and plotted by using neural network model results. It was found that calculated results obtained
through neural network computation agree very well with the experimental results and more precise than
those of some models.

KEY WORDS: sulfide capacities; molten melts; neural network computation; estimation.

1059 © 2010 ISIJ



output layer is expressed by using the above sigmoid func-
tion as follows:

........................(2)

........................(3)

where xi is an input value of unit i in the input layer, Wki is a
connection weight between unit i in the input layer and unit
k in the middle layer, hi is a critical value for unit i. y is the
final output, Vk is a connection weight between unit k in the
middle layer and the final output, hk is a critical value for
unit k. After values are applied to the units in the input
layer, signals propagate through the middle layer to the out-
put layer. Each link between neurons contains a unique
weight value. A comparison is made between output values
and the teaching values. The errors are calculated for each
output unit and then propagated backwards through the net-
work to correct the connection weights and the critical val-
ues in each unit. This “learning” process is repeated until
the overall error value drops to acceptable levels.

Some studies exist on the estimation of some physical
properties of molten slags by neural network approach in
the literature. Tanaka et al. predicted viscosity and solidifi-
cation temperature of mold fluxes in multi-component sys-
tems using neural network computing.14,15) Nakamoto et al.
applied this approach to estimate the surface tension in ter-
nary silicate melts.16) Both studies also discussed on the cri-
teria for designing the number of units in the middle layer
in order to obtain optimum results.

In the present study, the computation was carried out by
using SlagVis software. The SlagVis was designed by Re-
search Center of Computational Mechanics Inc., Osaka
University, and Sumitomo Metal Industries Ltd. to estimate
first the physical properties of multi-component slags by
neural network model.14–17) Since the calculation method is
the same as that for those physical properties, the program
was also found applicable for the Cs predictions. The fol-
lowing initial values were selected in the software for all
calculations; number of middle unit 5, maximum iteration
1 000 000, learning rate 1.5 which is a constant used in arti-
ficial neural network learning algorithms to affect the speed
of learning, and target relative error 0.02. These values,
which were selected as the optimal parameters for the pres-
ent study, were obtained by trial and error until an adequate
match was achieved between experimental and calculated
Cs values. In calculations, input values were mole fraction
of the components, whereas the experimental Cs results in
logarithmic scale were served as teaching values that pro-
vide feedback. Then, the sulfide capacity predictions of
molten slags were calculated using this network.

3. Results and Discussions

Since the neural network model is based on an empirical
approach, the consistency of the experimentally determined
Cs values to be used as teaching values in the model is very
essential.

The main difficulties in the present study were the lack of
experimental data and/or inconsistent Cs values of some
similar slag compositions carried out by different authors.
For example, Cs values of MgO–SiO2 slags at 1 923 K
found by Sharma and Richardson18) (7 data points) are not
only almost three times higher but also much more scat-
tered than the findings of Nzotta et al.19) (12 data points)
which were obtained more than 30 years later. In that case,
if both data are used in the same neural network calcula-
tions as teaching value, then the predicted results would in-
evitably be a failure. When the above concerns were taken
into account, where possible, comparatively reliable and/or
new data obtained with advanced measuring techniques
were selected from the literature in order to evaluate much
consistent results in the present calculations.

The experimental data collected from the literature was
used for the present neural network estimation of sulfide ca-
pacities of binary and multi-component melts at different
temperatures and listed in Table 1.

Initially, neural network estimation method was com-
pared with Sossinky and Sommerville’s optical basicity
equation and Reddy–Blander model which are often used
for predicting Cs values in silicate slag systems. For this
aim, experimental Cs values of CaO–MgO–SiO2 slags at
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Fig. 2. Schematic diagram of the back-propagation approach in
3 layers-type neural network structure with 3 units in the
input layer and 3 units in the middle layer.

Fig. 1. Schematic diagrams of a) a biological neuron and b) a
simple artificial neuron.



the temperatures of 1 723, 1 773, 1 823 and 1 873 K were
taken from the study of Nzotta et al.19) It is noted that for
Cs calculation of each composition, whereas optical basic-
ity model required mole fraction, temperature and theoreti-
cal or optimized optical basicity (L) values, these require-
ments were mole fraction, equilibrium constant, Keq, activ-
ity of metal oxides, aMeO, and temperature values for the
Reddy–Blander model. However, only one calculation was
carried out for neural network method to predict the whole
Cs values just inserting mole fraction and temperature as
input values and experimental Cs values as teaching values.
As a result of comparison of the these models with experi-
mental Cs values, it was shown in Fig. 3 that better regres-
sion can be obtained with neural network approach com-
pared to optical basicity and Reddy–Blander models.

Figures 4 and 5 represent the comparison between ex-
perimental and calculated values of multicomponent sili-
cate melts and halide containing multi-component oxide
melts, respectively. As seen in both figures, very good com-
pliance between neural network predicted values and the
experimental data points were found. Especially, in point of
halide containing melts view, only an optical basicity model

was tried for Cs prediction in the literature. However, the
results were not in good agreement with the experimental
data.31) This situation makes the neural network approach a
good engineering tool to estimate much reliable results.

Iso-sulfide capacities of the ternary slag systems for dif-
ferent compositions and temperatures were generated using
the neural network model. Some experimental Cs values in
Table 1, not only ternary but also of lower sub-systems
neighbor to liquidus region were taken into account for
each calculation. The experimental Cs values of the melt
compositions which are not in liquid region were neglected
to prevent erroneous Cs results. The iso-sulfide capacity
contours were inserted to phase diagrams which were gen-
erated by FactSage 6.0 using “Phase Diagram” module with
FToxide database.34)

Experimental Cs values of CaO–SiO2 and CaO–MgO–
SiO2 were used to generate iso-sulfide capacity contours in
liquid region of the ternary melt at 1 773 K. As seen in Fig.
6, logarithmic scaled capacity contours are in good agree-
ment with experimental data and vary between �3.7 and
�4.75. In order to perform more complicated regression
example, CaO–FeO–SiO2 melt at 1 773 K was chosen for

ISIJ International, Vol. 50 (2010), No. 8

1061 © 2010 ISIJ

Table 1. Experimental data used for the Neural Network Cs
estimation.

Fig. 3. Comparison between experimental and calculated Cs val-
ues obtained by different models for CaO–MgO–SiO2

slags at the temperatures of 1 723–1 873 K.

Fig. 5. Comparison between experimental and calculated Cs val-
ues obtained by neural network computation for halide
containing multicomponent melts at different tempera-
tures.

Fig. 4. Comparison between experimental and calculated Cs val-
ues obtained by neural network computation for multi-
component silicate melts at different temperatures.



the prediction. For this aim, experimentally obtained Cs
values of molten state pure FeO, CaO–SiO2, FeO–SiO2,
CaO–FeO, and CaO–FeO–SiO2 melts were used. Figure 7
shows that an increase in the SiO2 content results in a sharp
decrease of the desulfurization power of slags and predicted
iso-sulfide contour values within the large liquid region de-
creases from �1.8 to �4.5. Experimental sulfide capacity
data of molten state CaO–CaCl2 and CaO–CaCl2–CaF2

melts at 1 273 K were used as teaching value in order to
evaluate iso-sulfide capacity counters on the ternary phase
diagram. According to the calculations, the contours were
found almost parallel to the CaCl2–CaF2 axis, since CaO is
the only Cs determinator in this melt.

In the calculations, the number of parameters strongly
depends on the component number of the slag. Temperature

is also included to the input set when experimental Cs re-
sults obtained at different temperature are added to the cal-
culations. For example, in order to calculate the Cs of a
three-component slag system at a certain temperature, if the
number of middle unit is selected as 5, the parameters
needed are 15 of connection weight matrix of input to mid-
dle layer (Wki), 5 of threshold parameters of middle layer
(critical value) (hi), 5 connection weight vector of middle to
output layer (Vk) and 1 of threshold for output layer (hk), i.e.
total 26 parameters according to Eqs. (2) and (3). The val-
ues of those parameters change sensitively with the number
of input data, the number of iteration for learning and so
on. As one example, the parameter values for the calcula-
tion of CaO–MgO–SiO2 slag system at 1 773 K (Fig. 6) are
tabulated in Table 2.

The present work should be considered as a pioneering
study that demonstrates a successful application of the neu-
ral network model for Cs prediction of some slags that may
provide useful information for ferrous and non-ferrous met-
allurgy. In this study, for example, Cs values of high FeO
regions in CaO–FeO–SiO2 ternary system which were able
to be estimated by the model, has a particular importance
for some refining processes. This method was found to be
an important tool for CaF2 containing slags, since other em-
pirical/theoretical models are not inadequate for their Cs es-
timations. It should be noted that in the present neural net-
work calculations, not only composition change but also
temperature was used as input values. Besides, a good re-
gression between multicomponent melts and their subsys-
tems was easily made. Moreover, we believe that a matrix
which consists of components, temperature and physical
properties such as impurity capacity, viscosity, surface ten-
sion, etc. can be calculated with the neural network model
at once to estimate their inter-correlations, if enough num-
ber of required data is provided.
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Table 2. List of parameter values for CaO–MgO–SiO2 slag system at 1 773 K indicated in Fig. 6.

Fig. 7. Neural network predicted iso-sulfide capacity contours in
liquid region of CaO–FeO–SiO2 melts at 1 773 K.

Fig. 8. Neural network predicted iso-sulfide capacity contours in
liquid region of CaO–CaCl2–CaF2 melts at 1 273 K.

Fig. 6. Neural network predicted iso-sulfide capacity contours in
liquid region of CaO–MgO–SiO2 melts at 1 773 K.



4. Conclusions

In the present work, we applied the neural network calcu-
lations to the sulfide capacity predictions in multi-compo-
nent melts. The computation results were found in good
agreement with the experimental values. It was also con-
structed iso-sulfide counters on ternary phase diagrams es-
tablishing a link among experimental Cs values of molten
ternary and lower sub-systems. It can be concluded that
neural network based computation is a very useful tech-
nique for predicting Cs values in molten melts, but atten-
tion needs to be paid to the quantity and accuracy of the ex-
perimental data.
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