

Title	2成分系平衡状態図の基礎
Author(s)	田中, 敏宏; 長坂, 徹也
Citation	ふぇらむ. 2005, 10(8), p. 674-678
Version Type	VoR
URL	https://hdl.handle.net/11094/26431
rights	◎日本鉄鋼協会
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

2成分系平衡状態図の基礎

Fundamentals of Binary Phase Diagrams

田中敏宏 Toshihiro Tanaka

大阪大学 大学院工学研究科

大学院環境科学研究科

東北大学 教授

長坂徹市

Tetsuya Nagasaka

はじめに

製銑・製鋼工程や環境調和型ごみ処理炉などの高温プロセ スにおいて、スラグは重要な役割を果たしているため、酸化 物系物質の熱力学的性質、種々の融体物性、相平衡関係の情 報は様々な問題解決ならびに新たなプロセス開発には不可欠 である。ここで各種物性情報については物性値便覧の改訂や データベースの構築など新たな展開が行われ情報の蓄積が進 みつつある。特に、熱力学的性質や融体物性については、こ れらの便覧などに実験方法も含めて詳しく解説されている。 一方、平衡状態図に関しては、合金に対してはいくつかの解 説書のほか、材料学の教科書の中に基本的な読み方の説明が なされているが¹⁾、溶融スラグが関係する酸化物系に関して は必ずしも詳しい解説がなされているとは限らず、むしろ合 金状態図の延長として解釈できるという扱いがされている場 合が多い。しかしながら、例えば、溶融スラグの基本系のひ とつであるSiO₂-CaO-Al₂O₃系の状態図²⁾は多くの書物にお いてFig.1に示すように、3角形の組成図と相境界線、等液 相線温度曲線、その他の直線などで表示され、合金状態図の 基礎を理解していても同図から得られる情報が必ずしもすべ て有効に活用されていない場合も多々ある。そこで本講座で は、Fig.1のように表示された酸化物系状態図の読み方を中 心に入門的解説を行うことにした。

本入門講座では、下記のように4回のシリーズとして特に 酸化物系3元状態図を解釈するための基礎的解説を試みたい と思う。

第1回 2元系平衡状態図の基礎

第2回 3元系平衡状態図の基礎(その1)

第3回 3元系平衡状態図の基礎(その2)

第4回 状態図の熱力学的基礎

初回は、その基礎となる1成分系状態図ならびに2元系状 態図の解説を行う。平衡状態図の理解のためには、自由エネ

ルギーの組成・温度変化と相平衡の関係も知る必要がある が、この点については第4回目で解説する。

(2) 状態図と相律

基本的に平衡状態図は、与えられた温度、圧力などの条件 下において、平衡状態で安定に存在する相の情報を提供して くれる。例えば、最も身近な物質のひとつであるHoOを例 にとると、1atm (=1.01325×10⁵Pa) では、0℃で氷から水 に融解し、100℃で水から水蒸気に変化する。ただし、圧力 を変えると水の沸点が変化することはよく知られている。こ のように一般に圧力を変化させると物質の融点や沸点は変化 する。この様子を温度と圧力を縦軸、横軸にとって描くと Fig.2のようになる。同図において、(a)と(b)を結ぶ曲線、 (b) と (c) を結ぶ曲線、(b) と (d) を結ぶ曲線は、それぞれ、

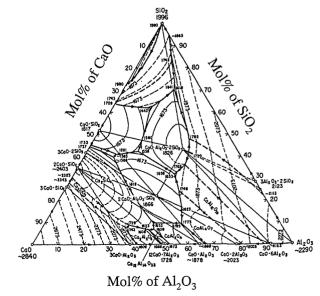


Fig.1 Phase diagram of CaO-SiO₂-Al₂O₃ ternary system²⁾

674 24

国体一気体間、固体一液体間、液体一気体間の相変態、すな わち、昇華点、融点、沸点の圧力依存性を示している。例え 展 Fig.2から上述のように圧力が下がると沸点が下がるこ とがわかる。(注:一般にこれらの変態点の圧力変化はFig.2 に示すように右上がりの曲線になるが、前述のH₂Oの融点 のF力変化を表す曲線(b)-(c)は右下がりとなり特異な挙 動をとる。)また、Fig.2において、それぞれの曲線で囲まれ ★領域は、固体、液体、気体が安定であることを示している。 言い換えると、これらの領域では1つの相だけが安定である のに対して、上記の曲線上ではそれぞれの相変態に相当する 2つの相が安定に共存することを示している。さらに (b) 点 は気体、液体、固体の3つの相が共存できることを示してお り、この点を3重点という。(注:Fig.2において融点を表す (b) - (c) の曲線は圧力が高くなっても連続的に変化するが、 沸点を表す(b)-(d)の曲線は、ある圧力と温度で途切れ、 それ以上圧力または温度を増加すると気体と液体が区別でき ない状態に変化する。この点を「臨界点」という。)

Fig.2において、例えば気相が安定な領域中の(i) 点では、 気体の状態を保ったまま温度と圧力の2つを変化させること ができる。一方、例えば融点を表す曲線(b)-(c)上の(ii) 点では、圧力を指定すると温度は一義的に決まる。すなわち 固相と液相の2つの相が共存するとき、温度か圧力のいずれ かひとつしか変化させることができない。さらに、前述の3 つの相が存在する3重点の(iii)点では、温度も圧力も最初 から決まっており、これらを変化させることができない。こ のように、平衡共存する相の数とその時変化させることので きる変数の数(これを自由度という)の間には熱力学的に決 められたルールがあり、次式のように表すことができる。

ここで、Fは自由度(変化させることのできる変数の数)、Cは成分の数(本節では1成分系なのでC=1)、 σ は平衡共存する相の数である。上述の(i),(ii),(iii),ii

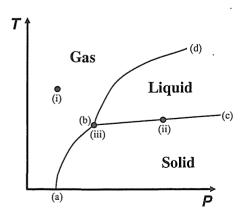


Fig.2 Phase diagram of unary system

を改めて整理すると次のようになる。

- (i) 点: $F=C-\sigma+2=1-1+2=2$: 温度と圧力の2つ を変化できる。
- (ii) 点: $F=C-\sigma+2=1-2+2=1$: 温度か圧力のいずれか1つだけ変化できる。
- (iii) 点: $F=C-\sigma+2=1-3+2=0$:温度も圧力も変化できない。

このように(1)式は平衡共存する相と自由度の関係を与える重要な関係式で「相律」と呼ばれており、2成分系、3成分系状態図を読む際にも重要な指針を与えてくれる。

さて、Fig.2は相平衡関係の圧力依存性を表しているが、 通常は1気圧下で物質、材料を扱うため、圧力一定の条件で 相平衡関係を考えることになる。物質によって融点、沸点な どの相変態温度は異なるため、例えば2成分系状態図とは Fig.3に示すように、Fig.2の1成分系(組成が決まった物質 系)状態図が圧力一定の条件下で組成によって変化する様子 を示していると考えればよい。

3

2元系状態図の基本形

前述のように、平衡状態図は、与えられた条件に対して、

- (1) 平衡状態で安定に存在しうる相が何であるか? についての情報を提供してくれるが、2成分系以上の状態図 になると、さらに、
 - (2) 平衡共存するそれぞれの相が存在する割合はどの程度になるか?
 - (3) 複数の相が共存する場合には、それぞれの相の中の各成分の濃度がいくらになるのか?

などの情報も必要となる。また、温度が連続的に変化する凝固過程や冷却過程では、温度変化に伴って上記の情報が連続的に変化する。本入門講座では、前述のように3元酸化物系状態図を読み取ることを目標とするが、その際、共晶、包晶、

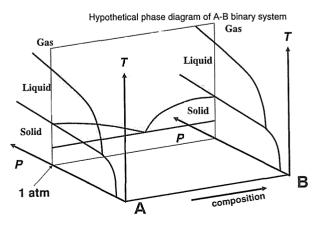


Fig.3 Relationship between unary and binary phase diagrams

2相共存時の相の存在割合などの話題が出てくる。しかしな がら、前掲のFig.1の状態図を見ても、紙面に垂直方向にあ る温度軸を横から眺めることができないため、共晶、包晶反 応を頭に描きながら相変化を読み取ることは難しい。そこで、 本節では2成分系の温度―組成軸で表示した状態図の基礎事 項について解説する。なお、ふたつの酸化物 M、O、と N、O、 (xとyは金属と酸素の化学量論比を示す数)より構成される 2元系平衡状態図は、厳密にはM-N-O3元系平衡状態図と して考えるべきものである。しかしながら、両酸化物が安定 化合物で化学量論比の変化が無視できる場合には、酸化物を ひとつの成分単位として考えるほうが便利であり、本稿では 特に断りがない限り、この考え方に従って話を進めることに する。ただし、鉄鋼製錬プロセスで重要な酸化鉄Fe,Oに代 表される遷移金属酸化物系では、酸化物分子単位ではなく、 元素単位で相平衡を考えなければ現象を正しく理解できない 場合がある。

一般に2元系平衡状態図はFig.4に示す4つの型が基本となっている³⁾。製鋼反応に関連する酸化物系で出会う状態図はこれらが複数箇所、組み合わさったものである。

- [1] 全率固溶型状態図
- [2] 共晶型状態図
- [3] 包晶型状態図
- [4] 2液相分離型 (偏晶型) 状態図

最初に、上記Fig.4 [1] の全率固溶型状態図について液相から凝固させたときの凝固組織の変化を眺めてみよう。本稿では、冷却過程において常に共存する相は平衡状態にあるとする。

Fig.5中の (a) の均一な液相の状態から徐々に冷却すると、 (b) 点で液相線に達した瞬間に α 相の固相が晶出する α の時、平衡状態で晶出する α 相の組成は (b') 点の濃度となる。徐々に冷却を続けると、 α 相の存在割合が増加する ((c) の状態)。その際の平衡共存する濃度 (c') の液相と濃度 (c") の α 相の存在割合は後述の「てこの法則 (てこの原理)」を利

用して計算できる。固相線の温度(d)に達すると濃度(d)の液相は無くなり、さらに冷却すると粒界を伴った完全な固相の組織となる(e)。

てこの法則 (てこの原理) 3.4)

共晶型平衡状態図を例にとって、平衡共存する2相の割合を状態図から評価する方法を説明する。共晶型の平衡状態図においては、Fig.6に示すように、例えば X_B^0 という組成の液体を冷却した場合、温度 T_1 において液相と α 相が平衡共存する。この時、液相と α 相の組成をそれぞれ、 X_{B,T_1}^{Liq} 、 X_{B,T_1}^a とすると、液相と α 相の割合は次式で表すことができる。

(液相の量): (α相の量)

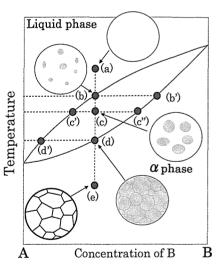


Fig.5 Change in micro-structure in phase diagram of solid solution type⁴⁾

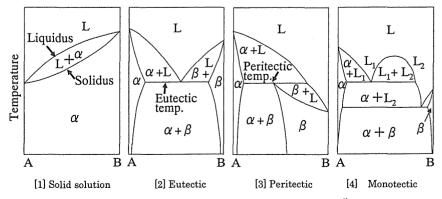


Fig.4 Fundamental types of binary phase diagram³⁾

676 26

(2) 式の関係は、 X_B^0 の濃度を支点にして、液相の量は α 相側の濃度差 ($X_B^0 - X_{B,T_1}^a$)、 α 相の量は液相側の濃度差 ($X_{B,T_1}^{Liq} - X_B^0$) に比例し、てこを用いた力の釣り合いの関係に相当する。そこで、(2) 式を用いて2相共存域におけるそれぞれの相の量の割合を評価する方法を「てこの法則 (てこの原理)」と呼んでいる。

Fig.6において共晶温度 T_E よりも低い温度域では、 α 相と β 相が平衡共存するが、例えば温度 T_2 において α 相と β 相 α の割合は次式で表すことができる。

(α相の量):(β相の量)

$$=\frac{X_{B, T_2}^{\beta} - X_{B}^{0}}{X_{B, T_2}^{\beta} - X_{B, T_2}^{\alpha}} : \frac{X_{B}^{0} - X_{B, T_2}^{\alpha}}{X_{B, T_2}^{\beta} - X_{B, T_2}^{\alpha}} \quad \dots (3)$$

5 共晶系

次に、共晶型状態図において、液相から種々の組成で平衡凝固させた際の凝固組織の模式図をFig.7 (a) \sim (d) に示す 4)。 (a) の組成では、液相から α 相が晶出し、前述のFig.5 の場合と同様に組織形成が生じる。 (b) の組成では、 α 相の晶出が生じ、さらに温度が下がって固相線 (T_1) に達すると、 (a) と同様の組織が得られるが、さらに温度が低下し、 T_2 の温度に達すると、 β 相が α 相中に析出する組織となる。次に (c) の組成は共晶点を通るため、共晶温度 T_E まで液相が存在した後、共晶温度において α 相と β 相が晶出し、層状またはロッド状の2相が共存する共晶反応特有の組織となる。最後に (d) の組成では、まず T_1 において α 相が晶出し、温度の低下とともに徐々に α 相の量が増える。共存する液相は共晶点組成へ向かって濃度が変化し、共晶温度 T_E において共晶反応を生じて α 相と β 相からなる共晶組織へと変化するた

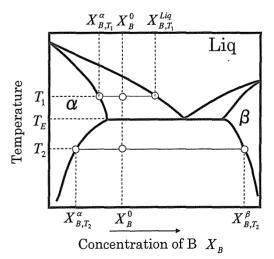


Fig.6 Phase equilibria between liquid and α phases at T_1 , and between α and β phases at T_2

め、図中に示したように初晶の α 相と共晶組織が混在した組織となる。

以上のように共晶系状態図においては次の2点に留意すべきである。

- (1) 液相が凝固し終わる直前の液相の組成は共晶点組成である。
- (2) 共晶温度は共晶反応が関与する領域において最も低い凝固温度である。

以上の2点は、3成分系の状態図を読む際、凝固パスを知る 上で重要な指針となる。

酸化物系においてはFig.8に示すように固溶体を伴わずに 純粋な成分A,Bや化合物Cが液相と平衡共存する共晶系状 態図が多い。この場合には、例えば X_B^o の組成の液相を冷却 すると、液相線に達した際、化合物Cが晶出し、さらに冷却 を続けると液相の濃度は共晶点組成まで変化し続け、共晶温 度 T_{E1} において凝固が完了する。ただしその間晶出した固相 Cの量は勿論変化するが、組成は一定のままである。

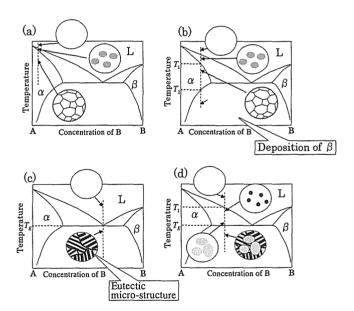


Fig.7 Change in micro-structure in phase diagram of eutectic type⁴⁾

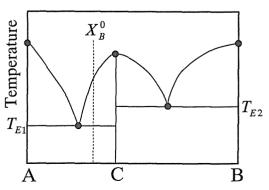


Fig.8 Phase diagram of eutectic type without solid solution

6

包晶系

次に包晶型状態図において、液相から平衡凝固させた際の凝固組織の模式図をFig.9に示す 3)。同図に示した X^0_B の組成の液相から降温する場合、温度 T_1 において α 相が晶出し始める。温度が包晶温度 T_P に達するまで液相中の α 相の量が増え、両者が共存する組織となる。 T_P に達すると、 β 相が α 相と液相の界面において α 相を包むように晶出し始める。Fig.9に示した組成では、この包晶温度 T_P において α 相は消え、温度の低下と共に、 β 相と液相が共存する組織に変化する。その後 T_4 の温度に達すると凝固が完了し、すべて β 相の固相組織となる。

酸化物系においては、包晶反応を伴う状態図は、Fig.10

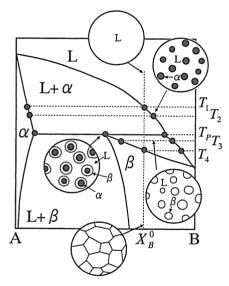
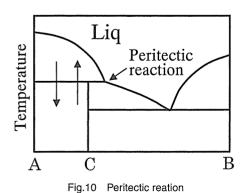



Fig.9 Change in micro-structure in phase diagram of peritectic type³⁾

にすると、包晶反応とは次のように考えることができる。 (1) 化合物Cが存在する場合、昇温時に

に示すように化合物Cが関与する場合が多い。この図を参考

 $C \rightarrow A + Liq$

の分解反応が生じる。

(2) 降温時には

 $A + Liq \rightarrow C$

の反応が生じる。

7

偏晶系(2液相分離系)

Fig.4 [4] に示した2液相分離系は、酸化物系では例えば SiO_2 基酸化物系において SiO_2 の濃度が高い組成域に存在する (SiO_2 - CaO 系、 SiO_2 - MgO 系など)。ただし、2液相分離域を除けば、全体の状態図は上述の基本形の組み合わせから成り立っていることが多い。

(8)

おわりに

「状態図」の理解にとって大切なことは実際に使ってみることである。まず、基本的な事項を十分に理解し、そして身近な例を対象として温度変化に伴う組成の変化や共存する相の変化を実際の物質の状態図上で追いかけてみることが重要である。酸化物系の状態図の読み方に関しては、文献5)の山口明良氏の「相平衡状態図の見方・使い方」が大変参考になる。

本稿では、2成分系状態図の基礎事項のみを述べたが、これらの基本情報をもとにして次回は3成分系酸化物状態図の 読み方を解説する。

参考文献

- 1) 横山 亨:図解 合金状態図読本, オーム社
- (2) 鉄鋼製錬, 講座・現代の金属学, 製錬編1, 日本金属学会
- 3) 佐久間建人:セラミック材料学,海文堂
- 4) W.D.キャリスター, 入戸野修監訳: 材料の科学と工学 [1], 材料の微細構造, 培風館
- 5) 山口明良:相平衡状態図の見方・使い方、講談社サイ エンティフィク

(2005年5月9日受付)

678 28