
Title 開発履歴中のソースコードを対象とした更新の重要度
を評価する手法の提案

Author(s) 横森, 励士; 野呂, 昌満; 井上, 克郎

Citation 電子情報通信学会論文誌Ｄ. 2008, J91-D(4), p.
945-955

Version Type VoR

URL https://hdl.handle.net/11094/26586

rights ©（社）電子情報通信学会 2008

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

論 文

開発履歴中のソースコードを対象とした更新の重要度を評価する

手法の提案

横森 励士†a) 野呂 昌満† 井上 克郎††

Evaluation Method for Source Code Updates in Software Development History

Reishi YOKOMORI†a), Masami NORO†, and Katsuro INOUE††

あらまし 開発対象となるソフトウェアが大規模化するにつれて，進ちょくを把握し管理を適切に行うことが，
極めて重要な要素となった．開発途中の生成物から LOC などのメトリックスを抽出し，管理に利用している場
面は多く見られる．しかし，開発中のソフトウェアに重大な影響を与える更新を抽出するには，LOC などだけ
では不十分で，更新履歴から変更内容を確認し，それによって生じる変化を理解する必要がある．本論文では，
ソフトウェア部品間の利用関係の変化の度合を定量化することで，利用関係の変化という観点で更新履歴の中か
ら重大な影響を与えた更新を抽出する手法を提案する．定量化においては，部品間の利用関係に基づいた順位で
あるコンポーネントランクを用い，更新前後間での各部品の順位の変動を評価基準とする．提案手法に基づきシ
ステムを開発し実際のオープンソースプロジェクトに適用したところ，大規模な機能追加のほかに，コア部品に
対する機能追加や，コードの作り直し，リファクタリングなどのメンテナンス作業が抽出できた．これらの更新
は，LOC の変化量が少ないものも多く，提案手法はこれらの更新作業の抽出に有益であると考えられる．

キーワード ソフトウェア部品，コンポーネントランク，更新履歴，メトリックス，Java

1. ま え が き

組織におけるソフトウェアプロセスの成熟度モデル

CMMI [6] においても見られるように，プロセス改善

やプロジェクト管理における計測の重要性は広く認知

されているところである．管理や分析においては，構

成管理システムなどに蓄積されたプロジェクトデータ

を分析し，メトリックスに基づいた評価を行う手法が

用いられることも多い [7], [10], [12]．このとき，ただ

単一のメトリックスからプロジェクトのある側面を計

測するだけではなく，複数のメトリックスを用いて多

様な観点から計測することが重要となる．例えば，そ

れぞれの更新の重大さを判別するための方法として，

一般的に LOC，クラス数などのコードメトリックス

を用いて更新の大きさを測ることが多いが，コア部品

†南山大学数理情報学部，瀬戸市
Faculty of Mathematical Sciences and Information Engineer-

ing, Nanzan University, Seto-shi, 489–0863 Japan
††大阪大学大学院情報科学研究科，豊中市

Graduate School of Information Science and Technology, Os-

aka University, Toyonaka-shi, 560–8531 Japan

a) E-mail: yokomori@it.nanzan-u.ac.jp

の改造，リファクタリングやコードの再作成など，大

量のコード変更は伴わないが重要な更新も数多く存在

する．これらの更新を見つけるためには，更新履歴か

ら変更内容を確認し，それによって生じる変化を理解

する必要があり，多くの労力と知識を要する．

本論文では，ソフトウェア部品間の利用関係の変化

を定量化することで，利用関係の変化という観点か

ら，更新履歴の中から重大な影響を与えた更新を抽出

する手法を提案する [14]．定量化においては，部品間

の利用関係に基づいた順位であるコンポーネントラン

ク [5], [11] を用いる．コンポーネントランクは，ある

システム内のソフトウェア部品の直接的，間接的な利

用関係を解析することで，各ソフトウェア部品の重要

度を評価する手法である．

提案手法では，『利用関係に大きな変化をもたらす更

新は，システム全体への影響が大きいという意味で重

要な更新である』と考え，『利用関係の変化により，コ

ンポーネントランクも変わる』という仮説を立ててい

る．例えば大規模な機能追加時には，新規に追加され

る部品が既存のライブラリやデータ構造を利用するこ

とで，それらの部品の順位は上がる．これにより，機

電子情報通信学会論文誌 D Vol. J91–D No. 4 pp. 945–955 c©（社）電子情報通信学会 2008 945

電子情報通信学会論文誌 2008/4 Vol. J91–D No. 4

能追加の規模に応じた順位の変動が生じることが予想

される．一方でコードの作り直しやリファクタリング

の場合，メソッドの抽出や移動，削除，インタフェー

スの整理などで，既存の利用関係が大きく変化し，そ

れに応じてコンポーネントランクも更新前後で大きく

変動すると考えられる．提案手法は，このような利用

関係の変化をコンポーネントランクの順位の変動とし

て定量化することで，『利用関係の変化が大きい更新を

把握すること』を目的とする．

提案手法に基づき，ある更新におけるコンポーネン

トランクの順位変動を評価するシステムを実現した上

で，実際のオープンソースプロジェクトに適用するこ

とで評価実験を行う．評価実験では，提案手法で抽出

できたコンポーネントランクの変動が大きい更新が実

際にどのような変更内容の更新であるかを確認する．

提案手法が，『利用関係の変化が大きい更新を把握する

こと』に有効であるか，一般的なコードメトリックス

を用いた場合に埋もれがちな『コード変更量は少ない

が内部的に重要な変化をもたらす更新を抽出する』た

めに有効な手法であるかを検証し考察する．

以降，2.では背景としてコンポーネントランクを紹

介する．3.では提案手法及び実現したシステムについ

て述べ，4. では適用実験について述べる．5. では考

察を行い，関連研究を紹介する．最後に 6. で，まと

めと今後の課題について述べる．

2. 部品グラフとコンポーネントランク

一般にソフトウェア部品（Software Comopnent）

とは再利用できるように設計された部品とされてい

る [1], [9]．ここではクラスやファイルなどの開発者が

再利用を行う単位をソフトウェア部品（あるいは単に

部品）と呼び，部品グラフとしてモデル化する．部品

グラフ上の頂点はそれぞれの部品を表し，部品間の利

用関係を有向辺とする．[5], [11]においてコンポーネン

トランクモデルを実現した際には，部品の単位を Java

のソースファイル（現在はクラス単位）とした．部品

間の利用関係については，動的束縛は考慮せずに静的

に解析可能な関係を抽出しており，クラスの継承，イ

ンタフェース及び抽象クラスの実装，変数宣言及びイ

ンスタンスの生成，メソッドの呼出し，フィールド参

照を利用関係として部品グラフを作成した．

コンポーネントランクの計算モデルでは，与えられ

た部品グラフをマルコフ連鎖 [8] でモデル化し，マル

コフ連鎖の定常分布を計算する．まず部品グラフ上の

図 1 重みの計算例
Fig. 1 An example of stable weights assigned to

nodes and edges.

各頂点の重みの総和が 1になるように各頂点の重みの

初期値を与える．マルコフ連鎖の場合，計算対象のマ

ルコフ連鎖が既約であれば初期の状態によらず定常分

布に収束するので，各頂点に均等な値を割り振ってい

る．その後，以下の計算を収束するまで繰り返すこと

で，各頂点の重みを計算する．実際には各頂点の重み

は，それぞれの頂点から頂点への分配率を表した行列

における，固有値 1の固有ベクトルとなる．

(1) 各頂点の現在の重みをその頂点を始点とする

有向辺に分配する．分配率をもとに重みの分配を変え

ることはできるが，基本的には等分配する．

(2) (1)で決定したそれぞれの有向辺の重みをもと

に，各有向辺の終点の新たな重みを決定する．

図 1 は，与えられたグラフにおいて各頂点の重みを

計算した結果である．v1 は二つの有向辺の始点で，v1

の重み 0.4は二つの辺に等分されている．また，v3 は

二つの有向辺の終点で，それぞれの辺が 0.2の重みを

もつため，v3 の重みは 0.4であることが分かる．

この定常分布における，それぞれの部品に対応する

各頂点の重みで順位付けを行い，その順位がその部品

の集合におけるコンポーネントランクとなる．モデル

の実現 [5], [11] においては，部品グラフでモデル化さ

れるマルコフ連鎖を既約な連鎖にするために，すべて

の頂点間を非常に小さな配分率の擬似辺で連結して

いる．また，コピーされた部品を考慮するために，コ

ピーされたと判断できるような部品は一つの部品群と

なるように部品群化を行っている．実験からは，よく

利用されるクラスや一般的な使い方をしているクラス

が集中して上位に現れるなど，コンポーネントランク

は利用実績を十分に表す指標であることが示されてい

る．また，一部の頂点が非常に高い重みをもち，ほと

んどの部品の重みは低くなる傾向が知られている．

946

論文／開発履歴中のソースコードを対象とした更新の重要度を評価する手法の提案

このコンポーネントランクは，ソフトウェア部品検

索システム SPARS-J [4] において検索結果の順位付

けに用いられている．コンポーネントランクを用いる

ことで検索結果全体がユーザの想定する順位付けに近

くなるなど，ソフトウェア部品検索に有用なものであ

ることが評価実験で示されている．また，関連研究と

して非常に高い重みをもつ部品に着目することでソフ

トウェアの理解を容易にするための研究 [2] や，クラ

スタリングに頂点の重みの要素を加味することで精度

を向上させる研究 [3]などが行われている．

3. コンポーネントランクの変化に基づく
評価手法

ソフトウェアが完成するまでの過程では，機能，デー

タや制御構造を実現する部品が未完成なソフトウェア

に徐々に組み込まれていき，完成に近づいていく．利

用関係の観点から見た場合，部品の追加に合わせて利

用関係も変化していく一方で，完成に近づくにつれて

利用関係が固定化されていくとも考えられる．これら

の部品や利用関係の変化は，ソースコードを読み進め

ていくことで把握可能であるが，この作業は大きな手

間と知識が必要なため，把握できる人間は限られる．

このような変化の大きさなどの情報を定量化するこ

とは情報の共有の観点からも有益であると考えられる．

一般的に，LOC，クラス数などのコードメトリックス

を用いて更新の大きさを測ることが多いが，これらの

メトリックスは常に単調増加であることが多く，機能

追加などの変更量の多い更新しか把握できない．実際

には，コア部品の改造，リファクタリングやコードの

再作成など，大量のコード変更は伴わないが重要な更

新も多く，システム全体に影響を与えるような重要な

更新を見逃してしまう可能性がある．

本論文では，開発プロセス中の利用関係の変化に着

目し，コンポーネントランクを用いて利用関係の変化

度を定量化する手法を提案する．提案手法では，開発

プロセス中の更新があった各時点でのソースコードを

取得する．それぞれの更新に対して，更新前，更新後

のコンポーネントランクをそれぞれ求める．この二つ

のランクに共通して存在する部品についてそれぞれの

順位の差を求め，その平均をもとに更新の影響度を調

査する．

提案手法においては『利用関係に大きな変化をもた

らす更新は，システム全体への影響が大きいという意

味で重要な更新である』と考え，『利用関係の変化に応

じて，コンポーネントランクも同様に変化する』とい

う仮説を立てている．例として，ソフトウェアに新た

な機能が追加される場合を考える．機能の追加時には，

新規に追加される部品が既存のライブラリやデータ構

造を利用することが予想される．そのとき，それらの

部品の順位は上がると予想できる．機能追加が大規模

である場合は，順位が上がる部品が増え，順位の変動

が大きくなると考えられる．

二つ目の例として，コードの作り直しやリファクタ

リングの場合を考える．このときメソッドの抽出や移

動，削除，インタフェースの整理などで，既存の利用

関係が大きく変化することが予測される．部品間に新

しい利用関係が生じる場合と同時に，利用関係が削除

される場合も想定できる．そのため順位が上がる部品，

下がる部品が同時に発生し，大きな変動が起こると考

えられる．更にこれらの変更がコア部品に近ければ近

いほど，上位の部品がもつ大量の重みが他の部品に流

れることで順位の変動が大きくなると考えられる．

このように提案手法は大規模な機能追加だけでなく，

利用関係の変化が大きい更新や，システムの中心に近

い箇所への変更を含む更新にも高い値を示すと予想さ

れる．提案手法は，開発履歴などを分析する際に大量

の更新の中から，ソフトウェアに大きな影響を与える

更新を抽出するために適した手法であると考えられる．

3. 1 計算プロセス

提案手法では，ある更新 U の影響の大きさ

impCR(U) を，更新前，更新後の二つのリビジョン

間のコンポーネントランクにおける個々の部品の順位

の変動を用いて定量化する．更新前の部品の集合を

Spre(U)，更新後の部品の集合を Saft (U)と定義する．

更に，二つのリビジョン間に共通して存在する部品を

Suni(U)と定義する．

Suni(U) = {X|X ∈ Spre(U) ∧ X ∈ Saft (U)}.

影響の大きさ impCR(U)を以下の手順で計算する．

(1) Spre(U)，Saft (U) に対しコンポーネントラン

クを計算する．それぞれの部品の数が異なる可能性が

あるため，得られた順位は正規化する．

［定義 1］（部品 X の順位の正規化）

Spre(U) に属する部品の数を Npre(U)，Spre(U)に

属する部品 X の更新前のコンポーネントランクにお

ける順位を CRpre(U, X) とする．このとき，次の式

で部品X の順位を NCRpre(U, X)として正規化する．

正規化により 0から 1の値となり，1が最上位を表す．

947

電子情報通信学会論文誌 2008/4 Vol. J91–D No. 4

更新後の順位についても同様に正規化し，それぞれの

部品 X ごとに NCRafter (U,X)を求める．

NCRpre(U, X) =
Npre(U) − (CRpre(U, X) − 1)

Npre(U)

(2) Suni(U) に属する部品それぞれについて，更

新前後の正規化された順位の差を求め，その絶対値の

平均をある更新 U の影響の大きさとする．

［定義 2］（更新 U の影響度の大きさ impCR(U)）

Suni(U)に属する部品の数をNuni(U)とし，Suni(U)

に属する部品 X の正規化後のコンポーネントランク

をNCRpre(U,X)（更新前），NCRaft (U,X)（更新後）

とする．このとき，U の影響度 impCR(U)を次の式

で定義する．

impCR(U)

=

∑

X∈Suni (U)

|NCRaft (U, X) − NCRpre(U, X)|

Nuni(U)
.

3. 2 評価システムについて

提案手法をもとに，開発履歴における各更新の影

響度を計算するシステムを構築した．本システムは，

Javaで記述され，CVSでソースコード管理が行われ

ているプロジェクトを対象とする．本システムの構

成図を図 2 に示す．本システムでは，部品解析時に

SPARS-Jの部品登録部を利用する．そのため，部品

及び利用関係の定義は SPARS-Jにおける定義 [4] と

同一である．解析の手順は以下のとおりである．

(1) 更新日リストの作成：CVSのヒストリを利用

して，更新日時の一覧を取得する．現在は更新の粒度

を日単位としており，同一日に複数の更新があった場

合は，まとめて一つの更新とみなす．

(2) コンポーネントランクの計算：更新日ごとに

チェックアウトコマンドを用いて，ソースコードを取得

する．取得したソースコードを更新日別に SPARS-J

を用いて解析し，各時点でのコンポーネントランクを

計算する．

(3) 影響度メトリックスの計算：各更新日におけ

るコンポーネントランクから，各更新の影響度を計算

する．

(3-1) それぞれの更新日 U ごとに，更新前，更新

後のコンポーネントランクを取り出す．

(3-2) 3.1の定義に基づき，impCR(U)を計算する．

図 2 評価システムの構成
Fig. 2 Architecture of the evaluation system.

4. 評 価 実 験

本章では，提案手法をオープンソース開発プロジェ

クトに適用した結果を紹介する．個別のプロジェクト

に対する適用結果とともに，全体的な傾向として複数

のプロジェクトにおける適用結果をまとめ，分類した

結果を紹介する．

4. 1 実験の目的

提案手法は，『利用関係に大きな変化をもたらす更新

はシステム全体に影響を与えるような重要な更新で，

そのような更新はコンポーネントランクを大きく変動

させる』という仮説のもとに成り立っている．評価実

験では，提案手法で抽出できたコンポーネントランク

の変動の大きい更新が実際にどのような変更内容の更

新であるかを確認する．提案手法が，『利用関係の変化

が大きい更新を把握すること』に有効であるか，一般

的なコードメトリックスを用いた場合に埋もれがちな

『コード変更量は少ないが内部的に重要な変化をもた

らす更新を抽出する』ために有効な手法であるかを検

証する．

4. 2 実 験 内 容

解析対象として，SourceForge [16]に登録されてい

るプロジェクトを利用した．SourceForgeはオープン

ソース開発者向けのコミュニティで，大量のソフトウェ

ア開発プロジェクトが登録されている．大量の開発プ

ロジェクトの中から，(1)開発言語が Javaである，(2)

ソースコード管理に CVSを用いている，(3)開発履歴

やコメントが十分蓄えられている，という条件で表 1

の 12プロジェクトを選び，適用対象とした．

プロジェクトごとに，提案手法を適用し，得られた

948

論文／開発履歴中のソースコードを対象とした更新の重要度を評価する手法の提案

結果をグラフ化した．それぞれのプロジェクトは開発

規模や開発期間がまちまちであるため，システムが要

した解析時間も多種多様である．開発期間が比較的短

いプロジェクトは約 20分（1リビジョン当り約 20秒）

ほどであったのに対して，開発期間が長く大規模なプ

ロジェクトには，約 10日（1リビジョン当り約 10分）

の日時を必要とした．以下では，あるプロジェクトに

対する適用結果を紹介した上で，適用結果における全

体的な傾向を述べる．

4. 3 適用の結果

ここでは，Jbidwatcher [20]に対する適用結果を紹

介する．Jbidwatcherは，オークションの監視を支援

するためのツールである．2000年 5月から 2006年 1

月までの開発期間において，303 回（日）分の更新が

あり，解析対象とした．当該区間における一般的なメ

トリックスの推移を図 3 に示す．それぞれのメトリッ

表 1 適用対象プロジェクト
Table 1 Target projects.

Name From To Revision LOC

1 azureus 2003/7 2006/2 903 374K

2 freemind 2000/8 2006/2 309 23K

3 galleon 2005/2 2006/2 55 91K

4 ganttproject 2003/5 2006/2 543 73K

5 jasperreports 2003/12 2006/2 349 149K

6 jbidwatcher 2000/5 2006/1 303 29K

7 jedit 2000/1 2006/2 1515 830K

8 megamek 2002/2 2006/2 990 107K

9 openwfe 2003/6 2006/2 643 81K

10 pmd 2002/6 2006/2 802 124K

11 pydev 2003/7 2006/2 315 45K

12 xui 2003/3 2006/2 68 153K

図 3 一般的なメトリックスの推移
Fig. 3 Transition of general metrics.

クスの値が単調に増加していることから開発がコンス

タントに続いていることが分かるとともに，これらの

メトリックスは非常によく似た増加傾向を示している

ことが分かる．

図 4 は impCR（影響度）とクラス数の推移を示し

たものである．グラフ中では，クラス数の推移を灰色

の線，impCR についての多項式近似曲線を点線で示

している．クラス数は図 3 のメトリックスと同じよう

に推移していることが分かる．一方で，impCR の値

は，減少しながら推移していることが確認できる．

図 5 は開発の前期，中期，後期における impCRの

分布をメトリックスグラフで示したものである．一番

左側の軸から，開発時期，コンポーネント数，LOC，

コード増減量，impCR（影響度）の値を表している．

開発が進行するにつれて一番右の値の分布幅が狭く

なっており，利用関係の変化が収束している様子をう

かがうことができる．

表 2 は高い impCR（影響度）の値を示した更新の

一覧である．その変更内容については，CVSwebなど

の情報をもとに筆者が調査した．開発の初期における

影響度の高い更新として，ブラウジング機能やダンプ

機能の追加，パスワードログインへのサポートなどの

ような，システムを横断する機能や，基本的な機能や

データ構造の追加などを検出できた．

その一方で開発の中期以降に関しては，コードの再

作成，インタフェースの整理，リファクタリングなど

のクラスやデータの構造を変える変更を含む更新を，

影響度の高い更新として検出できた．表 2 のほかに

949

電子情報通信学会論文誌 2008/4 Vol. J91–D No. 4

図 4 部品数と impCR の推移
Fig. 4 Transition of impCR and number of components.

(a) 開 発 初 期

(b) 開 発 中 期

(c) 開 発 後 期

図 5 開発時期別に見た impCR の分布
Fig. 5 Distribution of impCR.

表 2 impCR の高い更新一覧
Table 2 High impCR updates.

Date impCR Major Contents

* Implementation

1 2000/6/23 (15th) 0.0516 Adjust mouse action

Delete meaningless codes

2 2001/8/31 (70th) 0.0488 Restructure of UI

Remove generic constants

3 2000/7/11 (20th) 0.0486 Handle a proxy server

Add generic constants

4 2000/6/3 (3rd) 0.0454 * Browsing

5 2000/8/12 (34th) 0.0420 Extract logging classes

* Visual display

6 2000/7/13 (22nd) 0.0400 Password login support

* Bidding features

7 2000/6/6 (5th) 0.0372 * Splash screen

8 2000/7/8 (19th) 0.0367 * Menu bar

9 2000/11/4 (48th) 0.0359 Use Auction Manager

* Multiple tabs

10 2004/1/4 (164th) 0.0352 Clean up platform

-specific code

も，一般的なインタフェースの整理，テーブルや検索

機能のリファクタリングなどを含む更新を検出できた．

表 3 は，提案手法が最も変動が大きいと判断した

2000 年 6 月 23 日の更新において，順位の変動が激

しい部品をリストアップしたものである．この日の

更新では，主にマウスアクションの調整が行われて

おり，JBidMouseや，JMouseAdapterなどのクラス

の順位が大きく上がっている．また，開発ログには

オークションクラスの追加・更新・削除を扱うクラス

が JBidWatch から JBidMouse に移行したことが示

されており，JBidMouse が内部的に重要な部品に移

950

論文／開発履歴中のソースコードを対象とした更新の重要度を評価する手法の提案

表 3 2000/6/23 の更新における主な部品の順位変動
Table 3 Key components in update of 2000/6/23.

Class before after diff

1 JBidMouse 0.16 0.48 +0.32

2 JMouseAdapter 0.38 0.64 +0.26

3 TableSorter 0.16 0.38 +0.22

4 AuctionTableModel 0.16 0.28 +0.12

5 AuctionInfo 0.77 0.8 +0.03

: :

50 JBidWatch 0.44 0.41 −0.03

51 JDropHandler 0.47 0.44 −0.03

52 ebayServer$ebayAuction 0.25 0.22 −0.03

53 JHTML$htmlToken 0.81 0.77 −0.04

54 JDropListener 0.38 0.25 −0.13

行したことが分かった．このように，コンポーネント

ランクは利用関係上重要な部品を上位に順位付けでき，

更新によって重要な部品が発生した場合は，更新後の

その部品の順位もそれに合わせて上昇していることが

分かる．

一方，全修正の約半分（159 件）の更新において，

impCR の値は 0 であった．そのような impCR の値

が低い更新の内容を調べてみると，それらの更新は次

のような更新であった．

(1) ソースコードにはまったく影響のない修正

そのような更新の例として，ドキュメントやTODO

の追加，データファイルの追加，タブの削除のような

整形やコメント追加などの修正などが確認できた．

(2) 他のクラスに全く影響を与えない変更

そのような更新の例として，メソッド内部のバグの

修正，単体テスト用のデバッグコードの追加，クラス

内部での処理方法の変更，クラス内で完全に閉じたリ

ファクタリングなどが挙げられる．

(3) 単独クラスの変更で完全に吸収できる機能追加

既に実現された機能を拡張することで，対応可能な

種類を増やした場合などが当てはまる．例として，対

応可能な設定ファイルの追加や，システム外の要素と

の入出力機能の追加などが挙げられる．

(4) 既に利用関係が存在するクラス間での機能追加

参照するフィールドの追加や，既存の機能と同様な

処理方法によって実現可能な機能の追加のように，既

に利用関係が存在しているクラス間の上で別の機能を

実現した場合を指す．各部品の間に利用関係が存在す

るかどうかでグラフ上での辺の有無を決定しているた

め，更新前後で部品グラフの形は変化しない．

これらのことから，既存の部品によって作られてい

る枠組みの中で，枠組みを壊さずに修正をする範囲で

は，impCR の値は 0若しくは非常に低い値となるこ

とが分かる．これらの変更は局所的なものがほとんど

で，システム全体の利用関係に影響を与えるものでは

なく，利用関係の変化という観点から見た場合さほど

重要なものではないと思われる．

4. 4 全体的な傾向

すべてのプロジェクトに対して当てはまることとし

て，jbidwatcher の結果に見られるように，開発が進

行するにつれて impCR（以下，影響度）の値がだん

だん減少していった．開発初期の段階では，必要な機

能の実装により利用関係の変化が起こりやすく，高い

影響度の値を示すが，ソフトウェアの機能が充実する

につれて影響度の値は徐々に下がっていく．このこと

から，開発の進行により必要な機能やデータが固定化

されるのと同様に，利用関係も固定化されていくこと

が推測できる．

また，オープンソースプロジェクトらしい特徴とし

て，いくつかのプロジェクトにおいて，影響度につい

ての多項式近似曲線が，減少しながらも波を打った形

状になった．このことは，短いサイクルで機能追加が

活発に行われることが原因であると思われる．

一方で，各更新において最も順位が変動した部品の

変動幅も確認したが，こちらは開発の時期にあまり影

響されない値であった．このことは，更新の間隔を日

としたことで 1回 1回の更新の規模は開発の時期を通

じてあまり変わらないことを示していると考えられる．

一般に開発中は常にプログラムサイズが単調増加する

ため，更新の規模に対してプログラムサイズが大きく

なっていく．このことも，開発が進行するにつれて影

響度の値がだんだん減少していく要因の一つであると

考えられる．

影響度 (impCR)の値は前述のとおり開発の進行に

より減少していくため，前後の更新と比べて相対的に

高い値を示している更新を抽出した．その変更内容を

CVSwebなどの情報をもとに調査したところ，抽出さ

れた更新には単なるバグ修正はほとんど見られず，そ

のほとんどは以下に示す 4種類の変更内容に属する更

新であった．

(1) 大規模な機能追加

この種の更新では，既存のライブラリが利用され順

位が上昇すると同時に，新たにコア部品が追加される．

その一方で，既存の部品間の利用関係はあまり変化し

ない．そのため，開発の初期では，ライブラリ関係の

部品順位の上昇やコア部品の追加による変動の影響が

非常に大きく現れ，高い影響度を示す更新となる．し

951

電子情報通信学会論文誌 2008/4 Vol. J91–D No. 4

かし時間の経過により既存の部品間の関係が固定化さ

れるため，この種の更新はさほど高い影響度を示す更

新ではなくなる．

（例） galleon [17] は TiVo HME プロトコルを利

用したホームメディアサーバである．開発の過程にお

いて，天気情報，音楽プレイヤー，オンラインラジオ，

フォトビューア，iTunesへの対応など様々な機能追加

がなされている．開発の初期はこれらの更新は高い影

響度を示す更新であったが，それぞれの機能は比較的

独立なものであるため，開発が進行するにつれて機能

追加による更新の影響度はだんだん低くなっていった．

(2) コア部品への変更を含む機能追加

コア部品への変更を含む機能追加の場合，コア部品

への利用関係が増加したり，コア部品のもつ大量の重

みの配分先が変わったりするため，順位全体への影響

が大きくなる．この種の更新は，開発初期だけでなく

中期以降においても高い影響度をもつ更新として確認

することができた．

（例） PMD [18] は Java ソースコードの潜在的な

問題を指摘するツールである．開発の後期において非

常に高い影響度を示した更新として，Java1.5 の文法

や JSPへの対応を目的とした ASTに対する機能追加

を含む更新を確認できた．これらの更新では，多数の

コア部品を含む構文解析部の修正が確認でき，実際に

影響が大きい更新であると考えることができる．

(3) システムを横断する機能の追加

デバッグ機能やログ機能などシステムを横断する機

能の場合，新たに追加された部品にシステム全体から

利用関係が追加されるため，順位全体への影響が非常

に大きい．この種の更新は (2)の場合と同様に，開発

初期だけでなく中期以降においても高い影響度をもつ

更新として確認することができた．

(4) 作り直しやリファクタリングなどの大規模な

コード整理

ここでいうコード整理とは，クラス内部で閉じてい

るような小規模なものでなくシステム全体やサブシス

テム全体，データ構造に影響が及ぶような大規模なも

のを指す．この種の更新はメソッドの抽出や移動，削

除，インタフェースの整理などを伴うため，既存の利

用関係が大きく変動しやすい．そのため順位が上がる

部品，下がる部品が同時に大量に発生すると同時に，

コア部品の消滅，誕生なども想定され，順位全体への

影響も非常に大きい．この種の更新は，開発中期以降

において時折見られるが，コア部品を整理対象に含む

場合は，特に高い影響度をもつ更新として確認できた．

（例） GanttProject [19] はガントチャート作成用

の GUI ツールである．2005 年の開発において相対

的に高い影響度を示した更新として，モーションリス

ナー，マウスイベント，入力ファイル，リソースなど

へのリファクタリングを含む更新を確認できた．また，

その他の区間では，利用関係やデータ構造へのリファ

クタリングも高い影響度を示した更新として確認で

きた．

以上のように，提案手法により利用関係に大きな変

更をもたらす更新だけでなく，中心的な機能を果たす

部品への更新も影響度が高い更新として見つけ出すこ

とが容易になると考えられる．

5. 考 察

5. 1 他のメトリックスとの比較

開発プロセスを分析する際に一般的によく利用され

る方法は，LOC の推移を見て，過去や現在の進ちょ

くが想定どおりか，今後目標（納期など）を達成する

ために何か対策が必要かなどを確認するという方法で

ある．分析の際，他のメトリックスも用いられること

もあるが，図 3 を見ても分かるとおり，その他の量を

表すコードメトリックスも LOCとほぼ同じ傾向を示

すことが多く，それほど大きな意味をなさない．

重要な更新を見つけ出す際には，開発者の主観によ

りピックアップを行う方法や，コードの変更量から規

模を推測し，その規模に応じて影響度を見積もる，と

いう方法が手軽で実際の分析ではよく用いられている．

本論文が提案しているような，利用関係の変化から影

響度の高い更新を見つけ出すということは過去に研究

の対象になっていない．

実際，コードの変更量を用いることで，コードの変

更量の大きい更新を抽出することができるが，ソフト

ウェアに大きな影響をもたらす更新は，必ずしもコー

ドの変更量は大きくない．例えばリファクタリングな

どのコード整理を含む更新の場合，一般的に機能追加

に比べてコードの変更量は小さいが，更新前後で処理

の実現方法が変わり得るなど，重要な意味をもつ更新

であるといえる．

図 6 は，jbidwatcherにおけるコード変更量（右か

ら二つ目）と impCR（一番右）の関係を表したメト

リックスグラフである．impCRの小さい更新は，基本

的にコード変更量も小さく，どちらの観点でもあまり

大きな影響は与えないといえる．その一方で，impCR

952

論文／開発履歴中のソースコードを対象とした更新の重要度を評価する手法の提案

(a) impCR の値が低い更新

(b) impCR の値が中程度な更新

(c) impCR の値が高い更新

図 6 impCR の値（一番右）別に見たコード変更量（右
から 2 番目）の分布

Fig. 6 Distribution of an amount of code changes.

が一定以上ある更新は，コード変更量はまちまちで，

コード変更量があまり大きくない更新も多い．このよ

うな更新は，リファクタリングやコード整理，コア部

品などへの機能追加などを含んでいることが多く，分

析時に提案手法を用いることでこれらの更新に脚光を

当てることができるようになる．

5. 2 コンポーネントランクの推移について

提案手法では，更新前後での各部品の順位の変化の

平均という形で，各更新の影響度を求めている．コン

ポーネントランクを利用したもう一つのアプローチと

して，各部品の順位の推移をグラフ化するという方法

が考えられる．

図 7 は，jbidwatcher において上位 10 位に入った

ことがある部品のコンポーネントランクの推移を表し

図 7 コンポーネントランクの推移
Fig. 7 Transition of Component Rank.

たものである．開発の初期は変動が激しいが，中期以

降は順位が安定していく様子がうかがえる．図 7 から

は中期以降において順位の変動が激しい時点がいくつ

か見受けられるが，その時点ではすべてコードの作り

直しや整理が行われていた．通常このような場面では

その後の拡張性などを考慮して作り直すことが多く，

更新後に順位の変動が止まっていることから，これら

の更新が成功に終わったことがうかがえる．

5. 3 提案手法の利用法

提案手法をプロセス管理に用いる際には，いくつか

の利用方法が想定できる．一つ目の利用方法は，実験

で行ったような事後分析若しくは進ちょくの確認作業

において，impCR の高い更新を抽出するという方法

である．評価実験における結果からは，impCR の高

い更新が大規模な機能追加や，コア部品への部品追加，

コードの作り直しなどの作業であることが多いという

結果が得られた．そのような更新の前後では，利用関

係やデータの流れが大きく変わりやすいと考えられ，

既存システム内の利用関係が大きく変わったかどうか

という観点から，開発期間の中で生じた更新の重要性

を裏付けする指標として impCR を利用可能であると

考えている．例えば進捗報告などの場において，利用

関係が大きく変わるような更新の存在を浮かび上がら

せ，そのような更新が存在することを開発者や管理者

の間で把握し，その内容を確認し合うことは，開発に

おける現状の認識を共有する際に非常に役立つと考え

られる．

二つ目の利用方法は，更新の impCR の値の大きさ

を予想し，実際に計算された値と比較することで，現

状が想定どおりかを確認するというものである．評

価実験の結果からは，比較的短いサイクルで繰り返

し開発を行うようなオープンソース開発であっても，

impCR の値は波を打ちながら徐々に収束するという

結果であった．ウォーターフォール型の開発モデルの

953

電子情報通信学会論文誌 2008/4 Vol. J91–D No. 4

場合，設計時に必要な機能がある程度固まっていると

いう状態が想定でき，機能の実装が一通り終わった時

点でテストフェーズに移行し，impCR の値は収束し

ていくと考えられる．このような想定のもとに，例え

ば開発の後期における更新の impCR を計測すること

で，既存システムの利用関係が大きく変わるような変

更が起きているかを把握する．開発が順調な場合，ソ

フトウェアの出荷間際や納期間近のときにはほぼシス

テムは完成し，利用関係もほぼ収束している状況が

想定できる．このような想定の一方で，開発の末期に

impCR の高い更新が頻繁に検出できた場合を考える．

この場合，利用関係がまだ収束しておらず，．開発対象

のシステムがまだ未完成な状態であったり，動いてい

るとしても，検証が十分でなくテストが不足している

などの状況が想定される．提案手法をこのように用い

ることで，利用関係の面からリスクの高い状況である

かどうかを確認することができると考えている．

三つ目の利用方法は，impCRの収束状況や，impCR

の値が高い更新などを分析することで，コードの整理

の必要性を判断するというものである．システムを横

断する機能の追加や，不適切な機能追加の方法などで，

システムに機能が追加されていくにつれ，当初の設計

構造はだんだん崩れていき，部品の独立性は徐々に低

下していく．このようなシチュエーション下で，更に

機能を追加しようとすると，あちこちの部品に記述を

加えることが必要であるという状況になりやすい．こ

の状況下で機能追加を行うと，既存の部品間に多数の

利用関係が新たに引かれやすくなり，impCRの値が高

くなりやすいと推測できる．開発の中期以降に，単な

る機能追加の場合でもその更新の impCR の値が高い

というような場合が頻発する場合，部品の独立性が低

いからという理由も十分に考えられる．実際にコード

の再構築やリファクタリングなどを行う際には，コー

ドの独立性を低くしている原因をきちんと追究し，そ

れらの必要性があるかを判断する必要がある．これら

の行動を行うためのきっかけとして，impCR の値が

利用できるのではないかと考えている．

また，部品の独立性を低下させている原因が，多数

のシステムを横断する機能であるならば，開発言語

を AspectJ のようなアスペクト指向言語に切り換え

て，横断している機能をアスペクトとして切り分ける

などの決断をすることで，ソースコードの保守性が高

まることが期待できるであろう．このようなコードの

整理の必要性を判断するための指標の一つとしても，

impCRが利用できると考えている．

5. 4 関 連 研 究

提案手法のように CVS リポジトリに登録されてい

る情報を分析し，知見を得る研究は活発に行われて

いる．例えば，Germanらによるソフトウェア変更の

理由を把握するための研究 [7]，Herbsleb らによるソ

フトウェア開発におけるコミュニケーション遅延が開

発にどのような影響を及ぼすかについての研究 [10]，

Zimmermann らによる必要ではあるがなされていな

い潜在的な変更や不完全な変更を検知するための研

究 [15] などが挙げられる．提案手法は，CVS リポジ

トリに登録されているソフトウェアの部品間の利用関

係の変化を分析対象としたもので，リポジトリ内のソ

フトウェアの進化を新しい視点で分析したものである

といえる．

また，開発プロセスのおける活動やソフトウェアを

分析する研究も活発に行われている．例えば，Johnson

らは，開発者の活動を PCにインストールしたセンサ

を用いて記録し，内部的な特性（サイズや活動時間）

と外部的な特性（プロダクトの質や信頼性）との関連

を調査する研究 [13] を行っている．

また，大平らは，CVS などのコードリポジトリ，

メーリングリストやバグ情報システムの履歴を蓄積し

て，それらの情報をグラフ化することで定量的なデー

タ収集とプロセス管理を行うシステム（EPM）を提

案した [12]．このシステムは開発者や管理者間での情

報共有がスムーズに行うことができるなど，有益なも

のであると思われるが，現状ソースコードに対する分

析が LOCだけであるなど，ソースコードへの分析が

十分でないと思われる．提案手法を EPMなどのプロ

セス管理支援ツールに組み込むことで，より多彩な分

析が可能になると思われる．

6. む す び

本論文では，ソフトウェア部品間の利用関係の変化

をコンポーネントランクを用いて定量化することで，

利用関係の変化という観点から，更新履歴中で重大な

影響を与えた更新を抽出する手法を提案した．提案手

法に基づきシステムを開発し，実際のオープンソース

プロジェクトに適用したところ，大規模な機能追加以

外に，コア部品に対する機能追加や利用関係の変化を

伴うメンテナンス作業などが抽出できた．これらの更

新の中には LOCの変化量が少ないものも多く，実験

を通じて利用関係の変化をコンポーネントランクを用

954

論文／開発履歴中のソースコードを対象とした更新の重要度を評価する手法の提案

いて定量化することが有益であることを確認した．

今後の課題として，メトリックスの精錬や，他の開

発形態のプロジェクトへの適用などが考えられる．

謝辞 本研究は，科研費（19700033）及び 2007年

度南山大学パッヘ研究奨励金（I-A-2）の助成を受けて

いる．

文 献

[1] 青山幹雄，中所武司，向山 博，コンポーネントウェア，
共立出版，1998.

[2] 市井 誠，横森励士，松下 誠，井上克郎，“コンポーネ
ントランクを用いたソフトウェアのクラス設計に関する分
析手法の提案，” 信学技報，SS2005-37, 2005.

[3] 中塚 剛，松下 誠，井上克郎，“ソフトウェア部品分類
手法へのコンポーネントランク法の応用，” 情処学研報，
2007-SE-155, vol.2007, no.33, pp.41–48, 2007.

[4] 横森励士，梅森文彰，西 秀雄，山本哲男，松下 誠，
楠本真二，井上克郎，“Java ソフトウェア部品検索シ
ステム SPARS-J,” 信学論（D-I）， vol.J87-D-I, no.12,

pp.1060–1068, Dec. 2004.

[5] 横森励士，藤原 晃，山本哲男，松下 誠，楠本真二，
井上克郎，“利用実績に基づくソフトウェア部品重要度評
価システム，” 信学論（D-I），vol.J86-D-I, no.9, pp.671–

681, Sept. 2003.

[6] M.B. Chrissis, M. Konrad, and S. Shrum, CMMI:

Guidelines for Process Integration and Product Im-

provement, Addison-Wesley Professional, 2003.

[7] D. German and A. Mockus, “Automating the mea-

surement of open source projects,” Proc. 3rd Work-

shop on Open Source Software Engineering, pp.63–

67, Portland, Oregon, 2003.

[8] G. Blom, L. Holst, and D. Sandell（著），森 真（訳），
確率問題ゼミ，シュプリンガー・フェアラーク東京，1995.

[9] I. Jacobson, M. Griss, and P. Jonsson, Software

Reuse, Addison Wesley, 1997.

[10] J.D. Herbsleb, A. Mockus, T.A. Finholt, and R.E.

Grinter, “An empirical study of global software de-

velopment: Distance and speed,” Proc. 23rd Interna-

tional Conference on Software Engineering, pp.81–90,

Toronto, Canada, 2001.

[11] K. Inoue, R. Yokomori, T. Yamamoto,

M. Matsushita, and S. Kusumoto, “Ranking signif-

icance of software components based on use rela-

tions,” Trans. Software Engineering, vol.31, no.3,

pp.213–225, 2005.

[12] M. Ohira, R. Yokomori, M. Sakai, K. Matsumoto,

K. Inoue, and K. Torii, “Empirical project moni-

tor: A tool for mining multiple project data,” Inter-

national Workshop on Mining Software Repositories

(MSR2004), pp.42–46, Edinburgh, Scotland, 2004.

[13] P.M. Johnson, H. Kou, J.M. Agustin, Q. Zhang, A.

Kagawa, and T. Yamashita, “Practical automated

process and product metric collection and analy-

sis in a classroom setting: Lessons learned from

Hackystat- UH,” Proc. 2004 intl. Symposium on Em-

pirical Software Engineering (ISESE2004), pp.136–

144, Redondo beach, CA, 2004.

[14] R. Yokomori, M. Noro, and K. Inoue, “Evaluation of

source code updates in software development based

on component rank,” Proc. 13th Asia Pacific Soft-

ware Engineering Conference (APSEC06), pp.327–

334, Bangalore, India, Dec. 2006.

[15] T. Zimmermann, P. Weissgerber, S. Diehl, and A.

Zeller, “Mining version histories to guide software

changes,” Proc. 26th International Conference on

Software Engineering, pp.563–572, Edinburgh, Scot-

land, 2004.

[16] “SourceForge,” http://sourceforge.net/

[17] “Galleon,” http://galleon.tv/

[18] “PMD,” http://pmd.sourceforge.net/

[19] “Ganttproject,” http://ganttproject.sourceforge.net/

[20] “JBidWatcher,” http://www.jbidwatcher.com/

（平成 19 年 6 月 29 日受付，10 月 19 日再受付）

横森 励士 （正員）

平 11 阪大・基礎工・情報卒．平 15 同大
大学院博士課程了．同年同大学院情報科学
研究科特任研究員．平 17 南山大・数理情
報・講師．工博．プログラム解析を利用し
た開発支援に関する研究に従事．情報処理
学会，IEEE 各会員．

野呂 昌満 （正員）

昭 56 慶大・工卒．昭 58 同大大学院博
士前期課程了．昭 61 同大学院博士後期課
程単位取得退学．同年南山大・経営・講師．
助教授，教授を経て，平 12 同大・数理情
報・教授．工博．ソフトウェアアーキテク
チャ，アスペクト指向ソフトウェア開発に

関する研究に従事．情報処理学会，日本ソフトウェア科学会，
IEEE，ACM 各会員．

井上 克郎 （正員）

昭 54 阪大・基礎工・情報卒．昭 59 同大
大学院博士課程了．同年同大・基礎工・情
報・助手．昭 59～61 ハワイ大マノア校・
情報工学科・助教授．平元阪大・基礎工・
情報・講師．平 3 同学科・助教授．平 7 同
学科・教授．工学博士．平 14 阪大大学院

情報科学研究科・教授．ソフトウェア工学の研究に従事．情報
処理学会，日本ソフトウェア科学会，IEEE，ACM 各会員．

955

