
Title 多言語対応メトリックス計測プラグイン開発基盤MASU
の開発

Author(s) 三宅, 達也; 肥後, 芳樹; 楠本, 真二 他

Citation 電子情報通信学会論文誌D. 2009, J92-D(9), p.
1518-1531

Version Type VoR

URL https://hdl.handle.net/11094/26476

rights copyright©2009 IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



論 文

多言語対応メトリックス計測プラグイン開発基盤MASUの開発

三宅 達也† 肥後 芳樹† 楠本 真二† 井上 克郎†

MASU: A Metrics Measurement Framework for Multiple Programing Languages

Tatsuya MIYAKE†, Yoshiki HIGO†, Shinji KUSUMOTO†, and Katsuro INOUE†

あらまし 筆者らは複数の言語に対して適用可能なメトリックス計測プラグインの開発基盤 MASU を開発し
ている．MASUはソースコードを解析し，メトリックス計測に必要な情報をユーザに提供する．また，計測する
メトリックスに応じたソースコード解析や新規メトリックスへの対応を容易にするため，MASU はソースコー
ドから抽出する情報を柔軟に変更・追加できるように設計されている．ユーザは MASU が提供する情報を利用
することにより，必要最低限のメトリックス計測ロジックを記述するだけでメトリックスを計測できる．本論文
では MASU の詳細について述べる．

キーワード ソフトウェアメトリックス，メトリックス計測ツール，ソースコード解析

1. ま え が き

ソフトウェアメトリックスとは，ソフトウェアの品

質評価に用いられる尺度であり [25]，ソースコードな

どのソフトウェアプロダクトから計測される．ソフト

ウェアメトリックスには単純にソースコードの行数を

表す LOCから，オブジェクト指向言語におけるクラ

スやメソッド，フィールド間の関連性を評価する CK

メトリックス [6]，関数やメソッド内の処理の複雑さを

表すサイクロマチック数 [23]などの様々な種類が存在

する．これらのメトリックスはソフトウェアの概念的

な要素に対して定義されているため，プログラミング

言語間の記述様式の差異にとらわれることなく，同じ

概念を共有する言語に共通して適用することができる．

しかし，メトリックスを計測するために，ソース

コードを解析しソフトウェアの概念的な要素の情報を

取得するには大きなコストを必要とする．これまでに

種々のコンパイラコンパイラ [1], [17]が開発されてい

るが，それらが支援しているのは抽象構文木構築など

の構文解析までであり，変数の参照・代入や関数の呼

出しなど，どのようにプログラム内の要素が関連して

いるかを調査するためには，開発者自らが意味解析を

行う処理を実装しなければならない．

†大阪大学大学院情報科学研究科，豊中市
Graduate School of Information and Science Technology,

Osaka University, Toyonaka-shi, 560–8531 Japan

また，メトリックスを計測するツールの多くは単一

言語を対象としているため [3], [7], [16], [18], [28]，様々

な言語のソースコードのメトリックスを計測するには，

それぞれの言語に対応した計測ツールを個別に用意す

る必要がある．しかし，ツールごとに対応しているメ

トリックスの種類は異なる．また，同一のメトリック

スに対応している計測ツールであっても定義のあいま

いな部分の解釈はツールごとに異なる．このため，複

数の言語から統一的にメトリックス値を計測すること

は難しい．

これらのことを踏まえると，以下の特徴をもつメト

リックス計測ツールが必要であるといえる．
• 複数のプログラミング言語のソースコードに対

して適用可能である．
• 多言語の解析から得た結果を統一的に扱える．
• ユーザは，必要最低限のメトリックス計測ロ

ジックを記述するだけで，新たなメトリックスを計測

できる．

本論文では，これらの要求を満たすべく我々が開

発しているメトリックス計測プラグイン開発基盤

MASU [22]を紹介する．

2. 背 景

2. 1 ソフトウェアメトリックス

ソフトウェアメトリックスとは，ソフトウェアの品

質評価や工数・保守コスト予測などに用いられる尺

1518 電子情報通信学会論文誌 D Vol. J92–D No. 9 pp. 1518–1531 c©（社）電子情報通信学会 2009



論文／多言語対応メトリックス計測プラグイン開発基盤 MASU の開発

度である [25]．代表的なソフトウェアメトリックスに

は，オブジェクト指向言語におけるクラスやメソッド，

フィールド間の関連性からソフトウェアの複雑度を評

価する CK メトリックス [6]，関数やメソッド内の処

理の複雑さを表すサイクロマチック数 [23]などが存在

する．

多くのソフトウェアメトリックスは，CKメトリッ

クスやサイクロマチック数のようにファイルやクラス，

メソッド，関数，制御フローといったソフトウェアの

概念的な要素に対して定義されるものであるため，プ

ログラミング言語間の記述様式の差異にとらわれる

ことなく，同じ概念を共有する言語に共通して適用で

きる．

ソフトウェアメトリックスの多くは厳密な定義がさ

れていない．例えば，CKメトリックスの一つである

WMC はクラス当りの重み付きメソッド数を表すが，

メソッドの重みに関する厳密な定義は存在しない．こ

のような，ソフトウェアメトリックスの定義のあいま

いさはメトリックス値の計測結果に大きな影響を及

ぼす．

また，既存のソフトウェアメトリックスが必ずしも

最善であるとは限らない．このため，既存のメトリック

スの改善案が提案されたり，同じ目的で使用される新

規メトリックスが提案されることもある．例えば，CK

メトリックスの一つである LCOM は Chidamer と

Kemererによる定義では，メソッドの凝集の欠如を正

確に表せない場合があることが知られており，異なる定

義をもつ LCOMもいくつか提案されている [13], [14]．

2. 2 ソフトウェアメトリックス計測

ソースコードを対象としたメトリックス計測は基本

的に次の 2ステップに分けることができる．

［ソースコード解析］ メトリックス値の計測に必要な

情報をソースコードから抽出．

［メトリックス値計測］ ソースコードから抽出した情

報を利用してメトリックス値を計測．

2. 1で述べたように，ソフトウェアメトリックスは

プログラミング言語間の記述様式の差異にとらわれる

ことなく，同じ概念を共有する言語に共通して適用で

きる．このため，メトリックス値計測のロジックは言

語が異なっても共通して利用することができる．一方，

異なる記述様式に対応するためには，各記述様式ごと

にソースコード解析器を用意しなければならない．

既存の研究や開発において様々なメトリックス計測

ツールが開発されている [3], [7], [16], [18], [28]．しか

し，既存のツールを用いて，異なる言語で記述された

複数のソフトウェアから統一的にメトリックス値を計

測することは難しい．これは次の問題に起因する．

(a) ソースコード解析器は言語ごとに用意する必

要があるが，ソースコード解析器の実装は高いコスト

を必要とするため，既存のメトリックス計測ツールの

多くは単一の言語を対象としている．

(b) 問題 (a) のため，異なる言語で記述された複

数のソフトウェアのメトリックス計測を行うには，そ

れぞれの言語に対応した複数のメトリックス計測ツー

ルを用意する必要がある．しかし，ソフトウェアメト

リックスの定義はあいまいなものが多いため，既存の

メトリックス計測ツールは，同一のメトリックスであっ

てもツールごとに計測結果が大きく異なる [19]．

また，メトリックスごとに，計測に必要とするソー

スコードの情報は異なるため，新規メトリックスの計

測において既存のツールのソースコード解析を再利用

することは難しい．

このように，メトリックス計測において発生する問

題は，ソースコード解析に対する支援不足が大きな原

因の一つとなっている．

2. 3 ソースコード解析

ソースコード解析とは，ソースコードを解析器と呼

ばれるプログラムを用いて，自動で必要な情報を抽出

する技術である．抽出された情報は，ソフトウェアメ

トリックスやその組織独自の方法を用いて調査され，

ソフトウェアの品質を評価するためなどに用いられる．

しかし，ソースコードを解析し，その情報からメト

リックスなどを算出するには，例えば，関数間の呼出

し関係などの，意味解析以上の深い解析をしなければ

得ることのできない情報を必要とするため，解析器自

体を作成することに高いコストが必要である．既に，

JavaCC [17]や ANTLR [1]などに代表される多くの

コンパイラコンパイラが開発されているが，それらが

支援するのは構文解析までであり，それ以上の深い解

析を行う場合は，多大な時間と労力を必要とする．

一方，ソフトウェアのソースコードが調査される機

会は増加しており，ソースコード解析技術の重要性は

増している．例えば，ソフトウェア開発企業では，QA

(Quality Assurance) のために，開発したソフトウェ

アをソフトウェア工学的な手法を用いて調査すること

が増えてきた．この調査の一環として，ソースコード

解析を行い，その品質や今後の保守コストなどを予測

することが多い．しかし，近年顕著に見られる開発期

1519



電子情報通信学会論文誌 2009/9 Vol. J92–D No. 9

間の短縮化や，対象ソフトウェアによって適用する解

析手法が異なることから，満足に QAが行われている

とはいえない．

このような問題は，深い解析を行う解析器を実装す

るコストが高いことや，そのような解析器を実装でき

る開発者を確保することが困難であることに起因して

いる [12]．このため，ソフトウェアの品質を評価する

技術者は，品質評価を行うためのアルゴリズムの実装

ではなく，そのアルゴリズムで用いる情報を抽出する

解析器の実装に悩まされたり，若しくは，解析器を必

要とするソフトウェアの品質評価自体を断念したりし

ている．

3. 要求されるメトリックス計測ツール

本章ではソフトウェアメトリックスの特徴や既存の

メトリックス計測ツールの問題を考慮した上で，メト

リックス計測ツールに要求されるであろう機能と，そ

の機能を実装するための設計・実装方針について述

べる．

3. 1 機 能 要 求

メトリックス計測ツールに要求される機能として次

のものが考えられる．

［複数言語への対応］ 複数言語に対応したツールの供

給不足を解消し，ソフトウェアメトリックスを幅広く

活用するために，複数の言語に適用可能なメトリック

ス計測ツールが必要である．

［統一的なメトリックス計測］ 異なる言語で記述され

た複数のソフトウェアから同一のメトリックス計測ロ

ジックでメトリックスを計測するために，異なる言語

で記述された複数のソフトウェアの解析結果を統一的

に扱えるメトリックス計測ツールが必要である．

［ユーザがメトリックス計測部の定義を自由に変更可

能］ 将来提案されるであろうソフトウェアメトリック

スの計測に対応するために，計測するメトリックスを

ユーザが自由に追加し，その計測ロジックを自由に定

義可能な環境が必要である．ただし，ユーザ参加型の

システムを構築する際には，システムの安全性を確保

するために，ユーザに許可する権限を明確にし，ユー

ザの行う処理を管理する必要がある．

3. 2 設計・実装方針

メトリックス計測ツールに要求される機能を実現す

るために，次に述べる設計・実装方針が必要であると

筆者は考える．

［メトリックス計測部とソースコード解析部の分離］

メトリックス計測部とソースコード解析部を分離して

おくことにより，異なる言語で記述されたソフトウェ

アのメトリックス計測の際にも，メトリックス計測部

は再利用することができる．これにより，複数言語へ

の対応に必要とするコストの削減が期待できる．ま

た，メトリックス計測部を再利用することは，言語が

異なっても同一のメトリックス計測ロジックを使用す

ることを意味する．つまり，統一的なメトリックス計

測を実現できる．

［言語間の差異の吸収］ メトリックス計測ツールの実

装には，メトリックス計測部よりもソースコード解析

部の実装の方が高いコストを必要とする．このため，

複数言語への対応に必要とするコストを削減するには，

ソースコード解析の初期段階に言語間の差異を吸収し，

ソースコード解析部も可能な限り再利用することが望

ましい．また，メトリックス計測部を再利用ためには，

言語非依存な共通データを構築しなければならない．

［メトリックスとメトリックス計測部の 1 対 1 対応］

一つのソフトウェアメトリックスにつき，一つのメト

リックス計測部が用意されることが望ましい．このよ

うな設計を適用することにより，計測対象メトリック

スを追加するする際にも，新たなメトリックス計測部

を追加するだけでよく，既存のメトリックス計測部を

変更する必要はない．また，改善したいメトリックス

に対応したメトリックス計測部を継承することにより，

改善したメトリックスの計測を低コストで実現するこ

とができる．

つまり，計測対象メトリックスとメトリックス計測

部を 1対 1対応にすることにより，ユーザが計測対象

メトリックスを自由に追加したり，計測ロジックの定

義を自由に変更したりすることが可能となる．

［解析対象要素を変更可能なソースコード解析器］ あ

るメトリックスの計測に必要な情報が，必ずしも他の

メトリックスの計測に必要であるとは限らない．必要

としない情報の解析は時間やメモリ空間の無駄となる．

また，新規メトリックスの計測を行いたいが，必要な

ソースコードの情報が不足しているという状況も考え

られる．

このため，ソースコード解析器には拡張・変更容易

性の高い設計を適用し，解析対象要素を柔軟に追加・

変更できるようにすることが望ましい．

1520



論文／多言語対応メトリックス計測プラグイン開発基盤 MASU の開発

4. MASUの仕様

3. 2で述べた方針に基づき，複数言語の解析結果か

ら統一的にメトリックス計測を行えるプラグインの開

発基盤MASU (Metrics Assessment plugin platform

for Software Unit)を開発した [22]．

MASUは Javaを用いて実装されており，現在，規

模はファイル数は 460，行数は約 99,000行（ANTLR

による自動生成部分が約 41,000行）である．オブジェ

クト指向言語のソースコードを入力とし，対象ソース

コードに含まれるクラスやメソッドなどのメトリック

ス値やソースコード解析結果を出力する．

現在，MASUは解析対象として Javaと C#に対応

している．Javaに関しては Annotationを除くすべて

の要素の情報を解析できる．C#に関してはクラスや

メソッドなどのオブジェクト指向言語共通の要素の解

析を行うことができる．ただし，C#に関しても構造

体（クラスと意味的に等しい）やプロパティ（メソッ

ドと意味的に等しい）のような，メトリックス計測の

際にオブジェクト指向言語共通の要素とみなす必要が

あると考えられる特有要素は解析できる．

MASU のアーキテクチャを図 1 に示す．本ツール

はメインモジュールとプラグインから構成される．メ

図 1 MASU の構成図
Fig. 1 Architecture of MASU.

インモジュールは更にソースコード解析部，プラグイ

ン制御部，メトリックス集計部から構成される．

メインモジュールはソースコード解析部でソース

コードの情報を抽出し言語非依存なデータを構築する．

次に，メトリックス制御部が指定されたプラグインを

実行する．計測されたメトリックス値はメトリックス

集計部で集計され，ユーザに提供される．

プラグインはメインモジュールが構築したデータを

用いて個別のメトリックス値を計測する．

3. 2で述べた設計・実装方針は主にソースコード解

析部とプラグインに適用されている．以降では，ソー

スコード解析部とプラグインの詳細，及び，MASUが

提供するセキュリティマネージャについて説明する．

4. 1 ソースコード解析部

ソースコード解析部は AST（Abstract Syntax

Tree：抽象構文木）構築部と AST 解析部，データ

構造構築部に分けられる．図 2 にソースコード解析部

の構成と処理の流れを示す．

4. 1. 1 AST構築部

入力として与えられたソースコードをもとに言語非

依存な ASTを生成する．図 2 に示されてある三つの

ソースコードは意味的には同じであるが，異なるプロ

グラミング言語（Java，C#，Visual Basic）で記述

されているため，構文的には異なっている．AST構築

部ではこのような各言語間の構文的な差異を吸収し，

図 2 の右部に示してあるような共通の ASTに変換す

る．AST 構築時に言語の記述様式の差異が吸収され

るため，AST 解析部及びデータ構造構築部の大部分

は様々な言語の解析に共通して利用することができる．

言語非依存な AST構築の方針を以下に示す．

（方針 1） AST構築部は一つの大きな ASTを構築す

るが，構築された AST は AST 解析部において複数

の部分 ASTとみなして解析される．例えば，図 3 の

左上部の AST(Java) は図下部の部分 AST 集合とみ

なして解析される（AST(Java) はコンストラクタ定

義を表す）．このため，AST構築部では AST全体を

言語非依存にするのではなく，部分 ASTが言語非依

存になるように構築する．

部分 ASTはデータが構築される要素ごとに定義さ

れ，構築される要素の内容を示すノード（図 3 の場

合，CTOR DEFINITION，PARAM DEFなど）が

部分 ASTのルートノードとなる．各要素間の所有関

係は部分 AST のルートノードの位置関係で表され

る．具体的には，要素 Aが要素 B を所有することを

1521



電子情報通信学会論文誌 2009/9 Vol. J92–D No. 9

図 2 ソースコード解析部の構成
Fig. 2 Architecture of source code analysis unit.

図 3 部分 AST 集合の例
Fig. 3 An example of a set of partial ASTs.

inclue(A, B)，要素 Aの部分 ASTのルートノードを

Root(A)，ノード N1 がノード N2 の祖先ノードであ

ることを Ancestor(N1, N2)で表すとき，次の条件を

満たすように ASTが構築される．

include(A, B) =⇒ Ancestor(Root(A), Root(B))

これにより，AST全体の構造は異なっていたとしても，

部分 AST が言語非依存であれば同一の AST として

解析できる．例えば，図 3 の AST(Java)，AST(C#)

はともにコンストラクタ定義を表すが AST(C#) で

はコンストラクタ呼出しを表す部分 CTOR CALLが

“{}”を表す BLOCK STARTノードの子ノードでは

ない（C#では同一クラスのコンストラクタ呼出しは

“{}”の外側に記述されるため AST(C#)のようにな

る）．しかし，部分ASTはAST(Java)，AST(C#)と

もに等しく，部分 ASTの頂点ノード間の位置関係も

同じであるため，解析時に全体的な構造の差異は影響

しない．

また，このように AST を部分 AST の集合とみな

して構築することにより，次の利点をもつ．
• 言語非依存な共通 ASTを定義し，構築するこ

とは容易ではない．しかし，AST 全体の共通化に比

べると，部分 ASTの共通化は比較的容易に行える．
• 対応言語の追加が容易になる．対応言語を追

加する際，AST全体が共通化されていると，AST全

体の仕様を理解した上で AST 構築部を実装しなけ

ればならない．部分 AST の集合とみなすことによ

り，各部分 AST ごとの仕様を個別に理解すればよ

い．部分 AST間の関係はルートノードの位置関係の

みを把握すればよい．例えば，Visual Basic のよう

にコードブロックの開始を表すトークンがないため，

1522



論文／多言語対応メトリックス計測プラグイン開発基盤 MASU の開発

BLOCK STARTノードが AST上に存在しない場合

でも，コンストラクタ定義を表す AST全体の構造を

考慮して BLOCK START ノードを追加するという

作業を行う必要はない．
• 言語特有の情報を AST上に残すことができる．

部分 AST間の関係はルートノードの位置関係のみを

把握すればよいため，図 3 の AST(C#) のように言

語特有の AST構造をある程度残すことができる．ま

た，部分 ASTにはデータ構築に不要なノードは含ま

れないため，図 3 の AST(C#)の SPECIFICノード

のような言語特有の要素を表すノードを AST上に残

すことができる．これらの情報は特定の言語に特化し

た解析には有用である．

（方針 2） 同一の概念を表す部分 AST が言語間で異

なる場合，定義できる情報の量や種類が多い方を基準

にして ASTを定義する．例えば，Javaの場合，一つ

のファイル内で一つの名前空間 (package)しか宣言で

きないが，C#の場合，複数の名前空間 (namespace)

を定義することが可能であり，名前空間の階層構造も

定義できる．つまり，C#の ASTで Javaの名前空間

を表すことはできるが，Javaの ASTで C#の名前空

間を表すことはできない．このような場合，AST 構

築部は C#の ASTを基準にして名前空間を表す部分

ASTを構築する．

（方針 3） 部分 AST の構造は異なるが，定義できる

情報の量や種類が等しい場合は Java の AST を基準

にする．Javaは現在存在する様々なプログラミング言

語の中で開発者の関心が最も高く [27]，また，現在も

継続的に言語機能の拡張が行われている．このため，

Java の解析に関する拡張や変更を他の言語よりも行

いやすくしている．

（方針 4） 言語特有の概念は，その言語の AST を基

準として部分 ASTを構築する．意味的に等しいオブ

ジェクト指向共通の要素が存在する場合でも，共通の

要素を表す部分 ASTを構築することによる意味的な

差異の吸収は行わない．これは AST構築時に言語特

有の概念を表す部分 ASTをオブジェクト指向共通の

要素を表す部分 ASTに変換すると，特定の言語に特

化した解析が困難になるためである．言語特有の概念

をオブジェクト指向共通の要素とみなして，メトリッ

クスを計測する場合は，AST 解析部で言語非依存な

共通データを構築する際に意味的な差異を吸収する．

上記の方針に基づいて言語非依存な部分 ASTを構

築する際，言語差異を吸収のために行う処理の具体例

を述べる．

［共通ノードの定義］ ソースコード上で意味的に等

価な予約語に対して共通の AST ノードを定義する．

例えば，図 2 の三つのプログラミング言語のソース

コードにおいて，継承関係はそれぞれ “extends”，“:”，

“inherits”で記述されているが，AST上では共通ノー

ド “INHERITANCE”（AST6行目）で表す．図 2 の

ASTにおいて，下線付きノードが共通ノードである．

［要素定義ノードの埋込］ AST の各ノードがソース

コード上のどの要素に対応するかを示すノードを埋

め込むことにより，記述順序の差異を吸収する．例

えば，図 2 のソースコードが示すように，Java や

C#の変数は先に型を宣言し，後に変数名を宣言する

が，Visual Basicでは先に変数名を宣言する．AST上

では “TYPE”（AST18行目）や “NAME”（AST20

行目）のようにソースコード上のどの要素に対応す

るかを示すノードを埋め込むことにより，その子ノー

ドである識別子が何を意味しているのかを特定する．

図 2 の ASTにおいて，太字のノードが要素定義ノー

ドである．

［ノードの移動・削除］ AST のノードの移動や削除

を行うことにより，ノード間の関係の差異を吸収する．

例えば，通常 Java の AST において名前空間を示す

ノードは，その名前空間内のクラスを示すノードと兄

弟関係をもつが，C#の場合は親子関係をもつ．この

ような場合，Javaのクラスを示す部分木を，その頂点

ノードが名前空間を示すノードと親子関係をもつ位置

に移動することにより，ノード間の関係の差異を吸収

する．

4. 1. 2 AST解析部

ASTを解析し言語非依存な共通データを構築する．

図 4 が示すように，AST解析部は複数の解析器と

構築中データ管理部で構成される．解析器はソフト

ウェアを構成するそれぞれの要素に対して一つずつ用

意される．各解析器は 4. 1. 1で説明した部分 AST一

つを入力とし，部分 ASTに対応する要素の情報のみ

を解析する．

各要素間の関係は，構築中データ管理部を通して，

他の解析器と連携しながら解析する．

例えば，メソッド情報解析器はメソッドの情報のみ

を解析する．具体的には，変数情報解析器や識別子情

報解析器と連携し，メソッドの引数やメソッド名など

の情報を抽出する．また，構築中データ管理部から構

築中のクラス情報を取得し，解析対象のメソッドを宣

1523



電子情報通信学会論文誌 2009/9 Vol. J92–D No. 9

図 4 AST 解析部の構成
Fig. 4 Architecture of AST analysis unit.

言しているクラスとの所有関係を解析する．

異なる言語間で共通している要素の構文的な違いは

AST 構築部で吸収されるため，共通要素に対する解

析器は言語が異なっても正常に動作する．これにより，

多言語対応に必要とするコストを大幅に削減すること

ができる．

また，AST 解析部を複数の解析器で構成すること

により，次のような解析を実現できる．

［計測するメトリックスに応じたソースコード解析］

AST解析部に登録する解析器を変更することにより，

容易に解析対象要素の変更が行える．より深い解析を

行うために解析する要素を追加する場合は，その要素

に対応した解析器を作成，登録するだけでよく，既存

のコードを変更する必要はない．不要な要素の解析を

行いたくないときは，その要素に対応した解析器を

無効にすればよい．例えば，CKメトリックスの計測

には，制御フローの情報は必要ないため，制御フロー

情報解析器を無効にすれば，ソースコード解析のパ

フォーマンスが向上する．

［言語特有要素の解析］ AST 解析部は言語特有の要

素を，図 4 のように言語特有要素解析器を用いて，意

味的に等価な言語共通要素とみなして ASTを解析す

る．例えば，C#のプロパティは意味的にはアクセサ

メソッドと等しいため，MASUのプロパティ解析器は

プロパティの AST を解析し，意味的に等価なメソッ

ドの情報を構築する．これにより，意味的には等しい

が異なる要素の情報を統一的に扱える．

特定の言語に特化した解析を行う必要がある場合は，

特有要素を特有要素として解析する解析器を登録する

ことにより実現できる．しかし，メトリックスの多く

はオブジェクト指向言語共通の概念に対して定義され

る．また，MASU の目的は共通の概念に対して定義

されたメトリックスを，異なる言語で記述された複数

のソフトウェアから統一的に計測することであるため，

特有要素を特有要素として解析する解析器は現在未実

装である．

4. 1. 3 データ構造構築部

AST解析部で解析した情報をもとに，言語非依存な

共通データを構築する．ここで言語非依存な共通デー

タとは複数の言語で一般的に利用されるようなソフト

ウェアの要素に対するデータを意味する．

MASUが計測対象としているメトリックスは，ソー

スコードに記述されるソフトウェアの要素に対して定

義され，その計測にソースコードに記述される様々な

要素の情報を必要とする．このようなメトリックスの

計測に関して広く有効なデータを提供するには，ソー

スコードに記述される要素に関する情報の粒度が細か

く，精度が高いほど望ましい．データ構造構築部で構

築されるデータが提供する情報の粒度や精度は基本的

に次の方針で決定されている．

［粒度］ プログラム言語の文法は EBNF 記法などを

用いて，プログラムの要素ごとに生成規則が厳密に定

義されている．MASU はプログラミング言語の文法

に生成規則が定義されている要素ごとにデータを構築

する．ただし，構築されるデータにはファイルなどの

ようにプログラムの文法上に現れない要素も一部存在

する．

［精度］ 生成規則から得られる情報と等価な情報を得

られるデータを構築する．要素の使用（変数参照やメ

ソッド呼出しなど）を表す識別子に関しては，生成規

則上では文字列情報しか得られないが，意味解析を行

うことにより，要素の使用を表すデータ（要素の定義

を表すデータと依存関係をもつ）を構築する．

ソースコードにはプログラミング言語の文法に定義

されている内容以外は記述できない（コードコメント

など一部の例外は存在する）．このため，上記のように

文法に定義されている要素ごとにデータを構築するこ

とにより，精度の高い情報を細かい粒度でソースコー

ドから取得することができる．

また，言語拡張が行われたときメトリックス計測に

必要な情報が増えたり，新しく追加された要素に対し

てメトリックスが定義される可能性がある．多くの場

合，言語拡張は既存の生成規則を変更することなく，

生成規則を追加することによって実現される．このた

1524



論文／多言語対応メトリックス計測プラグイン開発基盤 MASU の開発

め，上記の方針に従うことにより，既存の実装をその

まま利用し，追加された生成規則に対する実装のみを

追加することにより，言語拡張に対応できる．

上記の方針でデータを構築する際，複数のプログラ

ミング言語の文法に共通して定義されている要素（ク

ラス，メソッド，文，式など）の情報を，言語非依存

な共通データとして提供する．

4. 2 プラグイン

メインモジュールは，メトリックス計測のための

データ構造を提供し，個々のメトリックス値を計算す

るためのメトリックス計測ロジックはプラグインとし

て記述される．これにより，ソースコード解析部とメ

トリックス計測部が分離される．

各プラグインは基本的に，一つのメトリックスを計

測するように実装される．個々のプラグインはメイン

モジュールが提供する解析結果取得用 APIを用いて，

メインモジュールが構築したデータを取得する．そし

て，計測対象要素のメトリックスを計測し，メトリッ

クス値格納用 APIを用いて計測結果を登録する．

各プラグインの作成手順を図 5 に示す．MASUは

メインモジュールと協調するためのAPIをもった抽象

クラスを提供する．ユーザはメトリックスの計測対象

となる要素に対応した抽象クラスのサブクラスを実装

すればよい．現在，MASUがメトリックス計測対象と

している要素はファイル，クラス，メソッド，フィー

ルドである．

例えば，CK メトリックスを計測する場合は計測

対象となる要素はクラスであるので，AbstractClass-

MetricPlugin クラスのサブクラスを実装する．メト

図 5 プラグイン作成の概略
Fig. 5 Outline of plug-in development.

リックス計測用のメソッド（measureClassMetric メ

ソッドなど）にメトリックス計測ロジックを記述し，必

要に応じてメインモジュールと協調するためのメソッ

ドをオーバーライドすればよい．

作成された Plugin クラスはアーカイブ化して専用

の pluginsフォルダに配置すればメインモジュールが

自動的にプラグインを認識し，プラグイン制御部で使

用可能になる．

4. 3 セキュリティ

メインモジュールが提供するデータは複数のプラグ

インで共有される．このため，プラグインが実行する

処理によりメインモジュールが提供するデータが不正

に変更されると，後に実行されるプラグインによって

計測されるメトリックスを正しく計測できなくなるお

それがある．

このような問題を回避するため，MASU はそれぞ

れのプラグインを異なるスレッドで実行し，メインモ

ジュールが提供するデータや各プラグインのデータへ

のアクセス制御をスレッド単位で動的に行うセキュリ

ティマネージャを提供する．セキュリティマネージャは

メインモジュールが構築したデータ構造をユーザ（プ

ラグイン側）が勝手に変更できないよう管理している．

また，あるプラグインが他のプラグインの情報を不正

に変更できないようにしている．具体的には，次の処

理を行う．
• 各プラグインの実行時のみ，実行中のプラグイ

ンスレッドに許可される権限の管理．
• 他のプラグインスレッドに不正に譲渡されない

スレッド単位での権限管理．
• メインモジュール，プラグイン，GUIに共通し

て許可される権限の管理．
• 各プラグインのファイルシステムへのアクセス

制御．

5. 評 価

5. 1 設計・実装方針の効果

MASUは 4. 1で述べた設計・実装を行うことによ

り，多言語対応に必要とするコストを削減している．

MASUの設計・実装の有効性を評価するために，筆者

が多言語対応の実装を行う際に必要とした開発労力を

評価した．実装は筆者が大学院在籍（博士前期課程）

時に行った．実装当時の筆者のプログラミング経験は

2.5年間であり，MASUの開発参加期間は 0.5年であ

る．また，AST を構築する際に必要となる構文解析

1525



電子情報通信学会論文誌 2009/9 Vol. J92–D No. 9

器は ANTLR を用いて生成した．ANTLR は入力と

なる構文定義ファイルに基づいて，構文解析器を自動

生成するツールである．ANTLRの構文定義ファイル

は既存のもの [1]を利用した．

5. 1. 1 言語非依存 AST及び共通要素解析器の有

効性評価

言語非依存の ASTを構築し，共通要素解析器を再

利用可能にしたとしても，言語非依存の ASTの実装

に必要とする開発労力が大きすぎるようであれば，言

語非依存 AST及び共通要素解析器の効果は低くなる．

そこで，我々は C#のソースコードから言語非依存

ASTを構築し，言語共通要素を解析する機能を実装す

るために必要としたコストを計測した．共通要素解析

器は Javaのソースコードを解析するために実装した

解析器を再利用した．その結果，Javaを解析する機能

の実装には共通要素解析器を新規実装する必要があっ

たため，6 人月以上のコストを必要としたが，C#を

解析する機能の実装に必要としたコストは，3人日で

あった．

このことより，言語非依存 AST及び共通要素解析

器の有効性は高いといえる．

5. 1. 2 AST 解析部の設計及び共通要素解析器の

有効性評価

AST解析部は高い拡張性を提供することにより，共

通要素解析器などの既存のコードに変更を加えること

なく特有要素の解析を可能にしている．しかし，AST

解析部が高い拡張性を提供したとしても，共通要素解

析器の実装に必要とする開発労力に比べて，特有要素

解析器の実装に必要とする開発労力が大きすぎるよう

であれば，AST解析部に拡張性の高い設計を適用し，

共通要素解析器を再利用することの効果は低い．

そこで，我々は AST解析部の設計及び共通要素解

析器の有効性を示すために，オブジェクト指向言語共

通要素の解析と Java特有要素の解析に必要とした開

発労力をクラス数を用いて評価した．結果を表 1 に示

す．表 1 の列「解析器」は 4. 1. 2 で述べて AST 解

析部を構成する解析器群の実装に必要としたクラスの

数，「情報保存」は解析した情報を保存するためのク

ラスの数，「その他」はその他の処理に必要としたク

ラスの数を示す．

表 1 より，少なくとも Java特有要素の解析にかか

る実装はオブジェクト指向言語共通要素の解析にかか

る開発労力に比べ非常に小さいことが分かる．このこ

とより，AST 解析部の設計及び共通要素解析器の有

表 1 オブジェクト指向言語共通要素と Java 特有要素の
解析に要した開発労力（クラス数）

Table 1 The number of classes that were imple-

mented for analyzing common elements of

Object-Oriented Language and unique ele-

ments of Java.

対象要素 解析器 情報保存 その他

オブジェクト指向共通要素 118 157 19

Java 特有要素 15 5 7

効性は高いといえる．

5. 1. 3 考 察

Javaと C#のオブジェクト指向共通要素に関する言

語間の比較と，言語間の差異を吸収するために必要と

した労力に関して考察する．同時に，他言語への対応

に必要な労力に関しても定性的に評価する．
• 対応言語の追加を容易にするため，MASUは部

分 AST が言語非依存になるように AST を構築して

いる．ASTの構築自体は，ASTの構造に関するルー

ルを構文定義ファイルに記述することで，ANTLRな

ど構文解析器生成系が自動的に行う．構文定義上で各

要素の生成規則は他の要素を参照する．ある要素 PE

を表す部分 ASTが要素 CE1 ∼ CEn に対応する n個

のノードで構成されるとき，要素 PE の生成規則上

で要素 CE1 ∼ CEn が直接参照されていると，要素

PE を表す部分 ASTを共通化するためのルールが記

述しやすい．筆者らが C++，Visual Basicの文法に

関して調査した結果，少なくともオブジェクト指向共

通要素に関してはどちらの言語も，ほとんどの要素の

生成規則上で部分 ASTの構成ノードに対応する要素

が直接参照されていた．このことから C++，Visual

Basic ともに，部分 AST を言語非依存にする労力は

小さいと考えられる．
• C#は一部のアクセス修飾子やブロックの開始・

終了を表す予約語などが Javaと一致しているが，継

承関係やクラスのインポートを表す予約語は Javaと

は異なる．このように，意味的に等しい予約語には

4. 1. 1で述べた共通ノードを割り当てる必要があった

が，予約語に対するASTノードの割当は構文定義ファ

イルに記述することで，ANTLRが自動的に行うため

容易に実装することができた．このことから，C#の

ように頻繁に記述される予約語が Javaと同じである

ためソースコードが視覚的に似ている言語であっても，

Visual Basic のようにソースコードが視覚的に異な

る言語であっても，視覚的な差異を吸収し，言語非依

存な ASTを構築する労力はどちらも小さいと考えら

1526



論文／多言語対応メトリックス計測プラグイン開発基盤 MASU の開発

れる．
• C#のプロパティや構造体などは，Javaには明

示的には存在しないが，意味的には Java のメソッド

やクラスと等しい．このため，プロパティや構造体の

情報は，それと等価なメソッドやクラスを表すデータ

として構築した．これを実現するためには，4. 1. 2で

説明した解析器を新規実装する必要があった．また，

プロパティの呼出しは，フィールドの参照・代入と区

別することができないため，データ構造構築部にもプ

ロパティを考慮した意味解析のロジックの実装した．

意味解析のロジックに影響を与える差異は，AST の

構築段階では吸収することができなかった．これらの

作業に必要とした労力は，共通ノードの割当や AST

の構造を変更する労力と比較するとかなり大きかった．

このことから，C#のようにソースコードが視覚的に

似ている言語であっても，メトリックスを計測する際

に言語共通の要素とみなして計測することが望ましい

と考えられる要素をもっている言語や，特殊な意味解

析を必要とする言語への対応は大きな労力を必要とす

ると考えられる．ただし，オブジェクト指向共通要素

に関しては，意味解析のロジックも再利用できる場合

が多いため，ソースコード解析器を個別に作成する労

力に比較すると遥かに小さい労力で他言語に対応でき

ると考えられる．また，言語特有要素に関する意味解

析のロジックに関しても，言語を 1対 1で比較すると

再利用できないが，複数の言語を考慮するとある程度

再利用できる．例えば，Visual Basicにおいて引数な

しの関数呼出しは関数名の後に “()” を記述する必要

がないため，フィールドの参照と区別することができ

ない．しかし，これに対処するための意味解析ロジッ

クは既に実装されている C#のプロパティ呼出しに対

する意味解析ロジックが再利用できる．また，C#の

特有の概念であるパーシャルクラスに対処するための

意味解析ロジックは，C++のメソッドの非インライン

定義に対処するために利用できると考えられる．この

ように Java では利用されない C#特有の意味解析ロ

ジックも，C++や Visual Basicなどの他言語を考慮

すると，再利用することが可能であり，開発労力の削

減に貢献すると考えられる．

5. 2 実 行 性 能

MASU の実行性能を評価するため，実際にソース

コード解析を行い，使用した時間とメモリ空間を調査

した．

具体的には，CPUがPentium4 CPU 3.00 GHz，メ

モリ容量が 2 GByte，OS がWindows XP の PC を

利用して，次の二つのソースコードを解析した．

［Java Platform Standard Edition 6］ 解析対象の開

発言語は Java，規模はファイル数が 3,852，ソースコー

ドの行数が約 12万行，であった．解析に要した時間は

約 392 秒，メモリ空間の使用量は最大約 838 MByte

であった．

［CSgL］ 解析対象の開発言語は C#，規模はファイ

ル数が 61，ソースコードの行数が約 3万行，であった．

解析に要した時間は約 59 秒，メモリ空間の使用量は

最大約 51MByteであった．CSgLは Java Platform

Standard Edition 6と比較すると小規模であるが，実

装には C#特有の要素（構造体，プロパティ，#if な

どの前処理命令，as演算子，C#特有の型，など）が

多く使用されている．MASU はこれらの特有要素を

オブジェクト指向共通の要素として解析することがで

きた．

5. 3 MASUを用いたプラグイン実装

MASU を用いたメトリックス計測プラグインの試

作として，CKメトリックスとサイクロマチック数を

計測するプラグインを実装した．

5. 3. 1 プラグインの規模

各メトリックス計測プラグインの規模と実装に要し

た時間を表 2 に示す．いずれのプラグインも実装は 1

人で行われた．表の列「メトリックス」は計測される

メトリックス名を，「総行数」は実装されたプラグイ

ンの行数（カッコ内は空白・コメント込みの総行数）

を，「ML 行数」はメトリックス計測ロジックの行数

を，「時間」は実装に要したおおよその時間を示す．ま

た，WMCはすべてのメソッドの複雑度が一律である

と仮定して実装した．

5. 3. 2 プラグイン実装例

MASUのプラグイン実装の例を図 6 に示す．

表 2 試作プラグインの規模と実装に要した時間
（総行数の括弧内は空白・コメント込みの行数）

Table 2 Size of sample plugins and time taken to

implement them.

メトリックス 総行数 ML 行数 時間（分）
WMC 31 (74) 2 10

DIT 35 (81) 8 20

NOC 36 (73) 1 10

CBO 61 (121) 29 20

RFC 56 (117) 7 15

LCOM 114 (221) 48 40

サイクロマチック数 52 (115) 21 25

1527



電子情報通信学会論文誌 2009/9 Vol. J92–D No. 9

図 6 RFC 計測プラグイン実装例
Fig. 6 An example of implementation for the plug-in

that measures RFC.

図 6 は CKメトリックスの一つである RFCを計測

するためのプラグインを実装している．一般に，RFC

を計測するには，各クラスに定義されているメソッド

と，それらのメソッドの中で呼び出されているメソッ

ドの情報を抽出しなければならず，大きな開発労力を

必要とする．しかし，MASU のプラグインとして実

装することにより，表 2 や図 6 に示す程度のソース

コードで実装することができる．図 6 から分かるよう

に，メインモジュールと協調するためのAPIは 1行程

度で実装することができ，プラグイン作成に必要な開

発労力は実質的にはメトリックス計測ロジックを記述

するメソッドの実装のみである．メトリックス計測ロ

ジックの記述もメインモジュールが提供する情報を利

用することにより，低コストで実装することができる．

また，WMC のように厳密な定義がされていない

メトリックスを計測する場合，ユーザによって要求す

る定義は異なるであろうし，様々な定義を用いて計測

結果を比較したいという要求も考えられる．MASU

を利用すれば，図 6 のようにmeasureClassMetricメ

ソッド（クラスのメトリックスを計測する場合）を自

由に実装することにより，ユーザ独自のメトリックス

計測ロジックを用いてメトリックス計測を行うことが

できる．

6. 関 連 研 究

6. 1 バイトコード解析ツール

Soot [26] McGill大学のプロジェクトとして開発さ

れている Javaバイトコード最適化フレームワーク．最

適化のための情報としてバイトコード解析情報を提供

するため，プログラム解析ツールとしても利用できる．

WALA [29] IBM Research が開発した Java バイ

トコード解析ライブラリ．

バイトーコードを解析することにより，実際に実行さ

れるコードの情報を得ることができるが，制御文の種

類などのようにソースコードからでなければ得られ

ない情報も多く存在する．また，バイトコードはコン

パイラが生成したコードであり，人間が保守しなけれ

ばないらないのはソースコードである．そして，メト

リックスが示すのは，人間が作成したプロダクトの品

質評価や，人間が行う保守のコスト予測などに使われ

る尺度である．ゆえに，メトリックスの計測は，バイ

トコードの特徴ではなく，ソースコードの特徴を測る

ことに意味があるといえる．

また，SootやWALAは Javaのバイトコードのみ

を対象としており，多言語対応はされていない．

6. 2 ソースコード解析ツール

Ducasse らは言語非依存のリエンジニアリングプ

ラットフォームとして MOOSE を開発している [4]．

MOOSEはMASUと同様にソースコードを入力とし

たソフトウェアメトリックスの評価機能を提供する．

しかし，MOOSE はソースコードを直接解析するわ

けではなく，CDIF や XMI などに変換された情報を

解析するため，提供される情報はモデルベースの情報

となる．モデルベースの情報はソフトウェアの視覚化

などには有用であるが，ソースコードから直接得ら

れる情報と比較すると情報量が減少する．また，ソー

スコードから CDIFや XMIへの変換部はサードパー

ティーのツールに依存しており，MASUが提供するよ

うな拡張・変更容易性は備えていない．

Collardらはソースコードの情報を XML形式で保

1528



論文／多言語対応メトリックス計測プラグイン開発基盤 MASU の開発

存するために srcML と呼ばれる XML の活用法を提

案している [8]．srcMLは C，C++，Javaを対象とし

ている．srcMLから得られる情報は構文解析で得られ

る情報のみであり，意味解析で得られる情報は含まな

い．このため，構文情報を利用したコードコメントの

管理などには有用であるが，意味解析で得られる情報

を必要とするソフトウェアメトリックスの計測には利

用できない．

Antoniol らは GCC (GNU Compiler Collection)

が生成する ASTを解析することにより，多言語に対

応したソースコード解析ツール XOgastanを開発して

いる [2]．XOgastanは原理的にはGCCが対応してい

るすべての言語を解析できる．しかし，GCC が対応

していない言語の解析を行うための設計上の工夫に関

しては述べられていない．また，XOgastanは意味解

析が不十分であるため，各変数の関数内における使用

回数などに関する情報は取得できるが，関数内に記述

されている式などの文脈に関する情報は取得できない．

MASUの AST解析部のような解析対象要素の追加を

容易にするための設計に関しても述べられていない．

福安らは細粒度のソフトウェアリポジトリに基づい

た CASE ツールプラットホームとして Sapid を開発

している [10]．Chenらは C言語を対象としたプログ

ラムの情報の抽象化システムを開発している [5]．こ

れらのシステムはMOOSE，srcML，XOgastanに比

べ，細かい粒度でソフトウェアの要素を解析している

ため，これらのシステムの有効性は高く，MASUと同

じようにメトリックス計測ツールの開発基盤としても

利用できる．ただし，MASUはメトリックス計測を行

う上で，次の点に関して，これらのツールよりも洗練

されている．
• 複数のプログラミング言語を統一的に扱う．
• 複数のメトリックスの計測に対応するために，

提供するデータを容易に変更・追加できるよう設計さ

れている．
• メトリックス計測ツールをプラグイン化して

いる．

C/C++のソースコードを正確に解析するには，テ

ンプレートの情報を解析する必要がある．しかし，テン

プレートの解析は複雑であるため，C/C++を対象と

したソースコード解析ツールの多くはテンプレートの

解析に十分に対応していない．Gschwindらが開発し

ている TUAnalyzerは，解析の前準備としてGNUの

C/C++コンパイラを利用することにより，テンプレー

トの解析を実現している [11]．MASUは将来C/C++

の対応を検討しており，実装には，TUAnalyzer同様

に解析の事前準備として GNUの C/C++コンパイラ

を利用することを考えている．

6. 3 AST変換技術

長谷川はあるプログラミング言語 G1 のツールを他

の言語 G2 に適用可能にする手法を提案している [12]．

この手法は言語 G2 の ASTを言語 G1 の ASTに変換

することにより実現される．この手法により，特定の

言語を対象とした既存のメトリックス計測ツールを他

の言語に適用することが可能となる．しかし，同一の

言語を対象としたツールであっても，そのツールが扱

う ASTはツールごとに異なる．このため，ASTの変

換ルールは各ツールごとに実装する必要がある．

MASU は既存のツールの再利用には応用できない

が，5. 3で示したようにメトリックス計測ロジックの

記述のみであれば低コストで再実装することができる．

AST変換ルールの実装には構文解析の専門的な知識が

要求されるため，AST 変換を用いるよりも，MASU

を用いて再実装した方が低コストで等価なツールを用

意できる可能性は高い．また，MASU のソースコー

ド解析部で言語間の差異が吸収されるため，ツールご

とに AST変換ルールなどを実装する必要はない．つ

まり，MASUが言語Gに対応すれば，MASUのソー

スコード解析部を利用したすべてのツールが言語Gに

適用可能となる．

7. む す び

本論文では，メトリックス計測プラグイン開発基盤

MASUについて述べた．MASUは次の特徴をもって

おり，MASUを用いることによって，従来に比べて低

いコストでソースコードからメトリックスを計測する

ことが可能になる．
• 複数のプログラミング言語のソースコードに対

して適用可能である．
• 多言語の解析から得た結果を統一的に扱える．
• 複数のメトリックスの計測に対応するために，

提供するデータの追加や変更を容易に行える．
• 必要最低限のメトリックス計測ロジックを記述

するだけで，新たなメトリックスを計測可能である．

MASUの開発は実用的な段階にまで到達しており，

実際にいくつかの研究で活用されている [9], [15], [20],

[21], [24]．

現在，MASU は Java 若しくは C#のソースコー

1529



電子情報通信学会論文誌 2009/9 Vol. J92–D No. 9

ドを入力とすることができる．今後，C++，Visual

Basicなどの他のオブジェクト指向言語にも順次対応

していく予定である．また，解析対象をソースコード

以外に広げることも考えている．例えば，実行履歴を

解析して共通データを構築するような解析部を作成す

ることで，動的なデータをもとにしたメトリックス計

測が可能になる．

謝辞 本研究は一部，文部科学省「次世代 IT基盤

構築のための研究開発」（研究開発領域名：ソフトウェ

ア構築状況の可視化技術の開発普及）の委託に基づい

て行われた．

文 献

[1] ANTLR. http://www.antlr.org/

[2] G. Antoniol, M.D. Penta, G. Masone, and U.

Villano, “XOgastan: XML-oriented gcc AST analysis

and transformations,” Proc. 3rd IEEE International

Workshop on Source Code Analysis and Manipula-

tion, pp.173–182, Sept. 2003.

[3] Aqris software. RefactorIT. http://www.aqris.com/

[4] A.L. Baroni and F.B. Abreu, “An OCL-based for-

malization of the MOOSE metric suite,” Proc. 7th

ECOOP Workshop on Quantitative Approaches in

Object-Orietend Software Engineering, 2003.

[5] Y.F. Chen, M.Y. Nishimoto, and C.V. Ramaoorthy,

“The C information abstraction system,” IEEE

Trans. Softw. Eng., vol.16, no.3, pp.325–334, March

1990.

[6] S. Chidamber and C. Kemerer, “A metric suite for

object-oriented design,” IEEE Trans. Softw. Eng.,

vol.25, no.5, pp.476–493, June 1994.

[7] Clarkware consulting inc. JDepend.

http://www.clarkware.com/

[8] M.L. Collard, J.I. Maletic, and A. Marcus, “Support-

ing document and data views of source code,” Proc.

ACM Symposium on Document Engineering, pp.34–

41, Nov. 2002.

[9] 枝川拓人，赤池輝彦，肥後芳樹，楠本真二，“画面遷移と
データベース処理を考慮したトランザクションファンク
ション識別手法の詳細化と実装，” 信学技報，SS2008-17,

July 2008.

[10] 福安直樹，山本晋一郎，阿草清滋，“細粒度ソフトウェ
ア・リポジトリに基づいた case ツール・プラットフォー
ム sapid，” 情処学論，vol.39, no.6, pp.1990–1998, June

1998.

[11] T. Gschwind, M. Pinzger, and H. Gall,

“TUAnalyzer—Analyzing templates in C++ Code,”

Proc. 11th Working Conference on Reverse Engineer-

ing, pp.48–57, Nov. 2004.

[12] 長谷川勇，“AST 変換を用いた他言語へのツール適用，”
信学技報，SS2008-22, July 2008.

[13] B. Henderson-Sellors, Object-Oriented Metrics: Mea-

sures of Complexity, Prentice Hall, 1996.

[14] M. Hitz and B. Montazeri, “Measuring coupling and

cohesion in object-oriented systems,” Proc. Interna-

tional Symposium on Applied Corporate Computing,

pp.78–84, Oct. 1995.

[15] 堀 直哉，岡野浩三，楠本真二，“モデル検査技術を用いた
インバリアント被覆テストケースの自動生成によるDaikon

出力の改善，” ソフトウェア工学の基礎 XV，pp.41–50,

Nov. 2008.

[16] instantiations inc. CodePro AnalytiX.

http://www.instantiations.com/

[17] JavaCC. http://javacc.dev.java.net/

[18] JMetric. http://www.it.swin.edu.au/projects/

jmetric/products/jmetric/default.htm

[19] R. Lincke, J. Lundberg, and W. Lowe, “Compar-

ing software metrics tools,” International Symposium

on Software Testing and Analysis, pp.131–141, July

2008.

[20] 宮崎宏海，肥後芳樹，井上克郎，“アイテムセットマイニ
ングを利用したコードクローン分析作業の効率向上，” 信
学技報，SS2008-18, July 2008.

[21] 三宅達也，肥後芳樹，井上克郎，“ソフトウェアメトリク
スとメソッド内の構造を用いたリファクタリング支援手法
の提案，” 信学技報，SS2008-25, July 2008.

[22] 三宅達也，肥後芳樹，井上克郎，“メトリクス計測プラグ
インプラットフォーム MASUの開発，” ソフトウェアエン
ジニアリング最前線，pp.63–70, Sept. 2008.

[23] T. McCabe, “A Complexity Measure,” IEEE Trans.

Softw. Eng., vol.2, no.4, pp.308–320, Dec. 1976.

[24] 村尾憲冶，肥後芳樹，井上克郎，“ソフトウェアメトリクス
値の変遷に基づいた注力すべきモジュールを特定する手法
の提案，” 信学論（D），vol.J91-D, no.12, pp.2915–2925,

Dec. 2008.

[25] P. Oman and S.L. Pleeger, Applying Software Met-

rics, IEEE Computer Society Press, 1997.

[26] Soot: a Java Optimization Framework.

http://www.sable.mcgill.ca/soot/

[27] TIOBE Software: The Coding Standards Company.

http://www.tiobe.com/index.php/content/

paperinfo/tpci/index.html

[28] Virtual machinery. JHawk.

http://www.virtualmachinery.com/

[29] WALA. http://wala.sourceforge.net/wiki/index.php/

Main Page

（平成 20 年 10 月 31 日受付，21 年 3 月 9 日再受付）

三宅 達也

平 19 阪大・基礎工・情報卒．現在同大
大学院博士前期課程 2 年．リファクタリン
グの研究に従事．

1530



論文／多言語対応メトリックス計測プラグイン開発基盤 MASU の開発

肥後 芳樹 （正員）

平 14 阪大・基礎工・情報中退．平 18 同
大大学院博士後期課程修了．平 19 阪大・
情報・コンピュータサイエンス・助教．博
士（情報科学）．コードクローン分析やリ
ファクタリングに関する研究に従事．情報
処理学会，IEEE 各会員．

楠本 真二 （正員）

昭 63 阪大・基礎工・情報卒．平 3 同大
大学院博士課程中退．同年同大・基礎工・
情報・助手．平 8 同大講師．平 11 同大助
教授．平 14阪大・情報・コンピュータサイ
エンス・助教授．平 17 同学科教授．博士
（工学）．ソフトウェアの生産性や品質の定

量的評価，プロジェクト管理に関する研究に従事．情報処理学
会，IEEE，JFPUG 各会員．

井上 克郎 （正員）

昭 54 阪大・基礎工・情報卒．昭 59 同大
大学院博士課程了．同年同大・基礎工・情
報・助手．昭 59～昭 61ハワイ大マノア校・
情報工学科・助教授．平元阪大・基礎工・
情報・講師．平 3 同学科・助教授．平 7 同
学科・教授．博士（工学）．平 14 阪大・情

報・コンピュータサイエンス・教授．ソフトウェア工学の研究に
従事．情報処理学会，日本ソフトウェア科学会，IEEE，ACM

各会員．

1531


