
Title メソッド抽出の必要性を評価するソフトウェアメト
リックスの提案

Author(s) 三宅, 達也; 肥後, 芳樹; 井上, 克郎

Citation 電子情報通信学会論文誌D. 2009, J92-D(7), p.
1071-1073

Version Type VoR

URL https://hdl.handle.net/11094/26468

rights copyright©2009 IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



メソッド抽出の必要性を評価するソフトウェアメト
リックスの提案
三宅 達也† 肥後 芳樹†（正員）
井上 克郎†（正員）
A Software Metric for Identifying Extract Method Candidates

Tatsuya MIYAKE†, Nonmember, Yoshiki HIGO†,

and Katsuro INOUE†, Members

† 大阪大学大学院情報科学研究科，吹田市
Graduate School of Information and Science Technology,

Osaka University, Suita-shi, 565–0871 Japan

あらまし リファクタリングはソフトウェアの設計

品質を改善するための有効な技術である．しかし，ど

のようなときにリファクタリングが要求されるかを判

断するのは容易ではない．そこで，本論文ではメソッ

ド抽出リファクタリングを行う必要のあるメソッドの

候補を自動的に識別するためのソフトウェアメトリッ

クスを提案する．また，定性的な評価や適用事例を通

して，提案メトリックスを用いることにより，既存の

メトリックスでは識別できないメソッド抽出リファク

タリングの対象を識別できることを示した．

キーワード リファクタリング，ソフトウェアメト

リックス

1. ま え が き

リファクタリングとはソフトウェアの外部的振舞い

を保ったまま，ソフトウェアの内部構造を改善するこ

とによりソフトウェアの設計品質を高める技術であ

る [2]．しかし，どのようなときにリファクタリング

が要求されるかについての厳密な基準は存在しない．

Fowlerは過去の経験や知識をもとにリファクタリング

が要求される可能性を示すいくつかの兆候（不吉な匂

い）を定義している [2]．また，それらの不吉な匂いの

いくつかはモジュールの行数やサイクロマチック数な

どの複雑度メトリックスを用いて定量的に示すことが

できる．しかし，本来モジュールは行数や複雑さでは

なく，機能に基づいて分割することが望ましい．

モジュールの機能はモジュール内の構成要素が協調

しあって実現される．本論文ではメソッドの構成要素

の協調度合に着目することにより，メソッド抽出リファ

クタリングを必要とするメソッドの候補を自動的に識

別するための新しいメトリックスを提案する．また適

用事例を用いて既存のメトリックスとの比較を行い，

提案メトリックスの有効性に関して議論する．

2. メソッド抽出を必要とする兆候

典型的なリファクタリング作業の一つにメソッド抽

出がある [2]．メソッド抽出とはメソッド内のコードの

一部を新規メソッドとして抽出するリファクタリング

である．以下では，メソッド抽出の必要性を示す既存

の不吉な匂いと，それを定量的に表すソフトウェアメ

トリックスに関して述べる．

［長すぎるメソッド］ 長すぎるメソッドはメソッド抽

出を行うことにより，短くすることが望ましい [2]．メ

ソッドを短くすることにより，可読性や再利用性が向

上する．このため，メソッドの行数を表すソフトウェ

アメトリックスである LOC (Lines Of Code)が大き

いメソッドはメソッド抽出の候補であるといえる．

［制御フローの複雑なメソッド］ 制御フローの複雑な

メソッドもメソッド抽出の候補である．MaCabeは制

御フローの複雑さを表すソフトウェアメトリックスと

してサイクロマチック数（以降，CYC）を提案してい

る [5]．この値は直観的にはソースコード上の分岐の数

に 1を加えた数を表し，値が大きいほどそのメソッド

の制御フローは複雑であるといえる．経験的に CYC

は 10以下に抑えることが望ましいといわれている [5]．

［凝集度の低いメソッド］ 凝集度はモジュール内の構

成要素が特定の機能を実現するため協調している度合

を表す．メソッドの凝集度を表すメトリックスにはプ

ログラムスライスを用いる手法が提案されている [6]．

このメトリックスが低いメソッドはプログラムスライ

スを用いたメソッド抽出の候補である [4]．凝集度は七

つのレベルに分けることができ，通常，メソッドの凝

集度は最も高いレベルであることが望ましい [7]．プ

ログラムスライスを用いたメトリックスはそのうちの

下位四つを凝集度の低いモジュール（メソッド抽出の

候補）として識別できるが，最上位（機能的凝集）よ

り低い二つのレベル（逐次的・通信的凝集）にあるモ

ジュールを識別することができない場合が多い．これ

は出力変数（返り値やメソッド内で変更される属性な

ど）のみに着目してメトリックスが計測されるためで

ある．

3. 提案メトリックス：COB

オブジェクト指向には，処理（機能要素）及び処理

に必要なデータ（データ要素）を一つにまとめるとい

う重要な考え方がある．同様に，機能要素が必要とし

ないデータ要素は互いに分離しておくことが望まし

い．この考えに基づき構成されたモジュールは機能要

素とデータ要素が互いに協調しており，凝集度が高く

電子情報通信学会論文誌 D Vol. J92–D No. 7 pp. 1071–1073 c©（社）電子情報通信学会 2009 1071



電子情報通信学会論文誌 2009/7 Vol. J92–D No. 7

図 1 サンプルコード
Fig. 1 A sample code.

なる．クラスの場合，その度合を表すメトリックスと

して LCOMが提案されている [1], [3]．LCOMは属性

をデータ要素，メソッドを機能要素とみなし，その協

調度合を表す．

本論文では，メソッドの構成要素の協調度合を示す

ため，メソッド内で使用されている変数をデータ要素，

コードブロックを機能要素とみなし，ソフトウェアメ

トリックス COB (Cohesion Of Blocks) を次のよう

に定義する．bはメソッド内のコードブロックの数，v

はメソッド内で使用されている変数の数，Vj はメソッ

ド内で使用されている j 番目の変数，µ(Vj)は変数 Vj

を使用しているコードブロックの数を示す．

COB =
1

b

1

v

v∑

j

µ(Vj) (0 ≤ COB ≤ 1)

COB は LCOM* [3] と同様に，特定のデータ要素と

協調する機能要素の割合の平均に着目している．

図 1 (a) の sample メソッドコードを用いて COB

計測の例を示す．sampleメソッド内の BLOCK1-4は

コードブロックを示す．また，図 1 (b) は sample メ

ソッドの構成要素であるコードブロックと使用されて

いる変数の協調関係を抽象化した図である．図 1 (b)

において四角はコードブロックを，四角内の円はその

コードブロック内で使用されている変数を，点線は二

つのコードブロックが変数を介して協調していること

を意味する．図 1 (b) から分かるように，sample メ

ソッドは BLOCK1 と BLOCK2 は変数 v1，v2 を介

して協調している．同様に BLOCK3と BLOCK4も

協調している．一方，BLOCK1，2で構成されるコー

ド片と BLOCK3，4 で構成されるコード片は協調し

ていない．このとき COBの値は 0.5となる．変数 v4

の使用を変数 v1の使用に置き換えたとき，図 1 (c)の

ようにすべてのコードブロックが変数 v1 を介して協

調するため，COBの値は 0.66に上昇する．更に，変

数 v3と使用を変数 v2の使用に置き換えると全変数が

全コードブロックで使用され COBは最大値 1となる．

ここで，呼出し関係にある二つのメソッドについて

考える．一方のメソッド内のローカル変数は基本的に

もう一方のメソッドからはアクセスできない．引数を

利用してアクセスすることは可能であるが，二つのメ

ソッドが適切に切り分けられているとき引数の数は少

なくなる傾向がある．このため，適切に切り分けられ

た二つのメソッドを一つにまとめたとき，メソッド内

の要素の協調状況は図 1 (b)と似たものになり，COB

は低くなる．このことから，COB の低いメソッドは

メソッド抽出を行い，二つに分割すべきメソッドの候

補であるといえる．

既存のメトリックスと比べ，COBは次の利点をもつ．
• メソッド内の要素の協調度合を表すため，LOC

や CYCより機能に基づいた評価が行える．
• LOC や CYC と異なり適切にメソッド抽出し

た場合の方が，もとのメソッドと新規メソッドのメ

トリックス値が高くなる．例えば，図 1 (b)において

BLOCK1 と BLOCK3 をメソッド抽出しても COB

は変化しないが，BLOCK1 と BLOCK2 をメソッド

抽出した場合は上昇する．
• 出力変数だけでなくすべての変数に着目するた

め，逐次的・通信的凝集が機能的凝集よりもメトリッ

クス値が低くなる傾向がある．

4. 適 用 事 例

既存のソフトウェア (apache-ant-1.7.0) に対して

COB，LOC（空白・コメントを含む），CYCを計測

し，それぞれのメトリックスごとに，メトリックス値

の大きさでソートし，上位 20 メソッドをメソッド抽

出の候補として検出した．

計測の結果，COBでソートした場合は 0.066以下，

LOCの場合は 146以上，CYCの場合は 22以上のメ

トリックス値をもつメソッドがメソッド抽出の候補と

して検出された．検出されたメソッドのうち COBで

ソートした場合のみ検出された六つのメソッドを表 1

に示す．六つのメソッドをメソッド名やコードコメン

トをもとに調査した結果，JUnitTestRunner#main

1072



レ タ ー

表 1 COB を用いた場合のみメソッド抽出の候補となる
メソッド

Table 1 Extract method candidates identified only

by COB.

メソッド名 COB LOC CYC

DirectoryScanner#scan 0.066 64 12

ModifiedSelector#configure 0.065 115 18

Parallel#spinThreads 0.065 136 17

JUnitTestRunner#main 0.065 106 19

Concat#validate 0.060 89 20

MacroDef#sameOrSiminlar 0.055 55 16

図 2 COB を用いて検出されたメソッド抽出候補の例
Fig. 2 An example of extract method candidates

identified by COB.

メソッド以外のメソッドはメソッド抽出の対象として

適当であると判断できた．JUnitTestRunner#main

メソッドに関してはコードコメントが存在しなかった

ため評価を控えた．

図 2 にメソッド抽出候補の例としてメソッド Con-

cat#validate の概略を示す．このメソッドは 6～37行

の範囲に含まれるコードブロック群内では 10個の変数

が，38～89行の範囲に含まれるコードブロック群では

14 個の変数が使用されていたが，6～37行と 38～89

行の両方の範囲内で使用されている変数は 2個であっ

た．つまり，片方の範囲で使用されている変数のほと

んどがもう片方では使用されておらず，互いに協調し

ていなかった．このため，COB が減少し，メソッド

抽出の候補として検出された．また，このメソッドは

6行と 38行のコードコメントから，6～37行のコード

片はバイナリーデータとして入力の正当性検証を，

38～89 行のコード片はソースコードとして入力の正

当性検証を行っていることが分かり，38行を境に二つ

のメソッドに分割することが適切であると判断できた．

5. む す び

本論文では，メソッド抽出の候補を識別するために，

メソッド内の構成要素の協調度合を示すソフトウェア

メトリックス COB を提案した．適用事例では COB

を用いることにより，LOC や CYC などでは識別で

きないメソッド抽出の候補を識別できることを示した．

また，COB はスライスベースの凝集度メトリックス

とは異なる要素に着目して協調度合を評価しているた

め，両方のメトリックスを用いることにより，機能に

基づいたメソッド抽出候補の検出を多角的に行うこと

ができると考えられる．

今後の課題としては，より多くのソフトウェアに対

して適用することにより，より定量的に有効性を評価

する必要がある．

謝辞 本研究は一部，文部科学省「次世代 IT基盤

構築のための研究開発」（研究開発領域名：ソフトウェ

ア構築状況の可視化技術の開発普及）の委託に基づい

て行われた．

文 献
[1] S. Chidamber and C. Kemerer, “A metric suite for

object-oriented design,” IEEE Trans. Softw. Eng.,

vol.25, no.5, pp.476–493, June 1994.

[2] M. Fowlor, Refactoring: Improving the design of ex-

isting code, Addison Wesley, 1999.

[3] B. Henderson-Sellors, Object-Oriented Metrics: Mea-

sures of Complexity, Prentice Hall, 1996.

[4] J. Krinke, “Statement-level cohesion metrics and

their visualization,” Proc. 7th International Working

Conference on Source Code Analysis and Manipula-

tion, pp.37–48, Sept. 2007.

[5] T. McCabe, “A complexity measure,” IEEE Trans.

Softw. Eng., vol.2, no.4, pp.308–320, Dec. 1976.

[6] L.M. Ott and J.J. Thuss, “Slice-based metrics for es-

timating cohesion,” Proc. 1st International Software

Metrics Symposium, pp.71–81, 1993.

[7] W. Stevens, G. Myers, and L. Constantine, “Struc-

tured design,” IBM Syst. J., vol.13, no.2, pp.115–139,

1974.

（平成 21 年 2 月 6 日受付）

1073


