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Abstract

We present measurements of the polarization parameters and CP -violating asymmetries in
B0 → D∗+D∗− decays using a 140 fb−1 data sample collected at the Υ(4S) resonance with
the Belle detector at the KEKB energy-asymmetric e+e− collider. The B0 → D∗+D∗−

decay is governed by the b→ cc̄d transition and provides a unique way to test the Standard
Model. We collect 130 fully reconstructed neutral B meson signals via the B0 → D∗+D∗−

decay mode. The B0 → D∗+D∗− decay is a mixture of CP -even and CP -odd components
as the D∗+D∗− system is a superposition of S-, P -, and D-waves. We measure the fraction
of each decay amplitude to extract CP asymmetry parameters correctly. We obtain the
following polarization parameters:

R⊥ = 0.19 ± 0.08(stat) ± 0.01(syst),

R0 = 0.57 ± 0.08(stat) ± 0.01(syst).

The results suggest that the fraction of CP -odd component (R⊥) is small. Using these
fractions of polarization components, CP asymmetry parameters are extracted from the
proper time difference distribution of B meson decays, which is obtained from the distance
between decay vertices of pair-produced B mesons. The flavor of the accompanying B
meson is determined from inclusive properties of its decay products. We obtain:

SD∗+D∗− = −0.75 ± 0.56(stat) ± 0.12(syst),

AD∗+D∗− = −0.26 ± 0.26(stat) ± 0.06(syst).

These are the first measurement at Belle, and are consistent with the Standard Model
expectations. Thus this thesis establishes the analysis method of CP asymmetry mea-
surements in the case we need elaborate angular analyses. More precise measurements
of this process with larger statistics in the future will enable us to test whether a new
physics effect is seen in the b→ cc̄d transition.
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Chapter 1

Introduction

1.1 Motivation

A concept of symmetry has been playing a central role to understand the nature in terms
of modern physics. For example, conservation of energy is led from a time-translation
symmetry by the Noether’s theorem. We sometimes realize, however, that such symmetry
is broken. An example is parity violation in weak interactions, which is an asymmetry
between left and right. It does not mean an imperfection of the nature but an imperfection
of understanding of the nature we had before the discovery of parity violation. The
observation of parity violation helped us to find out the mechanism of the weak interaction.
Studies of asymmetries are important to deepen our understanding of the nature.

The CP asymmetry, which arises from the essential difference between matter and
anti-matter, is particularly important among such asymmetries, since it is closely related
to the fundamental structure of both microscopic and macroscopic world. CP violation
was experimentally discovered in 1964 in the neutral Kaon system [1]. There was no
physicist who expected such a result until the moment. This completely unexpected
result opened a new era of flavor physics.

In 1973, Kobayashi and Maskawa made a proposal which is known as the Kobayashi-
Maskawa (KM) mechanism [2]. It explained the origin of CP violation with six quarks in
the Glashow-Weinberg-Salam (GWS) framework [3]. In this model, CP violation arises
from an irreducible complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-
mixing matrix. Today we call a group of theories based on GWS, CKM and Quantum
Chromo Dynamics (QCD) the Standard Model (SM). Though the SM has been supported
by many experiments [4, 5, 6] over 30 years, CP violation had been observed only in the
neutral Kaon system. In 1980, Bigi, Carter and Sanda [7] pointed out that the neutral
B-meson system can have a large time-dependent CP asymmetry induced by the B0-B0

mixing. Two B factories, experiments to observe CP violation in the B-meson system
with a high luminosity, were proposed and constructed in Japan and U.S.A.. In 2001,
Belle [8] and BaBar [9] collaborations observed CP violation in the b→ cc̄s transition as
expected by the SM.

Although this result strongly supports that the source of CP violation is dominated by
the SM framework, many tests remain before one can conclude that the KM phase is the
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only source of CP violation. It is unlikely that the SM is the ultimate model to describe
the nature, because there are many open questions in the SM. Examples include the origin
of three generations, similar but different characteristics of leptons and quarks, and many
free parameters. Many models beyond the SM, such as models based on Supersymmetry
(SUSY) and Grand Unified Theories (GUT), have been proposed to solve these issues.
These models in general expect more than one source of CP violation, whereas the SM
has the only one KM phase. CP violation is expected to be a good probe for confirming
the SM or detecting new physics beyond the SM.

Another reason that we should investigate CP violation is in the Cosmology. In 1967,
Sakharov pointed out [10] that CP violation is essential for our universe to evolve from
the Big-Bang to the present figure. However, the magnitude of CP violation in the SM is
too small to generate this matter-dominant universe [11]. A new source of CP violation
can be a breakthrough to resolve this issue.

Because most of new physics models are not sensitive to the b → cc̄s transition,
measurements of CP asymmetries with different decay processes, such as b→ cc̄d, b → sqq̄
and b → sγ, are important. B0 → D∗+D∗− is a suitable mode for this purpose. It
is dominated by the b → cc̄d transition, having a large branching fraction (∼ 0.1%)
and a possibility of a sizable contribution from the loop diagrams (called the penguin
diagrams [12]). In the SM framework, the CP asymmetry of this mode should not be far
from that of the b → cc̄s transition. Thus a large discrepancy from the SM prediction
suggests existence of new physics beyond the SM.

The goal of this thesis is to present a measurement of time-dependent CP asymmetries
in the B0 → D∗+D∗− decay. The outline of this thesis follows: In chapter 2, we show
the principle of the measurement for time-dependent CP asymmetries. The experimental
apparatus is described in chapter 3. In chapter 4, we explain the D∗+D∗− selection
method. Polarization should be measured before the CP analysis to disentangle states
with different CP parities. Its measurement is shown in chapter 5. In chapter 6, we
explain in detail the method of the time-dependent CP asymmetry measurements and
show the results. Chapter 7 is devoted to discussions on our results. Finally, conclusion
is given in Chapter 8.

In this introduction, we describe phenomenology of time-dependent CP violation in
B decays to a CP eigenstate. We also define CP asymmetry parameters SCP and ACP .
We then define the Unitarity Triangle in the SM framework and show present constraints
on it. After that we explain characteristics of b → cc̄d transitions and show advantages
of the B0 → D∗+D∗− mode in terms of the clean measurement of CP asymmetries. In
section 1.5, we discuss expectations on SCP and ACP in and beyond the SM. In section
1.6, we describe a time-dependent differential decay rate that contains information on
polarization.
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1.2 Phenomenology of time-dependent CP violation

in B decays

1.2.1 Time evolution of the neutral B mesons

A neutral Bd meson produced by the strong interaction is a pure flavor eigenstate, (bd)
or (bd). The former is denoted by B0 and the latter is by B0 [13]. Generally, if mass
eigenstates and flavor eigenstates are different, time-dependent oscillation occurs. Here,
time evolution of the neutral B meson state at time t is given by an admixture of pure
B0 and B0:

|B(t)〉 = a(t)|B0〉 + b(t)|B0〉. (1.1)

The time-dependent Schrödinger equation is:

i
d

dt

(

a(t)
b(t)

)

= H
(

a(t)
b(t),

)

, (1.2)

where Hamiltonian H is denoted as:

H = M − i

2
Γ =

(

M11 − i
2
Γ11 M12 − i

2
Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

)

. (1.3)

M and Γ are the mass matrix and the decay matrix, respectively. M21 = M∗
12 and Γ21 =

Γ∗
12 are required from the definition of Hermitian matrices. CPT invariance assumption

guarantees M ≡ M11 = M22 and Γ ≡ Γ11 = Γ22. Eigenvalues µ± of this Hamiltonian are
obtained as:

µ± = M − i

2
Γ ±

√

(M12 −
i

2
Γ12)(M

∗
12 −

i

2
Γ∗

12). (1.4)

Both mass eigenstates can be described by mixing parameters q and p:

|B1〉 = p|B0〉 + q|B0〉 for µ+,

|B2〉 = p|B0〉 − q|B0〉 for µ−,
(1.5)

with

q

p
=

√

M∗
12 − i

2
Γ∗

12

M12 − i
2
Γ12

. (1.6)

and |p|2 + |q|2 = 1. Mass eigenstates of B mesons are denoted by B1 (m1,Γ1) and
B2 (m2,Γ2), where m1 (m2) and Γ1 (Γ2) are the mass and decay rate of B1 (B2). They
are given by:

m1 = <µ+, Γ1 = −2=µ+,

m2 = <µ−, Γ2 = −2=µ−,
(1.7)
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For convenience, we define a mass difference ∆m, a decay rate difference ∆Γ, an averaged
mass m and an averaged decay rate Γ, respectively:

∆m ≡m2 −m1,

∆Γ ≡Γ1 − Γ2,

m ≡m1 +m2

2
,

Γ ≡Γ1 + Γ2

2
.

(1.8)

Time evolution of B1 and B2 is written as:

|B1(t)〉 = e−iµ+t|B1〉 = e−im1t−Γ1t/2|B1〉,
|B2(t)〉 = e−iµ−t|B2〉 = e−im2t−Γ2t/2|B2〉.

(1.9)

From Eq. (1.5) to (1.9), time evolution of both B0 and B0 is acquired:

|B0(t)〉 = g+(t)|B0〉 +
q

p
g−(t)|B0〉,

|B0(t)〉 = g+(t)|B0〉 +
p

q
g−(t)|B0〉,

(1.10)

where

g±(t) =
1

2
e−im1t · e−Γ1t/2

[

1 ± e−i∆mt · e∆Γt/2

]

=
1

2
e−imt · e−Γt/2

[

ei∆mt/2 · e−∆Γt/4 ± e−i∆mt/2 · e∆Γt/4

]

.

(1.11)

Since ∆Γ/Γ ∼ O(10−3) in the neutral Bd system, we take ∆Γ = 0 in the following, and
redefine B decay rate Γ ≡ Γ = Γ1 = Γ2. Equation (1.11) then becomes:

g±(t) = e−imt · e−Γt/2

[

ei∆mt/2 ± e−i∆mt/2

2

]

. (1.12)

Finally, time evolution of both B0 and B0 is:

|B0(t)〉 = e−Γt/2

[

cos
∆mt

2
|B0〉 + i

q

p
sin

∆mt

2
|B0〉

]

,

|B0(t)〉 = e−Γt/2

[

cos
∆mt

2
|B0〉 + i

p

q
sin

∆mt

2
|B0〉

]

,

(1.13)

where factor e−imt is canceled by a phase convention.
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1.2.2 Time-dependent CP violation

We consider the case that B0 and B0 mesons decay into a same final state fCP that is a
CP eigenstate. Decay amplitudes are defined by

ACP ≡ 〈fCP |H|B0〉,
ACP ≡ 〈fCP |H|B0〉.

(1.14)

Each time-dependent decay amplitude is written by using Eq. (1.13) as :

ACP (t) =ACP e
−Γt/2[cos

∆mt

2
+ iλCP sin

∆mt

2
],

ACP (t) =ACP e
−Γt/2[cos

∆mt

2
+ iλ−1

CP sin
∆mt

2
],

(1.15)

where we define

λCP ≡ q

p
· ACP
ACP

. (1.16)

As explained later, |q/p| ∼ 1 holds in the neutral Bd system within the SM framework.
Therefore |λCP |2 = |ACP |2/|ACP |2 holds.

The time-dependent decay rates are then written as:

Γ(B0(t) → fCP ) ≡|〈fCP |H|B0(t)〉|2

=
e−Γt

2
|ACP |2

[

(|λCP |2 + 1) − (|λCP |2 − 1) cos∆mt− 2=λCP sin ∆mt

]

,

Γ(B0(t) → fCP ) ≡|〈fCP |H|B0(t)〉|2

=
e−Γt

2
|ACP |2

[

(|λ−1
CP |2 + 1) − (|λ−1

CP |2 − 1) cos∆mt− 2=λ−1
CP sin ∆mt

]

=
e−Γt

2
|ACP |2

[

(|λCP |2 + 1) + (|λCP |2 − 1) cos ∆mt + 2=λCP sin ∆mt

]

.

(1.17)

The time-dependent CP asymmetry is defined as:

aCP (t) ≡Γ(B0(t) → fCP ) − Γ(B0(t) → fCP )

Γ(B0(t) → fCP ) + Γ(B0(t) → fCP )

=
(|λCP |2 − 1) cos∆mt + 2=λCP sin ∆mt

|λCP |2 + 1

=ACP cos ∆mt + SCP sin ∆mt,

(1.18)

where we define CP asymmetry parameters

SCP ≡ 2=λCP
|λCP |2 + 1

,

ACP ≡ |λCP |2 − 1

|λCP |2 + 1
.

(1.19)

5



1.2.3 Meaning of CP asymmetry parameters

|q/p| ∼ 1 means that q/p ∼ e−iφM , where φM is a CP -violating weak phase difference in
the mixing. ACP/ACP can also have a weak phase difference φD and also an amplitude
ratio r ≡ |ACP/ACP |. Then Eq. (1.16) becomes:

λCP = (e−iφM ) · (r · e−iφD) = r · e−i(φM +φD). (1.20)

Equation (1.20) means that we have two sources of CP violation. One source is
existence of the decay amplitude difference (r 6= 1). It makes |λCP | 6= 1, then ACP 6= 0 in
Eq. (1.19). This type of CP asymmetry is called “direct CP violation”. Another source
is existence of the phase interference (φM + φD 6= 0). It makes =λCP 6= 0, then SCP 6= 0
in Eq. (1.19). This type of CP asymmetry is called “mixing-induced CP violation”.

In the rest of this thesis, we discuss CP violation with these CP asymmetry parame-
ters, SCP and ACP .

1.3 CKM Matrix and Unitarity Triangle

In the SM framework, left-handed quarks form three doublets under the weak SU(2)
interaction:

(

u
d′

)

L

(

c
s′

)

L

(

t
b′

)

L

. (1.21)

The weak eigenstates (d′, s′, b′) are a linear combination of the mass eigenstates (d, s, b):




d′

s′

b′



 = VCKM





d
s
b



 ≡





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb









d
s
b



 , (1.22)

where VCKM, a 3× 3 unitarity matrix, is called the Cabibbo-Kobayashi-Maskawa (CKM)
matrix [2]. The Wolfenstein parametrization [19] is convenient to grasp a character of this
matrix:

VCKM =





1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1



 + O(λ4). (1.23)

Here A, ρ and η are real parameters and λ = sin θC ∼ 0.22, where θC is called the Cabibbo
angle [20]. Vub and Vtd are in particular interesting, because their complex phases make
weak interaction violate CP symmetries. Another interesting character is unitarity of the
matrix,

∑

j VijV
∗
kj =

∑

j V
∗
jiVjk = 0 (i 6= k). The most useful relation among six of them

is:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.24)

Equation (1.24) can be expressed as a triangle in the complex plane, which is called the
“Unitarity Triangle”. It is convenient to normalize Eq. (1.24) by |VcdV ∗

cb|, since one side is
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aligned to the real axis and its length becomes one. Then the coordinates of the vertices
of the triangle are: (0, 0), (1, 0) and (ρ, η), where

ρ ≡
(

1 − λ2

2

)

ρ,

η ≡
(

1 − λ2

2

)

η.

(1.25)

Figure 1.1 shows the rescaled Unitarity Triangle, where

φ1 ≡ π − arg

(−V ∗
tbVtd

−V ∗
cbVcd

)

,

φ2 ≡ arg

(

V ∗
tbVtd

−V ∗
ubVud

)

,

φ3 ≡ arg

(

V ∗
ubVud

−V ∗
cbVcd

)

(1.26)

are three angles of the triangle. As described later in this chapter, non-zero values for
φ1, φ2 and φ3 are directly connected to observable CP asymmetries.

Figure 1.1: Rescaled Unitarity triangle.

1.3.1 B0-B0 mixing in the Standard Model

In the SM, B0 and B0 can mix through the second order weak interactions known as the
“box-diagram” (Fig. 1.2). Now this B0-B0 mixing is described in terms of CKM matrix
elements. Theoretical computations indicate [21],

M12 ∝ (VtbV
∗
td)

2m2
t ,

Γ12 ∝ (VubV
∗
ud + VcbV

∗
cd)

2m2
b = (−VtbV ∗

td)
2m2

b ,
(1.27)
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where mt (mb) is the top (bottom) quark mass.
This is qualitatively explained as follows: Since the intermediate state of B0-B0 mixing

is dominated by the virtual top quark that is the heaviest quark, M12 is governed by mt.
On the contrary, B0 (B0) should decay to particles lighter than the bottom quark. With
an approximation that the masses of charm quark and other light quarks are well below
mb, Γ12 is determined by mb. Thus we obtain

∣

∣

∣

∣

Γ12

M12

∣

∣

∣

∣

∼ O
(

m2
b

m2
t

)

� 1. (1.28)

With this condition, Eq. (1.6) becomes:

q

p
=

√

M∗
12

M12
+ O

(

Γ12

M12

)

' V ∗
tbVtd
VtbV ∗

td

.

(1.29)

Then |q/p| ∼ 1 holds.

Figure 1.2: box-diagrams for the B0-B0 mixing.

1.3.2 CP violation in B0 → J/ψK0
S Decay

A CP asymmetry parameter, sin 2φ1, has been measured with b → cc̄s modes, in par-
ticular, B0 → J/ψK0

S decays. A remarkable feature of J/ψK0
S is its very small hadronic

uncertainties in the SM framework.
In the CKM matrix [Eq. (1.23)], their amplitudes are approximated by the power of

λ. A larger amplitude is called CKM-allowed and a smaller is called CKM-suppressed.
Furthermore, internal spectator diagrams like Fig. 1.3 are suppressed since the internal
vertex should cancel the color of the spectator. This is called a color-suppressed decay,
and external spectator diagrams are called color-allowed decays.

The tree diagram of the B0 → J/ψK0
S decay [Fig. 1.3 (left)] is color-suppressed and

CKM-allowed. Though the loop diagrams with c and t virtual quarks have the same order
of CKM matrix elements as the tree diagram, their weak phase is also the same as the tree
diagram. Therefore measured CP asymmetry is not affected. Only a loop diagram includ-
ing a virtual u quark has a different weak phase. But this diagram is CKM-suppressed
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by O(λ2) compared to the tree diagram. Moreover, additional suppression arises from
generating a heavy color singlet cc̄ pair from gluons and to make J/ψ. Therefore the
penguin pollution is negligible and only one weak phase contributes to CP violation. As
a result, mixing induced CP asymmetry parameter SJ/ψK0

S
should be equal to sin 2φ1 to

a good approximation.

Figure 1.3: Left (right): B0 → J/ψK0
S tree (penguin) diagram. The tree diagram is

color-suppressed due to the internal vertex.

The present1 world average of the CP asymmetry parameter is

sin 2φ1 = 0.731 ± 0.056 [13]. (1.30)

In the rest of this paper, we regard this value as the reference of sin 2φ1. Figure 1.4 shows
the current unitarity triangle constraints obtained from various experiments including
sin 2φ1 measurements.

1.4 B0 → D∗+D∗− Decay Amplitude

As mentioned previously, a measurement of time-dependent CP asymmetries via the
b → cc̄d [14] transition is important to check the consistency of the SM framework and
to search for new physics beyond the SM. In this section, we first show the detailed
reason why b → cc̄d is suitable for such tasks. Then we explain special features of the
B0 → D∗+D∗− mode.

One of common characteristics over all b → cc̄d modes is that they are sensitive to
the CP asymmetry parameter sin 2φ1. Although b→ cc̄s is also sensitive to sin 2φ1, com-
parison with different quark transitions is an important test to check the SM consistency.
There are some new physics models [15] that expect sizable CP asymmetry corrections
from the dominant phase (= φ1 for b→ cc̄d) up to 0.6.

Promising final states of such b → cc̄d modes include B0 → D+D−, B0 → D∗±D∓,
B0 → D∗+D∗− and B0 → J/ψπ0 etc. Table 1.1 summarizes characteristics of these
modes.

1In August 2004, Particle Data Group published the latest version of the review of particle properties.
These numbers are almost the same as those in the previous review [13]. Therefore, in this paper, we use
the numbers taken from [13].
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Figure 1.4: Experimental constraints to the unitarity triangle. The unitarity triangle
constraints obtained from various experiments in the ρ− η plane are plotted. The mixing
parameter ∆md (∆ms) in the Bd (Bs) system, CKM matrix element |Vub/Vcb|, the CP
violation parameter εK in the neutralK meson system, the CP violation parameter sin 2φ1

in the neutral B meson system are plotted. The four bands crossing at (1, 0) represents
sin 2φ1 measurements including B0 → J/ψK0

S.

Figure 1.5: Left (right): B0 → D∗+D∗− tree (penguin) diagram. The tree diagram
dominates the total decay amplitude. The strong penguin is dominant for the penguin
diagram. The electroweak penguin and the exchange diagram are negligible since their
contribution is at most a few % of the strong penguin.
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The color-allowed D(∗)D(∗) decays have relatively large branching fractions of B ∼
0.1%. A color-suppressed decays like J/ψπ0 can have the same order of sensitivity owing
to higher reconstruction efficiencies.

Both tree and penguin amplitudes are CKM-suppressed with the same order of CKM
factors [O(λ3)]. Since new physics effects can enter in both tree and penguin diagrams in
the b → cc̄d decay, a new physics model that is not CKM-suppressed may give a relatively
large enhancement to measured CP asymmetries. Furthermore, the penguin diagram in
the SM framework has a different weak phase from the tree diagram. As explained later,
magnitude of a penguin diagram with a different weak phase may make a sizable pollution
in the measured CP asymmetry and may cause large uncertainty in the SM expectation.

Among various b → cc̄d decays, B0 → D∗+D∗− decay has advantages. First, the
penguin pollution is expected to be relatively small, at a few% level due to the vector-
vector decay [16]. Second, it is experimentally clean, since there is few background from
generic BB̄ decays, due to the high purity of D∗± mesons.

The vector-vector decay feature also makes the D∗+D∗− final state a mixture of CP -
even and CP -odd components. Although it gives some dilution to a measured CP asym-
metry, we can extract correct CP -violation parameters by knowing the fraction of each
component. This technique is called the angular analysis [17]. The CP -odd fraction is
expected to be about 5.5% in the SM [18].

Decay mode Color CKM Decay type Branching fraction (×10−4) [13]
D+D− A S PP < 9.4(90% CL)

D∗+D− +D+D∗− A S VP+PV 11.7 ± 3.5
D∗+D∗− A S VV 8.7 ± 1.8
J/ψπ0 S S VP 0.22 ± 0.04
J/ψK0

S S A VP (8.5 ± 0.5) × 1/2

Table 1.1: Characteristics of b → cc̄d transitions available for time-dependent CP asym-
metry measurements. J/ψK0

S is also shown for comparison. A (S) means an allowed
(suppressed) decay and P (V) means a Pseudo-scalar (Vector) particle.

1.5 CP violation in B0 → D∗+D∗−

1.5.1 The simplest case

We first discuss the simplest case where the dominant amplitude in the D∗+D∗− decay is
the tree diagram (Fig. 1.5). In this case, only one CKM phase appears in decay amplitudes:

A(D∗+D∗−
i) ≡〈D∗+D∗−

i|Heff |B0〉 ≡ VcdV
∗
cb · Mi,

A(D∗+D∗−
i) ≡〈D∗+D∗−

i|Heff |B0〉 ≡ V ∗
cdVcb · Mi,

(1.31)

where D∗+D∗−
i is a final state of D∗+D∗− which has a fixed angular momentum, i, and

thus is a CP eigenstate, and Mi is a matrix element for each final state.
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From Eq. (1.16) and (1.29), we obtain

λi =
q

p
· A(D∗+D∗−

i)

A(D∗+D∗−
i)

=
VtdV

∗
tb

V ∗
tdVtb

· V
∗
cdVcbMi

VcdV ∗
cbMi

= ηie
−2iφ1

(1.32)

where ηi is the CP parity of each final state. CP asymmetry parameters [Eq. (1.19)]
become:

SD∗+D∗− i = −ηi sin 2φ1,

AD∗+D∗− i = 0.
(1.33)

This result is exactly the same as the J/ψK0
S case and there is no direct CP violation

(|λi| = 1) in this decay, because only one weak phase is involved.

1.5.2 More than one phase in the Standard Model

In the case that penguin diagram cannot be ignored, we have 3 CKM factors in the decay
amplitude to the D∗+D∗− final state:

A(D∗+D∗−
i) =〈D∗+D∗−

i|Heff |B0〉 = VudV
∗
ubM(u)

i + VcdV
∗
cbM(c)

i + VtdV
∗
tbM(t)

i ,

A(D∗+D∗−
i) =〈D∗+D∗−

i|Heff |B0〉 = V ∗
udVubMi

(u)
+ V ∗

cdVcbMi
(c)

+ V ∗
tdVtbMi

(t)
,
(1.34)

where M(j)
i (j = u, c, t) are the generic amplitudes apart from the explicitly shown CKM

factors.
Using Eq. (1.24), Eq. (1.34) becomes:

A(D∗+D∗−
i) = VcdV

∗
cbT + VtdV

∗
tbP

= VcdV
∗
cbT (1 − |R|e−iφ1eiδ),

A(D∗+D∗−
i) = V ∗

cdVcbT + V ∗
tdVtbP

= V ∗
cdVcbT (1 − |R|eiφ1eiδ),

(1.35)

where T ≡ M(c)
i −M(u)

i is a tree-dominant amplitude, P ≡ M(t)
i −M(u)

i is a pure penguin
amplitude,

R ≡ −
∣

∣

∣

∣

VtdV
∗
tb

VcdV
∗
cb

∣

∣

∣

∣

· PT
= |R|e−iφ1eiδ

(1.36)

and δ ≡ δP − δT is a strong phase difference between P and T .
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Using Eq. (1.29) and (1.35),

λi =
q

p
· A(D∗+D∗−

i)

A(D∗+D∗−
i)

=
VtdV

∗
tb

V ∗
tdVtb

· V
∗
cdVcbT (1 − |R|eiφ1eiδ)

VcdV
∗
cbT (1 − |R|e−iφ1eiδ)

= ηi ·
e−iφ1 − |R|eiδ
eiφ1 − |R|eiδ .

(1.37)

In this case, CP asymmetry parameters [Eq. (1.19)] become:

SD∗+D∗− i = ηi
− sin 2φ1 + 2|R| sinφ1 cos δ

1 + |R|2 − 2|R| cosφ1 cos δ
,

AD∗+D∗− i =
2|R| sinφ1 sin δ

1 + |R|2 − 2|R| cosφ1 cos δ
.

(1.38)

Direct CP violation will occur when the penguin amplitude exists (R 6= 0) and the
strong phase difference exists (sin δ 6= 0).

1.5.3 With new physics beyond the Standard Model

When a new physics term contributes to the D∗+D∗− decay, the total decay amplitude
can be written as:

A(D∗+D∗−
i) =|ASM |eiφSMeiδSM + |ANP |eiφN eiδNP

=VcdV
∗
cbT (1 − |R|e−iφ1eiδ + |N |eiφNeiδN ),

A(D∗+D∗−
i) =|ASM |e−iφSMeiδSM + |ANP |e−iφN eiδNP

=V ∗
cdVcbT (1 − |R|eiφ1eiδ + |N |e−iφN eiδN ),

(1.39)

where ASM (ANP ), φSM (φN), δSM (δNP ) are the amplitude, CP violating phase and CP
conserving phase of the SM (new physics). In the SM, φSM and δSM correspond to the

weak phase and strong phase, respectively. It is defined for convenience as |N | ≡ |ANP |
|VcdV

∗
cb
|

and δN ≡ δNP − δT .
Then the λi becomes:

λi =
q

p
· A(D∗+D∗−

i)

A(D∗+D∗−
i)

= ηi ·
e−iφ1 − |R|eiδ + |N |e−i(φ1+φN )eiδN

eiφ1 − |R|eiδ + |N |ei(φ1+φN )eiδN
.

(1.40)

As a result, we obtain:

SD∗+D∗− i = ηi[− sin 2φ1 + 2|R| sinφ1 cos δ − |N |2 sin(2φ1 + 2φN)

+ 2|N |{|R| sin(φ1 + φN) cos(δ − δN ) − sin(2φ1 + φN) cos δN ]/L,

AD∗+D∗− i = [2|R| sinφ1 sin δ + 2N{|R| sin(φ1 + φN) sin(δ − δN) + sinφN sin δN}]/L,
(1.41)
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where

L = 1 + |R|2 − 2|R| cosφ1 cos δ

+ |N |2 − 2|N |{|R| cos(φ1 + φN) cos(δ − δN ) − cos φN cos δN}.
(1.42)

For small |R| and |N |,

SD∗+D∗− i ∼ ηi
− sin 2φ1 + 2|R| sinφ1 cos δ − 2|N | sin(2φ1 + φN) cos δN

1 − 2|R| cosφ1 cos δ + 2|N | cosφN cos δN
,

AD∗+D∗− i ∼
2|R| sinφ1 sin δ + 2|N | sinφN sin δN

1 − 2|R| cosφ1 cos δ + 2|N | cosφN cos δN
.

(1.43)

From factorization with a heavy quark limit, δ ∼ 12◦ [22] and |R| ∼ 0.02 [16] are
expected. Figure 1.6 shows SD∗+D∗− and AD∗+D∗− distribution based on the SM and
beyond the SM assumptions. For an illustration, δN = δ is assumed. Since the SM
contribution is relatively small, a large discrepancy from Eq. (1.33) strongly suggests
existence of a new physics term.

1.6 Polarization as a dilution factor to CP analysis

1.6.1 Representations of Polarization

In the previous sections, we assumed that the B0 → D∗+D∗− decay amplitude is domi-
nated by one angular momentum state. In general, however, there can be three possible
eigenvalues, L = 0, 1 or 2, for the angular momentum between D∗+ and D∗−.

The polarization of D∗± and resulting angular distributions for daughter particles
thus depend on how these three states are mixed. We consider three different bases to
describe the polarization for the B0 → D∗+D∗− decay; the partial wave basis, the helicity
basis and the transversity basis. In the partial wave basis, we use the orbital angular
momentum L to distinguish three orthogonal states. The helicity basis is indexed by the
helicity, which is the spin projection of the daughter particle to its momentum vector.
The transversity basis is indexed by the transversity, which is the spin projection of the
one daughter particle to the normal of the other daughter’s decay plane. All of them
are mathematically equivalent, but they have different characteristics in the experimental
points of view. Figure 1.7 (left) shows angular distributions of polarized states on bases
mentioned above. In this section, we describe an overview of each basis and relation to
CP parities. Detailed explanations are given in Appendix B.

1.6.2 Partial Wave Basis

When a B meson (spin-0) decays into two vector (spin-1) mesons, three orbital angular
momentum eigenvalues L = 0, 1, 2 are allowed due to the angular momentum conservation.

A general decay amplitude is given as a superposition of partial wave states:

Atot = s|0, 0〉+ p|1, 0〉 + d|2, 0〉, (1.44)
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Figure 1.6: SD∗+D∗− and AD∗+D∗− including contributions from the SM (beyond SM) loop
diagrams as a function of δ (φN). Figures on the left columns show the SM expectations
with |R| = 0.0 (solid), 0.02 (dashed), 0.04 (dotted) and 0.06 (dashed-dotted). Vertical
lines indicate a theoretical prediction for δ (12◦). Figures on the right column show the
cases beyond the SM, |N | = 0.0 (solid), 0.2 (dashed), 0.4 (dotted), 0.6 (dashed-dotted),
with |R| = 0.02 and δ = δN = 12◦. Note that the scale for the figures on the left column
is 1/10 of those in the right column. Since the SM penguin contribution is always small,
it can be neglected. With new physics effects, SD∗+D∗− is enhanced around φN = −2 and
AD∗+D∗− is enhanced around φN = ±3.
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where |L,M〉 represents a partial wave labeled by the total orbital angular momentum L
and its z component M . An amplitude of each partial wave is labeled by the spectroscopic
notation, s, p or d.

Let us consider CP transformation for the B → V V decay in the partial wave basis.
Parity transformation in the B → V V decay is lead from the following consideration: We
define a B → V V state as a two body system in the B rest frame

|ψ〉 ≡ |L,M〉 =

∫

d3p̂Y L
M(p̂)|~p1〉|~p2〉, (1.45)

where |~pi〉 denotes an i-th particle that has momentum ~pi in the B rest frame, p̂ is a
normalized relativistic momentum vector. The Parity transformation is:

P |ψ〉 =η1η2

∫

d3p̂Y L
M(−p̂)|~p2〉|~p1〉

=η1η2(−1)L
∫

d3p̂Y L
M(p̂)|~p2〉|~p1〉

P12= η1η2(−1)L|ψ〉
=(−1)L|ψ〉,

(1.46)

where ηi(i = 1, 2) is the intrinsic parity. We use Y L
M(−p̂) = (−1)LY L

M(p̂) and use the fact
that permutation P12 is symmetric from Bose-Einstein statistics.

To do the C transformation, we note that it is equivalent to a product of the spatial
(Parity) transformation P , spin transformation Pσ and permutation P12. First we redefine
B → V V states as

|ψ〉 ≡
∫

d3p̂Y L
M(p̂)|q~p1σ1〉|q~p2σ2〉, (1.47)

where q(q) denotes a particle (anti-particle) and σi denotes its spin. Charge transforma-
tion becomes:

C|ψ〉 = ηC

∫

d3p̂Y L
M(p̂)|q~p1σ1〉|q~p2σ2〉, (1.48)

where ηC is charge parity. Also

ψ
P→η1η2(−1)L

∫

d3p̂Y L
M(p̂)|q~p2σ1〉|q~p1σ2〉

Pσ→η1η2(−1)L(−1)S
∫

d3p̂Y L
M(p̂)|q~p2σ2〉|q~p1σ1〉

P12→η1η2(−1)L+S

∫

d3p̂Y L
M(p̂)|q~p1σ1〉|q~p2σ2〉,

(1.49)

where transformation of the spin part uses the fact that we consider two spin-1 particles.
Therefore C transformation is:

ηC = (−1)L+S. (1.50)
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CP parity ηCP is a product of Eq. (1.46) and (1.50):

ηCP = (−1)L, (1.51)

where we used J = L+ S = 0 for the B decay.
From Eq. (1.51), we find S- and D-waves are CP -even, while P -wave is CP -odd.

It means that the magnitude of measured CP asymmetry is diluted by opposite CP
components. In order to avoid this bias, we have to extract decay amplitude of both
CP components with utilizing decay angles that are governed by the angular momentum.
This is called an angular analysis. Unfortunately, we have difficulty to apply such an
angular analysis in the partial wave basis, since it is not adequate for a relativistic system.
Therefore, we have to adopt a more suitable basis.

Figure 1.7: Angular distributions of each polarized state of B0 → D∗+D∗− on different
bases. Top, middle, bottom rows correspond to the partial wave basis, the helicity basis
and the transversity basis, respectively. For the partial wave basis, D∗+ angular distri-
bution are shown. For the helicity and transversity basis, the angular distribution of π+

from D∗+ are shown. Arrows indicate that two amplitudes are equivalent. Each state in
the transversity basis can be distinguished by θtr and θ1.

1.6.3 Helicity Basis

The partial wave basis has been employed in non-relativistic systems as an effective analy-
sis tool. However, in the relativistic system, we meet some difficulty owing to the Lorentz-
boost. For example, an orbital angular momentum is defined in the rest frame of a parent
particle, whereas a spin angular momentum is defined at the rest frame of its daughter.
Therefore calculation becomes complicated.
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If we choose the quantization axis along with the direction of the Lorentz-boost, i.e.
the momentum vector, the definition becomes unique everywhere. Then the helicity λ,
the spin projection to the axis, becomes:

λ ≡
~J · ~P
|~P |

, (1.52)

where ~J is a total angular momentum vector and ~P is a momentum vector. Since it is
invariant under rotation and Lorentz-boost, treatment of angular momentum becomes
easy.

In case of B → V1V2 decay, spin-1 daughters fly back-to-back along with the decay
axis in the B rest frame. Therefore, allowed helicity states are

(λ1, λ2) = (+1,+1), (0, 0), (−1,−1). (1.53)

We define corresponding helicity amplitudes Aλ ≡ 〈fλ|Heff |B〉, where λ = 1, 0,−1 and
|fλ〉 denotes each helicity state. As seen in Fig. 1.7 (middle), A0 is longitudinal to the
helicity axis and A± is transverse.

P transformation of each helicity amplitude is defined in Appendix B:

PA+1 = A−1, PA0 = A0, PA−1 = A+1. (1.54)

Note that |f±1〉 are not parity (and also CP ) eigenstates.
Figures 1.8 (upper) show projected decay angular distributions in the helicity basis.

We find that the decay angle cos θ1 and cos θ2 (angles between helicity axes and momenta
of their daughters) are sensitive to longitudinal polarization (A0), but not CP contents.
Information about CP contents is buried in interference terms and is difficult to be treated
with limited statistics. Therefore, we need to consider a better basis keeping the merit to
use the helicity projection.

1.6.4 Transversity Basis

The transversity basis [17] is introduced by modifying the helicity basis in order to treat
CP information:

A0 (P : +1),

A‖ ≡
A+1 + A−1√

2
(P : +1),

A⊥ ≡ A+1 − A−1√
2

(P : −1).

(1.55)

CP transformation is known from Eq. (1.50) and (1.55):

A0 ≡ CPA0 =A0 (CP : +1),

A‖ ≡ CPA‖ =A‖ (CP : +1),

A⊥ ≡ CPA⊥ = − A⊥ (CP : −1).
(1.56)

18



Figure 1.8: Projected angular distributions onto individual decay angles. Figures in the
upper (lower) row show the helicity (transversity) basis distributions. Definition of helicity
angles is given in Appendix B. Dashed, dotted, solid curves correspond to A0, A+ (A⊥),
A− (A‖), respectively. Different CP components are separated in the cos θtr projection.
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Full angular distribution is also obtained by applying the same procedure to the an-
gular distribution of the helicity basis:

1

Γ

d3Γ

d cos θtrd cos θ1dφtr
=

9

32π

1

|A0|2 + |A‖|2 + |A⊥|2
{

4|A0|2 cos2 θ1 sin2 θtr cos2 φtr

+2|A‖|2 sin2 θ1 sin2 θtr sin2 φtr

+2|A⊥|2 sin2 θ1 cos2 θtr

+
√

2<(A∗
‖A0) sin 2θ1 sin2 θtr sin 2φtr

−
√

2=(A∗
0A⊥) sin 2θ1 sin 2θtr cosφtr

−2=(A∗
‖A⊥) sin2 θ1 sin 2θtr sinφtr

}

, (1.57)

where we introduce three decay angles, θtr, θ1 and φtr. Detailed calculation is explained
in Appendix B.

An exact definition of transversity basis is the following: In the B rest frame, the
x-axis is defined as the decay axis between D∗+ and D∗−. We then move into the D∗+

rest frame. The transversity plane (the x-y plane) is defined with this axis and daughter
particles of D∗−. The z-axis, which is normal to this plane, is given by ~x× ~y. We define
3 decay angles: θtr is the angle between the z-axis and a slow pion from D∗+, φtr is the
angle between the x−axis and the momentum vector of the slow pion from D∗+ projected
onto the transversity plane, and θ1 is the angle between the x-axis and a slow pion from
D∗− in the D∗− rest frame. Similar definitions are also used for D∗± → D±π0 decays.
Figure 1.9 shows definitions of this frame. Angular distributions of the transversity basis
are shown in Fig. 1.7 (bottom).

We characterize each amplitude in the transversity basis:

• A0, longitudinal polarization to the decay axis,

• A‖, transversely parallel polarization to the D∗− polarization (on the decay plane),

• A⊥, transversely perpendicular polarization to the decay plane.

From Fig. 1.8 (lower), we find that different CP components can be distinguished by
a single angular term, cos θtr. This is the most important advantage of the transversity
basis. It is explained by the transversity τ , which is the spin projection to the normal of
the decay plane.

We consider a reflection (not parity transformation but just an ordinal mirror ) of a
particle on the decay plane. The reflection, which consists of P transformation and 180
degree rotation, is explained as :

RP ≡ PeiπJz = ηeiπτ , (1.58)

where Jz (τ) is a projection of total (spin) angular momentum to the normal of the plane
and η is intrinsic parity of the particle.
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Figure 1.9: The transversity frame for B0 → D∗+D∗−. D∗+ polarization is anchored by
D∗− decay plane at D∗+ rest frame. Floated plane is D∗− rest frame to measure θ1.

Though a transversity is defined in the rest frame of each particle on the decay plane,
they can be linearly added owing to Lorentz-invariance and the fact that all quantizing
axes are parallel. In case of B → D∗+D∗−, we have three particles to be considered,

D∗+, D
0
(D−), π−(π0). Since their spins are 0 except for D∗+, total transversity corre-

sponds to D∗+. Then

CP = ηCP e
iπτ , (1.59)

where ηCP is intrinsic CP parity. We used J = 0 for the B decay.
Furthermore, in case of B → V V decays, interchange of helicities, which are scalar

(spin-0) daughters of the vector meson making decay plane, flips the CP sign. Therefore
ηCP = −1. Thus we obtain

CPD∗+D∗− = (−1)1+τ , (1.60)
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where τ = 0 (τ = ±1) corresponds to CP -odd (CP -even).
This can be intuitively explained as following. Orbital angular momentum and spin

angular momentum of B0 → D∗+D∗− is determined uniquely, because B0 is spin-0 par-
ticle. In case of D∗+D∗−, transversity basis satisfies that there is no orbital and spin
angular momentum except for D∗+. Therefore, transversity τ , projection of D∗+ spin
angular momentum, remembers the orbital angular momentum of D∗+D∗−. In short, τ
knows CP sign of the D∗+D∗− partial wave. This is the reason why D∗+ polarization
anchored by D∗− decay plane is effective for CP analysis.

Now we turn to the time-dependent angular distribution. Full angular distribution
of B → D∗+D∗− decay in the transversity basis is shown in Eq. (1.57). Interferences
between differently polarized states are concealed with integration of φtr:

1

Γ

d2Γ(
(−)

B0→ D∗+D∗−)

d cos θtrd cos θ1
=

9

16

∑

i=0,‖,⊥

|Ai|2Hi(cosθtr, cosθ1), (1.61)

where angular terms are:

H0(cos θtr, cos θ1) = 2 sin2 θtr cos2 θ1,

H‖(cos θtr, cos θ1) = sin2 θtr sin2 θ1,

H⊥(cos θtr, cos θ1) = 2 cos2 θtr sin2 θ1.

and Ai’s are redefined as the normalized decay amplitudes for i = 0, ‖,⊥:

|A0|2 + |A‖|2 + |A⊥|2 = 1. (1.62)

From Eq. (1.32) and (1.56), CP violating parameters for each amplitude are:

λ ≡ λ0 = λ‖ = −λ⊥. (1.63)

This is always true when only the tree diagram contributes to the D∗+D∗− decay. We note
that Eq. (1.63) is held in case of an equivalent penguin contribution to each polarization.
Therefore any set of λ’s discussed in previous sections can be inserted.

Applying Eq. (1.15) and (1.63) to Eq. (1.61), time-dependent differential decay rates
are also rewritten as follows:

1

Γ

d2Γ(
(−)

B0 (t) → D∗+D∗−)

d cos θtrd cos θ1
=

e−Γt

4

∑

i=0,‖,⊥

Ri ·
9

16
Hi(cosθtr, cosθ1)

{

1 + q(
|λ|2 − 1

|λ|2 + 1
cos ∆mt + ηi

2=λ
|λ|2 + 1

sin ∆mt)

}

=
e−Γt

4

∑

i=0,‖,⊥

Ri ·
9

16
Hi(cosθtr, cosθ1)

{

1 + q(AD∗+D∗− cos ∆mt + ηiSD∗+D∗− sin ∆mt)

}

,

(1.64)
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where the b-flavor charge q is +1(−1) when the B meson at the time of production (t = 0)
is B0(B0).

CP -violating parameters SD∗+D∗− and AD∗+D∗− are re-defined:

SD∗+D∗− ≡ 2=λ
|λ|2 + 1

,

AD∗+D∗− ≡ |λ|2 − 1

|λ|2 + 1
.

(1.65)

A polarization ratio for each amplitude is defined as:

Ri ≡ |Ai|2. (1.66)

1.7 Previous Measurements

The CLEO Collaboration first observed B0 → D∗+D∗− decays [23] and reported the
branching fraction and the CP -even fraction [24] with (8− 0.42)± 0.04(stat)± 0.13(syst)
candidates obtained from a sample of 9.7 × 106BB̄ pairs:

B(B0 → D∗+D∗−) =[0.99+0.42
−0.33(stat) ± 0.12(syst)] × 10−3,

CP -even fraction >0.11(90% CL),
(1.67)

The Belle Collaboration reported the branching fraction [25] with 11.0±3.7 candidates
obtained from a sample of 22.8 × 106BB̄ pairs:

B(B0 → D∗+D∗−) = [1.21 ± 0.41(stat) ± 0.27(syst)] × 10−3, (1.68)

The BaBar Collaboration also reported the branching fraction [26] with (38− 6.24)±
0.33(stat) ± 0.36(syst) candidates obtained from a sample of 22.8 × 106BB̄ pairs:

B(B0 → D∗+D∗−) =[0.83 ± 0.16(stat) ± 0.12(syst)] × 10−3, (1.69)

and polarization and CP asymmetries [27] with 156 ± 14 candidates obtained from a
sample of 88 × 106BB̄ pairs:

R⊥ =0.063 ± 0.055(stat) ± 0.009(syst),

=(λ+) =0.05 ± 0.29(stat) ± 0.10(syst),

|λ+| =0.75 ± 0.19(stat) ± 0.02(syst),

(1.70)

where λ+ is an averaged CP violating parameter, which takes into account of different
penguin amplitudes between CP -even and CP -odd components. It is defined by:

2=(λ+)

1 + |λ+|2
≡

2=(λ‖)

1+|λ‖|2
|A‖|2 + 2=(λ0)

1+|λ0|2
|A0|2

|A‖|2 + |A0|2
,

1 − |λ+|2
1 + |λ+|2

≡
1−|λ‖|

2

1+|λ‖|2
|A‖|2 + 1−|λ0|2

1+|λ0|2
|A0|2

|A‖|2 + |A0|2
.

(1.71)

BaBar claims that CP asymmetries of D∗+D∗− have a 2.5 σ discrepancy from the SM
expectation if the penguin contribution is neglected.
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Chapter 2

Principle of the Measurement

2.1 Coherent B0B0 mixing in a B-factory experiment

Since the B meson is heavy, there are many decay modes with small branching fractions.
Therefore high luminosity is needed to perform a precision measurement. The KEKB e+e−

collider meets this requirement. Furthermore, an e+e− collider is in general superior to
a hadron collider in studying complicated hadronic B decays, because QCD backgrounds
are much smaller. Although we need proper time of the B meson to measure the time-
dependent CP asymmetries from Eq. (1.18), it cannot be directly measured due to the
very short lifetime of the B meson, τB (∼ 1.5ps). If beam energies of a collider are
asymmetric, this problem can be solved thanks to the Lorentz boost.

From these conditions and requirements, a B factory, an experiment with an asym-
metric e+e− collider which produces a large number of B mesons, was proposed. To-
tal energy of the asymmetric e+e− collider is adjusted to the Υ(4S) resonance which is
one of bottomniums (bb̄). Since the mass of the Υ(4S) resonance is just above the BB̄
pair production threshold, almost all Υ(4S) resonances decay into B+B− or B0B0 pairs.
Branching fractions for two decay modes are nearly the same.

2.1.1 Time-dependent probability of a final state

As explained in the previous chapter, time-dependent CP violation arises from an inter-
ference between two diagrams that are responsible for both B0 and B0 decays into the
same CP eigenstate. Such a type of decaying is called a flavor-nonspecific decay. On the
other hand, a flavor-specific decay means a decay in which the final state tells whether
the parent is B0 or B0. We also need to reconstruct a flavor-specific decay mode for the
accompanying B meson in order to measure CP asymmetries.

Since Υ(4S) is produced from a virtual photon, its quantum numbers are JPC =
1−−. The BB̄ system conserves the quantum numbers, because Υ(4S) decays via strong
interaction. Since a B meson is a pseudo-scalar particle, the BB̄ system should have
an orbital angular momentum L = 1. The states B0B0 and B0B0 are forbidden from
Bose-Einstein statistics.
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Therefore, an allowed state at a time of pair production is

|B1B2; 0, 0〉 =
1√
2
(|B0

1〉|B0
2〉 − |B0

1〉|B0
2〉), (2.1)

where |B1B2; t1, t2〉 denotes a state with two B mesons, ti (i = 1, 2) is the proper time of
Bi, and |B0

i 〉(|B0
i 〉) means the B meson whose flavor is B0 (B0) at t = 0.

From Eq. (1.10), time evolution of the system with two B mesons becomes:

|B1B2; t1, t2〉 =
1√
2
e−Γ(t1+t2)/2

{

cos
∆m∆t

2
·
(

|B0
1〉|B0

2〉 − |B0
1〉|B0

2〉
)

+i sin
∆m∆t

2
·
(

q

p
|B0

1〉|B0
2〉 −

p

q
|B0

1〉|B0
2〉
)}

,

(2.2)

where ∆t ≡ t2 − t1. The coherence seen in Eq. (2.1) is kept until one B meson decays.
We redefine t1 and t2 as the decay times of each B meson. If we know the B flavor
from one B decay (to a flavor-specific state) and ∆t, we know the time-evolution of the
accompanying B meson. In particular, we consider the case that one B decays into a CP
eigenstate fCP and the other into l±X, which is a flavor-specific mode; B0 (B0) mesons
decay into l+X (l−X) and decays with the opposite flavor are forbidden. Replacing the
notations B1 (B2) with BCP (Btag), which means a CP eigenstate (flavor-specific state),
decay rates of the B mesons pair system become:

Γ(fCP , l
−X) =|〈fCP l−X|BCPBtag; tCP , ttag〉|2

=
1

4
e−Γ(tCP +ttag)A2

CPA
2
tag

{

(|λCP |2 + 1) − (|λCP |2 − 1) · cos ∆m∆t− 2=λCP · sin ∆m∆t

}

,

Γ(fCP , l
+X) =|〈fCP l+X|BCPBtag; tCP , ttag〉|2

=
1

4
e−Γ(tCP +ttag)A2

CPA
2
tag

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2

{

(|λCP |2 + 1) + (|λCP |2 − 1) · cos ∆m∆t + 2=λCP · sin ∆m∆t

}

,

(2.3)

where the decay amplitude Atag ≡ 〈l+X|B0〉| = 〈l−X|B0〉 and the proper time tCP (ttag)
is for BCP (Btag).

With using |q/p| ∼ 1 and normalizing Eq. (2.3) in −∞ < ∆t < ∞, we obtain the
conditional probability that we find fCP at the time ∆t:

PCP (q,∆t) =
e−|∆t|/τ

B0

4τB0

{1 + q(ACP cos ∆m∆t+ SCP sin ∆m∆t)}, (2.4)

where q = +1 (−1) for Btag = B0 (B0).
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We then consider the B0 → D∗+D∗− decay. Since the time-dependent angular distri-
bution is given in Eq. (1.61), the total probability that we find D∗+D∗− at ∆t is:

PD∗+D∗−(q,∆t, cos θtr, cos θ1) =
e−|∆t|/τ

B0

4τB0

∑

i=0,‖,⊥

Ri ·
9

16
Hi(cos θtr, cos θ1)

{

1 + q(AD∗+D∗− cos ∆m∆t+ ηiSD∗+D∗− sin ∆m∆t)

}

.

(2.5)

From Eq. (2.5), we find that we need to reconstruct four variables to obtain PD∗+D∗−:
transversity angles cos θtr and cos θ1, b-flavor of the flavor-specific decay mode (called tag
side) q and the proper time difference ∆t.

2.2 Measurement at the Belle experiment

In this section, we explain how to perform the measurements mentioned above, in the
Belle experiment. It is divided into three stages: event reconstruction, ∆t measurement
and flavor tagging. Figure 2.1 shows the schematic view of the Belle experiment.
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Figure 2.1: Schematic view of the Belle Experiment.

2.2.1 Event reconstruction

Event-by-event, transversity angles cos θtr and cos θ1 are obtained from the fully recon-
structed D∗+D∗− events. The full reconstruction is performed by evaluating the invariant
mass that is obtained with combining the four-momenta of whole daughter particles.
Each daughter particle is similarly combined or reconstructed with the Belle detector.
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The decay chain is

BCP →D∗+D∗− → DπsDπs → {K±, K0
S, π

±, π0},
Btag →l±X → {µ±, e±, K±, K0

S, π
±, π0}

→K±X → {K±, K0
S, π

±, π0},
(2.6)

where particles between braces mean a kind of daughter particles and πs is a low-momentum
pion (slow pion) from the D∗ decay.

The transversity angles, cos θtr and cos θ1 can then be measured with reconstructed
B0 → D∗+D∗− candidate with following the definition that is described in Sec. 1.6.4.
Polarization parameters, Ri are measured from time-independent angular distributions in
Eq. (1.61).

In the case of D∗+D∗−, we need 4-10 charged tracks and 0-4 neutral particles in the
CP side. It means that each track or particles carries a small momentum. Especially,
we always have two slow pions whose momenta are below 300MeV/c. Therefore, having
a high tracking efficiency in low momentum region is very important. An example of
B0 → D∗+D∗− candidate is shown in Fig. 2.2.

2.2.2 ∆t measurement

In the Belle experiment, the momentum direction of the produced Υ(4S) resonance is
nearly parallel to the z-axis (opposite to the e+ direction). Since the B meson is almost
at rest in the Υ(4S) center of mass system (cms), each B meson also flies along with
this direction. The flight length becomes much longer than that in the Υ(4S) cms by the
Lorentz boost. Proper time difference ∆t can be obtained from ∆z, which is a difference
of the flight length projected to the z-axis:

∆t ∼ ∆z

βγc
≡ ZCP − Ztag

βγc
, (2.7)

where ZCP (Ztag) is the z component of B vertex and βγ = 0.425 is a Lorentz factor. In
this condition, the average flight length becomes βγcτB0 ∼ 200 µm. We need to determine
each B vertex with a resolution better than the flight length. Therefore, precise vertex
measurements are necessary.

2.2.3 Flavor Tagging

The flavor tagging is a technique to determine the flavor of B decaying into the flavor-
specific decay mode. It is based on the idea that the charge of decay products reflects the
charge of b quark. There are several ways to identify the flavor. The two most effective
ways are to use a primary lepton from a semi-leptonic decay, b → W−(→ l−ν)c, and to
use charged kaons from a cascade decay, b→ c→ s. Other methods and detail of tagging
are described later. Figure 2.3 shows a schematic view of the flavor tagging method.
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Wrong Tag Fraction

Flavor tagging is not always perfect. For example, if the number of kaons in the system
is wrong due to misidentifiaction or inefficiency, flavor tagging may fail or give opposite
flavor information. There are also smaller physical processes that give opposite flavor to
the dominant process, such as the charged kaon from the c decay in b→ cc̄s transition.

If the flavor tagging gives wrong flavor information, the probability density function
Eq. (2.5) is diluted. We define the wrong tag fraction, w, which is the probability of
incorrect flavor assignment. Then Eq. (2.5) becomes:

PD∗+D∗−(q,∆t, cos θtr, cos θ1) =
e−|∆t|/τ

B0

4τB0

∑

i=0,‖,⊥

Ri ·
9

16
Hi(cos θtr, cos θ1)

{

1 + q(1 − w)(AD∗+D∗− cos ∆m∆t+ ηiSD∗+D∗− sin ∆m∆t)

}

+
e−|∆t|/τ

B0

4τB0

∑

i=0,‖,⊥

Ri ·
9

16
Hi(cos θtr, cos θ1)

{

1 − qw(AD∗+D∗− cos ∆m∆t+ ηiSD∗+D∗− sin ∆m∆t)

}

=
e−|∆t|/τ

B0

4τB0

∑

i=0,‖,⊥

Ri ·
9

16
Hi(cos θtr, cos θ1)

{

1 + q(1 − 2w)(AD∗+D∗− cos ∆m∆t + ηiSD∗+D∗− sin ∆m∆t)

}

.

(2.8)

As a result, a measured CP asymmetry is diluted by the factor (1 − 2w). Thus a
precise estimation of w is needed to measure CP -violation parameters correctly. For this
task, particle identification performs an important role.

Figure 2.3: A schematic view of flavor tagging. The primary and secondary leptons and
an s quark from cascade decay remember the flavor of the parent b quark. Note that
the secondary lepton has the opposite charge to the others. B0 → D(∗)X decays are also
available. Detail of flavor tagging is described later.
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Chapter 3

Experimental Apparatus

3.1 Overview

In this chapter, we describe the experimental apparatus of the Belle experiment. The
Belle experiment is one of two B-Factories, which is performed at KEK (High Energy
Accelerator Research Organization), Tsukuba, Japan. The KEK B-factory consists of
the KEKB e+e− collider and the Belle detector. The KEKB collider has the highest
luminosity in the world, and the high-sensitivity Belle detector has produced many physics
results.

3.2 The KEKB Collider

The KEKB accelerator [30] is an asymmetric-energy e+e− collider, which aims at pro-
ducing a large number of B and anti-B mesons like “factory”. It consists of two storage
rings, an 8 GeV electron ring (HER) and a 3.5 GeV positron ring (LER), and an injection
linear accelerator (Linac). The circumference of both storage rings is about 3 km. The
electrons (positrons) are accelerated to their full energies by the Linac and are injected
into the HER (LER) ring. Figure 3.1 shows a schematic view of the KEKB collider.

The two storage rings are placed side-by-side in a tunnel 11 m below the ground level
and only crossing at one point, which is called the interaction point (IP), in the Tsukuba
experimental hall. The electrons and positrons collide with a finite crossing angle of ±11
mrad to avoid parasitic collisions.

The center of mass energy is 10.58 GeV, which corresponds to the mass of the Υ(4S)
resonance that decays into a BB̄ meson pair. The produced B meson is boosted due to
the asymmetric energy with a Lorentz factor βγ ' 0.425 and fly about 200 µm on average
nearly along the electron beam direction.

The design luminosity is 10 × 1033cm−2s−1 which approximately corresponds to 108

BB̄ pairs a year. The main parameters of the KEKB are summarized in Table 3.1.
Figure 3.1 shows the luminosity history of the KEKB. As of July 2004, the KEKB has
achieved a peak luminosity of 13.92×1033cm−2s−1 and data recorded by the Belle detector
corresponds to the integrated luminosity of 288 fb−1. These are the world records at the
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Figure 3.1: Configuration of the KEKB collider.

Figure 3.2: Luminosity history of the KEKB collider.
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time.

3.3 The Belle Detector

3.3.1 Overview

The B meson decay produces many charged particles such as K±, π± and neutral particles
like γ, π0 and K0

S. In order to measure time-dependent CP asymmetries in the B0 →
D∗+D∗− decay, we need to reconstruct and identify particles mentioned above with high
efficiencies and measure vertex positions with good precision. The Belle detector was
designed and constructed to satisfy these requirements.

The Belle detector is asymmetrically placed around the IP and consists of several sub-
detectors to detect B decay products effectively. Figures 3.3 and 3.4 show the detector
configurations. These sub-detectors are grouped into two: tracking devices and particle
identification devices. As a tracking device, the silicon vertex detector (SVD), which
is used for precise measurement of the B meson vertices, is located just outside of a
cylindrical beampipe. Another tracking device, the central drift chamber (CDC) measures
momentum of charged particles. The CDC is also utilized as a particle identification device
for charged particles with measuring dE/dx. Aerogel Cherenkov counter (ACC) and time-
of-flight counter (TOF) are placed radially outside of the CDC. Electromagnetic particles,
photons and electrons, are detected and identified with an array of CsI(Tl) crystals (ECL)
located inside the solenoid coil. The super-conducting solenoid provides a magnetic field of
1.5 T for momentum measurement of charged particles by the CDC. Penetrating particles,
muons and K0

L mesons, are identified by arrays of resistive plate counters interspersed in
the iron yoke (KLM), which is located at the outermost part of the Belle detector. In
addition to these sub-detectors, the Belle detector has the extreme forward calorimeter
(EFC) to improve the experimental sensitivity to some physics processes such as B → τν
and to provide luminosity information online. The detector performance is summarized
in Table 3.2.

We define the Belle coordinate system, which is commonly used in this thesis: In the
Cartesian coordinate system, ~z is defined as the opposite direction of the positron beam
current; ~y is the vertically upward direction of the system; ~x satisfies the relation of the
right-hand system, i.e. ~x = ~y × ~z. The cylindrical coordinate system is also defined: r is
the radius in the x-y plane (r =

√

x2 + y2); θ is the polar angle from the z-axis; φ is the
the azimuth angle around the z-axis. Figure 3.5 illustrates the definition. The detailed
description of the Belle detector is found elsewhere [31]. We give a brief description of
the major detector subsystems and analysis software relevant to the measurement of CP
asymmetry parameters.

3.3.2 Beampipe

The beampipe around the IP is an important structure to measure the vertex position of
B meson with the vertex detector, which is just outside of the beampipe. The thickness
of the beampipe is designed to be minimized, since multiple Coulomb scattering and
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Table 3.1: Main parameters of KEKB.

Ring LER HER

Energy E 3.5 8.0 GeV

Circumference C 3016.26 m

Luminosity L 1 × 1034 cm−2s−1

Crossing angle θx ±11 mrad

Tune shifts ξx/ξy 0.039/0.052

Beta function at IP β∗
x/β

∗
y 0.33/0.01 m

Beam current I 2.6 1.1 A

Natural bunch length σz 0.4 cm

Energy spread σε 7.1 × 10−4 6.7 × 10−4

Bunch spacing sb 0.59 m

Particle/bunch N 3.3 × 1010 1.4 × 1010

Emittance εx/εy 1.8 × 10−8/3.6 × 10−10 m

Synchrotron tune νs 0.01 ∼ 0.02

Betatron tune νx/νy 45.52/45.08 47.52/43.08

Momentum αp 1 × 10−4 ∼ 2 × 10−4

compaction factor

Energy loss/turn Uo 0.81†/1.5‡ 3.5 MeV

RF voltage Vc 5 ∼ 10 10 ∼ 20 MV

RF frequency fRF 508.887 MHz

Harmonic number h 5120

Longitudinal τε 43†/23‡ 23 ms

damping time

Total beam power Pb 2.7†/4.5‡ 4.0 MW

Radiation power PSR 2.1†/4.0‡ 3.8 MW

HOM power PHOM 0.57 0.15 MW

Bending radius ρ 16.3 104.5 m

Length of bending `B 0.915 5.86 m

magnet

†: without wigglers, ‡: with wigglers
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Figure 3.3: Configuration of the Belle detector system.

Figure 3.4: Side view of the Belle detector.
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Figure 3.5: Definition of the coordinate system.
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Detector Type Configuration Readout Performance

Beryllium Cylindrical, r=2.0 cm He gas cooled

Beampipe double-wall 0.5/2.5/0.5(mm)=Be/He/Be

Double 300 µm-thick, 3 layers φ: 40.96k σ∆z ∼200 µm

SVD sided r = 3.0 - 6.05 cm z: 40.96k

Si strip Length = 22 - 34 cm

Small cell Anode: 50 layers A: 8.4 K σrφ = 130 µm

CDC drift Cathode: 3 layers C: 1.5 K σz . 200 ∼ 1, 400µm

chamber r = 8.3 - 86.3 cm σpt
/pt = (0.20pt ⊕ 0.29/β)%

-77≤ z ≤ 160 cm σdE/dx = 6%

n : 1.01 ∼12x12x12 cm3 blocks Np.e. ≥ 6

ACC ∼ 1.03 960 barrel K/π separation:

Silica / 228 endcap 1.2<p<3.5GeV/c

aerogel FM-PMT readout 1,788

TOF Scintillator 128 φ segmentation 128×2 σt = 100 ps

r = 120 cm, 3 m-long K/π separation:

TSC 64 φ segmentation 64 up to 1.2GeV/c

CsI Barrel: r = 125 - 162 cm 6,624 σE/E= 1.3 %/
√
E

ECL (Towered- End-cap: z = 1152 (F) σpos = 0.5 cm/
√
E

structure) -102 cm and +196 cm 960 (B)

Magnet Super inner radius = 170 cm B = 1.5 T

conducting

Resistive 14 layers θ:16 K ∆φ=∆θ=30 mrad

KLM plate (5cm Fe+4cm gap) φ:16 K for K0
L

counters 2 RPCs in each gap ∼ 1 % hadron fake

EFC BGO 2x1.5x12 cm3 θ:5 σE/E=

φ:32 (0.3 ∼ 1)%/
√
E

Table 3.2: Performance parameters expected (or achieved) for the Belle detector (pt in
GeV/c, E in GeV).
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Figure 3.6: The cross section of the beryllium beampipe at the interaction point.

spatial distance between the IP and the vertex detector make the vertex resolution worse.
Therefore, the beryllium beampipe was chosen. Figure 3.6 shows the cross section of the
beryllium beampipe at the interaction region. The beampipe is a double-wall cylinder,
whose radii are 20.0 mm and 23.0 mm, respectively. Each cylinder has 0.5 mm thickness.
In order to manage beam-induced heating, a 2.5 mm gap between the cylinders works as
a part of active cooling system, which provides a helium gas channel. The helium gas
coolant is adopted to minimize the material in the beampipe. Outside the outer beryllium
cylinder, a 20 µm thick gold sheet is attached in order to reduce the low energy X-ray
background from the HER. The total thickness of the beampipe corresponds to 0.9% of
a radiation length.

3.3.3 Silicon Vertex Detector (SVD)

The SVD plays a central role to measure time-dependent CP asymmetry parameters,
since precise measurement of vertex positions for B meson pairs is indispensable. It also
contributes to reconstruct charged particle tracks.

Figure 3.7 shows the geometrical configuration of the SVD. The SVD consists of three
concentric cylindrical layers of silicon sensors and covers a polar angle 23◦ < θ < 139◦.
This corresponds to 86% of the full solid angle. The radii of the three layers are 30,
45.5 and 60.5 mm. The innermost, middle, and outermost layers consist of 8, 10 and 14
ladders, respectively. Each ladder is made up of two long or short half ladders that are
mechanically jointed by a support structure but electrically independent of each other.
Each long half ladder contains two double-sided silicon strip detectors (DSSD’s) and a
hybrid unit. Each short half ladder contains a DSSD and a hybrid unit. The innermost-
layer ladder consists of two short half ladders. The middle-layer ladder consists of a short
and a long half ladder. The outermost-layer ladder consists of two long half ladders. In
total 102 DSSDs are used.

We use S6936 DSSDs fabricated by Hamamatsu Photonics, which were originally
developed for the DELPHI experiment [32]. The overall DSSD size is 57.5 × 33.5 mm2
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Figure 3.7: Detector configuration of SVD.

with a thickness of 300 µm. Each DSSD consists of 1280 sense strips and 640 readout
pads on opposite sides. One side (called n-side) of a DSSD has n+ sense strips oriented
perpendicular to the beam direction to measure the z coordinate. The other side (called
p-side) with longitudinal p+ sense strips allows the φ coordinate measurement. The strip
pitch is 25 µm for the p-side and 42 µm for the n-side. Each strip is biased via 25 MΩ
polysilicon bias resistors. The bias voltage of 75V is supplied to the n-side, while the p-
side is grounded. The schematic view of the DSSD is shown in Fig. 3.8. The n+ strips are
interleaved by p+ implants (called p-stops) to separate the consecutive strips electrically.
A charged particle passing through the depletion region of the n bulk silicon generates a
pairs of an electron and a hole. The electrons and holes drift to each strip and make two
dimensional hit signals. On the n-side, adjacent strips are read out by a single channel
which gives an effective strip pitch of 84 µm. On the p-side, every other strip is connected
to a readout channel. Charge collected by the floating strips in between is read from
adjacent strips by means of capacitive charge division.

The signal of DSSDs is read out by the VA1 chip [33, 34]. The VA1 chip is a 128
channel CMOS integrated circuit fabricated by the Austrian Micro Systems (AMS) with
a 1.2 µm CMOS process. It was specially designed for the readout of silicon vertex
detectors and other small-signal devices. Five VA1 chips are on both sides of each hybrid
unit. The total number of readout channels is 81920.

We estimate the performance of the SVD with the following two quantities: the SVD-
CDC track matching efficiency and the impact parameter resolution of tracks with associ-
ated SVD hits. The SVD-CDC track matching efficiency is defined as the probability that
a CDC track passing through the SVD acceptance has associated SVD hits in at least two
layers, and in at least one layer with both the r-φ and r-z information. Tracks from K0

S
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Figure 3.8: Schematic drawing of the DSSD.

decays are excluded since these tracks do not necessarily go through the SVD. Figure 3.9
shows the SVD-CDC track matching efficiency for hadronic events as a function of time.
The average matching efficiency is better than 98.7%. The impact parameter resolution
for reconstructed tracks is measured as a function of the tracks momentum p (measured
in GeV/c) and the polar angle θ:

σxy = 19 ⊕ 54/(pβ sin3/2 θ) µm, (3.1)

σz = 42 ⊕ 44/(pβ sin5/2 θ) µm, (3.2)

where “⊕” indicates a quadratic sum. Figures 3.10 show the momentum and angular
dependence of the impact parameter resolution.

3.3.4 Central Drift Chamber (CDC)

The CDC is a the charged particle tracking system that provides their momenta from the
curvature in the magnetic field given by the solenoid magnet. The CDC also measures
dE/dx of charged tracks for particle identification. Since the B0 → D∗+D∗− decay pro-
duces many low-momentum charged tracks, especially pions from theD∗ decay (transverse
momentum pt < 300MeV/c), The CDC was designed and constructed to detect them with
high efficiency and good resolution.

The structure of the CDC is shown in Fig. 3.11. The longest wires are 2400 mm long.
The outer radius is 874 mm and the inner one is extended down to 103.5 mm without
any walls in order to obtain good tracking efficiency for low-pt tracks by minimizing the
material. The polar angle coverage is 17◦ ≤ θ ≤ 150◦, which corresponds to 92% of the
full solid angle.
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Figure 3.9: Time-variation of the SVD-CDC track matching efficiency as a function of
the date of data taking.
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Figure 3.10: Impact parameter resolution of charged tracks with associated SVD hits (a)
for σxy; (b) for σz. Pseudo momentum p̃ ≡ pβ sin(θ)3/2 for σxy and p̃ ≡ pβ sin(θ)5/2 for
σz.
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Figure 3.11: Overview of the CDC structure. The lengths in the figure are in the units
of mm.

The CDC is a small-cell cylindrical drift chamber with 50 layers of anode wires, which
consist of 32 axial- and 18 stereo-wire layers, and 3 cathode strip layers. The axial
wires are configured to be parallel to the z axis, while the stereo wires are slanted by
approximately ±50 mrad, to provide z position information. Eight field wires providing
drift electric field surround a sense wire, and the field wires and a sense wire form a
drift cell. The cell structure is shown in Fig. 3.12. The CDC has a total of 8400 drift
cells. A low-Z gas mixture, which consists of 50% He and 50% ethane (C2H6), is used to
minimize multiple Coulomb scattering to ensure a good momentum resolution, especially
for low momentum tracks. A charged particle passing through the CDC ionizes the gas. A
charge avalanche is caused by the ionized gas and drifts to a sense wire with a specific drift
velocity, then the measured signal height and drift time provide information of the energy
deposit and distance from the sense wire. In the innermost part, the three cathode strip
layers are installed to provide the z position measurements of tracks for the trigger system.
The number of readout channel is 8400 for anode sense wires and 1792 for cathode strips.
Figure 3.13 shows a scatter plot of measured dE/dx and particle momentum. Populations
of pions, kaons, protons and electrons are clearly seen. Figure 3.14 shows the transverse
momentum (pt) resolution as a function of pt. The pt resolution is (0.20pt ⊕ 0.29/β)%,
where pt is in the unit of GeV/c.
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Figure 3.12: Cell structure of CDC.
Figure 3.13: The measured dE/dx versus
momentum observed in collision data.

Figure 3.14: The pt dependence of pt resolution for cosmic rays. The solid curve shows
the fitted result (0.201%pt⊕ 0.290%/β) and the dotted curve shows the ideal expectation
for β = 1 particles.
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Figure 3.15: The arrangement of ACC.

3.3.5 Aerogel Cherenkov Counter (ACC)

The ACC provides particle identification information to distinguish charged kaons from
charged pions whose momentum are from 1.2 GeV/c to 3.5 GeV/c, thanks to Cherenkov
radiations of charged tracks. The momentum range covered by the ACC is beyond the
reach of other particle identification system; i.e. the CDC (dE/dx) and the TOF (time-
of-flight).

Cherenkov light is emitted when its velocity is larger than the light velocity in the
matter:

n >
1

β
=

√

1 +

(

m

p

)2

, (3.3)

where m and p are the particle mass and the momentum of the particle, respectively, and
n is the refractive index of the matter. Thus we can distinguish kaons from pions, with
the selected matter of n which emits Cherenkov light for pions, but does not for heavier
kaons.

The configuration of the ACC is shown in Fig. 3.15. The ACC consists of 960 counter
modules segmented into 60 cells in the φ direction for the barrel part and 228 modules
arranged in 5 concentric layers for the forward endcap part of the detector. All the
counters are arranged in a semi-tower geometry, pointing to the IP. Each counter module
consists of a block of silica aerogel in an aluminum box of 0.2 mm thickness and one
or two fine mesh-type photomultiplier tubes (FM-PMTs) which can work in the 1.5 T
magnetic field. The refractive indices of the silica aerogel blocks are selected to obtain
the good pion/kaon separation for the whole kinematic range. For the barrel modules,
the silica aerogel with five different refractive indices, n = 1.010, 1.013, 1.015, 1.020 and
1.028, are used depending on the polar angle. For the endcap module, the silica aerogel
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with n = 1.030 is used for low momentum particles, which is necessary for flavor tagging,
to cover lack of the TOF in the endcap. The number of readout channels is 1560 for the
barrel modules and 228 for the endcap modules.

Figure 3.16 shows the measured pulse height distributions for barrel ACC for e±

tracks in Bhabha events and K± candidates in hadronic events, where K± candidates are
selected by TOF and dE/dx measurements, together with the expectations from Monte
Carlo (MC) simulation. Clear separation between K± and e± is seen.

Figure 3.16: Pulse-height spectra in units of photoelectrons observed by barrel ACC for
electrons and kaons.

3.3.6 Time of Flight Counter (TOF)

The TOF gives particle identification to distinguish charged kaons from charged pions,
whose momenta are below 1.2 GeV/c. With using plastic scintillation counters, The TOF
measures the elapsed time between a collision at the interaction point and the time when
the particle hits the TOF layer. It is very powerful for particle identification in e+e−

collider detectors. The TOF also provides fast timing signals for the trigger system. To
sustain the fast trigger rate in any beam background condition, thin trigger scintillation
counters (TSC) are appended just inside the TOF counter.

A relation between measured time T and the particle mass m is expressed as

T =
L

cβ
=
L

c

√

1 +

(

m

p

)2

, (3.4)

where p is the particle momentum and L is the flight path length. For K± and π± with a
momentum of 1.2 GeV/c and a flight path length of 1.2 m, which is the distance between
the interaction point and TOF, we obtain T of 4.3 ns and 4.0 ns, respectively. The

43



TSC    0.5 t  x  12.0 W  x  263.0 L

PMT
 122.0

182. 5 190. 5

R= 117. 5

R= 122. 0R=120. 05

R= 117. 5R=117. 5

PMT PMT

- 72.5 - 80.5- 91.5

Light guide

 TOF    4.0 t  x  6.0 W  x  255.0 L
1. 0

PMT
PMT

ForwardBackward

 4. 0 

 282. 0  
 287. 0  

I.P (Z=0)

1. 5

Figure 3.17: Dimensions of a TOF/TSC module.

TOF is designed to have 100 ps time resolution which separates these K± and π± at 3 σ
significance.

The TOF system consists of 128 TOF counters and 64 TSC counters. Two trape-
zoidally shaped TOF counters and one TSC counter, with a 1.5 cm intervening radial
gap, form one module. In total 64 TOF/TSC modules located at a radius of 1.2 m from
the IP cover a polar angle range from 34◦ to 120◦. The configuration of a TOF/TSC
module is shown in Fig. (3.17). Each TOF counter is read out by a FM-PMT at each
end. Each TSC counter is read out by only one FM-PMT from the backward end. The
total number of readout channels is 256 for TOF and 64 for TSC.

Figure 3.18 shows TOF time resolution for forward and backward PMTs and for the
weighted average as a function of z position in TOF module measured by e+e− → µ+µ−

events. The resolution for the weighted average time is about 100 ps with a small z
dependence.

The mass distribution that is obtained from TOF measurement is shown in Fig. 3.19.
We have clearly separated distributions of kaons, pions and protons. The data points are
consistent with the MC prediction that assumes time resolution of 100 ps.

3.3.7 K±/π± Identification

Particle identification, especially K±/π± separation, is crucial for this analysis, because it
is used for reconstruction of the B0 → D∗+D∗− decay and is also used for flavor tagging,
The K±/π± separation is based on three nearly independent observables: dE/dx mea-
surement by CDC, TOF measurement, and measurement of the number of photoelectrons
in the ACC. Since each of these detector covers different momentum and angular region,
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Figure 3.18: Time resolution for e+e− → µ+µ− events.

Figure 3.19: Mass distribution from TOF measurement for particle momenta below 1.2
GeV/c. The histogram shows the expectation assuming time resolution of 100 ps. Points
with error bars are obtained from hadronic events.
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their combination provides high performance of particle identification. For each charged
track, we calculate probability with kaon and pion hypothesis for each sub-detector. We
define the likelihood ratio PK/π to distinguish kaons from pions:

PK/π ≡ L(K)

L(K) + L(π)
, (3.5)

where L(K) and L(π) are products of sub-detectors’ probabilities for K± and π±, respec-
tively. The validity of the K±/π± separation is demonstrated with using D∗± → D0(→
K∓π±)π± decays, which is shown in Fig. 3.20. For most of the momentum region, the
measured K± identification efficiency exceeds 80%, while the π fake rate is kept below
10%.
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Figure 3.20: K efficiency and π fake rate as a function of momentum.

3.3.8 Electromagnetic Calorimeter (ECL)

The ECL contributes to identify electrons and photons, with measuring electromagnetic
shower. Electrons are used for flavor tagging and photons are used for reconstruction of
π0 → γγ decays and for reconstruction of D∗0 → D0γ decays in this analysis.

The overall configuration of the ECL is shown in Fig. 3.21. ECL consists of 8736
thallium-doped CsI crystal counters. Each CsI(Tl) crystal has tower shape of 30 cm long,
which corresponds to 16.2 radiation lengths. Each crystal is arranged so that it points to
the interaction point. The barrel part has 6624 crystals segmented into 46 in θ and 144
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Figure 3.21: Configuration of ECL.

in φ. The forward (backward) endcap has 1152 (960) crystals segmented into 13 (10) in
θ and 48-144 (64-144) in φ depending on θ. A signal from each crystal is read out by two
10 mm × 20 mm photodiodes. The total number of readout channels is 17472.

The energy resolution is measured as a function of incident photon energy for 3 × 3
matrices and for 5 × 5 of the ECL counters. The nominal resolution is measured to be

σE
E

= (1.34 ⊕ 0.066

E
⊕ 0.81

E1/4
)% (3.6)

with the study of 3 × 3 ECL matrices, where the unit of the photon energy E is in GeV.
The position resolution is measured to be

σpos = (0.27 +
3.4

E1/2
+

1.8

E1/4
)mm. (3.7)

Figure 3.22 shows the energy resolution and the position resolution.
The electron identification primarily relies on a comparison between the charged par-

ticle momentum measured by the CDC and the energy deposit in the ECL. Electrons lose
all their energy in ECL crystals by electromagnetic showers, while hadrons and muons do
not make electromagnetic shower and deposit only a part of their energy in the ECL. The
ratio of cluster energy measured by the ECL and charged track momentum measured by
the CDC (E/p), therefore is close to unity for electrons and is lower for other particles.
The lateral spread of ECL cluster is also used to distinguish electrons from hadrons. Be-
cause the radiation length of electrons is smaller than the interaction length of hadrons,
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Figure 3.22: The energy resolution (left) and the position resolution (right) of ECL as a
function of incident photon energy.

clusters made by hadrons tend to be wider than those of electrons. In addition to these
ECL information, dE/dx measured by CDC and light yield of ACC are incorporated.
Figure 3.23 shows the electron identification efficiency measured with e+e− → e+e−e+e−

data and the fake rate for charged pions from K0
S → π+π− decays as a function of mo-

mentum. The efficiency of electron identification is greater than 90 % and the hadron
fake rate is about 0.3 % for p > 1 GeV/c. The details of electron identification are given
elsewhere [36].

3.3.9 Solenoid Magnet

The super-conducting solenoid provides a magnetic field of 1.5 T, which is used for mea-
surement of track momentum in the CDC. The super-conducting coil consists of a single
layer of niobium-titanium-copper alloy embedded in a high purity aluminum stabilizer. It
is wound around the inner surface of an aluminum support cylinder with 3.4 m in diame-
ter and 4.4 m in length. Indirect cooling is provided by liquid helium circulating through
a tube on the inner surface of the aluminum cylinder. Figure 3.24 shows the structure of
the solenoid.

3.3.10 KL and Muon Detector(KLM)

The KLM provides muon identification for charged particles with momenta greater than
0.6 GeV/c and also gives neutral kaon detection. Charged particles with momenta less
than 0.6 GeV/c can not reach KLM.

The KLM consists of alternating layers of charged particle detectors and 4.7 cm thick
iron plates. There are 15 resistive plate counter (RPC) superlayers and 14 iron layers in
the octagonal barrel region and 14 RPC superlayers in each of the forward and backward
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Figure 3.23: Electron identification efficiency (circles) and fake rate for charged pions
(squares). Note the different scales for the efficiency and fake rate.

Figure 3.24: An outlook of the solenoid and the cross-sectional view of the coil. The unit
is mm.
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endcaps. The iron layers also serve as a return yoke of the magnetic flux provided by
the super-conducting solenoid. Figure 3.25 shows the barrel part of the iron yoke. A
cross section of a RPC superlayers is shown in Fig. 3.26. Each RPC superlayer consists
of two RPC modules and provides θ-φ two dimensional information. The RPC is a kind
of spark chamber, which has two electrodes with high resistivity (≥ 1010Ω · cm) separated
by gass-filled gap that consists of 30% argon, 8% butane, and 62 % freon. A charged
particle traversing the gas gap ionizes the gas and initiates a streamer in the gas. The
streamer results in a local discharge of the glass plates. This discharge is limited by the
high resistivity of the plates and induces a signal on external pickup strips. The iron
plates provide a total of 3.9 hadronic interaction lengths for a particle traveling normal to
the detector planes. K0

L interacting with the iron produces a shower of ionizing particles
and is detected by RPC layers.

Figure 3.25: Barrel part of the iron yoke. The unit is mm.

The muon identification is based on the property difference in the matter between
muon and other particles, especially pions that are dominating background. Muons pass
through the KLM with small deflections and even penetrate if its momentum is grater
than 1.5 GeV/c, while hadrons like pions are deflected by the strong interaction with iron
and then stop within less iron layers than muons. These informations are parametrized by
the number of penetrated iron plates and the reduced χ2 calculated with the extrapolated
charged track from the CDC and the position of KLM hits. The extrapolation is performed
by the Kalman filtering method [37], which can pursuit randomly-scattered tracks even
within non-uniform magnetic field. A likelihood ratio of the muon hypothesis and the
pion hypothesis is made combining these two information and is used to separate muons
from hadrons. Figure 3.27 shows the muon identification efficiency that is measured
with cosmic muons as a function of momentum and the fake rate for π± measured with
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Figure 3.26: Cross section of a KLM super-layer.
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Figure 3.27: Muon identification efficiency versus momentum in the KLM (left). Fake
rate for charged pions versus momentum in the KLM (right).
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K0
S → π+π− decays. Typical efficiency for momentum greater than 1 GeV/c is better

than 90%, while fake rate for π± is smaller than 2 %. The details of muon identification
are given in [38].

3.3.11 Trigger and Data acquisition

The role of the trigger system is to distinguish interesting physics events from enormous
uninteresting background events, and record the interesting events, using fast signals
from sub-detectors. Because of the high beam current of KEKB, the trigger suffers from
severe beam background. Since the rates of beam background are very sensitive to actual
accelerator conditions, it is difficult to make a reliable estimate. Therefore, the trigger
system is required to be flexible so that background rates are kept within the tolerance
of the data acquisition system. It is also needed to have redundant triggers to keep the
high trigger efficiency for physics events of interest.

The Belle trigger system consists of the Level-1 hardware trigger and the Level-3
software trigger. The latter is designed to be implemented in the online computer farm.
Figure 3.28 shows a schematic view of the Belle Level-1 trigger system. It consists of the
sub-detector trigger systems and the central trigger system called the Global Decision
Logic (GDL). The sub-detector trigger systems are categorized into two parts: track
triggers and energy triggers. The CDC and the TOF are used to yield trigger signals for
charged particles. The CDC provides r-φ and r-z track trigger signals, while the ECL
provides triggers based on the total energy deposit. The KLM provides additional trigger
signals for muons. The ECL is used to trigger two-photon events and Bhabha events.
The GDL combines the sub-detector trigger signals and makes a final decision to initiate
a Belle-wide data acquisition within 2.2 µs from the beam crossing. The typical trigger
rate is 200-250 Hz. With these redundant triggers, trigger efficiency for BB̄ events is
more than 99.5%.

A schematic view of the Belle DAQ system is shown in Fig. 3.29. The performance
goal of the DAQ is to be operational at a maximum trigger rate of 500Hz, while keeping
a dead time fraction of less than 10%. In order to achieve this requirement, the entire
DAQ system is segmented into seven subsystems running in parallel. An eventbuilder
combines the signals from sub-detectors into a single event record. The “detector-by-
detector” parallel data streams are converted to an “event-by-event” data river and are
sent to an online computer farm. The online computer converts an event data into an
offline event format and performs a background reduction (the Level 3 trigger) after a
fast event reconstruction. The data are then sent to a mass storage system located at the
computer center 2 km away via optical fibers. A typical event data size is about 30 kB,
which corresponds to the maximum data rate of 15 MB/s.

3.3.12 Offline Software and Computing

Collected data by the Belle detector are analyzed at the offline computer farm. It is
necessary to deal with large data at a rate of 400 GB a day. Since the required com-
putational power cannot be achieved by a single CPU, the parallel processing scheme by
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Figure 3.28: The Level-1 trigger system for the Belle detector.
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multi-CPU-servers is developed. Additional to 38 nodes of 4-CPU 500 MHz Ultra SPARC
computing server, Belle has a PC farm which consists of about 500 nodes of 500-2.8 GHz
1-4 CPU Pentium III, Xeon and Athlon. In total, CPU power of 1.5 THz is equipped in
the PC farm.

All software for the data acquisition and the data analysis except for a few HEP-
specific and non-HEP-specific free software packages has been developed by the members
of the Belle collaboration. Especially, the event processing framework, called BASF (Belle
analysis framework), takes user’s reconstruction and analysis codes as modules which are
dynamically linked at the run time. The BASF takes care of input/output of event data,
parallel processing and HBOOK [39] output.

The MC generation is also an important task of the computing. Using the MC sample,
we study the detector response to the physics events and determine the analysis procedure.
Especially for the B0 → D∗+D∗− analysis, we need MC events at every stage, such as
determination of polarization distributions, flavor tagging parameters and ∆t resolution
parameters.

The physical process of production and decay is simulated by event generator soft-
wares. We use two event generator softwares: QQ [40] and EvtGen [41, 42]. QQ event
generator was originally developed by CLEO and was modified for the use of the Belle
analysis [43]. We use QQ to generate a large number of Υ(4S) decays to study back-
ground for B0 → D∗+D∗− decays and polarization distributions. EvtGen is developed
by CLEO and BaBar. It is designed so that the extension of the generator can be done
easily by adding a new decay as a module. The B decay sample generated by EvtGen
is used to study other processes including the flavor tagging algorithm, B0 → D∗+D∗−

reconstruction efficiencies and CP asymmetries. The detector response is simulated with
the Belle full detector simulator called GSIM based on GEANT [44]. GEANT is a library
developed at CERN to simulate reactions between particles and matters. The simulator
takes the data from the event generator and traces the behavior of each particle in the
detector, generating detector response which simulates the real detector output.
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Chapter 4

Event Selection

4.1 Event Sample

This analysis is based on the data sample which is collected with the Belle detector from
January 2000 to June 2003. In this period, the integrated luminosity of 140 fb−1 was
accumulated on the Υ(4S) resonance. It corresponds to a sample of 152 × 106BB̄ pairs.

4.2 BB̄ Event Selection

The collected data sample contains hadronic events including BB̄ and other processes such
as the Bhabha scattering, the radiative Bhabha, other lepton pair production, two-photon
events and beam-gas interactions. Hadronic events consist of BB̄ events and continuum
events (e+e− → qq̄, where q = u, d, s, c). Dominant events in other processes are Bhabha
and radiative Bhabha events. Although they have equivalent or larger cross sections than
BB̄ events, such backgrounds can be suppressed by the two selection procedures described
in the following.

4.2.1 Non-Hadronic Event Suppression

In this stage, non-hadronic processes (the Bhabha, the radiative Bhabha, other lepton
pair production, etc.) are suppressed. At first we define the “good” charged track and
the “good” neutral cluster. The “good” track satisfies that its transverse momentum is
larger than 0.1 GeV/c and its impact parameter |dr| (|dz|) is smaller than 2.0 (4.0) cm,
where the impact parameter is defined as the distance of the closest approach to the beam
axis. The “good” cluster satisfies that its energy deposit is larger than 0.1 GeV, its polar
angle θ is within −0.7 < cos θ < 0.9 and no charged track is associated to the cluster.

We then apply the following selection criteria:

• At least three “good” charged tracks must exist.

• More than one “good” cluster must be observed in the barrel region of the calorime-
ter.
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• The absolute value of the momentum balance in the z-component calculated in the
rest frame of the Υ(4S) resonance should be less than 50% of the energy.

• The event vertex, which is reconstructed from the “good” tracks, must be within
1.5 cm and 3.5 cm from the nominal interaction point (IP) in r and z, respectively.

• The total visible energy in the rest frame of Υ(4S), which is computed as a sum of
the energy of “good” tracks assuming the pion mass and that of the “good” clusters,
should exceed 18% of the center of mass energy.

• A sum of all cluster energies, after boosted back into the rest frame of the Υ(4S)
resonance, should be between 10% and 80% of the cms energy.

• The invariant mass of particles found in hemispheres perpendicular to the event
thrust axis is required to be greater than 1.8 GeV/c2.

These selection criteria retain more than 99% of BB̄ events, while keeping the contami-
nation of non-hadronic processes smaller than 5%.

4.2.2 Continuum Event Suppression

In order to suppress hadronic background from the e+e− → qq continuum, we define an
event shape variable, R2. The R2 is the ratio of second to zeroth Fox-Wolfram moment [56]
R2 ≡ H2/H0. Here the i-th Fox-Wolfram moment, Hi, is defined as

Hi =
∑

j,k

|~pj||~pk|
E2

vis

Pi(cos φjk), (4.1)

where ~pj (~pk) is the momentum vector of j-th (k-th) particle, φjk is the angle between ~pj
and ~pk in the cms, Evis is the total visible energy in the event, and Pi(x) is the Legendre
polynomial of the i-th order.

R2 is sensitive to the event shape: it becomes close to unity for jet-like events and close
to 0 for spherical events. Since BB̄ events are spherical while continuum events are jet-like,
we can reject continuum events by cutting on R2. We require R2 < 0.4. Figure 4.1 shows
R2 distributions for the B0 → D∗+D∗− signal MC and continuum events. Continuum
events are obtained from the off-resonance data which are taken with the cms energy 50
MeV below the Υ(4S) resonance.

4.3 B0 → D∗+D∗− Reconstruction

4.3.1 D∗+D∗− Decay Chain

We reconstruct B0 → D∗+D∗− decays with D∗+D∗− → (D0π+, D0π−), D∗+D∗− →
(D0π+, D−π0) or D∗+D∗− → (D+π0, D0π−), where we use the following decay modes
of D0 and D+:
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• D0 → K−π+, K−π+π0, K−π+π−π+, K+K−, K0
Sπ

+π−, K0
Sπ

+π−π0,

• D+ → K0
Sπ

+, K0
Sπ

+π0, K0
SK

+, K−π+π+, K−K+π+.

Here we exclude the case in which two K0
S mesons are produced in the B0 → D∗+D∗−

decay.
First, we select light mesons such as π±, K±, π0 and K0

S. Then we reconstruct D and
D∗ mesons. After that, we reconstruct B0 → D∗+D∗− events.

4.3.2 Reconstruction of Light Mesons

Charged Track Selection

To exclude poorly-reconstructed tracks, we require that the impact parameter |dr| is less
than 0.4 (6.0) cm and |dz| is less than 4.0 (5.0) cm for a track without (with) associated
SVD hits. Particle identification (PID) between charged kaons and pions is performed
using the likelihood of each particle. We use the likelihood ratio, which is based on
combined information of ACC, TOF and dE/dx in CDC.

P(K/π) ≡ LK
LK + Lπ

, (4.2)

where Li (i = K, π) is a likelihood that the particle is i. We require P(K/π) is greater
than 0.1 (0.2) to select a kaon track in a 2-body (3- or 4-body) D meson decays. For pion
tracks, we require that P(K/π) is less than 0.9.
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The selection criteria above are not applied to slow pions (πs) that come from the
D∗+ → D0π+

s decays, and to charged pions that comes from the K0
S → π+π− decays.

Kinematic Fit

We reconstruct a decay vertex and an invariant mass with some kinematic variables of
daughter particles, i.e. momentum and position. The vertex with better resolution is
obtained by tuning daughter momenta and positions according to measurement errors
so that all tracks pass a certain point. The point is regarded as the production vertex
of daughter tracks. We call it the vertex-constrained fit. Similarly, we can improve the
invariant mass resolution. We call it the mass-constrained fit.

Reconstruction of π0

Neutral π meson candidates are reconstructed from pairs of two photons. The photon
candidate is selected from ECL clusters which are not associated with any charged track
and whose energy is more than 30 MeV. The invariant mass of the π0 candidate, Mπ0 , is a
powerful index to select correctly reconstructed pions and to reject poorly reconstructed
events and backgrounds:

M2
π0 = |

2
∑

i

Eγi
|2 − |

2
∑

i

~Pγi
|2, (4.3)

where Eγi
and ~Pγi

are the energy and momentum of the i-th photon, respectively. A
mass-constrained fit is performed to improve the π0 momentum resolution. Reduced χ2

of the fit is required to be less than 25. If the π0 candidate is a daughter of a D meson,
the candidate whose momentum is below 200 MeV/c is rejected, since signal to noise
ratio is low. We require Mπ0 to be within 119 and 146 MeV/c2. The selected region
corresponds to within the three standard deviations from the nominal π0 mass. The
region is asymmetric due to energy leakage in ECL. Figure 4.2 shows the invariant mass
distribution of π0 candidates.

Reconstruction of K0
S

K0
S candidates are reconstructed from two oppositely-charged pions. A vertex-constrained

fit helps improve the K0
S momentum resolution and reject combinatorial backgrounds. We

define several variables to distinguish K0
S events from backgrounds: (i) ∆φ, which is the

angle in the r − φ plane between the direction defined by the IP and the π+π− vertex
displacement, and the direction of π+π− momentum; (ii) minimum impact parameter,
drmin, which is the closest distances of both pion tracks to the IP in the r-φ plane; (iii)
dz, which is the distance in z direction between two pion tracks at the cross point in the
r-φ plane; and (iv) flight length of K0

S meson in the r-φ plane. Since average K0
S flight

length is 5 cm in the detector, the flight length is correlated with the number of tracks
associated with SVD hits. We find candidate K0

S mesons without CDC tracks associated
with SVD hits, with small background contamination. If both pions have associated SVD

58



hits, candidate K0
S mesons are also clean, since good momentum resolution of the pions

results in a good invariant mass resolution. A K0
S candidate with only one track with

SVD associated hits has worse resolution and larger combinatorial backgrounds.
Taking these into account, we select K0

S candidates with the following criteria:

1. If none of the two pions has associated SVD hits, ∆φ is required to be less than 0.1
rad.

2. If one of the two pions has associated SVD hits, we require that ∆φ is less than 0.4
rad, drmin is more than 50 µm to suppress tracks from the IP, flight length is shorter
than 9 cm and dz is smaller than 40 cm.

3. In case both pions have associated SVD hits, we require that ∆φ is less than 0.3
rad, drmin is more than 30 µm and dz is smaller than 1 cm.

Finally, the invariant mass is calculated for K0
S candidates, which pass the selection

criteria described above, as

M2
K0

S
=

(
√

M2
π + |~Pπ+|2 +

√

M2
π + |~Pπ−|2

)2

− |~Pπ+ + ~Pπ−|2. (4.4)

We require the invariant mass to be within 482 and 514 MeV/c2, which corresponds to
three standard deviations from the nominal K0

S mass. Figure 4.3 shows the invariant mass
distribution of K0

S candidates.
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Figure 4.2: π0 → γγ invariant mass
distributions in data.
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Figure 4.3: K0
S → π+π− invariant

mass distribution in data.

4.3.3 Reconstruction of D

D meson candidates are reconstructed from candidate light mesons described above. The
invariant mass of a D meson is calculated as

M2
D→

Pn
i Xi

=

(

n
∑

i

√

M2
i + |~Pi|2

)2

− |
n
∑

i

~Pi|2, (4.5)
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where D decays into an n-body state and Xi is an i-th decay product. We require that
MD→

Pn
i Xi

should be within 6 (3)σ from the nominal D mass for 2-body (3- or 4-body)
modes where σ is each invariant mass resolution which is obtained from the signal MC.
After the selection, a mass- and vertex-constrained fit is applied. Figure 4.4 shows the
invariant mass distribution of each D0 or D+ decay mode.

4.3.4 Reconstruction of D∗+

D∗+ meson candidates are reconstructed from D∗+ → D0π+
s or D+π0

s , where π+
s (π0

s) is a
slow charged (neutral) pion whose momentum is below 300 MeV/c; the low momentum
is due to a small mass difference between D∗+ and D0 (D+) mesons. No PID is required
for the charged πs to keep a high reconstruction efficiency. Momentum resolution of π+

s

is improved by refitting π+
s with a constraint with the IP while taking the finite B flight

length into account. Since the mass difference resolution is better than the resolution of
D∗ mass, we select D∗ mesons using this mass difference ∆MD∗,D ≡ MDπs

−MD. We
require that ∆MD∗,D is within 3.00 (2.25) MeV/c2 for π+

s (π0
s). After the B0 candidate is

reconstructed, momentum resolution of D∗+ can be improved by refitting π+
s to the B0

vertex, since the decay point of the D∗ meson is almost the same as the decay point of
B0. Figure 4.5 shows mass distributions of D∗+ decay candidates.

4.3.5 Reconstruction of B0

A candidate of B0 → D∗+D∗− decay is a combination of two oppositely-charged D∗±

mesons. A vertex-constrained fit with IP constraint is performed to improve the mo-
mentum resolution. If multiple B candidates are reconstructed, we select only one B
candidate based on the following variable:

χ2
mass ≡

2
∑

i

(

∆MD∗
i ,Di

− ∆MD∗,D(PDG)

σ∆MD∗,D

)2

+
2
∑

i

(

MDi
−MD(PDG)

σMD

)2

, (4.6)

where ∆MD∗
i ,Di

(MDi
) is the mass difference (mass) of i-th D∗ (D) meson (i = 1, 2),

∆MD∗,D(PDG) ≡MD∗(PDG)−MD(PDG), where MD∗(PDG) and MD(PDG) are nom-
inal masses of D∗ and D [13], σ∆MD∗,D

(σMD
) is the error of the mass difference (mass).

The candidate with the smallest χ2
mass is chosen. We then perform a vertex-constrained

fit with the IP constraint. The vertex reconstruction is explained in detail in Sec. 6.1.
We introduce two kinematic variables, the energy difference, ∆E, and the beam-energy

constrained mass, Mbc,:

∆E ≡ Ecms
B −Ecms

beam,

Mbc ≡
√

(Ecms
beam)2 − (pcms

B )2,
(4.7)

where Ecms
beam is the beam energy in the center of mass system (cms) and Ecms

B (pcms
B ) is

the energy (momentum) of the B0 candidate in the cms. Since resolution of the beam
energy is much better than that of the B0 candidate energy, Mbc is a good variable to
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Figure 4.4: D mass distributions in data. Each plot from (a) to (k) shows D decay-modes:
D0 → K−π+, D0 → K−π+π0, D0 → K−π+π−π+, D0 → K0

Sπ
+π−, D0 → K0

Sπ
+π−π0,

D0 → K−K+, D+ → K−K+π+, D+ → K0
Sπ

+, D+ → K0
Sπ

+π0, D+ → K0
SK

+ and
D+ → K−K+π+, respectively.

Figure 4.5: Distributions for the D∗+-D mass difference in data. Each plot from (a) to (k)
shows D sub-modes: D0 → K−π+, D0 → K−π+π0, D0 → K−π+π−π+, D0 → K0

Sπ
+π−,

D0 → K0
Sπ

+π−π0, D0 → K−K+, D+ → K−K+π+, D+ → K0
Sπ

+, D+ → K0
Sπ

+π0,
D+ → K0

SK
+ and D+ → K−K+π+, respectively.

61



separate B0 signal from backgrounds. Because only a B meson pair is created by the
beam collision, ∆E equals 0 for correctly reconstructed signal.

We define the “signal box”, which is the rectangular region in the ∆E-Mbc plane; we
require that |Mbc −MB(PDG)| is within 3σMbc

and |∆E| is smaller than 40 MeV. The
Mbc resolution, σMbc

, is 3.5 (3.3) MeV/c2 for the D0-D0 (D+-D0) sub-decay mode.
To suppress poorly-reconstructed events, we require that reduced χ2 of the B vertex

constrained fit, χ2
vtx, is smaller than 40, and χ2

mass is smaller than 5. Remaining candidates
in the signal box are used for the polarization measurement and time-dependent CP asym-
metry measurement. The Mbc (∆E) distribution for the reconstructed B0 → D∗+D∗−

candidates within the ∆E (Mbc) signal region is shown in Fig. 4.6. The two-dimensional
distribution in the ∆E-Mbc plane is also shown in Fig. 4.6.

4.3.6 Background

Background studies are performed by using a large sample of MC events for generic
MC (BB̄ and qq̄ continuum), which corresponds to an integrated luminosity of 340 fb−1.
Figures 4.7 show the background distributions in generic MC for Mbc and ∆E projections.
We find no peaking background in the signal box. Though B0 → D∗D decays cause a
peak in the ∆E projection, it stays sufficiently apart from the signal box. Therefore it is
not a serious problem in our analysis. The numbers of background components and their
fractions are summarized in Table 4.1. The fractions of B0B0, B+B− and cc components
are almost equivalent.

Origin ∆E-Mbc R2 < 0.4 signal box(fraction %)

B0B0 2653 2615 58 (33)
B+B− 2143 2130 50 (28)

BB all 4796 4745 108
cc 4120 3730 67 (38)

uu,dd,ss 305 252 3 (2)
qq all 4425 3982 70
BG all 9221 8727 178

Table 4.1: Background in generic MC that corresponds to the integrated luminosity of
340 fb−1. The number of background events after each cut is shown.

4.3.7 Yield Extraction

Events in the signal box contain both signal events and backgrounds. Extraction of the
signal yield is important, since it is needed to calculate the event-by-event signal fraction
that is used to measure polarization and CP asymmetries.

The yield extraction is performed using the maximum likelihood method, which is
explained in Appendix A. We perform a two-dimensional simultaneous fit on the ∆E-
Mbc plane. The signal shape function Fsig is described by a single Gaussian for Mbc
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(a) (b)

(c)

Figure 4.6: (a) ∆E distribution for B0 → D∗+D∗− candidates within the Mbc signal
region; (b) Two-dimensional distribution in the ∆E-Mbc plane. The hatched area is the
signal box; (c) Mbc distribution for B0 → D∗+D∗− candidates within the ∆E signal
region.
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Figure 4.7: Background distribution in generic MC (BB̄ + qq̄ continuum); (a) Mbc dis-
tribution within the ∆E signal region; (b) ∆E distribution within the Mbc signal region.
Open histogram is total contribution from generic MC, the hatched histogram is con-
tinuum MC, and filled histogram is B → D∗D MC. Note that the assumed branching
fraction for each B → D∗D is almost 3 times larger than the average branching fraction
that was measured by B0 → D∗+D− and B0 → D∗−D+ [13].

and a sum of two Gaussian functions for ∆E, and the background shape function Fbg is
described by the ARGUS background function [45] for Mbc and a linear function for ∆E:

Fsig(∆E,Mbc) ≡ Nsig[fmainG(∆E;µmain, σmain) + (1 − fmain)G(∆E;µtail, σtail)],

× G(Mbc;µ, σ), (4.8)

Fbg(∆E,Mbc) ≡ Nbg(1 + c∆E),

× Mbc

√

1 −
(

Mbc

Ecms
beam

)2

exp

{

a

[

1 −
(

Mbc

Ecms
beam

)2]}

, (4.9)

where G(x;µ, σ) is a Gaussian function

G(x;µ, σ) ≡ 1√
2πσ

exp

[

− (x− µ)2

2σ2

]

, (4.10)

{Nsig, Nbg} are normalization parameters, {µ, σ, fmain, µmain, σmain, µtail, σtail} are signal
shape parameters, and {c, a} are background shape parameters. Using these functions,
the likelihood function is defined as

L(favesig ) ≡
∏

fsig(∆E,Mbc), (4.11)

where signal fraction fsig(∆E,Mbc) is described as a function of ∆E and Mbc:

fsig(∆E,Mbc) ≡
favesig Fsig(∆E,Mbc)

favesig Fsig(∆E,Mbc) + (1 − favesig )Fbg(∆E,Mbc)
, (4.12)
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where favesig is the average signal fraction.
Signal shape parameters are determined with signal MC. Figure 4.8 shows signal MC

distributions and fit results. These parameters are summarized in Table 4.2. Background
shape parameters are obtained simultaneously in the fit. We divide the data sample to
D∗+D∗− → (D0π+, D̄0π−) and D∗+D∗− → (D+π0, D̄0π−) sub-samples, to take different
signal and background distributions into account. We call them “D0-D̄0 combination”
and “D+-D̄0 combination”, respectively. Each sub-sample has its own signal and back-
ground shape decided by its signal MC and data, respectively. Background parameters
determined from data are summarized in Table 4.3.
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Figure 4.8: Signal MC distributions are fit results for (a) Mbc projections for D0-D0

combination; (b) ∆E projections for D0-D0 combination; (c) Mbc projections for D+-D0

combination; (d) ∆E projections for D+-D0 combination.

We find 2357 (1215, 1142) events in 5.2 < Mbc < 5.3 GeV/c2 and |∆E| < 200 MeV
region. Here the numbers in the parenthesis are for D0-D̄0 and D+-D̄0 combination,
respectively. There are 194 (132, 62) events in the signal box. The fit mentioned above
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yields 129.5+12.9
−12.0 signal events. Estimated number of background events (64.5+12.0

−12.9) is
consistent with the expected number (∼ 73) from generic MC study (Table 4.1).

Figures 4.9 show the fit results. Table 4.4 summarizes the signal yield for each decay
mode.

Parameter D0-D̄0 D+-D̄0

Mbc µ 5.27917 ± 0.00002 5.27919 ± 0.00002
σ 0.00348 ± 0.00001 0.00332 ± 0.00001
µmain −0.00041 ± 0.00005 −0.00031 ± 0.00005
µtail −0.0193 ± 0.0006 −0.0158 ± 0.0005

∆E σmain 0.00781 ± 0.00005 0.00785 ± 0.00006
σtail 0.0625 ± 0.0005 0.0525 ± 0.0006
fmain 0.690 ± 0.003 0.699 ± 0.003

Table 4.2: Signal shape parameters

Parameter D0-D̄0 D+-D̄0

Argus a −31.8 ± 3.7 −28.3 ± 3.5
∆E slope c −0.55 ± 0.27 −1.46 ± 0.26

Table 4.3: Background shape parameters

Numbers D0-D̄0 D+-D̄0 Combined
∆E-Mbc Plane. 1215 1142 2357
Signal Box 132 62 194
Yield 102.1+10.8

−10.3 27.4+7.0
−6.3 129.5+12.9

−12.0

Purity (77.3%) (44.2%) (66.8%)

Table 4.4: Event candidates.
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Figure 4.9: (a) Mbc distribution for B0 → D∗+D∗− candidates within the ∆E signal
region; (b) ∆E distribution for B0 → D∗+D∗− candidates within the Mbc signal region.
Solid curves show the fit to signal plus background distributions, and dashed curves show
the background.
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Chapter 5

Polarization Measurement

5.1 Probability Density Function for Polarization Mea-

surement

5.1.1 Likelihood for Polarization Measurement

The polarization measurement is performed using the maximum likelihood method, which
is explained in Appendix A. The likelihood function is defined as

L(R⊥, R0) ≡
∏

{fsig(∆E,Mbc)Hsig(cos θtr, cos θ1)+[1−fsig(∆E,Mbc)]Hbg(cos θtr, cos θ1)},
(5.1)

where R⊥ and R0 are polarization parameters defined in Eq. (1.66), the signal fraction
fsig(∆E,Mbc) is defined in Eq. (4.12), Hsig(cos θtr, cos θ1) and Hbg(cos θtr, cos θ1) are signal
and background probability density functions (PDF’s) for the polarization measurement,
which are described in the following sections.

5.1.2 Signal PDF

Reconstructed angular distributions are different from generated distributions as shown
in Figs. 5.1 and 5.2. The clear discrepancies between generated and reconstructed dis-
tributions are mainly due to reconstruction efficiencies and resolutions of slow pions πs
that come from the D∗ → Dπs decay. We find that these reconstruction efficiencies and
resolutions are functions of momenta of two slow pions, and moreover, correlations be-
tween two momenta cannot be ignored. Since it is difficult to prepare functions that well
describe such correlations, we use reconstructed MC angular distributions (histograms)
for the signal PDF. We call such distributions the MC-PDF’s. We generate MC-PDF’s
with the following procedure:

• Generate MC events with three polarization types (A0, A‖, A⊥) and with two D∗+

decays (to D0π+
s or D+π0

s) separately; i.e. we generate six kinds of MC samples.
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(a) (b) (c)

(d)

(g)

(e) (f)

(h) (i)

Figure 5.1: Angular distributions for the decay B0 → D∗+D∗−, D∗+ → D0π+
s , D∗− →

D0π−
s (D0-D0 combination): (a) cos θtr distribution for A0; (b) cos θtr distribution for

A‖; (c) cos θtr distribution for A⊥; (d) cos θ1 distribution for A0; (e) cos θ1 distribution
for A‖; (f) cos θ1 distribution for A⊥; (g) Two-dimensional cos θtr vs. cos θ1 distribution
for A0; (h) Two-dimensional cos θtr vs. cos θ1 distribution for A‖; (i) Two-dimensional
cos θtr vs. cos θ1 distribution for A⊥. Solid (dotted) lines show distribution for generated
(reconstructed) events.
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(a) (b) (c)
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(e) (f)

(h) (i)

Figure 5.2: Angular distributions for the decay B0 → D∗+D∗−, D∗+ → D+π0
s , D

∗− →
D0π−

s (D+-D0 combination): (a) cos θtr distribution for A0; (b) cos θtr distribution for
A‖; (c) cos θtr distribution for A⊥; (d) cos θ1 distribution for A0; (e) cos θ1 distribution
for A‖; (f) cos θ1 distribution for A⊥; (g) Two-dimensional cos θtr vs. cos θ1 distribution
for A0; (h) Two-dimensional cos θtr vs. cos θ1 distribution for A‖; (i) Two-dimensional
cos θtr vs. cos θ1 distribution for A⊥. Solid (dotted) lines show distribution for generated
(reconstructed) events.
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• Reconstruct MC events for each of the six sets with the selection criteria we apply
to data.

• Make a two-dimensional histogram for cos θtr and cos θ1 (50 × 50 bins) for the
selected candidates of each MC set.

• Normalize the histogram with the number of entries.

The resulting six normalized histograms are used as the MC-PDF’s. We generated 4
million events for each of six sets. We only use D0 → K−π+ and D+ → K−π+π+ as
subsequent D decay modes. Possible mode dependence is examined by measuring the
polarization in the generic signal MC that includes all the D decays modes. No mode
dependent polarization bias is seen for both D0-D̄0 and D+-D̄0 combinations.

5.1.3 Effective Polarization

Measured polarizations are renormalized, because the reconstruction efficiency of each
polarization is different. Such “effective polarizations” are defined by:

R
′

i =
εiRi

ε0R0 + ε‖R‖ + ε⊥R⊥
, (5.2)

where i = 0, ‖ and ⊥, Ri is polarization parameters defined in Eq. (1.66), and εi is the
reconstruction efficiency for each MC-PDF. The signal PDF Hsig is obtained by:

Hsig(cos θtr, cos θ1) =
∑

i

R
′

iHi(cos θtr, cos θ1), (5.3)

where Hi(cos θtr, cos θ1) is each MC-PDF.

5.1.4 Background PDF

The background PDF is determined from a sideband region defined by Mbc < 5.26GeV/c2

and |∆E| < 0.2GeV. We use the following functions that include polarizations in the
background:

Hbg(cos θtr, cos θ1) ≡ Hbgθtr
(cos θtr)Hbgθ1

(cos θ1), (5.4)

Hbgθtr
(cos θtr) = Nbgθtr

(a1 sin2 θtr + a2 cos2 θtr)

= α + 3(
1

2
− α) cos2 θtr,

(5.5)

Hbgθ1
(cos θ1) = Nbgθ1

(bθ10
+ bθ11

cos θ1 + bθ12
cos2 θ1 + bθ13

cos3 θ1)

=
1

2
− bθ12

3
+ bθ11

cos θ1 + bθ12
cos2 θ1 + bθ13

cos3 θ1,
(5.6)
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where Nbgθtr
and Nbgθ1

are normalization factors, and α, bθ11
, bθ12

, bθ13
are fit parameters

determined from the events in the sideband. With MC simulation studies, we find that
the background cos θ1 distribution is asymmetric due to the inefficiency of πs that has
lower momentum (cos θ1 = −1 corresponds to lower momentum region, while cos θ1 = 1
corresponds to higher momentum region). Therefore, we choose Eq. (5.6) that can include
such effects. Figure 5.3 shows the fit results. Table 5.1 shows the background parameter
values obtained by the fit.

(a)

(c) (d)

(b)

Figure 5.3: Background angular distributions obtained from the sideband events: (a)
cos θtr backgrounds for the D0-D̄0 combination; (b) cos θtr backgrounds for the D+-D̄0

combination; (c) cos θ1 backgrounds for the D0-D̄0 combination; (d) cos θ1 backgrounds
for the D+-D̄0 combination.
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Parameter (D0-D̄0) (D+-D̄0)
α 0.524 ± 0.019 0.514 ± 0.019
bθ11

−0.019 ± 0.078 −0.037 ± 0.079
bθ12

−0.016 ± 0.059 0.012 ± 0.058
bθ13

0.14 ± 0.12 0.12 ± 0.12

Table 5.1: Background shape parameters for the polarization measurement.

5.2 Polarization Fit Results

We determine the most probable polarization parameters by minimizing −2 lnL, where
the likelihood function, L, is defined in Eq. (5.1):

R⊥ = 0.19 ± 0.08,

R0 = 0.57 ± 0.08.
(5.7)

Figures 5.4 show cos θtr and cos θ1 projections, respectively.

5.3 Systematic Uncertainty

5.3.1 Overview

Sources of systematic errors of the polarization measurement are described in the following
sections. As a basic rule, we estimate each systematic uncertainty by varying a parameter
by ±1σ. If an obtained systematic uncertainty is asymmetric, we take the larger one
for both sides. We take only one systematic uncertainty for each source of systematic
uncertainty. We add each systematic uncertainty in quadrature.

Systematic errors are summarized in Table 5.2.

Source R0 R⊥

Yield < 10−5 < 10−5

BG shape parameters 0.0072 0.0056
Fit bias 0.0047 0.0039
Understanding of the
angular distributions 0.0062 0.0004
π±
s efficiency 0.0022 0.0005
π0
s efficiency 0.0006 0.0013

MC-PDF binning 0.0059 0.0050
Misreconstruction 0.0066 0.0062
Sum 0.014 0.011

Table 5.2: Systematic uncertainties for the B0 → D∗+D∗− polarization parameters.
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Figure 5.4: Angular distributions of the B0 → D∗+D∗− candidates in cos θtr (a) and cos θ1
(b) projections. In each figure, the dot-dashed, dotted and dashed lines correspond to
longitudinal, parallel and transverse polarization components, respectively. The thin solid
line is the background, and the thick solid line shows the sum of all contributions.
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5.3.2 Yield Estimation

A systematic uncertainty in the signal fraction measurement is estimated by varying each
average signal fraction, favesig , which is defined in Eq. (4.12), by ±1σ.The σ is the standard
deviation of the average signal fraction. We then repeat the fit to obtain the polarization
parameters. For each signal fraction, the difference between our nominal fit result and
the refitted result is regarded as the systematic uncertainty.

5.3.3 Background Shape Parameters

Each background shape parameter (Table 5.1) is varied by ±1σ and the polarization pa-
rameters fit is repeated. We add each variation from the nominal fit result in quadrature.

5.3.4 Fit Bias

A possible fit bias between generated and reconstructed events is examined with Geant
MC events. Results are shown in Figs. 5.5. We estimate the uncertainty of observed polar-
ization by the errors of the fitted line, with taking the correlation between the parameters
of the line shape into account.

5.3.5 Understanding of the Angular Distributions

A possible difference in angular distributions between data and MC is examined. We use
the B0 → D∗+D−

s control sample that has a completely polarized angular distribution.
Therefore this helicity angle can be used to extract corrections for cos θ1. Figure 5.6 shows
angular distribution ratios as a function of sin θ1.

To account for the discrepancy, we define an effective additional resolution σadd as:

σ2
DATA = σ2

MC + σ2
add, (5.8)

where σDATA (σMC) is the angular resolution for data (MC). Table 5.3 shows the MC
angular resolution for each angle as a root-mean-square (RMS). The σadd is estimated
with the following procedure:

• obtain a ratio curve between data and MC, and check possible bias,

• smear MC cos θ1 with a Gaussian function whose sigma is σadd,

• repeat the smearing until the fitted ratio curve becomes flat.

We obtain σadd = 0.085. For the MC-PDF, both cos θtr and cos θ1 distributions are
smeared with this error, where considering differences in error distributions, each σadd is
scaled by RMS ratio of MC angular resolutions.

We then obtain polarization parameters using the corrected distributions. Differences
from our nominal fit results are used as the systematic errors.
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(a)

(c) (d)

(b)

Figure 5.5: Linearity tests with Geant MC: (a) R⊥ for the Kπ − Kπ combination; (b)
R⊥ for the Kπ − Kππ combination; (c) R0 for the Kπ − Kπ combination; (d) R0 for
the Kπ −Kππ combination. The filled circle with error shows the fit result at the input
polarization. The dashed line is ideal shape (input=output). The solid line is the linear
function fitted by output results.
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(a)

(b)

(c)

Figure 5.6: Angular distribution ratio of control sample: (a) The D∗+ helicity
distribution in B0 → D∗+D−

s . The hatched histogram is for MC and points
with errors are for data; (b) The ratio between data and MC (blank circles with
errors) with the fit result (solid curve); (c) The ratio between MC and data with
the additional resolution parameter σadd (see the text for detail).

(a)

(b)

Figure 5.7: Slow pion ratio of control sample: (a) Transverse momentum of slow
pion which comes from B0 → D∗+D−

s . Hatched histogram is for MC and points
with errors are for data; (b) The ratio between data and MC (blank circles with
errors).
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Angle Polarization (D0-D̄0) (D+-D̄0)
R0 0.24 0.33

cos θtr R‖ 0.24 0.35
R⊥ 0.27 0.43
R0 0.15 0.14

cos θ1 R‖ 0.14 0.13
R⊥ 0.13 0.13

Table 5.3: Angular resolution of each MC-PDF. Each resolution is represented by root-
mean-square (RMS) of the residual between the reconstructed angle and the generated
angle.

5.3.6 Slow Pion Efficiency

We consider a possible bias caused by the difference of slow pion reconstruction efficiencies
between MC and data. To check the possibility of a large bias, we compare slow pion
distribution of the B0 → D∗+D−

s control sample. Figure 5.7 shows transverse momentum
distributions of slow pions in the B0 → D∗+D−

s control sample. The distribution for data
is in agreement with that for MC within statistical errors. Thus we do not apply any
correction to our nominal fit results.

A further check is performed to take minor efficiency corrections into account. The
correction factors are obtained from D∗ or η candidates in data and MC. We generate
signal MC events with adjusting reconstruction efficiencies of slow pions using these cor-
rection factors. We refit them and include the difference between efficiency-corrected and
uncorrected events as systematic uncertainty.

5.3.7 MC-PDF Binning

The MC-PDF is divided by 50 bins for both cos θtr and cos θ1. The binning effect is
studied by changing it to 40 and 60 bins.

5.3.8 Misreconstructed Events

When we exchange particles from the B0 → D∗+D∗− decay with those from the accom-
panying B meson, we still obtain the angular distribution with a worse resolution. In
particular, the residual distribution has very long tails. To estimate these effects, we
change the likelihood function as follows:

L ≡
∏

{

fcorr(∆E,Mbc)Hcorr(cos θtr, cos θ1) + fmiss(∆E,Mbc)Hmiss(cos θtr, cos θ1)

+ [1 − fcorr(∆E,Mbc) − fmiss(∆E,Mbc)]Hbg(cos θtr, cos θ1)

}

,

(5.9)

where fcorr(∆E,Mbc) is a fraction of correctly-reconstructed signal events and
Hcorr(cos θtr, cos θ1) is its angular distribution, fmiss(∆E,Mbc) is a fraction of misrecon-
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structed signal events and Hmiss(cos θtr, cos θ1) is its angular distribution. The shapes of
fcorr(∆E,Mbc) and fmiss(∆E,Mbc) are decided from ∆E and Mbc projections of the signal
MC, which are separated to two with the MC information. The shapes of Hcorr(cos θtr, cos θ1)
and Hmiss(cos θtr, cos θ1) are similarly decided from the separate MC-PDF’s. Average frac-
tions of misreconstruction are 18 ∼ 39% of average signal fraction, depending on whether
the mode has π0 in D meson or as slow pion, or not. We repeat the polarization mea-
surement with these separate PDF’s. The difference between two methods is considered
as the systematic uncertainty.

5.4 Validation Checks for Polarization Measurement

5.4.1 Linearity

We test our fit method with the Geant MC. Figures 5.5 show linearities of R⊥ for the
D0(Kπ)-D0(Kπ) combination, R⊥ for D0(Kπ)-D−(Kππ), R0 for D0(Kπ)-D0(Kπ) and
R0 for D0(Kπ)-D−(Kππ), respectively. Since no sizable bias is seen, our nominal fit
result is not corrected. We consider the possibility of small bias in Sec. 5.3.4.

5.4.2 Ensemble Test

We generate 1000 pseudo-experiments. The special MC for the ensemble test is generated
with the same PDFs that are used to fit data. The merit of this test is that we can detect
possible bias owing to the fitting method itself. Figures 5.8 and 5.9 show the distributions
of central values, positive errors that corresponds to +1σ, negative errors that corresponds
to −1σ, and pulls, respectively, where the pull is defined as (output-input)/(error of the
fit). If the pull follows a Gaussian distribution with µ = 0 and σ = 1, it indicates that our
error estimation is correct. Figure 5.10 is a scatter plot for whole pseudo experiments.
Table 5.4 summarizes the results of the ensemble test. We conclude that there is no fit bias
and our error sizes for data are in good agreement with the ensemble test expectations.

R⊥ R0

Measured 0.1899+0.079
−0.076 0.5720+0.077

−0.079

Input 0.1899 0.5720
Output(mean) 0.1927 0.5786
Output(RMS) 0.07241 0.08197
Positive error(mean) +0.07263 +0.07693
Negative error(mean) −0.06715 −0.07879
Pull 0.98 ± 0.02 1.03 ± 0.03

Table 5.4: Ensemble test results for polarization
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(a) (b)

(c) (d)

Figure 5.8: Results of an ensemble test for R⊥: (a) The central values; (b) The positive
errors; (c) The negative errors; (d) The pulls. Vertical lines show our measurements.
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(a) (b)

(c)
(d)

Figure 5.9: Results of an ensemble test for R0: (a) The central values; (b) The positive
errors; (c) The negative errors; (d) The pulls. Vertical lines show our measurements.
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Figure 5.10: Results of an ensemble test. Each cross corresponds to each experiment and
the cross point shows the center values. The length of each cross means the statistical
error of each pseudo-experiment. The circle shows our measurement. Solid lines show
physical boundaries.
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5.4.3 Likelihood Scanning

(a) (b)

Figure 5.11: −2 ln(L/Lmax) distribution as function of (a) R⊥ (b) R0.

We scan the log-likelihood ratio −2 ln(L/Lmax) distribution as a function of R⊥ or R0.
Figures 5.11 show the results of the scan. Both plots show that there is no pathology
around Lmax.

5.5 Summary of Polarization Measurement

We obtain polarization parameters:

R⊥ = 0.19 ± 0.08(stat) ± 0.01(syst),

R0 = 0.57 ± 0.08(stat) ± 0.01(syst).
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Chapter 6

Extraction of CP Asymmetry
Parameters

6.1 Vertex Reconstruction

In order to extract CP asymmetry parameters, we need to measure the decay time dif-
ference, ∆t, which is calculated from the distance between the BCP and Btag vertices
as

∆t ∼ ∆z

βγc
≡ ZCP − Ztag

βγc
. (6.1)

Here ZCP (Ztag) is the z component of the BCP (Btag) vertex and βγ = 0.425 is a
Lorentz factor. Each B vertex is reconstructed from tracks from the B meson decay and
is constrained to the IP profile (called IP constraint fit). A concept of the constraint fit is
described in Sec. 4.3.2. The IP profile is calculated for every 10000 events using hadronic
events. The typical size of the IP profile is 100 µm in x, 3-5 µm in y and 3-4 mm in z.
When we perform the IP constraint fit, we take the effect of the B meson flight from the
IP profile in the x-y plane, into account. The effective IP profile is smeared by a Gaussian
function with RMS of 21 µm.

6.1.1 Vertex Reconstruction of BCP

We reconstruct BCP → D∗+D∗− decays with subsequent decaysD∗+D∗− → (D0π+, D0π−),
D∗+D∗− → (D0π+, D−π0) or D∗+D∗− → (D+π0, D0π−). We do not use daughter slow
pions from D∗± because of their poor resolution. We require that the D meson has at
least two daughter tracks that have enough SVD hits,i.e. with both r-φ and z hits in at
least one layer and with two or more z hits in total. If a D meson does not meet the
requirement, we do not use the trajectory for calculating the B vertex. We have two types
of reconstructed vertices; the number of used D meson trajectories are two (multi-D) or
one (single-D) as illustrated in Fig. 6.2.

We reject poorly reconstructed vertices for the multi-D case. The vertex quality is
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D

D

D CP-side B

Tagging-side B

IP profile
 z∆

Figure 6.1: The schematic picture of the vertex reconstruction.

(a)

(b)

D

D

D

D

IP-profile

IP-profile

Figure 6.2: Two types of D∗+D∗− vertex reconstruction, which depends on the number
of D trajectories which are associated with SVD hits: (a) with both D mesons and the
IP constraint; (b) with one D meson and the IP constraint.
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represented by a reduced χ2 projected onto the z axis defined as

ξ ≡ 1

2n

n
∑

i=1

[

ziafter − zibefore

eibefore

]2

, (6.2)

where zibefore and ziafter are the z positions of each track before and after the vertex fit,
respectively, and eibefore is the error on zibefore. We do not use the normal χ2 because it
is correlated with the vertex z position due to the IP constraint in the x-y plane. We
require ξ < 100. The typical z resolution estimated by the signal MC is ∼ 140 µm for the
multi-D case and ∼ 200 µm for the single-D case. The vertex reconstruction efficiency is
∼ 73% and ∼ 82%, respectively.

6.1.2 Vertex Reconstruction of Btag

After the exclusive reconstruction of BCP , all the remaining particles should belong to
Btag, i.e. the other B meson. The Btag vertex is reconstructed from charged tracks that
belong to Btag, although we discard poorly reconstructed tracks; the impact parameter,
dr, with respect to the BCP vertex is required to be less than 0.5 mm in the r-φ plane.
We use a constraint to the IP profile to improve the vertex resolution.

Since the Btag vertex is inclusively reconstructed and we assume all tracks come from
the Btag vertex, reconstructed vertex position may be distorted by long-lived particles
such as K0

S, Λ, and charmed hadrons. Therefore, the vertex reconstruction algorithm
must be carefully chosen to minimize the effect of secondary particles. We use the same
vertex reconstruction algorithm as that used for the sin 2φ1 analysis [8, 47]. At first, we
remove tracks that form a K0

S candidate which has an invariant mass within 15 MeV
from the nominal K0

S. The Btag vertex is then reconstructed with remaining tracks and
the IP constraint. If the reduced χ2 of the vertex is less than 20, we accept the vertex.
Otherwise we remove the track that gives the largest contribution to the χ2 and repeat
the vertex reconstruction. If the track to be removed is a lepton with p∗ > 1.1 GeV/c,
however, we keep the lepton and remove the track with the second largest χ2 contribution
because high momentum leptons are likely to come from primary semi-leptonic B decays.
We repeat this trimming procedure until we obtain a reduced χ2 less than 20. We accept
the vertex if the vertex quality parameter ξ is less than 100. We also apply the selection
of |∆t| < 70 ps to reject poorly reconstructed events.

6.2 Flavor Tagging

It is indispensable to identify the flavor of b-quark of Btag, i.e. to ascertain whether Btag

is B0 or B0, for time-dependent CP asymmetry measurement. This technique is called
“flavor tagging” [46]. Detail of flavor tagging method is shown in Appendix C. The
simplest and most reliable method for flavor tagging uses the charge of high-momentum
leptons in semi-leptonic decays, i.e. B0 → Xl+ν and B0 → Xl−ν̄. The charge of final-
state kaons can also be used since the decays B0 → K+X (b̄ → c̄ → s̄) and B0 → K+X
(with b→ c→ s) dominate. In addition to these two leading discriminants, our algorithm
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l r interval εl wl ∆wl εleff
1 0.000 − 0.250 0.398 0.464 ± 0.006 −0.011 ± 0.006 0.002 ± 0.001
2 0.250 − 0.500 0.146 0.331 ± 0.008 +0.004 ± 0.010 0.017 ± 0.002
3 0.500 − 0.625 0.104 0.231 ± 0.009 −0.011 ± 0.010 0.030 ± 0.002
4 0.625 − 0.750 0.122 0.163 ± 0.008 −0.007 ± 0.009 0.055 ± 0.003
5 0.750 − 0.875 0.094 0.109 ± 0.007 +0.016 ± 0.009 0.057 ± 0.002
6 0.875 − 1.000 0.136 0.020 ± 0.005 +0.003 ± 0.006 0.126 ± 0.003

Table 6.1: The event fractions εl, wrong-tag fractions wl, wrong-tag fraction differences
∆wl, and average effective tagging efficiencies εleff = εl(1 − 2wl)

2 for each r interval.
The errors include both statistical and systematic uncertainties. The event fractions are
obtained from the B0 → J/ψK0

S simulation.

includes other categories of tracks whose charges depend on the b quarks’s flavor: lower
momentum leptons from c → sl+ν; Λ baryons from the cascade decay b → c → s; high-
momentum pions that originate from decays such as B0 → D(∗)−(π+, ρ+, a+

1 , etc.); and
slow pions from D∗− → D̄0π−.

All these inputs are combined, taking their correlations into account, in a way that
maximizes the flavor tagging performance. We use two parameters, q and r, to represent
the flavor tagging information. First, q, indicates the determined flavor; q = +1 for
B0 and q = −1 for B0. The parameter r is an event-by-event, MC-determined flavor-
tagging dilution factor that ranges from r = 0 for no flavor discrimination to r = 1 for
unambiguous flavor assignment. This assignment is used only to sort data into six r
intervals. The average wrong tag probabilities, wl ≡ (w+

l + w−
l )/2 (l = 1, 6) and the

difference between B0 and B0 decays, ∆wl ≡ w+
l − w−

l , where w
+(−)
l is the wrong-tag

probability for the B0 (B0) decay in each r interval, are directly determined from data.
The decision algorithm is optimized to maximize εleff ≡ εl(1−2wl)

2, which is called effective
tagging efficiency, since the asymmetry for a certain statistical significance is proportional
to εleff . We use the same values that were used for the sin 2φ1 measurement [47]. Table 6.1
lists these values to be used for the flavor-tagging.

6.3 Probability Density Function for CP Asymmetry

Measurement

Extraction of CP asymmetry parameters is performed by the unbinned maximum likeli-
hood method, which is described in Appendix A.

The likelihood function for CP asymmetry measurement is

L =
∏

(1 − fol){fsigPsig + (1 − fsig)Pbg} + folPol, (6.3)

where the signal fraction fsig(∆E,Mbc) is defined in Eq. (4.12), Psig and Pbg are PDF’s of
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signal and background, respectively. The small number of signal and background events
that have large ∆t are accommodated by the outlier PDF, Pol, with fraction fol.

6.3.1 Signal PDF

Theoretical time-dependent ∆t distribution of B0 → D∗+D∗−, PD∗+D∗−, was defined in
Eq. (2.5). We obtained Eq. (2.8) in Sec. 2.2.3 with considering the wrong flavor tag
probability w. Furthermore, we should consider additional smearing effects in our exper-
imental environment. Sources of smearing effects are classified into two types: angular
resolutions and ∆t resolutions. Angular resolutions were already discussed in Chapter 5.
We replace Hi in Eq. (2.8) with normalized MC-PDF Hi, where i = 0, ‖,⊥. Therefore,
the signal probability becomes:

PD∗+D∗− =
e−|∆t|/τ

B0

4τB0

∑

i=0,‖,⊥

RiHi(cosθtr, cosθ1)

{

1 − q∆w + q(1 − 2w)(AD∗+D∗− cos ∆m∆t + ηiSD∗+D∗− sin ∆m∆t)

}

.

(6.4)

To account for finite ∆t resolutions, PD∗+D∗− is convoluted with a resolution function
Rsig:

Psig(∆t) =

∫

PD∗+D∗−(∆t′)Rsig(∆t− ∆t′)d(∆t′), (6.5)

where the Rsig consists of three resolution functions:

Rsig = Rdet ⊗Rnp ⊗ Rk. (6.6)

Here Rdet represents the detector resolution, Rnp the smearing and bias from non-primary
tracks to the Btag vertex, and Rk the smearing due to the kinematic approximation that
we neglect the transverse momentum of B mesons in the center of mass system in the ∆t
calculation [Eq. (2.7)]. For multi-D case, Rdet is described as the sum of two Gaussian
functions, whose resolutions are the function of error of the vertex-constraint fit. The error
of the vertex depends on ξ. We assume the dependence as a first order of polynomial of ξ
and the difference from the assumption is taken as systematic uncertainty into account.

6.3.2 Background PDF

A background PDF is defined in the similar way to Psig:

Pbg(∆t) =

∫

Pbg(∆t
′)Rbg(∆t− ∆t′)d(∆t′), (6.7)

where Pbg is the background ∆t distribution and Rsig is the background resolution func-
tion. The background ∆t distribution consists of lifetime, and prompt-components:

Pbg = (1 − fδ)
e−|∆t|/τBG

2τBG

+ fδ · δ(∆t), (6.8)
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where τBG is an effective lifetime and fδ is a fraction of prompt component.
Background resolution function is treated as a sum of two Gaussian functions:

Rbg = (1 − ftail)G(∆t, µmean, Smainσ) + ftailG(∆t, µmean, Stailσ), (6.9)

where ftail is a fraction of the second Gaussian function, µmean is a mean shift and Si is
a global scaling factor for an event-by-event vertexing error, which is obtained from the
vertex reconstruction. We use different parameters depending on whether both vertices are
reconstructed with multiple tracks or not. Each parameter is determined from a sideband
region defined by Mbc < 5.25GeV/c2 and |∆E| < 0.2GeV. To reduce statistical error

of background parameters, we also use B → D(∗)D
(∗)
s control samples that have similar

decay topology. We confirm that there is no difference between obtained parameters from
B0 → D∗+D∗− and obtained parameters from B → D(∗)D

(∗)
s , with MC simulation. The

fit results are summarized in Table 6.2.

Parameter Fit value
δmean −0.058 ± 0.017
τBG 2.38+0.12

−0.10

µmean −0.148 ± 0.069
fδ 0.594 ± 0.035

Single ftail 0.43 ± 0.12
track Smain 1.020+0.079

−0.104

Stail 1.95+0.20
−0.17

fδ 0.739+0.031
−0.033

Multi ftail 0.472+0.050
−0.049

tracks Smain 1.130+0.060
−0.062

Stail 2.61+0.17
−0.16

Table 6.2: ∆t background shape parameters

6.3.3 Outlier PDF

To account for a small number of events that give large ∆t in both signal and background,
we introduce the PDF of the outlier component, Pol and its fraction fol. The source of
outlier component is considered as misreconstructed tracks. The outlier PDF is given by
a Gaussian with zero mean and a large width (∼ 40 ps):

Pol(∆t) = G(∆t; 0, σol). (6.10)

The fraction of the outlier fol and the width σol in data are determined from the lifetime
analysis. We use different fol values depending on whether both vertices are reconstructed
with multiple tracks or not. Their values are shown in Table 6.3.
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Parameter Fit value
σol 38.8+1.6

−1.5

Single track fol (2.1+0.6
−0.5) × 10−4

Multi tracks fol (3.1 ± 0.1) × 10−2

Table 6.3: Parameters for the outlier PDF.

6.4 Fitting Result

The number of events used for the fit is summarized in Table 4.4. we find 194 (132+62)
candidates in the signal box, where the first (second) number in the parenthesis is the
number of D0-D0 (D+-D0) sub-decay mode. After quality cuts for the vertex and flavor
tagging are required, there are 164 (111+53) events in the signal box. The number of
multi-D candidates is 129 (97+32).

The PDF is obtained with using results of previous sections:

P (q, wl,∆t;SD∗+D∗−,AD∗+D∗−) = (1 − fol)[fsigPsig(q,∆t, wl;SD∗+D∗−,AD∗+D∗−)

+
1

2
(1 − fsig)Pbg(∆t)] + folPol(∆t).

(6.11)

Then the likelihood function becomes:

L(SD∗+D∗−,AD∗+D∗−) =
∏

i

P (qi,∆ti;SD∗+D∗−,AD∗+D∗−), (6.12)

where qi and ∆ti are for i-th event and the product runs over all events. We determine
the most probable CP asymmetry parameters by minimizing −2 lnL. We obtain

SD∗+D∗− = −0.75 ± 0.56,

AD∗+D∗− = −0.26 ± 0.26.
(6.13)

These are consistent with the SM prediction with neglecting penguin contribution; SD∗+D∗− ∼
−0.731 and AD∗+D∗− ∼ 0.

Figures 6.3 show ∆t distributions for q = +1 and q = −1, and time-dependent CP
asymmetries.

6.5 Systematic Uncertainty

6.5.1 Overview

Sources of systematic errors of the CP asymmetry measurement are described in the
following sections. As a basic rule, we estimate each systematic uncertainty by varying a
parameter that is obtained from data by ±1σ, and varying a parameter that is obtained
from MC by ±2σ. If an obtained systematic uncertainty is asymmetric, we take the larger
one for both sides. Systematic errors are summarized in Table 6.4.
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Figure 6.3: The ∆t distributions with a 140 fb−1 data sample: (a) q = +1 tagged candi-
dates; (b) q = −1 tagged candidates; (c) time dependent CP asymmetry for 0 < r ≤ 0.5
candidates; (d) time dependent CP asymmetry for 0.5 < r ≤ 1.0 candidates. Filled cir-
cles with error bars show data, the solid lines show the fit results and dashed lines show
the background.
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Source SD∗+D∗− AD∗+D∗−

Vertex Reconstruction 0.054 0.027
Flavor Tagging 0.036 0.022
Resolution Function 0.047 0.010
Fit Bias 0.039 0.0017
Background 0.043 0.022
Physics Parameters 0.022 0.00021
Polarization 0.055 0.014
Tag-Side Interference 0.0074 0.034
Sum 0.12 0.06

Table 6.4: Systematic uncertainties of B0 → D∗+D∗− CP asymmetries

6.5.2 Vertex Reconstruction

∆t Selection Dependence

We used events which satisfied |∆t| < 70 ps. In order to evaluate this selection depen-
dence, we changed the limit to 10 ps and infinity.

Vertex Selection Dependence

We required ξ < 100 for CP and tagging side vertices. We changed the limit to 50 and
150.

Track Selection for Tagging Side Vertex

The track selection criteria for the tagging side vertex were |dr| < 500 µm and the error
on z < 500 µm. The systematic error due to the track selection criteria for the tagging
side vertexing is estimated by varying the requirement for |dr| and the error of z by ±10%.

∆z Bias

Possible differences between measured ∆z distribution and true ∆z distribution are taken
into account. The ∆z bias depends on charge, momentum and angle of each track. The
source of ∆z bias is considered as misalignment between the SVD and the CDC. The
correction parameters are obtained from the large amount of events. They were then
applied to whole tracks in the event candidates, to estimate the uncertainty in ∆z.

Scaling Error Dependence

For each charged track, errors on tracking parameters are corrected by global scaling
parameters obtained from cosmic ray events. We compare fit results with and without
these global scaling parameters, and take the difference as a source of systematic errors.
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Flight Length of B Meson

When the IP constraint is used, we take into account the finite flight length of B meson in
the x-y plane. It is modeled by a Gaussian function with σ = 21 µm, although it actually
has an exponential component. We estimated the systematic error by varying the σ of
the Gaussian function by ±10 µm.

6.5.3 Flavor Tagging

Wrong Tagging Fraction

The systematic errors associated with wl and ∆wl are estimated by following the “basic
rule”. We divide wl and ∆wl into six r regions, and add them in quadrature.

Decay-mode dependence in wrong-tag fractions

We used wl and ∆wl that are determined from flavor-specific decay modes, such as D(∗)lν,
D(∗)π, etc., from data. For the B0 → D∗+D∗− decay, these wl and ∆wl parameters
may have some difference owing to flavor-non-specific decays, the difference in the track
multiplicity and so on. Using wl and ∆wl obtained from 171 ×106 MC samples for each
B0 → D∗+D∗− and B0 → D∗+D∗−, we repeat the CP fit to evaluate the systematic
uncertainties.

6.5.4 Resolution Function

The estimation of the systematic uncertainty that comes from the resolution function
follows the “basic rule”. In our nominal fit, we assume that the scaling parameter for Rdet

has a linear ξ dependence for multi-D case. This assumption overestimates the scaling
parameter in a region for large ξ, although the number of events in the region is small.
We estimate the possible systematic uncertainty due to this assumption, with comparing
the linear function model and a more complex function model.

6.5.5 Fit Bias

We test a linearity of CP asymmetry measurements using MC events. Figures 6.4 show
the results from Geant MC, and Figures 6.5 show the results from an ensemble test. Detail
for each figure is described in Sec. 6.6.2.

We find that the linearity of the ensemble test shows a slight deviation from an ideal
line. We take the deviation for the measured value as the systematic error.

6.5.6 Background

Background Fraction

Background fractions are determined on an event-by-event basis from the the ∆E and
Mbc values. The parameters to model the ∆E and Mbc shapes are varied according to
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(a) (b)

Figure 6.4: Linearity tests with Geant MC: (a) SD∗+D∗− for the D0-D0 combination; (b)
SD∗+D∗− for the D+-D0 combination. Filled circle with error is mean of output results.
The dashed line is ideal shape (input=output). The solid line is the linear function fitted
by output results.

the “basic rule” to estimate the systematic uncertainty.

Background ∆t Shape

The systematic error coming from parameters describing ∆t shape is also estimated by
the “basic rule”.

Background CP Contents

From a study of the background sources in generic decay MC samples, we estimate that
the fraction of B decay background events that may have CP asymmetries is at most 10%.
In the nominal fit, we thus assume that background does not have a CP asymmetry.

In order to evaluate a possible systematic effect due to this approximation, we assume
that 10% of the background has CP asymmetry Sbg = ± sin 2φ1. The resulting deviation
from the nominal fit result is taken as the systematic error.

Misreconstructed Events

Similar to the case of polarization measurement, which is described in Sec. 5.3.8, the effect
of misreconstructed events is studied. We change the likelihood function as follows:

L =
∏

(1 − fol){fcorrPcorr + fmissPmiss + (1 − fcorr − fmiss)Pbg} + folPol, (6.14)

where fcorr is a fraction of correctly-reconstructed signal events and Pcorr is its signal
PDF. fmiss is a fraction of misreconstructed signal events and Pmiss is its signal PDF. We
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(a) (b)

(c) (d)

Figure 6.5: Results of an ensemble test for SD∗+D∗− and AD∗+D∗−: (a) SD∗+D∗− ensemble
test at 140 fb−1; (b) AD∗+D∗− ensemble test at 140 fb−1; (c) SD∗+D∗− ensemble test at
1 ab−1; (d) AD∗+D∗− ensemble test at 1 ab−1. Filled circle is mean of fitted output
results. Open square shows SD∗+D∗− (input=0) fit results for AD∗+D∗− test, and AD∗+D∗−

(input=0) fit results for SD∗+D∗− test. The dashed line is ideal shape (input=output).
The solid line is the linear function fitted by output results.

95



repeat the measurement of CP asymmetry parameters with these separate PDF’s. The
difference between two methods is considered as the systematic uncertainty.

6.5.7 Physics Parameters

We used B0 lifetime, τB0 , and the mass difference between B mass eigenstates, ∆md,
obtained from the semi-leptonic and hadronic B0 decays [13]. Uncertainties due to these
measurements are estimated by the “basic rule”.

6.5.8 Polarization

Uncertainties from R⊥ and R0 which are obtained in the angular analysis are also esti-
mated with the “basic rule”.

6.5.9 Tag-Side Interference

We investigate the effects of interference between CKM-favored and CKM-suppressed
B → D transitions in the final state of the accompanying B meson [48]. A small cor-
rection to the PDF for the signal distribution arises from the interference. We esti-
mate the amount of correction using the B0 → D(∗)lν sample. We then generate MC
pseudo-experiments and make an ensemble test to obtain systematic biases in SD∗+D∗−

and AD∗+D∗−. We take the dilution effect due to CP -odd component of B0 → D∗+D∗−

(R⊥ = 0.19) into account.

6.6 Validation Checks for CP Asymmetry Measure-

ment

6.6.1 Ensemble Test

We perform an ensemble test in a similar way to the polarization measurement described
in Sec. 5.4.1. The MC experiments for the ensemble test are generated with the same
PDF’s and resolution parameters used in the fit to data including measured polarization
and CP asymmetries. Figures 6.6 and 6.7 show the distributions of central values, positive
errors that corresponds to +1σ, negative errors that corresponds to −1σ, and pulls that
are defined as (output-input)/(error of the fit), respectively. Figure 6.8 shows a plot
for whole pseudo-experiments. Results are summarized in Table 6.5. The result of the
ensemble test tells us that there is no fit bias and our error sizes in data are consistent
with expectations.
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(a) (b)

(c)

(d)

Figure 6.6: Results of an ensemble test for SD∗+D∗−: (a) The central values; (b) The pos-
itive errors; (c) The negative errors; (d) The pulls. Vertical lines show our measurements.
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(a) (b)

(c)

(d)

Figure 6.7: Results of an ensemble test for AD∗+D∗−: (a) The central values; (b) The pos-
itive errors; (c) The negative errors; (d) The pulls. Vertical lines show our measurements.

SD∗+D∗− AD∗+D∗−

Measured −0.7476+0.5559
−0.5049 −0.2612+0.2578

−0.2525

Input −0.7476 −0.2612
Output(mean) −0.7704 −0.2773
Output(RMS) 0.6269 0.2787
Positive error(mean) 0.5684 0.2750
Negative error(mean) −0.5208 −0.2654
Pull 1.08 ± 0.03 1.01 ± 0.03

Table 6.5: Ensemble test results for the CP asymmetries measurement
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Figure 6.8: Results of an ensemble test. Each cross corresponds to each pseudo-experiment
and the cross point shows the center values. The length of each cross shows the statistical
error of each pseudo-experiment. The small circle shows our measurement. The ellipse
show physical boundaries.
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6.6.2 Linearity Test

Linearity Test with Geant MC

Linearity check with Geant MC is performed. Only SD∗+D∗− is varied and AD∗+D∗− is
fixed at 0. To check mode dependence, we prepare separate samples for D0-D0 and D+-
D0 combinations. Figures 6.4 show the results of ensemble tests. Fit results show that
there is no bias.

Linearity Test with Ensemble Test

Linearity check with MC pseudo-experiments is also performed. We generate 10000
pseudo-experiments, each of which contains same statistics as data, for each input pa-
rameters. Figure 6.5 (a) shows a small mean shift that depends on SD∗+D∗−. It is not
seen in AD∗+D∗− which is plotted in Fig. 6.5 (b). The small bias is seen when fit results are
outside physical boundary. We also test the case that corresponds to 1000 fb−1 [Figs. 6.5
(c) and (d)]. We do not see any bias in both plots. We thus conclude that the small
bias is due to limited statistics. We include this shift in the systematic uncertainty. To
confirm our fit method, we repeat the same check with J/ψK0

S pseudo experiments which
corresponds to 140 fb−1. Figures 6.9 show fit results. Both SJ/ψK0

S
and AJ/ψK0

S
terms

show good linearity.

(a) (b)

Figure 6.9: Results of an ensemble test for SJ/ψK0
S

and AJ/ψK0
S
: (a) SJ/ψK0

S
ensemble

test at 140 fb−1; (b) AJ/ψK0
S

ensemble test at 140 fb−1; Filled circle is mean of fitted
output results. The dashed line is ideal shape (input=output). The solid line is the linear
function fitted by output results.
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(a) (b)

Figure 6.10: The ∆t distribution for (a) B0 → D(∗)D
(∗)
s (b) B+ → D(∗)D

(∗)
s . The solid

curve represents the fit and the hatched curve represents the background.

Figure 6.11: The ∆t distribution for the B0 → D∗+D∗−. The solid curve represents the
fit and the hatched curve represents the background.
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6.6.3 B Lifetime measurement

The B0 lifetime is measured with the same data set. To check consistency and to obtain
resolution parameters from data, B0 and B+ lifetimes are also measured with the D(∗)D

(∗)
s

control samples. From the control sample, fit results are as follows:

τB+ = 1.68 ± 0.04 (ps) [PDG2003 [13] : 1.671 ± 0.018 (ps)],

τB0 = 1.60+0.05
−0.04 (ps) [PDG2003 [13] : 1.537 ± 0.015 (ps)],

(6.15)

where our errors are only statistical, while PDG values include both statistical and sys-
tematic uncertainties. From the D∗+D∗− data,

τB0 = 1.7 ± 0.2 (ps). (6.16)

Figs. 6.10 and Fig. 6.11 show the ∆t distributions for the lifetime measurements for
B0 → D(∗)D

(∗)
s , B+ → D(∗)D

(∗)
s and B0 → D∗+D∗− decays. These results are consistent

with the world average values [13].

6.6.4 Null Asymmetry Test

To check reconstruction bias, we perform CP asymmetry measurement with control
samples which should have no CP asymmetry. We use the same procedure as the
B0 → D∗+D∗− measurement. Only a CP -even term is assumed in the PDF used for
the fit. The fit yields:

S
B0→D(∗)D

(∗)
s

= −0.12 ± 0.08,

A
B0→D(∗)D

(∗)
s

= +0.02 ± 0.05,

S
B+→D(∗)D

(∗)
s

= −0.10 ± 0.07,

A
B+→D(∗)D

(∗)
s

= −0.001 ± 0.050.

(6.17)

Time-dependent CP asymmetry plots are shown in Figs. 6.12. These results show that
there is no asymmetry.

6.6.5 Polarization Blind Fit

We perform a fit assuming no polarization. In other words, we ignore the dilution from
the CP -odd component. The fit yields:

SD∗+D∗− = −0.57 ± 0.45,

AD∗+D∗− = −0.29 ± 0.26.
(6.18)

This result suggests that the CP -odd component is small, supporting our polarization
measurement in Chapter 5.
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(a) (b)

Figure 6.12: Null asymmetry test for (a) B0 → D(∗)D
(∗)
s (b) B+ → D(∗)D

(∗)
s . The solid

curve represents the fit.

6.6.6 Special Event Scanning

A further check is made to know whether we have special events that are sensitive to
the central values or errors. We repeat the fit with removing each event from whole data
sample. The results are plotted in Fig. 6.13. We do not find any event that largely shift
the result.

6.6.7 Likelihood Scanning

We scan log-likelihood ratio −2 ln(L/Lmax) distribution as function of SD∗+D∗− or AD∗+D∗−.
Figures 6.14 show results. Both plots are consistent with parabolic behavior around Lmax.

6.7 Summary of Time-Dependent CP Asymmetry Mea-

surement

We obtain the following CP asymmetry parameters for the B0 → D∗+D∗− decay with
140 fb−1 data sample.

SD∗+D∗− = −0.75 ± 0.56(stat) ± 0.12(syst),

AD∗+D∗− = −0.26 ± 0.26(stat) ± 0.06(syst).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.13: Special event scanning during CP asymmetries measurement for (a) SD∗+D∗−

output; (b) AD∗+D∗− output; (c) SD∗+D∗− positive error; (d) AD∗+D∗− positive error; (e)
SD∗+D∗− negative error; (f) AD∗+D∗− negative error. The horizontal axis shows the id of
the removed event.
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(a) (b)

Figure 6.14: −2 ln(L/Lmax) distribution as function of (a) SD∗+D∗− (b) AD∗+D∗−.
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Chapter 7

Discussion

7.1 Comparison with Other Measurements

7.1.1 Comparison between b→ cc̄d and b→ cc̄s Modes

Figures 7.1 summarize measurements of CP asymmetry parameters Sf and Af , where f
denotes each decay mode. Our result is consistent with the world average value for the
b → cc̄s transitions (i.e. sin 2φ1) and there is no b → cc̄d mode which shows a significant
inconsistency with the b→ cc̄s measurements.
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Figure 7.1: Comparison of the results for time-dependent CP asymmetry measurements
of b → cc̄s and b → cc̄d modes. (a) Comparison of −ηf × Sf , where ηf means internal
CP sign; (b) Comparison of Af . b→ cc̄s is obtained from PDG2003 [13] and other values
are obtained from HFAG [49]. Averages of b → cc̄d modes are computed from Belle and
BaBar’s results. Bar means total error including statistical and systematics error.
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7.1.2 Comparison with BaBar Experiment

The BaBar collaboration measured CP asymmetry parameters and obtained [27],

=λ+ = 0.05 ± 0.29 ± 0.10,

|λ+| = 0.75 ± 0.19 ± 0.02.
(7.1)

These results correspond to

SD∗+D∗−+ = +0.06 ± 0.37 ± 0.13,

AD∗+D∗−+ = −0.28 ± 0.23 ± 0.02,
(7.2)

where subscripts + indicate that they only measured CP asymmetry parameters for the
CP -even component while the CP -odd term is fixed at their sin 2φ1 measurement value.
In our analysis, on the contrary, we assume that both components have the same absolute
value.

Figure 7.2: Two-dimensional scatter plot of CP asymmetry measurements with different
methods. The filled circle shows our nominal fit, the filled square shows BaBar’s mea-
surement [27], the open square is the result with fixing SD∗+D∗−⊥ at the world average
value of sin 2φ1 and AD∗+D∗−⊥ at 0. The open circle is the result with using R⊥ = 0.063.
The ellipse shows the physical boundary.
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Following their method, i.e. fixing SD∗+D∗− of CP -odd component, SD∗+D∗−⊥, at the
world average value of sin 2φ1 and AD∗+D∗− of CP -odd component, AD∗+D∗−⊥ at 0, we
obtain

SD∗+D∗−+ = −0.72 ± 0.50,

AD∗+D∗−+ = −0.42 ± 0.30,
(7.3)

where only statistical errors are shown. Note that the statistical error of SD∗+D∗− depends
on the measured value of R⊥, since the fraction of the CP -odd term is considered as a
dilution factor to CP asymmetries. To demonstrate the effect of the dilution, we fix R⊥

at the value obtained by the BaBar collaboration (0.063). We obtain

SD∗+D∗−+ = −0.64 ± 0.46,

AD∗+D∗−+ = −0.37 ± 0.28.
(7.4)

The statistical errors are much reduced. Figure 7.2 shows a scatter plot of BaBar’s result
and ours. In spite of applying different methods, our result is always stable around the
nominal fit value.

7.2 Significance of the CP Asymmetry Parameters

We evaluate the significance of our obtained CP asymmetry parameters with following
the idea proposed by the Feldman and Cousins [50]. To calculate the confidence level,
we assume that the two-dimensional distribution of SD∗+D∗− and AD∗+D∗− is the sum
of two Gaussian functions whose standard deviations correspond to measurement errors
of SD∗+D∗− and AD∗+D∗−, and use the distribution as the likelihood function. We add
statistical and systematic errors in quadrature. Figure 7.3 shows the confidence regions.
Our CP asymmetry parameters are consistent with the SM prediction neglecting the
penguin contribution; the deviation from the SM point is at a level of 0.54σ. Our fit
result is also consistent with the BaBar measurement at a level of 0.91σ. A 2σ confidence
region (C.L.=95.45%) covers 47% of the physically allowed region. In other words, 53%
of the physically allowed region is ruled out at a 2σ level.

7.3 Assumption of Different λs

As explained in Chap. 1, the B0 → D∗+D∗− decay has in general three kinds of λs
corresponding to three polarization amplitudes. While their absolute values should be the
same assuming the tree diagram dominance, some difference may exist due to different
contributions of penguin diagrams.

We generate pseudo-experiments to investigate such cases. Results are shown in
Fig. 7.4. We see a tendency that measured asymmetries mainly depend on input asymme-
try values of the CP -even component. The observed differences, which are much smaller
than the statistical errors we obtained, indicate that our statistics are not large enough
to be sensitive to different penguin contributions. Thus we conclude that our fit method
is sufficient for the present data.
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Figure 7.3: Two-dimensional confidence regions for CP asymmetry measurements.
Dashed, dotted, dashed-dotted curves correspond to the confidence level of 68.27%,
95.45%, 99.73%, respectively. Filled circle shows our fit result. Open circle shows the
world average (Sf = − sin 2φ1,Af = 0) for the b→ cc̄s transitions. The ellipse shows the
physical boundary.

7.4 Constraint on the Physics Parameters

7.4.1 Constraint on the New Physics Parameters

With our obtained CP asymmetry parameters, we evaluate the constraint on the generic
new physics parameters, φNP, δN and |N |, which are introduced in Sec. 1.5.3. We compute
three-dimensional allowed region for these three parameters, by using Eq. (1.41). Figures
7.5 (a)-(d) show the several slices of the confidence regions. For an illustration, we neglect
the contribution from the SM penguin, i.e. |R| = 0 is assumed. Although our statistics
are limited, some parameter regions are excluded with the confidence level of 99.73%.

7.4.2 Effect of the SM Penguin Parameters

To evaluate the contribution from the SM penguin process, we compute the three-dimensional
allowed region for new physics parameters, with assuming |R| = 0.06 and δ = 12◦. Figure
7.5 (e) shows the slice of the confidence region at δN = 3π/4. Although the shapes of
the confidence regions are slightly affected, they are totally unchanged. This tendency
supports that |R| = 0 assumption is sufficient for the current condition. The correct
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Figure 7.4: Results of an ensemble test with assuming different CP asymmetries between
CP -even and CP -odd components of B0 → D∗+D∗− decays. The inputs for CP -even
and CP -odd term are chosen from our result, BaBar’s result and the world average
(Sf = − sin 2φ1,Af = 0). The expression (x, y) denotes that x (y) is an input for
the CP -even (CP -odd) term. The open square is the result for the case (Belle,Belle).
The inverted triangle is the result using (Belle,world-average). The open circle is the
result using (BaBar,BaBar). The triangle is the result using (BaBar,world-average). The
cross is the result for an extreme case (Belle, (SD∗+D∗−⊥,AD∗+D∗−⊥) = (0, 0.5)), which
demonstrates the stability of our assumption in this analysis. The ellipse shows physical
boundary.

knowledge about |R|, however, may help us determine the new physics parameters pre-
cisely.

We also demonstrate the constraint on the SM penguin parameters δ and |R|, with
assuming that there is no new physics (|N | = 0). Figure 7.5 (f) shows the confidence
region. From the contour plot, we find the constraint on the SM penguin parameters is
not sufficient for theoretically expected region (|R| ∼ a few %).
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Figure 7.5: The confidence regions for the SM and new physics parameters; (a) |N |-φNP

plane for δN = 12◦; (b) |N |-φNP plane for δN = 3π/4; (c) δN-φNP plane for |N | = 0.25;
(d) δN-φNP plane for |N | = 0.75; (e) |N |-φNP plane for δN = 3π/4 and |R|=0.06; (f) |R|-δ
plane for |N | = 0. Dashed, dotted, dashed-dotted curves correspond to the confidence
level of 68.27%, 95.45%, and 99.73%, respectively.
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7.5 Future Prospect

As described in previous sections, the uncertainties of our measurement are dominated by
statistical errors. This means that we can improve the precision of our measurement by
accumulating more data. Within a few years, we expect that the integrated luminosity at
Belle will reach 1000 fb−1, which is approximately 7 times larger than the statistics used
in this analysis. Furthermore the SuperKEKB upgrade is being planned to accumulate
50000 fb−1 of data [51]. As the integrated luminosity increases, some sources of systematic
errors, which are limited by the statistics of control samples, will decrease. Examples
include errors due to uncertainties of polarization parameters or wrong tag fractions. On
the other hand, there are other sources of systematic errors, such as the one due to the ∆t
cut dependence, which will not decrease. Therefore we divide the sources of systematic
errors into two; “reducible” and “irreducible” sources. For SD∗+D∗− (AD∗+D∗−), the total
reducible error is 0.10 (0.04) and the irreducible error is 0.06 (0.04) in our measurement.
The dominant sources of the irreducible systematic error come from vertex reconstruction.

Figure 7.6 shows future prospects of CP asymmetry measurements for the B0 →
D∗+D∗− decay extrapolated from our measurements. The experimental errors will be at
the level of 0.06. Figure 7.7 shows the combined confidence regions of 99.73% for the
integrated luminosity of 140 fb−1, 1 ab−1 and 50 ab−1. We will rule out 97% of physical
allowed region with 99.73% confidence level at the integrated luminosity of 50 ab−1. Fig-
ures 7.8 and 7.9 demonstrate the sensitive regions for the SM and new physics parameters
at the integrated luminosity of 1 ab−1, 50 ab−1, respectively.

Large statistics will also allow us to perform full angular analyses, which use all
transversity angles θtr, θ1 and φtr, to reduce systematic uncertainties from the polar-
ization measurement. Furthermore, a measurement of φ3, another angle of the unitarity
triangle [52], may become possible with large statistics of B0 → D∗+D∗− decays.
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Figure 7.6: Expected errors of CP asymmetry parameters of B0 → D∗+D∗− decays
as a function of the integrated luminosity. The solid line shows the quadratic sum of
statistical and systematic errors. Dashed and dotted lines are statistical and systematic
errors, respectively.
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Figure 7.7: Two-dimensional confidence regions for CP asymmetry measurements for
future experiments. Dashed, dotted, dashed-dotted curves correspond to the confidence
level of 99.73% for 140 fb−1, 1 ab−1, 50 ab−1, respectively. To illustrate the size of allowed
region, we assumed that (SD∗+D∗− = − sin 2φ1,AD∗+D∗− = 0). Filled circle shows our fit
result from data. Open circle shows the world average (Sf = − sin 2φ1,Af = 0) for the
b→ cc̄s transitions. The ellipse shows the physical boundary.

113



NPφ
-3 -2 -1 0 1 2 3

|N
|

0

0.5

1

1.5

2
/4π=3Nδ

C.L.=99.73%
C.L.=95.45%
C.L.=68.27%

NPφ
-3 -2 -1 0 1 2 3

Nδ

-3

-2

-1

0

1

2

3 |N|=0.25

C.L.=99.73%
C.L.=95.45%
C.L.=68.27%

NPφ
-3 -2 -1 0 1 2 3

|N
|

0

0.5

1

1.5

2 o=12Nδ

C.L.=99.73%
C.L.=95.45%
C.L.=68.27%

δ
-3 -2 -1 0 1 2 3

|R
|

0

0.2

0.4

0.6

0.8

1
|N|=0.0

C.L.=99.73%
C.L.=95.45%
C.L.=68.27%

NPφ
-3 -2 -1 0 1 2 3

Nδ

-3

-2

-1

0

1

2

3 |N|=0.75

C.L.=99.73%
C.L.=95.45%
C.L.=68.27%

NPφ
-3 -2 -1 0 1 2 3

|N
|

0

0.5

1

1.5

2
/4π=3Nδ

C.L.=99.73%
C.L.=95.45%
C.L.=68.27%

(a) (b)

(c) (d)

(e) (f)

Figure 7.8: The 1 ab−1 expected confidence regions for the SM and new physics parame-
ters; (a) |N |-φNP plane for δN = 12◦; (b) |N |-φNP plane for δN = 3π/4; (c) δN-φNP plane
for |N | = 0.25; (d) δN-φNP plane for |N | = 0.75; (e) |N |-φNP plane for δN = 3π/4 and
|R|=0.06; (f) |R|-δ plane for |N | = 0. For illustration, (SD∗+D∗− = − sin 2φ1,AD∗+D∗− =
0) is assumed. Dashed, dotted, dashed-dotted curves correspond to the confidence level
of 68.27%, 95.45%, 99.73%, respectively.
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Figure 7.9: The 50 ab−1 expected confidence regions for the SM and new physics param-
eters; (a) |N |-φNP plane for δN = 12◦; (b) |N |-φNP plane for δN = 3π/4; (c) δN-φNP plane
for |N | = 0.25; (d) δN-φNP plane for |N | = 0.75; (e) |N |-φNP plane for δN = 3π/4 and
|R|=0.06; (f) |R|-δ plane for |N | = 0. For illustration, (SD∗+D∗− = − sin 2φ1,AD∗+D∗− =
0) is assumed. Dashed, dotted, dashed-dotted curves correspond to the confidence level
of 68.27%, 95.45%, 99.73%, respectively.
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Chapter 8

Conclusion

We have measured time-dependent CP asymmetry parameters in B0 → D∗+D∗− decays,
using the Belle detector at the KEKB energy-asymmetric e+e− collider. The B0 →
D∗+D∗− decay is dominated by the b → cc̄d transition that is sensitive to new physics
process via the penguin diagram. The CP violation in the tree diagram of this mode
should yield the sin 2φ1, which is the CP asymmetry parameter of the Cabibbo-Kobayashi-
Maskawa matrix. The sin 2φ1 has already been measured with the B0 → J/ψK0

S and other
cc̄K(∗)0 decays. Since the correction from the penguin diagram is expected to be small as
a few % in the Standard Model, measurements of CP violation in B0 → D∗+D∗− decays
should yield the sin 2φ1 value to a good approximation within the Standard Model. Thus
a significant deviation from what is observed in b → cc̄s decays would be evidence for a
new CP -violating phase.

The analysis is based on a sample of 152 × 106BB̄ pairs, which correspond to an
integrated luminosity of 140 fb−1 on the Υ(4S) resonance accumulated from January
2000 to June 2003. The number of fully-reconstructed B0 → D∗+D∗− signals is 130.

Although the B0 → D∗+D∗− decay is a mixture of CP -odd and CP -even components
as the D∗+D∗− system is a superposition of S-, P -, and D-waves, we can extract correct
CP -asymmetry parameters by knowing their fractions with the angular information of
B0 → D∗+D∗− decay products. An unbinned maximum likelihood fit to the angular
distributions of the D∗+D∗− decay products yields

R⊥ = 0.19 ± 0.08(stat) ± 0.01(syst),

R0 = 0.57 ± 0.08(stat) ± 0.01(syst).

The result is consistent with the Standard Model expectation that CP -even component
is dominant. Using these fractions of polarization components, we obtain CP asymmetry
parameters SD∗+D∗− and AD∗+D∗−:

SD∗+D∗− = −0.75 ± 0.56(stat) ± 0.12(syst),

AD∗+D∗− = −0.26 ± 0.26(stat) ± 0.06(syst).

The result is consistent with (SD∗+D∗−,AD∗+D∗−) = (− sin 2φ1, 0), which is the Stan-
dard Model expectation for small penguin contributions. The BaBar collaboration claims
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that CP asymmetries of B0 → D∗+D∗− have a 2.5σ discrepancy from the Standard Model
expectation above, while the corresponding deviation is only 0.5σ in our case.

This is the first measurement at the Belle experiment, and establishes the analysis
method for more precise measurements in the future.

Since the Belle experiment is expected to accumulate data with an integrated lumi-
nosity of 1 ab−1 within a few years, the statistical error will be about 40 percent of this
analysis. Furthermore, a major upgrade plan of the KEK B-factory is proposed recently;
its goal is to accumulate an integrated luminosity of 50 ab−1. The experimental errors will
be at the level of 0.06 in this case. Such measurements will allow us to test the Standard
Model very precisely in the b→ cc̄d transition.
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Appendix A

Maximum Likelihood Method

In this paper, we frequently use a maximum likelihood method to yield most probable
values from obtained data. Suppose we obtain a set of N independently measured quan-
tities xi (i = 1, N), where xi follows a probability density function (PDF) P (x; ~α), and
~α = (α1, ..., αn) is a set of n parameters whose values are unknown. The idea of the
maximum likelihood method is to find the set of the most probable values for ~α, which
maximizes the joint PDF for all the data, which is given by

L(α) =
N
∏

i

P (xi, ~α), (A.1)

where L is called the likelihood.
It is usually easier to work with lnL, since L can be too small to be computed.

Because both L and lnL are maximized for the same set of ~α, both methods find the
same maximum likelihood estimator ~α that satisfies

∂ lnL
∂αn

= 0. (A.2)

Furthermore, we usually use −2 lnL, which behaves like a χ2, where L behaves like a
Gaussian function. We define Lmax as the maximum likelihood obtained from Eq. (A.2).
For a given ~α, if the difference between −2 lnL(~α) and −2 lnLmax is unity, it corresponds
to one standard deviation of the estimate. More generally, a contour for n standard
deviations is given by the difference of n2. By examining the likelihood contours, therefore,
one can obtain a confidence interval of the measurement at any confidence level.
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Appendix B

Angular Distribution in the
B → V V System

B.1 Rotation of an Angular Momentum State

In general, a rotation operator around rotation axis i is denoted by

Ri(θ) = e−iJiθ, (B.1)

where θ is the rotation angle and Ji is the angular momentum operator.
Now we prepare an angular momentum state |J,M〉, where J is the angular momentum

eigenvalue and M = Ji is the projection of j to the rotation axis. The rotation of |J,M〉
is described by super-positioned (itself and others) angular momentum states |J,M ′〉:

R(α, β, γ)|J,M〉 =

J
∑

M ′=−J

|J,M ′〉DJ
M ′M(α, β, γ), (B.2)

where DJ
M ′M is so-called rotation function:

DJ
M ′M(α, β, γ) ≡ e−iαM

′

dJM ′M(β)e−iγM , (B.3)

where Wigner’s rotation matrix (hereafter we call it d-matrix) is

dJM ′M(θ) ≡ 〈J,M |e−ijiθ|J,M ′〉. (B.4)

Explicit formula of d-matrix is found elsewhere [13, 53] and especially

dJM0(θ, φ) =

√

4π

2J + 1
Y J
M(θ, φ)e−iMφ. (B.5)

There are some important characters in the d-matrix:
∫ 1

−1
dcosθdjM ′Md

J ′

M ′M = 2
2J+1

δJJ ′, (B.6)

dJMM ′ = (−1)M−M ′
dJM ′M = dJ−M ′−M , (B.7)

∫ 2π

0
dα
∫ 2π

0
dγ
∫ π

0
sin βdβDJ

MN(α, β, γ)DJ ′

M ′N ′(α, β, γ) = 8π2

2J+1
δMM ′δNN ′δJJ ′. (B.8)
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B.2 Partial Wave Expansion of Two Body Decay

Now we consider B → V1V2 decay in the rest frame of B meson. The daughter particle V1

has a momentum ~p = (p, θ, φ) and helicity λ1. The other daughter V2 has a momentum
−~p and helicity λ2. Then this event is specified by the plane wave state: |pθφ;λ1λ2〉. This
basis should be equivalent to the partial wave basis, |JM ;λ1λ2〉:

|pθφ;λ1λ2〉 =
∑

JM

CJM |JM ;λ1λ2〉. (B.9)

We aim to find these coefficients CJM . Following Jacob-Wick notation, we introduce a
rotation operator

R(θ, φ) ≡ R(φ, θ,−φ) = e−iJzφe−iJyθeiJzφ. (B.10)

Then partial wave which turns to the parent momentum direction is described as

|pθφ;λ1λ2〉 = R(θ, φ)|p00;λ1λ2〉. (B.11)

The plane wave state is described by super-positioned partial waves:

|pθφ;λ1λ2〉 =
∑

JMλ′1λ
′
2

〈JM ;λ′1λ
′
2|pθφ;λ1λ2〉|JM ;λ′1λ

′
2〉

=
∑

JM

〈JM ;λ1λ2|pθφ;λ1λ2〉|JM ;λ1λ2〉,
(B.12)

where we used invariance of helicity against rotation.
From Eq. (B.2) and (B.11),

〈JM ;λ1λ2|pθφ;λ1λ2〉 =〈JM ;λ1λ2|R(θ, φ)R−1(θ, φ)|pθφ;λ1λ2〉
=
∑

M ′

DJ
MM ′(φ, θ,−φ)〈JM ′;λ1λ2|p00;λ1λ2〉

=DJ
Mλ(φ, θ,−φ)〈Jλ;λ1λ2|p00;λ1λ2〉,

(B.13)

where λ ≡ λ1 − λ2 and we used M ′ = λ, since there is no orbital angular momentum
projection along with z-axis for |p00;λ1λ2〉 state (~L · ~P = 0).

Furthermore, we utilize

1 =〈JM ;λ1λ2|JM ;λ1λ2〉

=
∑

µν

∫

dφd cos θ〈JM ;λ1λ2|pθφ;µν〉〈pθφ;µν|JM ;λ1λ2〉

=

∫

dφd cos θ〈JM ;λ1λ2|pθφ;λ1λ2〉〈pθφ;λ1λ2|JM ;λ1λ2〉

=

∫

dφd cos θDJ
Mλ(φ, θ,−φ)〈Jλ;λ1λ2|p00;λ1λ2〉〈p00;λ1λ2|Jλ;λ1λ2〉DJ∗

Mλ(φ, θ,−φ)

=

∫

dφd cos θdJMλ(θ)d
J
Mλ(θ)|〈Jλ;λ1λ2|p00;λ1λ2〉|2

=
2π · 2
2J + 1

|〈Jλ;λ1λ2|p00;λ1λ2〉|2.
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(B.14)

If we choose CJM = 〈Jλ;λ1λ2|p00;λ1λ2〉 =
√

(2J + 1)/4π, we obtain

|pθφ;λ1λ2〉 =
∑

JM

DJ
Mλ(φ, θ,−φ)

√

2J + 1

4π
|JM ;λ1λ2〉. (B.15)

B.3 Helicity Basis

B.3.1 Decay Amplitude of B → V1V2 Decay

We define an angle-dependent decay amplitude:

AJM (θ, φ;λ1, λ2) ≡ 〈pθφλ1λ2|Heff |JM ;λ1λ2〉, (B.16)

where Heff is an effective Hamiltonian. From Eq. (B.15),

AJM (θ, φ;λ1, λ2) =
∑

J ′M ′

√

2J ′ + 1

4π
DJ ′∗
M ′λ1−λ2

(φ, θ,−φ)〈J ′M ′|Heff |JM〉

=

√

2J + 1

4π
DJ∗
Mλ1−λ2

(φ, θ,−φ)A(λ1, λ2),

(B.17)

where A(λ1, λ2) ≡ 〈JM ;λ1λ2|Heff |JM ;λ1λ2〉 is the amplitude of specific helicity state.
Since we treat B → V1V2 decay, J = M = 0 is held from conservation law. Therefore

allowed helicity states are

(λ1, λ2) = (+1,+1), (0, 0), (−1,−1). (B.18)

We define a helicity amplitude

A(λ, λ) ≡ 〈fλ|Heff |fλ〉, (B.19)

where

|fλ〉 = |JM ;λλ〉(λ = +1, 0,−1). (B.20)

B.3.2 Decay Amplitude with Subsequential Decay

When a subsequent decay occurs in a particle system, we should consider angular distri-
butions of daughter particles. As the helicity state is invariant under rotation and boost,
we can choose individual coordinate systems for each subsequent decay. Following defini-
tion of helicity, we choose z-axis of local frame to the momentum direction in the B rest
frame. Therefore, spin component m = λ owing to no orbital angular momentum.
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We consider B → D∗+D∗− decay followed by subsequential decay D∗± → Dπ. Decay
amplitude become:

AJM (θ, φ, θ1, φ1, θ2, φ2;λ, λ
′, λ′′) =

√

2J + 1

4π

√

2J1 + 1

4π

√

2J2 + 1

4π
·

∑

λ′,λ′′

DJ∗
Mλ(φ, θ,−φ)A(λ, λ)DJ1∗

λλ′ (φ1, θ1,−φ1)B(λ′, λ′)DJ2∗
λλ′′(φ2, θ2,−φ2)C(λ′′, λ′′),

(B.21)

where B(λ′, λ′) and C(λ′′, λ′′) is helicity amplitude of subsequential decay. Decay angles
are measured by π from each D∗± in the each D∗± rest frame. θi is angle between the π
and D∗± momentum vector. φi, which is angle around D∗± momentum vector, can not
be uniquely decided, since decay plane is not anchored to any fixed coordinate system.
We take i = 1 (i = 2) for D∗− (D∗+).

Since D∗± is spin-1 particle and also D and π are spin-0,

J1 = 1, J2 = 1, λ′ = 0, λ′′ = 0. (B.22)

With applying them to the decay amplitude in Eq. (B.21):

A0
0(θ, φ, θ1, φ1, θ2, φ2;λ, 0, 0) =

3

(4π)3/2
·

D0∗
0λ(φ, θ,−φ)A(λ, λ)D1∗

λ0(φ1, θ1,−φ1)B(λ′, λ′)D1∗
λ0(φ2, θ2,−φ2)C(λ′′, λ′′)

=eiχλd1
λ0(θ1)d

1
λ0(θ2)Aλ,

(B.23)

where Aλ ≡ 3(4π)−3/2A(λ, λ)B(λ′, λ′)C(λ′′, λ′′) and χ ≡ φ1 + φ2.
Total decay amplitude Ahel is derived from calculation of d-matrix with utilizing Eq.

(B.5) and (B.7):

Ahel =
∑

λ

A0
0(θ, φ, θ1, φ1, θ2, φ2;λ, 0, 0)

=A+g+ + A0g0 + A−g−,

(B.24)

where

g0 =cos θ1 cos θ2,

g+ =
1

2
eiχ sin θ1 sin θ2,

g− =
1

2
e−iχ sin θ1 sin θ2.

(B.25)

Decay width is also calculated:

Γhel(χ, θ1, θ2) ≡Nhel|Ahel|2 =
9

32π

[

(|A+|2 + |A−|2) sin2 θ1 sin2 θ2 + 4|A0|2 cos2 θ1 cos2 θ2

+2{<(A+A
∗
−) cos 2χ−=(A+A

∗
−) sin 2χ} sin2 θ1 sin2 θ2

+{<(A+ + A−)A∗
0 cosχ− =(A+ −A−)A∗

0 sinχ} sin2 2θ1 sin2 2θ2

]

,

(B.26)
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where the normalization factor Nhel is decided from

Nhel

∫∫∫

dχd cos θ1d cos θ2Γhel(χ, θ1, θ2) = |A+|2 + |A0|2 + |A−|2. (B.27)

This is called helicity basis angular distribution. Figure B.1 (left) shows schematic view
of helicity basis frame.
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Figure B.1: Left (Right):Schematic View of Helicity (Transversity) basis of B0 →
D∗+D∗−.

B.3.3 Introduction of Parity Eigenstates

We consider parity transformity of helicity states. Firstly we introduce “reflection”, which
is not parity transformation but ordinal mirror:

RP ≡ Pe−iπJy , (B.28)

where Jy is angular momentum projection to normal of the x-z plane. Since spin s is
invariant against P transformation but changes its sign against rotation,

RP |p; s〉 = η|p;−s〉, (B.29)

where |p; s〉 is plane wave state along with z-axis and η is intrinsic parity.
Here we go to p = 0. We wee

P |0;λ〉 = η|0, λ〉. (B.30)
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With utilizing expansion of plane wave state and orthogonality:

e−iπJy |0, λ〉 =
∑

λ′

dsλ′λ(π)|0, λ′〉

= (−1)s−λ|0,−λ〉,
(B.31)

where we used

dsλ′λ(π) = (−1)s−λδλ′,−λ. (B.32)

Parity transformation of the state |JM ;λ1λ2〉 is given by [54]:

P |JM ;λ1λ2〉 = η1η2(−1)J−S1−S2|JM ;−λ1 − λ2〉, (B.33)

where ηi(i = 1, 2) is intrinsic parity and Sj(j = 1, 2) is spin of each daughter.
Then we derive Parity transformation of each helicity state |fλ〉:

P |f+1〉 = |f−1〉, P |f0〉 = |f0〉, P |f−1〉 = |f+1〉. (B.34)

Therefore, |f±1〉 are not parity (and also CP ) eigenstates.
We can construct parity eigenstates from states above:

|f0〉 (P : +1),

|f‖〉 ≡
|f+1〉 + |f−1〉√

2
(P : +1),

|f⊥〉 ≡
|f+1〉 − |f−1〉√

2
(P : −1).

(B.35)

Thus decay amplitudes are:

A0,

A‖ ≡
A+1 + A−1√

2
,

A⊥ ≡ A+1 − A−1√
2

.

(B.36)

Corresponding angular distributions are also derived from Eq. (B.25):

g0 =cos θ1 cos θ2,

g‖ =
1√
2

cosχ sin θ1 sin θ2,

g⊥ =
i√
2

sinχ sin θ1 sin θ2.

(B.37)

Clearly, this new amplitudes are useful for CP analysis. In order to grasp the character
of these amplitudes, it is convenient to introduce new coordinates which is sensitive to CP
transformation. This is called transversity basis. Detail of transversity basis is described
later.
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B.4 Transversity Basis

From Eq. (B.25), we know that D∗− polarization (θ2 term) is the standard of this system,
and χ term separates both two transverse polarizations and θ1 also separates them and
the other polarization, A0. In short, polarization of the system is measured by D∗+ which
is anchored by D∗− decay plane. To clearfy their relations, we choose new coordinate
system, which pays attention to transversely polarized states from decay plane:

x′ = sin θtr cosφtr = cos θ2 = z,

y′ = sin θtr cosφtr = sin θ2 cosχ = x,

z′ = cos θtr = sin θ2 sinχ = y.

(B.38)

Then Eq. (B.37) become:

g0 =cos θ1 sin θtr cosφtr,

g‖ =
1√
2

sin θ1 sin θtr sinφtr,

g⊥ =
i√
2

sin θ1 cos θtr.

(B.39)

Angular dependent decay rate is obtained from Eq. (B.26) with applying Eq. (B.36)
and (B.39):

Γtr(θ1, θtr, φtr) =
9

32π

[

4|A0|2 cos2 θ1 sin2 θtr cos2 φtr + 2|A‖|2 sin2 θ1 sin2 θtr sin2 φtr

+ 2|A⊥|2 sin2 θ1 cos2 θtr +
√

2<(A∗
‖A0) sin 2θ1 sin2 θtr sin 2φtr

−
√

2=(A∗
0A⊥) sin 2θ1 sin 2θtr cos φtr − 2=(A∗

‖A⊥) sin2 θ1 sin 2θtr sinφtr

]

.

(B.40)

From Eq. (B.40), we can see a merit of this coordinate system that CP -even terms
(A0, A‖) are distinguished from CP -odd term (A⊥) with single angular term (θtr).
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Appendix C

Flavor Tagging Method

C.1 Principle of Flavor Tagging

We use the same flavor tagging method and values as those used in the sin 2φ1 measure-
ment [47]. The details of the flavor tagging technique are found in the reference [46].
Here, we describe the flavor tagging method briefly.

The flavor of Btag is determined by the information of the final state particles that
belong to Btag. Btag is reconstructed from remaining particles in the event after recon-
structing a BCP candidate. The flavor of Btag can be determined from the charge (flavor)
of

• high-momentum leptons from B0 → X`+ν,

• kaons from the b̄→ c̄→ s̄ cascade decay,

• intermediate momentum leptons coming from b̄→ c̄→ s̄`−ν̄,

• high momentum pions from B0 → D(∗)π+X decay,

• slow pions from B0 → D∗−X,D∗− → D̄0π− decay, and

• Λ baryons from the cascade decay b̄→ c̄→ s̄.

The flavor tagging efficiency ε is not always perfect owing to several reasons, such as
inefficiencies of particle detection, wrong particle identification, or rare physical processes
that give opposite charge information to the dominant process.

The effective tagging efficiency εeff = ε(1 − 2w)2 (w is a wrong tag fraction) is in-
troduced to optimize statistical significance of time-dependent CP asymmetry, since the
statistical significance is proportional to (1− 2w)

√
ε. In order to maximize εeff , maximiz-

ing ε and minimizing w is required. As described in detail in the following sections, a
larger εeff is obtained by treating events with large w’s and small w’s separately. For this
purpose, we use an expected event-by-event dilution factor r. The r value is determined
using MC and is related to w as r = 1 − 2w if the MC represents data perfectly. For
each r region, we assign w, which is measured using the control data sample. We use
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Figure C.1: A schematic diagram of the two-stage flavor tagging.

either of two event generators, QQ [40] or EvtGen [41] to simulate the tag-side B-meson
decays. We used QQ-generated MC for early measurements of sin 2φ1. EvtGen-generated
MC was used for recent sin 2φ1 measurements [8, 47], as well as for the CP asymmetry
parameter measurement in B0 → D∗+D∗− decays.

The correlations and variables representing the particle properties are expressed by
look-up tables. We assign q and r to each cell of look-up tables.

The q can be either a 1 or -1 and indicates that the flavor is B0 (q = 1) or B̄0

(q = −1). The r ranges from 0 for no flavor discrimination to r = 1 for unambiguous
flavor assignment. The q and r are calculated by

q · r ≡ N(B0) −N(B̄0)

N(B0) +N(B̄0)
, (C.1)

where N(B0) and N(B̄0) are the numbers of B0 and B̄0 in the cell determined by the MC
sample.

Since the number of particles in an event is not limited, it is practically difficult to
consider all the correlations at once. The flavor tagging procedure is, therefore, divided
in two stages: the track stage and the event stage. Figure C.1 shows the schematic
diagram of the flavor tagging. At first, each charged track is classified into four categories
depending on the particle species: lepton class; kaons class; Λ baryon and slow pions, and
we assign q · r to each track using a look-up table of specific variables in each category.
An event-level look-up table is made of outputs of each track class to determine the final
flavor information. In the following, we explain each stage.
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C.2 Track-Level Flavor Tagging

C.2.1 Classification of Charged Tracks

We use charged tracks that do not belong to BCP for track-level flavor tagging. These
charged tracks should also be well-reconstructed tracks satisfying |dr| < 2 cm and |dz| <
10 cm, where dr and dz are distances from the nominal interaction point in the r-φ plane
and the z direction, respectively. K0

S and Λ tracks are founded by a secondary vertex
reconstruction algorithm. The charged tracks from their vertices are not used, but the
number of K0

S’s in the event is used as a discriminant for kaon-like and Λ-like particle
categories. The Λ candidates themselves are assigned into the Λ category.

C.2.2 Lepton Track Class

This category includes electron-like tracks and muon-like tracks. The electron-like track
should satisfy that the momentum in the center of mass system (cms), p∗, of a track is
larger than 0.4 GeV/c and the ratio of its electron and kaon likelihoods is larger than 0.8.
The muon-like track should satisfy that p∗ is larger than 0.8 GeV/c and the ratio of its
muon and kaon likelihoods is larger than 0.95. The likelihoods are calculated by combining
the ACC, TOF, dE/dx in CDC, and ECL or KLM information. Within the lepton track
class, leptons from semi-leptonic B decays yield the highest effective efficiency. Leptons
from semi-leptonic decays of D mesons which originate from B → D cascade decays
and high momentum pions from B0 → D(∗)−π+X also make a small contribution to this
class. A look-up table of following six variables are prepared to determine q · r for each
track; (1) magnitude of the momentum in cms, p∗; (2) recoil mass, Mrecoil, which is an
invariant mass of the tagging side tracks except for the lepton track; (3) magnitude of
the missing momentum in cms, p∗miss; (4) polar angle in the laboratory frame, θlab; (5)
lepton identification likelihood value, Llep; (6) charge of the lepton track. The p∗, Mrecoil

and p∗miss are used to discriminate between the leptons from primary B decays and from
secondary D decays. The p∗, θlab and Llep are used to take into account the momentum
and the angular dependence of lepton identification performance. Figure C.2 shows the p∗,
Mrecoil and p∗miss distributions for the MC and the data of control samples:B0 → D∗−`+ν,
D∗−π+, D−π+ and D∗−ρ+ decays and their charge conjugates.

Although some disagreement is visible, the experimental bias due to this disagreement
is found to be negligible since we evaluate wrong tagging probability from the control
samples. These discriminant variables are divided into bins: 11 for p∗; 10 for Mrecoil; 6
for p∗miss; 6 for θlab; 4 for Llep and 2 for track charge, and form a look-up table of 31680
bins in total.

Among lepton tracks, one lepton track with the highest r is selected, and the q · r
value of the track is passed to the event-level flavor tagging.

C.2.3 Slow Pion Track Class

A charged track assigned to the slow-pion track class should satisfy that p∗ of a track is
less than 0.25 GeV/c and it is not identified as a kaon.
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Figure C.2: Distributions of (a) p∗, (b) p∗miss and (c) Mrecoil for B0 and B0. The points
are for the data of control samples: B0 → D∗−`+ν, D∗−π+, D−π+ and D∗−ρ+ decays
and their charge conjugates. Histograms with solid lines and dotted lines are for the
EvtGen-MC and QQ-MC, respectively. All distributions are made with a requirement on
lepton ID to exclude the dominating pion component. Upper two figures and lower two
figures in each of (a), (b) or (c) are for `−-like tracks and for `+-like tracks, respectively.
Upper left and lower right figures in each (a), (b) or (c) contain primary leptons from B
decays, while upper right and lower left figures in each (a), (b) or (c) contain secondary
leptons from D decays.
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Figure C.3: Distributions of (a) the lab. momentum and (b) cosαthr of slow pions for B0

and B0. The points are for the data of control samples, while the histograms with solid
lines and dotted lines are for the EvtGen-MC and QQ-MC, respectively. All distributions
are made with a requirement on π/e ID to exclude the soft electrons originating from
photon conversions and π0 Dalitz decays. Upper two figures and lower two figures in each
(a) or (b) are for π−

s -like tracks and for π+
s -like tracks, respectively. Upper right and lower

left figures in each (a) or (b) contain slow pions from D∗± decays.

This class is intended to utilize the charge of low momentum pions from D∗±. Due
to the low momentum which is 39 MeV/c in the D∗± rest frame, the direction of the
slow pions follows the direction of D∗±. The direction of D∗± is approximated by the
thrust axis of tagging side tracks, and the angle between the pion and the thrust axis
can be used to discriminate the slow pion. The main background in this class comes
from low momentum pions from other decays and electrons from photon conversions or
π0 Dalitz decays. The electrons can be separated by dE/dx measured with CDC. The
discriminant variables in this class are summarized as: (1) magnitude of the momentum
in the laboratory frame, plab; (2) polar angle in the laboratory frame, θlab; (3) cosine of the
angle between the slow pion candidate and the thrust axis of the tagging side particles
in cms, cosαthr; (4) pion likelihood value by dE/dx (LdE/dx); (5) charge of the track,
where plab is used instead of p∗ because e/π separation of dE/dx strongly depends on the
momentum in the laboratory frame. The p∗ is then determined uniquely by θlab and plab.
Figure C.3 shows the distribution of cosαthr and the momenta of the slow pion candidates
in the laboratory frame. The number of bins for each variable in the look-up table is 10
for plab, 10 for θlab, 7 for cosαthr, 5 for LdE/dx and 2 for charge of the track (7000 bins in
total).

Among tracks of this class, one pion track with the highest r is selected, and the q · r
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Figure C.4: The cms momentum distributions of kaon candidates for B0 and B0. The
points are for the data of control samples, while the histograms with solid line and dot-
ted line are for the EvtGen-MC and QQ-MC, respectively. The distribution of kaon
cms momentum is made with a requirement on K/π ID to exclude the dominating pion
component. Upper two figures and lower two figures are for K−-like tracks and for K+-
like tracks, respectively. Upper right and lower left figures contain kaons from cascade
b→ c→ s transition.

value of the track is passed to the event-level flavor tagging.

C.2.4 Kaon and Λ Track Class

This track class is intended to utilize the information of strangeness from b → c → s
cascade decays.

If a track is not categorized into any of lepton and slow pion class and is not identified
as a proton, it is classified as a kaon. Discriminant variables are: (1) kaon likelihood value,
LK ; (2) momentum in cms (p∗); (3) polar angle in the laboratory frame, θlab; (4) existence
of K0

S candidates; (5) charge of the track. The LK is used to discriminate kaons from pions
and determined by combined information of ACC, TOF and dE/dx measured with CDC.
The p∗ and θlab are used to take into account the momentum and polar angle dependence
of the kaon identification performance. If there are K0

S candidates, correlation of the kaon
charge and the flavor of B is diluted. Figure C.4 shows cms momentum distribution of
kaon-like track candidates compared to those in MC. The number of bins for each variable
in the look-up table is 13 for LK , 21 for p∗, 18 for θlab, 2 for K0

S existence (with or without)
and 2 for charge of the track (19656 bins in total).

If a track is identified as a proton and forms a Λ candidate with a pion track, the
Λ candidate is assigned to Λ track class. The discriminant variables are: (1) flavor of
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Figure C.5: Mpπ distributions of Λ candidates for B0 and B0. The points are for the data
of control samples. Histograms with solid line and dotted line are for the EvtGen-MC and
QQ-MC, respectively. Upper two figures and lower two figures are for Λ candidates and
for Λ candidates, respectively. Upper left figure and lower right figure contain Λ particle
from cascade b→ c→ s transition.

the Λ candidate, Λ or Λ̄; (2) existence of K0
S candidates; (3) invariant mass MPπ of the

Λ candidate; (4) angle difference between the Λ momentum vector and the direction of
the Λ vertex from IP; (5) a distance in z direction between two tracks at the Λ vertex.
Figure C.5 shows MPπ distributions for the data and the MC. Each discriminant variables
are divided into two bins, and a look-up table of 32 total bins are made.

The output of the kaon and Λ track class is given by the product of q · r for all kaon/Λ
tracks assigned to this class:

(q · r)K/Λ ≡
∏

i(1 + (q · r)i) −
∏

i(1 − (q · r)i)
∏

i(1 + (q · r)i) +
∏

i(1 − (q · r)i)
. (C.2)

C.3 Event-Level Flavor Tagging

The event-level stage combines the track-level tagging results using q · r of three track
classes as inputs. Figure C.6 shows the distribution of the track level q · r. The q · r
variables are divided into 25 for lepton class, 19 for slow pion class and 35 for kaon/Λ
class and form a look-up table of 16625 total bins. The final q · r output of the event-level
flavor tagging of the data and MC is shown in Fig. C.7. In the figure, separation between
B̄0 and B0 sample is clearly seen and distributions of the data and the MC show good
agreement.
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Figure C.6: Distributions of input variables of event layer (a) (q · r)l, (b) (q · r)K/Λ and (c)
(q · r)πs

for B0 and B0. The points are for the data of control samples. The histograms
with solid line and dotted line are for the EvtGen-MC and QQ-MC, respectively. For
these distribution, the (q · r) values of corresponding track-layer outputs are obtained
with EvtGen-MC look-up table. Events which have r = 0 due to no input tracks are
excluded from each plots. The fractions of r = 0 are 36% for lepton category, 10% for
Kaon/Λ category and 41% for slow pion category.
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Figure C.7: The q · r distribution for B0 and B0. The points are for the data of control
samples, while the histograms with solid line and dotted line are for the EvtGen-MC and
the QQ-MC, respectively.
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C.4 Performance

We utilized the flavor quality value r to categorize the candidate events into six groups:
0.0 < r ≤ 0.25, 0.25 < r ≤ 0.5, 0.5 < r ≤ 0.625, 0.625 < r ≤ 0.75, 0.75 < r ≤ 0.875 and
0.875 < r. The wrong tagging probabilities of these six tagging categories are measured
with the self-tagged B0 decays to D∗−`+ν, D−π+, D∗−π+, D∗−ρ+ and J/ψK∗0(K∗0 →
K+π−). We determine directly from data the average wrong tag probabilities, wl ≡ (w+

l +

w−
l )/2(l = 1, 6), and differences between B0 and B0 decays, ∆wl ≡ w+

l −w−
l , where w

+(−)
l

is the wrong-tag probability for the B0(B0) decay in each r interval. Table C.1 summarizes
these quantities used for the CP asymmetry measurement for the B0 → D∗+D∗− decay.
The overall tagging efficiency is found to be 99.8%. The total effective tagging efficiency
is 28.7%.

l r interval εl wl ∆wl εleff
1 0.000 − 0.250 0.398 0.464 ± 0.006 −0.011 ± 0.006 0.002 ± 0.001
2 0.250 − 0.500 0.146 0.331 ± 0.008 +0.004 ± 0.010 0.017 ± 0.002
3 0.500 − 0.625 0.104 0.231 ± 0.009 −0.011 ± 0.010 0.030 ± 0.002
4 0.625 − 0.750 0.122 0.163 ± 0.008 −0.007 ± 0.009 0.055 ± 0.003
5 0.750 − 0.875 0.094 0.109 ± 0.007 +0.016 ± 0.009 0.057 ± 0.002
6 0.875 − 1.000 0.136 0.020 ± 0.005 +0.003 ± 0.006 0.126 ± 0.003

Table C.1: The event fractions εl, wrong-tag fractions wl, wrong-tag fraction differences
∆wl, and average effective tagging efficiencies εleff = εl(1 − 2wl)

2 for each r interval.
The errors include both statistical and systematic uncertainties. The event fractions are
obtained from the B0 → J/ψK0

S simulation.
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Appendix D

∆t Resolution Function

D.1 Overview

We use almost same ∆t resolution function as that used in the sin 2φ1 measurement [47].
The details of the resolution function are found in the reference [55]. Here, we describe
the resolution function briefly.

The ∆t measurement requires a fully reconstructed B meson, Brec and an associated B
mesons, Basc. We measure both vertices of B meson, zful and zrec. The resolution function
of the signal event, Rsig, is constructed as a convolution of four different contributions:
(1) the detector resolution of Bful, Rful; (2) the detector resolution of Basc, Rasc; (3) an
additional smearing on zasc due to the inclusion of tracks which do not originate from
the Basc vertex, Rnp, which are mostly due to charm and K0

S decays; (4) the kinematic
approximation that the B mesons are at rest in the center of mass system (cms), Rk. The
overall resolution function, Rsig(∆t), is expressed as

Rsig(∆t) =

∫∫∫ ∞

−∞

d(∆t′)d(∆t′′)d(∆t′′′)Rful(∆t− ∆t′)Rasc(∆t
′ − ∆t′′)

× Rnp(∆t
′′ − ∆t′′′)Rk(∆t

′′′). (D.1)

D.2 Detector Resolution

D.2.1 Multiple-track vertex

The detector resolutions (Rful and Rasc) describe primary tracks which are directly pro-
duced by B mesons. There are two types of vertices, multiple-tracks and single-track
vertices. Because the resolution for multiple-track vertices is better than that for the
single-track vertices, we treat them separately.

For multiple-track vertices, the detector resolution is represented as a sum of two
Gaussian functions, which are parameterized by vertex-by-vertex determined errors. The
error is obtained from the z-coordinate error of the fitted vertex and correction factors
depending on the quality of the vertex. The vertex quality is represented by a reduced
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χ2 projected onto the z axis defined as

ξ ≡ 1

2n

n
∑

i=1

[

ziafter − zibefore

eibefore

]

, (D.2)

where zibefore and ziafter are the z positions of each track before and after the vertex fit,
respectively, and eibefore is the error of zibefore. We do not use the normal χ2 because it
is correlated with the vertex z position due to the IP constraint in the x-y plane. We
require ξ < 100 to eliminate poorly reconstructed vertices.

The detector resolution function for multiple-track vertices are given by

Rmultiple
q (δzq) = G(δzq; sqσq), (D.3)

where q = (rec, asc), δz is defined as a difference between a reconstructed z and the true
z, δz ≡ z − ztrue, σq is a vertex error calculated from track errors for Bq vertex, sq is the
correction factor which is expressed as a first order polynomial of ξ:

sful ≡ (s0
ful + s1

fulξ),

sasc ≡ (s0
asc + s1

ascξ),
(D.4)

and G is a Gaussian function,

G(x; σ) ≡ 1√
2πσ

exp

(

− x2

2σ2

)

. (D.5)

D.2.2 Single-track vertex

For the single-track vertex, the vertex quality can not be defined. Therefore, we use global
correction factors. The detector resolution function for the single-track vertex is given by

Rsingle
q (δzq) = (1 − ftail)G(δzq; smainσ) + ftailG(δzq; stailσ), (D.6)

where smain and stail are global correction factors which are common to all the single track
vertices, where one for the main part of the detector resolution and the other for the tail
part that represents effects of poorly-reconstructed tracks.

D.2.3 Determination of Correction Factors

For Basc, used parameters for correction factors are the same as those for the sin 2φ1 mea-
surement, since decay mode for Basc is same. For Bful, we obtained correction factors from
control samples which have similar decay topology such as B0 → D(∗)+D

(∗)−
S . Possible

bias is found as negligible with comparison of B0 → D∗+D∗− and control samples MC.
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Figure D.1: Distribution of zasc−znoNP
asc for vertices reconstructed with two or more tracks.

In making this plot the events in which zasc = znoNP
asc are removed.

D.3 Smearing due to Non-Primary Tracks

The vertex resolution of Basc is smeared by contamination of non-primary tracks, which
are charm decays and K0

S. The resolution function Rnp describes the effect with a prompt
component expressed by Dirac’s δ function which represents vertices without the contam-
ination, and with components which account for the smearing due to the contamination.
The Rnp shape is studied by comparing two MC samples. One is normal BB̄ MC sample.
In another special MC sample, all secondary short-lived (τ < 10−9 s) particles are forced
to decay with zero lifetime at the B meson decay point. We reconstruct Basc in two
MC samples and compare differences of reconstructed z positions between two samples.
Figure D.1 shows distribution of zasc−znoNP

asc , where zasc is the z position of the associated
side vertex in normal MC and znoNP

asc is the z vertex position in the special MC.
The resolution function Rnp is determined as

Rnp(δzasc) ≡ fδδ(δzasc) + (1 − fδ)[fpEp(δzasc; τ
p
np) + (1 − fp)En(δzasc; τ

n
np)], (D.7)

where fδ is the prompt-component fraction, fp is a fraction of the δzasc > 0 component
and Ep and En are lifetime components of secondary vertices:

Ep(x; τ) ≡
1

τ
exp

(

−x
τ

)

for x > 0, otherwise 0,

En(x; τ) ≡
1

τ
exp

(

−x
τ

)

for x ≤ 0, otherwise 0.
(D.8)

The τpnp and τnnp depend on the vertex quality, since non-primary particles from longer
lived particles are farther from the primary vertex and deteriorate the vertex quality and
the error. Based on a similar idea as that applied for the detector resolution part, the τ pnp

and τnnp are categorized by the number of track belonging to the vertex.
For vertices reconstructed with two or more tracks, τ pnp and τnnp are parametrized as:

τpnp = τ 0
p + τ 1

p (s0
asc + s1

ascξ) × σasc/c(βγ)Υ,

τnnp = τ 0
n + τ 1

n (s0
asc + s1

ascξ) × σasc/c(βγ)Υ.
(D.9)
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Figure D.2: The δzasc distributions of (a) multiple-track vertices for neutral B, (b)
multiple-track vertices for charged B, (c) single-track vertices for neutral B (d) single-
track vertices for charged B. The full reconstructed side B mesons decay into J/ψK0

S or
J/ψK−.

For vertices reconstructed with single tracks, they are given by:

{

(τpnp) = τ 0
p + τ 1

p × ssingle × σasc

(τnnp) = τ 0
n + τ 1

p × ssingle × σasc

(D.10)

The parameters of Rnp are determined with a MC study. Since the distribution shown
in Fig. D.1 includes detector resolution effect of additional tracks as well, we do not use
it to determine the parameters but fit the δzasc distribution with the convolution of Rasc

and Rnp. Because of the difference between neutral D lifetime (0.412 ps) and charged D
lifetime (1.051 ps), the parameters are determined separately for neutral and charged B
mesons. Figure D.2 shows the δzasc distributions with fitted curves. The Rasc and Rnp

reproduce the distribution well. Table D.1 shows the determined parameters.
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neutral B charged B
multiple single multiple single

fp 0.929 ± 0.003 0.791 ± 0.009 0.935 ± 0.003 0.804 ± 0.011
τ 0
p (ps) 0.056 ± 0.006 0.453 ± 0.005 0.052 ± 0.006 0.301 ± 0.004
τ 1
p 0.725 ± 0.015 1.320+0.064

−0.063 0.630 ± 0.013 1.130+0.061
−0.060

τ 0
n (ps) 0.025 ± 0.032 0.295+0.086

−0.085 −0.069 ± 0.029 −0.148+0.193
−0.189

τ 1
n 1.280+0.064

−0.061 1.476+0.141
−0.134 1.349+0.065

−0.062 1.759+0.152
−0.144

Table D.1: List of Rnp parameters determined with the MC simulation.

D.4 Kinematic Approximation

We calculate ∆t as ∆z/βγc with neglecting motion of B mesons in cms. The smearing
due to this kinematic approximation is calculated analytically. ¿From the kinematics of
the Υ(4S) two body decay, the difference between measured ∆t and the δttrue = tful − tasc
is calculated to be:

x ≡ ∆t− ∆ttrue = (zful − zasc)/c(βγ)Υ − (tful − tasc)

= [tfulc(βγ)ful − tascc(βγ)asc]/c(βγ)Υ − (tful − tasc)

= [(βγ)ful/(βγ)Υ − 1]tful − [(βγ)asc/(βγ)Υ − 1]tasc,

(D.11)

where (βγ)ful and (βγ)asc are Lorentz boost factors of Bful and Basc, respectively. Their
ratios to (βγ)Υ are given by:

(βγ)ful/(βγ)Υ =
Ecms
B

mB
+
pcms
B cos θcms

B

βΥmB
,

(βγ)asc/(βγ)Υ =
Ecms
B

mB
− pcms

B cos θcms
B

βΥmB
,

(D.12)

where Ecms
B is the energy of B meson which corresponds to the beam energy ∼ 5.29GeV,

mB is the B meson mass, pcms
B ∼ 0.34 GeV/c is the B momentum in the cms and θcms

B is
the polar angle of the fully reconstructed B in the cms.

Since tful and tasc distributions followEp(tful; τB) = 1/τB exp(−tfulτB) and Ep(tasc; τB) =
1/τB exp(−tascτB), respectively, the probability density of obtaining x and ∆ttrue simul-
taneously is given by

F (x,∆t) =

∫ ∞

0

∫ ∞

0

dtfuldtascEp(tful; τB)Ep(tasc; τB)δ(∆ttrue − (tful − tasc))

× δ(x − {[(βγ)ful/(βγ)Υ − 1]tful − [(βγ)asc/(βγ)Υ − 1]tasc}), (D.13)

and the probability density of obtaining ∆ttrue is given by

F (∆t) =

∫ ∞

0

∫ ∞

0

dtfuldtascEp(tful; τB)Ep(tasc; τB)δ(∆ttrue − (tful − tasc)). (D.14)
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Figure D.3: The x = ∆t − ∆ttrue distribution for neutral B meson MC sample together
with the function Rk(x).

The Rk(x) is then defined as the conditional probability density of obtaining x for a given
∆ttrue. It is expressed as Rk(x) = F (x,∆ttrue)/F (∆ttrue) which gives:

Rk(x) =



































Ep

(

x−
[

(
Ecms
B

mB
− 1)∆ttrue +

pcms
B cos θcms

B

βΥmB
|∆ttrue|

]

; |p
cms
B cos θcms

B

βΥmB
|τB
)

(cos θcms
B > 0)

δ

(

x− (
Ecms
B

mB

− 1)∆ttrue

)

(cos θcms
B = 0)

En

(

x−
[

(
Ecms
B

mB
− 1)∆ttrue +

pcms
B cos θcms

B

βΥmB
|∆ttrue|

]

; |p
cms
B cos θcms

B

βΥmB
|τB
)

(cos θcms
B < 0)

(D.15)

Figure D.3 shows the x distribution for B0 MC sample with the function Rk(x). The
Rk(x) function represents the distribution correctly.

D.5 Outlier

We find that there still exists a small component with a very long tail, which is order of
several tens ps, that cannot be described by the resolution functions above. The outlier
term is introduced to describe this long tail and represented by a Gaussian with zero
mean and event-independent width,

Pol(∆t) = G(∆t, σol). (D.16)

The fraction of outlier fol is typically less than 10−3 for multiple-track vertices and ∼ 10−2

for single-track vertices.
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Appendix E

Measurement of Branching Fraction
of B

0
→ D

∗+
D

∗−

E.1 Yield Extraction

In this chapter, we calculate the branching fraction of the B0 → D∗+D∗− decay. To obtain
the branching fraction, we use the reconstruction efficiency and the known branching
fraction for each sub-decay mode.

Event selection and yield extraction were already described in Chapter 4. The fit
yields 129.5 ± 12.9 signal events, where 20% include D∗+ → D+π0 decays.

E.2 Reconstruction Efficiencies

We estimate reconstruction efficiencies and expected yields for Br = 10−3 at 140 fb−1

with signal MC events generated with EvtGen [41]. No polarization is assumed. The
total expected yield is 202.1 ± 2.7. Small corrections are applied to the reconstruction
efficiencies for charged tracks, π0’s and K0

S’s to account for differences between data and
MC. After the efficiency correction is applied, the total signal yield becomes 160.1 ± 2.1.
The reconstruction efficiency and expected yield for each decay mode is summarized in
Table E.1-E.3.

E.3 Calculation of Branching Fraction

The branching fraction B(B0 → D∗+D∗−) is calculated by the following equation:

N(BB̄) · B(B0 → D∗+D∗−) · (
∑

i

εiB′
i) = YData, (E.1)

where N(BB̄) is the number of BB̄ pairs in data, εi and B′
i are a reconstruction efficiency

and the total sub-decay branching fraction for each final state i, respectively (Table E.1-
E.3). YData is the total signal yield. We obtain

B(B0 → D∗+D∗−) = [0.81 ± 0.08(stat) ± 0.11(syst)] × 10−3. (E.2)
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Table E.1: Efficiencies and expected signal yields for B0 → D∗+D∗−. The yield is calcu-
lated assuming Br(B0 → D∗+D∗−) = 10−3.

B0 → D∗+D∗−

D∗+ → D0π+
s D∗− → D

0
π−
s Efficiency Yield for Br = 10−3

D0 → K+π− 0.128 ± 0.003 12.7 ± 0.3
D0 → K−π+ D0 → K+π−π0 0.047 ± 0.002 16.1 ± 0.7

D0 → K+π−π+π− 0.053 ± 0.002 10.4 ± 0.4
D0 → K0

Sπ
+π− 0.048 ± 0.002 2.5 ± 0.1

D0 → K0
Sπ

+π−π0 0.018 ± 0.001 1.8 ± 0.1
D0 → K+K− 0.118 ± 0.003 1.27 ± 0.03

D0 → K+π− 0.052 ± 0.002 17.7 ± 0.8
D0 → K−π+π0 D0 → K+π−π0 0.019 ± 0.001 22.7 ± 1.6

D0 → K+π−π+π− 0.024 ± 0.002 15.9 ± 1.0
D0 → K0

Sπ
+π− 0.019 ± 0.001 3.4 ± 0.2

D0 → K0
Sπ

+π−π0 0.007 ± 0.001 2.3 ± 0.3
D0 → K+K− 0.045 ± 0.002 1.68 ± 0.08

D0 → K+π− 0.057 ± 0.002 11.1 ± 0.5
D0 → K−π+π−π+ D0 → K+π−π0 0.022 ± 0.001 14.5 ± 1.0

D0 → K+π−π+π− 0.022 ± 0.001 8.6 ± 0.6
D0 → K0

Sπ
+π− 0.019 ± 0.001 2.0 ± 0.1

D0 → K0
Sπ

+π−π0 0.006 ± 0.001 1.2 ± 0.1
D0 → K+K− 0.049 ± 0.002 1.04 ± 0.05

D0 → K+π− 0.049 ± 0.002 2.6 ± 0.1
D0 → K0

Sπ
+π− D0 → K+π−π0 0.018 ± 0.001 3.2 ± 0.2

D0 → K+π−π+π− 0.016 ± 0.001 1.6 ± 0.1
D0 → K+K− 0.042 ± 0.002 0.24 ± 0.01

D0 → K+π− 0.019 ± 0.001 1.8 ± 0.1

D0 → K0
Sπ

+π−π0 D0 → K+π−π0 0.006 ± 0.001 2.0 ± 0.3
D0 → K+π−π+π− 0.007 ± 0.001 1.2 ± 0.2
D0 → K+K− 0.016 ± 0.001 0.17 ± 0.01

D0 → K+π− 0.117 ± 0.003 1.26 ± 0.03
D0 → K−K+ D0 → K+π−π0 0.046 ± 0.002 1.71 ± 0.08

D0 → K+π−π+π− 0.044 ± 0.002 0.93 ± 0.04
D0 → K0

Sπ
+π− 0.042 ± 0.002 0.23 ± 0.01

D0 → K0
Sπ

+π−π0 0.012 ± 0.001 0.12 ± 0.01
D0 → K+K− 0.106 ± 0.003 0.125 ± 0.004

Total expected yield for Br = 10−3 164.1 ± 2.6
Total corrected yield for Br = 10−3 134.4 ± 2.1
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Table E.2: Efficiencies and expected signal yields for B0 → D∗+D∗−. The yield is calcu-
lated assuming Br(B0 → D∗+D∗−) = 10−3.

B0 → D∗+D∗−

D∗+ → D0π+
s D∗− → D−π0

s Efficiency Yield for Br = 10−3

D− → K+π−π− 0.057 ± 0.002 6.0 ± 0.2
D0 → K−π+ D− → K0

Sπ
− 0.057 ± 0.002 0.61 ± 0.02

D− → K0
Sπ

−π0 0.019 ± 0.001 0.74 ± 0.05
D− → K+K−π− 0.048 ± 0.002 0.50 ± 0.02
D− → K0

SK
− 0.050 ± 0.002 0.114 ± 0.005

D− → K+π−π− 0.021 ± 0.001 7.6 ± 0.5
D0 → K−π+π0 D− → K0

Sπ
− 0.020 ± 0.001 0.75 ± 0.05

D− → K0
Sπ

−π0 0.010 ± 0.001 1.3 ± 0.1
D− → K+K−π− 0.017 ± 0.001 0.61 ± 0.05
D− → K0

SK
− 0.023 ± 0.001 0.18 ± 0.01

D− → K+π−π− 0.024 ± 0.002 5.0 ± 0.3
D0 → K−π+π−π+ D− → K0

Sπ
− 0.024 ± 0.002 0.51 ± 0.03

D− → K0
Sπ

−π0 0.009 ± 0.001 0.73 ± 0.07
D− → K+K−π− 0.022 ± 0.001 0.44 ± 0.03
D− → K0

SK
− 0.023 ± 0.001 0.101 ± 0.007

D0 → K0
Sπ

+π− D− → K+π−π− 0.019 ± 0.001 1.03 ± 0.07
D− → K+K−π− 0.015 ± 0.001 0.082 ± 0.007

D0 → K0
Sπ

+π−π0 D− → K+π−π− 0.009 ± 0.001 0.85 ± 0.09
D− → K+K−π− 0.005 ± 0.001 0.054 ± 0.007
D− → K+π−π− 0.017 ± 0.001 0.19 ± 0.01
D− → K0

Sπ
− 0.050 ± 0.002 0.058 ± 0.003

D0 → K−K+ D− → K0
Sπ

−π0 0.017 ± 0.001 0.070 ± 0.005
D− → K+K−π− 0.016 ± 0.001 0.018 ± 0.001
D− → K0

SK
− 0.046 ± 0.002 0.011 ± 0.0005

Total expected yield for Br = 10−3 27.5 ± 0.7
Total corrected yield for Br = 10−3 22.4 ± 0.6
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Table E.3: Efficiencies and expected signal yields for B0 → D∗+D∗−. The yield is calcu-
lated assuming Br(B0 → D∗+D∗−) = 10−3.

B0 → D∗+D∗−

D∗+ → D+π0
s D∗− → D

0
π−
s Efficiency Yield for Br = 10−3

D0 → K+π− 0.063 ± 0.002 6.6 ± 0.3
D+ → K−π+π+ D0 → K+π−π0 0.025 ± 0.002 8.9 ± 0.6

D0 → K+π−π+π− 0.029 ± 0.002 6.0 ± 0.3
D0 → K0

Sπ
+π− 0.022 ± 0.001 1.19 ± 0.08

D0 → K0
Sπ

+π−π0 0.009 ± 0.001 0.85 ± 0.09
D0 → K+K− 0.058 ± 0.002 0.65 ± 0.03

D0 → K+π− 0.055 ± 0.002 0.59 ± 0.02
D+ → K0

Sπ
+ D0 → K+π−π0 0.024 ± 0.002 0.88 ± 0.06

D0 → K+π−π+π− 0.026 ± 0.002 0.56 ± 0.03
D0 → K+K− 0.047 ± 0.002 0.055 ± 0.002

D0 → K+π− 0.022 ± 0.001 0.86 ± 0.06
D+ → K0

Sπ
+π0 D0 → K+π−π0 0.009 ± 0.001 1.2 ± 0.1

D0 → K+π−π+π− 0.009 ± 0.001 0.68 ± 0.07
D0 → K+K− 0.020 ± 0.001 0.085 ± 0.006

D0 → K+π− 0.041 ± 0.002 0.42 ± 0.02
D+ → K−K+π+ D0 → K+π−π0 0.017 ± 0.001 0.59 ± 0.05

D0 → K+π−π+π− 0.019 ± 0.001 0.39 ± 0.03
D0 → K0

Sπ
+π− 0.018 ± 0.001 0.097 ± 0.007

D0 → K0
Sπ

+π−π0 0.005 ± 0.001 0.052 ± 0.007
D0 → K+K− 0.043 ± 0.002 0.048 ± 0.002

D0 → K+π− 0.052 ± 0.002 0.118 ± 0.005
D+ → K0

SK
+ D0 → K+π−π0 0.018 ± 0.001 0.14 ± 0.01

D0 → K+π−π+π− 0.022 ± 0.001 0.099 ± 0.007
D0 → K+K− 0.043 ± 0.002 0.010 ± 0.0005

Total expected yield for Br = 10−3 31.0 ± 0.7
Total corrected yield for Br = 10−3 25.2 ± 0.6
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The result is consistent with the present world-average values [13]. The systematic error
is described in the following section.

E.4 Systematic Uncertainty

E.4.1 Calculation of Systematic Uncertainty

We consider the following sources of systematic uncertainties. A summary is given in
Table E.4.

Source B0 → D∗+D∗−(%)
Tracking efficiency 10.5
π0 reconstruction 1.7
K0

S reconstruction 0.8
Particle ID (K and π) 3.3
Fit parameters and methods 0.8
Daughter branching fractions 7.3
MC Statistics 1.3
Number of BB̄ 0.5
Polarization 1.8
Sum 13.6

Table E.4: Systematic uncertainty of D∗+D∗− branching fraction

E.4.2 Reconstruction Efficiency

Uncertainties that arise from efficiency corrections for charged tracks, π0’s and K0
S’s are

taken into account. Tracking efficiency for charged tracks are obtained from comparison
of data and MC samples. For example, efficiency ratio of data/MC between η → π+π−π0

and η → γγ and efficiency ratio of D∗+ → D0π+ decays are used.

E.4.3 Particle Identification

Uncertainties of particle identification are estimated.

E.4.4 Fit Parameters and Methods

Uncertainties of fit parameters are obtained by varying each signal and background shape
parameter. We also varied the signal box by 10 (3.5) MeV for ∆E (Mbc), each of which
approximately corresponds to one standard deviation of the narrow Gaussian.
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E.4.5 Daughter Branching Fractions

An expected yield for each final state of the B0 → D∗+D∗− decay is proportional to the
product branching fractions of D∗ and D decays, which are taken from [13]. Systematic
uncertainties of daughter branching fractions are estimated with varying them by ±1σ.
This estimation is done by taking correlations among daughter branching fractions into
account.

E.4.6 MC Statistics

The reconstruction efficiencies are estimated from signal MC. Their statistical errors are
taken as systematic uncertainties.

E.4.7 Number of BB̄

The number of BB̄ and its error are take into account.

E.4.8 Polarization

If the polarization parameters assumed in MC are different from those in data, the total
reconstruction efficiency is affected. This effect is estimated by the following efficiency
ratio (rMC/Data):

rMC/Data =
εMC

εData

=
ε0R0MC + ε||R‖MC

+ ε⊥R⊥MC

ε0R0Data + ε||R‖Data
+ ε⊥R⊥Data

, (E.3)

where εi is MC reconstruction efficiency for each polarization, RiData is the polarization
parameters obtained from data, which will be described in the next chapter. Because
signal MC is generated with assuming no polarization,

R0MC = R‖MC
= R⊥MC = 1/3. (E.4)
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Appendix F

Control Sample Selection

F.1 Event Selection

For the B0 → D∗+D∗− analysis, D(∗)D
(∗)
s decay modes are good control sample, because

their decay topology is quite similar to D∗+D∗− and their yields are much larger as they
are Cabibbo-allowed decays.

We reconstruct the following decay modes:

• B0 → D−D+
s

• B0 → D−D∗+
s

• B0 → D∗−D+
s

• B0 → D∗−D∗+
s

• B− → D0D−
s

• B− → D0D∗−
s

• B− → D∗0D−
s

• B− → D∗0D∗−
s

Event selection criteria are almost the same as those for the D∗+D∗− selection. Addi-
tionally we reconstruct D∗0 → D0π0 and D∗+

s → D+
s γ. D

+
s decays into φ(K+K−)π+,

K∗0(K+π−)K+ and K0
SK

+. Each reconstructed mass is required to be within 3 sigmas
from the nominal mass, except for |∆M(φ)| < 0.012 GeV and |∆M(K∗0)| < 0.1 GeV.

F.2 Yield Extraction

Yield extraction is performed with Mbc projection. To avoid feed across from other decay
modes, we applied ∆E signal box (|∆E| < 0.04 GeV). Signal shape is decided from each
signal MC and background shape is simultaneously fitted with yield. Figures F.1 show
whole event candidates in Mbc-∆E plane. Figures F.2 show Mbc projection in ∆E signal
region and fit results. Extracted yields are summarized in Table F.1.
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Figure F.1: Two-dimensional distribution for control samples in the ∆E-Mbc plane; (a)
B0 → D−D+

s ; (b) B0 → D−D∗+
s ; (c) B0 → D∗−D+

s ; (d) B0 → D∗−D∗+
s ; (e) B− → D0D−

s ;
(f) B− → D0D∗−

s ; (g) B− → D∗0D−
s ; (h) B− → D∗0D∗−

s .
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Figure F.2: Mbc distribution for control samples within the ∆E signal region; (a) B0 →
D−D+

s ; (b) B0 → D−D∗+
s ; (c) B0 → D∗−D+

s ; (d) B0 → D∗−D∗+
s ; (e) B− → D0D−

s ; (f)
B− → D0D∗−

s ; (g) B− → D∗0D−
s ; (h) B− → D∗0D∗−

s .

149



Mode No in signal box Yield(Purity)

B0 → D−D+
s 998 921 ± 21(92%)

B0 → D−D∗+
s 433 371 ± 17(86%)

B0 → D∗−D+
s 777 709 ± 70(91%)

B0 → D∗−D∗+
s 571 528+15

−16(92%)

B0 all 2779 2529+77
−78(91%)

B− → D0D−
s 2178 1886+37

−38(87%)
B− → D0D∗−

s 1202 905 ± 32(76%)
B− → D∗0D−

s 425 376 ± 15(90%)
B− → D∗0D∗−

s 437 382+16
17 (94%)

B− all 4242 3549+54
−55(84%)

Sum 7021 6078+94
−95(87%)

Table F.1: Extracted yields of D(∗)D
(∗)
s
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