u

) <

The University of Osaka
Institutional Knowledge Archive

Title Finding Code Clones for Refactoring with Clone
Metrics : A Case Study of Open Source Software

Author (s) g?o;l Eunjong; Yoshida, Norihiro; Ishio, Takashi

Citation EFFHRBEFZSEMMARERSE. SS, VIhoT7H
ATV AR., 2011, 111(107), p. 53-57

Version Type|VoR

URL https://hdl. handle.net/11094/26648

rights Copyright © 2011 IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Institute of Electronics,

HHEEBEAN EFFEHREEFES
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

I nf ormation, and Conmuni cation Engi neers

&5 H
IEICE Technical Report
S2011-10(2011-07)

Finding Code Clones for Refactoring with Clone Metrics :

A Case Study of Open Source Software

Eunjong CHOI', Norihiro YOSHIDA, Takashi ISHIO, Katsuro INOUET, and Tateki SANOT

1 Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita-shi, Osaka, 565-0871 Japan
11 Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama-cho, Ikoma-shi, Nara, 630-0192 Japan
111 Software Process Innovation and Standardization Division, NEC Corporation
5-7—-1 Shiba, Minato-ku, Tokyo, 108-8001 Japan
E-mail: {{ejchoi,ishio,inoue}@ist.osaka-u.ac.jp, {fyoshida@is.naist.jp, {{ft-sano@cp.jp.nec.com

Abstract

A code clone is a code fragment that has identical or similar code fragments to it in the source code.

Code clone has been regarded as one of the factors that makes software maintenance more difficult. Therefore, to

refactor code clones into one method is promising way to reduce maintenance cost in the future. In our previous

study, we proposed a method to extract code clones for refactoring using clone metrics. We had conducted an

empirical study on Java application developed by NEC Corporation. It turned out that our proposed method is

effective to extract refactoring candidate code clones. In this paper, we show the result of applying our proposed

method into open source software systems.

Key words code clone, refactoring, open source software

1. Introduction

Code clone is similar or identical code fragments in source
code. The presence of code clones has been regarded as in-
dication of low maintainability of software because if a bug
is found in a code clone, the other code clone have to be
checked for defect detection.

Refactoring [5] is the process of changing a software system
in such a way that it does not alter the external behavior
of the code yet improves its internal structure. Refactoring
code clones (e.g., merge code clones into a single method in
Java program) is an effective way to reduce code clones in a
software system.

However, all code clones detected by a code clone detec-
tion tool are not appropriate for refactoring. For example,
language-dependent code clones|[6] (i.e. code clones that in-
dispensably exist in a source code due to the specifications of
used program language) are clearly inappropriate for refac-
toring. Although, numerous techniques and tools have been
proposed for code clone detection [8], [11], only little has been
known about which detected code clones are appropriate for
refactoring and how to extract code clones for refactoring.

Our previous study [4] proposed method to extract code

clones for refactoring using clone metrics. We showed the
usefulness of our proposed method with a survey to a de-
veloper in NEC Corporation. According to the feedback, it
turned out that our proposed method using combined clone
metrics is effective method to extract code clones for refac-
toring.

However, due to the time limitation, we conducted on a
single system in previous study. Therefore, although we
could validate our method in previous study, our method
may not generalize to other software systems.

In this study, we apply our proposed method to open
source software and discuss its results. The rest of this paper
is organized as follows: We first expalin the background of
our study in Section 2 and then describe a case study and its
results in Section 3. Section 4 discusses threats to validity.

Section 5 surveys related work, and Section 6 concludes our
paper.

2. Background

In this section, we explain about clone metrics and our
previous method based on them.

2.1 Clone Metrics

Our research group have developed and proposed a token-

-53-

This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

GPPYEEhtEAOM ¢ BY br i Eser vi ce

Institute of Electronics,

I nf ormati on,

based code clone detection tool CCFinder[11] and a code
clone analysis environment Gemini[13] which visualizes the
code clone information from CCFinder. Gemini supports
clone metrics LEN(S), POP(S) and RNR(S) [6],[13]. Each
of them characterize a clone set (i.e. an equivalent of code
clones) S:

e LEN(S) — The average number of token sequence of
code clones in a clone set S.

® POP(S) — The number of code clones in a clone set

® RNR(S) — The ratio of non-repeated token sequence
of code clone in a clone set S.

The definition of RNR(S) metric is described in Equa-
tion (1). If clone set S includes n code clones, ci,¢2 ..., cn,
LOSyhote(fi) is the Length Of the whole token Sequence of
code clone ¢;. LOSnon—repeated(fi) is the Length Of non-

repeated token Sequence of code clone ¢;, then,

Z LOSnonfrepcatad,(Ci)
RNR(S) = =2

Z LOSwhole (C’L)
=1

% 100 (1)

2.2 Features of Clone Sets Whose Each Clone
Metric is Higher

Gemini characterizes code clones using clone metrics. Our
research group has analyzed clone sets in numerous software
systems for several proposes (e.g., refactoring, defect-check)
using Gemini. The followings are the characteristics of clone
sets extracted by each clone metric [6].

® Clone sets whose LEN(S) is higher than others —
Clone sets whose LEN(S) is higher than other clone sets
means that each code clone in a clone set S consists of longer
token sequences than others clone sets. According to our
observation, many of them include many consecutive if (or
if-else) blocks that involve similar but different conditional
expressions.

® Clone sets whose RNR(S) is higher than others —
Clone sets whose RNR(S) is higher than other clone sets
means that each code clone in a clone set S consists of more
non-repeated code. According to our observation, because
clone metric RNR(S) distinguishes only “non-repeated” to-
ken sequences from “repeated” token sequences of code
clones, many of them do not organize a single semantic unit
(i.e., many instructions forming a single functionality)

® Clone sets whose POP(S) is higher than others —
Clone sets whose POP(S) is higher than other clone sets
means that code clones in a clone set S appear more fre-
quently in the system. According to our observation, those

clone sets include many small size code clones. Moreover,

and Conmuni cati on Engi neers

these clone sets include a lot of language-dependent code
clones.

2.3 Combinations of Clone Metrics

Our research group have suggested code clones for refac-
toring to industrial software developers.

However, according to their opinion, many of code clones
that are extracted using just high single clone metric are in-
appropriate for refactoring due to the weakness described in
Section 2.2. In order to improve the weakness of single-
metric-based extraction, we proposed a method based on
“combination of clone metrics”. The followings are the de-
tails about the conducted case study in previous study for
validating the our proposed method that using combined
clone metrics.

2.3.1 Target Clone Sets

The target of the case study was a Java software developed
by NEC corporation. It is 110KLOC across 296 files. From
736 clone sets that are detected by CCFinder, we selected
62 clone sets using a single clone metric value, and combined
clone metrics values. We used 30 tokens as the minimum
length of token sequence of a code clone to CCFinder.

The following are the details of subject clone sets:

® Spen — Clone sets whose LEN(S) value are top 10
high.

¢ Sgrnr — Clone sets whose RNR(S) value are top 10
high.

®* Spop — Clone sets whose POP(S) value are top 10
high.

® Sien.rNR — 15 clone sets whose LEN(S) and RNR(S)
values are high rank in the top 15.

®* Sien.pop — 7 clone sets whose LEN(S) and POP(S)
values are high rank in the top 15.

®* Senr-pop — 18 clone sets whose RNR(S) and POP(S)
values are high rank in the top 15.

®* Sien.-rvrPop — 1 clone set whose LEN(S), RNR(S)
and POP(S) values are high rank in the top 15.

2.3.2 Results

We conducted a case study according to the following
steps:

(1) Selected clone sets (details about these clone sets
are described in Section 2. 3.1) from CCFinder’s output us-
ing clone metrics in Gemini.

(2) Conduct a survey about these clone sets and got
feedback from a developer. The developer is a project man-
ager with 10 years of development experiences with Java.

(3) Analyze the result of conducted survey.

We use Precision to analyses results of the survey. It can
be used to investigate the question “How many clone sets
were accepted as refactorable clone sets by a developer?”

Equation (2) describes Precision. Let Say; represent all clone

-54 -

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

and Conmuni cati on Engi neers

Table 1 Precisions in the survey conducted in previous study

#Selected Clone Sets

#Refactoring Precision

Clone Sets

SLEN 10
SRNR 10
Spop 10
SLEN.RNR 15
SLEN-POP 7
SRNR-POP 18
SLEN.RNR-POP 1

7 0.70
4 0.40
3 0.30
13 0.87
6 0.86
14 0.78
1 1.00

Table 2 Results of clone sets detected by a single clone metric, and combined metrics in

the survey

Filtering Method

#Selected Clone Sets

#Refactoring Precision

Single Clone Metric
Combined Clone Metrics

30
41

14 0.47
34 0.83

sets that are selected by each method, Sarc represents clone

sets accepted as refactorable clone sets by a developer.

|Sarc|
|S aul

Precision = 2)

Tables 1 and 2 describe the result of the survey. In Tables
1 and 2, column Clone Sets shows name of target clone sets.
#Selected Clone Sets and #Refactoring show the number
of selected clones from CCFinder‘s output and the number of
clone sets that selected as refactorable clone sets in a survey
respectively.

As shown in the column “Precision” in Table 1, precisions
of Srnr, Spop are smaller than 0.50. This means that
those clone sets were accepted by a developer as inappro-
priate clone sets for refactoring.

However, precisions of Sren, SLen.rNrR, SLEN.POP,
Srnr.PoP, and SLen.RNR-Pop are more than 0.70. This
means that they were accepted by a developer as appro-
priate clone sets for refactoring. It is clear that all clone
sets that are extracted using combined clone metrics values
(Sen.rRNR, SLEN.POP, SERNR-POP, and SLEN.RNR.POP)
are more than 0.70 (They are shown in bold in column “Pre-
cision” in Table 1) are accepted as refactorable clone sets.

As shown in Table 2, Precision of clone sets that are ex-
tracted using combined clone metrics values are higher than
clone sets than using each single clone metric. Therefore, we
found code clones that extracted using combined clone met-
rics is more frequently accepted as refactorable clone sets

than using each single clone metric.
3. Case Study of Open Source Software

3.1 Target Systems

In this study, we use two open source Java projects:
Apache Ant [2] and JBoss[1], as our target systems. We use
code clone detection tool, CCFinder and set 30 tokens as the

minimum token length of a code clone because of its use and

setting in previous study. The followings are the details of
each subject system.

e Apache Ant — It is 198KLOC across 778 files.
selected 87 clone sets from 998 clone sets detected by
CCPFinder.

e JBoss — It is 633KLOC across 3, 344 files. we selected
299 clone sets from 730 clone sets detected by CCFinder.

3.2 Result

Table 3 shows the precisions of clone sets in each software

we

system. The precisions are little different from the previ-
ous study. The precisions of both Sgyr, both Spen.rNR,
SrLen.pop in Apache Ant, Srnr.pop, and SLEN.RNR-POP
in JBoss are more than 0.50 (They are shown in bold in col-
umn “Precision” in Table 3). The followings are our analysis
on the results.

¢ Sren (The precisions are 0.00 and 0.20 in Apache Ant
and JBoss respectively) — Code clones in those clone sets
consist many consecutive if (or if-else) blocks. Consecutive if
(or if-else) blocks are difficult to perform refactoring, gener-
ally. However, in previous study, just 2 types of parameters
are included in consecutive if (or if-else) blocks. Therefore, a
developer selected many clone sets whose LEN(S) value are
top 10 high as refactorable clone sets. On the contrary, due
to various types of parameters are included in consecutive if
(or if-else) blocks, it is inappropriate for refactoring of clone
sets in both Apache Ant and JBoss.

e Sirnr (The precisions are 0.70 and 0.80 in Apache Ant
and JBoss respectively) — The size of many code clones in
those clone sets are short. Several clone sets in Apache Ant
and JBoss include insufficient scale code clones to organize
semantic units..

e Spop (The precisions are 0.00 and 0.00 in Apache
Ant and JBoss respectively) — Code clones in clone sets
whose POP(S) are higher than other clone sets appear more

frequently in the system. Many of them in both Apache

-55.

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormation, and Conmuni cation Engi neers

Table 3 Results of each target system

Clone Sets Target System #Selected Clone Sets #Refactoring Precision
SLEN Apache Ant 10 0 0.00
JBoss 10 2 0.20
SRNR Apache Ant 10 7 0.70
JBoss 10 8 0.80
Spop Apache Ant 10 0 0.00
JBoss 10 0 0.00
SLEN-RNR Apache Ant 8 6 0.75
JBoss 63 37 0.59
SLEN.POP Apache Ant 18 10 0.56
JBoss 104 3 0.03
SENR.POP Apache Ant 34 716 0.47
JBoss 129 32 0.25

SLEN.RNR.POP Apache Ant - - -

JBoss 2 2 1.00

Ant and JBoss appear frequently in the system because they
are language-dependent code clones and language-dependent
code clones are not appropriate refactoring.

® Sren.rnr (The precisions are 0.75 and 0.59 in Apache
Ant and JBoss respectively) — Due to various parameter
types between code clones in clone sets in both Apache Ant
and JBoss, several of them could not be merged into a single
program unit.

® Sren.pop (The precisions are 0.56 and 0.03 in Apache
Ant and JBoss respectively) — Several of thoses clone sets in-
clude many language-dependent code clones in both Apache
Ant and JBoss. Therefore, many of them are inappropriate
for refactoring.

® Srnr-pop (The precisions are 0.47 and 0.25 in Apache
Ant and JBoss respectively) — Several of thoses clone sets
do not consist of a single functionality in both Apache Ant
and Jboss. Even though they include many instructions, in-
structions do not consist of a single functionality.

® Sren.rvr-pop (The precisions are 0.00 and 1.00 in
Apache Ant and JBoss respectively) — Those clone sets are
appropriate for refactoring compared to the other combina-

tion of clone metrics.
4. Threats to Validity

Due to the limited time and effort, we only evaluate pre-
cision of our method. We believe that precision is a good
enough criterion for validating our method.

Moreover, because we use only 3 clone metrics in our stud-
ies, it may not good enough to reveal the all characteristic of
appropriate code clones for refactoring. We are planning to
use other clone metrics and source code metrics (e.g., com-
plexity metrics).

Finally, because our case study is conducted on Java soft-

ware system, our method may not work on other language

software(e.g., C/C++, Python). In order to improve the
generality of our research, we need to investigate the useful-

ness of our method for source code written in without Java.
5. Related Work

Jiang et al. [9] and Kapser et al. [12] pointed out that code
clone detection tools using parameterized matching detected
a lot of false positives. Jiang et al. [9] used textual filtering
techniques to remove false positives from CCFinder’s output.
They removed code clones whose textual similarity falls be-
low a certain threshold. Kapser et al. [12] proposed the fol-
lowing techniques to remove false positives from the output
of their token-based clone detection tool.

® Identifier names outside functions (e.g., Java methods,
C functions) are not parameterized. For example, declara-
tions of field variables in Java programs and external vari-
ables in C programs are often duplicated but most of them
are false positives.

® Simple method calls are matched only if Levenshtein
Disitance of those method names is small.

¢ Logical structures (e.g., switch statements, if (or if-
else) blocks) are matched if 50% of tokens in these structures
are identical.

There is the possibility to make our method more effective
by applying the filtering techniques proposed by Jiang et al.
and Kapser et al. as the preprocessor or the postprocessor
of our method.

CCFinderX [10] developed by Kamiya provides the metric
TKS(S) that means the number of token types in code clones
belonging clone set S. The metric TKS is effective to remove
clone sets not in need of developer’s investigation (e.g., con-
secutive variable declarations) because those clones tend to
have small numbers of token types. This means that there is

the possibility of improving the effectiveness of our method

- 56 -

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

by use of the metric TKS in addition to the use of the met-
ric RNR. However, clone sets with low RNR value include a
lot of consecutive parts. They tend to have small number of
token types and low TKS value. This correlation means that
the use of both TKS and RNR is not significantly effective.

Balazinska [3] et al. and Higo [7] et al. characterize clone
sets according to the ease of refactoring. Balazinska et al.
characterize clone sets by analyzing the following informa-
tion:

e Differences among the code clones belonging to a clone
set

e Dependencies between the code clone belonging to a
clone set and its surrounding code

Higo [7] et al. proposed two metrics to represent the aver-
age number of the externally defined variables respectively
referenced and assigned in the code clones belonging to a
clone set. The combination of our method and the tech-
niques focusing on the ease of refactoring has the possibility

to improve the effectiveness of clone set filtering.
6. Summary and Future Work

In this paper, we conducted a case study of open source
software systems and discuss its result. We found that that
reasons why several clone sets are inappropriate for refactor-
ing.

As future work, we are planning to perform case studies of
software systems written without using Java. Moreover, we

would like to investigate recall and more metrics.

Acknowledgments

We express our great thanks to Ms. Fusako Mitsuhashi and
Mr. Shin’ ichi Iwasaki of NEC Corporation for data collec-
tion. This work is being conducted as a part of Stage Project.
Also, this work is partially supported by JSPS, Grant-in-Aid
for Scientic Research (A) (21240002) and Grant-in-Aid for
Research Activity start-up(22800040).

References
[1] JBoss Application Server. http://uww.jboss.org.
[2] The Apache Ant Project. http://ant.apache.org/.
[3] M. Balazinska, E. Merlo, M. Dagenais, B. Lagiie, and

K. Kontogiannis. = Advanced clone-analysis to support
object-oriented system refactoring. In Proc. of WCRE 2000,
pages 98-107, 2000.

[4] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano. Ex-
tracting code clones for refactoring using combinations of
clone metrics. In Proc. of the IWSC 2011, pages 7-13, 2011.

[5] M. Fowler. Refactoring: improving the design of existing
code. Addison Wesley, 1999.

[6] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method
and Implementation for Investigating Code Clones in a Soft-
ware System. Information and Software Technology, 49(9-
10):985-998, 2007.

[7] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based ap-
proach to identifying refactoring opportunities for merging

and Conmuni cati on Engi neers

(8]

9]

[10]

(11]

(12]

(13]

_57-

code clones in a Java software system. J. Softw. Maint.
Evol.: Res. Pract., 20:435-461, 2008.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD:
Scalable and accurate tree-based detection of code clones.
In Proc. of ICSE 2007, pages 96—-105, 2007.

Z. M. Jiang and A. E. Hassan. A framework for studying
clones in large software systems. In Proc. of SCAM 2007,
pages 203-212, 2007.

T. Kaimiya. Tutorial of CLI Tool ccfx, 2008. http:
//www.ccfinder.net/doc/10.2/en/tutorial-ccfx.html.
T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system
for large scale source code. I[EEE Trans. Softw. Eng.,
28(7):654-670, 2002.

C. J. Kapser and M. W. Godfrey. “Cloning considered
harmful” considered harmful: patterns of cloning in soft-
ware. Empir Software Eng, 13:645-692, 2008.

Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gem-
ini: Maintenance support environment based on code clone
analysis. In Proc. of METRICS 2002, pages 67-76, 2002.

NI | -El ectronic Library Service

