Osaka University Knowledg

A Prototype of Comparison Tool for Android

Title Applications Based on Difference of API Calling
Sequences

Author (s) galmda, Tetsuya; Manabe, Yuki; Ishio, Takashi et

Citation | =7 BHRBSFERIMMERS. S, VI o TY

A IT>R,. 2011, 111(107), p. 35-40

Version Type

VoR

URL https://hdl. handle.net/11094/26646
rights Copyright © 2011 IEICE
Note
Osaka University Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

Osaka University

Institute of Electronics,

I nf ormati on,

HEEAN BFHFHREFRFES
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

and Conmuni cati on Engi neers

(= d
IEICE Technical Report
SS2011-7(2011-06)

A Prototype of Comparison Tool for Android Applications Based on

Difference of API Calling Sequences

Tetsuya KANDAT, Yuki MANABE', Takashi ISHIOT,

Makoto MATSUSHITA?, and Katsuro INOUEf

1 Graduate School of Information Science and Technology, Osaka University,
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
E-mail: {{t-kanda,y-manabe,ishio,matusita,inoue}Qist.osaka-u.ac.jp

Abstract For both users and developers, it is important to select an appropriate application from similar ones.

There are some ways to know the differences in terms of features in several similar applications, but it is not easy.

In this paper, we present a prototype of a comparison tool which identifies features corresponding to differences

between API calling sequences extracted from two Android applications. We conducted a case study to evaluate

the prototype tool. The result shows that the proposed tool achieves comparing applications.

Key words

1. Introduction

Today, people can get many applications from many soft-
ware download sites like Android Market [1] and Apple App
Store [2]. Also, they can get a massive amount of source code
easily from source code repository such as SourceForge.net [3]
and Google Code [4].

Among a lot of applications, some applications have sim-
ilar features. For example, about 2,960 applications are hit
by searching with a word “calculator” on Android Market as
of June 2011. Some tools can categorize them into similar
application groups [5],[6]. A result of categorization shows
which applications are alike, but the differences among ap-
plications in a similar group are not clear for users. To select
the most appropriate application for a user from a group of
similar applications, a tool to compare the features of the
applications is necessary.

There are several ways to compare features in similar ap-
plications: trial use of applications, reading documents, and
comparing source code. However, these methods require a
lot of effort of users, and it is difficult for users to determine
criteria for comparison. Comparison based on trial use of ap-
plications is also difficult for users who don’t know what fea-
tures are provided by each application. Reading documents
also have some problem. If documents are not well-formed,
it is hard to read and compare them. We think that docu-

ments are insufficient for the goal because they don’t always

Comparing Software, API Calls, Android

describe all features, or no documents are available from the
start.

If source code of the applications is available, comparing
them looks a good way to compare the features of the ap-
plications. UNIX diff[7] is a simple way to compare source
code. Unix diff shows only lines which have been changed,
and Semantic Diff [8] shows changed lines and its effects on
dependence relation between variables. If users want to know
differences between two versions of software, these tools are
useful. However, these text-based comparisons might extract
the whole source code as diff if their design is different even
though they use the same programming language. There-
fore, it is hard to compare applications in easily understood
form by these methods.

In this research, we propose a comparison tool that identi-
fies the differences between two applications in terms of their
features. To compare the features of applications, we focused
on Application Programming Interface(API) calls since soft-
ware developers often combine existing APIs to implement a
feature [9]. We supposed that a feature of an application is a
sequence of API calls; therefore, we can extract the feature-
level difference instead of the textual difference by comparing
API calls.

In the next section we discuss the background, and in Sec-
tion 3, we show how we compare API calls. In Section 4,
we describe our prototyping tool and in Section 5, we de-

scribe a case study with the tool. In Section 6, we discuss

-35-

This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

Copyright ©2011 by IEICE

NI I -Electronic Library Service

Institute of Electronics,

I nf ormati on,

the related work, and finally we conclude with a discussion

of future work.
2. Background

2.1 Platform-dependent
and API

Platforms such as OS and hardware have characteristic fea-

software development

tures like devices and Ul. For example, most software for Mi-
crosoft Windows uses the same GUI components, and many
of smartphones have cameras and touch screens. Application
Programming Interface (API) is a set of functions to com-
municate with a specific platform. Each platform provides
APIs to access the features commonly called from a lot of
applications, and developers can implement a new feature
by calling needed API.

2.2 API callings and feature

Software developers construct an application by combin-
ing several features. Developers often make software for a
specific platform. When the target platform provides a high
level API, developers implement features by combining sev-

eral API calls.
feature of the application. While a single API call may di-

In such a platform, API calls explain the

rectly correspond to a single feature, a sequence of API calls
corresponds to a feature in most cases.

In this research, we compare API calls in applications to
compare the features. Tamada et al. proposed to compare
the order and the frequency of API calls to detect some soft-
ware theft [10].

2.3 Android

Android, developed by Open Handset Alliance[11], is a
platform for mobile devices. It includes an operating system,
middleware, and some applications like a web browser. Most
devices using Android can connect the Internet via mobile
phone network or Wi-Fi, and they have touch panels, gravity
censors, and cameras.

Android application developers use Android SDK, which
is based on Apache Harmony (an open source Java imple-
mentation) excluding GUI classes such as Swing. Instead,
Android SDK includes additional APIs to control a camera,
a GPS device, a touch screen and so on. Android SDK also

contains Google Maps API by default.
3. Proposal method using API calls

In this section, we describe our method to compare two
Android applications. Our method has two phases: making
a knowledge-base and comparing two applications. Figure 1
shows an overview of the method.

In this research, we focus on Java applications. We use a

term “an API calling sequence” to represent a sequence of

and Conmuni cati on Engi neers

Anolicati ’% -
ppiications Appllcatlon § Application
with similar X H X |
feature 1 o 2 |

. Makinga i nowledge % $ Compare
-knowledge-base : base j
= il R ——
i Proposal method ; »M
X, -Feature

X, -Feature

Figure 1 An overview of proposal method

MAP Applications

sss————

Figure 2 Making knowledge-base

method calls of API classes in a single method.

In making a knowledge-base phase, we name API calling
sequences which explains characteristic feature and we de-
fine them as a knowledge-base. A knowledge-base consists
of pairs of API calling sequence and its feature name. A
knowledge-base helps to understand what feature is imple-
mented by the API calling sequence.

In comparing phase, our method compare two applica-
tions, application X1 and application X2, and extract fea-
tures that appear commonly(common-feature) and the fea-
tures thgat appear in only one application(X1-feature, X2-
feature).

3.1 The phase making a knowledge-base

Figure 2 shows the overview of the making a knowledge-
base phase. This phase uses a set of the applications which
have similar features as the input, and outputs a knowledge-
base. Common API calling sequences extracted from ap-

plications are likely to implement the common features of

-36 -

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

SourCECOde]public void onClick(View v) {

String s = str.substring(2);

Intent intent=new Intent (this,com.example.edi Qlassz i

startActivity(intent);

}

API Calling
Sequence

android.content.intent.android.content.Intent @
T android.app.Activity.startActivity @

Figure 3 Extracting API calling sequences

the applications. Therefore, we can make a knowledge-base
through naming APT calling sequences which appear in two
or more applications commonly (COMMON). In this re-
search, we made a knowledge-base as following steps;

Step A Collect source code of applications that have a spe-
cific feature, and extract API calling sequences that commu-
nicate with Android platform.

Step B Compare API calling sequences and get COM-
MON.

Step C Filter COMMON and then give a feature name to
each APT calling sequence, then store them in a knowledge-
base.

Figure 3 shows an overview of extraction of API calling
sequences in Step B. API calling sequences are extracted ac-
cording to the following steps. First, we analyze source code
of application using MASU [12]. MASU is a plug—ih platform
for metrics measurement and it extracts method calls in anal-
ysis. Next, we extract method call whose API call is unique
to Android from the result of analysis. Android SDK con-
tains libraries from Java, libraries from Apache HttpCom-
ponents project, Android original API and so on. In this
research, we selected methods whose fully qualified names
start with “android.” or “com.google.android” as Android
API.

The result of API call extraction is a pair of an API call
and a line number. We define this pair as API calling in-
formation. Then, sort API calling information in order of
line numbers. If multiple API callings appeared in the same
line, sort them in alphabetical order. We don’t care about
control flow statements and the order of methods in a class.
Save API calling sequence with information of its owner file,
class, and method at the same time.

To get COMMON, we make a table like Figure 4, and find
out common sequences of API calls which include two or
more APIT calls. Following information will be extracted as
COMMON.

e API calling sequence

e Appearance information (API calling information of
where the API calling sequence starts)

After the COMMON API calling sequences are extracted,

and Conmuni cati on Engi neers

Application X,
AP calls Method a Method b
Am1()|B.m2(){B.m3()|c.m1()|D.m4()|{D.m2() B.m3()| E.m3()
pmt @N = | - | - | - | - - -
B.m2() —\@ - —— - - - COMMON
om2f - | - | -|-|-|o =~ 'ﬁﬂ'
B.m2()
. B.m3() — - O - - - o -
% % [pm2o| - @\(- - - - | - B8.m2()
R —— cmi)
Ra A B _‘\\9\ _ _ _ _ D.m4()
pmag| — | — | = :\\3 - -] -
emg) = | - | - | -] - | - -lo
pm2g) — | - | - | - | -] O - | -

Figure 4 Extractiong COMMON

o

Application .
X, X,

o y S ——

 Extract

. e .
_ APicallings

. APicallings

API Calling
Sequences

[orrxt][common]|

Elv
==

ommon-Feature

X, -Feature

X, -Feature

Figure 5 Overview of comparison

we conduct a manual filtering. The purpose of filtering is to
remove API calling sequences that are not explaining specific
feature. Criteria of filtering are:

e Control or get information using devices like camera

e Notification

e Whether using Intent (call for another application)

After the filtering, we assign a feature name to each API
calling sequence. A pair of a feature name and an API calling
sequence is stored into a knowledge-base.

3.2 The phase comparing two applications

Figre 5 shows the overview of comparison phase. Our
method compares two applications as following steps:
Step 1 We analyze source code of two applications and ex-
tract API calling sequences. We extract only method calls of
API classes in the target platform, i.e., Android SDK classes.

Step 2 We compare two API calling sequences and iden-

-37 -

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

and Conmuni cati on Engi neers

‘A Prototype of Compa
|| Ootien PO —— - N
| % Compare 3 Anaiyze only | Heipiog tooi for making prior knoviiedge {

(i Force anaiysis

I Select target applications |

| Targetprojects
v ssnoroigarehie

Application X; ——
Method a Method b DIFF-X1
AP call .
" |rap[smanleman]emiplomaplom] [ema0]emsn
G E e E
2l \\a » _ —_ _ -\ - B.m3()
E.m3()
D.m2(f — - — - - O - -
B3l — el f - | - ol -
pd
f‘é_ gm;e‘— O™ —‘S\ - | - DIFF-X2
212 ”y "
g |2 fgamag®— _‘!\é\ﬂ_ - - o) \$ D.m2()
x1° — TN \\ B.m3
i D N Nl I
P ———— %‘ 51 - — Em3()
P 1 D.m2()
E.m3() - - - - O
bm2f — | = | - | -} -] O - | -

Figure 6 Extracting DIFF

tify the COMMON sequences. The differences are regarded
as DIFF-X1 and DIFF-X2.

Step 3 We translate API calling sequences in COMMON
and DIFFs into features according to a knowledge-base.

Procedure of extracting API callings and identifying COM-
MON are the same as the first phase making a knowledge-
base. To get DIFF, mark API calls which extracted as COM-
MON like Figure 6. After the COMMON sequences are iden-
tified, the rest (unmarked) calling sequences are regarded as
DIFFs. A long API calling sequence containing a COM-
MON sequence in the middle is divided to two API calling
sequences involved in a DIFF.

We check COMMON and DIFF with a knowledge-base; if
an API calling sequence is found in the knowledge-base, its
corresponding feature name is output. Here is an example.
A COMMON sequence is “ABCDE”. A knowledge-base con-
tains three features: feature X and its API calling sequence
is “BC”, Feature Y and its API calling sequence is “CB”,
Feature Z and its APT calling sequence is “AC”. Feature X is
found in the COMMON sequence, but feature Y and Z are
not found by our method.

The source code location of the calling sequence is also

recorded for further analysis.
4. A prototype tool

‘We have developed a prototype tool implementing the pro-
posed comparison approach.

A user of the tool should prepare a knowledge-base. The
tool analyzes two selected applications and shows feature
names corresponding to COMMON and DIFFs.

4.1 Selecting targets

On booting up the tool, startup window appears (Figure
7). Radio buttons are used for selecting whether the user
want to compare and show the result or only analyze and not

to show the result of comparison. Analyze only mode can be

A 23CollECHOm-

Stact

Figure 7 Startup window

VrandrodArchiEAUiomatedC 7T000- 20901 00eycioid . s aledCote
Fstures angur 1o Appt Carano faig Catures anicue 10 Ao

L1 showtoast i ment

e
Extracted Extracted 4 Extracted Y
X1-feature Common-feature X2-feature :
|

Feature nameand | T
API calling sequence

N e e R N b ¢ Caflectiont 190 /
s

itoriCdEe Al iz

Appearance
information

Figure 8 View for showing result of comparison

used for making knowledge-base. The tool uses existing re-
sult of analysis, so check “Force analyze” if the user wants
to do analysis again. Click a label of the project name then
appear a dialog to select a target project. The tool starts
analysis and comparing when “start” button is clicked.

4.2 Showing result of comparison

Figure 8 is a view for showing result of comparison. The
window has two parts of view and the upper part of the
window is divided into three parts. Xl1-feature, Common-
feature, X2-feature are showed in the left, center and right
of the view respectively. One of the buttons is clicked, and

then details are showed in the lower part.
5. Case study

We performed two case studies to answer following re-
search questions:
RQ1 Is an API calling sequence corresponding to a feature
of an application?
RQ2 Is our prototype tool able to clarify differences of two
applications?

RQ1 concerns the validity of a knowledge-base, and RQ2
is related to the comparison phase.

5.1 Case study 1

To ensure that API calling sequence shows the feature of
application, we collect some application and extract API call-

ing sequences. The steps of this case study are as follows:

-38 -

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

Step 1 We extracted API calling sequences from each of
five applications.
Step 2 We saw feature names corresponding to each API
calling sequences with knowledge-base, and ensure that an
application is distinguished from the other application.

As a target of case study, we used 11 applications labeled
“Map” in Google Code as applications with feature “map”.
This case study uses 5 applications to compare and the rest

to make a knowledge-base. Table 1 and Table 2 shows a list

Table 1 Application list for making a knowledge-base

Application name | LOC | #API calls
OpenGPSTracker | 8122 1099
mapsforge 37326 1407
OSMandroid 3150 175
TripComputer 14487 825
shareyourdrive 2761 346
savage-router 1041 66
total 66797 3918 |

Table 2 Application list for comparison

ID Application name | LOC | #API calls
Appl | MapDroid 6387 1160
App2 | cycroid 1278 761
App3 | yozi 5348 159
App4 | maps-minus 1785 21?4
App5 | BigPlanetTw 4139 432 |
Total 18937 2730 |

Table 3 The number of features appeared in target applications

#applications 0 1 2 3 4 5 | Total
#features 5 8 3 0 6 1 23
Table 4 An example of differences of features in 5 applications
ID Appl | App2 | App3 | App4 | AppS

Alert Dialog v v v v v
Get Latitude

and Longitude v v v v
Show Toast

(pop-up message) | v/ v v v
Set Latitude

and Longitude v | v
Submenu /7

and Conmuni cati on Engi neers

TRARGFOIRAKChivEAUtemA e ol BORIY.

atees e 10 Appt Cormon featuces Featuns uague 1 ADIE

348 wenu | _Beteootdinates of touchsd po
e Rt et
- agdd meng ot latitude amd fongitads . |

s mens

daiey -

Figure 9 Comparison cycroid and maps-minus

of applications and its LOC.

We extracted 156 API calling sequences from 6 applica-
tions. We have assigned names to 23 API Calling sequences
and stored into a knowledge-base.

Table 3 shows the result of Step 1. 80% of features in
the knowledge-base was appeared in the targets. The result
shows that API calling sequences stored in the knowledge-
base are involved in many applications.

Table 4 shows a part of the result of Step 2: an exam-
ple of differences of features in 5 applications, and Table 5
shows API calling sequences of some features. Some fea-
tures are common to all five applications and some features
appeared only in few applications. The result also shows
that some detected differences did not correspond to map
features; for example, “Alert dialog”, “submenu” and “toast
(pop-up message)”. These features are associated with user
interface. Table 4 shows the features involved in 5 appli-
cations; our approach successfully distinguished applications
using API calling sequences.

5.2 Case study 2

The second case study is to investigate the detailed be-
havior of our tool. We reuse knowledge-base which we made
in case study 1. Target applications are App2, cycroid, and
App4, maps-minus.

Figure 9 is the window of the tool displaying the result of
comparing App 2 and App 4. Our prototype tool can show
common features and features appeared only one or the other
application. Qutput of the tool is same as the result of case
study 1.

5.3 Discussion

The result of case study 1 shows that a particular API

calling sequence appears in two or more applications which

Table 5 Example of API calling sequences

Feature name

API calling sequences

Show toast(pop-up message)

android.widget.Toast.makeText
android.widget.Toast.show

Set latitude and longitude

android.location.Location.setLatitude
android.location.Location.setLongitude

Alert dialog

android.app.AlertDialog. Builder.android.app. AlertDialog. Builder
android.app.AlertDialog.Builder.set Title

Get latitude and longitude

android.location.Location.getLatitude
android.location.Location.getLongitude

Submenu

android.view.Menu.addSubMenu
android.view.SubMenu.setIcon

-39 -

NI | -El ectronic Library Service

Institute of Electronics,

has a similar feature. It follows from this fact that our idea is
reasonable; we can detect the differences of features by using
API calling sequences.

The result of case study 2 shows that our tool can com-
pare and distinguish features of two applications. Some fea-
tures doubly detected because they have some patterns of
sequence (like pattern ABC and pattern ACB, both of them
implements the same feature).

Features found by the tool are considered that the applica-
tion actually has them, but features which are not reported
are not always considered that the application doesn’t have
them. API calls which are not registered in a knowledge-base
are not found by the tool, so existing features may not be
detected if the knowledge-base contains not enough data.

In the case study, we cannot distinguish domain-specific
features from generic features, since we have used only “map”

applications to make a knowledge-base.
6. Related work

To compare source code of two similar programs, many
tools have developed. Unix diff [7] is a line-based text com-
parison tool and widely used for comparing source code. Se-
mantic diff analysis [8] uses data flow pairs for showing the
semantic effects of the modification. Comparing source code
is effective for knowing difference of two versions of same
application. However, these methods are not helpful in com-
paring applications developed individually.

MUDABIue [5] and LACT [6] categorize software automat-
ically. These tools can classify applications with similar fea-
ture in same category, but we want to know detailed differ-

ences between applications in same category.
7. Conclusion

We have developed a prototype tool to compare two An-
droid applications using API calling sequences extracted
The tool extracts COMMON and
DIFF API calling sequences, and then translates them into

from the applications.

common features and unique features of the applications.
We performed a case study with Map applications. The
result ensures that API calling sequences are usable for com-
paring applications.
In the future work, we would like to support developers
to give an appropriate name to a sequence of API calls. In
addition, we would like to judge whether some API calling

sequences explains the same feature or not.
Acknowledgment

This research was supported by Japan Society for the Pro-

motion of Science, Grant-in-Aid for Scientific Research (A)

I nf ormation, and Conmuni cation Engi neers

(N0.21240002) and Grant-in-Aid for Exploratory Research
(No0.23650015) .

References
[1] “Android Market,” http://market.android.com/.
[2] “Apple - iPhone - Learn about apps available on the App

Store,” http://www.apple.com/iphone/apps-for-iphone/.

[3] “SourceForge.net,” http://sourceforge.net/.

[4] “Google Code,” http://code.google.com/.

[5] S. Kawaguchi, P.K. Garg, M. Matsushita, and K. Inoue,
“MUDABIue: An automatic categorization system for open
source repositories,” Proc. 11th Asia-Pacific Softw. Eng.
Conf., pp.184-193, Busan, Korea, Nov. 2004.

[6] K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent
dirichlet allocation for automatic categorization of soft-
ware,” Mining Soft. Repositories, 2009. 6th IEEE Int. Work-
ing Conf. on, pp.163 -166, may 2009.

[7] E.W. Myers, “An O(ND) difference algorithm and its vari-
ations,” Algorithmica, vol.1, no.1, pp.251-266, March 1986.

[8] D. Jackson, and D. Ladd, “Semantic diff: a tool for sum-
marizing the effects of modifications,” Softw. Maintenance,
1994. Proc., Int. Conf. on, pp.243 -252, sep 1994.

[9] T. Xie, and J. Pei, “MAPO: Mining API usages from open
source repositories,” Proc. of the 2006 Int. Workshop on
Mining Software repositories, pp.54-57, Shanghai,China,
20086.

[10] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and
K. Matsumoto, “Design and evaluation of dynamic software
birthmarks based on api calls,” Information Science Techni-
cal Report NAIST-IS-TR2007011, ISSN 0919-9527, Gradu-
ate School of Information Science, Nara Institute of Science
and Technology, May 2007.

[11] “Open Handset Alliance,” http://www.openhandsetalliance.
com/.

[12] A. Saito, G. Yamada, T. Miyake, H. Higo, S. Kusumoto,
and K. Inoue, “MASU: Metrics assessment plugin-plutform
for software unit of multiple programming languages,” 2009
Int. Workshop on Empirical Softw. Eng. in Pract., 2009.

-40 -

NI | -El ectronic Library Service

