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ABSTRACT

The Laves phase C15 compounds as well as Al5 compounds have
been known to exhibit the properties due to the strong electron—
phonon coupling such as the fairly high temperature
superconductivity, the saturation of the electric resistivity and
the electronically induced lattice instability. Recently, a
concept of two levei system ( TLS model ) suggested that the
anisotropy of their superconducting energy gap should be studied
in connection with the heavy Fermions. In order to investigate
whether the energy gap in HfV, is of the BCS type or not, the
nuclear spin-lattice relaxation rates 1/7, for °'V and specific
heat C have been measured.

The value of the electronic specific heat coefficient 1 was
estimated to be 47.7 mJ/mol-K?. This value is about forty times
as large as the value of 1. 2 mJ/mol-K? for the typical
superconductor Al with weak electron-phonon coupling , while this
value is much smaller than y=1000 mJ/mol-K® for the typical heavy
Fermion superconductor CeCu,Si,. The electronic part of the
specific heat is proportional to 7° at low temperature, which is
inconsistent with the BCS theory. These results suggest that the
"slightly heavy electrons” take part in the superconductivity.

As fo£ the spin-lattice relaxation rate, 1/717 is constant
between 9.4 K and 20 K ( 7Z¢=8.2 K ), decreases with increasing
temperature, shows a small peak due to the martensitic phase
transition near 110 K, and is nearly constant at temperatures
72130 K in the normal state. The temperature dependence of

17, T between 20 K and 100 K was explained by using the narrow
1



band models with the half width of about 100 K.

In the superconducting state, 1/7; shows a very small
enhancement Jjust below 7. and decreases rapidly with decreasing
temperature. The 1/7, is nearly proportional to 7° well below 7.
It was found that the agreement between the data and the ABM
curve with the gap parameter A/ks; 7c=0. 8X2. 014 is satisfactorily
good at low temperature. The frequency dependence of 1/7: is
weak and the small enhancement just below 7:; is not affected by
the external field at 12 MHz.

The field cycle method was also employed to measure 7; in
the zero field condition in the temperature range between 0.77 K
and 4.2 K. The obtained 171 data show the same 7° dependence in
this temperature range. The dependence of 7; on the magnetic
field in which the ®'V nuclear spins relax in the field cycle
method was measured at 2.77 K. The 7, is constant up to 100 Oe, be
comes longer with increasing the field and again constant above
500 Oe. This field dependence is explained by the electric
quadrupole effect.

These facts that the spin-lattice relaxation rate 1/7, « 7°
well below 7; and the specific heat Cx 7° at low temperature
indicate that the superconducting energy gap is anisotropic and
vanishes a£ points on the Fermi surface. This gap anisotropy
and the formation of the narrow sharp band in the normal state

support the TLS model.



§1. Introduction
In fairly high 7c superconductors called strong

electron-phonon coupling superconductors (abbreviated here after
SCS), A 15 compounds , C 15 Laves phase compounds, Chevrel and
rhodium boride compounds have the following anomalous properties
1Y 1) The electric resistivity in the normal state has a
tendency to be saturated, approaching to the ” Mott 1limit ”, in
which the mean free path becomes of atomic size. 2) The magnetic
susceptibility and the Knight shift strongly depend on temperature

3) The electronic specific heat coefficient v is large. 4) The
martensitic phase transitions are observed in some of these
compounds.

The conventional theories have attributed these properties

to the idea that the Fermi level acrosses a narrow band peak. The
band calculations really show a sharp peak near the Fermi level.
However, in 1983, Anderson and Yu?’ proposed a new viewpoint
against the conventional treatment. The anomalies in these
compounds are insensitive to the stoichiometry of the sample,
although the change in the stoichiometry must shift the Fermi
level. Therefore, the peak at Fermi level should be considered to
be due to a many body effect. They regarded the strong electron-
phonon coupling as the most important feature of these compounds.
By treating the electron—-phonon interaction as an interaction
between the local phonon and the electron gas, Anderson and Yu
found the ionic potential to be a type of double well, in which
the lattice ions have two stable positions. These two

configurations of the ionic state induce the structural phase

3



transition. This ionic system is called the two level system
(TLS). Vladar and Zawadovsky?’ proved the interaction between

a TLS and conduction electrons can be transformed to the s— d
interaction in the spin 172 impurity Kondo system. In the TLS
model, these two ionic states play a role of the two degrees of
freedom of the spin in the Kondo system. At low temperature the
electron scattering by TLS at each lattice site becomes coherent,
which is called the periodic TLS problem and just corresponds to
the dense Kondo system.

Therefore, Matsuura and Miyake®’ regarded these strong
electron—-phonon coupling superconductors as a type of the heavy
Fermion superconductors ( HFS ). This classification has another
feasons’. Several transition metals take a universal value, A7y 2
0.4 %X 100 (2 Q em+ (mol-K / mJ )2 ), while the heavy
Fermion compounds take another universal value A7v2%2=1.0x10°°%,
where ¥ is the electronic specific heat coefficient and A the
proportionality constant of the electronic resistivity to 72. The
values of A4 /v ? for the typical SCS, Nbs;Sn and V3Si are close to
the latter value for HF compounds

The HFS has the following characteristics?’ . 1) The inter-
action potential is g-dependent as it is composed of the onsite
repulsion and the intersite attraction. 2) The retardation effect
does not work since the heavy Fermion band width is smaller than
the Debye frequency. Because of these characteristics, the non-s
symmetry pairing becomes dominant and the superconducting energy

gap becomes anisotropic and vanishes at points on the Fermi

surface. In this case T7"-behavior for the electronic specific

4



heat, NMR relaxation rate I . 7; and the ultrasonic attenuation
are expected at low temperature .

In order to inspect whether the above ideas are reasonable
or not, it is very important to measure the physical qﬁantities
reflecting the properties of low energy electronic excitation
spectrum such as nuclear spin-lattice relaxation rates and
specific heat. In this paper we report the results of the specific

heat and the relaxation rate 1.7, for one of the SCS , HfV;



8§2. Experimantal Procedure
The sample of the polycrystal HfV, was prepared from

stoichiometric starting materials , Hf of 99.9 % purity and V of
99.9 % purity , by Ar plasma-jet melting. The obtained button was
turned over and remelted ten times to ensure the homogeneity .
The ingot was annealed at 1000 ¥ in a vacuum for a week . The
obtained sample was cut into a shape of 1x1x12 mm® for the
specific heat measurement and crushed into the 200 mesh powder for
the NMR measurement. The superconducting transition temperature
7. , which is defined as the mid point of transition , was
determined to be 9.2 K by the ac susceptibility and the electronic
resistivity measurements

The specific heat was measured in the temperature range from
1.7 K to 18 K employing the conventional heat pulse method. The
nuclear spin-lattice relaxation rate 1-7; of °'V nucleus was
measured by using a conventional phase coherent pulsed
spectrometer at 12 MHz in the temperature range from 0.8 K to
300 K . Below 4. 2K the field cycle method®’ was employed in
order to estimate T precisely under the zero field condition.
The measurement of 7; at zero field is indispensable for the
detection of the low energy electronic excitation because in the
applied field 7; below 7. becomes shorter by the spin diffusion

to the vortex core.



8§3. Specific heat
The measured specific heat C is shown in Fig. 1 (a) by

plotting C-T versus 7° in the temperature range from 1.7 K to 18

K. With decreasing temperature , C-7T decreases monotonously and
discontinuously increases at 7. = 8.2 K . This temperature 9. 2K
coincides with the critical temperature measured by electronic

resistivity and ac susceptibility. Any other ancmaly is not
cbserved , which means our sample has no secondary phase and is
sufficiently homogeneous.

These data above 7., can be fitted by the power series

C=v T+ B T+ a T° + 6 T . (D)

In order to determine these coefficients We considered the
restriction that the entropy is continuous at 7c. The best fit
coefficients are given in Table 1. Similar results are obtained by
Luthi et al?’. This value of v = 47.7 mJ ~ mol- K* is about
forty times as large as the values 1=0.8 mJ / mol - K? for free
electrons or 1= 1.2 mJ / mol - K* for the typical weak electron-—
phonon coupling superconductor Al, but much smaller than 71=1000

mJ /mol - K2 for the typical HFS CeCu;Si,?®’

In general, ¥ and B are given by

(2 /83) mw? kg N(E-) (1 + A ), (2)

<2
If

and

B = 12 n4 k[; n /s ( 5 @()3 ), (3)
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Table 1 Best fit parameters for specific heat in the normal
state. The fitting temperature range is from 9. 2K to

14. 2K.

¥ (mJ/mol K2) 3 (mJ/mol K*) ¢ (mJ/mol K°®) § (mJ/mol K?&)

47. 7 1. 13 -2.76x107° 2.40x10°°




where A 1is the electron phonon coupling constant , n the number
of the unit cells per mol and @, the Debye temperature . The

McMillan’s formula®’® gives

Te = ( @p 7 1.45 ) exp ( -1.04 (1 + A ) /7 4{ A — u* (1 +
0.62 2 ) )y ), (4)
where # * is the Coulomb pseudo potential. From the above values

of vy and B , we obtain @, = 120 K, A = 1.36 and N(Er) = 3. 689
state / eV- atom assuming z * = 0.13

The normalized electronic part of the specific heat can be
estimated from Fig. 1(a) by subtracting the phonon part , and it
is shown in Fig. 1(b). From this figure the specific heat jump
4C ~ v T is estimated to be 2.0. This value is not so far from
1. 43 given by BCS theory and 1.20 calculated in the ABM state.
As shown in Fig. 1(c), the electronic part of the specific heat
is clearly proporional to T7° at temperatures well below 7, which
is inconsistent with the BCS theory. This fact implies the
superconducting energy gap is anisotropic and vanishes at points
on the Fermi surface'!®’. These investigations suggest that the

"slightly heavy electron” takes part in the superconductivity .



84. Nuclear Spin-Lattice Relaxation in the Normal State

A typical %!V NMR lineshape is shown in Fig. 2 which consists
of a narrow center peak and a wide wing broadened by the
quadrupole interaction . The spin lattice relaxation time 7; was
estimated by fitting the measured recovery curve of the nuclear
magnetization after the saturating comb pulses, (M M(t)) M to

the multi exponential function

(My -M(t)) M, =0.01lexp(—-t/7,)+0. 0682exp (-6t/7y)

+0. 206exp (-15t/7: ) +0. 710exp (-28t/Ty) (5)

under the initial condition that the center levels ( 12 ¢ -1./2 )

are only saturated !'!).

Here, M(t) and M, represent the nuclear
magnetizatin at time ¢ after the saturation pulses and at z=o,
respectively. Examples of the magnetization recoveries with the
best fit curves measured at 13 K and 77 K are plotted in Figs. 3
and 4, respectively.

The measured 7, is shown in Fig. 5 by plotting 1 .~ T; T versus
T in the temperature range from 9.2 K to 300 K. 17, T, which
reflects the density of states near the Fermi level, decreases
drastically with increasing temperature though it is constant for
normal metals. The peak near 110 K is considered to be due to the
martensitic phase transition. HfV, undergoes a cubic to
orthorhombic structural transition at about 120K, which is
accompanied by a volume increase and anormalous behaviors of the

resistivity, heat capacity and susceptibility'?’. This behavior

is related to an electronically induced lattice instability.

9
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The observed I .~ T, represents the relaxation due to the d-
spin fluctuation through the core polarization since the dipolar
and the orbital relaxation mechanisms by d-electron can be
neglected because of the crystal field in the C 15 structure. The
large temperature dependence observed between 20 K and 100 K can
be explained by the idea that the Fermi level acrosses a sharp
narrow d—-band with the half width of about 100 K. I . 7, T appears
to be constant between 9. 4K and 20 K just above 7, which may
predict that the relation 7; 7 = const. is realized in the normal
state below 7

In general, the relaxation rate 1/7; due to the d-electron

spin fluctuation is expressed in the form

/LT e A [ (NMBE)2FE (1-Ff(B)AE (6)

where A is the coupling constant, N(E) the density of states of
the d-electrons and £(£) the Fermi distribution function. If N(£E)
is known, 1/7; T can be calculated. We tried to explain the

observed behavior of 17,7 by the following two narrow band models

1) N(E)=(3NA2W) (W 2+ B+ E) (WA 2-Ee—E), (7)

2) N(E)Y=(NW28)/( (Ee+E) 2+ (W/2)2%), (8)

where £ 1s the Fermi energy, W the half width of their narrow
bands, and N the total number of the electronic states. These

models are illustrated in Fig. 6(a) and (b). In these figures the

10
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energy FE=0 corresponds to the Fermi energy £, and these
functions are normalized by the peak value N,. The parameters
E-/W and W were determined so that the eqs. (7) and (8) fit to the
data in Fig. 5. The best fit calculations are shown in Fig. 7 for
the model (1) with the parameters W ks=141 and Erz/#=0.42, and in
Fig. 8 for the model (2) with W ks=120 and Er/#=0.5. In these
figures, 177 T is normalized by the value at 20 K. As shown in
Figs. 7 and 8 , the agreement between the calculations and the
experimental data is satisfactorily good in the temperature range
from 20 K to 100 K. The deviation of the calculated curves from
the experimental data at higher temperatures 7>100 K may be caused
by the change of the band structure accompanied by the martensitic
phase transition. The model 1) fits to the data better than the
model 2), which suggests the narrow band of the model 1) may
represent the real band structure. Anyway, the temperature
dependence of 1/77 T at low temperatures (20 K< T < 100 K) can be
explained by the narrow d-electron band of about 100 K due to the

strong electron—-phonon interaction.

11



§5. Nuclear Spin-Lattice Relaxation in the Superconducting

State -
5.1 T Measured in the Constant External Field

In the temperature range of 1.4K to 7z, 7. was measured in
the same way as in the normal state. For the estimation of 7, we
used the same fitting function, eq. (5) as in the normal state.
Examples of the magnetization recovery data with the best fit
curves measured at 1.82 K and 4.2 K are shown in Figs. 9 and 10,
respectively. The obtained data 1/7; are plotted versus T in Fig.
11 together with the results in the normal state. 1/7, shows a
very small peak just below 7. and decreases rapidly with
decreasing temperature. We also measured 7, at different
frequencies 6MHz and 3MHz in the temperature range from 1.4K to
4. 2K. The obtained data are shown by closed circles and crosses,
respectively, in Fig. 11. In Fig. 12, these data are plotted
against 7c/T to show the frequency dependence of 7; more clearly.
From Fig. 11 and Fig. 12 we can say that the frequency dependence
of 1/7; is not large. This result conflicts with that by
Silbernagel et al.'?®’. The absence of the field dependence in the
present measurement may be due to the fact that our sample has
additional strains induced by cold working upon filing and that
they eliminate the spin diffusion mechanism'*’. In Fig. 11, all
these data measured at 12 MHz, 6MHz and 3MHz are nearly on the
straight line which shows the 7° dependence. That is, I/7T, is
nearly proportional to 7° in the temperature range well below 7T¢
and inconsistent with the exponential (-1/7) dependence predicted

by the BCS theory® '®’. In Fig. 13(a) and (b) we tried to plot the
12



"(G) ‘ba 3O 213

188Q 98U} ST 3AJND PTITOS UL "ZHW 21 2B Y 281 1B (S8TDITO

uado) wnraqrinbsa TBEWISYY UT 1BYY UWOJIF UOTIBTASP ayl} pue
(SOTOJTO POSOID) UOTQRZIY9USRW JRI[ONU 9Yl JO SOTIDA009Y B 814

(0e9s) 7
0%

oO0—6 -
©

[T

I

T

ZHINCZL Mgl

[rrri

-+ 001
..-..-;-.n-o.r-.-w--r-.-ooowooo.woo ¢




"(G) 'be jo 213
188G 9yl ST 3AJIND PTIOS ayl "ZHWN 21 A8 3 2 % I8 (S9TDJTO
uado) wnraqrinbe [rWIBY] UT 1BYUY WOJIJ UOTQIRTADD 8yl pue

(S3TDJTO PBSOTD) uoTaRZILauUSew JRSTONU 33Ul JO SOTJI2A003Y (01 814
(pas) 7.
[ G0 0
<<maow>ouaomo o— _ _ _ T T T
o
= o ooo -
0o o°

B [oXe) © “

[ N -

H o B

= S =0l
()
(o)

— o —

u R

- -

B ZHWZ! MYy N

“ .... II._)

Egsgbb%oooo.ooaoooo.no ] OOF




Fig. 11
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magnetization recoveries measured at some different temperatures,
4. 2K, 2.9K and 1.82 K at the resonance frequency 12MHz on the same
figure, in which the horizontal axis is scaled to t7° and
t-exp(-1.767.77), respectively. The experimental points show the
nearly same recovery in Fig. 13(a), while different ones in Fig.
13(b), which confirms I/7, « 7T°.

We show the theoretical curves based on the ABM theory in
Fig. 14(a). The broken curve is the prediction with energy gap
parameter A (0)/ ks Ic=2.014 and the solid curve is the best fit
to the data with A (0)/ks To=2. 014x0. 8. In Fig. 14(b), the
theoretical curves based on the BCS theory are shown. The broken
curve is the prediction with energy gap parameter A (0)/ksT-.=1.176
and the energy broadening §E=0. 1A (7)), and the solid curve is the
best fit to the data with {§E=0.670(7). The 17, does not depend
on the detailed feature of the anisotropic energy gap but on the
root mean square of the anisotropic energy gap!®’. The anisotropic

energy gap A(Q) is expressed as

A(Q) =<4>- {1+a(@)}, (9)

where <4> is the average of the energy gap and a(f) denotes the
angular variation of the gap over the Fermi surface. In the ABM
state the root mean square anisotropy (a&*>)!7? is calculated to
be 0. 284. This value corresponds to the energy broadening of 1§ E=
0.50A (7 in the BCS theory. 1/7, is sensitive to the low energy
part of the square of the density of states, (M (E))? at low

temperature. As the energy broadening in the BCS state becomes

13
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larger, the density of states for the BCS state at low temperature
approaches to that for the ABM state'?’. In order to explain the
temperature dependence of the obtained data by the BCS theory, 1
need to introduce as much as 67 % energy broadening. It is more
reasonable to introduce an ABM anisotrpy than such a large energy
broadening. Actually, the agreement between the data and the ABM
curve with A (0)/ksTc=2.014x0. 8 is satisfactorily good at low
temperature. The reason of this reduction of the gap parameter is
not clear at present. The leading term of 1/T7, has T° dependence
at low temperature, which has been shown in Fig. 11.

The fact that the BCS curve approaches to the data with
increasing the energy broadening §E can be understood as follows.
Figures 15(a) and (b) show the BCS energy gap model with §E and
the ABM energy gap model at the Fefmi surface, respectively. From
this figure, 1 can say that the gap papameter 4, in the BCS model
corresponds to <4(0)> in the ABM model. At low temperature 4, is
replaced by 4(0), and in the ABM model <4(8)> is given by -
1/4+ 49 aApw=0.785x2.014ky Tc=1. 58ks Tc. Thus <4 ()> corresponds to
about 90 % of 4, for the BCS state ( 4o=1.76kyT: ). In Fig. 186,
(Ns (E/4))?% in the BCS model with §E=0.54(T) is shown by crosses,
and with §E=0.674(T) by triangles, and that in the ABM model by
closed circles. As shown in this figure, the behavior of
(Ns (E#4))? of the BCS model - with §E=0.54(T) resembles that of the
ABM model. Because <4(Q)>=0.94,, one should extend the horizontal
axis of Fig. 16 for the BCS state by the factor 1-0.9. Therefore,
I can say that (Ns (E/4))? for the BCS model with §E=0.674(T) is
very near to that for the ABM model.

14
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5.2 Field Cycle Method

When we measure 77 in the applied external magnetic field,
the distribution of the spin—lattice relaxation time due to the
vortex and the spin diffusion mechanism make the magnetization
recovery curve complex, so that it is desirable to measure 7; in
the zero field condition. In Fig. 17, the time table of the field
cycle method is shown. The applied field is initially kept A in
the resonance condition for at least ten times of the relaxation
time. Then, the field is reduced to zero. After a time interval
1, the field is turned on back to A again. These
demagnetization and remagnetization processes must be adiabatic.
In this zero field, the nuclear spins relax during this time
interval 7 . The initial nuclear magnetization at 1=0 is the same
as that in the field /A& . The nuclear magnetization decreases with
increasing 1 and becomes zero after sufficiently longer time ¢
than 7i:. We can measure 71 at zero field from the 1 dependence of
the magnetization.

Because we observe the central resonance line (1/2¢--1/2) of
1y nuclei after the remagnetization, we can use the rate

equation proposed by Narath!'!'’. This rate equation is given by

da. () /dt = W 3 A @ () (10)

where a, (t) represents the deviation of the population difference
of the adjacent (m «» m1) levels from that in the equilibrium
state, and W is the transition probability between the adjacent

(m+-» m1) levels divided by (I(I+1)-m(m1)). Using the matrix
15
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Fig.17 Time table of the applied field in field cycle method



elements A..’ calculated for *'V nucleus (I=7/2) by Narath'?!’,

we obtain

a2 (t)=A exp(-t/T.)+B exp(-6t/Ty)

+C exp(—15¢/ 171 )+D exp(~-28t/11), (11

where the coefficients A B C and D depend on the initial

condition of the magnetization decay and are given as,

A=0.08333a-5,2 (0)+0. 14285a-3,2 (0) +0. 17857a-, .2 (0)
+0. 18047a,,2. (0)+0. 17857a; .. (0)+0. 142854as .. (0)

+0. 08333 a2, (0),

B=-0. 5x(0. 31818a-5,2 (0)+0. 090814a.5,. (0)-0. 227274, . (0)
-0.36363a, 2 (0)—-0. 2272743 ., (0)+0. 09091 as . (0)

+0. 31818a, .2 (0) ),

(=0.086154a-5,2 (0)-0.219784-3,2 (0)+0. 013734-1,2 (0)
+0. 218784, ., (0)+0. 01373a3 . (0)-0. 2187845, (0)

+0. 09615475 (0),

D=-8. 75x(0. 002334a-5,2 (0) 0. 01388a-3,2 (0)+0. 034964, ,, (0)
—0.04661a, .2 (0)+0. 03486a; ,, (0)-0.01398as ., (0)

+0. 00233a,; .. (0), (12)

where a, (0) is the initial population difference between the

adjacnt levels mand m1. If the initial populations of the

16



nuclear spin levels are the same as those in the Zeeman split
state with a small population difference due to the quadrupolar

energy, we can give a,(0) as

an (0)={o+{o (m1/2), (13)

where ¢to0=1.7f ks T represents the population difference due to
the Zeeman energy 7.#H,, and (q=1/ks T+ 3€® qgQ(3cos? §+1)/41(21-1)
that originates from the quadrupolar interaction. Under this

initial condition, we obtain

ai 2 (=ay,.(0)exp(-t/T1). (14)

The field cycle method was employed in order to measure 7T,
in the zero field condition in the temperature range of 0. 77K to
4. 2K, Figure 18 shows an example of the magnetization decay data
at 1. 47K. This decay is not single exponential and the nuclear
magnetization at =0 is not zero. This suggests that the
experimental demagnetization and remagnetization processes are
not completely adiabatic and the populations of the nuclear spin
levels are changing during these processes. The initial condition
of the magnetization decay can not be known, so that we estimated

77 by fitting the following equation,

(Mo —-M())/ My=A- exp(~t/T,)+B- exp(-6t/T,)

+C- exp(-15t/7T\)+D- exp(-28t/T;) (15)

b

17
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where the coefficients of the exponential terms were also treated
as unkown parameters. Two examples of the magnetization
recoveries with the best fit curves measured at 1.14 K and 3. 14 K
in Figs. 19 and 20, respectively.

The best fit ratios of the parameters 4 B and C to D are
tabulated in Table 2. These ratios vary with temperature, which
shows that the initaial conditions are different at different
temperatures. The values of A are negligibly small at any
temperature. The B has a tendency to increase with increasing
temperature. At 4.2 K the ratio A:B:C:D is close to that of
0.0167:0.955:0.289:1 in which only the NMR central line (1/2«--1.2
) is saturated. It appears that the deviation of the populations
of all the levels from the initial equilibrium state becomes
larger with decreasing temperature. The obtained data 1/7, are
plotted in Fig. 11 by triangles together with the results measured
in the constant magnetic field. These values of 1/7) measured by
the field cycle method are about 6.4 times as large as those
measured in the constant magnetic field, about which some
discussions will be given later. These triangles are also nearly
on the straight line of 7° dependence and far from the exp(-1/7)
dependence predicted by the BCS theory. These facts suggest the
superconducting energy gap is anisotropic and vanishes at points
on the Fermi surface in HfV,, which is consistent with the result

of the specific heat measurement.
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Table 2 Best fit ratios A:B:C:D in eq. (15) for each

temperature.
T(K) A B C D
4. 2 8.57X10° 3 B6.81x10" 2 0. 477 1
3.75 8.02x10° 3 0.108 0.781 1
3.73 1.14%x10° 2 0. 290 1. 42 1
3.24 6. 00x10" 3 0.123 -8.01x10" 2 1
3.14 9.00x10" 3 0. 205 0. 459 1
2.73 2.64X10°°® 0. 149 —-0. 147 1
2.63 5.00x10° 3 0.102 0. 142 1
2.53 8.30%X10" 2 0. 248 1. 28 1
2.45 4.70X10°2 0.162 1. 58 1
2.32 3.50X10° 2 0.147 1. 21 1
2.19 2.60X10° 2 0. 487 -1.30x10" 2 1
1.98 4. 80x10° 2 0.724 0. 815 1
1. 86 2.70%X10° 2 0. 535 2.16 1
1.47 -9.90x10" 2 0. 626 0.152 1
1.21 -3.90x10° 2 0. 550 0. 380 1
1.14 2.10x10° 2 0. 305 -0. 263 1
0. 80 0.150 1. 00 0. 953 1




5.3 Field Dependence of 7 in the Field Cycle Method

We should check the probability that the deviation of the
measured 7, from those predicted by the BCS theory originates
from the reasons other than the superéonducting property. The
following case may be considered. In the field cycle method, T
is measured in the zero field condition in principle. However,
after the external magnetic field is switched off to zero, the
flux may be trapped in the superconducting state and some of the
1V nuclei in the flux have the shorter relaxation time. They may
make 7; of the system shoter by spin diffusion.

In order to clear this point we measured the dependence of
7, on the magnetic field A in which the ®'V nuclear spins relax
in the field cycle process. The results at 2. 77K are shown in
Fig. 21. In this figure the value of 7, 2.8 sec on the vertical
axis shows that measured at A=0. 7; is constant up to 100 Oe,
becomes longer with increasing H and is again constant (about 7.6
sec) above 500 Oe.

Hebel-Slichter®’, Anderson-Redfield!®’ and Fite-Redfield!'™
measured the magnetic field dependence of the spin-lattice
relaxation time in metals. Our result is very similar to those

obtained by them. According to Anderson-Redfield!®’,

T H+10<(4H 2 >0y /3+ H,Z(1+72/3)

- _— — 16
Tix H+1080<(UH) 2> 0y /3+ Hqe? (3+272%.3) e

?

where 7,x is the relaxation time when <(4H) 2>,v=0 and H,?=0, and

C(AH)%>4y is the Van Vleck second moment. § and H,?2 are given by

the following equations,
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8=2+(2 Kjkrjk"s)/zrjk's, (17)

where r;. is the distance between spins j and k, and KA.
expresses the degree of correlation between the fluctuating

fields at r;; and rn due to the conduction electrons, and

H*=e"@* & (4I(+1)-3)/80(21-1)* In * 1%, (18)

where 5; is the average value of @ 2, and ;E is the average value
of the quadrupole asymmetry parameter, qizyiz/ag. From the
lineshape shown in Fig. 2, H; is estimated to be several hundred

Oersteds and much larger than <(4H)?>sv. Therefore, we get

T (B=0) /Ty (B=0)=(3+212/3)/(1+12/3). (19)

The measured ratio is about 2.7 and similar to those obtained by
Hebel-Slichter®’ and Anderson-Redfield!'®’, and this value 2.7
is very near to the range from 3.0 to 2.75 if it is supposed
0<n (1.

Anyway, from Fig. 21 it can be said that even if the magnetic
flux is trapped, it should be less than 100 Oe because T, is
constant up to 100 Oe. 7, becomes longer with increasing A which
is against the expectation that 7, should become shorter with
increasing H in the case the spin diffusion mechanism is important

Therefore, the probability that the spin diffusion makes 7,
shorter can be denied in our case. The present values of 7,

measured by the field cycle method are intrinsic. From this

20



measurement, it is also found that 1/7; measured in zero field is
about 2.7 times larger than that measured in high field. Therefore
, the difference between the 7; measured in the constant field and
that by the field cycle method is reduced to the factor of 2.4. To
explain this difference, we tried to estimate T; by fitting eaq.
(15) with unknown coefficients to the data points measured in the
constant field. Two examples of this fitting are shown in Figs.

22 and 23. The result is shown in Fig. 24 by closed circles
together with the data measured by the field cycle method
(triangles ) and those measured in the constant field at 12 MHz
and estimated by using eq. (5) (open circles). As shown in this
figure the wvalues of 1/7, estimated by eq. (15) (closed circles)
are about 2.5 times larger than those by eq. (5) (open circles).
Thus the difference stated above is understood reasonably.

In addition to the behavior of 1/7; at low temperature, the
enhancement of 1/77 Jjust below 7z reflects the gap anisotropy. If
the measured small enhancement of 1/77 Jjust below 7: originates
from the depression by the applied external magnetic field of
about 10 kOe, our discussion about the energy gap anisotropy will
require some change. To investigate this point, we measured the
enhancement of 1/77 at 6MHz. The result is shown in Fig. 25,
where we estimated 7 by fitting eq. (5) to the magnetization
decay data, and in Fig. 26, where we estimated 7, by fitting eq.
(15) to the data. The deviation of these data from those measured
at 12 MHz may be due to the experimental errors. (About this
problem of the experimental errors we have a plan to check it in

the near future. As discussed above, the 1/7, obtained by fitting
21
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eq. (15) is about 2.5 times as large as that obtained by fitting
eq. (5). As shown in Figs. 25 and 26, the depression of the
enhancement by the external field does not occur. Masuda et al.'”’
pointed out a large field dependence of the enhancement of 1/T,
for ®'V in V;Sn. In V3Sn the enhancement is not observed when
measured at 15 MHz, but the ratio of the relaxation time T,./T:,
in the normal and the superconducting state at the peak
enhancement temperature is about 2.0 at 5 MHz. If I take into
account the difference of T and H.», between V;Sn (T.=3. 6K, H.:
186 kOe) and HfV., (T-=9.2K, H.. =200 kOe), it appears that the
field of 10 kOe for HfV, corresponds to a much lower field for
V4sSn. Therefore, it is concluded that the enhancement observed at

12 MHz in HfV, is not affected by the applied field.
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5.4 Analysis Based on the ABM Model

Now I try to analize our data based on the ABM model and
discuss about the density of states Ns (E) which reflects the
low energy excitation spectrum at low temperature. The electronic
specific heat Cs and the spin-lattice relaxation rate (1/7T;)s in

the superconducting state are expressed by the following equations

10 1 8)
Cs 6 1 ® Ne(E) _,  exp(E/kaT)
p— ‘ - E- dE
Cy 12 (kpy T8 No (exp(E/ks T)+1)% , (20)
and
® \
(T )  Ns(E) 2 Ms(E) , exp (E/ky T) 1
=2 | [(——)* ' A
(T:)s N No (exp (E/ky T) +1) 2 , (21)

3

where Cy and (1/T;)y are the specific heat and the relaxation rate
in the normal state, respectively, Ms (E) is the coherent factor
term, and N, the density of states on the Fermi surface in the
normal state. Both the measured specific heat and spin-lattice
relaxation rate at T<{T. suggest that the superconducting energy
gap vanishes at points on the Fermi surface. In this case, Ns (E)

is proportional to E*. '%

E
N« (E)=61Nf;(z)2 ) (22)

where /4 is the maximum energy gap. The coefficient a should be
unity for the ABM state. Substituting eq. (22) into eqgs. (20) and
(21), I get
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Cs Kk 2 2 (23)
= 13802 (=) T
Cr b ,
and
(T:) 2 Ky ¥t
=2 6ka—) T
T1)s A : (24)

From eq. (23) and the present specific heat data shown in
Fig. 1 (b), a is estimated to be 0.60 if we use the best fit gap
parameter A/ksTc = 2.014X0.8 for the present 7; data discussed
above. Using the same gap parameter and the 7; data we can also
estimate a to be 1. 24 from eq. (24) by extrapolating 7;, 7 = 8. 47
sec - K measured between 9. 4K and 20K to the superconducting state.
Both of the above obtained values 0.60 and 1.24 are not so far
from unity expected for the case the energy gap vanishes at two

points on the Fermi surface by the ABM model.
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§6. Conclusion

In the strong electron-phonon coupling superconductor HfV.,
the anisotropy of the superconducting energy gap was found by the
51y NMR 7; and the specific heat measurements. At low
temperatures, the electronic part of the specific heat and the
nuclear relaxation rate 17, obey the 7% and 7° law, respectively.
These facts are inconsistent with the exp(-A/ks 7) law predicted by
the BCS theory and indicate that the superconducting energy gap is
anisotropic and vanishes at points on the Fermi surface. Actually,
the agreement between the [-7; data and the calculated curve
based on the ABM gap model with the gap parameter A/ ks 7c=2.014X0.8
is satisfactorily good at low temperatures.

It was also found that the frequency dependence of 1.7, is
weak and the small enhancement just below 7. is not affected by
the external field at 12 MHz. The same 7° dependence of 1.7, well
below 7: was also certified by the field cycle method. The
dependence of 7; on the magnetic field in which the ®'V nuclear
spins relax in the field cycle process measured at 2.77 K can be
explained by the electric quadrupole effect.

In the normal state, 17,7 is constant between 9.4 K and 20 K,
decreases with increasing temperature and is nearly constant at
75130 K. This temperature dependence of I[.7,7 between 20 K and 100
K can be explained by using the narrow band models with the half
width of about 100 K.

The formation of the narrow band and the energy gap anisotro-
py support the concept of the TLS model that they are originated

from the same correlation among electrons as in the heavy Fermion.
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