<table>
<thead>
<tr>
<th>Title</th>
<th>Evaluation of Viscosity of Molten SiO$_2$-CaO-MgO-Al$_2$O$_3$ Slags in Blast Furnace Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakamoto, Masashi; Tanaka, Toshihiro; Lee, Joonho; Usui, Tateo</td>
</tr>
<tr>
<td>Citation</td>
<td>ISIJ International. 44(12) P.2115-P.2119</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/26412</td>
</tr>
<tr>
<td>DOI</td>
<td>10.2355/isijinternational.44.2115</td>
</tr>
<tr>
<td>rights</td>
<td>© 2004 ISIJ</td>
</tr>
</tbody>
</table>
1. Introduction

There is a demand for decreasing the process temperature to reduce energy consumptions in the current iron and steelmaking processes. However, the viscosity of molten slag increases considerably at lower temperatures in the conventional process and it causes various troubles in the operation. Therefore, it is required to search adequate slag systems with good fluidity at lower temperatures. In order to design the slag satisfying the requirement, the viscosity of molten slag with low melting point should be investigated to develop an improved blast furnace operation at low temperature such as 1673 K for saving energy consumption.\(^1\)

Iwase \etal\(^2\) investigated the phase diagrams for SiO\(_2\)--CaO--MgO--Al\(_2\)O\(_3\) system, and proposed candidate slags with low melting temperature as follows. Figure 1 shows the composition range with low melting temperature \(T_{\text{liquidus}}\leq 1673\) K in SiO\(_2\)--CaO--MgO--Al\(_2\)O\(_3\) system for 0, 5, 10, 15, 20, 25, 30 and 35 mass\% of Al\(_2\)O\(_3\). BFS in Fig. 1(d) is the composition of a conventional blast furnace slag. As shown in these figures, when we try to find the liquid phase with \(T_{\text{liquidus}}\leq 1673\) K at 0–30 mass\% of Al\(_2\)O\(_3\), we have to increase SiO\(_2\) content from the BFS composition, which causes the increase of the viscosity (e.g. at the composition of Slag 3 in Fig. 1(c)). On the other hand, a liquid region with \(T_{\text{liquidus}}\leq 1673\) K exists at high CaO/SiO\(_2\) at 35 mass\% of Al\(_2\)O\(_3\) in Fig. 1(h). Although the viscosity is expected to be low at high CaO/SiO\(_2\) region (e.g. at the composition of Slag 1 and Slag 2 in Fig. 1(h)), the viscosity has not been reported so far.

To find an adequate slag system with low viscosity at low temperature based on Fig. 1, it is necessary to examine viscosity of slag in the wide composition range in multi-com-
ponent systems. Therefore, it is useful to evaluate the viscosity of slags not only by measurements but also by using theoretical models. In particular, when Al_2O_3 content changes widely as in the above examples in Fig. 1, the composition dependence of the viscosity of slags is expected to depend on the amphoteric behavior of Al_2O_3. However, few models have been applied so far to the viscosity of slags at wide Al_2O_3 concentration range. Consequently, we have derived a viscosity model in order to reproduce the amphoteric behavior of Al_2O_3, which has been applied so far to the evaluation of viscosity in ternary systems such as SiO_2-CaO-Al_2O_3 system.

The purpose of the present work is to measure the viscosity of molten slag at the compositions of Slag 1, Slag 2 and Slag 3 in Fig. 1 to accumulate the viscosity data for the development of low temperature operation in iron and steel-making processes. Then, the above model derived by the authors was applied to the above SiO_2-CaO-MgO-Al_2O_3 quaternary system.

2. Experimental

The samples were prepared from Al_2O_3, CaO, MgO and SiO_2 powders, where CaO powder was obtained by heating CaCO_3 powder for 5 h at 1 273 K. A mixture of those powders, which corresponds to a given composition of slag (Table 1), was fed into an Fe crucible. The sample was heated up to and held at 1 673 K with flowing Ar (more than 1 L/min (s.t.p.)) for 1 h to melt the slag.

The rotating cylinder method was employed to measure the viscosity of molten slag. The apparatus is shown in Fig. 2. The viscometer is connected with an Fe spindle through a W rod. The spindle consists of a bob and a shaft, of which dimensions were shown in Fig. 2. The crucible has 45-mm i.d. and 100-mm height. The thickness of wall and base of the crucible was 5 mm. The Fe crucible containing the sample was placed in given position of the furnace where temperature distribution was uniform. The sample was heated at a rate of 150 K/h under Ar flow (more than 1 L/min (s.t.p.)) to a given temperature. After the sample was held at the temperature for 1 h, the spindle was immersed into the molten slag. The torque values, which are stabilized for more than 10 min, were measured at 4 rotating velocities of spindle, and the average value was used to determine the viscosity of molten slag. The viscometer was calibrated with three glycerol aqueous solutions and standard silicon oil. The viscosity range of those liquids is between 0.05 and 10 Pa·s. The viscosity measurements were conducted at a given temperatures between 1 573 and 1 723 K. In the case of Slag 1 (Run 4), Slag 2 (Run 5) and BFS in Table 1, the viscosity was measured at a-minute intervals with decreasing the temperature continuously at a rate of 0.5 K/min after the measurement at 1 673 K. The experimental uncertainties for viscosity measurements were about ±20% as a maximum.

Some of the slags were sampled for chemical analysis.

| Table 1. Chemical compositions of samples and experimental results of viscosity of molten SiO_2-CaO-MgO-Al_2O_3 system. |
|----------------|---------------|----------------|----------------|
| Chemical composition (mass%) | Viscosity (Pa·s) | Run | 1 573 K | 1 623 K | 1 673 K | 1 723 K |
| SiO_2 | CaO | MgO | Al_2O_3 | | | |
| Slag1 | 14.4 | 43.1 | 7.5 | 35.0 | 1 | 0.69 | 0.44 |
| | | | | | 2 | 1.00 | 0.46 |
| | | | | | 3 | 0.90 | 0.46 |
| | | | | | 4 | 0.67 | 0.46 |
| Slag2 | 7.4 | 52.7 | 4.9 | 35.0 | 1 | 0.43 | 0.29 |
| | | | | | 2 | 0.50 | 0.31 |
| | | | | | 3 | 0.61 | 0.31 |
| | | | | | 4 | 0.37 | 0.31 |
| | | | | | 5 | 0.51 | 0.31 |
| Slag3 | 48.6 | 33.1 | 8.3 | 10.0 | 1 | 2.89 | 1.74 | 1.09 | 0.72 |
| | | | | | 2 | 2.81 | 1.72 | 1.08 | 0.72 |
| BFS | 36.4 | 43.6 | 5.0 | 15.0 | 1 | 0.77 | 0.51 |

Fig. 2. Apparatus for viscosity measurements.
after the viscosity measurements. The content of FeO in slag was less than 1 mass%. Sugiyama et al. examined the effect of FeO on the viscosity measurement of molten slag, and derived an equation to express the change in the viscosity with FeO content. It is estimated that the viscosity of the slag containing 1 mass% FeO is 20% lower than that of the slag without FeO.

3. Results and Discussion

3.1. Experimental Results of Viscosity of Molten Slag

Experimental results of viscosity of molten slag are listed in Table 1. Figure 3 shows the change in the viscosity of Slag 1 to 3, and BFS with temperature. The plots are the average values of viscosity at each temperature, and the broken lines indicate the experimental values measured with continuously decreasing temperature. The viscosity of BFS increases with decreasing temperature below 1 673 K. Since the liquidus temperature of the sample BFS is about 1 673 K, the solid and liquid phases are coexisted below 1 673 K, where the viscosity may increase considerably with decreasing temperature below 1 673 K. It is generally known that the viscosity of molten slag of the conventional blast furnace should be less with large scatter. It is generally known that the viscosity of molten slag containing 1 mass% FeO is 20% lower than that of the slag BFS at 1 723 K, and slightly in-creases with decreasing temperature. Since these “cutting-off” points near the free oxygen ion O2− and the non-bridging oxygen O− in the network structure control a viscous flow. In other words, it is considered that the viscosity of molten silicate slag is determined from the frequency of the occurrence of “cutting-off” of the network structure in the silicate slag. Then, the activation energy was assumed to become smaller as the number of the free oxygen ion O2−, N O2−, and that of the non-bridging oxygen O−, N O−, increase, which is defined in Eq. (2):

\[E_v = \frac{E}{1 + (\alpha (N_{O^2−} + N_{O^−}))^{1/2}} \]

\(A \) in Eq. (1) and \(E \) of Eq. (2) are determined from the temperature dependence of the viscosity of pure molten SiO2 as follows: \(A = 4.80 \times 10^{-5}, E = 5.21 \times 10^5 \) (J). \(N_{O^2−}, N_{O^−} \) are evaluated from Gaye’s model with thermodynamic database. The values of \(\alpha \) for various basic oxides in Eq. (2) are determined from the application of the above equation to various SiO2–M2O (M2O=CaO, FeO, Al2O3, MgO) binary systems as follows:

\[\alpha_{CaO} = 2.0, \alpha_{FeO} = 3.8, \alpha_{Al_{2}O_{3}} = 0.95, \alpha_{MgO} = 1.8 \]

In multi-component systems, the activation energy \(E_v \) is defined in Eq. (4):

\[E_v = \frac{E}{1 + (\alpha_n)^{1/2}} \]

where \(\alpha_n \) is evaluated by the following equation.

\[\alpha_n = \sum_{i=1}^{m} \alpha_{M_i} \left(N_{SiO_2-M_i} + N_{M_i-O-M_i} \right) + \sum_{i=1}^{m} \sum_{j=i+1}^{m} \frac{(\alpha_{M_i} + \alpha_{M_j})}{2} \cdot N_{M_i-O-M_j} \]

where \(m \) is the number of component oxides M2O except SiO2, N SiO2-Mi and N M_i-O-M_i represent the mole fraction of non-bridging oxygen O− and the free oxygen ion O2−, respectively, which are calculated from Gaye’s model. Figure 3 shows the comparison of the experimental
results and literature values\(^9,10\) with the calculated results of the viscosity for \(\text{SiO}_2–\text{CaO–MgO–Al}_2\text{O}_3\) quaternary systems. The calculated iso-viscosity curves are drawn in the whole composition region by assuming that the slag exists as liquid phase. Machin \textit{et al}.\(^9,10\) measured the viscosity of molten slag in wide composition range for \(\text{SiO}_2–\text{CaO–MgO–Al}_2\text{O}_3\) 10 and 15mass%\(\text{Al}_2\text{O}_3\) system, as shown in Figs. 4 and 5. The present experimental results are in good agree-
ments with those literature values, and the calculated results reproduce reasonably the composition dependence of the viscosity of molten slag with SiO$_2$–CaO–MgO–10 and 15mass%Al$_2$O$_3$ system. Since the information on the viscosity in SiO$_2$–CaO–MgO–35mass%Al$_2$O$_3$ system have not yet been reported so far, the literature values10 for SiO$_2$–CaO–Al$_2$O$_3$ ternary system are shown with the experimental results in Fig. 6.

Figure 7 shows the comparisons of the temperature dependence of the measured viscosity for Slag 1 to 3 and BFS with the calculated results obtained from the present model as well as the modified Iida model11, which is reported to perform well for blast furnace slags.21 The modified Iida model reproduces well the temperature dependence of the viscosity of the samples Slag 3 and BFS. At the compositions of 35 mass% Al$_2$O$_3$ for Slag 1 and 2, however, the calculated results of the modified Iida model deviate considerably from the measured values, whereas those of the present model at the compositions reproduce the experimental results. Thus, the present model can be applied to evaluate the viscosity of molten SiO$_2$–CaO–MgO–Al$_2$O$_3$ in wide Al$_2$O$_3$ concentration range.

4. Conclusions

The viscosity of molten SiO$_2$–CaO–MgO–Al$_2$O$_3$ slags was measured using the rotating cylinder method and was compared with the calculated results of the model derived by the authors. The experimental results showed that the 35mass%Al$_2$O$_3$–43.1mass%CaO–7.5mass%MgO–14.4 mass%SiO$_2$ slag, which melts below 1 673 K, had the viscosity below 0.6 Pa·s at 1 673 K. The viscosity of molten SiO$_2$–CaO–MgO–Al$_2$O$_3$ system can be evaluated from the present model in wide Al$_2$O$_3$ concentration range.

REFERENCES

2) M. Iwase and M. Hasegawa: Private communication.