u

) <

The University of Osaka
Institutional Knowledge Archive

Title | A= ROO—VRHICBIZHFEORES & UFHE
e

Author(s) |##&, TF3¥; #4E, BEZ; #HLE, =

Citation | BT BEHMEEFRIRMARES. SS, VI bz TH
A IR, 2001, 100(570), p. 41-48

Version Type|VoR

URL https://hdl. handle.net/11094/26700

rights Copyright © 2001 IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Institute of Electronics, Infornmation, and Conmunication Engi neers

HEVEA BFHREEES | TRz
THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE.
INFORMATION AND COMMUNICATION ENGINEERS $52000-47 (2001-01)

a—R7a— RSB AHT FIEORER L UFHHER

PR SR A KT, HF B TERT

TR BE R T 0 5eE
T560-8531 KFRAFE PHAFHRILET 1-3
15 R MBI EEIR K ER KRB R A 2 R
T630-0101 B IRAEIT & LT 8916 —5

{kamiya, kusumoto, inoue } @ics.es.osaka-u.ac.jp

> F L
»oF a—kra—r b, Y= RA7 7 ANVHD, E0TKRALHIVIERLUL Y —Za—Fifh DZe
THD. ra—ii [By b&N—AMNIZLBT—FOBRIARC, EITROMELR LSE57H OB MA2EIR
Ly, SESERBHTHELND. 70— LY —RT7AVOER—BLEREREICT 5. A7 V= MaMm
FurII S EETRBREIN —Ra—Rhb, LVIERILZn—ERHT D OFERZRETS. #RLE
FHEIXY—CEES N, FRIZLY, DK OY—Ra—Fhbru— 22T L8 TE . S5, HEROR
HAEETIRRABSNTLEI L 2/ m— bR TE .

a—krua—y, Eo—R, CASE V—/b, AN IR, {R5F

A Token-based Code Clone Detection Technique
and Its Evaluation

Toshihiro KamiyaT, Shinji Kusumoto', and Katsuro Inoue'
tGraduate School of Engineering Science, Osaka University
IGraduate School of Information Science, Nara Institute of Science and Technology

{kamiya, kusumoto, inoue} @ics.es.osaka-u.ac.jp

Abstract A code clone is a code portion in source files thatis identical or similar to another. Since code
clones generally reduce maintainability of software, several code clone detection techniques and tools have been
proposed. This paper proposes a new clone detection technique, which consists of transformation of input source
text and token-by-token comparison. Based on the proposed code clone detection technique, we developed a tool
named CCFinder, which extracts code clones in C/C++ or Java source files. As well metrics for code clones were
developed. In order to evaluate the usefulness of the tool and metrics, we conducted several experiments. As the
results, the tool found several subsystems in two operating systems, namely FreeBSD and Linux, that could be
traced to the same original. As well, the proposed metrics found interesting clones in a Java library, JDK.

Code clone, Duplicated code, CASE tool, Metrics, Maintenance

key words

NI | -El ectronic Library Service

1 Introduction

A code clone is a code portion in source files that is
identical or similar to another. Clones are introduced
because of various reasons such as reusing code by
‘cut-and-paste’ or intentionally repeating a code portion
for performance enhancement[2]. Clones make the
source files very hard to modify consistently. For exam-
ple, assume that a software system has several clone
subsystems created by duplication with slight modifica-
tion. When a fault is found in one subsystem, the engi-
neer has to carefully modify all other subsystems. For a
large and complex system, there are many engineers who
take care of each subsystem, and modification becomes
very difficult. Various clone detection tools have been
proposed and implemented [1][2]0[6][7]1[8], and a
number of algorithms for finding clones have been used
for them, such as line-by-line matching for an abstracted
source program [1], and similarity detection for metrics
values of function bodies [8].

1.1 Definition of clone and related terms

A clone-relation is defined as an equivalence relation
(i.e., reflexive, transitive, and symmetric relation) on
code portions. A clone-relation holds between two code
portions if (and only if) they are the same sequences’.
For a given clone-relation, a pair of code portions is
called clone-pair if the clone-relation holds between the
portions. An equivalence class of clone-relation is called
clone-class. That is, a clone-class is a maximal set of
code-portions in which a clone-relation holds between
any pair of code-portions.

For example, suppose a file has the following 12 to-
kens:
axyzbxyzcxyd
We get the following three clone-classes:
Claxyzbxyzcxyd
CQlaxyzbxyzcxyd
C3)axyzbxyzcxyd

Note that sub-portions of code portions in each
clone-class also make clone-classes (e.g. Each of C3is a
sub-portion of C1). In this paper, however we are inter-

! Sequences are sometimes original character strings, strings
without white spaces, sequences of token type, and transformed
token sequences. We will discusses how we deal with such se-
quences.

Institute of Electronics, Infornmation, and Conmunication Engi neers

Source files
¢ Clone Detection -

A 4
| Lexcal Analysis |

|
Token Sequence

I Trans formation]

Transformed
Token Sequence Mappihg from
Transformed
f Detection | Sequence

| into Qriginal

Clones on Transformed
Sequence

|

] Formatting
]

v

Clone-pairs

| Measurement [

Metric Values Clone-classes

Figure 1. Clone detecting process

ested only in maximal portions of clone-classes so only
the latter are discussed.

2 Proposed clone-code detection technique

Our approach presented in this paper concerns the
following issues in clone detection.
¢ Identification of structures

Our pilot experiment has revealed that certain types of
clones seem difficult to be rewritten as a shared code
even if they are found as clones. Examples are a code
portion that begins at the middle of a function definition
and ends at the middle of another function definition, and
a code portion that is a part of a table initialization code.
For effective clone analysis, our clone detection tech-
nique automatically identifies and separates each func-
tion definition and each table definition code. For com-
parison, in [1], table initialization values have to be re-
moved by hand, whereas in [8], only an entire function
definition can become a candidate for clone.
¢ Regularization of identifiers

Recent programming languages such as C++ and Java
provide name space and/or generic type [3]. As a result,
identifiers often appear with attributive identifiers of
name space and/or template arguments. In order to treat

NI | -El ectronic Library Service

each complex name as an equivalent simple name, the
clone detecting process has a subprocess to transform
complex names into simple form. If source files are
represented as a string of tokens, structures in source
files (such as sentences or function definitions) are rep-
resented as substrings of tokens, and they can be com-
pared token-by-token to identify clones. Identifying
structures and transforming names require knowledge of
syntax rules of the programming languages. Therefore,
the implementation of the clone detecting technique
depends on the input. The detail of clone detecting
process is described in Section 2.1,
e Ranking clones by importance ,
Large software systems often include many clones, so
a clone analysis method must distinguish important
clones from many ‘uninteresting’ clones. The metrics
presented in Section 3.3 enable to identify such impor-
tant clones: clones that enable large code reduction by
their removal, or clones that have so widely spread in the
system that are difficult to find by hand and to maintain.
A certain metric value is used to estimate how many lines
of source files are reduced by making a shared routine of
each clone, and another is used to evaluate how each
clone is spread over a software system.

2.1 Clone-detecting process

Clone detecting is a process in which the input is
source files and the output is clone-pairs. The entire
process of our token-based clone detecting technique is
shown in Figure 1. The process consists of four steps:
(1Lexical analysis

Each line of source files is divided into tokens corre-

sponding to a lexical rule of the programming lan-

guage. The tokens of all source files are concatenated
into a single token sequence, so that finding clones in
multiple files is performed in the same way as single
file analysis. At this step, the white spaces between
tokens are removed from the token sequence, but the
spaces are sent to the formatting step to reconstruct the
original source files.

(2)Transformation

The token sequence is transformed by subprocesses

(2-1) and (2-2) described below. At the same time, the

mapping information from the transformed token se-

quence into the original token sequences is stored for
the later formatting step.

Institute of Electronics, Infornmation, and Conmunication Engi neers

(2-1)Transformation by the transformation rules
The token sequence is transformed, i.e., tokens are
added, removed, or changed based on the transforma-
tion rules. Table 1 shows the transformation rules for
Java source code(For C++ source code, another
transformation rules are adapted).

(2-2)Parameter replacement
After step 2-1 each identifier related to types, vari-
ables, and constants is replaced with a special token
(this replacement is a preprocess of the ‘parameterized
match’ proposed in [1]). This replacement makes
code-portions in which variables are renamed to be
equivalent token sequences.

(3)Detection
From all the substrings on the transformed token se-
quence, equivalent pairs are detected as clone-pairs.
Each clone-pair is represented as a quadruplet (cp, cl,
op, ol), where cp and op are, respectively, the position
of the first and second portion, and cl and ol are their
respective lengths.

(4)Formatting
Each location of clone-pair is converted into line
numbers on the original source files.

Here, a clone-relation is specified with the transforma-

tion rules and the parameter-replacement described

above. Other clone-relations are derived with a subset of

Table 1. Transformation rules for Java

| Rule

(PackageName ‘.’)+ ClassName

-> ClassName
Here, PackageName is a word that begins with
a small letter and ClassName is a capitalized
word.

RJ1

NDotOrNew NClassName ‘(¢
-> NDotOrNew CalleeID ‘.’ NClassName ‘(‘

5 Here, NDotOrNew is a token except ‘.’ or
‘new’. NClassName is an uncapitalized word.
CalleelD is a token for an omitted callee.
'=''{' InitalizationList, '}’

- '=' '{* UniquelD '}’

- 7" '{' InitalizationList, '}

= -7 '{’ UniquelD '}

Here, InitalizationList is a sequence of Name,
Number, String, Operators, ',', '(, 7', '{', and
)

« | Insert UniqueID at each end of the top-level

= | definitions and declaration.

NI | -El ectronic Library Service

Institute of Electronics

I nf ormati on,

100

and Conmuni cati on Engi neers

200

300

400

500

kLOC

source files are the following:
e Filtering by header
tokens

We would like to extract the
code portions that make real

100 . sense as a clone-pair. As a
1 simple filtering for this pur-

pose, the clone-detection
L algorithm distinguishes
200 T "header" tokens. A header
. B token is defined as the token

G_... that can be the first token of
S code portions of code-pairs.

300

For example, on detecting
clone-pairs in C/C++ source
files, tokens, “#”, “{”, and

A 3 (y’

400 are header tokens by

themselves. Also, the suc-
cessors of 13 : ’9’ 6‘; 7” 6‘) ”, C‘} 99’
and ends-of-line of a pre-

500 'LE
kLOC

processor directive become
header tokens. This filtering
reduced the number of tokens
inserted into suffix-tree by

Figure 2. Scatter plot of clones over 20 lines in JDK

the transformation rules and neglection of the parame-
ter-replacement. In the experiments described in Section
3, a clone-relation with all the transformation rules is
compared to a clone-relation with a subset of the trans-

factor 3 in either C/C++ or

Java source file, in the experiments described in Section

4.

Integer token

formation rules.

A token is represented by a serial number, not as a string

2.2 The implementation techniques of tool ©F & hash-value. This optimization is enabled by pa-

CCFinder
Tool CCFinder was implemented in C++ and runs
under Windows 95/NT 4.0 or later. CCFinder extracts
clone-pairs from C, C++ and Java source files. The tool

rameter-replacement, which causes a token sequence to
consist of only limited kinds of tokens. Otherwise, a set
of tokens is infinite in general, thus the tool should use
string or hash-value as a representation of a token, which

.) would cost higher time and space in clone detection.
receives the paths of source files from the command-line

(or text files in which the paths are listed), and writes the
locations of the extracted clone-pairs to the standard

3 Experiment

The purpose of the experiment was to evaluate our
output. The straightforward clone-detecting algorithm token-based clone-detecting technique and the metrics.
for n tokens with matrix requires the time complexity of
O(nd). A data structure called suffix-tree is devised to
detect clone-pairs and it requires O(n) time complex-
ity[1][5]. CCFinder employs a relaxed algorithm of O(n
log n) time using a suffix-tree, which is not only easily
implemented but also practically efficient.

The target source files have ‘industrial’ size and are
widely available. The person who performed the analysis
did not have preliminary knowledge about the source
files; consequently the following results are obtained
purely by the analysis with the tool and metrics. In all the
following experiments, tool CCFinder was executed on a

The optimizations employed by CCFinder for large PC with Pentium III 650MHz and 1GB RAM.

NI | -El ectronic Library Service

Institute of Electronics, Infornmation, and Conmunication Engi neers

these files, the developer should

1400
j . obtain the tool (the tool is not in-
1200 {WPR+1234 cluded in JDK), edit, and apply it
1000 ;T;i“ correctly. If the developer does not
4
g 800 use the tool, he/she has to update all
£ 1@ Exact Match
8 600 —— the files carefully by hand. As the
o] . .
400 ‘ example shows, the modification of
clones needs extra work. In this case,
200 % ;

v oo o 9 v O wn
T »n v 0 O ©~

Length of clones (LOC)

Figure 4. Occurences against length of clone-pairs in JDK

3.1 4.1 Clones in a Java library, JDK

JDK 1.2.2 is a commonly used Java library and the
source files are publicly available. Tool CCFinder has
been applied to all source files of JDK excluding exam-
ples and demo programs, which are about 500k lines in
total, in 1648 files. It takes about 3 minutes for execution
on the PC. Figure 2 shows a scatter plot of the
clone-pairs having at least 20 lines of code (LOC). Both
the vertical and horizontal axes represent lines of source
files. The files are sorted in alphabetical order of the file
paths, so files in the same directory are also located near
on the axis. A clone-pair is shown as a diagonal line
segment. Only lines below the main diagonal are plotted
as mentioned in Section 2.1. In Figure 2, each line seg-
ment looks like a dot because each clone-pair is small
(several decades lines) in comparison to the scale of the
axis. Most line segments are located near the main di-
agonal line, and this means that most of the clones occur
within a file or among source files at the near directories.

Crowded clones marked A in the graph correspond to
29 files of javax/ swing/plaf/multi/ *.java.
These files are very similar to each other and some of
them contain an identical class definition except for their
different parent classes.

these clones are easily rewritten
with a shared code if the program-

v oo v
0w O

100..

ming language would support ge-
neric type [3].

The longest clone (349 lines) is
found within java/ util/ Ar-
rays.java (marked B in Figure
2). Methods named “sort” have 18 variations for sig-
natures (number and types of arguments), and they use
identical algorithm/routine for sorting.

3.2 Evaluation of transformation rules for JDK

In Section 2.1, we also proposed the transformation
rules for Java. To evaluate effectiveness of the trans-
formation rules, we have applied CCFinder with some of
their transformation rules disabled. Figure 4 shows the
histogram of detected clone-pairs when some of rules are
applied. PR+1234 means that the parameter-replacement
and all rules (RJ1, RJ2, RJ3, and RJ4) are applied (i.e.
original CCFinder). Exact Match means that no pa-
rameter-replacement or no transformation is applied.
This figure shows that the longer the clone length is, the
smaller its occurrence becomes. A noticeable peak
around 80 LOC is a set of clone-pairs found in files
generated by AutoMulti, which cannot be detected by
Exact Match by the reason mentioned above. In this
experiment, the clone-pairs found by PR+1234 are much
fewer than with PR+124. This means that rule RJ3 re-
moves many table initialization codes.

The case PR+1234 extracted 2111 clone-pairs and
PR+34 extracted 2093 clone-pairs. There are several

Figure 3 shows a part of a file Mul-
tiButtonUI.java. This file contains
same to a file MultiColorChoose-

311 */

33}

32|public class MultiButtonUI extends ButtonUI {

160| public static ComponentUI createUI (JComponent a) {

rUI.java, exceptlines 32, 161, and 163. 161} ComponentUI mui = new MultiButtonUI () ;

rdi the so 162] return MultiLookAndFeel.createUIs (mui,
According to the comments of urce 163] ((MultiButtonUI) mui).uis .
files, a code generator named 164 a);
1651 }

AutoMulti creates the files. To modify
Figure 3. A clone file MuitiButtonUl.java found in JDK

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

! @ Clone-classes of the;
top 30 in DFL !

values]

i>< The other clone- |

°
XXX @
1
10 100
LEN (LOC)

Figure 5. Population and length of clone-classes in JDK

400

1000

¢ -

350

300 -

250 |

200 -

LEN (LOC)

150 -

LR 3

100

3
‘ *QM
i
|
L X224
”we
ome
.
-
- p

Figure 6. Length and Radius of clone-classes in JDK

clone-pairs that can be detected by introducing RJ1 and
RJ2. In the case of Exact Match, only a small number of
clone-pairs are found. The “exact” clone-pairs are ob-
vious candidates to be rewritten as a shared code.
However, our transformation and parameter replacement
approach finds more subtle clone-pairs so that the
chances to rewrite and reorganize overall structures of
software systems become higher.

3.3 Analysis using clone metrics

We define several metrics for clone-classes in order to
find important clone-classes, which enable us to perform
large code reduction. Also, we use metrics to find
clone-classes that are widely spread over a system.
Radius of clone-class; RAD(C)

For a given clone-class C, let F is a set of files which

and Conmuni cati on Engi neers

include each code portion of C. Define RAD(C) as
the maximum length of path from each file F to the
lowest common ancestor directory of all files in F.
For example, a clone class C contains two code
portions and one of them exists
‘abc/def/ghi/sourcel.c’ and the other in a file
‘abc/def/xyz/source2.c’, then RAD(C), i.e. the
length of the common path ‘abc/def/’, is equal to 2.

in

If all code portions of C are included in one file,
define RAD(C) = 0.

If a clone-class has a large RAD, the code por-
tions widely spread over a software system, and it
would become difficult to find those clones and
maintain their consistency correctly, since such
different subsystems are likely to be maintained by
different engineers.

Length; LEN(C), LEN(p)

LEN(p) is the number of lines of a code portion p.

LEN(C) for clone-class C is the maximum LEN(p)

for each p in C.

Population of clone-class; POP(C)

POP(C) is the number of elements of a given

clone-class C.

A clone class with a large POP means that similar

code portions appear in many places.

Deflation by clone-class; DFL(C)

Combination of LEN and POP gives an estimation

of how many lines would be removed from source

files by rewriting each clone-class as a shared code.

Suppose that all code-portions of a clone-class C are

replaced with caller statements of a new identical
routine (function, method, template function, or so)
and that this caller statement is one line. In this case

LEN(C) X POP(C) lines of code are occupied in the

original source files. In the newly restructured source

files, they occupy POP(C) lines for caller statements

and LEN(T) for a callee routine. Now let us define a

metric DFL? as a rough estimator of reduced source

lines:

DFL(C) = (0old LOC of C) ~ (new LOC of C)
=LEN(C)XPOP(C) — (POP(C)Y*LEN(C))
=(LEN(C)-1) X (POP(C)-1) -1,

Note that DFL(C) >= 0, for all clone-classes C that

% A similar metric is used in [1], which estimates how many lines
are removed in total by rewriting all clone-classes.

NI | -El ectronic Library Service

satisfy LEN(C) >= 2 and POP(C) >= 2.
4 Applying Metrics to JDK

The data of JDK were analyzed using the metrics.

Figure 5 shows the LEN and POP parameters of each
clone-class. The set of clone-classes with the highest 30
DFL values is obviously different from the set with the
highest LEN values or the set with the highest POP
values. By investigation of source files, the clone-classes
of the top 30 DFL values are classified into the following
four types:

-Source files generated by AutoMulti (10 clone-pairs)

*Part of a switch/case statement which seems to be easily
rewritten by an array (3 clone-pairs)

*Routines to apply one algorithm to many data types,
that could be rewritten by generic type (5 clone-pairs)

«Instantiations of definitional computations (e.g. meth-
ods in order to put or get a value of an instance value
and methods in order to change signature or pri-
vate/public accessibility of the other methods) (12
clone-pairs)

Figure 6 shows the RAD and LEN parameters of each
clone-class. Except for clone-classes whose RAD values
are 7, most clone-classes with high LEN have small
RAD value. That is, in most cases, a clone occurs be-
tween files at near directories. One of the reasons would
be that copying a code portion from a distant file is a time
consuming job because developer needs to search for the
target code portion through many files. Another reason
would be that the nearer files are more likely to imple-
ment similar functionalities.

As for all clone-classes whose RAD values are 7, 6, or
5, we investigated all the corresponding source files. All
code portions of 7 are found in ‘swing’ subsystem,
which has source files located at distant directories,
com/ sun/ java/ swing and javax/ swing. If the
all files and subdirectories in the former are moved to the
latter, the RAD values must be 3. The clone-classes of 6

Institute of Electronics, Infornmation, and Conmunication Engi neers

and 5 are classified as access methods. We investigated
clone-classes of 4 and found a clone-pair created in
cut-and-paste style, within javax/ swing/ event/
SwingPropertyChangeSupport.java and
java/beans/ PropertyChangeSupport.java.
A class SwingPrpertyChangeSupport is directly
derived from a parent class PropertyChangeSup—
port, and it contains methods to override those of the
parent, but each overridden method is equivalent to the
original. The reason for cloning is performance en-
hancement (the detail is described in the comment of
SwingPropertyChangeSupport). Therefore, a
careful modification process would be required for each
of them.

4.1 Application of CCFinder to Linux and
FreeBSD systems

CCFinder was applied to million lines of code from
two operating systems, Linux 2.2.14 and FreeBSD 3.4.
The purpose of this experiment was to investigate where
and how similar codes are used between two operating
systems. Linux and FreeBSD are well known Unix sys-
tems and have independent kernels written in C. The
target is the source files of kernel and device-drivers,
2095 . c files of 1.6 million lines in Linux, and 2906 .c
files of 1.3 million lines in FreeBSD. Clone-pairs with 20
LOC or more between two systems are extracted. This
operation takes about 40 minutes on the PC.

By investigation of source codes corresponding to the
clone-classes of top 30 lengths, such clones belong to 5
files or subsystems, shown in Table 2. The 3 subsystems,
awe_wave, mpu401l, and sequencer contain files
with identical names between two OS’s; therefore the
mapping of the two OS’s for the subsystems could be
identified by analysis of file names. On the other hand,
‘rocket’ files have different names, rocket.c and
rp.c, so that the identification of the mapping is more
difficult.

Table 2. Subsystems cloned between operating systems

Subsystem | Linux files

FreeBSD files

zlib arch/ppc/coffboot/zlib.c,
drivers/net/zlib.c

lib/libz/adler32.c, lib/libz/deflate.c, lib/libz/infblock.c,
lib/libz/infcodes.c, lib/libz/inffast.c, lib/libz/inflate.c
lib/libz/inftrees.c, lib/libz/trees.c, sys/net/zlib.c

rocket drivers/char/rocket.c sys/i386/isa/tp.c

awe_wave | drivers/sound/lowlevel/awe_wave.c | sys/gnu/i386/isa/sound/awe_wave.c
mpu401 drivers/sound/mpu401.c sys/i386/isa/sound/mpu401.c
sequencer | drivers/sound/sequencer.c sys/i386/isa/sound/sequencer.c

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

and Conmuni cati on Engi neers

systems in the experiments.

Linux FreeBSD .
[” - ‘ An experiment to compare
= S % § 5 two OS’s found several
S g9y g Q
2 3 S8 E8 S subsystems that would
= = < ..
32 §2 23 .EE 7 = come from a same original.
S = 5= S d99Yg g L
g N Zz N =5¥%33 2 Some of them have distinct
5 ~ BEEE ” file names between OS’s,
<
= and some are duplicated
——a.rch/ppc/cofﬂ)oot/ with in a system.
zlib.c References
i 1] B. S. Baker, “On
Linux drivers/net/ 1] _S er‘ O
2lib.c P A finding Duplication
and Near-Duplication
L ib/libz/ N in Large Software
{adler.c, deflate.c, System”, Proc. IEEE
infblock.c, : WCRE *95., pp. 86-95
infcodes.c, :
inffast.c, inflate.c, C\ B Jul. 1995
FreeBSD | inftrees.c, trees.c} N [2] I. D. Baxter et. al.
. % “Clone Detection Us-
sys/net/zlib.c _ ing Abstract Syntax
AN Y " Trees”, Proc.
L = ICSM 98, pp. 368-377,
Figure 7 Clones among zlib subsystems. Bethesda, Maryland,
Nov. 1998.
In case of subsystem z1ib, the situation is'more com- [31 M. G. Bracpa et.. al.
“GJ Specification”.

plex. Linux has two different files with the same name.
FreeBSD has 9 files.

Figure 7 shows a scatter plot among the files that have
any clones in ‘z1ib’ files. A in the graph shows, Linux
two files zlib.c, and driv-
ers/net/zlib.c includes all lines of
arch/ppc/coffboot/zlib. c. In FreeBSD system,
sys/net/zlib.c isequal to a concatenation of eight
lib/1ibz/* .c files, as shown by B in the graph. In
both operating systems (OS’s), the largest z1ib . c files

has named

contain complete source for ‘z1ib’ subsystem while the
other files contain part of the subsystem. The two largest
z1lib.c files are almost identical between Linux and
FreeBSD, as shown by C.

5 Conclusions

In this paper, we presented a clone detecting technique
with transformation rules and a token-based comparison.
We also proposed metrics to select interesting clones.
They were applied to several industrial-size software

[4]

(6]

(7]

(8]

http://cm.bell-labs.com/cm/cs/who/wadler/pizza/gj/
S. Ducasse et. al. “A Language Independent Ap-
proach for Detecting Duplicated Code”, Proc. IEEE
ICSM °99, pp. 109-118. Oxford, England. Aug.
1999.

D. Gusfield, Algorithms on Strings, Trees, and
Sequences, pp. 89-180. Cambridge University Press
1997.

J. H. Johnson, “Identifying Redundancy in Source
Code using Fingerprints”, Proc. of IBM CAS
CON ’93, pp. 171-183, Toronto, Ontario. Oct. 1993,
B. Lagué et. al “Assessing the Benefits of Incorpo-
rating Function Clone Detection in a Development
Process”, Proc. IEEE ICSM °97, pp. 314-321, Bari,
Italy. Oct. 1997.

J. Mayland et. al. “Experiment on the Automatic
Detection of Function Clones in a Software System
Using Metrics”, Proc. IEEE ICSM ’96, pp. 244-253,
Monterey, California, Nov. 1996.

NI | -El ectronic Library Service

