
Title
A Case-Based Approach to Improve Quality and
Efficiency in Ill-Structured Optimization : An
Application to Job Shop Scheduling

Author(s) 宮下, 和雄

Citation 大阪大学, 1995, 博士論文

Version Type VoR

URL https://doi.org/10.11501/3081529

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



A Case-Based Approach to Improve Quality and
   Efliciency in Ill-Structured Optimization:

   An Application to Job Shop Scheduling
     ( Xig isth ts it paIt e: jl5• eJ 6 ,a, R t SX ii5! UD e5t if V: St -9- 6 $&pt: JÅ}!I5

     o"<77u-f : tr'a7S y•7 7x tr tv' L- iJ '/ 0'AsOifM)

              Kazuo Miyashita

November, 1994

Submitted in partial fu}1filment of the requirements

for the degree of Doctor of Philosophy in Engineering

Department of Electronic Engineering

    Faculty of Engineering

     Osaka University



Abstract

"Good 1'udgment comes from experience, experience comes froTn bad ]'udgment. "

  The author has developed a generic framework of iterative revision integrated with knowl-

edge acquisition and learning for optimization in ill-structured domains, and implemented

it in the CABINS system. The ill-structuredness of both the problem space and the desired

objectives make many optimization problems diMcult to formalize and costly to solve. In

such domains, neither the system nor the human expert possess causal domain knowledge

that can be used to guide solution optimization. Current optimization technology requires

explicit formulation of a single global optimization criterion to control heuristic search for

the optimal solution. Often, however, a user's optimization criteria are subjective, situation

dependent, and cannot be expressed in terms of a single global optimization function. And

a domain expert is not supposed to possess heuristics that enable the eMcient search of

high quality solutions. In CABINS, the control knowledge for meeting context-dependent

user's preferences and achieving situation-sensitive eMcient search that guides solution re-

vision is captured in cases along with contextual information. During iterative revision

of a solution, cases are exploited for multiple purposes, such as revision action selection,

revision result evaluation and recovery from revision failures. The method allows the sys-

tem to dynamically switch between repair heuristic actions, each of which operates with

respect to a particular local view of the problem and offers selective repair advantages.

The approach was tested in the domain of job shop scheduling. ExteRsive experimenta-
tion on a benchmark suite ofjob shop scheduling problems has shown that CABINS (1) is

capable of acquiring user optimization preferences and tradeoffs, (2) can learn to improve

the efliciency of rather intractable iterative repair process, and (3) can improve its own

competence through knowledge accumulation.
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Chapter 1

Introduction

  In practical problem solving situations, it is often required to search for an optimal or,
at least, satisficing [Simon, 1981] solution for a given problem with limited computational

resources (e.g. CPU time and memory). However, for many real-world problems, such as

design, planning and game playing, it is extremely diMcult to develop such a computer

program that meets the above demand because they belong to the class of ill structured
problems [Simon, 1973]. Many real world problems are ill structured for two main reasons.

First, general problem solving methods, both Operations Research based and Artificial

Intelligence based, need explicit representation of objectives in terms of an objective func-

tion or an evaluation function to search for an optimal solution [Newell & Simon, 1972;

Reeves, 1993]. In many practical problems, optimization criteria often involve context- and

user-dependent tradeoffs which are impossible to realistically consolidate in the form of a

simple function. For example, in a chess playing program, the concept of "best move" is

well defined in principle; but in practice, this concept has to be replaced by maximizing

some approximate objective function. When the chess playing program has found the move

that maJdmizes this function, it can still be far from finding the move that will "win" the

game of chess. Second, since a significant portion of real-world problems are computation-

ally intraÅítable, solving these problems requires formidable amount of computation. Even

when a problem can be divided into several tractable subproblems, efforts for solving the

entire problem may become large because of deleterious interactions among the various

subproblems.
  To conquer the above diMculties, knowledge engineering methodology has been proposed

to develop a system, which is called an expert system, that finds appropriate quality of

solutions eMciently by explicitly exploiting heuristic knowledge elicited from human ex--

perts in the problem domain. Until now, a large number of expert systems have been
successfully developed and used in realistic operational environments, but expert system
approaches, while having a potential to capture context-dependent tradeoffs in rules, re-

quire considerable amount of efforts for knowledge acquisition from human experts in the

domain [Prerau, 1990]. Moreover, in many complicated optimization problems, even the

1



2 CHAPTER 1.INTROD UCTION

human experts themselves lack heuristic knowledge potentially useful for solving the prob-

lems eMciently with satisfactory quality.

  This thesis presents an approach, implemented in the CABINS system, to demonstrate

the capability of acquiring control knowledge both for meeting context-dependent user's

optimization preferences and achieving situation-sensitive eMcient search, and reusing them

to guide solution optimization eMciently in ill-structured domains. The approach uses
case-based reasoning (CBR) [Kolodner, Simpson, & Sycara, 1985; Kolodner, 1993] which

has a potential for dealing with exceptional and/or noisy data [Golding & Rosenbloom,

1991; Ruby & Kibler, 1992; Aha, Kibler, & Albert, 1991], acquiring user knowledge in
complex domains [Chaturvedi, 1993], and expending less effort in knowledge acquisition

compared with knowledge acquisition for rule-based systems [Simoudis & Miller, 1991]. An

optimization method utilized in CABINS is iterative revision of a complete but suboptimal

solution. CABINS iteratively searches for a better solution in the neighborhood of a current

solution; a revision action is selected and applied to the current solution, and a result is

evaluated according to user preferences.

  A task domain chosen for illustrating the method and evaluating its performance is a

job shop scheduling problem. In the job shop scheduling problem, a solution is required to

satisfy every constraint imposed by a user and optimize schedule quality based on user's

preferences. At the same time, the solution must be found within reasonable amount of

computation. In iteratively revising a schedule, CABINS uses case-based learning to incre-

mentally acquire both the repair control modelthat directs the revision and the user pref-

erence rnodelthat evaluates a result of the revision. CABINS records situation-dependent

tradeoffs about repair action selection and schedule quality evaluation to guide schedule

improvement. During iterative repair, cases are exploited for: (1) repair action selection,

(2) evaluation of intermediate repair results and (3) recovery from revision failures. The

method allows the system to dynamically switch between repair heuristic actions, each of

which operates with respect to a particular locaJ view of the problem and offers selective

repair advantages. And the method enables the system to adjust its repair result evaluation

criteria, which change dynamically based on the contexts of the current problem and the
repair result.

  The rest of this chapter introduces the task domain of this thesis in more details and

discusses its diMculties, then briefly describes the overall architecture of the CABINS sys-

tem.

1.1 Task Domain
  The approach was evaluated through extensive controlled experimentation on job shop
scheduling problems. Job shop scheduling deals with allocation of a limited set of resources

to a number of activities associated with a set of orders. The dominant constraints in job
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shop scheduling are temporal activity precedence and resource capacity constraints. The ac-

tivity precedence constraints along with an order's release date and due date restrict the set

of acceptable start times for each activity. The capacity constraints restrict the number of

activities that can use a resource at any particular point in time and create condicts among

activities that are competing for the use of the sarne resource at overlapping time intervals.

The goal of a scheduling system is to produce schedules that respect temporal relations and

resource capacity constraints, and optimize a set of objectives, such as minimize tardiness,

minimize work in process inventory (VV[[P), maximize resource utilization, minimize cycle

time etc. Job shop scheduling is diMcult to automate because of the following reasons:

1. Computational complexity

  The job shop scheduling is a problem in the "hardest" subset of NP-complete prob-
  lems [French, 1982]. Because of tight interactions among scheduling constraints and

  non-linear nature of scheduling objectives, there is no general way to predict effects

  of a local optimization decision on global optimality, even for the simplest objective.

  In some problems, heuristics known and used by human experts in the domain may
  help reduce complexity of the problems drastically. But, in scheduling problems,

  expertise of human experts itself often become a subject of controversy. Through past

  experiences of developing knowledge-based scheduling systems, it has been pointed

  out that a human scheduler does not have suMcient knowledge for making a good
  schedule eMciently [Kempf et al., 1991],

  2. Complex objectives and preferences

     For practical job shop scheduling problems, it is desirable that multiple optimization

     objectives (e.g. minimize weighted tardiness, minimize work in process inventory,

     maximize resource utilization) must be satisfied. Moreover, optimization objectives

     often interact and conflict with one another. To optimize along one objective alone

     could jeopardize optimality along other objectives. The relationships between global

     objectives are extremely diMcult to model.

     The definition/evaluation itself of what is a "high quality" schedule is fraught with

     diMculties because of the need to balance conflicting objectives and tradeoffs among

     them. Such tradeoffs typically refiect the presence of context-dependent user pref-

    erences and domain constraints not captured in the scheduling model. The value
     of incorporating such user preferences and constraints in operational scheduling en-
     vironments is becoming increasingly recognized (e.g. [Mckay, Buzacott, & Safayeni,

     1988]).

  The scheduling problem has been addressed by two general types of methods, construc-
tive scheduling and revision-based scheduling. The constructive scheduling approaches (e.g.
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[Fox, 1983; Sadeh, 19911) that utilize incrementaJ construction of partial schedules to pro-

duce a complete schedule, which might be eMcient when specific problem structure can be

effectively exploited for application of strong heuristics, require extensive search efforts and

are ineMcient to solve large and complicated problems because of the first reason described

above. Revision-based approaches to schedule generation, which have been adopted in the
previous research activities (e.g. [Minton et al., 1990; Zweben, Deale, & Gargan, 1990;

Biefeld & Cooper, 1991; Laarhoven, Aarts, 8c Lenstra, 1992]), have a practical advantage,

because they can be terminated at any time and produce a schedule. In these systems,
an initial schedule is repaired by several techniques, such as a min-conflict heuristic and

simulated annealing, assuming an existence of the explicitly defined objective to be opti-

mized. But the second reason above indicates that this assumption is not vaJid in realistic

applications. With the same reason, most of the constructive methods that utilize the
explicit objective function are not appropriate either.

  The rest of this section presents the job shop scheduling problem within the framework

of constraint satisfaction problem (CSP), and describes objectives and preferences in the

job shop scheduling problem. Then the revision-based scheduling strategy used in CABINS

is discussed at the end of this section.

1.1.1 Constraints

  The job shop scheduling problem requires scheduling a set of orders O = {Oi,...,On}
on a set of physical resources RES = {Ri,...,Rin}. Each order Oi consists of a set of

activities Ai = {Aii, . . . , AL,} to be scheduled according to a process routing that specifies

a partial ordering among these activities (e.g. Al BEFORE A}).

  Each order Oi has a release date rdi that signifies the earliest time the order can be
started and an order due date ddi, by which the order should be finished. EaÅíh activity Ai•

has a fixed duration dul• and a variable start time sti•. The domain of possible start times of

each activity is initiaJly constrained by the release and due dates of the order to which the

activity belongs. If necessary, the model allows for additional unary constraints that further

restrict the set of admissible start times of each activity, thereby defining one or several

time windows within which an activity has to be carried out (e.g. a specific shift in factory

scheduling). In order to be successfully executed, each activity Al• requires pl• different

resources (e.g. a milling machine, ajig and a machinist) Ri•j (1 S j' <- pi•), for each of which

there may be a pool of physical resources from which to choose, sti•i• = {ri•j•i,•••,ri•jqf,j},

with rljk E RES(1 S k S qij) (e.g. several possible milling machines).

  More formally, the problem can be defined as follows:

VARIABLES : A vector of variables is associated with each activity, Ai•(1 S l S n, 1 S

     i S ni), which includes:

      1. the activity start time, stt•, and
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      2. each resource reguirement, Ri•j•(1 S 7' <- pi•) for which the activity has several

         alternatives.

CONSTRAINTS : The non-unary constraints of the problem are of two types:

      1. Precedence constraints defined by process routings translate into linear inequal-
         ities of the type: sti•+dui• SstS• (i.e. Ai• BEFORE A} ) '

      2. Capacity constraints that restrict the use of each resource to only one activity
         at a time translate into disjunctive constraints of the form: (VpVqR,kp ; R;g) v
         stik• + du,k• S st} V st;• + duS• S st,le• . These constraints simply express that, unless

         they use different resources, two activities A,k• and A;• cannot overlap.

  Time is assumed discrete, i.e. activity start times and end times can only take integer
values. Each resource requirement Rt•j• has to be selected from a set of resource alternatives,

sti•i• C- RES. Additionally, there are unary constraints restricting the set of possible values

of individual variables. These constraints include non-relaxable release dates and non-

relaJcable due dates between which al1 activities in an order need to be performed. The

model actually allows any type of unary constraint that further restricts the set of possible

start times of an activity.

1.1.2 Objectives and Preferences

  It is not easy to state scheduling objectives in practice. They are numerous, complex,

and often conflicting and mathematics of the problem can be extremely diMcuit with even
the simplest of objectives [French, 1982]. The followings show definition of the objectives,

which are among the most common in the literature (e.g. [French, 1982]), that are used to

develop the performance evaluation of CABINS.

Waiting time (Wii):is the time that elapses between the completion of the preceding
     activity AS•-i (or rdi, if i -- 1 ) and the start of processing Ai•.

Total waiting time (Wi) : is the sum of waiting time of al1 activities that belong to Oi.
     Clearly va = ÅíIli I,V,i.

Completion time (Ci):is the time at which processing of 0i finishes. Ci -- rdi +

Lateness (Li) : is simply the difference between the completion time and the due date of

     Ol: Ll = Cl - ddl.

Tardiness (Ti): is delay in the completion of Oi against its due date ddi. Note that Ti

     always takes non-zero value. Thus Ti = maix(O, Lt).
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Fig. 1.1: An example of conflicting objectives in a simple scheduling problem

Flowtime (Fi): is the amount of time that Oi spends in the system. Fi = Ci - rdi or
    Fi = Z);Z,(ItiV,i + dui.)

Make-span (C...) : is the latest completion time of the entire orders. C... = maJc Ci

Work-in-Precess ( WIP) : is the summation of total waiting time. WIP = 2 ;..i Wi

Weighted Tardiness ( WT) : is the weighted summation of tardiness. Weight is consid-

     ered as a penalty cost of being tardy. WT = Åí:=i wiTi

  The quality of a schedule is a function of the extent to which it achieves user 's preferences.

A simple example can illustrate the necessity of having user's preferences in the scheduling

system. Let us assume the simplest factory with a single machine and two orders; each

order consists of a single activity to be processed on the factory machine, and the two

orders are released to the factory floor at the same time.

  Fig. 1.1 shows two schedule results for such a problem. Suppose schedule-1 is generated.

In this schedule, order B finishes before its due date but order A is tardy. The WIP of
order A is indicated in Fig. 1.1 (the WIP of order B is zero). 'Suppose one wishes to revise

the schedule to reduce the tardiness of order A. In this simple schedule, the only possible

repair is to switch the positions of order A and order B. The schedule resulting from this

switch is schedule-2. In schedule-2, neither order is tardy but the WIP in schedule-2 (the

WIP of order B) is largeT than the WIP in schedule-1 (the WIP of order A). Even in this

extremely simple example, it is impossible to determine which schedule is of higher quality

without taking into consideration the preferences of the user.

  The objectives defined in this section are mathematical simplifications of state-dependent

user's preferences on a schedule that are diMcult to model precisely. In the above example,

user's preference (i.e. tradeoff between WIP and tardiness) may depend upon many factors
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in the problem, such as a client of each order, past shipping records, load of a factory

/ warehouse and so on. The combination of these factors produces enormous number of
contexts in which user preferences are considered, thus making user's preference diMcult to

be captured and represented a priori in the problem representation. CABINS can acquire

correct optimization criteria to the extent that a user can give consistent evaluation of

schedules.

1.1.3 Revision-based Optimization

  In CABINS, a schedule is optimized using a revision based methodology.

schedule optimization in CABINS is motivated by severaJ considerations.

Revision b ased

e There are no known eMcient algorithms of schedule optimization except for a very
  limited set of simple objectives such as make-span (e.g. [Adams, Balas, & Zawack,

  19881) and amount of computation required for finding a solution is generally unpre-

  dictable [French, 1982]. Thus, the construction of a cheap but suboptimaJ schedule

  that is then incrementally repaired to meet optimization objectives is preferable in

  practice, because one can interrupt repair process and use an interim result for ex-
  ecution when no more time is aJlowed for further repair [Zweben, Deale, & Gargan,

  1990]. For example, dispatch heuristics have very low computational cost, but owing

  to their myopic nature must be tailored to particular optimization objectives. Hence,

  in general they cannot address issues of balancing tradeoffs with respect to a variety

  of optimization objectives. As a consequence, they result in suboptimal schedules.

  However, because of their eMciency, they are widely used by practicians. This indi-
  cates that combining a repair methodology, such as a simple gradient search [Kanet

  & Sridharan, 1990], neuraJ networks [Johnston, 1990], or the one advocated in this

  thesis, with a dispatch driven scheduler for creation of an initial schedule is promising

  for real-world scheduling environments.

e An incentive for utilizing incremental schedule repair occurs in response to the need to

  incorporate context-dependent user preferences and additional constraints that have

  not been represented in the scheduling model. Even for simple scheduling problems,

  it is diMcult to predictively evaluate the conflicting tradeoffs present in scheduling

  objectives, and formulate the model to represent user preferences in general and al1-

  inclusive ways, as presented in the example in Section 1.1.2.

  Users' preferences on the schedule are context dependent (e.g. may depend on the

  state of the scheduling environment at a particular time). Also, interactions among

  preferences and effective tradeoffs very often depend on the particular schedule pro-

  duced. This indicates that generally a user of the scheduling system cannot fu11y

  specify his/her preferences a priori before getting scheduling results from the system.
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By looking over the obtained schedule results, the user often thinks of additionaJ pref-

erences and modifies the schedule. Consider, for example a situation where a human
                                                               .scheduler does not like to use machine-A that is substitutable for machine-B but is

of lower quality than machine-B for processing order-X. The reason why high qual-

ity results are desired is that order-X belongs to a very important client. Suppose,

however, that the produced schedule indicates that order-X is tardy by an amount

above an acceptable tardiness threshold on account of high demands on machine-B
(by orders more important than order-X). Then the human scheduler may decide to

use the less preferable machine, machine-A, for order-X. If the tardiness was below

the threshold, he/she may prefer to allow a tardy order. It is very diMcult to elicit

this type of preference and preference thresholds from the human scheduler in the

absence of a particular scheduling context.

Moreover, it is impossible for any given knowledge-based scheduling model to include

all the constraints that may be relevant. Current advanced scheduling systems can

exploit very complicated models to represent a•factory, orders and user's preferences.

But no matter how richly the model is constructed, there are always additional factors

that may influence the schedule but had not been represented in the model. For
example, for a certain foundry it may be good to decrease usage of a sand casting

machine during the summer, because the combination of heat and humidity of the

weather may make it slower than usual. But how should the model of the scheduling

system represent the season, weather or humidity? And isn't it necessary for the
model to represent time of the day, strength of wind or health of a machine operator
and so on [Mckay, Buzacott, & Safayeni, 1988]? Nevertheless these factors, which

an experienced human scheduler learns to take into consideration, could have a big

influence on schedule quality but it is very diMcult to represent them in a principled

manner so they can be used by an automated scheduling system. In other words,
constructive scheduling systems with an explicit problem model will fai1 to meet real-

world requirements.

  The job shop scheduling problem is a well-known NP-complete problem IGarey 8e John-
son, 1979]. Typically the limited resource capacity induces interactions between aK tivities

competing for the possession of the same resource during overlapping time intervals. Hence,

in the job shop scheduling problem, except for artificial or simplistic situations, it is gen-

erally not possible to impose rigid bounds on the quality of a solution (e.g. amount of
weighted tardiness) with assurance that a solution actually exists. Moreover, it is not pos-

sible to bound the scope of a repair in advance. In scheduling, given the tightly coupled

nature of scheduling decisions, a change in one part of a schedule often has ripple effects

that can span the time horizon of the rest of the schedule from the point of change. For

example, in Fig. 1.2 moving forward the last activity of ORDER3 creates downstream cas-

cading constraint violations. The use of heuristics in selecting an appropriate repair action
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Fig. 1.2: An example of tight constraint interactions in a scheduling problem

can help prevent such unrestricted propagation. But, considering the combinatorics of the

job shop scheduling problem, even human experts are not believed to have the generalized

heuristic knowledge for selecting the right repair action at the right situation. CABINS

inductively learns the concept of an appropriate repair action in particular problems from

successful and failed repair cases.

1.2 CABINS: Case-Based Repair Approach
  The consideration of the job shop schedule optimization task arid the demands of the
knowledge acquisition task in the domain, make it clear that (a) an iterative revision

optimization technique would be most suitable, (b) recording the user's judgments in a
case base is an effective and flexible way of eliciting user optimization preferences, and (c)

recording successful and failed repair trials in a case base is an appropriate way of learning

to improve search eMciency. The author hypothesizes that these observations hold true in
most of the real-world il}-structured optimization problems (e.g. VLSI layout and circuit

design, transportation planning). This thesis presents an iterative repair framework that

addresses the above points in a uniform and domain-independent manner. The rest of this

section briefly describes the architecture and methodologies of the CABINS system. More

complete descriptions of CABINS will appear in Chapter 2 and Chapter 3.

1.2.1 Architecture
  CABINS has three classes of repair decisions: repair goals, repair strategies and repair

tactics. A repair goal is derived from a particular high level description of defects in

the current solution of a problem and their significance to a user. A way to achieve a
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particular repair goal is designated by a selection of one of the associated repair strategies

for it. Each repair strategy is executed by a successive application of a variety of repair

tactics associated with it.

  The author has identified two general types of repair strategies that control the extent

of repair effects : local patching and model modification. LocaJ patching forces CABINS to

select the repair actions that result in changing value assignments in the solution within a

given set of constraints. Local patching is in generaJ less costly and disruptive for execution.

In a factory scheduling problem, for example, if the repair goal is "reduce order tardiness

", specific strategies by local patching may include "reduce the slack between activities

in the tardy order", and "reduce the idle-time of resources needed by activities in the

tardy order". Model modification alIows CABINS to re-formulate the problem by changing

model parameters, such as the number of orders to be scheduled, or global constraints
such as changing release or due dates, increasing resource capacity or increasing number of

shifts. Model modification facilitates the solution of the problem, since it amounts to global

constraint relaxations. However, in practice, model modification is costly to implement

(e.g. "buy new equipment", "pay for extra shifts in a factory", "subcontract orders to

outside contractors"). The default repair strategies in CABINS are of local patching type.

Repairing with local patching strategies is a computationally more challenging task, since

the system must improve the solution without relaixing the already imposed constraints. If

local patching is unsuccessful in fulfi11ing the repair goal, the repair episode is considered a

failure. The experiments in this thesis were run within these more stringent assumptions.

  CABINS can operate in different modes that exhibit various levels of autQnomy.

   e User-directedmode

     The user selects a repair decision (i.e. goal, strategy and tactic) and evaluates the

     results of its application.

e Interactive assistance mode

  CABINS suggests repairs and evaluations of repair results, but the user can override

  the suggestions and make new selections. Both the user-directed and interactive
  assistance modes are used for acquisition of the cases.

   e Autonomous mode

    Without user intervention, CABINS uses the case base that was acquired in the
    training phase for repair selection and evaluation of repair results.

In the experiments reported in the thesis, CABINS operated autonomously.

  Fig. 1.3 shows the schematic diagram of the overaJl architecture of the CABINS imple-

mentation. CABINS is composed of three modules: (1) an initial solution builder, (2)

an interactive repair (case acquisition) module and (3) an automated repair (case re-use)

module.
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Fig. 1.3: CABINS architecture

  To generate an initial solutiop, CABINS can use one of several problem solving methods
(e.g. use of dispatch rules) available in CABINS. But, in general any initial problem solver

cannot always produce an optimal solution, because the complete knowledge of the domain

and user's preferences are not available to the problem solver.

  In order to compensate for the 1ack of these types of knowledge, CABINS gathers the
following information in the form of cases through interaction with a domain expert in its

training phase.

   e A suggestion of which defect to be repaired : a user's selection of the most critical

     defect in a given situation

   e A suggestion of which repair heuristic to apply : a user's decision on what repair

     heuristic to be applied to a given solution for quality improvement.

   e An evaluation of a repair result : a user's overal1 evaluation of a modification result.

A basic assumption of the case-based approach is that, in spite of ill-structuredness of the

problem, the following three types of domain knowledge are available and constitute useful

case features.

   e Repair heuristics : a set of repair heuristics that can be applied to a problem.

   e Descriptive features : attributes of a problem that describe a particular problem

     situation and might be useful in estimating the effects of applying repair heuristics

     to the problem. These features will be explained in detai1 in Section 2.2 for the job

     shop scheduling problem.
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In formulating cases, the author assumes the existence of effective indexing vocab-

ularies of the cases for domain-independent repair task and hypothesizes that it is

relatively easy to cast these domain independent vocabularies into a particular appli-

cation domain such as a scheduling problem. This wi}1 be explained in more details

in Section 2.1.

e Evaluation criteria : quantification of different aspects of the effects of applying repair

  heuristics to the problem. The degree of importance on these criteria is in general

  user- and state-dependent.

  Once enough number of the cases have been accumulated, CABINS can efficiently repair

the solutions created by the initial problem solver to user's satisfaK tion by invoking CBR

process without further interactions with the user.

1.2.2 ScheduleRepairbyCABINS
  The approach to incremental schedule repair, implemented in the CABINS system, uses
an integration of case-based reasoning (CBR) and fine granularity constraint propagation
mechanisms [Miyashita & Sycara, 1994a]. Integrating CBR with constraint propagation

stems from a variety of motivations. Because a case describes a particular specific experi-

ence, the factors that were deemed relevant to this experience can be recorded in the case.

This description captures the dependencies among schedule features, the repair context
and a suitable repair action. CBR allows capture and re-use of this dependency knowledge

to dynamically control the search process and differentially bias schedule repair decisions

in future similar situations. On the other hand, because of the tightly coupled nature of

schedule repair decisions, a revision in one part of the schedule may cause constraint vio-

lations in other parts. It is in general impossible to predict in advance either the extent of

the constraint violations resulting from a repair action, or the nature of the conflicts. As a

result, constraint propagation techniques are necessary to determine the ripple effects that

spread conflicts to other parts of the schedule as repair actions are applied and specific

revisions are made.

  In CABINS, the repair method guarantees a conflict free schedule at the end of each
repair iteration, thus exhibiting anytime executable behavior [Dean & Boddy, 1988]. This

is especially important in time-critical contexts since there could only be a certain limited

amount of time for the system to solve a scheduling problem. Unlike other systems that
utilize iterative repair to find a feasible schedule (e.g. [Zweben, Deale, & Gargan, 1990;
Minton et al., 1990]), where executability of the schedule was not guaranteed at the end of

eaÅíh repair iteration, CABINS produces an executable schedule after each repair that has

guaranteed better quality with a increase of the time allowed for repair.

  CABINS acquires from cases a category of concepts that refiect user preferences: what

combination of effects produced by an application of a particular local optimization ac-
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tion on a schedule constitutes an acceptable or unacceptable outcome. In CABINS, the
optimization criteria are not explicitly represented as case features or in terms of a cost

function, but they are implicitly and extensionally represented in the case base. CABINS

learns three additional categories of concepts that refiect control knowledge for quality en-

hancement and eMciency improvement: (1) what aspect of a schedule to be repaired, (2)
what heuristic repair action to choose in a particular repair context, and (3) when to give

up further repair. These concepts are recorded in the case base and are used by CABINS

to guide iterative optimization and infer optimization tradeoffs in evaluating the current

solution. In this way, the acquired knowledge is exploited to enhance the incomplete do-

main model in CABINS and improve eMciency of problem solving and quaJity of resulting

solutions according to the user preferences.

1.2.3 CBR for Schedule Optimization

  Because of the characteristics of the scheduling domain described in Section 1.1 and
the interest in capturing context dependent user preferences and situation sensitive search

control know}edge, CBR appears to be a naturaJ method for knowledge acquisition. How-
ever, applying CBR to schedule improvement, a numerical optimization problem, is very

chaJlenging. In generaJ, CBR has been used for ill-structured symbolic problems, such as
planning [Hammond, 1989; Kambhampati & Hendler, 1992; Veloso, 1992], legal reasoning
[Ashley, 1987; Rissland & Ashley, 1988], argumentation [Sycara, 1989], conceptual design

[Sycara et al., 1991], medical diagnosis [Koton, 1988] where the primary concern has been

plausibility or correctness of resulting artifacts (plan, argument, design) and computational

eMciency of problem solving process rather than artifact quality.

  The challenges in applying CBR to schedule optimization were to determine what con-

stitutes a case in the domain of schedule optimization and what the case indices should
be. The intuitive answer would be to consider a whole schedule as a case [Koton, 1989;

Mark, 1989]. This solution is attractive since, if the right information could be transferred

from one scheduling scenario to another, or with little adaptation, a new problem would

be solved with relative ease. In the traditional planning problem, the plan operators cap-

ture some form of domain causality in their preconditions and effects. Saving a plan and

the derivational trace of how the plan was generated, captures pretty much the planning
process and can be easily utilized to solve future similar problems (e.g. [Hammond, 1989;

Kambhampati & Hendler, 1992; Veloso, 1992]). However, it is not true in the scheduling

problem. Because of the high degree of nonlinearity of scheduling constraints and objec-

tives, a very small difference between an input problem specification and the problems in

the case base can in general result in large variations in the results both in terms of the

amount of modifications needed and the quality of a resulting schedule. A second diMculty

with respect to having a whole schedule as a case came in the form of what indices to
choose. Indexing a case in terms of the goals that must be aÅíhieved and the problems that
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must be avoided [Hammond, 1989] is a good guideline and has served many CBR systems

well. However, in the scheduling domain, the goals to be achieved (the optimization crite-

ria) cannot be explicitly stated, since they reflect context-dependent user preferences and

tradeoffs. Even if the optimization objectives were explicit, because of the nonlinearities

of the problem, retrieving a schedule in which the achieved objectives were the same as

the desired ones in the current problem would give little or no help in adapting the re-

trieved schedule to the current problem specifications. Moreover, because of unpredictable

ripple effects of constraint propagation and tight constraint interactions, the problems to

be avoided are not at al1 obvious, neither can they be discovered since a causal model for

scheduling cannot be assumed.

  Since it is impossible to judge a priori the effects of a scheduling decision on the opti-

mization objectives, a scheduling decision must be applied to a schedule and its outcome

must be evaluated in terms of the resulting effects on scheduling objectives. Thus, having

a single scheduling decision as a case seemed to provide advantages in terms of focus and

traceability of the problem solving process. Focus and traceability mean that a user's evaJ-

uation of the results of a single scheduling decision can be captured in a case, and, if the

result was unacceptable, another scheduling decision to the same "scheduling entity" can

be applied until either al1 available scheduling decisions are exhausted or an acceptable re-

sult is obtaiRed. For the above reasons, it became clear that it was better to have acase for

a single scheduling entity on which a schedu}ing decision was applied. Since the result of a

scheduling decision needed to be evaluated with regard to the optimization preferences for

a schedule as a whole, it is clear that constructive methods which incrementally augment

a partial schedule at every scheduling decision point would be unsuitable for the purposes.

Moreover, contextual information, which can only be provided by having a complete sched-

ule, is very useful in applying CBR. Therefore, the revision-based method was chosen as

the underlying optimization methodology in CABINS.

  Hence in CABINS, a case describes the application of a schedute revision decision on

a single scheduling entity. Operationalization of a schedule revision decision is done by

means of a schedule repair action. The analysis have identified three classes of schedule

repair actions (i.e. goal, strategy and tactic), which will be described in detail in Chapter 2.

A scheduling entity for a repair goal is a whole schedule, a scheduling entity for a repair

strategy is an order and a scheduling entity for a repair tactic is an activity. Each appli-

cation of a schedule repair action results in a new schedule. The search space of CABINS

is the space of complete schedules that incorporate acceptable user optimization tradeoffs.

Hence the predictive case features that are suitable for case indexing should be ones that

capture good tradeoffs. Although schedule optimization is ill-structured, the author makes

the hypothesis that there are regularities of the domain that can be captured, albeit in an

approximate manner, in these features. In CABINS, indices are divided into two categories.

The first category consists of the descriptive features. Since the results of schedule revision
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associated with a single scheduling entity pertain to the whole schedu}e, it is impossible

to make a precise prediction of repair effects in advance of revisions. Descriptive features

that express characteristics of a scheduling entity operate as contextual information for

selection of a particular repair action and allow CABINS to estimate the effects of each

repair action in advance.

  The schedule resulting from a repair action application must be evaluated in terms
of user-defined tradeoffs. The user cannot predict the effects of modification actions on

schedule correctness or quality since a modification could result in worsening schedule

quality or introducing constraint violations. Nevertheless, the user can perform consistent

evaluation of the results of schedule revisions. This evaluation is recorded in the case as

part of the case's repair history. The repair history constitutes the second category of

case features. Thus, the case base incorporates a distribution of examples that collectively

capture repair performance tradeoffs under diverse scheduling circumstances.

                                CABINS
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               Fig. 1.4: Search space and search control in CABINS

  CABINS searches for an "optimal" schedule over the space ofcomplete schedules. Fig. 1•4

shows the schematic diagram of the search space and search control in the CABINS system.

CABINS revises the current solution iteratively to improve the solution quality. For each

step of the search, CABINS selects a solution among the neighbors of the current solution.
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The neighborhood size for the current solution (i.e. the number of potential solutions for

eaÅíh revision) is equal to Number-of-Repair-Actions Å~ Number-of-Repair-Obl'ects. In a

scheduling problem, Repair-Actions are several heuristics that modify the assignments of

resources to activities in the schedule and Repair.-Ob]'ects are typically the activities in the

schedule. The number of revision cycles required to obtain a final solution cannot in generaJ

be predicted in advance because of tight constraint interactions in the scheduling problem.

Hence the search space for a large scheduling problem can be intractably big. To reduce

the required search efforts, CABINS has the following mechanisms of search control using

CBR: A repair control model provides the search control through case-based selection of the

next repair action to be applied, and a user preference model provides the search control

through case-based evaluation of the result of the application of a selected repair action.

The descriptive features are the indices that are used to retrieve a case that suggests the

next repair action to be applied. The features associated with the repair history are used to

retrieve cases that suggest evaluations of a repair outcome. For a more detaiIed description

of case representation and indexing, see Chapter 2 and Chapter 3.

1.3 A Guide to this Thesis

  This thesis presents the methodology and initial experimentaJ results to test the follow-

ing hypotheses: (1) CBR-based incremental revision methodology shows good potential for

capturing user optimization preferences in ill-structured domains, such as job shop schedul-

ing, and re-use them to guide optimization, (2) CABINS can learn control knowledge for

improving solution quality and problem solving efficiency and improve its own competence

through case accumulation, and (3) CABINS produces solutions of high quality as com-

pared with other optimization techniques. To validate the above hypotheses, the empirical

studies were done in the domain of the job shop scheduling. And to test the last hypothesis,

the author compared the solutions produced by CABINS for the specific optimization cri-

teria, with solutions produced by simulated annealing (a well known iterative optimization

technique) for the same criteria.

  The rest of the thesis is organized as follows: Chapter 2 presents case descriptions and

case acquisition in CABINS. Chapter 3 explains how to use cases for schedule optimization

problems. Chapter 4 describes the knowledge acquisition by CABINS for improving solu--
tion quality and presents the experimental results. Chapter 5 presents the learning meth-

ods of improving search efficiency by CABINS and some empirical observations. Chapter 6

presents additional experimental results to address the issue of case accumulation effects to

solution quality and problem solving efficiency. Chapter 7 provides the comparison of this

work with other related works. Chapter 8 presents concluding remarks and suggestions for

future research.



Chapter 2

Building a Case Base

  A knowledge-based system (or an expert system) has explicit representation of knowledge

in addition to the inference mechanism that operates on the knowledge to aÅíhieve the

system's goal. A knowledge base represents a model of how domain experts approach a
complicated problem in the domain. It is an operational model which, hopefu11y, exhibits
some desired behavior which has been specified or observed in the reaJ-world - in exactly

the same way as a mathematical model attempts to mirror real-world situations.
  Builders of expert systems formulate the model, first by defining a model of the behavior

that they wish to understand and then corroborating and extending that model with the
aid of specific examples. For example, PROTEGE [Musen, 1989] has two interrelated

phases of knowledge base construction: (1) model building and (2) model extension. When

building a model, developers must first perform a requirements analysis and identify the

task that the expert system has to perform. Then, knowledge engineers and domain experts

cooperate to construct a model of the proposed system's behavior. This model generally
corresponds to the developer's theory of how the experts actuaJly solve the problem. For

extending a model, the model of the intended behavior of the expert system is validated

by ascertaining how well the model applies to closely related application problems.

  Much of the activities involved in the first stage of model formulation, model build-
ing, entails knowledge-level [Newell, 1982] analysis, which determines (1) the goals for

a knowledge-based system, (2) the actions of which the system is capable, and (3) the

knowledge that the system can use to determine the actions that attain the goal. In re-

cent research of AI, there is a clear consensus in favor of knowledge-level anaJyses and its

advantages for knowledge modeling and acquisition. Chandrasekaran and his colleagues
advocated the generic task framework [Chandrasekaran, 1988] and identified a number

of tasks of general utility (such as classification), methods for performing the tasks and

the kinds of knowledge needed by the methods. Clancey proposed heuristic ctassification
[Clancey, 1985] as an abstraÅít inference pattern for a diagnosis task by examining some

expert systems such as MYCIN. McDermott developed half-weak methods [McDermott,
1988], such as cover-and-differentiate and propose-and-revise methods, for solving general

17
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tasks that do not require domain specific search control knowledge. These methodologies

of knowledge-level analyses have successfully been applied to the development of various

expert systems.
  However, the latter stage of model formulation, model extension, has no generic method-

ology corresponding to the knowledge-level analysis for the first stage of model formulation.

It is generally believed that, though creating a knowledge model may be diflicult, extend-

ing an existing model is less arduous for human experts. In other words, whereas domain

experts may not be able to introspect and articulate the process knowledge that allows

them to solve problems, these experts can easily supply the content knowledge that may
or may not be consistent with a given model. To elicit consistent domain knowledge from

human experts, several model-based knowledge acquisition tools have been developed such
as MOLE [Eshelman, Ehret, & McDermott, 1987], SALT [Marcus 8e McDermott, 1987],
KNACK [Klinker, 1988] and OPAL [Musen et al., 1987].

  Although these model extension (knowledge acquisition) tools are powerful in allowing

domain experts to make large knowledge bases without help from knowledge engineers,
such tools must be strongly tied to a specific problem solving method presupposed by the

tools. For example, while SALT has been proved to be useful for acquiring knowledge

of the expert system, caJled VT, which supports design of elevator systems, SALT could

not acquire effective knowledge for solving scheduling problems. The failure of SALT
was caused by the fact that the propose-and-revise problem solving method assumed by

SALT was inappropriate for the scheduling problem in spite of its structuraJ resemblance
to the design problem [Stout et al., 1988]. The main reasons for this were the following

characteristics of the scheduling problem which did not appear in the design problem:
(1) the dynamic nature of fix preferences, and (2) the high level conflict among fixes for

different constraints. Hence, if a problem solving method is generic enough to be applicable

to a wide variety of tasks and, at the same time, is capable of matching the nuances of

particular .applications, a model extension framework based upon such a problem solving

method has a highly practical value.

  The author believes that the case-based reasoning methodology gives the strong lever-

age for building a model-extending mechanism for ill-structured optimization problems

such as the job shop scheduling. Case-based reasoning (CBR) is the problem solving
paradigm where previous experiences are used to guide problem solving [Kolodner, Simp-

son, & Sycara, 1985]. Cases similar to the current problem are retrieved from memory

according to a similarity metric, the best case is selected from those retrieved and com-

pared to the current problem. If needed, the precedent case is adapted to fit the current

situation based on identified differences between the precedent and the current cases. CBR

allows a reasoner (1) to propose solutions in domains that are not completely understood

by the reasoner, (2) to evaluate solutions when no algorithmic method is available for

evaluation, and (3) to interpret open-ended and ill-defined concepts. CBR also helps a

reasoner (1) take actions to avoid repeating past mistakes, and (2) focus its reasoning on
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important parts of a problem [Kolodner, 1993]. Owing to the above advamtages, CBR has

successfully been applied to many kinds of problems such as design, planning, diagnosis

and instruction. Thus CBR can be regarded as an appropriate problem solving method for
a 1arge class of applications.

  In comparison to other knowledge acquisition and learning paradigms, CBR has a num-

ber of practically desirable features which encourage CBR applications in many domains
[Sycara & Miyashita, To be published]. In CBR, successful cases are stored in the case

base so that they can be retrieved and re-used in the future. Failed cases are also stored

so that they can warn the problem solver of potential diMculties and help recover from
failures. After a problem is solved, the case base is updated with the new experience.

Thus, learning is an integral part of case-based problem solving. Moreover, because cases

express particular experiences, they are a better "cognitive match" for the expert.

  It is easier for experts to collect a suMcient number of problem cases by actually solving

sample problems (drawing from their experience with other similar cases) rather than try

to abstract the particulars of one or more problem cases in order to formulate a consistent

rule-set. Hence, CBR has been considered as a more natural and less time consuming
method of knowledge acquisition. Since both successes and failures are recorded in the case

base, each additional case helps refine and re-formulate the knowledge in the case base.

This is done without additional computational overhead since each case is a "package of

knowledge" that is independent of the other cases in the case base. On the other hand,
while the refined or re-formulated knowledge is explicitly captured in rule-based systemsi

in CBR the refined knowledge is implicit and is extensionally stored in the case base.

  One of the most important differences of CBR as compared with rule-based knowledge
acquisition and system operation is that, since a rule-based system will usually give satis-

factory performance only after al1 (or nearly all) the relevant rules are collected, the lengthy

process of knowledge acquisition has to precede the system operation. During knowledge

acquisition, the user has to invest time to provide the knowledge to the system without

getting any problem solving advice from it. CBR addresses knowledge acquisition incre-

mentally and can save the user significant overhead by collecting the cases during routine

system operation. In terms of practical issues, because of its capability for partial match-

ing, a CBR system can give potentially useful advice even if it has only an initial smal1

set of cases in the case base. In this way, knowledge acquisition and re-use of the learned

knowledge is effected smoothly and non-intrusive}y.

  It should be noted, however, that CBR is not a panacea that obviates any overhead
associated with knowledge acquisition. It defines new types of knowledge acquisition tasks,

i.e., definition of appropriate case features and indices. Most often, however, the acquisition

of these types of knowledge is simpler than acquiring rules for problem solving. The author

believes this to be true for the following reasons:

e Since rules effect a mapping from features of a situation to an outcome action, writing
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rules requires understanding of causality in the domain. On the other hand, since

case description and indexing pertain only to situations, causality of the domain does

not need to be explicitly stated.

o Superfluous features or inconsistent cases, albeit taking up storage space, do not

  annihilate the accuracy of the system's performance. They can be weeded out, if de-

  sired, as the system operation is monitored. In other words, CBR is a more forgiving

  knowledge acquisition method tolerating noisy data quite well.

e Analysis of the application problem at a task-level provides a useful category of

  vocabularies for describing features of situations in the problem. These vocabularies

  can be mapped to the domain specific vocabularies for case descriptions without much

  effort since both vocabularies are represented at the knowledge-level.

  This paper presents a case-based approach, implemented in the CABINS system, which
formulates a model of the optimization task and uses it to guide iterative solution opti-

mization in ill-structured domains. The model of an optimization task should have the

following knowledge: (1) user context-dependent preferences and (2) situation-dependent

search control. In CABINS, CBR method is used for extending the optimization task
model created by the domain experts and knowledge engineers based on the task structure
anaiysis [Chandrasekaran, Johnson, & Smith, 1992]. The thesis shows that when coupled

with the task-level analysis, the case-based reasoning method can provide strong leverage

for reducing the diMculty of knowledge acquisition. To validate the effectiveness of our

approach, extensive experiments on CABINS' performance have been done in the domain
of job shop scheduling, which is a widely known ill-structured optimization problem.

  The rest of this chapter presents the methodology of creating a case base using the

knowledge-level task analysis method, the detailed case descriptions of CABINS derived

from the proposed methodology, and the case acquisition protocol in CABINS.

2.1 Modeling the Optimization Task

  The analysis of the ill-structuredness of the job shop scheduling domain in Section 1.1

provides insights both about the type of the problem solving methods suitable for the
ill-structured optimization problem and the type of knowledge required for solving the

problem. These insights are used for the definition and enhancement of a knowledge-level

model for the problem.

  Recently a number of uniform knowledge-level analysis frameworks for describing systems
have been developed by several research groups such as MULTIS [Mizoguchi, Tijerino, &
Ikeda, 1992], KADS [Wielinga, Schreiber, & Breuker, 1993], SPARK [Klinker et al., 1991]

and PROTEGE-II [Puerta et al., 1992]. The author adopt the task structure analysis
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[Chandrasekaran, Johnson, & Smith, 1992] for building the model of the optimization task.

The task structure is the tree of tasks, methods and subtasks applied recursively until it

reaches the tasks that are in some sense performed directly using available knowledge.

"Task" is synonymous with types of problem-solving goals: for example, optimization is a

task since it characterizes a family of the problems, al1 of which require achieving the goal of

geRerating a solution that maximizes given evaluation criteria. "Method" is a process used

to achieve the goals in the task: for example, the task of optimization can be accomplished

either by constructive methods or by repair-based methods.
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Fig. 2.1: Task structure of optimization

  Fig. 2.1 shows the task structure for an optimization task. Since design can be considered

as a class of the optimization task, this task structure is constructed based on the task
structure ofdesign [ChaRdrasekaran, 1990; Mizoguchi, 19921. In the task structure diagram,

circles represent tasks and rectangles represent methods. This diagram is not intended to

show a complete task structure for the optimization task: it, however, captures some
methods and subtasks that are relevant in this paper.

  The optimization task can be solved either by constructive methods or by repair-based

methods. But, in ill-structured domains such as scheduling, since there is no complete

domain knowledge available, the constructive methods cannot produce high quality so-
lutions in an eMcient way. The repair-based methods consist of four subtasks: propose,

verify, critique and modify. For proposing a solution, two principal methods are avai1-

able: algorithmic and search-based. The algorithmic methods are further categorized into

two classes: heuristic and mathematical. The heuristic methods solve the problem using

approximated algorithms. This methodology works only for problems with a restricted

problem structure. The mathematical methods, such as linear and integer programming,
can solve well-structured problems only after a precise mathematical model of the problem
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has been constructed. Search-based methods, such as constraint satisfaction and branch-

and-bound, search for the optimal solution in the space of partially constructed solutions

with the help of domain specific search control knowledge.

  In critiquing a solution, quality of the solution is analyzed based on the utility function

of domain experts. If the solution is judged as acceptable, repair process is terminated

with the solution. Otherwise, the sources of unacceptability in the solution are identified

as repair goals. In modifying a solution, the most effective way of achieving repair goals

is selected and applied to the current problem. For selection of repair goals and repair

actions, one possible method is to find the most similar past experiences to the current

problem situation, which suggest the plausible repair action in the current context. In the

ill-structured problems, the random selection method is often used for selecting a repair
action, since it allows a solution to escape from local minima [Reeves, 1993]. Because the

methods of goal-setting and repair-application in Fig. 2.1 are strongly domain-dependent,

these methods have to be defined and developed by domain experts with the help from
knowledge engineers.

  In verifying solutions, a problem repair must be checked regarding feasibility of the result.

This can be done using simulation methods, such as constraint propagation. If a feasible

solution is achieved, it is then evaluated to see whether the repair improves quality of a

solution by calculating an explicit cost function, or finding whether the most similar past

repair results were evaluated as acceptable or not.

  In CABINS, case-based reasoning is used as a method for three subtasks: evaluation,

goal selection and repair selection. This is based on our hypothesis that the knowledge

required for these subtasks can be acquired with smal1 efforts by the approach shown in
Section 2.1.1.

2.1.1 Case-BasedModelExtension
  The task structure used for model building is an analytical tool. A system that performs

the task can be viewed as using some of the methods and subtasks in the task structure.

Hence, it simply provides a generic vocabulary for describing how systems work. In order

to formulate a model for a specific application problem, a developer of the application

program needs to extend the model using a task structure.

  Fig. 2.2 shows the schematic diagram of the model formulation process in CABINS. In

order to develop the CABINS system, the model of the optimization task in Fig. 2.1 needs

to be extended because several kinds of domain-dependent knowledge are required for per-

forming the task. Since CABINS uses case-based reasoning as a principal problem solving

method for the optimization task, the model extension process in CABINS is composed of

the two phases: specialization and operationalization and progressive enhancement.

  The first phase, speciaJization, is carried out at the knowledge-level. In specialization,

the generic vocabulary found in the task structure analysis is transformed and refined
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Fig. 2.2: Model formulation in CABINS

into the vocabulary of the specific problem domain. From the CBR point of view, task
structure analysis can provide the abstract case feature categories, and the specialization

process maps out the feature descriptions of cases in the application domain. For example,

task-level analysis suggests that a case feature category for solution quality description is

necessary for the goal selection subtask, and the specialization process in the scheduling

domain transforms the feature descriptions into more specific ones such as tardiness and

WIP of a schedule. Because both the generic vocabulary found in the task structure anaJysis

and the domain-specific vocabulary to be specified at specialization are described in the

knowledge-level language, specialization can be accomplished by domain experts who can

enumerate the appropriate feature descriptions in the application domain with the help

from a knowledge engineer who can explain the meaning of the generic vocabularies.

  The second phase, operationalization and progressive enhancement, is the symbol-level

process. In this phase, specific cases are accumulated by domain experts in a case base

according to the case descriptions defined at the previous stage. These cases contain con-

tent knowledge of the domain such as the judgments and explanations by domain experts
in the particu}ar problem context. In ill-structured problems such as job shop scheduling

where even human experts are not expected to have suficient understanding of'the prob-
lem, acquiring content knowledge as cases is easier than acquiring it in other forms such as

rules because of the following reasons: (1) no explicit understanding of domain causality is

necessary since cases implicitly map problem features to solutions, (2) knowledge does not

need to be abstracted since an indexing mechanism abstracts the content of cases when a

case is retrieved, (3) no consistency check of knowledge needs to be done since inconsistent

or wrong cases are neglected in retrieval, and (4) no meta-control information over knowl-



24 CHAPTER 2. BUILDING A CASE BASE

edge usage (such as certainty factors) needs to be described since population and relevance

of the cases implicitly defines such control. Cases not only operationalize the model to be

executable but also improve the capability of the operationalized model incrementally. Ac-

cumulation of cases that successfully achieved the problem goals creates the implicit model

of how domain experts solve the problem and make high quality solutions. Accumulation

of cases that failed in solving the problem extends the model inductively with useful search

control knowledge for avoiding similar failures, which may not be recognized even by the

experts. Thus, accumulation of cases can progressively enhance the problem solving capa-

bility in terms of both solution quality and problem solving eMciency. The experimental

results by CABINS in Chapter 6 vaJidate the effectiveness of the above approach in job

shop scheduling problems.

2.2 Case Representation

  Corresponding to the task structure in Fig. 2.1, CABINS has three classes of classification

decisions: goal selection, repair selection and evaluation. In CABINS, repair methods are

further divided into strategies and tactics. A repair goal is derived from a particular high

level description of defects in the current solution of a problem and their significance to

a user. A way to aÅíhieve a particular repair goaJ is designated by selection of one of the

associated repair strategies. Each repair strategy is executed by a successive application of

a variety of repair taK tics associated with it. A result of a tactic application is evaluated

to check whether it is acceptable or not. In CABINS' repair process, al1 decisions (i.e.

goal/strategy/tactic selection and result evaluation) are made using case-based reasoning.

Hence, the content of a case must be able to represent al1 the decision criteria of human

experts in the repair process.

  A case in CABINS describes the application of a particular repair action to the problem.

CABINS has three general types of cases corresponding to three hierarchical classes of
repair actions: goal-case, strategy-case and tactic-case. Each case type is delineated with

descriptive features, which are heuristic approximations that reflect problem space char-

acteristics, and a repair history, which records the sequence of applications of successive

repair actions, the repair effects and the repair outcome. Each case type has the different

sets of the categories that are derived from task-level analysis and characterize the fea-

tures to be described in the case. The hierarchy of repair actions and the categorization of

case features give strong semantics for helping a user of CABINS understand and organize

her/his expertise to be represented in a case. As a result, domain experts can easily define

their own specific features and repair actions, which can be implemented by a programmer

without knowledge of CABINS' internal structure and process.

  Feature categories in CABINS are derived from the task structure of the optimization
task (see Section 2.1). The task structure analysis has identified the following feature
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categories for each type of case:

e In a goal-case, information necessary for selecting a repair goal is stored. From a

  domain-independent point of view, the repair goal is selected by identifying the most

  critical defect of a current problem taking into consideration the problem context.

  Accordingly, the goal-case has two categories of features: Quality and Situation. In

  QuaJity category, a user can define the features which constitute the evaluation of

  the current problem and whose unsatisfactory values cause defects. In Situation
  category, a user describes external factors which could influence the evaluation of the

  current problem. A repair action recorded in the goal-case is the repair goal. The

  repair goal is to evaluate the current problem from one aspect of the objectives and

  sort repair targets according to the evaluation. A user's expertise captured in the

  goal-case is that of detecting the defects of a solution in a given context (i.e. quality

  and situation).

e A strategy-case records the information necessary to select a repair strategy. Since

  the repair strategy is selected based upon global characteristics of a repair target, the

  strategy-case has a single category for features: Global-context. Features in GlobaJ-

  context represent potential repair flexibility of the repair target as a whole. A repair

  action stored in the strategy-case is the repair strategy. The repair strategy is to

  determine the degree of possible change by a repair and sort changeable components

  of the repair target appropriately in the order of tactic applications so that ripple

  effects of tactic applications are minimized. The strategy-case captures user's knowl-

  edge about the tradeoffs between possible effects and allowable global disruptions for

  repairing the target.

e A tactic-case represents the information required for selecting a repair tactic. The

  repair tactic is selected based on local characteristics of each component of a current

  repair target. Features in the tactic-case belong to the category of Local-context.

  Local-context features refiect flexibility for revision of a repair target component

  within limited bounds allowed by a repair strategy. A repair action stored in the

  tactic-case is the repair tactic that executes revision on components of a repair target.

  Another important piece of information stored in the tactic-case is evaluation of a

  repair result. Features used for evaluating a repair result belong to Repair-effect

  category. Since a repair tactic is the only repair action that can make aÅítual changes

  on the repair targets, the effects of the changes are evaluated by a domain expert and

  stored in the tactic-case with the evaluation. Thus, the tactic-case captures a user's

  knowledge about (a) prediction of local effects by a possible tactic application, and

  (b) the tradeoffs between favorable and unfavorable repair effects (both in local and

  global perspectives).
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  Fig. 2.3 depicts the case memory structure of CABINS. Cases are connected with each

other by the links of the two different types. By the hierarchical link, a case is connected

with its upper case that derived the case, and aJso with its lower case(s) that was(were)

derived from the case. Thus, goal-cases, strategy-cases and tactic-cases are connected with

each other. Consequently the entire (or a portion of) repair process structure can be easily

re--constructed from the case base. And the cases of the same type are connected by the

horizontal link. As a result, the case with the closest match to the current problem can be

retrieved eMciently. Goal-cases, strategy.cases and tactic-cases are subparts of the episode

of repairing one repair target, which is again a subpart of the entire episode of repairing

the current problem. The distributed representation and memory structure of the cases

make it possible for CBR process to notice the similarity between parts of the problems,

create generalization about the parts of the problems and use this generalization to make

predictions in new unknown situations sharing some parts.

2.2.1 Attributes for a Case Feature

  As will be shown in the following examples, each feature in CABINS' case is described

by a set of attributes such as Feature, Value, Filtering, Importance and Similarity.
Feature attribute specifies a name of the feature to be considered. Value attribute records

a value of the feature. Values of Filtering, lmportance and Similarity attributes are
used for case retrieval purpose (Section 3.1) and assigned their values subjectively by a

user during case acquisition (Section 2.3).

  If a value of Filtering attribute in a feature is "ON", exact match of the feature is

required for the case to be retrieved. If the value is "OFF", partial match can contribute

to the case retrieval. A value of Importance attribute designates importance of the feature

in a particular case. Thus, Filtering and Importance attributes allow the user to express

the uniqueness of the feature in a particular case in different ways. These attributes can

be used to represent an exceptionaJ case in which a value of the feature in the case has a

special meaning to the user.

  Similarity attribute denotes the function used to caJculate feature similarity. Cur•-

rent implementation of CABINS has three similarity functions: "Normal", "HighCut" and

"LowCut". Details of these functions are described in Section 3.1.

2.2.2 Cases for Schedule Repair Task

  Fig. 2.4 presents a schematic diagram showing the abstracted content of CABINS case
base. The content is derived from the transformation of the task structure analysis results

on the optimization task to the schedule problem. In the scheduling problem, an order in

a schedule is selected as a repair target for a strategy application. For a tactic application,

eaA h activity in the selected order is designated as a repair target. Hence, features of an
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Fig .2.4: Case base for schedule repair task

order are stored as global-context in strategy cases, and activity features are recorded as

local-context in tactic cases. Also in tactic cases, schedule quality changes are recorded as

repair-effect with the result evaluation by domain experts. This section explains the case

features for the schedule repair task in each type of the case. The details of repair actions

for schedule repair wi11 be presented in Section 3.2.1.

  Fig. 2.5 shows an example of a goaJ-case used in the experiments of this thesis. In

the example, features belonging to Schedule-Quality are "weighted-tardiness" and "in-

processjnventory", since they are major concerns in the experiments. For features in
Scheduling.Situation, the case has "year", "month" and "economy" (i.e. boom or de-
pression), which are considered to affect the judgment on the appropriateness of the current

schedule. For example, "month" may imply several seasonal factors which infiuence the

production planning such as more strict due-date requirements that are widely observed at

the end of a year. The case shows that "reducejnprocessjnventory" is selected as a critical

goal and successfully achieved after a failure of attaining "reduce-weighted-tardiness" goal.

  Fig. 2.6 is an example of a strategy-case in CABINS. In the example, OrderdFeatures

are composed of five features describing Global-context of an order. "Slacksatio" is, for

example, the total waiting time divided by the length of an allowable time window for com-

pletion of the order (i.e. from its release-date to due-date). High "slackJatio" often shows

a loose schedule with much repair flexibility. "Resource-busy-deviation" is the standard

deviation of utilization of al1 the resources that activities of the order can be assigned to.

High "resource-busy-deviation" indicates the presence of highly contended-for resources
(bottleneck resources) which in turn makes repair less flexible. And the example case
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G Case{
 -Name = "expdatalexp-O-O-5:Gl";
  Schedule-Quality = (
   slot{
     Feature = vveighted-tardines$;

    Value = 2370;
    Fitterir}g = OFF;
    lmportance = 1.0;
    Similanty == NORMAL;
  }
)
Scheduling-Situation = (
  Slot{
    Feature = year;
    Value = 1993:
    Filtering =OFF;
    lmportance = t.O;
    Similarity = NORMAL;
  }
  SIOt Seature = economY;

     Vaeue = VERY-BAD;
     Filtering = ON;
     lmportance = 1.0;
     Similarity =t NORMAL;
  }
)

Goals = (
 G.Solution {
    Goat = reduce
    Resutt = FAILED;
 }
 G-Solution {

Slo Veature = inprocess-irlventOrY;

   Value = 7270;
   Fitterinq = OFF;
   lmportance = 1.0;
   Similarity = NORMAL;
}

Slot kature = month;

   Vatue = 1O;

}

weighted-tardiness;

Filtering = OFF;
tmportance = i.O;
Similarity = NORMAL;

fig.aSlt-"l9geCcedl,ng6oEcDef.s-inventory;

}
)

}

Fig. 2.5 : An example of CABINS' goal-case for a schedule repair problem

S-Case{
  Name = "exp.O"1-1 :G34:GS2:08";
  Goat = reduce"inptocess-inventory;
  Order-Features = (

  Slot{
     Feature = slack ratio;
     Value = O.73529;
     Fiitering = OFF;
     lmportance = 1.0;
     Similarity = NORMAL;
  }
  SIOt"eature . inventory-ratio;

     Vatue = O.125;
     Fittering = OFF;
     lmportance = 1.0;
     Similarity = NORMAL;
  }
  Slot{

     Value = 2.387823;
     Fittering = OFF;
     lmportance = 1.0;
     Similarity = NORMAL;
  }
)
Strategies = (
  S-Solution {
     Strategy = shift-right-all;
     Result = SUCCEEDED;
   }

)

slot{
  Feature = tardiness ratio;
   vatue = o.o;
   Filtering = OFF;
   lmportance = 1.0;
   Simiiarby = NORMAL;
}
SIOt{
  Feature = resource.ldle-ratio;
  Velue = O.247059;
  Fittering = OFF;
   lmportance = t.O;
  Similarity = NORMAL;
}

Feature = resource-busy-deviation;

}

Fig. 2.6 : An example of CABINS' strategy-case for a schedule     .reparr problem
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records that "shift-right.al1" strategy, which means to move all the activities of the order

to the right on the timeline, is selected as a repair strategy and succeeded in achieving a

goal.

  Fig. 2.7 is an example of a tactic-case in CABINS. ActivitydFeatures includes the
features of an activity within limited bound. In particular, the bound that CABINS uses

is a time interval called repair time horizon. The repair time horizon of the activity is the

time interval between the end of the activity preceding the activity in the same order and
the start of the activity succeeding the activity in the same order (see Fig. 2.8).

  Associated with the repair time horizon are the features which potentially are pre-

dictive of the effectiveness of applying a particular repair tactic. These features are in

the same spirit as those utilized in [Ow, Smith, & Thiriez, 19881. "Leftslackiatio"

and "rightslackiatio" roughly estimate the flexibility of the activity in its time hori-

zon without considering resource contention. And "alternativeiesources" shows the num-

ber of alternative resources to which the activity can be assigned. The other features in

Activity-Features predict how much overal1 gain will be achieved by applying a corre-
sponding repair tactic to the activity in its time horizon. For example, "imm]eftjdleJatio"

predicts the possible effects of applying "slideJeft" tactic to the activity.

  In the example case, "jumpJeft" tactic, which moves the activity on the same resource as
much to the left on the timeline as possible within the repair time horizon, is applied and the

effects ofthe repair are recorded in the features of Schedule.Quality-Changes. Features in

Schedule-Quality.Changes describe the impacts of a repair action application on schedule
optimization objectives (e.g. tardiness, inventory). Typically these effects reflect a diverse

set of objectives to be considered and heavily related to Schedule-Quality features in a

goal-case. To be noted is that there are two perspectives in recording these effects. One

is the local perspective that describes the effects that occurred to the activity. The other

is the global perspective, which represents the effects of a tactic application in the overal1

schedule. Since the effects caused by a tactic application are not determined until a final

tactic in the strategy is applied, a human expert has to guess the acceptability of a tactic

application result by considering the trade-off of global and local repair effects. As a result,

the repair effects in both perspectives need to be recorded

  Result is the evaluation assigned to the set of effects of a repair action and takes a value

in the set ["SUCCEEDED", "FAILED"]. This judgment of a repair outcome must be made
by a domain expert in the training phase and gets recorded in the case base. An outcome is

"SUCCEEDED" if the tradeoff involved in the set of effects for the current application of a

repair aÅítion is judged acceptable. Effect is approximation of the aggregated effects by a

repair and is determined subjectively by the expert. This value might be given in terms of

a numeric as shown in the example, or using a user-defined ordinal category (e.g. ["VERY

GOOD", "GOOD", "OK", "BAD", "VERY BAD"]). When rational value assignments of
Effect are given to the cases, CABINS can retrieve more effective cases for selecting repair

actions (see Section 4.3.2).
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T-Case{
  Name . "exp-2-1 -9 :Gl 6:GSI :Ol :OSI :A2";
  Goel s roduce weightod-tardiness;
  Strategy s shff-left-elI;
  final " NO;

)

Activky.Features - (
  SIOt"eature .. Ieft-slack-rabo;

    Velue s 13.5714oo;
    Filtering = OFF;
    lmportance = 1 .0;
    Sim"arity = NORMAL; }
  Slot{
    Feature = imm-left-ldle-ratio;
    Value u 25.71 42es;
    Filtering = OFF;
    lmportance = 1 .0;
    Similarity =NORMAL; }
  SIOtEeaturo . apgr-left.idle-ratio;

    Value = 6242.857t43;
    Filtering t OFF;
    Importanoe = 1.0;
    Similarity = NORMAL; }
  SIOt"eature . Ieft-swappability;

    Value=150.769231:
    Filtering m OFF;
    tmportance s t .O;
    Similarity - NORMAL; }
  SiOVeaturo . loft alt ldle ratio;

     Value - 271 .4'28st1 ; -
     filtering m OFF;
     lmportance - 1 .0;
     SiMialrity - NORMAL; }
   SIOt"eaturo - left-alt-swappability;

     velue - o.o;
     Fittering t OFF;
     lmportarioe - 1 .0;
     Simialrity-NORMAL; }
   SiOVeature . alternative resource;

      Value s 3;
      filtering n ON;
      lmportanoe t 1 .0;
      Simielrity - NORMAL; }

)
Tactcs -= (
 T-Sotution = {
   Tactic = jump-left;
   SÅëhedule-Quality-Changes :t (
     Slot{
      Feature = k)cal-weighted.tardiness;
      Value = 280.0;
      Ftitering = OFF;
      lmportance t 1 .0;
      Similarity - NORMAL; }
     Slot{
      Ueala.t.Ur.e so.81obal-weighted-tardiness;

      filtering = OFF;
      lmportance s 1 .0;
      Similarity = NORMAL; }
  >
   Effect = 280.0;
   Result = SUCCEEDED; }

 siot{
    Feature = right-slack-ratio;
    Vatue s O.O;
    Fittering = OFF;
    lmportance # t .O;
    &m"arity s NORMAL; }
slot{

   Feature = imm right-idle-ratio;
   Value = 1ee5.7i42es;
    Ftltering = OFF;
    lmportance u a .O;
    Similarity = NORMAL; }
Slot S eature ., aggr-right-idlemratiO;

   value = o.o;
   Filtering = OFF;
   lmportance =s 1 .0;
   Similarity = NORMAL; }
StOt Veature . right-swaPPability;

   value tt o.o;
   Filtering s OFF;
   tmportance m 1.0;
   Similarity - NORMAL; }
slot {
   Feature = righi-att-icNe-ratio;
   Value s O.O;
   F,ltering . OFF;
   lmportanoe s 1 .0;
   Similarity s NORMAL; }
SIOt kature . right-att-swappabilby;

   velue # o.o;
   Filtering n OFF;
   1mprtance s 1 .0;
   Similarity s NORMAL; }

StOt "eature . Iocal-inprooess.irlVentOry;

  Value # -950.0;
  Fitteringt ii OFF;
  lmportanoe s 1 .0;
  Similarity s NORMAL; }
Slot{

Fvealat.".r2 s.g!obal.inpreoess.inventoty;

Filtering g OFF;
lmportanoe n 1 .0;
Simitarity = NORMAL; }

}

,

Fig. 2.7 : An example of CABINS' tactic-case for a schedule     .repdlr problem
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2.3 CaseAcquisition
  In CABINS, the session starts with an empty case base. A set of training problems
are presented to the user who interacts with CABINS to repair the problems by hand.

The interactions and the results are stored in cases with the information of the problem

contexts. Through the case acquisition, the user can operationalize the model of solving

schedule optimization problems.

TrainingProblem

IN
Solution

ttt tt tt tt tt

Useti'''"'

" ..

RepairCycle

RepairAction
Explan.ation
(Filtenng,ltnportanoe,Sitnilardy)

s .. ..
RepairEffects

'l•i"•'•.m.:iwrtmmge,ff."•ee•/Xt!1,2,ut.i•

Evaluation(Outcome,Ettect)

        Fig. 2.9: Interactions between CABINS and a user for case aÅíquisition

  Fig. 2.9 shows interactions between CABINS and the user for case acquisition. In iter-
atively repairing a solution of a training problem, the user has to select the repair aÅítion



2.3. CASEACQUISITION 33

that is deemed to be appropriate in a given particular problem situation, apply it to the

current, and evaluate the result repeatedly. User's decisions in the course of a repair along

with the problem context are recorded in a case. In the selection of the above repair actions

(i.e. goal, strategy and tactic), the user can assign values to the attributes of case features,

such as Filtering, Importance and Similarity as explanations to his/her decisions.

2.3.1 Case Acquisition for Schedule Repair Task

  In a schedule repair task, the user first selects the most urgent repair goal for a given

schedule from the list of user defined goals to be achieved in the schedule. User's selection

of a repair goal, overal1 quality of the current schedule and situations influencing user's

scheduling decisions are recorded in a goal-case. An application of the repair goal to the

current schedule produces the sorted list of orders according to significance of the defect

in the given repair goal. Then, the user selects a repair strategy from a set of user defined

repair strategies for repairing an order according to the sorting. User's selection of the repair

strategy and global characteristics of the order constitute the content of a strategy-case.

When the repair strategy is applied to the order, some activities of the order are picked up

and sorted so as to avoid unnecessary computations and unbounded ripple effects. Finally,

the user selects a repair tactic from a set of user defined repair tactics for repairing an

activity in the sorted queue.

  A repair tactic application causes changes in the schedule by executing an repair by
applying constraint propagation to re-schedule the activities. The repair tactic application

may result in an infeasible schedule. An infeasible schedule will occur when constraints

are propagated beyond the fixed time window boundary of any order. The details of the
constraint propagation techniques will be described in Section 3.2.1.

  If the outcome of the repair tactic application is feasible, the effects of the repair are

calculated and shown to the user. An effect describes the result of the repair with respect

to one of the repair objectives defined as Schedule-Quality-Changes features in a tac-

tic-case. On account of tight constraint interactions, these effects are ubiquitous in job

shop scheduling and make schedule optimization extremely hard. When the application of
a repair tactic produces a feasible result, the user must determine whether the resultant

schedule is acceptable or not based upon the calculated effects. The outcome is judged

as unacceptable, if the schedule resulting from the application of the revision heuristic is

feasible but the revision result does not make any improvement with respect to the user's

criteria. This could happen because harmfu1 effects might outweigh, in the user's judg-

ment, the effected improvement. For example, if reduction of an order tardiness enforces

increased utilization of low-quality machines, total cost incurred by this repair might even-

tually be increased, but not decreased for the user who would dislike the possible low

quality of products. Therefore such a repair might be judged as unacceptable by the user.

The user's judgment as to balancing favorable and unfavorable effects related to a partic-
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ular optimization objective constitutes the explanations of the repair outcome. The user

caii supply a supplementaJ explanation of the judgment by assigning a vaJue to Effect

attribute of a repair tactic description in a tactic-case. This gives a case the additional

information about to what extent the case is acceptable or unacceptable and this informa-

tion might be utilized to retrieve a more effective case for selecting repair tactics. At the

end of each repair tactic application, the applied repair tactic, the effects of the repair and

user judgment/explanation as to the repair outcome are recorded in a case along with the

activity features.

  The repair process continues until an acceptable outcome is reached, or failure is de-

clared. Failure is declared when there is no more repair action available. The sequence of

applications of successive repair actions, the effects and user's evaluation of the results are

recorded in the case. In this way, a number of cases are accumu}ated in the case base.

2.4 Summary
 This chapter has presented the detailed methodology for creating a case base in the

CABINS system. First, knowledge-level task analysis method, task structure analysis,

has been adopted. Then, CBR is used as a model extending method, which comprises
of transformation and enhancement processes. The detailed case descriptions for schedule

optimization problems in CABINS are derived from the anaJysis of the optimization task.

  And, the chapter has shown the case acquisition protocol between CABINS and a user.
The user's decisions and explanations in the course of problem solving are collectively

stored as cases in CABINS' case base.



Chapter 3

Utilizing Cases

  CABINS has three classes of repair actions (i.e. goal setting, and strategy/tactic appli-

cations), each corresponding to the different level of decision makings in the repair-based

optimization method.
  Fig. 3.1 shows the case-based repair process of CABINS for the job shop scheduling

problems, which has the following basic steps:

  1. Suboptimalities in a schedule are identified and one of them is recognized to be most

    urgent (i.e. a repair goal) based upon past experiences using CBR.

  2. If the selected repair goal is to "give-up", CABINS terminates.

  3. Defective orders are sorted (in decreasing sequence) according to the degree of the

    defect in the repair goal and are repaired based upon this sorting.

  4. The defective order under current repair consideration is called the focal-order and a

     repair strategy for the current focal-order is selected using CBR.

  5. Ifthe selected repair strategy is to "give-up", next order in the sorted defective order

     queue is selected as a focal-order for further repair.

  6. Activities in the focal-order are selected and sorted by the repair strategy so as to (a)

     avoid unnecessary computations, and (b) limit the amount of ripple effects (schedule

     disruption) that could be caused by moving activities that are too tightly scheduled

     and whose move would cause many constraint violations. Activities are repaired one

     by one according to this ordering.

  7. The activity under current repair consideration is called the focal-activity. A repair

     tactic is selected for the current focal-activity using CBR.

  8. Ifthe selected repair tactic is to "give-up", next activity in the sorted activity queue

     is selected as a focal-activity for further repair.

35
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9. The repair tactic is applied to the focal-activity as follows: (a) changing the assign-

  ment of the focal-activity as specified by the selected repair tactic, arid (b) resolving

  constraint violations caused in (a) by means of the constraint propagation mechanism

  in CABINS.

10. After a repair has been executed, CBR is used to

   outcome in the context of the current case base.

predict and evaluate the    .repdlr

11. According to the repair outcome , CABINS proceeds to one of the following steps.

(a) If a repair of the current focal-ax tivity is evaluated as a success, a next activity in

   the sorted activity queue is selected as a next repair target. If no activity is left

   in the queue, it means that the focal-order is successfully repaired. Ifa repair of

   the current focal-order is successfully done, a next repair goal is selected even if

   there still remain other orders to be repaired in terms of the current repair goal.

   This is because the effects of repairing one focal-order may change the nature

   of the problem drastically, so that it may be possible to take advantage of the

   opportunities for repairing more critical defects which were diMcult before.

(b) If an application of a repair tactic is evaluated as a failure, or accomplishment

   of a selected repair goal/strategy is given up for al1 the repair targets, the se-

   lection of such goal/strategy/tactic is deemed as a failure. When a failure is

   detected, CBR process selects a next repair action using information of a fail-

   ure as additional indices. This CBR invocation retrieves similar past failures of

   the repair action that were successfully repaired and the repair action that was

   eventually successful in fixing the past failure. The assumption here is that a

   similar outcome for the same repair action implies similarity of causal structure

   between the past and current case. Thus, the eventually successful repair action

   of a similar failure can potentially be successful in the current problem.

  A more detailed trace of CABINS'

be described in Section 3.2.

repair process in the job shop scheduling problem will

3.1 CaseRetrieval

  In CABINS, all the selections of repair actions and the evaJuations of repair results are

accomplished by the case-based classification method, which retrieves the past similar cases

in the case base to the current problem situation (i.e. in other words, classifies the current

problem into the class of past similar cases) and re-uses the past decisions made in the

cases. As a case retrieval mechanism, CABINS uses a k-Nearest Neighbor method (k-NN)
[Dasarathy, 1990]. A k-NN finds the k-nearest neighbors, where k is some constant, of the



38 CHAPTER3. UTILIZING CASES

current problem from the training data based on the pre-determined matching measures,
and in its simplest form, the single nearest neighbor is found and chosen as a classification

result.

  In domains, such as scheduling that do not have clear predictive features owing to 1ack

of the causal structure, there can be mamy matches other than the nearest match that
can potentiaJly contribute to accurate classification. For example, if a large number of

near neighbor cases are of the same category, a higher confidence can be given to the

classification result than if the near neighbors are of many different categories. For exam-

ple, in determining the repair tactic to be applied to the current problem, suppose that

five nearest neighbors are selected. Three of them are of "jump]eft" cases, whose match-

ing vaJue is O.9, O.2 and O.1 and the other two are of "swapJeft" cases, whose matching

value is O.8 and O.75. In 1-NN method, "jumpJeft" is selected as a repair tactic because

the nearest retrieved case uses "jumpJeft" as a successful modification heuristic. In this

method, the cases with relatively high matching value are ignored in the classification.

Hence, the author used five nearest neighbors empirically in the current implementation

of CABINS. The author used the sum of the matching vaJue in k-nearest neighbors as
a selection criterion, instead of using the frequency of appearance of a class among k-

nearest neighbors, to avoid that dissimilar cases may have an undue influence on the
classification result. In the previous example, "swap]eft" is selected as a repair tactic

by CABINS (since its total matching value is 1.55 vs. 1.2 of "jumpJeft"). The similar

methods have been successfully applied in the different domains without clear causal struc-
ture such as English word pronunciation and text classification in [Stanfi11 8e WaJtz, 1986;

Creecy et al., 1992].

3.1.1 SimilarityFunctions

  The matching value between a case and the current problem is computed in CABINS as
follows:

         Distance; = (Importance;• Å~ DisFunc}(CF;,PFj))2

        Similarity, - (1.o- E;=iDikstance;•).

           Match, - ( g:.I g.i:::.lz:, X Effecti [I:; r,2gsi .as.`i:2,:sLe,c`io")

where Distance; is dissimilarity of the j-th feature between the i-th case and the current

problem. Importance; is the vaJue of Importance attribute of the j-th feature of the i-
th case in the case base, CF; is the value of Value attribute of the j-th feature in the

i-th case, PFj• i's the value of Value attribute of the j-th feature in the current problem,

DisFunc;• is the distance function for the j-th feature of the i-th case, stored as the value
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of Similarity attribute. Sirnilarityi is similarity between the i-th case and the current

problem. a is a parameter to balance the tradeoff between case's similarity and its possible

effect in calculating a matching value. And Matchi is the matching value of the i•-th case

to the current problem. Effecti is the value of Effect attribute of the i-th case. For

goal/strategy selection, the EÅ}fect value of last applied tactic-case associated with the

goal-case/strategy-case is used for calculation.

  For selecting repair actions, the author takes into consideration not only the similarity

but also the past repair effect of the retrieved case. This reflects the general user's prefer-

ence to the more effective repair actions. As an example of a repair tactic selection, if a

case that used "jumpJeft" tactic and another case with "swapJeft" tactic are considered

equally similar to the current problem, a user prefers the case with "jump]eft" tactic be-

cause "swapJeft tactic", which moves back a swapped activity, usually gains less effects

than "jumpJeft" tactic due to its possible side-effects. A parameter a is used to control

sensitivity of a similarity factor to the matching value calculation. A larger value of a

means that the similarity factor has more influence to the matching value when there are

some similar cases to the problem, but it has less influence when no similar enough case

is available and instead the possible effect of the case becomes a major concern. In the

current implementation of CABINS, the author heuristically fixed its value as 2.0. See the

experiment results in Section 4.3.2 for the analysis on the effectiveness of this case retrieval

scheme.
  As for a distance function, the current implementation of CABINS has the following
three types:

             No rmal( CF;, PFj) = Sal;• Å~ I CF;• - PFjl/Dj

             High Cu t( CF; , PFj ) -- Sa l; Å~ max(O.O, ( CF; - PFj )/Dj)

             LowCut( CF;, PFj) = Sal; Å~ maJc(O.O, (PF; - CFj)/Dj)

where Dj• is a normalization factor for the j-th feature, so that a distance function yields
a value in IO.O, 1.0]. Sal; is the salience value of the j-th feature for the repair action used

in the i-th case, which takes a value in the range [O.0, 1.0]. This value represents feature

relevance to each repair action. For example, a value of "left-slack-ratio" has significant

influence in selecting "jumpjeft" repair tactic, but not in selecting "jumpJight" repair

tactic because "jumpJight" tactic can be sa[fely applied regardless of the value of "left-
slackiatio". A value of Sal;• can be assigned subjectively by a user a priori, or calculated

after enough number of cases are accumulated with the help of the statistical algorithms
such as Relief [Kira & Rendell, 1992] amd IBL4 [Aha, 1992]. See the empirical results in

Section 4.3.1 for the discussion on the usefulness of this salience value.

  "Normal" is a weighted normalized Euclidean distance function, which is the most pop-

ularly used distance measure in the research of classification. "HighCut" and "LowCut"

distance functions are used for a case feature whose value is, a domain expert thinks,
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big/smal1 enough to classify the case into a certain class, so that the problem feature with

the greater/smaller value is equally considered as a perfect match to the case feature.

3.2 RepairbyCABINS
  Once CABINS has constructed a case base from training data, CABINS can carry out
ail the necessary works for repair without any interaction with its user. Invocation of CBR

suggests a repair action to be applied. Case features are used as indices to retrieve past

repair episodes in selecting repair actions (i.e. goal, strategy and tactic). These repair

actions can be defined based upon the particular needs in the domain.

  After a repair tactic has been applied to the problem and if the result is feasible, repair

evaluation is performed. Unlike the traditional repair-based approaches (e.g. simulated

annealing, tabu search) where the effects of revision are evaluated in terms of the explicitly

defined cost function, CABINS evaJuates the result using CBR, thus obviating the need
for the presence of an explicit cost function. Using the repair effects as indices, CBR is

invoked and returns an outcome in the set ["SUCCEEDED", "FAILED"].
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Fig. 3.2: Failure recovery by CABINS using failure information as additional case indices

  If the result is acceptable ("SUCCEEDED"), then CABINS proceeds to repair another

target. But, as shown in Fig. 3.2, if the outcome of current revision is determined as

either infeasible or unacceptable ("FAILED"), CABINS performs another CBR invocation
using as indices the conjunction of the current repair effects and outcome (infeasible or
unacceptable), the failed repair heuristic, and the case features to find another possibly

applicable revision heuristic. Invoking CBR with these indices retrieves cases that have
failed in the past in a similar manner as the current revision. This use of CBR in the spaK e

of failures is a domain-independent method of failure recovery [Sycara, 1988; Simpson,
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1985], and allows the problem solver to aÅícess past solutions to the failure.

  The following sections explain the sets of repair actions that are utilized in the experi-

ments reported in this thesis and present an example session of CABINS repair process in

a job shop scheduling problem.

3.2.1 ScheduleRepairActions
  The repair goal is selected to focus the attention of repair to the most critical defect in

the current schedule. The repair goals used in the experiments are:

reduce-weighted-tardiness : try to reduce the weighted tardiness of the current sched-

     ule.

reducejnprocessjnventory: try to reduce the inprocess inventory (WIP) of the cur-

     rent schedule.

give-up : give up a further repair of the current schedule.

When "reduce-weighted-tardiness" is selected as a repair goal, all the tardy orders in the

schedule are sorted in the descending order of their weighted tardiness value. When "re-

ducejnprocessjnventory" is selected, al1 the orders in the schedule are sorted in the de-

scending order of their WIP value. When "give-up" is selected as a repair goal, CABINS

repair process is terminated.

  The first order of the sorted order list becomes a current focal-order, and the repair

strategy is selected to repair the focal-order according to the selected repair goal. The

repair strategies used in the experiments are:

shiftJeft-all : try to move all the activities of the current focal.order to the left on the

     timeline.

shift-right-all: try to move all the activities of the current focal.order to the right on

     the timeline.

shiftJeftJeast : try to move the least number of the current focal-order's activities

     enough to attain a goal to the left on the timeline.

shift-rightleast: try to move the least number of the current focal-order's activities

     enough to attain a goalto the right on the timeline.

give-up : give up a further repair of the current focal-order.

"ShiftJeft-al1" strategy sorts all the activities of the focal-order in the descending order of

their start time. "Shiftright-aJl" strategy sorts al1 the activities of the focal-order in the

ascending order of their start time. "ShiftJeftJeast" strategy picks up the activity of the
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focal.order sequentially from its last activity to its first and adds its waiting time until the

added waiting time exceeds the desired value designated by the repair goal, and sorts these

activities in the descending order of their start time. "ShiftJightJeast" strategy picks up

the activity of the focal-order sequentially from its first activity to its last and adds its

succeeding activity's waiting time until the added waiting time exceeds the desired value,

and sorts these activities in the ascending order of their start time. When "give-up" is

selected, there are two possible actions to be taken: (1) if there remain other orders in

the list sorted by a repair goal, a repair strategy selection is tried to the next order in the

sorted order list, and (2) if no order remains untried in the sorted order list, another repair

goal is to be selected.

  Repair by CABINS is tried to one activity after another in the sorted activity list created

by a repair strategy. The first activity in the Iist is a current focal-activity. Repair of the

focal-activity is performed by applying a repair tactic. The tactics currently available in

CABINS are:

slideJeft : try to move the focal-activity on the same resource as much to the left on

    the timeline as possible within the repair time horizon, while preserving the sequence

    of al1 the activities.

jumpJeft : try to move the focal-aÅítivity on the same resource as much to the left on the

     timeline as possible within the repair time horizon while minimizing the disruptions.

jump-altJeft : try to move the focal-activity on a substitutable resource as much to the

     left on the timeline as possible within the repair time horizon while minimizing the

     disruptions.

swap]eft: swap the focal-activity with the activity on its left on the same resource
     within the repair time horizon that causes the least disruptions.

swap-aitJeft : swap the focal-aÅítivity with the activity on its left within the repair time

     horizon that causes the least disruptions by chamging the resource assignment of the

     focal-activity to a substitutable resource.

slide-right : try to move the focal-activity on the same resource as much to the right on

     the timeline as possible within the repair time horizon, while preserving the sequence

     of al1 the activities.

jump-right : try to move the focal-aÅítivity on the same resource as much to the right

     on the timeline as possible within the repair time horizon while minimizing the dis-

     ruptions.

jump-alt-ight : try to move the focal.activity on a substitutable resource as much to

     the right on the timeline as possible within the repair time horizon while minimizing

     the disruptions.
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swap-right : swap the focal-aÅítivity with the activity on its right on the same resource

     within the repair time horizon that causes the least disruptions.

swap-alt-right : swap the focal.aÅítivity with the activity on its right within the repair

     time horizon which causes the least disruptions by changing the resource assignment

     of the focalnctivity to a substitutable resource.

give-up : give up a further repair of the current focal-activity.

      /
slide left
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    /
jum -Ieft
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tocal activity swap-left
      Å~

swap-alt-left
         Å~

t

                  Fig. 3.3: Schedule repair tactics in CABINS (1)

  Fig. 3.3 and Fig. 3.4 show the simple pictoriai explanations of the above repair tactics.

  When "give-up" is selected as a repair tactic, the next activity in the sorted list, if any, is

selected as a next repair target. If such an activity does not exist, another repair strategy

is selected for repairing the foca}.order.
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Fig. 3.4: Schedule repair tactics in CABINS (2)
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For the other repair tactics , the process of a tactic application has the following steps:

1. Determine the predictive start time and designated resource of the focal-aÅítivity being

  repaired. The predictive start time of an activity is a temporary start time that is

  calculated by each repair tactic as a desirable start time for a focal-activity. The

  designated resource is a temporary resource to which the focal-activity is moved by

 ' a repair tactic. When a repair result is evaluated as acceptable, the predictive start

  time and designated resource are fixed as assignments to the focal-activity.

2. Project the effects of moving the focal-activity to the predictive start time and des-

  ignated resource. This is done by performing constraint propagation to identify and

  resolve capacity and temporal constraint violations. Simple left-shifting and right-

  shifting heuristics are used for constraint propagation and the effects of applying

  the heuristics are also propagated recursively, thus creating the ripple effects on the

  overal1 schedule.

  Fig. 3.5 shows the resu}t of consecutive applications of right-shifting heuristic to

  resolve a constraint conflict involving the activity Al by moving its scheduled start

  time on the resource Ml. Fig. 3.6 shows the result of consecutive a'pplications of left-

  shifting heuristic to resolve a constraint conflict involving the activity A; by moving

  its scheduled start time on the resource M2.

3. The propagation results in a feasible schedule when no activity is moved beyond the

  allowable time window of its order. If a feasible schedule is achieved, the application

  of the repair tactic is deemed successful and the effect is evaluated whether favorable

  or not. Otherwise, if an infeasible schedule is achieved, the application of the repair

  tactic is found failure and another repair tactic is tried if any tactic remains untried.

  The above process results in a conflict-free revised schedule. The effects of a revision are

calculated and CBR is invoked with the effects as the relevant indices to evaJuate a repair

outcome.

3.2.2 AnExample
  In this section, CABINS' repair process is illustrated with a very simple example. A

schedule to be repaired is shown in Fig. 3.7 in the form of a gantt chart. In the gantt

chart, each row represents assignments on each resource along the timeline, each white box

corresponds to an assignment of an activity, and a number in a white box identifies the

order which the activity belongs to. The example has ten orders (Oi,...,Oio) and each

order has five activities with the linear precedence constraint. (e.g. Ar BEFORE A8, •••

, A4" BEFORE Ag). Resources Ri and R2, R3 and Rs are substitutable; resource R4 is a

bottleneck.
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  The schedule in Fig. 3.7 has weighted tardiness of 350 and WIP of 2510. Suppose
the CBR is invoked with these indices and selects "reduce-weighted-tardiness" as a repair

goaJ, reflecting the user's severer concern on weighted-tardiness than WIP in the current

scheduling situation. Note that this user's concern is represented extensionally in the set

of accumulated cases not explicitly in the features of a case. The selected repair goal sorts

the orders in the decreasing sequence according to their weighted tardiness value. Since Os

has the biggest weighted tardiness of al1 the orders, it now becomes the focal-order. This

order has a weight of 2, a due date of 1,250 and the scheduled end-time of its Iast aK tivity

is 1390. Hence it has aweighted tardiness of2Å~ (1390 -- 1250) = 280. Invoking CBR
with OrderFeatures (i.e. "slackJatio", "tardiness-atio", "inventoryJatio", "resource.
idleJatio", and "resource-busy-deviation"), CABINS selects "shiftJeftJeast" as a repair

strategy to be applied, reflecting the oTder's characteristics of relatively big "slackJatio

", which is created by a long waiting time in front of the bottleneck resource (i.e. R4),

compared with "tardinessJatio". "ShiftjeftJeast" strategy is applied to Os and creates a
sorted activity list ({ A2, Ag }) because the waiting time of A2 is big enough to repair the

weighted tardiness of Os. Suppose that the current focal-activity is A2. CBR invocation

with Activity.Features (see Fig. 2.7) as indices selects "swapJeft" as a repair tactic for

A2. 0ne can see from Fig. 3.7 that this is a good choice because the focal-activity is

scheduled on the bottleneck resource R4, which doesn't have any substitutable resource
and any idle time in the repair time horizon (time between the end of Ag and the start of

Ag).

  The swap repair tactic roughly caJculates the effects of swapping the current focal.aÅítivity

with each activity within the current focal-activity's time horizon and selects the activity

that gives the biggest net gain (note that swapping an activity that is scheduled earlier with

one that is scheduled later will now delay the earlier activity). In the example, suppose

that activity A2 is selected as the activity to be swapped with the current focal-activity

A2. The effect of applying the swap tactic is that A2 and A2 are unscheduled on R4 and

A2 is re-scheduled to start at time 1090 (the start time of activity A2 prior to the swap)

and Aa is moved to start at time 1180 (the start time of activity A2 prior to the swap).

Because the new assignments of two aÅítivities overlap each other, constraint propagation

is invoked and the assignment of A2 is further delayed. Due to the delay of activity A2,

now there is the ripple effect of a precedence constraint violation between activity A2 and

its successor activity Ag on resource R2 (in general, many activities could be affected and

must be rescheduled as described in Section 3.2.1). Constraint propagation discovers this

constraint conflict and shifts activity Ag further to the right on resource R2. Since Order

04 has weight 3, its weighted tardiness is now 3 Å~ (1370 - 1320) = 150. The repaired

schedule result is shown in Fig. 3.8.

  CABINS calculates both Iocal effects (i.e. effects on the repair target, Os) and globaJ

effects (i.e. effects on the whole schedule) for result evaluation. In this example, "local-

weightedlardiness" is estimated as +180 time units and "localjnprocessjnventory" is
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estimated as +200 units, both being improved by the change of A2. And "global-weighted-

tardiness" is +30 units (i.e. 180 - 150) and "globaljnprocessjnventory" is -750 units (as

the waiting time in 04 increases by 950 units). CBR is invoked using these effect vaJues

as indices to determine whether this repair outcome is acceptable or not. If there are

more significant "SUCCEEDED" cases than "FAILED" cases in the retrieved k-nearest
neighbors, the repair is considered reflecting the tradeoffs of user's preference (in this

example, little weight on "globaljnprocessjnventory") and the outcome is considered as

acceptable. Otherwise, the outcome is considered as unacceptable, thus showing that loss

in "globaljnprocessjnventory" is more critical than possible gain in weighted tardiness

according to the user's preferences.

3.3 Summary
  This chapter has presented the details of case-based repair approach implemented in
the CABINS system. First, the case retrieval method has been devised for ill-structured

problem solving. Then, the repair actions implemented in CABINS for the schedule opti-

mization task have been explained. In addition, a detailed CABINS schedule repair process

has been shown with an example.



Chapter 4

Enhancing Solution Quality

The author conducted a set of experiments to test the following hypotheses:

1. CBR-based incremental modification methodology could be effective in capturing

  user optimization preferences and re-using them to control optimization process.

2. As an iterative optimization method, CABINS' approach produces solutions of com-
  parable quality to other revision-based optimization methods such as simulated an-

  nealing.

  In this thesis, the job-shop scheduling problem is used as a domain of the experiments,

since it is a widely known ill-structured optimization problem and there have been sev-

eral methodologies developed for the problem, with which CABINS' performance can be
compared in terms of solution quality and problem solving eMciency.

  The above hypotheses are diMcult to test since, owning to the subjective and ill-defined

nature of user preferences, it is not obvious how to correlate scheduling results with the

captured preferences or how to define quality of a schedule whose evaJuation is subjective.

To address these issues, the author had to devise a method to test the hypotheses in a
consistent manner. For performing a objective test, it is necessary to know the optimization

criterion that would be implicit in the case base, so that the experimental results can be

evaluated. In the experiments reported here, the author used some different explicit criteria

to reflect the imaginary user's optimization criteria - although they are widely accepted

criteria in practicaJ scheduling environments - and built a rule-based reasoner (RBR)

that goes through a trial-and-error repair process to optimize a schedule based on the
given criteria. Since the RBR was constructed not to select the same repair action after an

application of the repair action was evaluated as unacceptable, it could go through all the

available repair actions before giving up a further repair. For each repair, the repair effects

were calculated and, on this basis, since the RBR had a pre-defined evaJuation objective,

the RBR could evaluate the repair outcome consistently. Thus, the RBR with different
rules was used each time to generate different case bases for different explicit optimization

49
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objectives. Naturally, an objective, though known to the RBR, is not known to CABINS
and is only implicitly and indirectly reflected in an extensional way in each case base. Since

an objective was designed into the RBR so it could be refiected in the corresponding case

base, RBR was used not only as a case base builder but aJso as an experimental baseline

against which to evaluate the schedules generated by CABINS.
  The author evaluated the approach on a benchmark suite ofjob shop scheduling problems

where parameters, such as the number of bottlenecks and the range of due dates and activity

durations, were varied to cover a broad range of job shop scheduling problem instances.

In particular, the benchmark problems have the following structure: each problem has ten

orders of five aÅítivities each. Each order has a linear process routing specifying a sequence

where each order must visit bottleneck resources after a fixed number of activities, so as to

increase resource contention and make the problem tighter. Two parameters were used to
cover different scheduling conditions: a range parameter, RG, controlled the distribution of

order due dates and release dates, and a bottleneck parameter, BK, controlled the number of

bottleneck resources. To ensure that knowledge of the problem had not been unintentionally

hardwired into the solution strategies, the author used a problem generator function that

embodied the overal1 problem structure described above to generate job shop scheduling

instances where the problem parameters were varied in controlled ways. In particular,

six classes of ten problems each - in all, sixty problems - were randomly generated
by considering three different values of the range parameter (static, moderate, dynamic),

and two values of the bottleneck configuration (one and two bottleneck problems). The

slack was adjusted as a function of the range and bottleneck parameters to keep demand

for bottleneck resources close to a hundred percent over the major part of each problem.

Durations for activities in each order were also randomly generated.

Table 4.1 : Characteristics of the six problem sets used in the experiments

Bottleneck Parameter Range Parameter

Class-1 1 Static

Class-2 2 Static

Class-3 1 Moderate
Class-4 2 Moderate
Class-5 1 Dynamic
Class-6 2 Dynamic

  Table 4.1 shows the parameter settings for each class of the problem sets. Appendix A

presents a sample scheduling problem in the Class-6 problem set.

  Generating problem instances "in the neighborhood" of a problem by controlled variation

of problem parameters is a well-accepted method in Operations Research and knowledge-
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based scheduling communities for evaluating the performance of scheduling methods (e.g.
[Sadeh, 1991; Smith & Cheng, 1993]). The problem instances, although randomly gener-

ated, shared features of problem structure (e.g. eaÅíh problem has five machines, of which

one or two machines are bottlenecks, and substitutable machines exist for the non bottle-

neck machines etc). This situation can be seen in a real-world scheduling problem such as

a factory scheduling that routinely devises a schedule every week for producing the similar

(if not same) set of products using the fixed set of resources. CBR can exploit the captured

regularities in the structure of the problems for transfer to later problem solving.

  The benchmark problems are variations of the problems originally reported in [Sadeh,

1991] and used as a benchmark by a number of researchers (e.g. [Smith & Cheng, 1993;

Muscettola, 1993; Liu & Sycara, 19931). The problem sets in this thesis are, however,

different from the original problems in two respects: (a) the problems have substitutable

resources for non-bottleneck resources, and (b) the due dates of orders in the problems are

tighter by twenty percent than those in the original problems.

  A cross-validation method was used to evaluate the capabilities of CABINS. Each prob-

lem set of each problem class was divided into two groups with the same size (i.e. each

group contains thirty problems). All problems in one group were repaired by RBR as the

training sets to gather cases. These cases were then used for case-based repair of the vali--

dation problems in the other group. The above process was repeated by interchanging the

training sets. So, two case bases were made for each experiment.

4.1 Preference Acquisition in Cases

  The hypothesis that CABINS can acquire user preferences was tested by the two ex-
periments, each of which has a different objective function for optimization. The first
experiment reflects the user's preference for repairs that minimize the biased combination

of weighted tardiness (bias = 1.0) and WIP (bias = O.05) (hereafter, called Experiment-A),

and the second refiects the criterion of minimizing the weighted tardiness and WIP equally

(Experiment-B). Thus, in the experiments, the user's objective function is a multi-objective

function that is diMcult to be optimized heuristically. WIP and weighted tardiness are
not always compatible with each other. There are situations where WIP is reduced, but

weighted tardiness increases. In general, when a schedule must be optimized according to
multiple objectives (as is usually the case), tradeoff of these objectives must be taken into

consideration. Tradeoff is context-dependent and therefore diMcult to describe in a simple

manner. CABINS infers the tradeoff from the cases which store the user's evaluation of

schedule repair results. In this set of experiments, a case base that implicitly reflects the

optimization criterion was generated through RBR and used for schedule repair.

  A case base was constructed for each experiment through RBR. RBR is composed of the
four modules, each for goal selection, strategy selection, tactic selection and repair result
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evaluation respectively.

  For goal selection, RBR executes the following steps:

  1. Calculate both weighted tardiness and WIP of the current schedule.

  2. Bias the caJculated objective values based on the user's preferences. (in the Experiment-

     A, this implies to multiply WIP value by O.05.)

  3. If the value of weighted tardiness is greater than that of WIP,

      (a) if this is the first repair trial, then select "reduce-weighted-tardiness" as a goal.

      (b) if the previous repair triaJ is "SUCCEEDED", then select "reduce-weighted-
         tardiness" as a goal.

      (c) if the previous repair trial is "FAILED" after "SUCCEEDED" repair trial, then

         select "reducejnprocessjnventory" as a goal.

      (d) otherwise, select "give-up" (terminate a repair process).

  4. If the vaJue of WIP is greater than that of weighted tardiness,

                                      '
      (a) if this is the first repair trial, then select "reduce-inprocessjnventory" as a goal.

     (b) if the previous repair triaJ is "SUCCEEDED", then select "reducejnprocess-

         inventory" as a goal.

      (c) if the previous repair triaJ is "FAILED" after "SUCCEEDED" repair triaJ, then

         select "reduce-weighted-tardiness" as a goal.

     (d) otherwise, select "give.up" (terminate a repair process).

Thus, since RBR knows the user's preferences accurately, RBR pursues to set a repair goaJ

which respects the user's preference as much as possible.

  Then, RBR selects a repair strategy for the focaJ.order based on the selected repair goal

as follows:

  1. If a repair goal is `treduce-weighted-tardiness",

      (a) if the strategy "shiftJeft-all" is tried in the previous repair, then select "give-

         up" as a strategy.

      (b) otherwise, select "shiftJeft-all" as a strategy.

  2. If a repair goal is "reducejnprocessjnventory",

      (a) if the strategy "shiftiight-al1" is tried in the previous repair, then select "give-

         up" as a strategy.
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(b) otherwise, select "shiftJight-al1" as a strategy.

Since only local patching strategies are used for the experiments, current rules for strat-

egy selection are quite simple. But, in realistic situations that allow model modification,

selection of repair strategies can be much more complicated.

  RBR uses the following rules to determine a repair tactic for the focal-aÅítivity:

  1. CaJculate activity features of the focalactivity.

2. If a repair strategy is "shift Jeft -all" ,

(a) if "leftslackJatio" is smaller than O.O, then select "give-up" as a tactic.

(b) if "aggrJeftjdleiatio" is greater than "immJeftjdleiatio", "leftswappability",

    "left-altjdleiatio" and "left-altswappability", and "jumpJeft" is not tried yet,

   then select "jumpJeft" as a tactic and set a value of "aggrjeftjdlesatio" as
   -1.0 to prevent a repetitive usage of the same tactic.

(c) if "leftswappability" is greater than "immJeftjdleiatio", "aggrJeftjdleiatio",

    "left.altjdleJatio" and "left-alt-swappability", and "swapJeft" is not tried yet,

   then select "swapJeft" as a tactic and set a value of "leftswappability" as -1.0.

(d) if "left-altjdlesatio" is greater than "immJeftjdleiatio", "leftswappability",

    "aggrJeftjdleJatio" and "left-altswappability", and "jump-altJeft" is not tried

   yet, then select "jump.altjeft" as a tactic and set a value of "left-aJtjdleJatio"

   as -1.0.

(e) if "left-altswappability" is greater than "immJeftjdleiatio", "leftswappability

   ", "Ieft-altjdleJatio" and "aggrJeftjdle-ratio", and "swapJeft-alt" is not tried

   yet, then select "swapJeft-alt" as atactic and set a value of "left-altswappability

   " as -1.0.

(f) if "immJeftjdleJatio" is greater thari "left-altswappability", "leftswappability

   ", "left-altjdleJatio" and "aggrJeftjdleJatio", and "slideJeft" is not tried yet,

   then select "slideJeft" as a tactic and set a value of "immJeftjdleJatio" as -1.0.

(g) otherwise, select "give-up" as a tactic.

3. If a repair strategy is " shiftiight.al1",

(a)

(b)

if "rightslacksatio" is smaller than O.O, then select "give-up" as a tactic•

if "aggrJightjdleJatio" is greater than "imm-rightjdleiatio", "rightswappa-
bility", "right-altjdleJatio" and "right-altswappability", and "jumpiight" is

not tried yet, then select "jumpsight" as a tactic and set a value of "aggrzight-

idleJatio" as -1.0 to prevent a repetitive usage of the same taÅític.
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      (c) if "rightswappability" is greater than "immJightjdleiatio", "aggr-rightjdle.
         ratio", "right-altjdle-ratio" and "right-altswappability", and "swap-right" is

         not tried yet, then select "swap-right" as a tactic and set a vaJue of "right-

         swappability" as -1.0.

     (d) if "right-altjdleJatio" is greater thain "immrightjdleiatio", "rightswappabil-

         ity", "aggr-rightjdleiatio" and "right-altswappability", and "jump-aJt-right"

         is not tried yet, then select "jump-altzight" as a tactic and set a value of "right.

         altjdleiatio" as -1.0.

      (e) if "right-altswappability" is greater than "immxightjdleiatio", "rightswap-

         pability", "right-altjdleiatio" and "aggriightjdleiatio", and "swapJight-alt"
         is not tried yet, then select "swapJight-alt" as a tactic and set a value of "right-

         altswappability" as -1.0.

      (f) if "imm-rightjdleiatio" is greater than "right-altswappability", "right-swap-

         pability", "right.altjdleJatio" and "aggr-rightjdleJatio", and "slideiight" is

         not tried yet, then select "slideiight" as a tactic and set a value of "immiight-

         idleiatio" as -1.0.

     (g) otherwise, select "give-up" as a tactic.

RBR infers the possible repair effect for the application of eaK h repair tactic from vaJues

of activityfeatures of the current focal-activity. Then, RBR selects the most promising

repair tactic of al1 the untried repair tactics for the next repair triaJ until no repair tactic

remains untried.

  After each application of a repair tactic, RBR calculates the chamge in the vaJue of

the objective function and evaluates the result of the repair as either "SUCCEEDED"
(when the objective value is improved) or "FAILED" (otherwise). Thus, RBR uses greedy
heuristics for selecting repair actions such as goals, strategies and tactics, and exploits the

precise knowledge (i.e. an objective function) for evaluating the repair results.

Table 4.2: Sizes of acquired case bases for experiments

Goal-Case Strategy.Case Tactic -C ase

Experiment-A 848 2675 8376
845 26i4 8208

Experiment-B 943 2480 7816
891 2370 7592

  The number of cases created by RBR and stored in a case base for each experiment is

shown in Table 4.2. The cases constituted the only source of knowledge for CABINS. In
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other words, there was no objective given to CABINS explicitly. The case bases were used

as a sole source of knowledge both for selecting suitable repairs, and also for evaluating

repair results.

  In every experiment in this thesis, an initiaJ schedule is created by the EDD(Earliest

Due Date) dispatching rule, which tries to allocate the resource to the activity whose order

due date is closest. This rule is widely used as a convenient scheduling rule in real-world

scheduling problems although quality of schedules by EDD rule is not always optimal.

Then, the created schedule is further repaired by severaJ methods such as RBR, CABINS

and simulated annealing.

4.1.1 Experiment Results
  A graph in Fig. 4.1 shows the comparison of the repair ratio, the ratio of improved

objective, by CABINS and RBR for each of six problem sets in the Experiment-A. The
repair ratio is calculated as follows:

RepairRatio =
ObjectiveBefore-Repair - Objective-After-Repair

Ob]'ectiveBefore-Repair
Å~ 100.0

where ObjectiveBefore-Repair represents the objective value of the initial scheduling result

and Ob]Jective-After-Repair is the objective vaJue of the repaired schedule. Table 4.3 shows

the average and standard deviation values of schedule quality by CABINS and RBR over
sixty problems. These results show that CABINS can produce slightly better schedules

with smaller deviation than RBR, which means CABINS is more robust than RBR in
creating high quality solutions.

  A graph in Fig. 4.2 shows the comparison of the repair ratio by CABINS and RBR in
the Experiment-B. Table 4.4 shows the average and standard deviation of schedule quality.

These results show that in this experiment CABINS and RBR have little difference of the

solution quality in terms of both average and deviation.

  The results of the both experiments suggested that CABINS could generate as high
quality schedules as RBR with respect to the two different objectives in al1 six problem

classes. Fig. 4.3 presents subtraction of the repair ratio of CABINS from that of RBR

for each problem in the Experiment-A and the Experiment-B. The graph shows that only
for a few problems there are considerable differences in repair ratio between them. These

results indicate that CABINS can acquire different and subjective user preferences on the

tradeoffs of diverse scheduling objectives from the cases. Thus in CABINS' approach, un-
like traditional heuristic scheduling approaches [French, 1982; Morton & Pentico, 1993], it

is not necessary to devise a particular heuristic to suit the optimization criterion. Only

the case base must be changed for different objectives to be optimized. And, unlike the

traditional search-based scheduling approaches such as branch-and-bound, dynamic pro-

gramming, tabu search, simulated annealing and so on, CABINS does not require the
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 Fig. 4.1: Repair ratio of each problem class by CABINS and RBR in Experiment-A

Table 4.3: Average and standard deviation of schedule quality results by CABINS and

RBR in Experiment-A

                      Average Standard Deviation

CABINS 698.8 867.2

RBR 752.4 955.4
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 Fig. 4.2: Repair ratio of each problem class by CABINS and RBR in Experiment-B

Table 4.4: Average and standard deviation of schedule quaJity results by CABINS and

RBR in Experiment-B

                      Average Standard Deviation

CABINS 4688.9 4738.4

RBR 4670.8 4721.3
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Fig. 4.3: Difference of repair ratio between CABINS

CABINS surpasses RBR)

objective function to be explicitly represented in the simple mathematical formula. CAB-

INS has a potential of inducing more complicated form of user's objectives (e.g. allowing

exceptional situation handling) from the cases. It is true that user's objectives can be

elicited by doing intensive interviews with domain experts and represented in the form of

rules as was done in making RBR modules for gathering cases in the experiments. But

a scheduling problem is such an ill-structured problem that even a domain expert is not
supposed to have a suMcient knowledge for making a good schedule eMciently [Kempf et
al., 1991]. In general, it is believed that more search efforts are required to find better

schedules. Nevertheless, Chapter 5 will show that CBR methodology in CABINS can in-
duce eMcient control knowledge from the cases obtained through the applications of the

rules and can find a schedule more eMciently than RBR while maintaining quality of the

schedules.

   80 100

and RBR (positive values mean that

4.2 OptimizationthroughCases
  To investigate the hypotheses that CABINS can produce high quality solution based
upon the acquired user preference knowledge, the author compared CABINS with simu-
Iated annealing method [Kirkpatrick, Gelatt, & Vecchi, 1983]. Simulated annealing (SA)

is a widely known general purpose search procedure that generalizes iterative improvement

approaches to combinatorial optimization by randomly accepting transitions to lower qual-
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T= To;
x= xo (E S);

mln = oo;
while (T > Ti) {
    fori= 1,N {
         x' = neighbor(x);
         if(cost(x') < cost(x))     t-x=x     '    else if (randO < exp{(cost(x) - cost(x'))/T}) x =: x';

    if(cost(x) < min) min == cost(x), s=x;
}
if(min was not modified in the above loop) T=T*a;

}

Fig. 4.4: Simulated anneaJing procedure

ity solutions so as to avoid being trapped in local minima. SA is reported to be able to

yield solutions of better quality at the cost of larger computational efforts in a number of

combinatorial optimization domains, such as computer-aided design of integrated circuit,
image processing and neural network theory [Dowsland, 1993]. SA has also been applied

to the job shop scheduling domain for the makespan objective and is reported [Laarhoven,

Aarts, & Lenstra, 1992] to have a potential of finding shorter makespans than the state-of-

the-art tailored heuristic, e.g. the shifting bottleneck procedure [Adams, BaJas, & Zawack,

1988].

  The details of the current SA implementation are shown in Fig. 4.4. SA procedure
is designed to find a schedule x E S that minimizes the cost function, cost(x). The

procedure starts with an initial schedule xo and iteratively moves to other neighboring

schedules, while remembering the best schedule found so far, s. A neighbor of a schedule x

is generated by selecting one activity in a schedule x randomly and applying one randomly

chosen repair tactic to the selected activity in a schedule x. SA uses the same set of
repair tactics used by CABINS (see Section 3.2.1 for the details of available repair tactics).

Typically, the procedure only moves to neighboring schedules that are better than the

current schedule. However, in SA, the probability of moving from a schedule x to an
inferior schedule x', exp{(cost(x) - cost(x'))/T}, is always greater than O, thereby allowing

the procedure to escape from local minima. The function randO generates a random
number from a uniform distribution on the interval of [O,1]. The so-called temperature, T,

is a parameter controlling the probability of accepting a transition to a low quality solution.

The higher the temperature is, the greater the possibility of moving to a lower quality

solution. At the beginning of the procedure, the temperature is set at a very high value,
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To, therefore allowing frequent transitions to a lower quality schedule. If, after N cycles

of iteration, the best schedule found by the procedure has not changed, the temperature

parameter T is decremented by a factor a (O < a < 1). When the temperature drops below

a pre-defined level, Ti, the procedure stops and the best schedule it found is returned. In

the current implementation, these parameter values were defined as N = 250, a = O.90
and Ti = O.Ol and the initial temperature To was calculated as ten times of the maximum

cost change in the N cycles of test execution of neighborO function.

4.2.1 Experiment Results

  The schedule quaiity of CABINS and SA was compared using the same objectives and
case bases used in Section 4.1. To collect the data of SA, each experiment was run ten
times and the average results of these ten separate runs were reported (since in SA the

probabilistic factor has been introduced, the results are not necessarily the same across the

different experimental runs).

  Fig. 4.5 shows the comparison of the repair ratio by CABINS and SA for each of six
problem classes in the Experiment-A. Table 4.5 presents the average and standard deviation

of the results of al1 sixty problems in the benchmark. These results suggested that CABINS

generated schedules of about 149o higher quality with 12% smaller standard deviation than

the average runs of simulated annealing.

  Fig. 4.6 shows the comparison of the repair ratio by CABINS and SA for each of six
problem classes in the Experiment-B. Table 4.6 presents the average and standard devia-

tion of the results of al1 sixty problems in the same experiment. These results suggested

that CABINS generated schedules of the similar quaiity to the average runs of simulated

annealing in terms of average and standard deviation.

  From these experiment results, CABINS' superiority to SA in terms of repair ratio was
assumed and examined by hypothesis testing. A signed rank test suggested in [Etzioni 8e

Etzioni, 1994] was used as a testing method. Details of the testing method is fully described

in Appendix B. In a nutshell, the hypothesis test checks whether the data provide suMcient

evidence against the null hypothesis (Ho) that is negation of the hypothesis to be established

(H.). The p-value is the probability, assuming Ho holds, of encountering data that favors

H. as much as or more than a reference measure i which is calculated from data observed
in the experiment. A smal1 p-value leads one to reject Ho. If the significance level required

for the experiment is a, then Ho is rejected if the p-value is less than a. For experiments

in the thesis, a is taken to be O.05.

  Table 4.7 shows the reference measure and p-value of the data obtained from al1 the

results in the Experiment-A and the Experiment-B. The null hypothesis states that SA

can attain at least as high repair ratio as CABINS. From the p-value in Table 4.7, Ho can

be rejected at the significance level of O.05. Hence, it is confirmed that CABINS repaired

the schedules significantly better than SA.
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  Fig. 4.5: Repair ratio of each problem class by CABINS and SA in Experiment-A

Table 4.5: Average and standard deviation of schedule quaJity results by CABINS and

SA in Experiment-A

Average Standard Deviation

CABINS 698.8 867.2

SA 812.6

(best=596.3,worst=1061.7)
980.3

(best=766.8,worst=1249.9)
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  Fig. 4.6: Repair Ratio of each problem class by CABINS and SA in Experiment-B

Table 4.6: Average and standard deviation of schedule quality results by CABINS and

SA in Experiment-B

Average Standard Deviation

CABINS 4688.9 4738.4

SA
(best =

4677.6

3918.2,worst = 5756.7) (best =
4683.2

3939.2,worst = 5783.8)
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Table 4.7: Repair ratio test between SA and CABINS by Etzioni's signed rank test

         SA vs CABINS                     3.54                          o.oo
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Fig. 4.7: Difference of repair ratio between CABINS and SA (positive values mean that

CABINS surpasses SA)
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  Fig. 4.7 presents subtraction of the repair ratio of CABINS from that of SA for each

problem in the Experiment-A and the Experiment-B. The graph shows that in considerably

many problems CABINS outperforms SA in terms of the repair ratio. Especiaily for the
first 60 problems (i.e. problems in the Experiment-A), CABINS has a significant superioty

to SA. Considering that CABINS reached the solutions much faster than SA, the results

seems even more impressive. The search eMciency issues of CABINS wi11 be discussed fully

in Chapter 5.

  Table 4.5 and Table 4.6 also show that the best results of ten SA runs have about
15oro better quality than CABINS. This is because the random search mechanism in SA

sometimes succeeds in escaping from deep local minima. In the situations that require the

ultimately high quality schedule regardless of the computational cost, SA is thought to be a

better candidate than CABINS. But, since defining the neighborhood and the cost function

of the problem requires extensive analysis and study of the domain, the application of SA

is often diMcult in the real-world problems. To reduce the burden of precise definition

of the problem neighborhood structure and the cost function, the case-based approach of

CABINS can be applied to the implementation of SA. Since CABINS is based on the most
general hi}1-climb search mechanism, integration of CABINS and SA is straightforward.
Two functions in Fig. 4.4, neighborO and costO, need to be adapted for the purpose. In

neighborO, repair aA tions are selected through CBR and applied to the current schedule.

And in costO, a repair result is evaiuated as either "SUCCEEDED" or "FAILED" by
retrieving the similar cases. The function returns O when the repair is evaluated as a

success, and it returns the matching distance from the most similar "SUCCEEDED" case
(i.e. the near-miss case) when the repair is evaluated as a failure. The intuition behind this

formulation is that the more distant the current repair result is from the success cases, the

more likely the result should be rejected. And the best schedule m is always updated when

costO returns O. Actual implementation and experimentation of this integrated method is

left for a future research project.

4.3 Analysis of CABINSPerformance
  From the results shown so far, it is convincing that CABINS should be able to aK quire

control knowledge to meet user preferences and exploit it for making high quality solution.

But, what underlies the power of the approach? The author's hypothesis is that carefully

captured case indices and features based upon the task-level analysis are the main source

of the power in CABINS. In other words, although a problem belongs to an ill-structured

domain, the author assumes that it exhibits some domain regularities that could be cap-

tured, albeit only approximately, in a case. In CABINS, a case represents applications of

a revision action to a part of the problem, thus expressing dependencies among features of

the problem, the repair context and a suitable repair action. CBR allows capture and re-use
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of this dependency knowledge to dynamically adapt the search procedure and differentially

bias repair decisions in future similar situations.

  However, it is diMcult to analyze how the content of the case representation (i.e. struc-

tures and indices/features) affects the performance of CABINS because they are heavily

domain-dependent. In this section, empirical analysis is made on how other aspects of case

representation can affect the accuracy of case retrieval and the resultant solution quality.

And Chapter 6 will discuss the influence of a case base size to the solution quality and

problem solving eMciency. The experiments in this section used the same problems and
the objective function used in the Experiment-A in Section 4.1.

4.3.1 Case Retrieval with/without Salience

  In Section 3.1.1, a set of distance functions were defined as:

              No rmal( CF;, PFj) = Sal; Å~ I CF; - PFj l/Dj

             High Cut( CF;, PFj ) = Sal; Å~ maJc(O.O, ( CF; - PFj )/Dj )

             LowCut( CF}, PIFj ) = Sal;• Å~ max(O.O, (PF; - Clli'j )/Dj)

where CF; is the value of Value attribute of the j-th feature ofthe i-th case, PFj js the value

of Value attribute of the j-th feature in the current problem, and Di• is the normalization

factor for the j-th feature, so that a distance function yields a value in [O.O, 1.0I. Sal;• is

the salience value ofthe j-th feature for the repair action used in the i-th case.
  Sal;• represents the feature relevance to each concept (i.e. the selected repair action). By

adjusting a value of a saJience and using it for distance caJculation, CABINS is believed

to become less sensitive to irrelevant features. For example, a value of "leftslackJatio"

feature in a tactic-case has significant influence in selecting one of repair tactics which move

a focal.activity to its left (such as "jumpJeft" repair tactic), but not in selecting a repair

tactic which moves a focal-activity to the right, since such a tactic can be safely applied

regardless of the value of a slack in the left side of the activity's repair time horizon, which

"leftslackJatio" feature stands for.

  In the following experiments, in one experiment the values of feature saliences in tac-

tic-cases were hand-tuned, so that the features relating to the left-side of the repair time

horizon have salience of O.O in the cases for selecting a taA tic moving a focal-activity to

the right and vice versa. In the other experiment, the salience value of alI the features in

tactic.cases was set as 1.0.

  Fig. 4.8 shows the comparison of the repair ratio by CABINS with and without tuned
salience values for each of six problem sets in the experiment. Table 4.8 presents the average

and standard deviation of the results of all sixty problems in the benchmark. These results

suggested that CABINS with tuned salience vaJues generated schedules of slightly higher

quality than CABINS without tuned salience values. The suggestion was examined by
hypothesis testing as was done in Section 4.2.1.
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Table 4.8: Average and
with/without s

           123456                     Probiem Set

      each problem class by CABINS with/without salience information

         standard deviation of schedule quality results by CABINS
alience information

Average Standard Deviation

WithoutSalience 729.6 900.8

WithSalience 698.8 867.2
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Table 4.9: Repair ratio test between different indexing mechanisms in CABINS by Etzioni's

signed rank test; evaluation of effectiveness of salience information

CABINS w/o saJience vs CABINS w/ salience O.29 O.39

  Table 4.9 shows the reference measure and p-value of the experiment results. The null

hypothesis states that CABINS without tuned salience information can attain at least
as high repair ratio as CABINS with tuned salience information. From the p-value in
Table 4.9, Ho cannot be rejected at the significance level of O.05. Hence, it cannot be

concluded that CABINS with tuned salience information can repair schedules better than

CABINS without tuned salience information.
  The above result is contradictory to the author's hypothesis that salience information

should contribute to the accuraÅíy of case retrieval. To explain the result of this experiment,

subtraction of the repair ratio of CABINS without tuned saJience information from that of

CABINS with tuned salience information is calculated for each problem in the experiment

and plotted in the graph shown in Fig. 4.9.
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  of repair ratio between CABINS with/without tuned salience infor-

values mean that CABINS with tuned saliecne information surpasses

      alience information)

The graph shows that only for a few problems CABINS with tuned salience information
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had a superiority to CABINS without tuned salience information in repair ratio. Hence,
difference between CABINS with/without tuned salience information in repair ratio was

not regarded as significant by the hypothesis test. The author assumes that high quaJity

performance by CABINS without tuned salience derives from an accumulation of a large

number of cases available. Chapter 6 wi11 show the effects of the number of cases to the
performance of CABINS with/without tuned feature saJience.

4.3.2 Case Retrieval with/without Effect

  In Section 3.1.1, a matching value of cases in selecting a repair action was defined as:

                       Matchi = Similarityi Å~ Effecti

where Matchi is the matching value of the i-th case to the current problem. And, Similarityi

is the similarity between the i-th case and the current problem. Effecti is the value of

Effect attribute of the i-th case. In case of goaJ/strategy selection, the Effect vaJue of

last applied tactic-case associated to the goal.case/strategy-case is used for retrieval.

  Intuitive interpretation of using an effect value for selecting a repair action is that if

several equally similar cases are available for the current problem, one of the most attractive

rules for breaking a tie is to select the most successful case, since one can expect such a

case may help produce a good result in the similar problem context.

  The following experiments examined usefulness of the effect value for calculating a case

matching value in repair action selection; in one experiment the effect values were calculated

accurately by means of the objective function, and in the other experiment the effect values

were set as 1.0.

  Fig. 4.10 shows the comparison of the repair ratio by CABINS with and without effect

information for each of six problem classes in the experiment. Table 4.10 presents the
average and standard deviation of the results of al1 sixty problems in the benchmark.

These results suggested that CABINS with effect information generated schedules of higher

quality than CABINS without effect information. The suggestion was examined again by
hypothesis testing.

Table 4.11: Repair ratio test between different indexing mechanisms in CABINS by Et-
zioni's signed rank test; evaluation of effectiveness of effect information

CABINS w/o effect vs CABINS w/ effect 3.40 o.oo

  Table 4.11 shows the reference measure and p-value of the experiment results. The null

hypothesis states that CABINS without effect information can attain at least as high repair
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Table 4.10: Average and
with/wi

                1 2 3 4 5 6
                         Problem Set

             each problem class by CABINS with/without effect information

              standard deviation of schedule quality results by CABINS
'thout effect information

Average Standard Deviation

WithoutEffect 923.3 1128.4

WithEffect 698.8 867.2



70 CIIAPTER 4. ENHANCING SOLUTION QUALITY

ratio as CABINS with effect information. From the p-value in Table 4.11, Ho can be rejected

at the significance level of O.05. Hence, it is aMrmed that CABINS with effect information

can repair the schedules significantly better than CABINS without effect information.
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Fig. 4.11: Difference of repair ratio between CABINS with/without effect information

(positive values show that CABINS with effect information surpasses CABINS without
effect information)

  The graph in Fig. 4.11 shows the subtraction of the repair ratio of CABINS without
effect information from that of CABINS with effect information for each problem in the

experiment. The graph presents that in a considerable number of problems CABINS with
effect information was superior to CABINS without effect information in terms of repair

ratio.

  Although the effect information turns out to be useful for repairs, it is worth noting that

the use of effect information for case retrieval depends upon the assumption that domain

experts can provide rational evaluation on the effects of repairs, thus making correct effect

information available.

4.4 Summary
  This chapter has shown the following results from a set of empirical studies:

   e CABINS can acquire the control knowledge for enhancing solution quality by storing

     the history of repair trials in the form of cases and re-use it in making a high quality
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  solution for new problems. CABINS has achieved as high performance as its teacher,

  heuristically encoded Rule-Based Reasoner (RBR).

e The solution quaJity by CABINS is significantly better than, or at least as good as

  the solution quality by simulated anneaJing method (SA), which is a well recognized

  revision-based optimization methodology.

e The performance of CABINS does derive partly from its use of past effect information

  in cases, but not from its use of feature salience information for case retrieval.



Chapter 5

Improving Search Efliciency

  Chapter 4 has empirically demonstrated that CABINS can acquire context-dependent
user preferences and exploit them for making a high quality solution through case-based

reasoning. However, no concern has been shown about the eMciency issue in the chapter. In

the real-life problem solving situations, problem solving eMciency should be a big concern.

To improve the eMciency of problem solving, the problem solvers need to have effective

search control knowledge that can eMciently guide the search process to the successful

directions.

Table5.1: Comparison o
repair methods

f averaged quality and eMciency results in Experiment-A by several

WT+WIP TacticApplications
CABINS 698.8 2206.2

RBR 752.4 1229.8

SA(average) 812.6 12568.8

SA(best) 596.3 125688.2

  Table 5.1 shows the average values of the schedule quality and the number of tactic

applications required to repair schedules by CABINS, RBR and SA in the Experiment-A
of Section 4.1. CPU time is not used as a comparison metric since only CABINS relies

on extensive matching for selecting repair actions, which is computationally expensive

in terms of CPU time. In the experiment, the computational cost of executing repair
goals and strategies is negligible since the only thing they do is sorting focal-orders and

focal-aA tivities to regulate the sequence of repair tactic applications. The repair tactic

application involves a real calculation of focal-aÅítivity movement, constraint propagation

and an estimation of repair effects. Hence, the number of repair tactic applications is a

major factor of the computational eMciency for the schedule repair task in the experiment.

73
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The table shows that CABINS applied repair tactics about 809o more than RBR to achieve

similar quaJity of schedules. It indicates that CABINS repeatedly selected ineffective repair

tactics, applied them, restored schedules and selected a new repair tactic for another repair

trial. The random search procedure in SA makes it possible to produce the very high
quality of schedules at its best by the efforts of numerous tactic applications. But, the

average results of SA show that SA is not comparable to RBR and CABINS in terms of
tradeoff between quality and eMciency.

  In ill-structured domains such as job shop schedule repair, even experts do not know how

many different problem features are relevant and necessary to precisely predict the most

successful repair action to be applied to the problem. But, since schedu}ing constraints are

tightly interconnected, the necessary number of features for fully representing a problem

must be very large. As a result, the number of features in the current case representation

of CABINS could be insuMcient. But the number of features needs to be kept moderate,
because if a case has a large number of features, the number of training cases required
for inducing the correct concepts increases drastically (dimensionality problem) [Weiss &

Kulikowski, 1990]. Consequently, with a moderate number of features and training cases,

any inductive learning methods, including case-based learning, cannot avoid making some

wrong predictions. This explains the ineMciency of CABINS in Table 5.1.

  To compensate for the lack of a large number of case descriptive features, repair failure

experieRces in cases can be used for improving predictive accuracy (i.e. retrieve more rele-

vant cases from the case base). The author's hypothesis is that with the help of the past

failure experiences, CBR enables CABINS the followings:

1. Learning to avoid repeating the similar failures that have been experienced before.

2. Learning to avoid wasting lots of efforts for trying to solve too diMcult problems.

In other words, the author assumes that from failure cases CABINS can learn search control

knowledge that shows the above capabilities.

  To analyze the correctness of the above hypothesis, the following three repair methods

were experimentally implemented in CABINS: validated repair, interruptive repair and
hybrid repair. These repair methods were tested using the same problems, objectives and

case bases used for the Experiment--A in Section 4.1.

5.1 Validated Repair

 The validated repair method allows CABINS to apply a repair action only after the
repair action is validated as possibly effective for repairing the current problem. Validation

and justification techniques are widely used in many case-based reasoning systems (e.g.
[Simoudis & Miller, 1990; Hammond, 1989]). In CHEF [Hammond, 1989], whose task is

making a recipe for Chinese dishes, the MODIFIER module checks and alters the retrieved
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plan using a causal model of the domain (i.e. modification rules, critics with knowledge

of goal specific requirements and general pla[n specifications). Hence, a modified recipe

is less likely to fai1 in cooking. In CASCADE and COAST [Simoudis 8e Miller, 1990;
Simoudis & Miller, 1991], which are help desk systems for diagnosis of DEC's software

products, validation process extracts from the case base only those cases that appear to

be closely relevant to the current problem, i.e. improves the accuracy of retrieval using

a validation model of the domain. The validation model comprises the knowledge about
the individual diagnostic test and its expected value for the case to match the current

problem, and the knowledge about interrelations among the tests. The richness of the
validation model enables the eMcient directed search of the vast test space in the above
systems and reduce the cost of search (i.e. number of expensive testings).

  The above systems utilized the established models based on the deep understanding of
their domaiR for validation. However, in ill-structured domains like a job shop scheduling,

neither causal model nor validation model of the domain are readily available. For example,

in the job shop scheduling problem, non-linearity of objectives and tight interactions of

constraints make it hard to predict the effects of a local optimization decision on global

optimality, thus making the analysis of the domain structure required to build a causal

model and a validation model extremely diMcult. Thus, CABINS has to make a validation

of the retrieved case without such models. Compensating for 1ack of these models, CABINS

utilizes past repair failure experiences to evaluate validity of selected repair actions.

          Case-Base
                                     "---t-ee---e--------S-------ttH----t-----------------t"-t-e-------t----t----tt:                                                                l

Fig. 5.1: The validation process in CABINS

  Fig. 5.1 shows the schematic diagram of the validation process in CABINS. First, caridi-

date cases are retrieved from success cases in a case base, which match the current problem

situation. Then, rejecting cases are retrieved from failure cases which match the current

problem and use the same repair actions used in the candidate cases. If the rejecting cases

have little credibility (i.e. Iow similarity to the current problem), the candidate cases are

validated to be possibly effective.

  The validated repair method was implemented and applied to the tactic selection that
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is computationaJly most expensive in CABINS schedule repair process. The repair tactic
selection procedure of the validated repair in CABINS is as follows:

  1. Select k nearest tactic cases of the current problem which succeeded in repair (i.e.

     ca[ndidate cases in Fig. 5.1).

  2. Accumulate the case similarity in the selected k success-cases for each repair tactic

    that was successfully applied in the case.

  3. Sort the repair tactic according to the accumulated similarity.

  4. Until no repair tactic remains in the sorted queue, do the followings:

     (a) Pick up the next repair tactic in the sorted repair tactics.

     (b) Select k nearest tactic cases of the current problem, in which an application of

         the picked-up tactic resulted in failure (rejecting cases in Fig. 5.1).

     (c) Sum up the similarity of the selected k cases.

     (d) If the sum is smaller than pre-define threshold value, return the tactic as a

         validated selection.

  5. Return "give-up" as a repair tactic.

  In the above procedure, CABINS judges the likelihood that a selected repair tactic will

fai1 in the current problem from the past failure experiences of the same tactic. If CABINS

judges that it is not likely to fai1 in the current problem (i.e. there are not enough numbers of

similar failure experiences), CABINS validates the application of the selected repair tactic.

Since in dificult problems such as schedule repair, failures usually outnumber successes,

if the value of the threshold (in step 4(d) of the above procedure) is defined moderately,

overly pessimistic results could be produced (i.e. CABINS seldom validates the tactic). To

avoid this, a threshold value was set as 4.99. Since a value of k was 5 in the experiments

(see Section 3.1), validation rejection was unlikely to occur.

5.1.1 Experiment Results
  Graphs in Fig. 5.2 show the comparison of the repair ratio and the number of tactic

applications for each class of the problems by RBR, CABINS and CABINS with the vali-
dated repair. Table 5.2 and Table 5.3 show the average and standard deviation of schedule

quality and tactic applications number over sixty problems respectively. The results in the

graphs and the tables show that CABINS with the validated repair improved its eMciency
about 58% from original CABINS without unduly sacrificing the schedule quality. And

it seemed that CABINS with the valid repair was even faster than RBR. The superiority
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Fig. 5.2: Effects on repair ratio and eMciency results

ment-A by the validated repair in CABINS

Table 5.2: Average and standard deviation of quality

validated repair in CABINS

: -RBR
ve-= :CABMS --

-=-= - ==CABrvSwtValidtiedRcpair

-- e t-------H-- -t-

-m= --

-=-=- --=-

.---. ---"t-t . . t- --------- -t-t--"" "--= t-= - --= -= - --= - -# --= m-= - -= 1-= -w"' - - ---- -s- r`" --

-= - -= - m-= --= - -= - t= ---= -- -= -= -= --.
--

--- -E - --E -=.g- : -t-

-= -= -= -= 1-= -=-= -= eD= -= --- -=-= -= -= -= -= -=e• •a• .--. •=p• ---. .-- ----= -= -= -= "= n=-= -= -= -= -= -=-= -= -= -= -= -=-=-. -= t-= -=-- -= -=. - . . . "-- - - - - e-= -= -= -= -= -=-= -= -= -= -= -=-= -= --= -= -= -=- " . -b-- ---- .mi-- - .JMi-- -n-- .-- ---

-= -= -= -= -= -=-= -= -= -= -= e=-= -= -= -= -= -=- - --=. 1-=. ---. --- --- . . . . "--1= -= -= -= -= -=-= -= -= e= m= -=--= -= -= -= --= -=m= m= -= -= -= -=-. -- --- .- --=- -- --"- .' --t

-= -= -= -= -= -=-= -= -= -= -= -=-= -= -= -= -= -=-e-

e-
----

--
.-Mi-1-

- .mi'-- -s--- '!i-I- ---

-= -= -= e= -= -=-= -= -= -= -= -=-= -= -= -= -= -=- - - - - -

-------

--- -RBR
-

e-
:CABrvS-

-- -- =- CABMSvlVali`inedRcptir

- -- -- - m -- - - -- - eel -' "t t "-. "---- . .

- - - - -- - - - .- - - - - -- - - - ' -- - - - - -- m - - - -- - - - ' p- ' ' - - -- - - - ' -.---.-... -"-". .-- -".----t- .""-. .

- - - - - -- - - - - ee - - Ml - -- - - ' - -- - - - - -- - - - ' '-= - - - - --= - -= - - --= - -= - - e-x t -= - - --=- ---- =- -"--- "-. -""" "-' iili'"" ---

-= -= 1-= - 11e --m -= m= - - --= t-= -= - - --= -= -= -- -= --= e= -= -= -= -t-= -= -= -= -= --= -= -= -= -= --= -= -= -= -= --= --= IM= -= -= --e- -e- -e- -wh• '-r" ---

-= N= -= e= --- -=-= -= -= e-= -= -=-= -= e= -= e= -=-= -= -= -= -= -=-= e-= -= -= -= -=--- -= -= --= -e- -=-= -= -= -= -= -=-= -= -= e-= -= -=-= -= -= -= -= -1=- - - - - -
   2

of each

results
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problem class in

in Experiment-A

6

Experi-
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Average Standard Deviation

RBR 752.4 955.4

CABINS' 698.8 867.2

CABINS w/ Validated Repair 751.1 923.1

Table 5.3: Average and standard
vaJidated repair in CABINS

deviation of eMciency results in Experiment-A by the

Average Standard Deviation

RBR 1229.8 1288.1

CABINS 2206.2 2287.0

CABINS w/ Validated Repair 920.3 976.2
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Table 5.4: Problem solving eMciency test between CABINS with several repair methods

and RBR by Etzioni's signed rank test; evaluation of the validated repair method

CABINS w/ VaJidated Repair vs RBR 4.44 o.oo

of CABINS with the vaJidated repair to RBR in repair eMciency is examined by Etzioni's

hypothesis test.

  Table 5.4 shows the reference measure and p-value of the experiment results. The null

hypothesis states that CABINS with the validated repair can repair schedules at least as

fast as RBR. From the p-vaJue in Table 5.4, Ho can be rejected at the significance level of

O.05. Hence, it is aMrmed that there is a significant evidence in favor of the observation

that CABINS with the validated repair can repair the schedules faster than RBR.
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Fig. 5.3: Difference of tactic application numbers between RBR and CABINS with the
vaJidated repair (positive values show that RBR applied more tactics than CABINS with
the validated repair)

  The graph in Fig. 5.3 shows the subtraction of the tactic application number of CABINS

with the validated repair from that of RBR for each problem in the experiment. The graph

presents that in a considerable number of problems CABINS with the validated repair was

superior to RBR in terms of the number of tactic applications.
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5.2 InterruptiveRepair
  The interruptive repair method allows CABINS to shift its repair attention to another

problem when the current problem seems too dificult to be solved. CABINS gives up a
further repair when it determines that it would be a waste of time. To determine whether

to give up a further repair, failure cases are utilized again. If there are enough failure cases

in the past similar situations to the current one, CABINS gives up repairing the current

problem, and switches its attention to another problem.

          Case-Base

Failure Cases

Success Cases

tndex ""
    ---"

Problem Descriptions

Retriev,b

lndex
-tt

Retriove

Interruption

                  Fig. 5.4: The interruption process in CABINS

  Fig. 5.4 shows the schematic diagram of the interruption process in CABINS. In the
process, first interrupting cases are retrieved from failure cases which match the current

problem situations. If the interruptive cases have high credibility (i.e. high similarity to

the current problem), the succeeding process of retrieving candidate cases for finding a

possible solution to the problem is not allowed to proceed. Then the problem solver seeks

for another problem to be solved.

  The repair tactic selection procedure of the interruptive repair in CABINS is as follows:

  1. Select k nearest tactic cases of the current problem which failed in repair (i.e. inter-

     rupting cases in Fig. 5.4).

  2. Accumulate the similarity of the the selected k failure-cases.

  3. If the sum exceeds the pre-defined threshold value, return "give-up" as a repair tactic.

     Otherwise, select k nearest tactic cases of the current problem which succeeded in

     repair (candidate cases in Fig. 5.4 - these are same with the candidate cases in

     Fig. 5.1).

  4. Accumulate the similarity of the case in the selected k success-cases for the repair

     tactic that was successfully applied in the case.
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5. Sort the repair tactic according to the accumulated similarity.

6. Return the first repair tactic in the sorted repair tactics as a selected repair tactic.

  In the above procedure, CABINS judges the likelihood that a current problem cannot be

repaired from the failure experiences in the past similar problems. If CABINS judges that

the current problem is not likely to be repaired (i.e. there are enough numbers of failure

experiences in the similar problems), CABINS gives up repairing the current problem. As

was discussed in the validated repair method, in diMcult problems such as schedule repair,

failures usually outnumber successes and if the value of the threshold (in step 3 of the

above procedure) is defined moderately, overly pessimistic results could be produced (i.e.

CABINS suggests giving up too often). To avoid this, a value of the threshold was set as

4.99.

5.2.1 Experiment Results
  Graphs in Fig. 5.5 show the comparison of the repair ratio and the number of tactic

applications for each class of the problems by RBR, CABINS and CABINS with the inter-
ruptive repair. Table 5.5 and Table 5.6 show the average and standard deviation of schedule

quality and tactic application numbers over sixty problems respectively. The results in the

graphs and the tables show that CABINS with the interruptive repair improved its eM-
ciency about 46% from original CABINS while maintaining high schedule quaJity. One
potential reason for these results is that, as described in section 1.1, the effects of schedd-

ule repair are pretty unpredictable and there is a good chance that another application of

repair tactic may make the problem, which once judged diMcult, easier by changing the

existing schedule fundamentaJly so that CABINS can go back to the problem afterwards

and repair it without wasting much effort.

  And CABINS with the interruptive repair seemed to be slightly more eMcient than RBR.

This observation is tested by the hypothesis test.

Table 5.7: Problem solving eMciency test between CABINS with several repair methods
and RBR by Etzioni's signed rank test; evaluation of the interruptive repair method

CABINS w/ Interruptive Repair vs RBR O.67 O.25

  Table 5.7 shows the reference measure and p-value of the experiment results. The null

hypothesis states that CABINS with the interruptive repair can repair schedules at least as

fast as RBR. From the p-vaJue in Table 5.7, Ho cannot be rejected at the significance level

of O.05. It cannot be concluded that CABINS with the interruptive repair is more eMcient
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Fig. 5.5: Effects on repair ratio and eMciency results

ment-A by the interruptive repair in CABINS

Table 5.5: Average and standard deviation of quality

interruptive repair in CABINS
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Average Standard Deviation

RBR 752.4 955.4

CABINS 698.8 867.2

CABINS w/ Interruptive Repair 724.3 907.2

Table 5.6: Average and standard
interruptive repair in CABINS

deviation of eMciency results in Experiment-A by the

Average Standard Deviation

RBR 1229.8 1288.1

CABINS 2206.2 2287.0

CABINS w/ Interruptive Repair 1186.8 1257.0
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than RBR. (The opposite cannot be aMrmed either.) Nevertheless, eMciency improvement

of CABINS by the interruptive repair is apparent.
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Fig. 5.6: Difference of tactic application numbers between RBR and CABINS with the
interruptive repair (positive vaJues mean that RBR applied more tactics than CABINS
with the interruptive repair)

  The graph in Fig. 5.6 shows the subtraction of the tactic application number of CABINS

with the interruptive repair from that of RBR for each problem in the experiment. The

graph presents that in some problems CABINS with the interruptive repair was superior to

RBR in terms of the number of tactic applications, but in other problems RBR surpassed

CABINS with the interruptive repair.

5.3 Hybrid Repair

  As was explained in the previous sections, the validated repair method and the interrup-

tive repair method exploit past failure experiences in the different phase of case retrieval

for speeding up the repair process. Hence, the hybrid repair method can be devised in a

straightforward fashion by combining these two repair methods. The repair tactic selection

procedure of the hybrid repair in CABINS is as follows:

  1. Select k nearest tactic cases of the current problem which failed in repair.

2. Accumulate the similarity of the the selected k failure-cases.
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3. Ifthe sum exceeds the pre-defined threshold value, return "give-up" as a repair tactic.

  Otherwise, select k nearest tactic cases of the current problem which succeeded in

      .  reparr.

4. Accumulate the similarity of the case in the selected k success-cases for the repair

  tactic that was successfully applied in the case.

5. Sort the repair tactic according to the accumulated similarity.

6. Until no repairtactic remains in the sorted queue, do the followings:

   (a) Pick up the next repair tactic in the queue.

   (b) Select k nearest tactic cases of the current problem, in which an application of

       the picked-up tactic resulted in failure .

   (c) Sum up the similarity of the selected k cases.

   (d) If the sum is smaller than pre-define threshold value, return the tactic as a

       validated selection.

  7. Return "give-up" as a repair tactic,

In the above procedure, the thresholds (in step 3 and step6(d)) are set with the same value

as in the validated repair and the interruptive repair.

5.3.1 Experiment Results
  Graphs in Fig. 5.7 show the comparison of the repair ratio and the number of tactic
applications for each class of the problems by RBR, CABINS and CABINS with the hybrid
repair. Table 5.8 and Table 5.9 show the average of schedule quality and tactic applications

number over sixty problems respectively. The results in the graphs and the tables show that

CABINS with the hybrid repair improved its eMciency about 659o from originaJ CABINS

without damaging the schedule quality.

  The results aJso suggested that CABINS with the hybrid repair produced high quaJity

schedules more eMciently than RBR. The superiority of CABINS with the hybrid repair
to RBR in repair eMciency is examined by Etzioni's hypothesis test.

  Table 5.10 shows the reference measure and p-value of the experiment results. The null

hypothesis states that CABINS with the hybrid repair can repair schedules at least as fast

as RBR. From the p-value in Table 5.10, Ho can be rejected at the significance level of

O.05. Hence, it is aMrmed that there is a significant evidence showing that CABINS with

the hybrid repair can repair the schedules faster than RBR.

  The graph in Fig. 5.8 shows the subtraction of the tactic application number of CABINS

with the hybrid repair from that of RBR for each problem in the experiment. The graph
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Fig. 5.7: Effects on repair ratio and eficiency
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Average Standard Deviation

RBR 752.4 955.4

CABINS 698.8 867.2

CABINS w/ Hybrid Repair 753.4 924.1

Table 5.9: Average and standard
hybrid repair in CABINS

deviation of e Mciency results in Experiment-A by the

Average Standard Deviation

RBR 1229.8 1288.1

CABINS 2206.2 2287.0

CABINS w/ Hybrid Repair 776.6 831.1
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Table 5.10: Problem solving eMciency test between CABINS with several repair methods
and RBR by Etzioni's signed rank test; evaluation of the hybrid repair method

CABINS w/ Hybrid Repair vs RBR 6.10 o.oo
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Fig. 5.8: Difference of tactic application numbers between RBR and CABINS with the
hybrid repair (positive vaJues mean that RBR applied more tactics than CABINS with the

hybrid repair
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presents that in a considerable number of problems CABINS with the hybrid repair was
superior to RBR in terms of the number of tactic applications.

5.4 Effects of Using Failure Cases in CABINS

  The ways to use failure cases in the validated repair and the interruptive repair seem

to be independent to each other and compatible. To anaJyze the effects of combining two

repair methods in the hybrid repair, the tactic application numbers of the validated repair

and the interruptive repair were compared with that of the hybrid repair.

Table 5.11: Problem solving eMciency test between CABINS with several repair methods
by Etzioni's signed rank test

HybridRepairvsVaJidatedRepair 6.29 o.oo

HybridRepairvsInterruptiveRepair 6.46 o.oo

 Table 5.11 shows the results of Etzioni's hypothesis test in which the null hypotheses

state that CABINS with the validated repair arid CABINS with the interruptive repair
can repair schedules at least as eMciently as CABINS with the hybrid repair. From the
p-values of Table 5.11, both Ho's can be rejected at the significance level of O.05.

  The graph in Fig. 5.9 shows the subtraction of the tactic application number of CABINS

with the hybrid repair from that of CABINS with the validated repair for each problem in

the experiment. And the graph in Fig. 5.10 shows the subtraction of the tactic application

number of CABINS with the hybrid repair from that of CABINS with the interruptive
repair for each problem in the experiment. The both graphs present that in a considerable

number of problems CABINS with the hybrid repair was superior to both CABINS with
the validated repair and CABINS with the interruptive repair in terms of the number

of tactic applications. Consequently, it is acknowledged that CABINS with the hybrid

repair is more efficient than CABINS with the interruptive repair and CABINS with the

validated repair. Therefore, by combining the validated repair and the interruptive repair,

a synergistic effect emerges in improving the repair process eficiency.

  Experiment results in the previous sections show that failure cases can contribute to

reducing the number of tactic applications in CABINS. But the reduction by the three
repair methods (i.e. validated repair, interruptive repair and hybrid repair) is derived from

the more elaborated case retrieval procedure of exploiting failure cases, which is computa-

tionally more expensive, than that of originaJ CABINS. Hence, superiority of these repair

methods of using failure cases to CABINS in eMciency needs to be evaluated in terms of

CPU time spent on repairing schedules.
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Table 5.12: Number of tactic applications and CPU time of CABINS with severaJ repair

methods

Tactic Applications CPU time (sec)

ValidatedRepair 920.3 435.9

InterruptiveRepair 1186.8 528.1

HybridRepair 776.6 424.1

  Table 5.12 presents that averaged CPU time results of repairing sixty scheduling problems

by CABINS with three repair methods are smaJler than that of CABINS. The ratio of CPU

time reduction is much smaller than that of the tactic application number because the more

complicated case retrieval processes of using failure cases kill the effect of tactic number

reduction in terms of CPU time. This can be further explained by the fact that the number

of failure cases is much greater than that of success cases, which makes the case retrieval

process of utilizing failure cases even more expensive than that of using only success cases.

5.5 Summary
  This chapter has shown the following results of a set of empirical studies in terms of

learning search control knowledge for improving problem solving eMciency.

   e CABINS can acquire the control knowledge for improving its problem solving eM-

    ciency by means of the past failure information for validating a use of a selected

    repair tactic to avoid repeating similar failures. CABINS with the vaJidated repair

    has achieved high quality schedules more eMciently than RBR.

   e Another repair method (the interruptive repair) that exploits the failure experiences

    to switch repair attentions when faced to the diMcult problems. The experimental
     results have shown that CABINS with the interruptive repair has outperformed the

     repair efficiency of RBR.

   o The hybrid repair method, which combines the above two repair methods, can further

     improve the repair eMciency of CABINS.

  The author believes that the uses of CBR in the space of failures that have been shown

in this chapter are domain independent methods of learning search control knowledge
that allow the problem solver to improve its eMciency while preserving solution quality in

domains without strong domain knowledge.



Chapter 6

Scaling-Up a Case Base

  The source of power in CABINS definitely derives from its case base. With a suMcient

number of cases in the case base, CABINS can produce high quality of solutions in an
eMcient way. In AI research, it is generally believed that "the power of an intelligent

program to perform its task well depends primarily on the quantity and quality of knowledge
it has about that task" [Buchanan 8i Feigenbaum, 1982]. But, how true is this proposition?

Does the quality of solutions improve linearly with increase of the available knowledge? Or,

how about the eMciency of problem solving? This chapter discusses about the cost and

profit of having more cases in CABINS in terms of solution quaJity and problem solving
eMciency. Although the costs of having more cases include the cost of acquiring cases (i.e.

cost of human experts involved in case acquisition) and the cost of storing cases (i.e. cost of

memory resource), they are not treated as critical issues in this thesis. The reasons are as

follows: (1) In CABINS, no special interaction is required to a human expert for acquiring

a new case, since al1 of the information elicited from a user for a new case (i.e. repair action

selection, result evaluation and effect estimation) is acquired in the course of plain problem

solving by the user. (2) The cost of memory device is decreasing drastically and becoming

less critical in the design of the intelligent system.

  From the viewpoint of knowledge acquisition, an interesting question is when knowledge

acquisition can be terminated because suficient knowledge has been acquired to enable high

quality performance of a knowledge-based system. For case-based knowledge acquisition,
this question becomes how many cases would be enough for guaranteeing overal1 satisfactory

performance of the case-based system. Unfortunately, it is very diMcult to answer this

question in general owing to the ill-structuredness of the problem and the approximate
nature of CBR (since no causal model is available). The author believes, however, that there

exists some appropriate size of the case base which will give relatively satisfactory results

in terms of solution quality and problem solving eMciency without excessive overhead for

case acquisition and case retrieval from the case base.

  In the fo11owing sections of this chapter, firstly the effect of case base size in CABINS is

empirically investigated in terms of solution quality and problem solving eMciency. Then,
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the optimal size of a case base will be discussed from the viewpoint of overal1 problem

solving performance. In the experiments of this chapter, the behavior of CABINS and that

of CABINS with the hybrid repair are compared using the same problems, objectives and

case bases that were used for the Experiment-A in Section 4.1.

6.1 Effect of Case Base Size on Quality

  Increase of case base size might have beneficial or harmful effects on the CABINS per-

formance in terms of solution quality. The possible explanations of these effects are as
follows:

   o Better quality solutions: After having new cases that successfully repaired the novel

     problems, CABINS increases possibility of improving solution quality by later re--

     using these cases for similar problem situations.

   e Poorer quality solutions: There are two explanations that additional cases can have a

    deleterious effect on the quality of solutions found by CABINS. One is that incorrect

    cases may lead CABINS to produce poorer solutions. The other is that increase of
    the number of failure cases in the case base can force CABINS with the hybrid repair

    to give up further exploration for better solutions even when there is a good chance

    to find some.

  The graph in Fig. 6.1 compares the performance of CABINS with different sized case

bases in terms of solution quality. The comparison baseline is the performance of RBR.
The comparison was calculated as:

                          Repair-Ratio-by-CABINS
                            Repair-.Ratio-by-RBR

Thus, a value greater than 1.0 indicates that the solution produced by CABINS at the

indicated case base size exceeded the solution quality produced by RBR. In the graph,

the results of every 100 cases increment are plotted until the size of case base exceeds

2000 and then the results of every 1000cases increment are plotted until 8000 are shown.

And the graph in Fig. 6.2 compares the performance of CABINS with the hybrid repair
in the same way. To get the case bases of different sizes, an appropriate number of cases

for each problem class were randomly selected and deleted from the case base used in
the Experiment-A in Section 4.1. This method of generating a new case base by random
deletion of cases from a bigger case base is similar to the ablation study performed in
[Bareiss, 1989].

  From the graphs, the schedule quality is found to improve with increased case base size.

However, the marginal payoff from the increase in case base size decreases. This can be

explained partially by the fact that some number of cases (say, 2000 cases) capture well
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charaÅíteristics of the user preference model in CABINS that is created by the records of

solution evaluations by the user in the various problem contexts, and additional 1000 new

cases may give much redundant information. When the size of case base is relatively smal1,

every time new cases are acquired, information about a different part of the model is added

and improves the capability of CABINS producing solutions of better quaJity. In addition,

the graphs indicate that the solution quality produced by CABINS does not degrade with

increase of case base size because al1 the cases in CABINS are "correct" in the sense that

human experts can always evaluate the result of repair action applications correctly in a

consistent way. In other words, CABINS has no case which has the wrong evaluation of
the repair result. And there is no significant difference in the behavior of CABINS and

CABINS with hybrid repair. Therefore it is concluded that the size of case base in CABINS

can improve the solution quality only at the early stage of case accumulation. Neither

deleterious nor favorable effect on solution quality can be found by further accumulation

of cases.

  Section 4.3.1 compared the solution quality by two types of the CABINS implementation

that caJculates the feature distance withlwithout feature salience in a class of the selected

repair action. In that section, the experiment results did not well verify the author's

hypothesis: the results without featuTe saJience were of comparable quality to the results

with feature salience. In the section, to explain the results of the experiment, the author

made an assumption that even CABINS without feature salience information could make
high quality solutions because a large number of cases (more than 8000 cases) were available.

  The graph in Fig. 6.3 shows the difference of the solution quaJity between CABINS with

feature salience and CABINS without feature saJience in terms of the comparison to RBR

performance. The difference of the solution quality was calculated as:

           Repair.Ratio- With..Salience - Repair-Ratio- Without-Salience

                         Repair-Ratio-With-Salience

Hence, the positive values in the graph indicate that CABINS with feature saJience pro-

duced the better solutions than CABINS without feature salience. The graph indicates
that, when the size of a case base is smal1 (i.e. about less than 1000), the performance

of CABINS with feature salience is usually much better than CABINS without feature
salience. Hence, it is concluded that the feature salience information is effective for im-

proving the quality of solution especially when only a smal1 number of cases are available.

6.2 Effect of CaseBase Size on Efliciency

  Increase of case base size mi

formance in terms of problem
effects are as follows:

ght have beneficial or harmful effects on the CABINS per-

solving eMciency, too. The possible explanations of these



6.2. EFFECT OF CASE BASE SIZE ON EFFICIENCY 93

'i!"

--N=o
.k
as

amc
6
8
s
g.

o

 O.3

O.25

 O.2

O.15

 O.1

O.05

   o

-O.05

 -O.1

                   O 1000 20oo 3000 4000 50oo 60oo 7000 8000
                                    Case-Base Size

Fig. 6.3: Effect of case base size on quality difference by CABINS with/without salience

information

   e More eMcient problem solving: By increasing the number of failure cases, the number

     of different failure types that become known to CABINS increases. Hence, CABINS
     with the hybrid repair can avoid repeating a large variety of failures, thus reducing

     the search time.

   e Less eMcient problem solving: There are two explanations that additional cases can

     worsen the search eMciency of CABINS. One is that irrelevant cases may suggest
     CABINS to expand the search tree in fruitless directions. The other is that more

     cases require more time for retrieval of the matching cases.

  In this section, we take a number of repair tactic applications as an indicator of the

problem solving eMciency by CABINS. In other words, we do not take into consideration
of the case retrieval time for problem solving eMciency in this section. The problem of

trading off the increased case retrieval cost and the reduced search cost from the viewpoint

of the problem solving efficiency will be discussed in Section 6.3.

  The graph in Fig. 6.4 compares the performance of CABINS with different sized case
bases in terms of number of tactic applications. The comparison baseline is the performance

of RBR. The comparison was calculated as:

                         Tactic-Applications-by-CABINS
                           Tactic-Applications.by-RBR

Thus, the value less than 1.0 in the graph indicates that problem solving by CABINS at

the case size was more eMcient than RBR. In the graph, the results of every 100 cases
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increment are plotted until the size of case base exceeds 2000 and then the results of every

1000 cases increment are plotted until 8000 are shown. And the graph in Fig. 6.5 compares

the performance of CABINS with the hybrid repair in the same way. The case bases of
different sizes are created in the same manner with the experiments in Section 6.1.

  The graph in Fig. 6.4 shows that CABINS does not improve nor deteriorate the prob-
lem solving eMciency with the increase of cases. This is because the acquired cases in

CABINS are aJways "correct" and do not suggest any irrelevant search effort for solution

improvement. However, the graph in Fig. 6.5 shows that CABINS with the hybrid repair
can improve its problem solving eMciency drastically in accordance with the increase of

case base size. This result indicates that CABINS with the hybrid repair acquires effective

search control knowledge for speeding-up through the accumulation of cases. The search

eMciency reaches a stationary value after a large amount of cases (about 6000 cases) are

acquired. This can be explained by the more complicated nature of the repair control
model which is created by the history of the repair action selections and their results in

the different problem situations. More diversity of cases are required to create the repair

control model than the cases that merely build the user preference model.

6.3 What Is Optimal Case Base Size2
  The more cases are gathered, the more time is required for matching cases in case re-

trieval. Since, cases of the same class are basically structured flat in the form of a simple

linear list in CABINS (see Fig. 2.3), the time for case retrieval increases linearly as the size

of the case base grows. Fig. 6.6 shows the CPU time for a single case retrieval in CABINS

with the hybrid repair method.

  To find an optimal size for the case base, the tradeoff between increase of the case retrieval

time and decrease of the repair action applications need to be balanced in aÅícordance
with growth of the case base size. The generalized form of this problem is called the
utility problem [Minton, 1988] in machine learning research. As is experimentally shown in

Fig. 6.6, the case retrieval time increases linearly with the increase of case base size. Thus,

the case retrieval time can be formulated as:

                            Retrieve-Time = Size Å~ Tr

where Retrieve-Time is the time required for each case retrieval, Size means the size of

the case base and T. is case retrieval time from a unit case base with a single case (i.e. a

gradient of the graph in Fig. 6.6).

  Since, in CABINS repair process, the total number of repair goal/strategy selection is less

than 10% of the number of repair tactic applications and the process of repair goal/strategy

is computationally negligible as compared with repair tactic process, it can be assumed that

CABINS' execution time should mostly derive from the time for tactic selections, tactic
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applications and result evaluations. Since the time required to execute a repair tactic is

irrelevant to the case base size and can be modeled as a constant, and a case needs to be

retrieved once for a repair tactic selection and once for a result evaluation, the time of the

entire repair process by CABINS is formulated as:

          Repair-Time = Tactic.Applications Å~ (T. +2 Å~ Retrieve-Time)

                       = Tactic-Applications Å~ (T. +2 Å~ Size Å~ T.)

where Repair-Time stands for the total time for repair by CABINS, Tactic-Applications

means the number of repair tactic applications and T. is the average time of one repair

tactic application.

  The graph in Fig. 6.7 shows the simulated CPU time results for CABINS with the hybrid

repair, which are based on the experiment results in Fig. 6.5. Three lines in the graph depict

the results under the different value assignments of T.. The value of T. was calculated from

the graph in Fig. 6.6. When a repair tactic application is considered to be a computationaJly

light process, the totai execution time of CABINS is dominated by the case retrieval time

and increases linearly with the increase of case base size. In this situation, the optimal case

base should be a minimal case base that can produce high enough quality solutions (a case

base with around 2000 cases in the experiments). If the time for a repair tactic application

is moderate, the execution time of CABINS does not change much in accordance with the
increase of cases. The best case base for this situation should be any case base that can

produce high quality solutions without deteriorating the problem solving eficiency (a case

base whose size is from 2000 to 6000 cases in the experiments). And, if the repair tactic is
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a computationaJly expensive process, CABINS execution time is mainly influenced by the

time for repair tactic applications. The optimal case base in this context should be the
case base that has fully acquired search control knowledge for eMciency improvement (in

the experiments, a case base with about 6000 cases). As a result, optimality of the case

base size changes with the tradeoff between the computational cost of case retrieval and

that of a repair action application.

  The graph in Fig. 6.8 depicts the CPU time for execution of CABINS with the hybrid
repair endowed with the different sizes of the case base. The graph shows that CPU time

increases almost monotonously with the increase of case base size. This is because the

repair tactic application in CABINS is computationally non-expensive. As was explained

in Section 3.2.1, CABINS repair tactic invokes the simple constraint propagation process
to move the focal-activity and resolve the constraint violations caused by the move. And

in the smal1 job-shop scheduling problem used in the experiments (i.e. scheduling of ten

orders, fifty activities and five resources), the constraint propagation can be executed very

eMciently.
  The graph in Fig. 6.9 [Sycara 8i Miyashita, To be published] presents the CPU time for

execution of the old version of CABINS [Miyashita & Sycara, 1994d; Miyashita & Sycara,

1994c]. The graph shows that CPU time is minimized when the case base has about 1000

cases in it. This can be explained from the fact that in the old version of the CABINS

implementation, the repair taÅític is implemented as the constraint satisfa,ction process
based on the heuristics in [Sadeh & Fox, 1990] (see [Miyashita & Sycara, 1994bl for more
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details about repair tactics in the old version of CABINS). Since the constraint satisfaction

technique used in the old CABINS heavily relies on the backtrack based search, the repair

tactic process was computationally expensive.

  These experiment results could give good evidence that the author's hypothesis shown
in Fig. 6.7 was correct concerning to the relation a[rnong the total execution eMciency, cost

of repair tactics and the size of a case base.

6.4 Summary
  This chapter has shown the effects of case accumulation in CABINS' problem solving
performance. The following results have been empirically demonstrated:

   e CABINS improves its solution quality with the increase of cases. But with a relatively

     smal1 size of the case base (about 2000 cases), the quality improvement saturates.

   e With the increase of cases, CABINS with the hybrid repair improves its problem

     solving eMciency in terms of the number of tactic application. For learning the
     control knowledge to improve its search eMciency to the utmost, CABINS with the
     hybrid repair requires a large number of cases (around 6000 cases).

  Then, at the end of the chapter, the optimal size of the case base has been discussed.

It has analytically been hypothesized that the optimal size of the case base should be

determined to balance the tradeoff between case retrieval cost and repair action application

cost. The quantitative analysis on the utility of the case base has been made in terms of

solution quality and problem solving ethciency in the job shop scheduling problem and

validated the hypothesis.



Chapter 7

Related Research

  As was explained in the previous chapters, CABINS has novel contributions in the three

areas of case-based reasoning, knowledge acquisition & machine learning, and scheduling

& planning. This chapter analyzes the related research in these areas and compares it with

CABINS.

7.1 Case-BasedReasoning

  The repair-based method in CABINS is related to the repair-based methods that have
been previously used in case-based planning systems (e.g. [Hammond, 1989; Kambhampati

& Hendler, 1992; Veloso, 1992]). But, previous case-based systems for incremental solution

revision have been motivated only by concerns of computational eMciency, preserving plan

correctness rather than improving plan quality, and have assumed the existence of a strong

domain model that provides feedback as to plan correctness.
  CHEF [Hammond, 1989] is one of the first planning systems that utilize case-based

reasoning methodology. CHEF's initial input is a set of goals to include different tastes

and ingredients in a type of dish. At the first step, CHEF tries to anticipate any problems

that might arise in a plan by means of a memory of past failures that is linked to the

features that participated in causing the failures. And then, CHEF searches for a plan

that satisfies as many of its current goals as possible while avoiding the problem that it

has predicted. CHEF alters the plan it has found to satisfy any goals from the input that

are not yet achieved with the help of the domain-specific modification rules (e.g. To use

chicken as an ingredient, add boning step before chopping it). Once it completes a plan,

CHEF runs a simulation using a set of domain causal rules. If any goal is unsatisfied or any

unfavorable state is detected by the simulation, CHEF builds a causaJ explanation of why

the failure has occurred using its understanding of the domain causality. The explanation

of the failure is used to find the different strategies for repairing it. Along with repairing a

plan, CHEF repairs its memory structure so that it will not make the same mistake again.
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CHEF does this in two ways : one is to store the repaired plan so that it can be used again,

and the other is to figure out which features should be blamed for a failure using the same

causal explanation used for repairing the plan so that CHEF can anticipate this failure in

later inputs. Thus, CHEF depends on the rich domain knowledge and the complete causaJ

model of the domain for its repair capability.
  PRJAR system [Kambhampati & Hendier, 1992] can modify existing plans, which are
build by the hieraTchical nonlinear planner based on NONLIN [Tate, 19771, to accommo-

date a variety of externally imposed constraints. Their method is formalized as a process

of removing inconsistencies in the causal and teleological structure of the plans called val-

idation structure. At the first step, PRIAR maps the objects of a plan in its plan library

to the objects of a new planning problem and marks the inconsistencies in the mapped
plan. And then these inconsistencies are resolved by a variety of repair methods. And fi-

nally, PRIAR reduces a resultant plan into an executable one. Since PRIAR is based upon

formalization of the hierarchical nonlinear planner, its approach for plan modification is
formal and domain-independent. And, Veloso [Veloso & Carbonell, 1992] has developed the

similar system which combines the general problem solver based upon means-ends analy-
sis (PRODIGY [Minton et al., 1989]) and derivational analogy method [Carbonell, 1986].

While PRIAR puts its emphasis only on the systematic modification on the existing plan

to meet the specifications of a new problem, her system learns to retrieve a better past

case by improving similarity metrics from the interaction with the general problem solver.

  Because both systems are based on the hypothesis that the plan built by their planner is

causally and teleologically correct, failures arising from the incompleteness of the plamner's

domain knowledge cannot be rectified. And, in both systems there is no guarantee that
the modified plan is (at least) as preferable as the plan that might have been found by

planning from scratch. The goal of the systems is to find the satisficing plan eMciently

rather than to find the optimal plan.

  In the realistic problems such a factory scheduling problem, as any human expert cannot

be expected to have the complete knowledge of the domain, the complete causal structure of

the problem can't be deduced. And complete causal model, if any, might be too complicated

to be eMciently exploited because of tight constraint interaction in the problem. And,

since there are lots of favorable measures to evaluate "goodness" of the solutions, repairs

are necessitated to compensate for the inadequacies of a generative method not only in
satisfactoriness but also in optimaJity. From the above reasons, the primary motivation

of CABINS is to automatically enhance the domain model and improve the quality of
resultant solutions as well as improving the problem solving eMciency.
  CYCLOPS [Navinchandra, 19911 is an integrated architecture of constraint satisfaction

/ optimization and case-based reasoning for multi-objective optimization problem solving

to support a human designer in making an innovative conceptual design. In addition to
searching an optimal solution, CYCLOPS explores to find some sub-optimaJ solutions by

relaxing some of given design criteria. If a design alternative is found, CYCLOPS tries to
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find new criteria (such as exceptionally good view of the lake) in it, which may change the

designer's view to the design, by reminding a similar case from the past experience. This

emergence of new criteria is thought to be a source of innovation. And, if CYCLOPS finds

that the alternative solutioB has "unfavorable" problems by matching with the precedents

and the domain rules, the system seeks the precedent case which solved the similar problems

and applies the adapted solution ofthe case to the current situation. CYCLOPS has many

aspects common with CABINS in its concept. But, since CYCLOPS is intended to work
as an interactive system with a human designer, the system requires lots of help from its

user in selecting the best case, evaluating a repair result, dealing with a repair failure and

avoiding an infinite loop of repair cycle.

  CABINS is also related to to the previous case-based knowledge acquisition systems (e.g.

SIZZLE [Offutt, 1988], Protos [Bareiss, 1989]). SIZZLE is a tool for building expert systems

whose problem solving method is extrapolate-from-a-similar-case. SIZZLE elicits two kinds

of know}edge from a domain expert: (1) a collection of problems and their associated expert-

validated solutions, and (2) knowledge about how to vary a solution in an appropriate

manner as a function of variation of the corresponding problem. These types of knowledge

are exploited to find a solution of a input problem as follows: first the most similar past

problem to the input problem is retrieved from a case base that stores a collection of

problem-and-solution pairs, and then a solution of the retrieved problem is extrapolated

based on differences between the input problem and the retrieved problem. But in many
real-world problems with a complex causality, simple extrapolation of solutions cannot

produce good solutions because mapping between case feature space and solution space
cannot be well formulated and a size of an available case base is always too small to find a

close enough case for input problems. In those ill-structured problems, a search procedure

is required to derive a high quality solution of a given problem from a candidate solution.

Exploiting past experiences, CABINS acquires the control knowledge for producing better

solutions through search and improving search eMciency.
  Protos is a case-based classifier system under the guidance of a human teacher. When

presented with the description of an entity to be classified, Protos attempts to recal1 a

past case and to explain its similarity to the given entity. When a human teacher decides

that Protos fails to correctly classify or adequately explain a result, Protos interacts with

the teacher to obtain the correct classification and an explanation of why it is correct.

Protos learns by selectively retaining cases and the explanations in its knowledge base.

Protos addressed many important aspects of case-based learning, such as learning indexing,

learning additional domain knowledge, generalization of cases and selective retention of

cases. But its strength is largely dependent upon its confinement'of the domain to a
classification task and its teacher's capability to formulate appropriate explanations and to

present them to the system in the predefined explanation language. In the ill-structured

domain, the approach of Protos cannot be applied because there is no explicit relation
between case features and underlying reasons of user'sjudgment about modification results.
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In CABINS' approach neither the user nor the program are assumed to possess causal
domain knowledge. The user cannot give a solid explanation as to her/his selection of

repair action, because s/he cannot predict the effects of the selected action on the plan
caused by tight interactions. The user's ultimate expertise lies in herlhis ability to perform

a consistent evaluation of the results of problem solving.

7.2 Knowledge Acquisition and Machine Learning

  Most of the expert systems developed so far were typically constructed with tremendous

endeavors by knowledge engineers, and research in knowledge acquisition and machine

learning is aimed at reducing the knowledge engineer's burdens in the development of

expert systems.

Rule-Based System
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Fig. 7.1: Comparison of learning and knowledge acquisition in a rule-based system and a

case-based system

  A case-based system takes a quite different approach to knowledge acquisition and learn-

ing from that of a traditional rule-based system. Fig. 7.1 depicts the schematic comparison

in knowledge acquisition and machine learning between a rule-based system and a case-

based system. In the rule-based system, knowledge acquisition methods support an expert

to define the vocabulary of a problem domain and tune the contents of existing rules. Ma-

chine learning methods such as decision tree induction and explanation-based learning can

transform facts describing examples of expertise into more generalized rules, which are se-

lected through the pattern matching procedure and applied to problems. To be noted, this

generalization process always requires other sets of knowledge in the domain such as gen-

eralization hierarchy of domain concepts and complete domain theory, which are diMcult

to prepare in the ill-structured problems.

  In the case-base system, knowledge acquisition methods aim not only to support def-
inition of case description features and indices by an expert but also to extract his/her

judgment and explanation in the process of actual problem solving. Learning in the case-
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based system takes place in the refinement of indexing contents with the increase of cases

describing different problem solving episodes. Hence, learning in the case-base system re-

quires no additional knowledge of application domains from the expert. To be applied
to problems, cases are retrieved through approximate matching of selected indices among

other features in the cases, thus generalization occurs when re-using cases even in the

case-based system that has a fiat case memory structure without abstraction hierarchy.

7.2.1 KnowledgeAcquisition
  Recently there have been a number of research activities of building a generic framework

for acquiring domain knowledge to solve illd-structured problems.

  KADS is a methodology for the structured and systematic development of knowledge-
based systems, which aims to provide software engineering support for the knowledge-
engineering process. KADS provides the following three important frameworks: (1) a
framework to structure knowledge within a four layered model (i.e. domain, inference,
task, strategglayers), (2) reusable modeling frameworks for partial models of expertise (i.e.

interpretation models) and for primitive problem-solving actions (i.e. typologies of knowl-

edge sources), and (3) a framework of the knowledge-based system development process (i.e.

transition from generic models, to interpretation models, to conceptual models, to design
models and finally to operational systems). To make a model for a particula[r application

in KADS, first an interpretation model (i.e. inference structure) is selected from generic

models based upon a taxonomy of task types. Then, the selected interpretation model is
modified into a conceptual model through the applications of operators such as renaming,

refinements, additions, simplifications and deletions. These operators are applied based

on the three types of characteristics of the application domain: epistemic, pragmatic and
computational task features [Schreiber & Wielinga, 1993]. Once a conceptual model is com-

pleted, it is transformed into a design model with the help of a structure-preserving design

method. The structure-preserving method preserves the information content and structure
present in the knowledge-level model (i.e. a conceptual model) in the final artifact. The

method uses the conceptual model as a skeletal architecture of the artifact and extends

it by considering inference methods, domain indexing and access functions, run-time data
storage, and input/output functions [Schreiber, 1993]. On one hand, the KADS approach

has comprehensible generality and fiexibility in the development of knowledge-based sys-

tem. But, on the other hand, users (both knowledge-engineers and domain experts) of

KADS are required to do substantial amounts of analysis and design by themselves. The

computational supports to the users on these aspects are current research topics in the

KADS-II project.
  PROTEGE-II [Puerta et al., 1992] is a knowledge-acquisition shell that provides a task-

modeling environment for knowledge engineers and a knowledge-editing environment for
application experts. In PROTEGE-II, knowledge engineers can construct the model of



106 CIIAPTER 7. RELATED RESEARCH

application tasks by selecting and configuring appropriate methods from a library of role-
                                                               ttlimiting methods and smaller-grained methods called mechanisms. PROTEGE-II gener-
ates knowledge-acquisition tools (i.e. knowledge-editors) that derive control strategies from

those task models defined by knowledge engineers based on the needs of the particular task

and domain. Application experts use the knowledge-editors to enter the knowledge of
                         tiapplication problems. PROTEGE-II is trying to overcome the following shortcomings in
the role-limiting methods: (1) it assumes that problem-solving behavior can be defined in

terms that are completely domain independent, which is not true in many applications,

and (2) developers cannot always select appropriate problem-solving methods from the
                                                                     ttpredefined set of the methods to model their application tasks. Although PROTEGE-II
has been successfully applies to the episodic skeletal-plan refinement task, more computer-

ized supports to knowledge engineers in selecting appropriate mechanisms for their tasks

need to be developed and the effectiveness of knowledge-editors that can be produced by
      ttPROTEGE-II in other tasks and domains is still to be investigated.

  McDermott and his group at DEC have been developing a framework for exploiting
usable and reusable programming constructs called mechanisms [Klinker et al., 1991]. A

mechanism is usable if it can be used to automate a task by a non-programmer who
understands and performs the task. A mechanism is a reusable if it can be employed for

several domains and tasks. Mechanisms are identified by a developer's knowledge of a task

with the help of a system called Spark. To map the mental model of a domain expert
(i.e. the developer) and the computational model of mechanisms, Spark uses the enterprise

model whose activities are represented in the developer's concept and terminology and

explicitly mapped to corresponding mechanisms by an implementor of Spark. The identified

mechanisms are integrated into a skeletal problem-solving method of the task using a
handcrafted configurations. The domain specific knowledge which each mechanism needs

to perform the task is elicited and encoded by a system called Burn. Burn manages a
collection of specialized knowledge acquisition tools for each mechanism. The knowledge

acquisition tool associated with a mechanism instantiates the mechanism into a situation-
                                                                ttspecific mechanism. Spark and Burn are similar in the concept to PROTEGE-II. The
biggest difference is the support of the enterprise model in Spark, which is aimed to ease

the task model definition by a domain expert not by a knowledge engineer.

  Chandrasekaran and his team have been doing a research on the generic task (GT)
[Chandrasekaran, 1988] with the aim of identifying "building blocks" of reasoning strategies

such that each of the types is both generic and widely useful as components of complex

reasoning tasks. The generic task defines the functionality of the task, a vocabulary of

knowledge constructs and a vocabulary for inference and control of the task. They have

found a couple of generic tasks such as hierarchical classification, hypothesis matching

and abductive hypothesis assembly, and designed high-level programming languages such
as CSRL and DSPL to provide programmers with the primitives that allow the required
knowledge to be directly described for any domain in which the task can be performed.
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Thus, GT is a tool to help programmers develop the knowledge-based systems in the certain

application domains.

  The crux of above research aÅítivities is building a library of "role-limiting" problem

solving methods involved in a complicated real-world problem and knowledge acquisition
tools suitable for each of them. If such problem solving methods are suMciently general, the

corresponding knowledge acquisition tools can be re-used repeatedly for developing a variety

of knowledge-based systems. In CABINS, task-level analysis found that a single problem

solving method, case-based reasoning, was applicable to a large variety of subtasks in ill-

structured optimization problems. The task structure identified by the analysis provides

effective guidelines on case feature definitions, thus reducing necessary efforts of eliciting

the knowledge required for applying case-base reasoning to specific problems. Since case-

based reasoning can be used for several kinds of (sub)tasks such as classification, proposal,

modification and evaluation, this method used in the development of CABINS has a wider

range of applicability than traditional knowledge acquisition methods based on the notion

of role-limitation.

7.2.2 Learning for Quality Enhancement

  Until recently there have been only a few research efforts in acquiring useful knowledge

to improve the problem solver's capability of producing "better" solutions.
  ASK [Gruber, 1989] is an interactive knowledge acquisition tool that elicits strategic

knowledge from the user in the form of justifications for action choices, and generates

strategy rules that operationalize and generalize the expert's advises. ASK's knowledge
acquisition process relies heavily on the interactions with the user : (1) eliciting the critique

from the user, (2) performing credit assignment of the existing rules, (3) eliciting justifica-

tions from the user by asking relevant features of the current situations, (4) generating and

generalizing a strategy rule, with user's guidance in generalization, and (5) verifying a rule

by asking a user's approval. Since ASK can support only the reactive style of reasoning,

the feature descriptions used in ASK's rules, which are invented by the user, have to be
accurate in predicting the effects of actions and expecting the utility of the effects so that

ASK can avoid global pitfaJls. In CABINS the exploitation of failure experiences compen-

sates for the incompleteness of the case features to improve its performance in terms of

both solution quality and problem solving eMciency.

  Learning apprentice systems such as LEAP [Mitchell, Mahadevan, 8e Steinberg, 1985;
Mahadevan et al., 1993] and CAP [Dent et al., 1992] learn to improve their performance

by observing and analyzing the problem solving steps of their users. LEAP learns the
design rules for VLSI circuits using an explanation-based leaming technique. CAP learns

scheduling rules for arranging meetings during its normal use as an electric calendar by

inductive learning methods (ID3 and backpropagation). Unlike CABINS, these systems
compile training experiences into the generalized forms (i.e. rules and weight-tuned net-
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work). As a result, these systems suffer from the diMculty of dealing with exceptional data

which are common in the real-world complicated problems. For example, the experimen-
tal results reported in [Miyashita & Sycara, 1993] have shown that keeping the case base

rather tham inducing rules from it and then utilizing these rules for problem solving results

in superior performance.
  Anapron [Golding & Rosenbloom, 1991] combines rule-based and case-based reasoning

for improving the performance of a rule-based system. Cases are stored as negative (sup-

plemental) exemplars of rules and used to override the decision made by the rules. Cases

are retrieved based upon its compellingness, which is a combined measure of similarity and

accuracy of a case. The experiment results in the domain of pronouncing English surnames

show that the performance (i.e. accuracy of pronounce) of the rule-based system increased

12-17oro by adding cases into the rule-base. Since the task of Anapron is a simple classifi-

cation, the applicability of the approach to the more complicated task such as scheduling

needs to be investigated.
  EASe [Ruby & Kibler, 1992] can learn the exceptions not covered by an initial problem

solver in order to further optimize its solutions. In the problem solving, EASe takes the

following steps: (1) The goal decomposition component of EASe decomposes the problem

of solving the goal to that of solving each of the individual subgoals and protecting them

once solved, and orders these subgoals. (2) The constrained search component attempts to

solve each subgoal successively. (3) The memory component is called when the constrained

search component has failed to find a solution. The memory component takes as input

a context and returns the impasse solution stored in an episode whose context matches
with the current problem context. (4) When constrained search and memory have failed to

improve the current impasse, the unconstrained search component searches for a solution.

(5) If a solution is found by unconstrained search, the learning component stored the episode

after determining the appropriate indices. EASe has been applied to the logic synthesis

design problem and shown the significant improvement on the solution quality. But in
EASe the tradeoffs between subgoaJs of the explicitly given optimization goal are encoded

in the goal decomposition component, although CABINS induces these tradeoffs from cases.

And there has been no report on the eMciency gain by EASe's learning capability and the

quality comparison with other optimization methods.
  COMPOSER [Gratch, Chien, & DeJong, 1993] automatically learns an effective domain-

specific search strategy given a general problem solver with a flexible control architecture.

The approach can be characterized as a hill-climbing search in the space of the possible

strategies to optimize the expected utility of problem solving, using the statistics to evaluate

performance over the expected problem distribution. Unlike CABINS, the utility must be
given explicitly as a real valued function that is a measure of the goodness of the behavior

of the problem solver. COMPOSER has been applied to the spacecraft communication
scheduling problem, but so far there has been no report on the experiment results.

  P6rez has been developing the learning mechanism of quality-enhancing control knowl-
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edge on the top of PRODIGY nonlinear planner [Perez 8e Carbonell, 1994]. The learning

algorithm is given a domain theory (operators and inference rules) and a domain-dependent

objective function that describes the quality of the plans. The algorithm analyzes the
problem-solving episodes by comparing the search trace of the planner solution given the

current control knowledge and another search trace corresponding to a better solution (bet-

ter according to the evaluation function). The latter search trace is obtained by letting the

problem solver search further until a better solution is found, or by asking a human expert

for a better solution and then producing a search trace that leads to that solution. The

algorithm explains why one solution is better than the other and outputs the search control

knowledge that leads future problem solving towards better quality plans. The learning
process translates knowledge about plan quality encoded in a domain-dependent plan eval-

uation function into control knowledge that the planner can use at problem solving time.

Unlike CABINS, the work has a limitation in the form of an evaluation function such that

it is additive on the cost of the individual operators and does not capture the existence of

tradeoffs between different quality factors.

7.2.3 Learning for Efliciency Improvement

  In many domains, finding a solution at al1 requires a considerable amount of search.

In these domains, the key information needed to create a useful problem solver is the

knowledge of how to search through the problem space eMciently.
  The STRIP system [Fikes, Hart, & Nilsson, 1972] learns macro operators that encapsulate

successful operator sequences. When the system reaches a goal, it analyzes the successful

operator sequence in order to identify a general set of conditions under which the sequence

is guaranteed to apply. The generalized effects of the operator sequence become the effects

of the macro operator. The addition of macro operators to the system can improve planning

eMciency in two ways: (1) the system no longer needs to reason about the macro operator's

implicitly encoded intermediate steps, and (2) the macro operators encode experiential

bias, since a system that uses macro operators in preference to primitive operators will

tend to explore previously successful operator sequence first. However, in the ill-structured

problems which CABINS has been applied to, it is diMcult to apply the above approach
since the tight constraint interactions of the domain make the interactions of operators

unpredictable.
  HACKER [Sussman, 1975] is one of the first repair-based planning systems that explicitly

reasoned about goal interactions. And more importantly, it has the ability to learn gen-

eralized bug. HACKER plans by solving subgoals independently and then simulating the

resulting plan to determine how plan components interact. If the plan is flawed, HACKER

employs its library of generalized bugs to correct the problem. A generalized bug asso-

ciates a set of conditions that describe a problem in a plan with a repair that rectifies the

problem. HACKER learns generaJized bug by observing problems that occur during the
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construction of plans and then generaJizing the problems and the repair plans. However,

HACKER must repeat its failures to recognize that it was in a similar situation before

and then make use of the learned generalized bug because HACKER's indexing does not
reflect the fact that a particular problem having to do with a goaJ interaction was solved

by a particular repair plan. Hence, unlike CABINS, HACKER camnot avoid repeating the
similar problems.

  LEX [Mitchell, Ugoff, & Banerji, 1983] applies a version space algorithm in the domain

of symbolic integration to induce search control knowledge (operator selection rule) from

positive and negative instances of states in which an operator should be applied, which

the system generated during problem solving. LEX has limitations in that (1) the learning

capability is strongly tied to the pre-defined language used to describe heuristics, and
(2) it 1acks in the ability to analyze the role of a particular search step in leading to a

problem solution. The efforts of overcoming the above limitations have led to the research
of the analytic learning method called explanation-based leaming (EBL? [Mitchell, Keller,

& Kedar-Cabelli, 1986].

  SOAR [Laird, Rosenbloom, & Newell, 1986] employs a learning method caJled chunking.

Chunking operates by summarizing the information examined while processing a subgoal
for resolving an impasse and acquires control knowledge to help make decisions in similar

subgoaJ processing. The chunking mechanism bears a strong resemblance to EBL in ana-

lyzing the aspects of the state that were accessed during the lookahead search in subgoal

processing and forming the left-hand side of the chunk (i.e. the acquired rule).

  Minton has developed one of the learning components of the PRODIGY planning sys-
tem based on EBL [Minton, 1988]. The PRODIGY system combines learning from success,

failure and goal interactions in a single explanation-based architecture. The system can

learn from these different types of examples because it has multiple theories. After each

planning episode, PRODIGY's EBL module explains the failures, successes and goal in-
teractions that the planner encountered, and for eaÅíh example, it learns a search control

that lets the system select, reject or prefer the alternative the next time it encounters a

similar problem. PRODIGY also explicitly addresses the utility problem, which occurs
when the overhead of testing the applicability of learned knowledge degrades a system's

performance rather than improves it. To determine the utility of its search control rules,

PRODIGY monitors their average match cost and match frequency. It discards rules that
are determined to be useless or harmful.

  Although EBL is a strong learning method, it has the drawbacks as follows: (1) the
method requires a complete domain theory to ground the generalization of the failures
and successes encountered in the unique example to be analyzed, (2) the EBL learner
performs an eager efforts of understanding and generalizing completely and correctly the

local and individual decisions of the problem solving episode, and (3) EBL applies its
learned knowledge only when the new decision making situation exactly matches the learned

operationalized control knowledge. From the above reasons, it can be said that the some
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domains may be incompletely specified for which EBL is not able to generate deductive

proofs. And, in complex domains, EBL can become very ineMcient with long deductive
chains producing complex rules for situations that may seldom, if any, be exactly repeated.

Finally, the localized character of the learned knowledge in EBL is a source for an increase of

the control knowledge available to match and select from at decision-making time. Case-

based (or analogicaJ) reasoning can be seen as a major relaxation of the above EBL's
drawbacks: (1) the domain theory does not have to be completely specified as in CBR
the problem solving episodes are loosely interpreted and not fully generalized, (2) the

learning efforts are performed incrementally on an "if needed" basis at storage, retrieval

and adaptation stage in CBR when new similar problems occur, (3) the complete problem

solving episode can be interpreted as a global decision-making experience where subparts

can be reused as a whole, and (4) CBR can reuse partially matched learned or accumulated

experlences.
  Recently there have been a few research activities that use the analogical reasoning
method to learn search control knowledge for problem solving (e.g. EUREKA [Jones, 1993]

and DEDALUS ILangley & Allen, 1993]). The DEDALUS system generates a plan based
on the means-ends analysis and uses domain-specific knowledge to constrain and direct
the search. DEDALUS stores this knowledge in a probabilistic concept hierarchy, a tree of

concepts that summarizes experience at different levels of abstraction using probabilistic

descriptions. The learning process of the system alters the structure of the concept hierar-

chy and the probabilities stored therein. DEDALUS stores each node of a problem solving

trace as a case in the concept hierarchy with a description of a set of predicates, a set of

differences and the operator used to solve it, organizing it via internal node that abstracts

the cases which occur below it in the hierarchy. Given a new problem, the system invokes
a variant of COBWEB [Fisher, 1987] to find the stored case with a similar structure and

uses it to direct search. From the experiments in the blocks-world problem, it was shown

that DZEDALUS could improve its problem solving eMciency. However, unlike CABINS,
since DEDALUS learns only from successful experiences, the feasibility of DA]DALUS in

the ill-structured domain, where clear definitions of predicates and differences of operators

are not available, has to be further investigated. Although EUREKA uses a semantic net-

work as memory structure and employs the more sophisticated retrieval mechanism (called

the spreading-activation algorithm) than that of DEDALUS, the methodology is similar

to DEDALUS and shares the same problems.

7.3 Scheduling and Planning

  The application of CABINS to the scheduling problem shares the same motivations and
goals with the work in [Mckay, Buzacott, & Safayeni, 1988] where the motivations for in-

teractive user manipulation of schedules is presented. In that work, the system monitors
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user's manipulation of a schedule, requesting the reasons for each revision that is made.

This information is then used to augment/refine the system's knowledge. The approach

seems promising, but they have not developed any deliberation on knowledge representa-

tion, communication protocol between a user and the scheduling system and mechanism
to keep knowledge base consistent.

  CABINS is rooted on concepts and mechanisms of a long line of research in constraint-
directed scheduling [Fox, 1983; Smith et aL, 1986; Sadeh, 1991], which generates schedules

by incrementally constructing and merging partial schedules. In the research, various

properties and aspects of the scheduling problem have been extensively investigated in the

framework of a constraint satisfaction problem and sophisticated procedures and techniques

for constraint-directed scheduling have been proposed. Although this research tradition has

come to view scheduling as an opportunistic repair process, it has operated under static
design assumptions (e.g. deterministic application of variable and value ordering heuristics

in [Sadeh, 1991], or statically determined control level model for application of repair

actions [Ow, Smith, & Thiriez, 1988]). CABINS' approach advances the state of the art

by learning to dynamically adapt the focusing mechanism of the search procedure and by

adapting the repair model according to current problem solving circumstances and user

preferences and tradeoffs.

  CABINS generates schedules by repair based method in the space of complete schedules.
In this respect it is similar to [Zweben, Deale, & Gargan, 1990; Zweben et al., 1993;

Minton et al., 1990; Biefeld 8e Cooper, 1991]. In [Zweben, Deale, 8e Gargan, 1990;
Zweben et al., 1993] simulated annealing has been used to perform iterative repair. Knowl-

edge in the form of constraint types and evaluation criteria has been added to the basic
simulated annealing framework and has been shown to improve convergence speed [Zweben
et al., 1993]. [Zweben et al., 1992b] has studied the tradeoff among the amount of per-

turbations, speed of convergence to a confiict free schedule and schedule quality measured
in terms of number of violated resource constraints. In IMinton et al., 1990] the min-

conflict heuristic, a repair heuristic that chooses the repair that minimizes the number of

conflicts that result from a one-step lookahead, has been investigated. Though the heuris-

tic has been shown to be powerful for solving the N-queens problem, it has been shown
inadequate for some types of job shop scheduling problems [Muscettola, 1993]. This is

because the min-conflict heuristic doesn't use any knowledge from the domain to focus its

attention to a certain area of the schedule, it becomes very ineMcient when the number
of possible repair choices is large (such as a detai1 scheduling with the fine granularity of

time). In [Biefeld & Cooper, 1991] schedule modifications are procedurally encoded. Smal1

snapshots of the scheduling process, called chronologies, are used to focus the search us-

ing information gained incrementally during the scheduling process to locate, classify and

resolve bottlenecks.

  In [Zweben et al., 1992a] plausible explanation based learning (PEBL) has been applied

to learn search control rules to increase search eMciency in scheduling tasks for NASA
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Space Shuttle payload and ground processing. PEBL enables a system to generalize a
given target concept (e.g. chronic resource contention) over a distribution of examples.

The cost function is to minimize the number of remaining conflicts in the schedule. Unlike

aJl the above systems, CABINS does not have any explicit objectives to optimize, but

applies case-based learning techniques to acquire user optimization preferences from the

records of user's repair decisions and optimizes scheduled based on the acquired objectives.

  In more general context of the planning problems, GORDIUS [Simmons, 1992] aims

to compensate for inadequacies of its initial problem solving method using Generate-Test-

Debug (GTD) methodology. GORDIUS uses associationaJ reasoning (rule-based reasoning)
to eMciently generate initial hypotheses, then the tester simulates hypotheses to determine

whether they are correct, and finally the debugger uses detailed causal reasoning to repair

faulty hypotheses. Hence, GORDIUS requires rich domain knowledge such as encapsu-
lated nearly independent association rules and the causal model of domain. The goal of

GORDIUS is not to pursue an optimal solution, but to find one of plausible solutions. And

in GORDIUS, the past experiences of debugging are not exploited to refine incomplete
association rules which generate initial hypotheses. Consequently, GORDIUS cannot im-
prove its problem solving eMciency by reducing the cost of expensive causal reasoning in

the debugging stage.
  Howe has suggested FRA (Failure Recovery Analysis) [Howe, 1992] to debug an incom-

plete planner in the problems that does not have a strong domain model. The objective

of her research is not repairing each plan produced by a planner but repairing the planner

to avoid making similar failures. FRA's repair process comprises the following four steps.

The first step searches significant dependencies between plan failure recovery efforts and

subsequent plan failures by means of a statistical method. The second step maps these de-

pendencies to the structures in the planner's knowledge known to be susceptible to faiIures.

The third step constructs explanations of how the observed dependencies might have been

produced using knowledge of the structures. And finally, the fourth step recommends a set

of possible modifications on a planner based upon the explanations. This recommendation
is not intended to be implemented by the system itself, but a (human) designer of a plan-

ner decides what would be the best modification and whether the failure is worth avoiding

at al1. This method is being examined in the field which has simple causal interactions
(simulation of forest fire fighting), but an application to a more complicated domain is still

open to further investigation.

7.4 Summary
  This chapter compared the work in this thesis with several other research efforts in

the three research areas. The comparison made here is certainly neither exhaustive nor
complete. Instead it tries to distinguish the characteristic aspects of CABINS.
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  In general, a comparison between CABINS and other systems has reveaJed its uniqueness

in the following senses:

e CABINS designates the usage of case-based reasoning in ill-structured problems and

  provides the methodology to support the description of case features through task-
  level analysis, thus extending the feasibility of case-based reasoning to the domains

  that has been avoided by the traditional case-based reasoning research.

e CABINS learns the knowledge for solution quality enhancement by accumulating the

  repair-based optimization experiences. Neither evaluation functions nor extensive

  explanations from its user are necessary for CABINS to learn such knowledge.

e In the problems without a strong domain theory, CABINS can analogically learn the

  control knowledge for problem solving eMciency improvement through past repair
  failure episodes.

e CABINS provides a generic framework of schedule optimization with learning capa-

  bilities, thus eliminating the necessity of modeling a user's objective function and

  developing elaborated heuristics for each scheduling problem.



Chapter 8

Concluding Remarks

  The experimental results in this thesis have shown that the CBR-based repair method has

the potential to capture different user optimization preferences and performs well in terms

of producing high quality solutions as compared with other general•-purpose optimization

methods. As compared with simulated annealing, one of the widely used repair-based
optimization methods, CBR-based repair produces solutions of comparable quality with
substantial computationaJ savings. In addition, CBR-based repair exhibits desirable speed-

up effects by learning from its past failure experiences while maintaining high solution

quality.

  To conclude the thesis, the author will attempt to answer the question "what makes
the approach powerful?". The author believes the power of the approach stems from the

following four factors:

1. Revision-based approaches by making available a complete assignment (a complete

  schedule for the experiment domain in this thesis) provide more information that can

  guide search as compared with constructive methods where only a partial assignment
  is available [Minton et al., 1992]. CBR-based revision method in CABINS captures

  such relevant information in case features and exploits it as contextual information

  during case retrieval.

2. The case features were able to capture some important domain regularities, such as

  repair fiexibility, through task-level analysis of the indexing vocabularies. This was

  complemented by keeping information about failed applications of revisions in the

  repair case history and also keeping failed cases in the case memory. These failures

  were exploited by CBR to prune unpromising paths in the search space in future

  similar situations.

3. The regularities in the structure of the experimental problems were captured in cases

  during the training phase and this information was transferable to solve the test
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problems. The abstraction hierarchy of repair actions was useful

problem structure of the current problem and map it into the space

to generalize the

of the past cases.

4. Experimental results and discussions presented in Chapter 6 support the hypothesis

  that the cases CABINS acquired arid used in the reported experiments appear to
  cover the whole problem space in a substantial way, thus allowing CBR-based repair

  to take advantage of this coverage.

8.1 Summary
  In this thesis, the author has advocated a framework for knowledge acquisition and it-

erative revision for solving the ill-structured optimization problems. The approach utilizes

CBR-based mechanisms for recording user's decisions in the course of repairs. The approach

is predicated on the existence of (1) a set of vocabularies, which can extract and represent

an aspect of the problems, and (2) repair heuristics, each of which operates with respect to

a particular local view of the problem and offers selective advantages for improving solution

quality. The author believes that these types of knowledge can be easily elicited from a

domain expert by preparing adequate ontologies and abstraction hierarchy of the task and

presenting them to the expert. The approach aims to capture and re-use user preferences

and judgments for improving the solution quality and problem solving eMciency. The capa-•

bility of acquiring user optimization preferences is important in the domains without strong

domain models because usually explicitly expressed objectives are unavailable. Even if they

were available, new optimization heuristics would need to be developed, evaluated and im-

plemented complicating the design and maintenance of the system. CABINS provides a
framework for alleviating these problems. And learning control knowledge for speeding-up

problem solving is also important in the ill-structured domains, because in such domains

even human experts }ack effective heuristics to solve problems eMciently while maintaining

the high solution quality. More importantly, CABINS can acquire the cases through user
interaction during the process of solution improvement without imposing undue overhead
on the user.

  The scientific contributions of this research are as follows:

1. Contributions to Case-Based Reasoning:

e Expanding the feasibility:

  Case-based reasoning has been applied to the problems, such as diagnosis, legal

  judgment and design, where a well-defined form of a "case" has naturally been
  used in problem solving and/or causality of the domain is clearly understood.

  The thesis designates the usage of case-based reasoning in ill-structured problems

  and provides the methodology to support the description ofcase features through
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       task-level analysis and improve its performance via failure experiences, thus

       extending the feasibility of case-based reasoning to the domains that do not
       have clear understandings of "what is the case for the problem".

     o Scale-up in the case base size:

       The thesis consists of empirical validation of the hypothesis that accumulation

       of cases improve the performance of the case-based reasoner in terms of both

       solution quality and problem solving eMciency.

2. Contributions to Machine Learning:

     e Preference Iearning:

       The thesis provides the method of learning the context-dependent preferences of

       users and producing the high quality solutions based on the learned preferences.

     e Speed-up learning:

       The thesis advocates the methods of utilizing the failure experiences for vali-

       dating search decisions and avoiding similar failures, thus enabling to improve

       the search eMciency in the ill-structured domains without a complete domain

       theory.

3. Contributions to Scheduling:

     e Optimization without explicit objectives:

       The thesis provides the generic framework of case-based iterative revision that

       can solve a complicated schedule optimization problem without explicitly define

       objectives, which cannot be solved by the traditional optimization methods such

       as simulated annealing.

The experiments in the job shop scheduling domain have shown the following results:

1. Solution quality enhancement

   The experiment results indicate that different scheduling objectives implicitly re-

   flected in the case base differentially bias the schedule repair procedure and CABINS

   can achieve as high quality of solutions as its teacher (i.e. the rule-based system in

   the experiments). Further experimental results show that for well defined objectives

   reflected in the case base, CABINS produces schedules with higher, or at least as

   good, quality as compared with other repair-based optimization methods, such as
   simulated annealing.

   The quality of solutions are improved by exploiting the effect information of each re-

   pair action application for effective case retrieval. But little enhancement is achieved

   by considering salience of case features for each repair action.
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2. Problem solving eMciency improvement

  The experiment results show that CABINS can improve its problem solving eMciency
  by exploiting repair failure experiences in two ways: One ways is called the validated

  repair strategy, which aJlows CABINS to apply a repair action only after the re-
  pair action is vaJidated as possibly effective for repairing the current problem. The

  other way is called the interruptive repair strategy, which aJlows CABINS to shift

  its attention to another problem when the current problem seems too diMcult to be

  solved.

And further improvement is achieved by integrating the above two repair strategies

(called the hybrid repair strategy), thus making CABINS about 379o more eMcient

than its teacher (i.e. the rule-based system) while maintaining its solution quality.

3. Case accumulation effects

  The experiments demonstrate that CABINS improves its solution quaJity with the
  increase of cases. But with relatively small size of the case base (about 2000 cases),

  the quaJity improvement saturates. And, CABINS with the hybrid repair strategy
  improves its problem solving eMciency in terms of the number of tactic applications
  with the increase of cases. For learning the control knowledge to improve its search

  eMciency to the utmost, CABINS with the hybrid repair strategy requires a large

  number of cases (around 6000 cases).

8.2 Limitations and 1ivture Work

  From a theoretical point of view, there remain two questions in the present research on

CABINS. The first question is, in evaluating the performance of CABINS, to what extent
the information captured in cases from one set of problems can transfer to another set of

problems with different problem structure. This question, albeit of great theoretical and

practical importance, is very diMcult to answer in a theoretical way. In contrast to other

NP-complete problems (e.g. graph-coloring, satisfiability, traveling salesman) for which in-

sightful analysis has been performed (e.g. [Musick & Russell, 1992; Cheeseman, Kanefsky,

& Taylor, 1991]) as to their structure and properties that characterize "easy" or "hard"

problem instances, similar characterization of the ill-structured problem such as ajob shop

schedule optimization problems is currently an open research problem (e.g. [Cheeseman,

Kanefsky, & Taylor, 1991; Baker, 19741). Due to the tight constraint inter-dependencies in

job shop scheduling optimization, it is not known what constitutes "problem structure",

i.e. what features of a problem make it diMcult or easy to solve, or make one problem

substantially similar or different from another. It is for this reason that, except for some

simple optimization objectives, such as minimize flowtime for one-machine problems where
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it has been proven that the SPT heuristic finds the optimaJ solution, it is currently im-

possible to theoretically prove schedule optimality for a particular technique. It is only

aiiter some proposed problem has defied solution by extensive experimentation by many
researchers that it is understood ipso facto to be diMcult [Adams, BaJas, 8e Zawack, 1988;

Baker, 1974]. Most importantly, even if there were good approaches to characterize problem

structure in job shop optimization, with explicit optimization criteria, this would not help

with the analysis in the thesis since CABINS does not have an explicit objective function,

but instead aims at capturing implicitly context-dependent user preferences.

  The other question on CABINS is how to construct and maintain optimal case base.
CABINS suffers from a clear utility problem in that, its retrieval cost per a repair action and

overal1 problem solving cost increase with more experiences accumulated beyond its optimal

size, rather than decreasing as desired. Although several methodologies have been proposed

for controlling the content of the knowledge base (including the case base) to maJcimize its
utility function through filtering knowledge (e.g. [Minton, 1988; Bareiss, 1989; Aha, Kibler,

& Albert, 1991; Markovitch & Scott, 19931), it is diMcult to apply these methodologies to

the ill-structured problems without strong causal knowledge of the domain. Although the

experiment results in Chapter 6 show that the cases acquired in CABINS cover the problem

space in a fairly evenly distributed fashion, this might not be true in the more complicated

problems that have many exceptional situations. In such problems, keeping the case base

size optimal is not suMcient for maintaining the performance ofthe system optimal. Further

analysis should be made to identify a priori the portion of a case base which will contribute

to problem solving so that one can reduce the harm caused by increased case retrieval
time while keeping high solution quality. For that purpose, it is required to develop the

indexing vocabularies to capture not only the regularities of the problem structure but also

the exceptionalities of the problems.

  From a practical point of view, there remain much work to be done in CABINS, since
the current status of the CABINS system is still a research prototype. First, the feasibility

of the CABINS approach in the scaled-up problems has to be tested. Current problem
sets used in the experiments of this thesis are much smaller in the size than usual real-

world factory scheduling problems. A more eMcient case retrieval mechanism such as the
one using a discrimination network will be required to app}y CABINS to larger problems

without spoiling its problem solving eMciency. Second, the applicability of CABINS to
other problem domains than scheduling problems also needs to be examined. Although
the author thinks that CABINS' methodology of using success and failure cases in the
repair-based methods for an optimization task is domain-independent, it must be verified

by extensive applications of CABINS to different problems such as design and planning.
Lastly but not least, in order to accelerate the application of CABINS, the more elaborated

human-computer interface must be devised in CABINS for easing the expert's burdens of

defining case features and adding new cases in the case base.



Appendix A
Scheduling Problem Instance

  The following is an example of the scheduling problem used in the experiments. The
problem belongs to the Class-6 problem set which has two bottlenecks and dynamic range

parameters.

Scheduling-.time .granularity = 10;

Resource resourcel = {
  Efficiency = 9;
  Quality
  Price
};

= 8;

= 14000000;

Resource resource2 = {
  Efficiency = 7;
  Quality
  Price
};

= 1;

= 10000000;

Resource resource3 = {
  Efficiency = 7;
  Quality
  Price
};

= 4;

= 7000000;

Resource resource4 = {
  Efficiency = 8;
  Quality = 9;
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  Price = 4000000;
};

Resource resource5 = {
  Etficiency = 10;
  Quality = 6;
  Price = 2000000;
};

Client clientl = {
  Time.severity = 1;
  Quality.severity = 1;
};

Client client2 = {

  Time.severity = 6;
  Quality-severity = 8;
};

Client client3 = {
  Time-severity = 6;
  Quality-severity = 8;
};

Client client4 = {

  Time.severity = 1;
  Quality-severity = 2;
};

Client client5 = {

  Time-severity = 6;
  Quality-severity = 5;
};

Order orderl = {
  Release-date = 300;
  Due-date = 1540;
  Customer = t'client3";
  Activities =(
    Activity activityl-1 = {

SCHEDULING PROBLEM INSTANCE



};

);

  Inventory.cost = 10;
  Duration = 60;
  Machinery = ( "resource4" "Tesourcel"
  Prev-activities = ( );
  Next-activities = ( "activityl-2" );
};

Activity activityl-2 = {
  Inventory-cost = 2;
  Duration = 40;
  Machinery = ( "resource2" "resourcel"
  Prev-activities = ("activityl.1" );
  Next-activities = ( "activityl-3" );
};

Activity activityl-3 = {
  Inventory.cost = 8;
  Duration = 90;
  Machinery = ( "resource3" );
  Prev-activities = ("activityl-2" );
  Next-activities = ( "activityl-4" );
};

Activity activityl.4 = {
  Inventory..cost = 2;
  Duration = 30;
  Machinery = ( "resourcel" "resource2"
  Prev.activities = ("activityl-3" );
  Next-activities = ( "activityl-5" );
};

Activity activityl-5 = {
  Inventory.cost = 5;
  Duration = 80;
  Machinery = ( "resource5" );
  Prev-activities = ("activityl.4" );
  Next-activities = ( );
};

"resource2" );

ti resource4" );

"resource4" );

Order order2 =
  Release date
  Due date

{

= 310;
= 1340;
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Customer = "client3";
Activities =(
  Activity activity2.1 = {
    Inventory-cost = 9;
    Duration = 90;
    Machinery = ( "resourcel" t'resource2"
    Prev-activities = ( );
    Next.-activities = ( "activity2.2" );
  };

  Activity activity2.2 = {
    Inventory.cost = 3;
    Duration = 100;
    Machinery = ( "resource2" "resourcel"
    Prev-activities = ("activity2.1" );
    Next-activities = ( "activity2.3" );
  };

  Activity activity2-3 = {
    Inventory-cost = 2;
    Duration = 120;
    Machinery = ( "resource3" );
    Prev-activities = ("activity2-2" );
    Next-.activities = ( "activity2.4" );
  };

  Activity activity2-4 = {
    Inventory.-cost = 4;
    Duration = 50;
    Machinery = ( "resource4" "resourcel"
    Prev-activities = ("activity2-3" );
    Next.-activities = ( "activity2.5" );
  };

  Activity activity2.5 = {
    Inventory.cost = 7;
    Duration = 100;
    Machinery = ( "resource5" );
    Prev-activities = ("activity2.4" );
    Next-activities = ( );
  };
);

"resource4" );

"resource4" );

"resource2" );

};



Order order3 = {
  Release-date = 40;
  Due-date = 1350;
  Customer = "client4";
  Activities =(
    Activity activity3-1 = {
      Inventory-cost = 1;
      Duration = 70;
      Machinery = ( "resource2" "resourcel"
      Prev.activities = ( );
      Next-activities = ( "activity3-2" );
    };
    Activity activity3-2 = {
      Inventory-cost = 7;
      Duration = 110;
      Machinery = ( "resourcel" "resource2"
      Prev.activities = ("activity3-1" );
      Next.activities = ( "activity3..3" );
    };

    Activity activity3-3 = {
      !nventory..cost = 3;
      Duration = 130;
      Machinery = ( "resource3" );
      Prev-activities = ("activity3.2" );
      Next-activities = ( "activity3-4" );
    };

    Activity activity3-4 = {
      Inventory.cost = 3;
      Duration = 40;
      Machinery = ( "resource4" "resourcel"
      Prev.activities = ("activity3.3" );
      Next.activities = ( "activity3-5" );
    };

    Activity activity3-5 = {
      Inventory-cost = 5;
      Duration = 100;
      Machinery = ( "resource5" );
      Prev-activities = ("activity3-4" );
      Next.activities = ( );
    };

"resource4" );

"resource4t' );

"resource2" );
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);

};

Order order4 = {
  Release.date = 160;
  Due-date = 1340;
  Customer = "client3";
  Activities =(
    Activity activity4-1 = {
      lnventory.cost = 3;
      Duration = 90;
      Machinery = ( "resourcel" "resource2"
      Prev.activities = ( );
      Next-activities = ( "activity4-2" );
    };

    Activity activity4-2 = {
      Inventory.cost = 3;
      Duration = 50;
      Machinery = ( "resource4" "resourcel"
      Prev-.activities = ("activity4-1" );
      Next-activities = ( "activity4-3" );
    };

    Activity activity4-3 = {
      Inventory-cost = 2;
      Duration = 150;
      Machinery = ( "resource3" );
      Prev-activities = ("activity4.2" );
      Next-activities = ( "activity4.4" );
    };

    Activity activity4.4 = {
      lnventory-cost = 3;
      Duration = 90;
      Machinery = ( "resource2" "resourcel"
      Prev.activities = ("activity4.3" );
      Next-activities = ( "activity4-5" );
    };

    Activity activity4.5 = {
      Inventory-cost = 7;
      Duration = 140;
      Machinery = ( "resource5" );

"resource4" );

"resource2" );

"resource4" );
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Prev-activities = ("activity4-4" );
Next-activities = ( );

};

);

};

Order order5 = {
  Release-date = 180;
  Due-date = 1550;
  Customer = "client2";
  Activities = (
   Activity activity5-1 = {
      Inventory.cost = 7;
     Duration = 50;
     Machinery = ( "resource4" "resourcel"
     Prev-activities = ( );
     Next-activities = ( "activity5-2" );
    };
    Activity activity5-2 = {
      Inventory-cost = 2;
     Duration = 40;
     Machinery = ( "resource2" "resourcel"
     Prev-activities = ("activity5-1" );
     Next-activities = ( "activity5-3" );
   };
   Activity activity5-3 = {
     Inventory-cost = 10;
     Duration = 120;
     Machinery = ( "resource3" );
     Prev.activities = ("activity5-2" );
     Next-activities = ( "activity5-4" );
   };
   Activity activity5-4 = {
     Inventory-.cost = 9;
     Duration = 40;
     Machinery = ( "resourcel" "resource2"
     Prev-activities = ("activity5-3" );
     Next-activities = ( "activity5-5" );
   };
   Activity activity5-5 = {

"resource2" );

"resource4tt );

"resource4" );
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      Inventory-cost = 1;
      Duration = 140;
      Machinery = ( "resource5" );
      Prev-activities = ("activity5-4" );
      Next.activities = ( );
    };
  );
};

Order order6 = {
  Release-date = 270;

  Due.date = 1390;
  Customer = "client2"'                          '
  Activities =(
    Activity activity6-1 = {
      Inventory.pcost = 6;
      Duration = 60;
      Machinery = ( "resource2" "resourcel"
      Prev-activities = ( );
      Next-activities = ( "activity6-2" );
    };

    Activity activity6-2 = {
      :nventory-cost = 4;
      Duration = 30;
      Machinery = ( "resource4" "resourcel"
      Prev-activities = ("activity6.-1" );
      Next.activities = ( "activity6.3" );
    };

    Activity activity6.3 = {
      Inventory.cost = 7;
      Duration = 150;
      Machinery = ( "resource3" );
      Prev-activities = ("activity6-2" );
      Next-activities = ( "activity6-4" );
    };

    Activity activity6.4 = {
      Inventory-cost = 1;
      Duration = 60;
      Machinery = ( "resourcel" "resource2"
      Prev-activities = ("activity6-3" );

t' resource4" );

"resource2" );

"resource4" );
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  Next-activities = ( "activity6-5" );
};

Activity activity6-5 = {
  Inventory-cost = 9;
  Duration = 100;
  Machinery = ( "resource5" );
  Prev-activities = ("activity6-4" );
  Next-activities = ( );
};

);

};

Order order7 = {
  Release-date = 220;
  Due-date = 1480;
  Customer = "client2"'                         '
  Activities =(
    Activity activity7.1 = {
      Inventory-cost = 2;
     Duration = 80;
     Machinery = ( "resource2" "resourcel"
     Prev.activities = ( );
     Next.activities = ( "activity7.2" );
    };

   Activity activity7-2 = {
      Inventory-cost = 3;
     Duration = 110;
     Machinery = ( "resourcel" "resource2"
     Prev-activities = ("activity7.1" );
     Next-activities = ( "activity7.3" );
   };
   Activity activity7.3 = {
     Inventory.cost = 10;
     Duration = 80;
     Machinery = ( "resource3" );
     Prev-activities = ("activity7.2" );
     Next-activities = ( "activity7-4" );
   };
   Activity activity7.4 = {
     Inventory-cost = 7;

tt resource4" );

"resource4" );
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  Duration = 50;
  Machinery = ( "resource4" "resourcel"
  Prev-activities = ("activity7-3" );
  Next.activities = ( "activity7.-5" );
};

Activity activity7-5 = {
  Inventory-cost = 4;
  Duration = 90;
  Machinery = ( "resource5" );
  Prev-activities = ("activity7-4" );
  Next.activities = ( );
};

t' resource2" );

);

};

Order order8 = {
  Release-date = 90;

  Due.date = 1440;
  Customer = "client4";
  Activities =(
    Activity activity8-1 = {
      lnventory-cost = 6;
      Duration = 40;
      Machinery = ( "resourcel" "resource2"
      Prev.activities = ( );
      Next-activities = ( "activity8-2" );
    };
    Activity activity8-2 = {
      Inventory-cost = 5;
      Duration = 110;
      Machinery = ( "resource2" "resourcel"
      Prev-activities = ("activity8-1" );
      Next.activities = ( "activity8-3" );
    };
    Activity activity8-3 = {
      Inventory-cost = 1;
      Duration = 140;
      Machinery = ( "resource3" );
      Prev-activities = ("activity8-2" );
      Next-activities = ( "activity8.4" );

"resource4t' );

"resource4" );
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};

Activity activity8-4 = {
  Inventory.cost = 5;
  Duration = 80;
  Machinery = ( "resource4" "resourcel"
  Prev.activities = ("activity8.3" );
  Next-activities = ( "activity8-5" );
};

Activity activity8-5 = {
  Inventory..cost = 6;
  Duration = 140;
  Machinery = ( "resource5" );
  Prev-activities = ("activity8.4" );
  Next-activities = ( );
};

"resource2t' );

);

};

Order order9 = {
  Release-date = 150;
  Due-date = 1410;
  Customer = "clientl";
  Activities =(
    Activity activity9-1 = {
      Inventory-cost = 3;
     Duration = 70;
     Machinery = ( "resource2" "resourcel"
     Prev-activities = ( );
     Next-activities = ( "activity9-2" );
    };
    Activity activity9-2 = {
      !nventory-cost = 6;
     Duration = 100;
     Machinery = ( "resource4" "resourcel"
     Prev-activities = ("activity9-1" );
     Next.activities = ( "activity9-3" );
    };

   Activity activity9.3 = {
      Inventory-cost = 2;
     Duration = 100;

t' resource4" );

t' resource2" );
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  Machinery = ( "resource3" );
  Prev-activities = ("activity9-2" );
  Next-activities = ( "activity9-4" );
};

Activity activity9.4 : {
  Inventory.cost = 9;
  Duration = 80;
  Machinery = ( "resourcei" "resource2" "resource4" );
  Prev-activities = ("activity9.3" );
  Next-activities = ( "activity9.5" );
};

Activity activity9-5 = {
  Inventory.cost = 10;
  Duration = 150;
  Machinery = ( "resource5" );
  Prev.activities = ("activity9-4" );
  Next-activities = ( );
};

);

};

Order orderlO = {
  Release-date = 170;
  Due-date = 1510;
  Customer = "client4tt;
  Activities =(
    Activity activitylO.1 = {
      Inventory-cost = 6;
      Duration = 50;
      Machinery = ( "resource2" t'resourcel"
      Prev-.activities = ( );
      Next.activities = ( "activitylO-2" );
    };
    Activity activitylO-2 = {
      Inventory-cost = 8;
      Duration = 60;
      Machinery = ( "resource4" "resourcel"
      Prev-activities = ("activitylO.1" );
      Next-.activities = ( "activitylO-3" );
    };

t' resource4" );

tt resource2" );
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Activity activitylO-3 = {
  Inventory-cost = 5;
  Duration = 80;
  Machinery = ( "resource3" );
  Prev-activities = ("activitylO.2" );
  Next-activities = ( "activitylO-4" );
};

Activity activitylO.4 = {
  Inventory-cost = 4;
  Duration = 80;
  Machinery = ( "resourcel" "resource2"
  Prev.activities = ("activitylO.3" );
  Next-activities = ( "activitylO.5" );
};

Activity activitylO.5 = {
  Inventory.cost = 10;
  Duration = 110;
  Machinery = ( "resource5" );
  Prev-activities = ("activitylO.4" );
  Next.activities = ( );
};

"resource4" );

);

};



Appendix B

Hypothesis Test

  Hypothesis testing is an important and convenient tool for statistical treatment of exper-

imental data. The goal of hypothesis testing is to estimate a state of nature, or underlying

data-generating mechanism from a finite space of possibilities by analyzing available data.

  In formulating a hypothesis test, one designates the hypothesis that s/he likes to establish

as the altemate hypothesis (H.); its negation is called the null hypothesis (Ho). In the

experiments of maÅíhine learning studies, Ho might be that the problem solver without
learning performs at least as well as the problem solver with learning, and H. would be

that the problem solver with learning is superior.

  The crux of the hypothesis test is the decision whether the data provide suMcient evidence

against Ho to allow one to reject it. In essence, a hypothesis test is the statistical analog

of a "proof by contradiction". The idea is to assume, tentatively, that Ho holds true and

to ask how unlikely is the experimental results observed, or ones that favor H. even more.

If the likelihood of observing such extreme experimental outcomes is very low, then there

is strong evidence for rejecting Ho. The p-value is the probability, assuming Ho is true,

of encountering data that favors H. as much as or more than the data observed in the
experiment. Thus, a small p-value leads one to reject Ho.

  If Ho is rejected, the p-value is the probability that it has been rejected in error. The

threshold for the p-value is called the significant level. If a hypothesis test is performed at

a significant level a, then Ho is rejected if the p-value is less than a, and the test is said to

be statistically significant at level a. This means that the null hypothesis is rejected with

the caveat of making error with probability at most a. Note that failure of rejecting Ho is

inconclusive; it does not mean Ho is true. It only suggests that Ho is probably false.

  Naturally, the experiment data for analyzing the effects of learning are paired; problems

are generated in a randomized manner and both problem solvers withlwithout learning
attempt to solve each problem. Statistical methods for analyzing paired data are typically

based upon the differences between the paired observations. And, if the distributions of

the data is unknown, nonparametric tests need to be applied to the data as a method of
hypothesis testing.
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136 APPENDIX B. HYPOTHESIS TEST

  The author used the signed rank test, a variation of the Wilcoxon test [Green & Margeri-

son, 1977], for testing paired data. The same method was used by Etzioni for analyzing the
speedup learning effects [Etzioni & Etzioni, 1994]. The test procedure used in the thesis is

as follows. The absolute values of the pair differences are ranked in increasing order (i.e.

the smallest value is assigned the rank of one, the second smallest is assigned the rank of

two, and so on). The signs of the differences are recorded aJong with the ranks. The null

hypothesis is that the distribution of the pair differences is symmetric about zero. The

alternate hypothesis is that the pair differences are slanted toward positive (or negative)

values. Under the null hypothesis, the sum of the ranks corresponding to the positive
differences is expected to be at least as large as the sum of the ranks corresponding to the

negative differences. The p-value is equal to the probability that sum of the positive ranks

is at least as large as that observed under the null hypothesis.

  Suppose xi,x2...,x. are results of applying the problem solver with learning to a prob-

lem set (i.e., numeric values such as cost function and CPU time), and yi,y2 ...,yn are

results of the problem solver without learning for the same problem set. And suppose the

pair differences of these results are calculated as di = xi - yi. From the way in which the

question is posed under consideration, the hypotheses to be tested are

                      Ho:va == o.o

                      Ha:va < O•O (Or Ha:"d>O•O)

where ptd are the means of the pair differences. These hypotheses mean that the results of

the problem solver with learning are smaller (or greater) than those of the problem solver

without learning.

  The test criterion S is the sum of ranks corresponding to the positive differences in the

ordered data of d's. The distribution of S is approximately normal for large n (at least

n > 25), which is the case of the experiments in this thesis since every experiment has 60

data in the thesis. When this is true, the distribution of

                                 S - n(n + 1)/4
                          z=
                                n(n + 1)(2n + 1)/24

is approximately equal to YV' (O, 1).

  Suppose the value ofS for the current dataissandz= '-"("+i)14 .If H. asserts
                                                   n(n+1)(2n+1)!24
pad < O.O, that is y's tend to be larger than x's, then using the normal approximation, Ho

can be rejected at the significant level a, if

                            P(S < s) = Åë(z) <a

, where P(S < s) is a p-value of S being at least as smal1 as s, and the value of Åë is a

significance probability function for the normal distribution YV' (O, 1) and can be computed
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from the normal distribution table. Note that, in this case, the positive value of z means

the result is not significant.

  As with any statistical test, failure to reject the nul1 hypothesis is inconclusive; it is not a

basis for concluding that Ho is true. A more appropriate conclusion is that the experiment

should be repeated with alarger sample size. if the sample size is already so large that
the test is approaching maJcimal sensitivity (probability of detecting even smal1 differences

between the systems is greater than 90oro), then failure to reject the null hypothesis can be

regarded as suggestive that the null hypothesis might hold true.
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