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紘
一表面張力とは?-

Fundamental Physical Chemistry of Interfacial Phenomena 
-Surface Tension-

田中敏宏
Toshihiro Tanaka 

cb はじめに
鉄鋼プロセスでは、高温界商を通じて種々の反応が進み、

また界面における濡れ性などがプロセスの効率を大きく支配

する場合も多い。さらに筆者らは、リサイクルなどの環境問

題に対処するため、“グリーン・メタラジー (GreenMetal-

lurgy) "や“静脈系材料プロセッシング"の分野の構築を目

指しているが、原子レベルの混合を伴うプロセスを主体とす

ると物質の再資源化が圏難になることから、異相界面をでき

る限り利用したアプローチを模索している。このような表

商・界面を対象とする取り扱いでは、現象の解析に“表面張

力"という物性が問題になることが多い。表面張力は雷葉と

しては聞き慣れていても、他の融体物'控である、密産、粘度、

熱伝導度、拡散などに比べて、その値が意味する内容を説明

しようとすると容易ではないことに気づく。筆者も、高温界

面物性に興味をもったきっかけは、表面張力が、他の物性に

比べて亙感的にその発現機構を頭の中に描くことが非常に難

しいため、その物理的な意味を理解したいと思ったことから

表面・界面物性との付き合いが始まっている。しかしながら、

いまだ、十分に理解したとは雷い切れず、いろいろな実験を

試み、またモデルを利用した計算を行って、在接観察するこ

とが難しい高温界面における様々な現象を解釈しようと奮諒

している。本稿では、筆者がこの数年界面物性を噛み砕いて

理解しようとした試みの一部を紹介したいと思う。表面物性

に関する著書は多数出版されており(例えば後述の文献2，6，

7， 8)など)、優れた解説文などの報告も多く(例えば後述

の文献11，17)など)、そこでは熱力学の厳密な定義から始

まって、 Gibbsの吸着式などが丁寧に演緯的に紹介されてい

るので、本璃では少し異なったアプローチで表面現象を3割

シリーズで考えてみたいと思う。初回は、表面張力について

いろいろな関連情報を示しながら表面張力の物理的な意味を

考え、 2回目、 3回目で、表面物性の評価手法や、少し詳し
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い熱力学的取り扱いなどを紹介する予定である。

く盛) i容融金震の表面張力

最初に純粋な溶融金属の表面張力の値の大きさを紹介する

ことから始めたいと思う。図Iは種々の純粋液体金属の表面

張力の融点における値σxと蒸発熱ムHVPをモル体積Vxの

(2/3)乗で割った値の関係を示す(圏中Noはアボガドロ数)，

この図から、いろいろなことが読み取れる。例えば、

1)表面張力の単位はN/mと定義されており、単位長さ当

たりの力であるが、横軸の物理量はJ/m2であり、単柱

面積当たりのエネルギーに相当する。ただし、 N/mの

分母、分子にmをかけると (NX m)/ (m Xm) =J/が

であるので、表面張力は単位面讃当たりのエネルギーに

相当すると解釈できる。

2)概ね、融点が高いものほど液体金属の表面接力の値は大

きく、 SnはO.5N/m、AlはO.8N/m、Cuは1.3N/m、
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Feは1.8Nm程度で、ある。ただし、やや年代の古い論文

や物性データ集はcgs単位系のdyne/cmを用いてFeの

表面張力を1800dyne/ cmと表示したので、 S1単位系で

も、 mN/mを用いて1800mN/mという表示の文献も多

い。なお、溶融金属の表面張力の詳細なデータは、

Keeneの収録集1)にまとめられている。

3)図1の縦軸、横軸の物理量の聞にはほぼ直線関係が成り

立っている。

この3)の直線関係は、例えば、次のような関係式から求

められる。

純粋成分Xの表面エネルギームExは、表面を形成するた

めに必要なエネルギーと定義されている 2)。図2に示すよう

に、原子を球で近似し、表面に存在する原子と液体内部(以

下、バルク“Bulk"と呼ぶ)に存在する原子の結合エネルギ

ーを原子対のエネルギー EXX(孟0)と配位数Zで近似するこ

とを考える。バルクでの配位数をZBulkとし、その一部が引

き剥がされて、配位数zSurfacek( < ZBulk)の表面ができたとす

る。それに要するエネルギームExは、表面における1モル当

たりの結合エネルギーUxSurface = ZS.ゆ ce. eXX • No/2とバル

クにおける結合エネルギ_U/Ulk=ZBUlk.eXX. No/2を用

いて、単位面積当たり次のように表される。

ur]urface _ ul"品
ムEx= -" =!Jx ・H ・H ・..…...・ H ・..…(1)

Ax 

ここで、 Axはモル表面積と呼ばれ、 1モルの原子の塊を表

面上に並べた際の面積に相当する。

厳密には、温度において表面白由エネルギーのと表面エ

ネルギ-d.Exの聞には

の=ゅ-T告 ω

の関係があり、この (2)式ののが一般に測定されている表

面張力である。

表面張力というと、前述の単位長さ当たりの力という理解

から、表面に存在する原子が互いに界面に沿った方向に引っ

• • 

ミJレク

図2 バルクと表面の模式図
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張り合う力と考えがちであるが、(1)式からは、表面とバル

クにおける結合エネルギーの差が表面エネルギーに相当し、

バルクに比べて表面は過剰なエネルギーをもった不安定な状

態を示していることになる。すなわち、

必・ Ax=UxS附 ce_ ul"'k .…............・ H ・-… H ・H ・(3)

この式を、上で述べた原子対のエネルギ-eXXと配位数Zを

用いて書き換えると次のようになる。

の .Ax = U;urface一日

=ZS附 ceTNo-zhlkず No

=!_ZBU品手 .Nol.11-互土i
<. ，¥ Z~ 帥 l

=j-ul仙 I.11ーどごI.................. (4) 
r-" I 

ここで、バルクの1モル当たりの結合エネルギーを近似的

に融点における純粋液体金属の蒸発熱3)ムHJa
p
(=_UfU'k) 

で置き換え、また、モル表面積Axは次のように、モル体積

の(2/3)乗に比例すると仮定する。

Ax=1与iU3No=ぱ13・N01/3 …...・H ・....・ H ・..・(5)
¥ lVO I 

これより、(4)式は次のようになる。

1. z Surface ¥ ムHi
σ:.-=11一一τ~J' ?n τ …・…・・・……(6)

Z~.... I Vi'". No.'" 

実は図1は上の (6)式の関係を示したものである 4)0 (3) 

式や (6)式が近似的に成り立つことから、次のようなこと

がわかる。

1)表面張力とは、表面にある原子の結合エネルギーではな

くて、結合すべき相手を失った原子(結合手と呼ぶこと

もある)がもっ単位面積あたりの(パJレクに比べて)過剰

なエネルギーに相当するo

2)すなわち、表面では、結合すべき相手を失っているため

に、安定なバルクの結合状態に比べて、エネルギーの高

い、不安定な状況にあり、その不安定な高いエネルギー

に相当する分が表面エネルギーであると考えられる。

3)結合子が余っているので、ある種の原子を吸着しようと

する傾向がある。その際、吸着などが生じれば、結合子

の数が減るので、表面張力は小さくなる。

4)表面張力は、以上のように、表面の極近傍の薄い原子層

(数原子層程度と考えられる)にある原子に支配されてい

る。

5)ただし、表面層の厚さはわからない。物質によって、ま

た与えられた条件に依存すると考えられる。

図1をよく見ると、 Si，Geなどは直線関係からややずれ
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ている。データのばらつきとも考えられるが、 Siは融点が

Cuなどよりも高く、融点だけに着目すればもっと高い表面

張力の値を持っていてもよさそうであるが、実際には、 0.8

N/m程産である。これは、共有結合性の物質は、異方性を

もった結晶構造を持つため、表面では、結合手間士が互いに

結合しあって、結合子の数を減らし、より安定な表面特有の

構造を持つために、表面張力が低下していると考えられる。

国体のSiでは、バルクとは異なる特異な表面構造が観察さ

れている5)。このように、エネルギーの高い表面においては、

原子摺の距離が変化したり、バルクとは異なる結晶構造に変

化したりして、バルクを2つに割って得られたそのままの表

面 (f理想表面jと呼ぶこともある)よりもエネルギーの低い

安定な表面原子構造に変化する。これを「表部緩和Jといい、

特に結晶構造が変化する場合を「表葡再構成jが生じたとい

う2)。いずれも、表面エネルギーは理想、表簡の場合に比べて

抵下する。

に謹〉
液体と国体の表苗張力

およびその温度依存性

次に臨体と液体の表面張力とその温度依存性に着目する。

国3はCu，Au， Agの融点近傍における表面張力の温度依存

性を示している 6.7)。他の金属元素もほぼ同じような傾向を

示し、この図からは次のようなことがわかる。

1)融点において10-25%程度、液体金属よりも臨体金鶴

の表簡張力が大き p8)。

2)温度依存性は、液体金属の場合は-0.0001-一

0.0005N/mK程度で、あり 1，3)、温度が上昇すると表国張

力は下がる。表部張力の温度依存性は、粘度などに比べ

て非常に小さい。

3)臨体の表面エネルギーは結品面によって変化する 2)が、

2.0 

ト
干宍ミ ι ¥ 

誼噌凸
4制刊蝋4科i持司 .L.V 

0.5 
1273 1773 2273 
温度 /K

図3 Cu， Au. Ag の表面張力の混度依存性
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ここでは詳細は省略する。

4)国体の表面張力の温度依存性は、報告値のばらつきが犬き

く明確ではないが、筆者らは、溶融金馬の表面張力の温度

依存性とほぼ等しpとpう近似を用いたこともある9)。

5)文献6.7)には、 (jSo/id= 1.2・σお?jLpoint十O必・ (Tm一昨

(ここで、 σSoω:I重体金属の表面張力、 σ鵠;;igpoint:量

点における液体金属の表面張力、 T帥:融点)という式が

報告されている。

く盟〉 酸化物の表面張力

鉄鋼プロセスでは、液体金属だけでなく、酸化物も対象と

なることが多いが、次に酸化物の表面張力を見てみよう。表

1は種々の溶融酸化物の融点における表面張力を示したもの

である 10)。この表から次のようなことがわかる。

1)溶融スラク守の主な構成酸化物成分の表面張力はほぼ0.3

-0.6N/m程度で、あることがわかる。アルカリ酸化物や

Si02を捺けば、ほぼ0.6N/m穏度と近似で、きる。

2)融点だけから判断するとFeなどよりもかなり小さな鑑を

もつ。

3)この理由は、国4に模式的に示したように、酸化物の場

合は、活性な金属イオンのカチオンが原子半径の大きな

酸素イオンのアニオンに表面では遮蔽されているためと

いわれている 11.12)。また、表面近傍でイオン関の相対並

置や距離を変化させたり、分極の状態を変化させること

により表面緩和が生じ、表面エネルギーが低いと考えら

れる。

表1 溶融酸化物の融点における表題張力

酸化物 表面張力/Nm・1

Na20 0.31 

MgO 0.66 

CaO 0.67 

FeO 0.55 

MnO 0.63 

Si02 0.31 

Ab03 0.61 

図4 酸化物の表面近傍の模式図



4)酸化物の場合も表面張力の温度依存性はマイナスである

(温度が上昇すると表面張力の値は下がる)が、 Si02の

表面張力の温度依存性はプラスと報告されている 13)。

~ 溶融合金の表面張力
さて、以上は純粋な物質の表面張力について概観したが、

2成分系では表面張力は濃度によってどのように変化するの

だろうか?モル体積のように第O近似として加成性は成り立

つのだろうか?筆者らは、 But1erのモテ守ル14)を利用して溶

融合金の表面張力の計算を行っている 15)が、荒い近似のモ

デルにもかかわらず、このモデルを利用した計算過程とその

結果からも表面張力についていろいろなことがわかる。 But-

lerの式は、図5に示すように“表面"を最も外側のー原子層

厚さと仮定し、バルクとの熱力学的な釣り合L功ミら導出され

た式である。 But1erの式はA-B2成分系に対しては次のよう

な式で表される。 (導出過程の詳細はシリーズ3回目に述べ

る)

RT af附 ce
σ=の+寸アln一五五一

IL'i aA 

RTI， Nl附 ce yfkwhce(Z NY加)I 
=0".+一一Iln一寸す+ln1" Rulk :~ '_'~~ulk ， ' t…(7) 
AA ，---NA"IR . --- yAUIR (T， NAulR) ， 

RT， alur舟ce
σ=σa+17ln-15r 

aB 

RTl NFFjbce yFF仰 (T，Nl附白)I 
=の+':' 11n ーづ五一+ln~ 品 目 ~I … (8)AB ，... NtulR . --- ytUIR (T， Nt"IR) ， 

(7)， (8)式において、のは純液体成分Xの表面張力、

Ax= Vl/3No1/3は純液体成分Xのモル表面積である (vxはモ

ル体積)。添え字のBulkとSurfaceはバルクと表面を表わし

ている。 ax、Nxはそれそ守れ成分X(X=A or B)の活量およ

びモル分率である。 (7)，(8)式ではaE=yE(T，NE)-NE

の関係を用いており、 yE(T，NE)は表面 (p= Surface)お

よびバルク (P=Bulk)の成分Xの活量係数であり、括弧内

の温度Tと濃度N~の関数で、ある。 (7) ， (8)式においてバル

クに対する活量係数yfulhの'情報は熱力学データ集から直接

1v iiLfVLノ i、 JL表面
.3.食金銭.~J~..~.(最外単原子層)
診 o.oo.~
'00 0-φ.~バルク
、内内内 .A~
図5 Butler のモテソレにおける「表面」の仮定
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得られるが、表面に対する活量係数72whceについては様々

な取り扱いが考えられ、ここではYeumら16)の提案に基づ

く次式を利用することにする。

RT ln y lurface (T， Nl州勺

17Surface 
=五五了 .RTln ylU1k (T， Nl附勺・........・H ・-…・(9)

z~-" 

ここで、(9)式は yfuhce(T，NJ的 ce)が yf，Bulh(T， 

Nff
U1k
)と同じ関数形を有するという近似である。ただし、 (9)

式の右辺に示すように、バルクの関数を用いているが、濃度

がNlurfaceに置き換わっていることに注意しなくてはならな

い。 (9)式の仮定は、大胆で、はあるが、実際に計算を行うと

表面張力の実測値をよく再現し、有用な優れた仮定であると

筆者らは評価している。さらに、前述のように、バルクと表

面では最近接原子数が異なることから、 (9)式の右辺には表

面とバルクの配位数の比ZS叫 ce/ZBulkが掛けられている。例

えば、 Yeumら16) は最密充填固体原子構造を仮定して

!ZSurface (=9) /ZBulk (= 12)1 =9/12 =0.75と考えている o

しかしながら、 ZS'ゆ ce/ZBulkの値については、液体に対する

値を厳密には評価できないため、筆者らは先に示した (6)

式と図1の直線関係の傾きから溶融合金に対しては次の (10)

式の値を導出した。導出過程の詳細は文献4.15)に詳しく説

明している。

I7Surface 
ニτヲァ=0.83r-附 …(10) 

なお、 (9)式の関係は、例えば、バルクの活量係数が次の

ような温度と濃度の関数にある場合

RTln yl
U1k 
(T， N1
U1k
) =(A+引(ω N1U1k)

...・H ・..………(11)

表面の活量係数を次のように近似するという考え方である。

RTIn yf附 ce(T， N lurface ) 

=ZZ-lA+主l・(C+D. Nlurface) ...... ... (ロ)
z~_.. 1 I 

ここで、 A，B， C， Dは係数である。

溶体の表面張力σは (7)- (10)式を用いて次の手順で計

算できる。

[1]温度Tと溶体の濃度Nf"lk、Nlu“(=1-Nf"lk)を設定
し、その温度に対する純成分の表面張力的とモル体積

陪のデータを(7)， (8)式に代入する。

[2]上記の温度、 濃度に対するバルクの活量係数yFlhを求

め、(7)， (8)式に代入する。

[3] N}urface = 1 -NBSゆ ceで、あるから、 (7)，(8)式はNlurface

83 



6)合金の構成成分の純粋状態に対する表面張力の値に差が

あれば、表面張力の低い成分は、その合金が理想溶液で

あっても表罰偏析すると考えられる。

7)特にバルクで活量が大きく正に偏持する系の場合 (Cu‘

Pb系がこの例に相当する)には、表蘭張力の高い溶媒1:

表面張力の低い成分をわずかに添加するだけで、溶融色

金の表面張力は急激に低下する。これは、 Pbが表頭に種

析する傾向が非常に強く、/'¥)レクで、20%程震の濃度でも、

表面では95%以上編析し、表面はほぼ純粋なPbで覆わ

れるためと考えられ、低いバルク濃度でも、表面張力の

値は純粋なPbとほぼ同様な{遣を示す。このことからも、

表面張力は表面の極薄い層に支配されていることがわか

ふえらむ Vol.8(2003) NO.2 

とσの2つを未知数とする連立方程式になる。そこで、

(7)， (8)式を数値解析により解いてNBsurfaceとσを求め

る。

計算結果の併15)を鴎6に示す。これらの留は、溶融Fe-Si

系と溶融Cu-Pb系の表面張力の濃度依存性を示している。

毘中の小さな四角形の図は、それぞれの系におけるバルクと

表面の溶質成分の濃度を示している。これらの閣から次のこ

とがわかる。

1)計算モデルは実測値をよく再現しているので、モデルの

仮定は、ある程度表面の特徴を反映したものと考えてよ

る。

8)バルクで活量が正に偏錯する系では溶質成分が表面に最

析しやすい傾向は、溶媒であるCuがバルクからPbを表

面に追い出し、表面からも逆にPbはバルクに押し込まれ

ようとするが、表面ではバルクに比べて最近接原子数が

少ないために表面に押し込めるエネルギーがバルクに説

べて小さくなり、表面に過剰に偏析すると解釈できる事

すなわち、ここでも表面の結合を失った原子の存在が表

面張力を支配していることがわかる。

9)溶融鉄合金の表面張力のデータは文献19，20)にまと語

られている。

なお、溶融スラグのように多成分系の溶融酸化物溶液の表

面張力は、前述のように各純粋成分の表面張力の値に大きな

差がないため、その組成依存性は小さく、ほぼ0.4-

O.6N/m程震である21)と考えられる。

2)すなわち、表閣ではこのモデルの仮定(表面を最表面の1

原子商と考える)のように非常に薄い層でその性質、す

なわち表面張力が決まる(純粋成分の場合と問じ)。ただ

し、表面を一原子層厚さとする仮定は、過去にGuggen幽

heimのモデルに対するPrigogineの批判17.18)などの経

緯があり、あくまでも荒い近似と認識すべきである。

3)バルクにおいて活量が負に偏侍する系 (F十日系)では、

表面張力は理想溶体に対する値(図中の点線)よりも正に

偏侍し、表面張力の小さな成分(この場合はSi)が表面

に錨析する。

4)バルクにおいて活量が正に嬬倖する系 (Cゃ Pb系)では、

表面張力は理想、溶体に対する値(圏中の点緯)よりも負に

偏侍し、表面張力の小さな成分 (ζの場合はPb)が表面

に偏析する。

5)理想、溶液を仮定しでも、表面張力の組成依存性に対して

は、加成性は成り立たない。
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盤〉まとめ

本稿では、溶融金属、酸化物、溶融合金の表面張力を紹分

しながら表面張力の意味を考えてみた。厳密な表現をあえて

避けたので、かえってわかりにくい内容や、厳密さを欠く表

現が多くなったが、シリーズの2，3国自を通じて、徐々に、

軌道修正し、詳しい説明へと展開する予定である。表面張力

は、結合の相手を失った表面の原子がもっ単位面積あたりの

過剰なエネルギーに担当し、バルクの安定な状態に戻ろうと

する不安定な状態を表しているもので、ある。そのため、でき

るだけ表面積(厳密には、表面張力×表面積)を小さくする

ように液滴は形状を示し、その形から逆に表面張力が測定評

髄できる。また、界面現象のひとつである濡れ性も、結合を

失った表面の原子が、満足で、きる相手と接すれば結合を形成

して濡れる状態をつくり、界面エネルギーを下げ、一方、折

角、他の物資と近接したにもかかわらず、結合の椙手を失っ

ていた状態よりも、新たな結合の椙手がさらに相性が悪いと

きは濡れない状態となり、界面エネルギーを増加させること

になる。このように、結合の椙手のない状態が表面張力を決

定づける本質であることを理解することが種々の界面環象を

理解する基礎となる。このような考え方に基づいた表面張力

の測定原理、測定手法や、濡れ性との関連事項については第

2岡目で説明し、表面・界面の熱力学については、シリースー

の第3毘自で取り上げ、表面偏析や、前述のBut1erのモテソレ

の導出過翠なども説明する予定である。
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