
Title 制限された動的情報を用いたブロック単位スライシン
グ手法の提案

Author(s) 高田, 智規; 井上, 克郎

Citation 電子情報通信学会論文誌D-I. 2003, J86-D-I(3), p.
169-172

Version Type VoR

URL https://hdl.handle.net/11094/26591

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



制限された動的情報を用いたブロック単位スライシン
グ手法の提案

高田 智規†,†† 井上 克郎†（正員）
A Block Slicing Method Using Lightweight Dynamic Information

Tomonori TAKADA†,††, Nonmember and Katsuro INOUE†, Regular Member

†大阪大学大学院情報科学研究科，豊中市
Graduate School of Information Science and Technology, Osaka University,

Toyonaka-shi, 560–8531 Japan
††日本電信電話株式会社，横須賀市

Nippon Telegraph and Telephone Corporation, Yokosuka-shi, 239–0847 Japan

あらまし 静的な制御依存情報と動的なデータ依

存情報を利用したスライシング手法である依存キャッ

シュスライシングは動的スライシングと比べ，少ない

実行時オーバヘッドでスライスを求めることが可能で

ある．しかし，実際のデバッグ段階で使用するために

は，更にオーバヘッドを削減することが求められてい

る．本論文では，依存キャッシュスライシングのオー

バヘッドを削減させたブロック単位スライシングの提

案を行う．また，実験を通じて，ブロック単位スライ

シングは依存キャッシュスライシングに比べ約 50％実

行時オーバヘッドを削減可能であることを確認した．

キーワード 準動的解析，依存キャッシュスライシ

ング，ブロック単位スライシング

1. ま え が き

プログラムスライシング技術を用いることでソース

プログラムのうちフォールトに関連する部分のみに注

目することが可能である．プログラムスライス（スラ

イス）は関心のある文に含まれる変数に影響を与える

文の集合を指す．スライスを利用することでデバッグ

を効率的に行うことができる [3]．スライシング技術

は大きく静的スライシングと動的スライシングの二つ

に分類される．

Weiser [5]によって提案された静的スライスは，特

定のプログラム文中のある変数の値に影響を与える

可能性のある文の集合である．静的スライスは一般に

サイズが大きく，極端な場合，ソースプログラム全体

がスライスとして抽出される．静的スライシングを

計算するためには，プログラム依存グラフ（Program

Dependence Graph, PDG）と呼ばれる有向グラフを用

いる．PDG は文間の依存関係を表したグラフであり，

その節点はプログラム中の文または条件式を，辺は制

御依存関係（ある文の実行有無が条件式の実行結果に

依存する関係）・データ依存関係（変数の定義–参照関

係）を表している．

Agrawalら [1], [2]によって提案された動的スライス

は，注目した文中の変数の値に実際に影響を与えた実

行文の集合である．動的スライスは特定の入力データ

に基づいて導出されるため，ソースプログラムのうち

実行されなかった部分は自動的に除かれる．このため，

スライスサイズは静的スライスと比べ一般的に小さく

なり，フォールト位置特定には好ましい．しかし，動

的スライシングでは動的にプログラム文間の依存関係

を追跡する必要があるため，多くのメモリや時間を必

要とする．

スライスを抽出するためには，実行前解析，実行時

解析，スライス抽出の 3段階の計算が必要となる．実

行前解析時間はプログラムの長さとその構造に依存す

る．実行時解析時間は実行系列の長さに依存し，スラ

イス抽出時間は，解析した依存関係の大きさに依存す

る．このため，繰返し等が多用されるプログラムにお

いては，実行系列が大きくなり，実行時解析時間が非

常に大きくなる．

デバッグ作業においては，動的スライシングが適し

ているが，上記の問題から，解析に必要な時間が非常

に大きくなる．

この問題を解決するために，静的解析と動的解析を

組み合わせた準動的解析手法が提案されている．依存

キャッシュスライシング [6]は，このような準動的解析

手法であり，簡単なキャッシュを用いることによって，

動的スライシングと比べ実行時解析時間を短縮すると

ともに，静的スライシングと比べスライスサイズを小

さくすることができる．しかし，その実行時間（実行

時解析時間とプログラム自体の実行時間の和）は静的

スライシングの 3～10倍程度であり，現実のデバッグ

環境においては，更なるオーバヘッドの削減が求めら

れる．

そこで，依存キャッシュスライシングの基本的なア

イデアをもとに，更なる効率化を行った，ブロック単

位スライシングの提案を行う．

2. ブロック単位スライシング

2. 1 概 要

依存キャッシュスライシングの実行時オーバヘッド

を削減するために，複数の文をブロックとして扱い，

ブロック単位でデータ依存関係を求める．この手法を

ブロック単位スライシングと呼ぶ．

以下に，ブロック単位スライシングの計算手順を

示す．

電子情報通信学会論文誌 D–I Vol. J86–D–I No. 3 pp. 169–172 2003 年 3 月 169



電子情報通信学会論文誌 2003/3 Vol. J86–D–I No. 3

［STEP1］ 実行前解析（ブロック化・静的制御依存

解析）

ソースプログラムから，以下の手順により，制御依

存辺のみをもちデータ依存辺をもたない PDGの部分

グラフ PDGBL を静的に生成する．

まず，2. 2に述べるブロック化アルゴリズムに従い，

文の集合とブロックとの対応関係を得る．

次に，ブロックに対応する節点を用意し，ブロック

間に制御依存関係が存在すれば，対応する節点間に制

御依存辺を引く．ただし，データ依存辺は加えない．

次に，静的スライシングで利用する PDGと同様，文

または制御文に対応する節点を用意する．そして，文

間に制御依存関係が存在すれば，対応する節点間に制

御依存辺を引く．ただし，データ依存辺は加えない．

［STEP2］ 実行時解析（動的データ依存関係解析）

対象プログラムをある入力データで実行する．

実行の際，2. 3で示すデータ依存関係抽出アルゴリズ

ムに基づき，動的なデータ依存関係を計算し，PDGBL

にデータ依存辺を追加する．プログラム実行が終了し

た時点で，PDGBL の完成となる．

［STEP3］ スライス計算

PDGBL を用いて，静的スライシングと同様の方法

でスライス計算を行う．

例えば，スライシング基準 (sc, v)に関するスライス

を抽出する場合，まず，sc に対応する節点から制御依

存辺及び v に関するデータ依存辺を逆向きにたどるこ

とで到達可能な節点集合を導出する．そして，この節

点集合に対応する文が求めるスライスとなる．

2. 2 ブロック化アルゴリズム

2. 1の Step 1で使われるブロック化アルゴリズムを

図 1に示す．

このアルゴリズムでは，ブロック化因子 N に基づ

き，N 個の文を一つのブロックとしてブロック化を行

う．ブロック化因子N はユーザによって指定可能であ

り，N の値を変化させることにより，ユーザは任意の

粒度でのブロック化が可能である．

2. 3 データ依存関係収集アルゴリズム

図 2 に 2. 1 の Step 2 で使われるデータ依存関係抽

出アルゴリズムを示す．まず，プログラム中で用いら

れるすべての変数 vに対して，キャッシュ（C(v)と記

す）を用意する．

プログラムの各実行時点において，C(v)は最も新

しく v を定義した文に対応する節点の属するブロック

を保持し，文 sにおいて v が使用（参照）された際，

入力
P : ソースプログラム（文 s1, s2, · · · , sn が含まれてい
るものとする）

N : ユーザによって指定されたブロック化因子

出力

BS: ブロックの集合

アルゴリズム本体
（ 1） BS := ⊥，i = 1

（ 2） i < nである限り，次を実行
（ a） si, · · · , si+N−1 が同じ制御ブロックに含まれる
場合，または制御文を含むがその配下の文がすべてこれ
らの文集合に含まれる場合 Bj := {si, · · · , si+N−1}，
i := i + N （ただし，関数境界は超えないものとする）
（ b） si, · · · , si+N−1 が上記以外の場合（制御ブロッ
クの境界を超える場合），ブロック境界を超えないような
文を sk とすると，Bj := {si, · · · , sk}，i := k + 1

（ c） BS := BS ∪ Bj

図 1 ブロック化アルゴリズム
Fig. 1 Algorithm for creating blocks.

入力

PDGBL: 部分的に生成されブロック化された PDG

P : 対象プログラム
I: P への入力

作業変数
P 中の各変数 vに対する依存キャッシュC(v)

出力

OUT : 入力 I に対するプログラム P の実行の出力
PDGBL: 完成した PDG

アルゴリズム本体
（ 1） P 中の各静的変数 v に対し，C(v) := ⊥ { 各
キャッシュの未代入マークによる初期化．
（注）動的に割当てられる変数は割当てられた時点でキャッ
シュを用意し，⊥を代入する．}
（ 2） P が停止するまで以下を繰り返し実行する
{ P を入力 I で最初から停止するまで文ごとに実行 }
（ a） I に関して，P の次の一文 sを実行
（ b） s で使用（参照）される各変数 u について，

C(u) �= ⊥ かつ，データ依存辺 C(u) ✲u B(s) が存
在しなければ PDGBL に C(u) ✲u B(s)を追加する．
ここで，B(s)は sを含むブロックを表す．
（ c） sで定義される各変数wについて，C(w) := B(s)

図 2 データ依存関係収集アルゴリズム
Fig. 2 Algorithm for computing data dependence relations.

C(v)が保持する節点から sの属するブロックに対応

する節点 (B(s)) に対してデータ依存辺を（既に存在

しなければ）追加する．一方，sで vが定義された際，

170



レ タ ー

C(v)は B(s)に対応する節点に更新する．これらをす

べての変数に対して行う．

配列変数や構造体については，依存キャッシュスラ

イシングと同様，すべての要素に対してキャッシュを

用意する．

3. ブロック単位スライシングの拡張

ブロック単位スライシングの実行時効率及び利便性

を向上させるため，以下を考える．

• スカラ型変数の静的解析

配列やポインタ型の変数のデータ依存関係を静的に

解析することは非常に困難であるが，スカラ型変数に

ついては比較的容易に解析することが可能である．そ

こで，PDGBL 作成時に，スカラ型変数のデータ依存

関係についても解析し，実行時にはポインタ・配列・

構造体などの変数についてのみ依存関係を解析するこ

とで，実行時オーバヘッドを削減できる．

• ブロック内局所変数の解析省略

ブロック内でのみ使用される変数（関数の局所変数

など）は，ブロック外へ依存関係が伝搬することはな

い．そこで，このような変数についてはキャッシュの

作成・データ依存辺の追加をともに省略することによ

り，実行時間・消費メモリを削減することができる．

• 基本ブロック（basic block）単位のブロック化

ブロック化因子の特別な場合として，基本ブロック

を一つのブロックとして計算すれば，ユーザが特にブ

ロック化因子を指定する必要のない場合に有用である．

また，制御構造の境界を超えることがなくなり，無駄

なブロックが少なくなると考えられる．ここで，基本

ブロックとは，連続する分岐のない文の列のうち，可

能な限り大きいものを指す．

4. 実 験

4. 1 概 要

ブロック単位スライシングの有効性を確認するため

実行時間の測定を行った．依存キャッシュスライシン

グのオーバヘッドはコンパイラ型言語の場合に特に大

きくなる [6]ため，C言語で記述されたサンプルプロ

グラムを対象とし，動的データ依存収集の動作を追加

した．

サンプルプログラムとして，多様なプログラムで用

いられるソートプログラムを対象とし，P1，P2の二

つのプログラムを用いた．対象プログラムとしては，

プログラム長に対し実行系列が大きくなるもの，つま

り繰返しを多く含むものとするため，ソートプログラ

ムを選んだ．プログラム P1はマージソートを行うプ

ログラムであり，配列に格納されたデータの整列を行

う．プログラム P2はクイックソートを行うプログラ

ムであり，キーとデータの二つの構成要素をもつ構造

体の配列に対し，キーをもとに整列を行う．

P1 に対して 10,000 の要素，P2 に対して 100,000

の要素のソートを行う処理について，元プログラム

（実行時解析を行わない．静的スライシングの場合も

含む），依存キャッシュスライシング，ブロック単位ス

ライシングの実行時解析時間を複数測定し，その平均

時間を求めた．なお，ブロック単位スライシングにつ

いては，3. で示した拡張を取り入れたアルゴリズムを

使用した．

この実験の結果を表 1に示す

4. 2 考 察

表 1より，依存キャッシュスライシングでは元プロ

グラム（静的スライシング）の約 9～10倍程度の実行

時間となっているのに対し，ブロック単位スライシン

グでは約 3～6 倍程度となっている．また，ブロック

単位スライシングは依存キャッシュスライシングの実

行時間は約 1/2に短縮できていることがわかる．

この理由について以下に簡単な考察を行う．

ブロック単位スライシングでは，ブロック化を行う

ことにより PDG の節点数を減らすことができる．そ

のため，実行時に追加するデータ依存辺は依存キャッ

シュスライシングに比べ少なくなり，また，依存辺の

追加に関するオーバヘッドも少なくなる．PDGの節点

数を表 2に示す．

また，関数内局所変数については，依存キャッシュ

スライシングではキャッシュを作成し，そのデータ依

存辺をも追加しているが，ブロック単位スライシング

ではその局所変数が単一ブロックの中でしか使用され

ない場合，解析を行わない．これは，頻繁に呼び出さ

表 1 平均実行時間（秒）
Table 1 Average execution time (s).

P1 P2

元プログラム 0.017 0.266
依存キャッシュスライシング 0.141 2.692
ブロック単位スライシング 0.058 1.413

(M-PentiumIII 600 MHz CPU with 256 MB Memory)

表 2 PDG 節点数
Table 2 The number of nodes in PDG.

P1 P2

ブロック化前 27 45
ブロック化後 20 34

171



電子情報通信学会論文誌 2003/3 Vol. J86–D–I No. 3

表 3 実行時に解析した定義–参照関係数
Table 3 The number of analysed Def-Use relation during execut-

ing sample programs.

P1 P2

依存キャッシュスライシング 2,300,000 20,000,000
ブロック単位スライシング 380,000 6,450,000

れ制御構造が単純な小さな関数などについて非常に

有効であると考えられる．本実験では，P2において，

関数内局所変数に関するキャッシュの参照数を平均約

1,600,000回省略することが可能であった．

スカラ型変数の解析については，ブロック単位スラ

イシングでは実行前解析において解析しているため実

行時に解析する必要がない．表 3に，実行時に解析し

た定義–参照関係の数について示す．スカラ型変数の

実行前解析により，大幅に実行時解析のコストを抑え

ることが可能であることがわかる．
5. む す び
一般に，配列やポインタなどを含んだプログラムの

データ依存関係を静的に解析するのは非常に困難で

あり，また，動的に解析するのは非常に実行時オーバ

ヘッドが必要となる．本論文では，ブロック単位スラ

イシングというアルゴリズムを提案した．この方式で

は，複数の文をブロックとして扱い，ブロック単位で

動的にデータ依存関係を求めることで，実行時オーバ

ヘッドを大幅に削減できる．

今後は，ブロック単位スライシングの正確性につい

て実験を行うとともに，4. 2で示したブロック内静的

依存解析についても検討，及び，ブロック化因子を様々

な数値に変動させた場合の，実行時間と正確性につい

ての考察をも行う．また，静的・動的・依存キャッシュ

スライシング等の機能を実装したデバッグシステム [4]

への実装を行い，実ユーザによるデバッグ実験などの

検証も行う予定である．

文 献
[1] H. Agrawal and J. Horgan, “Dynamic program slicing,” SIG-

PLAN Notices, vol.25, no.6, pp.246–256, 1990.

[2] B. Korel and J. Laski, “Dynamic program slicing,” Inf. Process.

Lett., vol.29, no.10, pp.155–163, 1988.

[3] 西松 顕，楠本真二，井上克郎，“フォールト位置特定にお
けるプログラムスライスの実験的評価，”信学技報，SS98-3,

March 1998.

[4] 佐藤慎一，飯田 元，井上克郎，“プログラムの依存関係解
析に基づくデバッグ支援ツールの試作，”情処学論，vol.37,

no.4, pp.536–545, April 1996.

[5] M. Weiser, “Program slicing,” Proc. Fifth International Confer-

ence on Software Engineering, pp.439–449, 1981.

[6] 高田智規，井上克郎，芦田佳行，大畑文明，“制限された

動的情報を用いたプログラムスライシング手法の提案，”信
学論（D-I），vol.J85-D-I, no.2, pp.228–235, Feb. 2002.

（平成 14 年 6 月 17 日受付，9 月 17 日再受付）

172


