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1. Introduction

Information on the surface tension of mould fluxes is in-
dispensable to continuous-casting processes1–3) since the
surface tension of mould fluxes, along with the related in-
terfacial tension and wetting, affects slag infiltration into
mould/strand channels and slag entrapment in liquid metal.
The mould fluxes are usually silicates composed of SiO2,
CaO, MgO, Al2O3, Na2O, K2O and F with varying additions
of B2O3, Li2O, MnO, TiO2 and ZrO2. The composition of
the mould flux changes according to the reactions with the
elements, such as aluminum and titanium in molten steel
during the continuous-casting process.4–6) Thus, the estima-
tion of the surface tension composition dependence of the
mould fluxes is one of the key technologies for improving
the experimental process.

A number of models have been employed for estimation
of the surface tension of molten slags, by means of the ad-
ditivity rule,7,8) and by using models9–16) based on Butler’s
equation17) etc. In the former models,7,8) there is a poor re-
producibility in multi-component systems, since the addi-
tivity rule is not reasonable in determining the surface ten-
sion of molten slag in these systems. In the latter mod-
els,9–13) with the exception of the model proposed by
Tanaka and co-workers14–16) to address the ionic radii, the
applicable systems are limited on account of the lack of in-
formation such as thermodynamic data. Although the
Tanaka and co-workers’ model is easily applicable to multi-
component systems, and reproduces well the composition
dependence of the surface tension in wide composition and

temperature ranges, it is not a satisfactory model in the
viewpoint of achieving highly accurate estimations.

On the other hand, new estimation methods for the char-
acterization of materials using neural network computation
have been proposed recently.18–20) In determining the physi-
cal properties of molten slags, Hanao and Tanaka et al.20)

succeeded in precisely estimating the viscosity of mould
fluxes using neural network computation, although such es-
timation had previously been considered quite difficult due
to the abrupt and complicated viscosity changes with com-
position and temperature.

In the present work, neural network computation was ap-
plied to the estimation of the surface tension of ternary sili-
cate melts consisting of SiO2, CaO, Al2O3, FeO, MgO,
MnO, Na2O, K2O, Li2O, CaF2 and B2O3. In addition, assess-
ments of the number of units in the middle layer of layer-
type neural network computation were discussed by using
methods for determining the number of predictive variables
in multiple linear regressions.

2. Calculation of Surface Tension of Silicate Melts
with Neural Network Computation

Neural network computation is a processing method
based on features known from the physiology of the human
brain.21,22) The human brain is estimated to contain about
10 billion brain cells (neurons). When the sum of the inten-
sity of input signals received by a neuron from other neu-
rons exceeds a certain critical value, then new signals are
transmitted to the next set of neurons as output signals. Fig-
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ure 1 shows this principle of neuron transmittance trans-
lated into a computational organization (neuron model). In
this model, the situation corresponding to the transmission
of signals is represented by a sigmoid function in Eq. (1):

...........................................(1)

where: si is an input value, wj is a connection weight, h is a
critical value and T is a coefficient that specifies the shape
of the sigmoid curve.

Figure 2 shows a schematic diagram of the back propa-
gation approach in the layer-type neural network computa-
tion. The layer-type neural network consists of three layers,
an input layer, a middle layer and an output layer. The units
in the middle layer are connected with the units in the input
and output layers in the layer-type network structure. After
input values have been applied to the units in the input
layer, these values are propagated to the output layer
through the middle layer. The output values are compared
to the teaching values, and the errors are computed for each
output unit. Then, these error signals are transmitted back
from the output layer to each node between the layers in
order to correct the connection weights, as well as correct
the critical values in each unit. Here, the critical values are
usually treated as one of the weights. These procedures are
referred to as “learning”. This learning process is repeated
until the learning number reaches a targeted value or the
error is reduced to an acceptable value. Consequently, a

better network with adequate connection weights is con-
structed for predicting the teaching values from input val-
ues. In the present work, the teaching values used are meas-
ured surface tensions, and the input values are composed of
the measurement temperature and the concentrations of 
the slag components. The learning process was conducted
using the “Neurosim/L” software produced by Fujitsu
Ltd.22) under the following conditions: the number of units
in the middle layer ranged from 1 to 12, the learning num-
ber was 300 000, and as far as the parameters related to the
promotion of learning efficiency concerned, the initial val-
ues given in product were used. Then, the surface tensions
of molten silicates were calculated using this network. Lit-
erature data7,23–55) used for the silicate systems and tempera-
tures in the present work are listed in Table 1. The total
number of literature values was 467. These values mainly
consisted of almost all of the available values in ternary sil-
icate systems obtained from the Slag Atlas (2nd edition)23)

since the mould fluxes are made up of many kinds of com-
ponents as described in the introduction. Here, it is as-
sumed that all iron oxides exist as FeO.

3. Results and Discussion

For all systems, the average errors in the experimental
values and calculated results obtained using neural network
computation were plotted (closed circles, 1st learning
process) against the number of units in the middle layer in
Fig. 3. The average errors were evaluated using Eq. (2):

f w s h w s h Ti i i i⋅( ) ⋅( )( ){ }∑ ∑� � � � �1 1 exp
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Fig. 1. Concept of a neuron model.

Fig. 2. Schematic diagram of the back-propagation approach in layer-type neural networks.



......(2)

As shown in Eq. (2), the s expe and s calc values correspond
to the experimental surface tension values found in the lit-
erature and the surface tension results calculated by neural
network computation, respectively. N corresponds to the
number of the literature data. The average error decreases
to about 3% by increasing the number of units in the mid-
dle layer, as shown in Fig. 3. This result indicates that the
estimation method for neural network computation can well
reproduce the surface tension of molten ternary silicates in
the high number of units in the middle layer.

It is advisable to discard the data with gross error from
the viewpoint of conducting a preferable estimation as well
as in case of common regression analysis, although the neu-
ral network computation succeeds in the estimation of the
surface tension for silicate melts at the present stage, as
shown in Fig. 3. For example, Hanao and Tanaka et al.20)

assessed the data by rejecting the upper 5% data points
having the largest difference between the experimental and
calculated values obtained by neural network computation
after the first learning process in the estimation of viscosity
for mould fluxes. In this study, the assessment of data was
conducted after the 1st learning process by excluding the
data with gross error, which is defined as follows:
( i ) the data having an error of 10% and above8) evaluated

by Eq. (2)
(ii) the data satisfies (i) in the calculated results with more

than 6 different units in the middle layer
16 data points fit the conditions (i) and (ii). The average

errors between the experimental values and calculated re-
sults obtained by neural network computation without these
data are shown as open circles (2nd learning process) in
Fig. 3. Rejecting the data with gross error lowers the aver-
age errors in all units by about 1%, although the 3–5% er-
rors obtained after the 1st learning process are already ac-
ceptable values in the sense of fine estimation. From these
results, it was found that the assessment of the data was ef-
fective in the estimation of the surface tension in molten
ternary silicates by neural network computation.

Here, the number of units in the middle layer has to be
determined since the neural network computation with the
largest number of units is not guaranteed to be optimal in
any sense. For example, a large number of units merely im-
prove the estimation within the experimental uncertainty of
the data, although the higher number of units typically
yields a better fit, as shown in Fig. 3. Then the following
three criteria are applied: r2-, r 2

adj- and Cp-criteria,56) all
commonly employed for determining the optimum number
of variables in multi-linear regression, to the optimization
of the number of units in the middle layer in neural network
computation. These criteria are simply explained below.
The r2-criterion is given by:

......(3)

where s̄ expe is the mean value of s expe. r
2 ranges between 0

and 1, with values closer to 1 representing better fits, and r2

generally increases with adding more predictor variables in
the linear regression model. The r 2

adj-criterion (adjusted r2-
criterion) is defined as:

................(4)

where p corresponds to the number of predictor valuables
in the model form. This value can be regulated by compar-
ing the contribution of the additional variables with the
number of degrees of freedom. In practice, initially (for
small values of p) r 2

adj increases and then begins to decrease
as more variables are added to the model. The Cp-criterion
based on Mallow’s Cp-statistic57) is expressed by:

· {N�( p�1)}�2 · ( p�1)�N ..................(5)

where k is the maximum value of p. This is a measure of
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Table 1. Literature data used for estimation of the surface ten-
sion of silicate melts.

Fig. 3. Change in average error with respect to the number of
units in the middle layer.



the predictive ability of a fitted model. Cp first decreases
and then increases with an increasing number of predictor
variables in the model. The minimum of Cp corresponds to
the optimum number of variables in the multi-linear regres-
sion.

The degrees of freedom in the neural network computa-
tion were taken into consideration in order to apply the r 2

adj-
and Cp-criteria in the multi-linear regression to the neural
network computation. Adding a unit to the middle layer in-
creases the number of variables by {(the number of input
values: nI)�(the number of output values: nO)�1} since the
variables related to the units in the middle layer correspond
to the weights between the input layer and the middle layer,
the weights between the middle layer and the output layer
and its own critical value in the unit. An output value, i.e. a
unit in the output layer, also possesses its own critical
value. These leave N�{(nI�nO�1) ·p��nO�1} degrees of
freedom for estimating validity in the neural network com-
putation, where p�is the number of units in the middle layer.
Then, Eqs. (6) and (7) are derived from Eqs. (4) and (5), re-
spectively:

...........................................(6)

.............(7)

In the present work, nI�12 and nO�1, since the input
values correspond to the temperature and the concentra-
tions of SiO2, Al2O3, B2O3, CaF2, CaO, FeO, K2O, Li2O,
MgO, MnO, Na2O, and the output value is the surface ten-
sion. Figure 4 shows the relations between r2 and r 2

adj, and
the number of units in the middle layer. r2 increases with in-
creasing units, which simply means that including more
units in the middle layer gives a better fit. On the other
hand, r 2

adj is a roughly constant value around 0.9 above 5
units. It is considered that the optimum number of units ex-
ists in the range of constant r 2

adj. However, it is impossible
to determine the number of units in the middle layer since
there is no characteristic indication in the results of r 2

adj for
the determination of single unit numbers. In Fig. 5, Cp is
plotted against the number of units. This clearly shows that
the minimum Cp for 6 units, that is to say, 6 is the optimum
number of units in the middle layer in this evaluation using
the modified Cp. Therefore, 6 was selected as the unit num-
ber in the middle layer for the present calculations.

The results calculated by neural network computation
with 6 units in the middle layer are compared with the ex-
perimental data in Fig. 6. There are two kinds of plots in
this figure: closed circles represent the calculated values
after the 1st learning process, and open circles correspond
to the calculated values after the 2nd learning process, after
discarding the data with gross error. It was found that the
data with large errors are reasonably removed by using the
definition for the data with gross error as described above,
and the experimental values can then be reproduced pre-

cisely by neural network computation. The average error of
the calculated results after the 2nd learning process was
2.45%.

Some of the surface tension results for the ternary sili-
cate melts calculated by neural network computation with 6
units in the middle layer after the 2nd learning process are
shown in Figures 7 through 11. The data rejected before
the 2nd learning process are expressed as numbers in
parentheses in these figures. It can be seen that these data
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Fig. 4. r2 and r 2
adj as a function of the units in the middle layer.

Fig. 5. Cp as a function of unit in middle layer.

Fig. 6. Comparison between experimental values and calculated
values obtained by using neural network computation
with 6 units in the middle layer.



points, with gross errors established on the basis of the defi-
nition described above, are also the data with large error in
comparison with the other experimental data. The iso-sur-
face tension curves obtained by neural network computa-
tion are in good agreement with the experimental data ob-
tained in these systems. Figures 12 through 14 show the re-
sults calculated using the neural network computation with
12 units in the middle layer after the 2nd learning process
in SiO2–FeO–CaO at 1 673 K, SiO2–FeO–MgO at 1 623 K
and SiO2–CaO–CaF2 at 1 773 K. These composition de-
pendencies are similar to those obtained using the calcula-
tion results in the case where 6 units are present in the mid-
dle layer, as shown in Figs. 8(b), 9 and 11, while only a few
differences are evident in some of the other areas. These re-
sults mean that the neural network computation with 6 units
in the middle layer virtually reproduces the experimental
data, while the neural network computation with 12 units in
the middle layer gives a better fit in local regions. There-
fore, the modified Cp derived by considering the number of
degrees of freedom in the neural network computation is

ISIJ International, Vol. 47 (2007), No. 8
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Fig. 7. Surface tension (mN/m) of molten SiO2–Al2O3–FeO sys-
tem at 1 573 K. Iso-surface tension curves were calcu-
lated by using neural network computation with 6 units in
the middle layer.

Fig. 8. Surface tension (mN/m) of molten SiO2–CaO–FeO system at (a) 1 573 K and (b) 1 673 K. Iso-surface tension
curves were calculated by using neural network computation with 6 units in the middle layer.

Fig. 9. Surface tension (mN/m) of molten SiO2–FeO–MgO sys-
tem at 1 623 K. Iso-surface tension curves were calcu-
lated by using neural network computation with 6 units in
the middle layer.

Fig. 10. Surface tension (mN/m) of molten SiO2–CaO–Na2O
system at 1 473 K. Iso-surface tension curves were cal-
culated by using neural network computation with 6
units in the middle layer.



found to be one of the practical criteria for designing the
number of units in the middle layer.

4. Conclusions

A neural network computation was applied for estimat-
ing the surface tension in ternary silicate melts. The discus-
sion on the criteria for designing the number of units in 
the middle layer of the neural network computation was
also conducted. It was found that the modified Cp-criterion,
based on the degrees of freedom in the neural network
computation, was useful for determining the number of
units. The calculated surface tension results obtained using
neural network computation with the appropriate unit num-
ber, which is assessed satisfactorily by considering the Cp-
criterion, showed a virtual reproduction of the experimental
data in ternary silicate melts with high precision.
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