u

) <

The University of Osaka
Institutional Knowledge Archive

:—EOu—y%ﬁ%mutU7779Uy7§%

Title v

Author(s) |BEB#&, AH; M5, HF; X, BEZ fb

Citation | BT BHMEEFRIMARES. SS, VI bz TY
ATV R, 2004, 104(47), p. 1-6

Version Type|VoR

URL https://hdl. handle.net/11094/26639

rights Copyright © 2004 IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Institute of Electronics, Infornmation, and Conmunication Engi neers

HHEA EFFEREEFS {SF B
THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE.
INFORMATION AND COMMUNICATION ENGINEERS §52004-1 (2004-05)

d—Ro7o—VEREAWVEEY 7722 U8 Y—)L

Bk At e FEEFT R B4t HE TRt
T KBRKZE KRERBHREEAER OV Ea—2Y AL AHKR T 560-8531 BhifFaeLET 1-3
t REEBRREEE X) T 560-8531 BrhlifFRILET 1-3

E-mail: t{y-higo.kamiya.kusumoto,inoue}@ist.osaka-u.ac.jp

H5FL EF, VIEUVITORTFERILSIETVE—BERE LT, a—Fro—YE@mshTns, a—Fy
O—>2 i3V —RAa— FPICEET 2R—, EREULEZI-FROCETHS. FlZIE, HRI—FRICNNTH
FENTWEES, FO2—FEOI—- R O0—V2TIKDWTEBEDREREEBT ALRENHS. J—Fru—r
ERRETHBIFHBLLTR, VIMITRIKEETSa2— R ro—2 2R, SHI34EL, V7bhoa7
hoa—Rr7a—YEROBL (W77 02V 00 AED2OMRBFoNS. §iBICDOVWTIEERLIIThE TIC,
O— R 70— 2SHBEE Gemini ZRIF L, TEIETABFNCHLTEAL TE. BB ICHALTE, ThETIC
WS ODDFENMREINTVEY, BABFEOIZ FAEOREOBAICK D, ERICHETHVONTVSY Y
F 7 LTIERLE LD -2, AR TR, EANARETY—Xa—Fhhs) I7702) V7B LI
ad—Rro—YORMFERERETS. £, HHLZa—FK7o0—C0#E2 X MY 7 ZBAVTREILTS. T
Nickb, 20O7u—roRKRAERNFRTE, 2—FEAWRWRV T7 7420 D TEENTELLFENS. £
EREFEERELZY—VEEKL, BRERZTERS LT, AFEOERAMZMHRELT-.

F—J—F a-—-kRru—, VIRV, VI NTTRTF, A7V T MER

Code Clone Analysis Method for Practical Refactoring Support

Yoshiki HIGO?, Toshihiro KAMIYA', Shinji KUSUMOTO!, and Katsuro INOUE!

1 Graduate School of Information and Science Technology, Osaka University
1-3, Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
1 PRESTO, Japan Science and Technology Agency
1-3, Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
E-mail: 1{y-higo,kamiya.kusumoto,inoue}@ist.osaka-u.ac.jp

Abstract Recently, code clone has been regarded as one of factors that make software maintenance more difficult.
A code clone is a code fragment in a source code that is identical or similar to another. For example, if we modify a
code fragment which has code clones. it is necessary to consider whether we have to modify each of its code clones.
There are two ways of maintenance support for code clones. One is to comprehend and manage code clones, and the
other is to remove them. For the former support, we have developed code clone analysis environment Gemini. For
the latter support, several methods have proposed. But, it is difficult to apply them to industrial software because of
various reasons such as high time complexity. In this paper, we propose a method that detects refactoring-oriented
code clone in practical use time. And, we develop a characterization of code clones by some metrics, which suggest
how to remove them. Then, we develop refactoring support tool Cancer. We expect Cancer can support software
maintenance more effectively.

Key words Code Clone, Refactoring, Software Maintenance, Object-Oriented

creasing. Maintenance of software system is defined as modi-
fication of a software product after delivery to correct faults,

Recently, maintaining software systems has been becom- to improve performance or other attributes, or to adapt the
ing more difficult as the size and complexity of software is in- ~ Products to a modified environment (12]. Actually, it is re-

1. Introduction

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

ported that many software companies expend a lot of time
and human cost for software maintenance.

It is generally said that code clone is one of factors that
make software maintenance more difficult [6]. Code clone
is a code fragment that is identical or similar to another.
Code clones are introduced because of various reasons such
as reusing code by ‘copy-and-paste’. If we modify a code
fragment and it has many code clones, it is necessary to
consider pros and cons of modification in its corresponding
all code clones. Especially, for large scale software, such pro-
cesses are very complicated and need much cost. So, efficient
code clone detection is necessary and important in software
development and maintenance.

There are two ways of maintenance support for code clones.
One is to comprehend and manage code clones, and the other
is to remove them. For the former support, there exist many
researches to automatically detect code clones [4] [11]. We
have also developed code clone detection tool CCFinder [9]
and code clone analysis environment Gemini [13]. We have
been delivering Gemini (including CCFinder) to more than
50 software organizations and evaluated the usefulness of
them in the actual software maintenance. For the latter
support, several code clone removal methods have been pro-
posed 2] [3] [10]. But, it is difficult to apply them to indus-
trial software because of various reasons such as high time
complexity.

For supporting refactoring activity in practical, we devel-
oped Cancer to support the refactoring for code clone. Can-
cer can detect refactoring-oriented code clones in practical
time from large scale software. Moreover, Cancer character-
izes detected code clones using some metrics. In other word,
Cancer tells the user which code clones can be removed and
how to remove them. So, the user can concentrate on mod-
ifying source code, which leads software development and
maintenance to more effective ones. Through case studies
for several open source software, we confirm the applicabil-
ity of Cancer.

2. Preliminaries

Here, we define some terminology regarding code clones.
Next, we briefly explain our previous research results, a code
clone detection tool CCFinder [9)].

2.1 Code Clone

A clone relation is defined as an equivalence relation (i.e.,
reflexive, transitive, and symmetric relation) on code frag-
ments [9]. A clone relation holds between two code fragments
if (and only if) they are the same sequences. (Sequences are
sometimes original character strings, strings without white
spaces, sequences of token type, and transformed token se-
quences. } For a given clone relation, a pair of code frag-
ments is called a clone pair if the clone relation holds be-
tween the fragments. An equivalence class of clone relation
is called a clone set. That is, a clone set is a maximal set of
code fragments in which a clone relation holds between any
pair of code fragments. A code fragment in a clone set of a
program is called a code clone or simply a clone.

2.2 CCFinder

CCFinder [9] detects code clones from programs and out-
puts the locations of the clone pairs on the programs. The
length of minimum code clone is set by the user in advance.
Clone detection of CCFinder is a process in which the input

and Conmuni cati on Engi neers

tail = head;
W-O;l<w; i++)
{

tail->next =:(struct List ')mﬂnc(shlo’ll-w)h
tall = (List *fail->next;

tall->iei;:)
. tall-rneit =: NULL
ot for($=0:$<§; $++)
(
Code fragment A tail->next = (struct List *)malloc(sizeof(List);
tall = (List *ail->next;
tait>$ = §;
tail = ge!TanI(head)) tall->next = NULL:

:f:‘u = 0, }= t. }'")) Merged fragment
{
ﬂ-ﬂvut ® (struct List- ')nulloc(dz-d(l.lsm.

tail= {List *}tail->next;
taiys
m—mm-uuu

¥
tail = NULL;

Code fragment B

Fig 1 Example of merging two code fragments

is source files and the output is clone pairs. The process
consists of following four steps:

Stepl: Lexical analysis: Each line of source files is divided
into tokens corresponding to a lexical rule of the program-
ming language. The tokens of all source files are concate-
nated into a single token sequence, so that finding clones
in multiple files is performed in the same way as single file
analysis.

Step2: Transformation: The token sequence is trans-
formed, i.e., tokens are added, removed, or changed based on
the transformation rules that aims at regularization of iden-
tifiers and identification of structures. Then, each identifier
related to types, variables, and constants is replaced with a
special token. This replacement makes code fragments with
different variable names clone pairs.

Step3: Match Detection: From all the sub-strings on the
transformed token sequence, equivalent pairs are detected as
clone pairs.

Step4: Formatting: Each location of clone pair is con-
verted into line numbers on the original source files.

3. Proposed Method

3.1 Extraction of Refactoring-Oriented Code
Clone

The key idea of our method is to find a kind of cohesive
code fragment (like compound block or method bodies) from
the code clone fragments. Figure 1 shows an example. In
this figure, there are two code fragments A and B from a
program, and. the code fragments with hatching are maxi-
mal clones between them. In code fragment A, some data
are substituted to list data structure from the head succes-
sively. In code fragment B, they are done so from the tail
successively. The for blocks in A and B have a common
logic that handles a list data structure. There are, however,
sentences before and after for block, that are not necessarily
related with the for block from semantic point of view. Such
semantically unrelated sentences often obstruct refactoring.
In other word, extracting only for block as a code clone is
more preferable from refactoring viewpoint in this example.

We extract refactoring-oriented code clone from the out-
put of CCFinder. For example, the following kinds of code
clone are extracted as a refactoring oriented code clone for
Java language.

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

Declaration : class { }, interface { }
Method : method body, constructor, static initializer {C1, Ca, --
Statement

3.2 Code Clone Metrics for Determining Refac-

toring Pattern

We use existing refactoring pattern [6], especially “Extract
Method” and “Pull Up Method”, to remove code clones.
“Extract Method” means that a fragment of source code
are extracted and redefined as a new method [6]. Originally,
this pattern is applied to too long method or too complex
part. Here, in order to remove code clones, we use “Extract
Method” to extract code clone fragments as a common new
method. “Pull Up Method” means that the same methods
defined in child classes are pulled up to its parent class [6].
This pattern is performed because of various reasons such as
design pattern. If plural child classes which have common
parent class include clone method, pulling up such methods
means clone removal.

We attempt to refine detected code clones by measur-
ing their characteristics to remove some of them. “Extract
Method” is the extraction of a code fragment, so it is de-
sirable that the target fragment has low coupling with the
other surrounding fragments in the method, in other words,
the variables defined outside the fragment aren’t used (re-
ferred and substituted) in the fragment. If such variables
are used, it is necessary to provide them as parameters for
the new method. Therefore, we measure the amount of such
variables.

On the other hand, “Pull Up Method” means moving iden-
tical existing methods in child classes to the parent class, so
it is necessary that the child classes have common parent
class. Therefore, we measure the dispersion of clones in the
class hierarchy. The above characterizing makes it possible
to determine how each clone can be removed. In order to
make the decision, we introduce several metrics.

For the variables which are defined outside the code clone
fragment, we define two metrics RVK(S), and RVN(S).
Here, we assume that clone set S includes code fragments
{f1, f2, -+, fa}. Code fragment f; uses externally defined
variables {vi;, viy, -+, vi, }. Also, RS(v;;) denotes the
total number of referred and substituted count of Vi

RVK(f:) = mq,

RVN(f:) = iRS(W)

and, =

RVK(S) = (zn: RVK(fi))/n,

RVN(S) = (D RVN(f))/n
i=1

Intuitively, RV K(S) represents the number of externally
defined variables used in the fragments of the clone set
S. Additionally, RVN(S) counts the number of usage of
the variables used in the fragments of S. For the disper-
sion in class hierarchy, we defined a metrics DCH(S). As
described above, the clone set S includes code fragments
{f1. f2, --+, fa}. C: denotes the class which includes code
fragment f;.

Then, if the classes {C1, Ca2, ---, Cn} have several com-
mon parent classes, Cy is defined as the class which lays the

and Conmuni cati on Engi neers

lowest position in class hierarchy among the parent classes of
-, Cn}. Also, D(Cy, C) represents the distance

: if, for, while, do, switch, try, synchronized between class Ci and class Cj, in the class hierarchy.

DCH(S) = maz {D(C1, Cy), D(Cz, Cy), ---, D(Cn, Cp)}
If the classes don’t have common parent class,
DCH(S) =-1

The value of DCH(S) also becomes larger as the degree of
the dispersion of its clone set becomes large. If all fragments
of a clone set S are in the same class, the value of its DCH(S)
is set as 0. If all fragment of a clone set are in a class and
its direct children classes, the value of its DCH(S) is set as
1. Exceptionally, if classes which have some fragments of a
clone set ‘don’t have common parent class, the value of its
DCH(S) is set as -1. In detail, this metric is measured for
only the class hierarchy where the target software exists be-
cause it is unrealistic that the user pulls up some methods
which are defined in the target software classes to library
classes like JDK.

4. Refactoring Support Tool: Cancer

Based on the proposed method, we have implemented a
refactoring support tool Cancer with Java language. Fig-
ures 2(a) and 2(b) show snapshots of Cancer with the name
of the windows.

Inttvlitively7 the user specifies the distinctive clone set on
the Main Window. Then, he/she analyzes the details of it
on the Clone Set Viewer.

4.1 Function of Each Component

Here, we explain some components on Cancer.

4.1.1 Metric Graph View

The Metric Graph View uses existing metrics, LEN(S),
POP(S), and DFL(S)[13] in addition to three metrics de-
fined in Section 3. 2. The followings are brief explanations of
each metric.

LEN(S) for clone set S is the maximum length of token
sequence for each one in S.

POP(S) is the number of elements (code fragments) of a
given clone set S. A clone set with a high value of POP(S)
means that similar code fragment appear in many places.
DFL(S) -indicates an estimation of how many tokens would
be removed from source files when the code fragments in a
clone set S are reconstructed. This reconstruction is consid-
ered as the simplest case that all code fragments of S are
replaced with caller statements of a new identical routine
(function, method, template function, or so). After the re-
construction, LEN(S) x POP(S) tokens are occupied in the
source files. In the newly reconstructed source files, they
occupy k x POP(S) tokens (let k be the number of tokens
for one caller statement) for caller statements and LEN(S)
tokens for callee routine.

Here, we explain the Metric Gragh View using an example
shown in Figure 3. In the Metric Graph View, each metric
has a parallel coordinate axe. Upper and lower limits are set
per each metric. The hatching part is between upper and
lower limits of each metric. A polygonal line is drawn per
each clone set. In this example, values for the clone sets S;
and S; are drawn. In the left graph(3(a)), all metric values of

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

and Conmuni cati on Engi neers

Metric graph view l l Checkbox of RV variables l [Clone class IistJ

l Code fragment list] ! Metrics value panel |

i
A Y >
Trp Ly YEER

Hieyeny

s

00 504 cwew aw

U bt 02 o et iFicat eekueasen
[

el SRZIFIEATIONWPEIDR 3
oo Yoy ¥
o apad o, e son! L avaran 22
oo 3isadereter 5

(Checkbox of clone unit]

(a) Main Window

L 4

[RV variables iist

(b) Clone Set Viewer

" Fig 2 Snapshots of Cancer

LEN POP

DFL RVK RVN DCH LEN POP DFL RVK RVN DCH

(a) Before selection (b) After selection

Fig 3 Metric Graph

S1 and S, are between upper and lower limits. So, these two
clone sets are selected state. In the right graph(3(b)), the
value of DCH(S:) is bigger than the upper limit of DCH,
which means S, is unselected state. The Metric Graph View
enables the user to select arbitrary clone set by changing
upper and lower limits of each metric. And, the result of
selection is reflected on the Clone Set List. '

4.1.2 Checkbox of RV Variables

In the Checkboz of RV Variables in Figure 2(a), the user
can decide which variables are counted as metrics RV K (S)
and RV N(S). Currently, the variables are selected from the
following five types.

e field members of its class,
field members of parent class,
“this” variable,
“super” variable,
local variables.

For example, if the user is going to perform “Extract
Method” within a class, it is not necessary to count all kind
of variables except local ones because these variables can be
accessed anywhere in the same class. On the other hand,
if the user is going to perform refactoring that crosses over
plural classes like “Pull Up Method”, these ones should be
counted.

4.1.3 Checkbox of Clone Unit

In the Checkboz of Clone Unit, the user can decide which
kind of clone unit are shown in the Metric Graph View. Cur-
rently, the number of unit types are twelve as described in
Section 3.1. For example, if the user is going to perform
“Pull Up Method”, he/she should check only ‘method’ unit
because the target of this pattern is the existing methods.

4.1.4 Clone Set List

The Clone Set List shows all clone sets which are selected
in the Metric Graph View. And the list can sort clone sets
in ascending and descending sequence of each metric value.
Double-clicking a clone set on this view is a trigger to run
the Clone Set Viewer as shown in Figure 2(b). It shows more
detail information of the selected clone set.

4.2 Refactoring Procedure

Now, we explain refactoring process using Cancer. If the
user wants to perform “Pull Up Method”, the following con-
ditions should be considered for example.

(PC1) The target is ‘method’ unit code clone.

(PC2) The value of DCH(S) is more than 1.

Usually, ”Pull Up Method” is performed on existing meth-
ods, so (PC1) should be considered. And, the classes whose
method includes target code clones have to inherit common
parent class, so (PC2) should be considered. Next, the re-
finement process is as follows. At first, the user checks only
‘method’ unit checkbox on the Checkboz of Clone Unit, which
is reflected to the Metric Graph View. Next, the user sets
the lower limit of DC H(S) as more then 0. This operation is
reflected to the Clone Set List. As the result, the list shows
the clone sets which meet the conditions (PC1) and (PC2).

On the other hand, if the user wants to perform “Extract
Method”, the following conditions should be considered for
example.

(EC1)The target is ‘statement’ unit code clones.

(EC2)Tthe value of DCH(S) is 0.

(EC3)The value of RV K(S) is less than 1.

Since “Extract Method” is usually performed on a code
fragment in a method, (EC1) is considered. Next, if all frag-

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

ments of clone set S exist in the same class, it is easy to
merge them. So, (EC2) is considered. The reason to con-
sider (EC3) is that if some variables which are externally
defined are used in a fragment, it is necessary to make them
parameters of the new extracted method. Moreover, if some
values are substituted to some of them, they have to be re-
turned to method caller place to reflect the values of them.
It is necessary to contrive like making new data class if plural
value are substituted. The refinement process is as follows.
At first, the user checks only ‘statement’ unit (do, if, for,
switch, synchronized, try, while) checkbox on the Checkbox
of Clone Unit, which is reflected to the Metric Graph View.
Next, the user checks only ‘local variable’ on the Checkbor of
RV Variables because other kind variables can be accessed
as far as in the same class. Next, the user set the range of
DCH(S) as some value between 0 and 1(0 £ DCH(S) <
1), and the upper limit of RV K(S) as less then 2. As the
result of these operations, the Clone Set List shows only the
clone sets which meet above three conditions (EC1), (EC2)
and (EC3).

5. Case Study

5.1 Overview

In order to evaluate the usefulness of Cancer, we have ap-
plied it to Ant 1.6.0[1]. It includes 627 files and the size is
180,000 LOC. In this case study, we set thirty tokens as the
length of minimum code clone of CCFinder(intuitively, thirty
tokens correspond to about five LOC). The value thirty is the
empirical value which was derived from our previous appli-
cations of CCFinder. We also set thirty tokens as the length
of minimum clone of Cancer. Then, we tried to perform
“Extract Method” and “Pull Up Method” to code clones de-
tected by Cancer. We got 154 clone sets from Ant. The
followings are the number of clones.

All detected clones 154
“Pull Up Method” 20
“Extract Method” 32

The conditions of “Pull Up Method’and “Extract
Method” are the same as ones described in Section 4.2. In
Section 5.3 and 5.2, we describe the details of refactoring
using Cancer. Also, after removing several clone sets, we
performed regression tests to confirm the behavior of Ant.
In the regression test, we used totally 220 test cases included
in Ant package. These test cases used JUnit [8], which is one
of regression testing frameworks. So, we could easily perform
all test cases and took about 4 minutes to perform all test
cases.

5.2 “Pull Up Method”

Next, we describe the results of applying ‘Pull Up
Method”. As described above, we extracted 20 clone sets
using the “Pull Up Method” conditions described in Section
4.2. Then, we browsed and examined all source codes of each
code clone, and classified them to the following four groups:
Group 1 clone sets that can be removed only by moving
them to the common parent class.

Group 2 clone sets that can be removed by moving them to
common parent class after adding variables which are defined
outside.

Group 3 clone sets that can be removed by moving them to
common parent class and adding a new method which needs
parameters of outside variables and return statement. Ex-
isting methods which includes the pull-uped clones can be

and Conmuni cati on Engi neers

deleted or changed so that they call the new method from

the inside. If they are deleted, it is necessary to change all

its caller places.

Group 4 clone sets that need much contrivance to remove.
Here, no clone set was classified to Group 1.

private void getC tFileC d(C
if (getCommentFile() != null) {
/* Had to make two separate commands here because
if a space is inserted between the flag and the
value, it is treated as a Windows filename with
a space and it is enclosed in double quotes (").
This breaks clearcase.

*/
cmd. createArgument () . setValue (FLAG_COMMENTFILE) ;
cmd. createArgument () .setValue (getCommentFile());

dline cmd) {

Fig 4 Example of Pull Up Method in group 2

Ten clone sets were classified to Group 2. Figure 4 shows a
source code of one of them. In this ‘method’ clone, the vari-
able “this” was omitted at calling method “getCommentFile”
which was defined in the same class. The variables “this” and
“FLAG_COMMENTFILE”, which are field members of the same
class, are externally defined. To adapt “Pull Up Method”
pattern, with adding two parameters, we pulled up them to
the common parent class.

public void verifySettings() {
if (targetdir == pull) {
setError("The targetdir attribute is required.");

11 (mapperElement == null) {
map = new IdentityMapper();
} else {
map = mapperElement.getImplementation();
zf (map == null) {
setError("Could not set <mapper> element.");

}

}

Fig 5 Example of Pull Up Method in group 3

Two clone sets were classified to Group 3. Figure 5 shows a
source code of one of them. In this method clone, the variable
“map” was externally defined, and some values were substi-
tuted to it(Method “setError” was defined in the common
parent class). So, to pull up this clone set to the common
parent class, it was necessary to add a parameter and return
statement for the variable “map”.

public void execute() throws BuildException {
Commandline commandline = new Commandline();
Project aProj = getProject();
int result = 0;
// Default the viewpath to basedir if it is not specified
if (getViewPath() == null) {
setViewPath(aProj.getBaseDir().getPath());
}

// build the command line from what we got. the format is
// cleartool checkin [optioms...] [viewpath ...]

// as specified in the CLEARTOOL.EXE help
commandLine.setExecutable (getClearToolCommand()) ;
commandLine.createArgument () .setValue (COMMAND_CHECKIN) ;

checkOptions (commandLine) ;

result = run(commandLine);

if (Execute.isFailure(result)) {
String msg = "Failed executing: " +

commandLine.toString();
throv new BuildException(msg, getlocation());

Fig 6 Example of Pull Up Method in group 4

Eight clone sets were classified to Group 4. Figure 6 shows
a source code of one of them. In this method, the method
“checkOptions” was called. This method was defined in the

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

same class(Methods, “getProject”, “getViewPath” and “get-
Location” were defined by using common parent class). And,
the variable “commandLine”, which was a parameter of this
method, was defined and used in the clone. So, this method
caller made it difficult to apply “Pull Up Method” to this
clone set. But, the method “checkOptions” was defined in
each child class. In this case, “Template Method” pattern [6]
could be applied. Procedure of this pattern appliance is the
followings. At first, we moved the clone to the common par-
ent class. Next, we defined an abstract method “checkOp-
tions” in the common parent class.

5.3 “Extract Method”

As described above, we extracted 32 clone sets using
the “Extract Method” conditions described in Section 4. 2.
Then, we browsed and examined all source codes of each
clone set, and classified them to the following four groups:
Group 1 clone sets that can be removed only by extracting
them and making a new method in the same class.

Group 2 clone sets that can be removed by extracting them
and making a new method with setting the externally defined
variables as parameters of it because such variables are used
in the clone.

Group 3 clone sets that can be removed by extracting them
and making a new method with setting the externally defined
variables as parameters of it and with adding parameters of
return statement to deliver the results to the variables used
in the caller.

Group 4 clone sets that can be removed but need a lot of
effort.

if (!isChecked()) {
// make sure we don’t have a circular reference here
Stack stk = new Stack();

stk.push(this);
dieOnCircularReference(stk, getProject());
}

Fig 7 Example of Extract Method in Group 1

Three clone sets were classified to Group 1. Figure 7 shows
a source code of one of them. In this ‘if-statement’ clone, no
externally defined variable was used. So, it was very easy to
extract it as a new method in the same class.

if (javacopts !'= null &k !javacopts.equals("")) {
genicTask.createArg() .setValue("-javacopts");
genicTask.createArg() .setLine(javacopts);

}

Fig 8 Example of Extract Method in Group 2

Eighteen clone sets were classified to Group 2. Figure 8
shows a source code of one of them. In this ‘if-statement’
clone, the variable “javacopts” was a field member of its class,
and the variable “genicTask” was a local variable. So, it is
necessary to set “genicTask” as a parameter of a new method
to extract this code clone in the same class.

if (iSaveMenuItem == null) {
try {

iSaveMenultem = new Menultem();
iSaveMenultem.setLabel("Save BuildInfo To Repository");
} catch (Throwable iExc) {
handleException(iExc);
}

Fig 9 Example of Extract Method in Group 3

Seven clone sets were classified to Group 3. Figure 9 shows
a source code of one of them. In this ‘if-statement’ clone, the
variable “iSaveMenultem” was externally defined. Moreover,
the value was substituted to it. So, it is necessary to set

and Conmuni cati on Engi neers

“iSaveMenultem” as a parameter of a new method and add
‘return statement’ to reflect the result of substitution to the
caller.

if (name == null) {
if (other.name != null) {
return false;

}
} else if (!name.equals(other.name)) {
return false;

Fig 10 Example of Extract Method in group 4

Four clone sets were classified to Group 4. Figure 10 shows
a source code of one of them. In this ‘if-statement’ clone,
some ‘return-statements’ were used. So, a lot of effort would
be necessary to extract it. In this case study, we didn’t re-
move these four clone sets because we think that removal of

‘them is strongly dependent on the skill of each programmer.

6. Conclusion

In this paper, we have proposed a new refactoring method
of code clone, and implemented a refactoring support tool,
Cancer. The code clone analysis algorithm used in Cancer
is so fast that it can apply industrial huge scale software.
Also, we have applied Cancer to Ant, and removed almost of
refined clones.

As future works, we are going to perform more detail anal-
ysis for code clones. For example, distinction of reference
and substitution of externally defined variables should be
considered. Also, we are going to consider the effectiveness
of refactoring. Currently, we refine code clones based on the
judgment whether they can be removed or not. If we can
judge whether the code clones should be removed or not, the
supporting of the refactoring will become more effective.

References

[1] Ant, http://ant.apache.org, 2003.

[2] M. Balazinska et al., “Advanced Clone-Analysis to Support
Object-Oriented System Refactoring”, Proceedings the 7th
Working Conference on Reverse Engineering, 2000, 98-107.

[3} I. D. Baxter et al., Clone Detection Using Abstract Syntaz
Trees, Proc. of ICSM98, pages 368-377, Nov. 1998.

[4] S. Ducasse et al., A Language Independent Approach for

Detecting Duplicated Code, Proc. of ICSM99, pages 109-

118, Aug. 1999.

Eclipse, http://www.eclipse.org, 2004.

M. Fowler, Refactoring: improving the design of ezisting

code, Addison Wesley, 1999.

{7] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto and K. In-
oue, On software maintenance process improvement based
on code clone analysis, Proc. of Profes 2002, pp. 185-197
(2002).

[8] JUnit, http://www. junit.org, 2003.

[9] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A
multi-linguistic token-based code clone detection system for
large scale source code IEEE Transactions on Software En-
gineering, vol. 28, no. 7, pp. 654-670, (2002-7).

(10} R. Komondoor and S. Horwitz, Using slicing to identify
duplication in source code, In Proc. of the 8th International
Symposium on Static Analysis, Paris, France, July 16-18,
2001.

[11] J. Mayland, C. Leblanc, and E. M. Merlo Ezperiment on
the Automatic Detection of Function Clones in a Software
System Using Metrics, Proc. of IEEE Int’l Conf. on Soft-
ware Maintenance (ICSM) '96, pages 244-253, Monterey,
California, Nov. 1996.

[12] Pigoski T. M, Maintenance, Encyclopedia of Software En-
gineering, 1, John Wiley & Sons. 1994.

[13] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, Gemini:
Maintenance Support Environment Based on Code Clone
Analysis, 8th International Symposium on Software Met-
rics, June 4-7, 2002.

D N

NI | -El ectronic Library Service

