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                              ABSTRACT

     Purely funetional languages have good properties sueh as simply

defined semantics and mathematical elegance.

     A purely functional language called FP System proposed by Backus

has particular properties sueh that eaeh funetion has a singie argument

and an objeet (data) whieh ean be proeessed is an atom or a tree. In

order to present the problems of languages sueh as FP System and their

implementations, we have eonstrueted two interpreters for a purely

functional language FPL based on FP System. The interpreters do not

rewrite expressions direetly but repeatedly compute the values of the

objects. One interpreter has been developed on an ACOS-900 and written

in PASCAL. The objects proeessed by this interpreter are represented by

binary lists. The other has been developed on a small mieroprogrammable

maehine HOP and written in an assembly language for its mieroeodes. The

objeets processed are represented by iinear sequenees in a one-

dimensional array. The efficieney of these interpreters was almost

satisfactory for performing small-scale eomputation. However, several

problems of the interpreters were discovered, which are eaused by the

partieular properties of FPL.

     Next, we present a pureiy funetional language ASLIF based on an

algebraic speeifieation language, in whieh there are no restrietions on

the number of arguments of funetion' s or on types of data to be

proeessed. Methods of eompiling and optimizing an ASL/F program are

studied. We propose a t'lazy evaluation" method whieh ean be implemented

very simply by using a single LIFO staek, and optimization techniques

which are different from ordinary ones applied to proeedural languages.
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An optimizing eompiler for ASLIF has been implemented on a MELCOM COSMO

900-II, whieh generates an objeet program in assembiy language.

Experimental resuits show that (1) all optimization teehniques proposed

here are useful in redueing the exeeution time andlor memory

requirement, and (2) the exeeution time of an ASLIF program is about 75

to 135% of that of a PASCAL program using the same algorithm.
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CHAPTER 1

rNTRODUCTrON

    Many functional programming languages have been proposed. Some of

them are ealled purely functional languages in the sense that there are

no assignment statements to variables and the order of the program

statements does not affeet the computation results unless explieitly

speeified. For example, pure LISP and FP [Baekus 78] are pureiy

funetional languages.

     Since the meaning of the program written in those languages is

defined very elearly by using, for example, rewriting of expressions,

the correctness of programs ean be verified relatively easUy.

     A purely funetional programming language ealied FP System has been

proposed by Baekus [Baekus 78]. In addition to the properties of purely

funetional ianguages mentioned above, FP System has partieular

properties sueh that, each function has a single argument, and the

structure of objects (data) whieh are the vaZues of the arguments is an

atom or a sequence representing a tree.

      In order to present the problems of languages sueh as FP System

and their implementations, we have eonstructed•two interpreters for a

purely funetional language FPL based on FP System. Though several non-

von Neumann eomputers whieh directly execute those programs have been

                                    1



proposed [Mag6 79] [Berkling 76], eonstruetion of them remains

difficult.

     Semanties of EPL is defined by using the concept of rewriting of

expressions. Hences we ean easily interpret an FPL program in sueh a way

that an expression to be evaluated is represented by, for examplee a

linked iist and the expression is rewritten repeatedly according to the

definition of the semanties. But thts method does not seem to be

effieient. Therefore, we adopt a method of interpretation by which only

the objeets are tteomputedti repeatediy.

     Xn order to be interpreted effectively, an FPL program P is

transformed to a direeted graph PM which shows eorrespondenee between

funetions and their arguments. Then, the interpreter refers to PM and

eomputes objeets at the time of execution.

     One system for FPL, including the interpreter and translators for

the program text and input data, has been developed using PASCAL on

an ACOS-900. 0bjeets processed by the interpreter are represented by

binary lists to avoid redundant eobying of objects.

     We have also developed a sintlar system for FPL on a small

rnieroprogrammable eomputer HOP [Hosomi et al. 76]. The interpreter in

this system has been written in an assembly language of its microeodes,

and the objeets to be proeessed are represented by linear sequenees in a

one-dimensional array. Sinee this representation does not allow sharing

of the objeets, eopying of the objeets oeeurs frequently.

     We show the exeeution time and the number of eonsumed ceZls (used

for rgpresenting objects), obtained by exeeuting several quicksort

programs on both systems. The efficiency of the systems was satisfaetory

for small•-scale eomputations.
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    The following problems in the interpretation were foundt whieh are

eaused by the partieular properties of FPL.

(1) Sinee every function in FPL has only one argumentt we need to use

time- and space-eonsuming operations to separate certain elements from

sequenees or put elements together.

(2) Data struetures of objects which ean be directly eornputed in FPL

are sequences (representing trees) only. Therefore, if other data

structures and funetÅ}ons operating on them are essential to solve the

problem, we must simulate the needed data structures and the funetions

by using sequenees and the functions on the sequenees.

     Zn Chapter 3, we present a purely funetional language ASLIF (a

Functional language as a subset of Algebraic Speeification Language

[Nakanishi et al. 1979] [Sugiyama et al. 82b]), and study methods of

eompiling and optimizing ASLIF programs.

     TIiere are three types of funetions in ASLIF; primitive funetions

(eorresponding to built-in operations in eommonly used programming

languages sueh as arithmetie operations)s IF funetions (corresponding to

conditional statements) and defined funetions. A defined function g has

its own definition statement in a souree program:

     g(Xl ,"., xn) == rightg

where xl ,...t xn are distinet variables. rightg is a term and no

variables exeept for xl t...s xn appear in rightg.

     The semantics of ASL/F is defined elearly by using the coneept of

rewriting of terms. In an ASL/F program text, it is not necessary for

     i;the'  programmer to present rewriting rules for built-in sorts (e.g.,

integer or boolean) and their primitive functions (e.g., ADD or AND). :n
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addition to these built-in sorts, any data type and its primitive

funetions ean be included in ASL/F and used in the program text very

naturally if additional rewriting rules for them are presented by

the programrner.

    Here, we adopted a eompiling method such that a generated objeet

progra' m ttcomputest' the values of terms instead of rewriting terms

direetly. At the time of execution of this objeet program, we use only

a simple LIFO staek fgr storage allocation.

    The primary aim of the optimizations studied here is to reduee the

execution time and memory requirement of the object program. Reducing

sueh time and spaee is considered to be more irnportant than reducing the

size of the objeet program and the time for compiZation and

optimization. The following (a) to (d) are the optimizations diseussed

in this paper and implemented in the compiler we have eonstrueted.

                                                        '
(a) bre-computation of arguments of defined functions: zn order to

obtain the eomputation value of an ASLZF program without fail, we

usually adopt a method calied t'lazy evaluationt' [Henderson 80] for

eomputing values of an argument of a defined funetion. However, this

method is inefficient.

     To inerease the efficieney, we propose the following method: At

cornpile-time, the compiler detects "needed't arguments of defined

funetÅ}ons. The i-th argument of g is said to be needgd if, in order to

get the value of g(tl,".,tn), we must always eompute the value of ti

regardless of the computation order and the terms tl,...,tn. Hence, the

values of needed arguments ean be prereomputed and passed as aetuaX

parameters to a proeedure without causing useless or infinite

eomputation.
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     This optimization may be applied to proeedurai languages, but it

has not been discussed. The reason for this is that, in most procedural

languages, it is easy for programmers to specify the time to start the

eomputation of a value which is passed from one proeedure to another. rn

a funetional language proposed by Keller [Keller 82], a related problem

of ttevaluation of demand flow't which eorresponds to a simplified case of

this optimization problern is presented [Tanaka and Keller 82].

    Here, we formulate this optimization problem , give a general

method for the optirnizations, and show how effeetive this optimization

is in reducing the exeeution time and memory requirement (maximum length

of the run-time stack).

(b) Avoidanee of duplieate computation for eommon subterms: Zn order to

avoid the duplicate computation for common subterms (subexpressions)

within a term in a program, we use a flag indicating whether or not the

valuq of the eommon subterm has been already eomputed.

     The objeet program eomputes the value of each term in such a way
    '
that the value of each term is defined in terms of rewriting of DAG's

(Direeted Aeyclic Graphs) [Sugiyama et al. 82a] instead of rewriting of

terms. In addition to the elimination of duplieate eomputation, flag

tests are also eliminated, if possible.

(e) Globalization of sorts: For a sort (data type) sueh as an array

which requires iarge memory space to store its valuet we should

ailoeate no memory spaee for the values of the sort dynamically. Instead

we should only allocate a fixed memory space staticaliy (whieh is

suffieient to store any single value of the sort)t if the souree program

satisfies certain conditions. Zf this optimization was not performed,

the arrays would be eopied repeatedly on the run-•time stack in general,
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and memory space and exeeution time would be exhausted. Thus, this

optimization is essential.

     This optimization is related to the problems of "live variable

analysistt and "regÅ}ster alloeationt' applied to proeedural languages

[Aho and UZIman 77], and the problern of ttattribute alloeationtt applied

to an attribute grammar [Sasaki and Katayama 83].

(d) Eiimination of tail reeursions: Tail reeursions are transformed into

iterative forms as seen in funetional and proeedural languages [Aho et

al. 83]. This optimization reduees the memory requirement at the time of

exeeution.

(e) Elimination of Auxiliary Functions: If in the source text of an

ASL/E program, there are subterms which ean be rewritten without knowing

the values assigned to variablest we ean then rewrite (expand) such

subterms repeatedly before eompilation and other optimizations.

     This optimization may correspond to the expansion of open

subroutines in procedural languages.

     These optimization teehniques ean be applied not only to ASLIF but

also to other funetional languages. For these optimizations, only the

souree text of the program is analyzed. Although many ordinary

optimization techniques whieh are used for proeedural languages sueh as

FORTRAN (e.g., register allocation, leop-invariant move, ete.) ean be

applied further to the procedural program generated by our eompiling and

optimizing method, those optimizations are not considered in this

thesis.

     An optimizing compiZer for ASL/F has been implemented on a MELCOM

COSMO 900-xx, which generates an objeet program in assembly language. We
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also present the time and space efficiency of several sample programs.

Experimental results show that (1) all optimization techniques adopted

here are useful in reducing the execution time andlor memory

requirement, and (2) the exeeution time of an ASLIF program is about 75

to 135% of that of a PASCAL program using the same algorithm.

     Zn Chapter 4, we present the conclusion and direetions for further

study.

7



                              CHAPTER 2

          MPLEMENTATIONS OF FUNCTIONAL PROGRAMMING LANGUAGE FPL

           '

     Zn this chapter, we present a purely functional programming

language FPL based on FP System proposed by Backus [Baekus 78], and

systems for FPL on conventionai rnaehines.

     In Seetion 2.1, the definition of FPL is given. A method of

interpreting FPL programs is shown in Seetion 2.2 and Section 2.3. We

have eonstrueted an interpreter using this method on a relatively large

maehine and executed several quicksort programs. The time and spaee

efficieney of these sample programs are presented in Seetion 2.4. In

Seetion 2.5, we also present another syStem for FPL on a small maehine.

This system uses the same method of interpretation as the fOrmer system

but has distinct representation of data objects.

2.1 Fhmctional Programming Language FPL

     FPL is based on FP System proposed by Backus. The details of FP are

deseribed in [Baekus 78]. •

2.1.1 Funetions, Objeets, and Applieations

90Ujst}!iEbeet

     An integer, a boolean value, or Åë (a sequenee of length O) is an

atom. An atom is an objeet. A sequenee <xl, ." ,xn> eonsisting of

elements xi whieh are themselves objects is also an objeet (where n is

                                     8



ealled the length of the sequenee, and nZO). For example, <5, <9,

25>,73> is a sequence of length 3.

Funetions

     There are three types of funetions in FPL.

1. Built-in primitive funetions (see Table 2.1).

2. UD-functions (User-Defined function) defined by the programmer in the

program text.

3. Funotions defined by buUt-in funetional forms (see Table 2.2).

    Each funetion has an objeet as its argument and the (resulting)

value of the function is also an objeet.

     A primitive funetion ZD is the identity function. For a sequenee

<Å~1, X2, ... , xn> as an argument, the values of primitive funetionsJ

(a)HEAD, (b)SELi, (c)TAIL, and (d)LEN,are objeets (a)xl, (b)xi,

(e)<X2, ". , xn>, and (d)n, respeetively. LENI is a predicate whether

or not the argument is a sequence of length 1, and LT cornpares two

integers. PHI generates b (a sequenee of length O) and CONSTi generates

integer i for any argument. NULL is a predieate whether or not the

argument is b.

     The syntax of a definition statement of a UD--function is as

follows.

   ttDEFt, the narne of UD-function tt=" the definition body

The name of a UD-funetion on the left-hand side is a string of

alphanumerie charaeters (maximurn of 8 eharaeters) with a leading

alphabetic eharaeter and is not a the key words (e.g., DEFt END,

ADD, ...). The definition body on the right-hand side is a description

of a function whieh is usuaily a funetion defined by funetional forms.
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Table 2.1 Primitive Functions of FPL

  1.ID 2.HEAD 3.TArL 4.LEN 5.LENI
  6.AND 7.0R 8.NOT 9.ADD 10.SUB
  11.MULT 12.DZV 13.MOD 14.LT 15.EQ
  16.SELi 17.CONSTi 18.NULL
  19.PHI (PHI:x = Åë)
  20.UNION (UNION:x = x is <y,O> -> <y>
                    x is <l,z> -> <z>
     x is <y,<zl,...,zn>> -> <y,zl,...,zn>
                    else undefined
  21.IF (rF:<x,y,z> = z is True -> y;
                     z is False -> x;
     z is a sequence or an atorn other than
                 True,Faise -> undefined
                     [F:<x,y,z>

Inside the brackets of 20 and 21
McCarthy's expression is used.

;

;

;

;
)

)

Table 2.2 Functional Forms of FPL

1. CONSTR(Construetion) [fl,f2, ... ,fn]
    [fl,f2, ... ,fn] :x = <fl:x,f2:x, ... ,fn:x>
2. COND(Condition) (fl ; f2 <- f3)
    (fl ; f2 <- f3):x = IF:<fl:x,f2:x,f3:x>
3. COMP(Composition) fl.f2. ... .fn
   fl.f2. ... .fn:x = fl: f2: ... : fn:x
4. ZNS(Znsert) lfN
   !fN:x =x is <Å~1> -> xl ;
           x is <Å~1,x2, ...•,xn> ->
                      /fN:<f:<xl,x2>,x3, ... ,xn> ;
           else undeÅíined
5. APPL(Apply to all) 'ftt
    'f,t:x =x is l -> Åë ;
           x is <xl,x2, ... ,xn> •->
                      <f:xl,f:x2, ... ,f:xn> ;
           else undefined

10



     A funetional form has some functions as its funetionai arguments

and it defines a funetion. CONSTR g;ves a sequenee eonsisting of the

values of funetions whieh are the funetional arguments of CONSTR. COND

is defined by a primitive function ZF. The value of ZF is the value of

the seeond eiement of its argument when the third eiement is a booiean

value'True, and that is the value of the first element when the third

                 -element is False. Xn FPL, programmers cannot define any functienal

form.

Applieations

     An applieation denoted by t':t' is the only operation in FPL, and it

generates an expression by giving an objeet to the funetion as an

argument. We call an object an expression. f:E is also called an

expression where f is any funetion (including a funetion defined by

funetional forms) and E is an expression. f:E denotes that a function f

is applied to an objeet E. Zf this expression ean be rewritten into an

----------d--------------d---O-----------"-t-----------"------------d---e-----b---e-----ed-l--------------
" Assume that we rewrite an expression IF:A. If A is not a sequenee of
     tt
length 3 or if the third element of A is either a sequenee or an atom

other, than True or False, the value of ZF is not defined. If the third

element of A is an expression E including application symbols ,t:tt, the

resulting expression is still rF:A (the third element must be evaluated

first.) These definitions of COND and ZF seem to be eomplieated. But by

the definition of the 6onditional expression in Baekus' FP System, the

rewritings for the value of a predicate must be executed on an equation

other than the equation for the value of the program. By using those
                                          '     'definitions for COND and IF, however, all rewrltings can be exeeuted on

a single equation.
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expression E' by using the definitions of primitive funetions, UD-

funtions, and funetional forms, we write f:E == E'.

2.1.2 FPL Progran

Strueture of Prograrn
          -
     An FPL program P as a whole defines a UD-function fp to be

evaluated. At the top of the program text, the name of fp is written,

                                                                     'whieh for input data D generates the value of P.

     Figure 2.1 shows an FPL program whieh computes the greatest eommon

divisor of two integers by the Euclid's algorithm. In this program, fp

iB GCD. EQO is a predieate whether the argument is O or riot. The outline

of the definition of GCD is as follows.
         '

      Zf (x mod y) =O

           then GCD(x, y) =y

           else GCD(x, y) = GCD(y, (x mod y))

Semanties
                                        '
     The value of an expression is an objeet obtained by rewriting the

expressions repeatedly according to the definitien of the funetions or

funetional forms until no applieation symbols tt:" appear in the

expression.

     Data D for a program P is an object and is passed to P at the time

of execution. The value of expression fp:D is ealied the va:ue of P for

D.

     Assume that an expression E has more than two subexpressions whieh

ean be rewritten. The vaiue of E does not depend on the order of the

applieations among those subexpressions. Suppose we evaluate an
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expression E where E is IF:<fl:x, f2:x, f3:x>. Rewriting for the value

of fl:x or f2:x before rewriting for the value of f3:x may cause useless

or infinite rewritings even if E has a value. Then, we rewrite

subexpression f3:x first. Figure 2.2 shows an example of rewriting steps

where <6,4> is passed to the program of Figure 2.1 as input data.

DEF EQO
DEF GCD

GCD'
 -=EQ . [ CONSTO

 =(GCD.[SEL2
END

, ID]
, MOD] ; SEL2 <-• EQO.MOD)

Figure 2.1 An FPL Program which
 the Greatest Common

Computes
Divisor

- --

--

 .

 GCD:<6,4>
 (GCD.[SEL2,MOD];SEL2 <-• EQO.MOD):<6,4>
 rF:<GcD.[sEL2,MoD]:<6,4>,sEL2:<6,4>,EQo.MoD:<6,4>>
 IF:<GCD.[SEL2,MOD]:<6,4>,SEL2:<6,4>,EQO:2>
 IF:<GCD.[SEL2,MOD]:<6,4>,SEL2:<6,4>,EQ.[CONSTO,ID]:2>
 ZF:<GCD.[SEL2,MOD]:<6,4>,SEL2:<6,4>,EQ:<CONSTO:2,ID:2>>
 ZF:<GCD.[SEL2,MOD]:<6,4>,SEL2:<6,4>,EQ:<O,2>>
 IF:<GCD.[SEL2,MOD]:<6,4>,SEL2:<6,4>,False>
 GCD.[SEL2,MOD]:<6,4>
 GCD:<4,2>
 (GCD.[SEL2,MOD];SEL2 <- EQO.MOD):<4,2>
 XF:<GCD.[SEL2,MOD]:<4,2>,SEL2:<4,2>,EQO.MOD:<4,2>>
e---
 rF:<GCD.[SEL2,MOD]:<4,2>,SEL2:<U,2>,True>

 SEL2:<4,2> ' 2

Figure 2.2 Rewriting Steps for GCD: <6, 4>
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2.2. Hethods of Interpretation

     We eompared the following methods, (1) and (2), of interpreting an

FPL program P for input data D.

(1) We represent the expression to be evaZuated by a linear sequence in,

for example, a one-dimensional array. Then, the represented expression

is scanned repeatedly for subexpressions which ean be rewritten

immediately and the found subexpressions are rewritten in the array,

until no applieation symbols i':" appear in the array. rt is easy to

implement this raethod, but repeated seanning of the array may eause

ineffieieney.

(2) We first store P and D in distinet areas. Then the objeets ineluding

D are modified repeatedly according to the definition of functions or

funetional forms Å}n P until the value of P Å}s obtained. rn this method,

we have to save many temporary objects and states of intermediate steps

for Xater eomputation. But this can be aehieved easily by using

subroutine ealls of high-level languages (e.g., PASCAL, PLII, ...).

Therefore, we adopted this method.

     The order of funetions or functional forms to be applied may be

determined partialiy before execution (interpretation), but for ease of

implementation we adopted a method where the order of applications is

determined by the interpreter (the interpreter is denoted by Z) at the

time of execution. For ease of referring to P by Is we transfer P into a

directed graph PM before interpretation.

     Figure 2.3 shows a directed graph PM representing P of Figure 2.1.

Eaeh vertex in PM eorresponds to an oecurrenee of a funetÅ}on or a
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functional form in P and has a label of the name of the function or

funetional form. Eaeh edge eonneets f and g as f -> g, where f is a

vertex whose label is a funetional form F and g is a vertex whose label

is a function G (G may be a funetion defined by funetional forms) which

is one of the funetional arguments of F. There are no vertices

eorresponding to the occurrences of UD-funtions in P, sinee a vertex

whose Zabel is the functional form having a funetional argument of a

UD-function H is eonneeted direetly with the vertex whieh eorresponds to

the oeeurrenee of the outermost funetional form (or maybe a funetion) on

the right-hand side of the definition of H.

     For example, the vertex labeled COMP at the top left of Figure 2.3

is conneeted with the vertex labeled COND whieh eorresponds to the

outermost funetional form on the right-hand side of UD-funetion GCD. The

number of sons of a vertex eorresponding to a funetional form F is the

same as the number of funetional argurnents of F.

     Here we eall son u of a vertex v the 'ti-th son of vtte if u

eorresponds to the i-th funetional argument of the functionai form
    '
whieh eorresponds to v. For exarnple, for the vertex labeled COND at the

top of Figure 2.3,•the vertex labeled COMP at the top left is the first

son, the vertex iabeled SEL is the seeond son, and the vertex labeled

COMP at the top right is the third son.

     PM aan be easily represented by a binary list as shown in Figure

2.4.tt To eonvert P to this binary list representing PM, we have designed

-------------------d-----------P-d-----------------------------------------d--t------d-
sc In Figure 2.4, eaeh eell eorresponding to a funetional form eontains

the name of the funetional form in the left portion and a pointer in the

    'right portion of the eell.
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SEI,2
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          ONST EQ
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COMP
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rD
E OD

CONST

Figure

       SEL2

2.4 Representation of P   byM List
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a translator Tl.
                  '
     Objects (ineluding input data D) can be easily represented by

trees. Henee, they are also represented by binary lists as in Figure

2.5. Eaeh eell eorresponding to an atom in alist whieh represents an

object has an integer vaiue (-235 - +235-1) or a boolean value. input

data D is transforrned into this binary list by a translator T2 before

interpretation. .
     Then, the entire system for FPL eonsists of the translators Tl, T2,

and interpreter !. Tl, T2, and r are written in PASCAL, a language with

whieh we ean write reeursive procedures and list operations relatively

easily. This system runs under TSS on an ACOS-900 (where a user ean use

a memory spaee having a maxirnum of 112K words [ one word is 36 bits]). A

eeli containing an atom oeeupies 2 words and a cell containing two

pointers oeeupies 3 words. The rnemory space having a maximum of 60K

words (ealled the heap area) is reserved for these eells.

     Together, Tl, T2, and Z are about 2000 lines long and it took 3

man-months to design and implement them.

5

Figure 2.5

9 25
73

Representation of Object <5,<9,25>,73>
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2.3 Interpreter

    Figure 2.6 shows the outline of interpreter r. Here, we assume that

a variable of type 'tobj't eontains an objeet (even if it is a sequenee),

a variable of type itnodet' eontains a vertex in PM. The following, (1)

to (5), deseribe interpreter I shown in Figure 2.6.

(1) Procedure "interprett' has blocks eorresponding to the primitive

functions and funetional forms in FPL. One bloek is selected by the

label of the vertex in variable t'pett (whieh is the first argument of

proeedure "interpreV') and executed. The resulting objeet of "interprett'

is computed for the second argument "datat' in the selected bloek and

stored in the third argument "returnt'. The main program activates

t,interprett, with the vertex eorresponding to fp (the funetion to be

evaluated) and input data D as an aetual argument, and prints out the

resulting object of the aetivated "interpreV'.

(2) In eaeh bloek eorresponding to a functional form F, we must obtain

the values of several funetions whieh are the funetional arguments of F.

Therefore, in eaeh block eorresponding to a funetional form, t'interprett'

is aetivated reeursively with the label of a vertex whieh is a son of a

vertex Sn ttpe". By using procedure activations of a high-•level

language, temporary objects (e.g., the eontent of 'treturn,t in ttCONSTR"

block) and intermediate states are saved and restored automatieally.

(3) An objeet is represented by a binary list as mentioned above. Thus,

a variable of type t'objtt is implemented by a pointer pointing to a eell

in a list. We make a eell on a list representing an objeet X pointed by

the other pointer r so that r represents other objeet Y whieh is a

subsequenee of X. This reduees the number of eell eopying operations.

But the •list pointed by the pointer in 'tdata'i of one instanee of
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PncGRAM nat) ;
 VAR wonk: obj ;

PFPCE[XJRE interpret(pe: rx)de, data: obj,

VAR i: INIEGER ;
   wonk1,work2: obj ;

CASE sor't(pe) OF -@
 'M' :retum:-rdata ;
 'HEtll)' :retum:=se].eet(1,data)

VAR retum:obj) ;

; -@
@

IEgill,},,•IIigl/tllln:=null , .-.@

     retum:mul1 ;
     FOR i: =nmm(pe) DC)mm) 1 ---- @
     EE3M
      iriberpret(scm(pe,i), data, morkl) ; ---- @
      retum:=unicn(workl,retum) ; - (2)
     END ;
    END ;
tcoND' :BE;I[N
     interpret(son(pe,3), data,.work1) ;
     F morkl=TRUE THEN interpret(son(pe,2), data, retum)
           ELSE interpret(scn(pe,1), data, return) ;
    END ;
'ccr"ip' :BIII]M

     workl: data ;
     FOR i:=numscn(pe) mm 1
     BEnru
      interpret(scn(pe,i), wonk1, werk2) ;
      monk1::work2 ;
     END ;
     retum::work2 ;
    END ;
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     'ms' :BEI]ru
              werk1:=select(1,data) ;
               FOR i:=2 ro length(data) @
               BEGru
                interpret(s(m(pe,1), uni.on(work1,select(i,data)), work2) ;

                wonk1:--work2 ;
               END ;
               retum:tiwork2 ;
              END ;
      'APPL' :BEI;IN
               retum:mu]L;
               FeR i:=lergth(data) Eouro 1
               BEI]ru
                 iriterpret(scn(pe,1), select(i,data), work1) ;
                 retum:=union(morkl,retum) ;
               END ;
             END ;
      END ;

    BEI;[[N IN OF MIUIN "!
       interpret(fp, D, work) ;
       WRIE(work) ;
    END.

OSeleetion of the following bloeks depending on the label eontained in

ttpctt .

@i'select(i,data)" is the i-th element of the sequenee eontained in

ii datait
      .                                         '@  apply eaeh operation aecording to the definition of the primitive

funetion.

@ttnull't is di (a sequenee of length O).

@"nurnson(pe)t' is the number of sons of the vertex whose label is

 eontained in t,pc,t.

@t,son(pe)t' is the i-th son of the vertex whose label is contained in

 tr Pctt .

([i)"union(workl,return) is sequenee <fi(x), fi+1(x), ". , fn(x)> where

 ttreturn" contains <fi+1(x), ... , fn(x)> and "workl" eontains fi(x).

@ttlength(data)tt is the length of the sequence eontained in 'tdata".

                 Figure 2.6 Outline of Interpreter
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ttinterprettt eannot be released and reclaimed after the completion of the

instance, since parts of the list may be shared. For example, as shown

in Figure 2.7, after the eompletion of one instance of "UNIONt' bloek

whieh has data <5, <9, 25>> in variable t'datatt, cell 1 and 2 eannot be

                                                           eereieased beeause the other pointers pointing them may exist.

(4) When no more new eells can be obtained in the heap area, a garbage

eolleetion routine GC in ! begins to reciaim upused cells. GC first

traverses only used eells and marks them, and then traverses all eells

in the heap area and reelaims unmarked eells. GC is also written in

PASCAL, so that it takes a relatively long time to exeeute (for example,

in the quieksort program whieh will be described later, the time for GC

is about the same as the time for sorting). If it were possible to write

the garbage colleetion routine in a lower Ievei language, its exeeution

time would be redueed greatly.

(5) When one of the following errors (a), (b), and (c) oceurs,

interpreter I prints out the eontent of "datatt and the name of the

funetion or the functional form eorresponding to the bloek in whieh the

error has occurred, and halts.

   (a) The resulting value of the bioek is not defined for the objeet in

   ttdatatt. ,
   (b) An overelow oceurs.

   (e) No cells can be reelaimed by GC (i.e., the heap area is not

   sufficient).

----------d-----t--------------ny-"--------------------------d----------------"-----
X It may be possible to eheek whether or not the eells can be released

and reclaimed at the time of eornpletion of each instanee. But we are not

aware of any simple and effieient method.
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<5 t <9r25>>

5

9

<5 ,9t

@

2 5->

ii>

 2

Before

@

9

After

Ftgure 2.7 Exeeution of UNION:<5, <9, 25>>
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2.4 Sample Progr'ams

Quicksort 1

     Figure 2.8 shows a quieksort program in FPL, whieh sorts a given

integer sequenee in noninereasing order. This program was written ln

sueh a way that it ean be eonsidered to be a natural implementation of

the quieksort algorithm in EPL; therefore no special attention on the

exeeution time and memory usage was paid.

    A UD-function QSORTI takes an integer sequence x as its argument

and sorts the sequence as follows:

(a) First, apply a UD-funetion SPLrTl to an integer sequenee x and

obtain a sequenee consisting of three elements denoted by <lst-elem,

2nd-elem, 3rd-elem>, where lst-elern is BrGGER:x, 2nd-elem is HEAD:x, and

3rd-elem is SMALLER:x. Ist-eZem is a sequenee of the inPegers whieh

appear in a sequenee TAIL:x (a sequence obtained by removing the first

element of x) and which are greater than an integer HEAD:x (i.e., the
                                                           '
first element of x). 3rd-elem is a sequence of the integers whieh appear

in TAIL:x and whieh are not greater than HEAD:x.

(b)Next, apply QSORTI to bothsequenee lst-elem and 3rd-elem

obtained by (a).
                                     tt
(c) Finally, make the value ef QSORTI:x by eoneatenating the

sequenees obtained by (b) and HEAD:x. When x is b, the resulting objeet
     '
is also di.

     The value of BrGGER:x is obtained as follows.

First we eonstruet a sequence of three elements denoted by <lst-elem,

2nd-eiem, 3rd-elem>, where lst-elem is 6, 2nd-elem is HEAD:x, and 3rd-
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   Cl}SPRTI
DEF CIbSORTI=(FORM.[QSDRTI.HEAD , SEIL2 , QSORTI.SEL3].SPLITI ; PH[ <- NULL)
DEF SPL]Xl =([ er(XIER , HEAD , SMiU.I.ER ];[ PHI , HEtU) , PHI ] <- LJINI)
DEF' BlGGER=B[.ooP.[ PH! , HEAD , TAIL ]
DEF' BLDOP=((amP.[HEAD,SEL2,TAIL.SEL3]
        ; BLooP.[UNIION.[HEIU).SiL3,HEAD],SEL2,TAIL.SEL3]
       <- LT.[SEL2 , HEAD.SEL3]) ;HEIU) <- NULL.SEL3 )
DEI; sutU.MR=SLooP.[PHI , HEtU) , TAIL]
DEF SL(X)P=((SLcoP.[UNIon.[HEtU).SEL3,HEtD],SE[.2,TAIL.ssL,3]

       ; SLmoP.[HEIU),SIL2,TAIL.SEL3]
        <- LT.[SEIL2,HEAD.SEL3]) ; HEAD <•-• NULL.SEL3 )
DEF' FDIevl :APPEND.[HEIU) , UNION.[SEL2 , SEL3]]
DEF' APFEiND=(UN[ON.[HEig).HEitll) , APPEND.[Tl[[L.HEiU) , SE[2]] ; SEL2<-NUI.iL.HEtU))

  END

Figure 2.8 Quicksort 1

Table 2.3 Exeeution of Quieksort 1

Thenumber
tobe

ofintegers
sorted

50

Exeeution time(see.) 1 .4

.Thenumber

cells(
ofeonsumed
x1000)

pt

4 •9

1OO

3.0

10.6

200

7.7

----
26.7

----

300

13.3

47.2

400

19.1

67.4

500

24.9

88.5
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elem is TAZL:x initially. Then, eaeh integer in 3rd-elem is picked up

one by one, and compared with 2nd-elem repeatedly. If it is greater than

2nd-elem, it is added to lst-elem. The value of BIGGER:x is lst-elem at

the time when 3rd-elem beeomes 6.

    On the other hand, SMALLER:x is obtained by the similar operations

but the integers to be added to lst-elem are not greater than 2nd-elem.

     APPEND eonnects two sequences.

     In Table 2.3, we show the executÅ}on time (except for the time for

Tl, T2, and GC) and the number of consumed cells (celXs reclaimed by GC

are counted every time they are reused) of Quieksort 1. It took O.7

second to transform the source text of Quicksort 1 by Tl, and 2 seeonds

to transform a sequenee of 500 integers by T2.

Quicksort 2

     Zn Quieksort 1, in order to obtain the sequenees of greater
integers and not greater integers than HEAD:x, we used two uD-funeti6ns

BIGGER and SMALLER. But if both sequenees, BIGGER:x and SMALLER:x, can

be obtained by a UD-funetion at the same time, the effieiency will be

inereased. Thus, we defined SPLIT2 and LOOP in Quicksort 2 as shown in

Figure 2.9, instead of SPLZTI, BZGGER, BLOOP, SMALLER, and SLOOP in

quieksort 1. The argument of LOOP is a sequenee of four elements

denoted by <lst-elem, 2nd--elems 3rd-eiem, Uth-elem>. Ist-elem is a

sequence whose elements are greater than 2nd-elem, 3rd-elem is a

sequenee whose elements are not greater than 2nd-elem, 4th--elem is a

sequenee whose elements have not yet been eompared with 2nd-elem. The

elements in 4th-elem are pieked up one by one, eompared with 2nd-elem,

and added to lst-elem or 3rd--elem aeeording to the results of the
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      CISDRT2
DEF QSxxIT2=(am.[(S)RT2.HEtll) , SEL2 , C}SORT2.SEL3].SMI['I2 ; PH[ <-• NULL,)
DEF SH.,]rr2 =(LooP.[PHI[ , HEIll) , PH[ , TA]L] ; [PH] , HEIU) , PHI] <- LENI)
DEF moP=((U[)OP.[HEIU), SEL2 , UNIou.[HEIU).SEL4 , SEL3] , TA[L.SEL4] ;
        LmoP.[UN[ON.[HEAD.SEL,4 , HEIU)] , SEL 2 , SEL3 , TAIL.SEL4]
        <•- LT.[SEL2 , HEAD.SEL4]) ; [HEAD , SEL2 , SEL3] <- NULL.SEL4)
DEF' 1nc)FeC =APPEND.[HEIll) , UN[ON.[SEL2 , SEL3]]

DEF' APPEND=(UN]ON.[HEAD.HEIU) , APPEND.[TAIL.HEAD , SEL2]] ; SEil-2<-NULL.HEAD)

      END

Figure 2.9 Quicksort 2

Table 2.4 Exeeution of Quiaksort 2

The number
 to be

of integers
sorted

--p-p-d-d--d-----------
Exeeution time (see.)

------------------------
The number

eells (
of
x

consumed
1OOO)

-------------------t --

50

-1OO

1.0

-

2.1

3.7 8.1

200

5.3

20.1

300

8.9

35.1

400

13.0

50.6

-----pd---

500

16.8

66.4
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comparisons. The resuiting objeet of LOOP is a sequenee eonsisting of

lst-elem, 2nd-elem, and 3rd-elern at the time when 4th-elem becomes ri.

    The exeeution time and the number of cells consumed by QuÅ}cksort 2

were redueed by 30% and 25%, respeetively (see Table 2.4).

Quicksort 3 and 4

    A UD-function APPEND in Quicksort 1 and 2 is defined reeursively.
                                          '
For the nurnber (denoted by n) of integers to sor't, APPEND is executed

about (1/2)n log n times, and uses (5/2)n logn cells as aresult.

(Zn most eases for eaeh exeeution of APPEND, two eeils for the outside

CONSTR on the definition of APPEND, another two eells for the inside

CONSTR, and one eell for the UNION, a total of five eells are usually

consuned.)

     Thus, we added a bloek for APPEND to interpreter Z so that APPEND

can be exeeuted as a primitive function. As a result about (112)n iog n

eells are eonsumed for APPEND, and eompared with Quieksort 2 the

execution time was redueed by 20% and the number of eells eonsumed was

reduced by 15%. (Quieksort 3 is defined by removing the definition of

APPEND from Quicksort 2.)
                                                                  '
     For eaeh execution of a function LT.[SEL2, HEAD.SEL4] on the

definition of LOOP, two cells are eonsumed, and this funetion is
                                                             -
exeeuted n log n times. Thus, we also added a bloek for this function to

the interpreter as a primitive function denoted by LT24. As a result

both the execution time and the number of eells eonsumed were redueed by

20% eompared with Quieksort 3. (The quieksort program using the

primitive function LT24 is called Quieksort 4.) The exeeution time and

the number of consumed eells of Quieksort 4 are shown in Table 2.5.
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Table 2.5 Exeeution of Quieksort 4

The number of integers
    to be sorted
      L.

Exeeution

The number
eells (

-m--"-----

time

of
x

(sec.)

eonsumed
1OOO)

50 1OO

O.7 1.5

2.8 5.9

200

3.5

----b

14.7

300

6.2

25.8

400

8.5

36.1

500

11.4

47.3

.
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2.5 1tn Implementation on a Small Maehine

    Using the methods mentioned in the preeeding seetions, we have also

implemented a similar system for FPL on a small maehine in a low level

language.

2.5.1 Outline of the Systern

(1) We have developed the system for FPL on a mieroprogrammable maehine

HOP [Hosomi et al. 76]. HOP has a rnain memory of 32K bytes and a control

memory of 3K words (one word is 30 bits). It exeeutes one

mieroinstruction in 350 ns. The tools for developing programs, e.g., a

self--assembler, a disassembler, an editor, a debugger and an emulator
                             'for the 8080 mieroproeessor had been developed on it.

(2) The system eonsists of transiators Tl',T2' and an interpreter I'

corresponding to Tl, T2 and I mentioned in Section 2.2, respeetively.

Tl'  and T2'  were written in the 8080 assembly language and together are

about 1500 steps long. The interpreter !' was written in an assembly

language for HOP's mieroeodes and is about 1000 steps long. Zt took

about 3 man--months to eompiete them.

(3) In this system, objeets are represented by linear sequenees in a

one-dimensional array (as shown in Figure 2.10) rather than binary

lists, sinee operations for the sequences are eonsidered to be

relatively easy by using HOP's instructions. The array has a maximum

length of 24K bytes. A eell containing an integer oceupies 4 bytes and a

                                                        'eell eontaining a symbol oeeupies 1 byte.

(4) The structure of I' is simiiar to that of I shown in Figure 2.6. In

I' , variables of type t'obj" are implemented with pointers pointing to

ends of the linear sequenees representing objeets in the array. One
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t---
Other
Object

$ < 5 < 9 25 > 73 > $ Other
Object ----

Figure 2.10 Representation of Object <5,<9, 25> ,73>
  '

in I'

Tab1e 2.6 Exeeution of Quicksort 3   .tusing I

The
d-----------------d-

number
 to be

of integers
sorted

-p ---ip---pp---"-"-

Execution
---p---p

The

time (see.)

-p------------
 number
eells (
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X

 consumed
1OOO)

- ------------------

50

1.0

O.6

1 OO'

6.2

1.0

200
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2.0

-td
300

--
59.0
----d

'

3.8

----
400

---
90.9

-- -
4.6

----- -
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.7.1

"

30



linear sequence in the array is pointed by exaetly one pointer, and no

subsequences are pointed by other pointers. In Z' , the instruetions for

saving and restoring the loeal variables at the time of procedure

activations and returns from proeedures are written explieitly, sinee I'

was written in a low level language (mierocodes).

2.5.2 Execution Results

     Quicksort 2, shown in Figure 2.9, ean not be executed by I' when

the number of integers to be sorted exeeeds 100, sinee there is not

enough spaee in the array. This shortage oecurs because at the time of

execution of the UD-funetion APPEND, the objeets created by repeated

execution of TAIL are stored in the array successively. ( For the number

(denoted by n) of integers to sort n, o(n2) eens are consumed eaeh time

APPEND is exeeuted.)

     Then, we added the bloek for eomputing APPEND as a primitive

funetion to I' so that the number of eonsumed cells is O(n) eaeh time

APPEND is exeeuted. The exeeution time and the number of cells of

Quieksort 3 by I' are shown in Table 2.6.

    The time required for of Quieksort 3 is O(n log n) by Z. On the

other hand, it is o(n2) by Il The reason for the differenee is that the

time required for exeeuting the primitive functions sueh as TAIL is O(n)

by I' , while it is a eonstant by Z.

     Unused objeets (e.g., an objeet pointed by a pointer in ttdatatt at

the time of eompletion of proeedure "interpret") ean be removed from the

array instantly. The maximum size of the spaee for the cells in the

array (i.e., the maximum length of all objeets together) is

approximateZy proportionaZ to n when Quieksort 3 is exeeuted by I'.
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2.6 Diseussion

(1) No difficulty oceurred when bot.h systems were developed, and the

                                                                     reffieieney of the systems is satisfactory for small-seale computation .

The implementation methods discussed here are considered effective for

executing programs of functional languages sueh as FPL.

(2) The following (<a>, <b>, and <e>) are the disadvantages oÅí FPL found

during the development of some FPL programs.

<a> The number of primitive funetions and funetional forms in the

eurrent version of FPL is insuffieient, sinee we sometimes had

diffieulty in writing straightforward programs.

<b> Since every function in FPL takes only one argument, we often need

to use primitive funetions whieh separate eertain elements from

sequences (e.g., SELi, HEAD, TArL, ete.) and primitive functions or

funetional forms whieh put elements together (e.g., UNION, CONSTR, ete.)

as seen in the definition of LOOP of Quieksort 2, for example. Those

primitive funetions and funetional forms would be unnecessary Å}f

functions eould take more than one argument.

<c> Data structures whose values ean be directly processed in FPL are

restrieted to sequenee only. Therefore, if other data struetures and

funetions on them are essential to solve the problem, we must simulate

the needed data struetures and the funetions by using sequences and the

funetions on the sequenees.

(3) By the interpreter I, one memory eell is consumed eaeh time UNZON is

e--ent----i---b-----i--d----------b"---------------iP------------tt------------------------------t-I----
" A LISP program eorresponding to Quicksort 2 was executed on the ACOS-

900. It took 3.5 seeonds to sort 500 integers.
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executed, and n eells are consumed eaeh time CONSTR (having n functional

arguments) is exeeuted. The repeated exeeution of those primitive

funetions and funetional forms may eonsume a large number of memory

eells and eause ineffieieney. Therefore, we attempted to avoid using

them for the sake of efficieney, but eventually used many of them for

the reason mentioned in (2)-<b>.

(4) The time required for exeeuting primitive funetion LEN by

interpreter I or r' , and the time required for exeeuting TAIL by I' are

proportional to the length of sequenees which are the arguments of the

primitive funetions. The usage of those primitive functions may

inerease the order of exeeution time by one. Therefore, we must be

eareful in using them.
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                CHAPTER 3

FUNCTIONAL PROGRAMMZNG LANGUAGE ASL/F AND

         ITS OPTIMIZING COMPmsR

     Zn this chapter, we present a purely funetionaZ programming

ianguage called ASL/F, and propose compiling and optimizing methods

applicable to ASL/F.

      The definition of ASLIF is given in Seetion 3.1. A method of

compiling an ASL/F program is studied in Seetion 3.2 and Seetion 3.3.

Several optimization problems are diseussed in Seetion 3.4. The

exeeution time and memory requirement of the object programs of several

sample ASLIF programs sueh as quieksort are given in Section 3.5.

3.1 Sunmar'y of ASL/F

   '
3.1.1 Syritax or ASL/P Pr.egrams

[Sorts, Funetions and Terms]

    A Sort is the name of a data type sueh as integer, boolean,... .

ASL/F supports most sorts found in eommoniy used programming languages

(e.g., integer, real, boolean, character string, array, tuple, etc.) and

             .primitive funetions (e.g., ADD, SUB, AND, OR, ." .) on them. (Table

3.1 shows primitive funetions whieh are impZemented in the current

version of the compiler.) By the notation f: sl , S2 ,"., Sn -> S,

we mean that funetion f has n-arguments of sorts sl, s2 ,..., sn, and
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        Table 3.1: Primitive Functions Implemented in the

                     Current Version of the Compiler

----n-----------------------------------------------t--------------P----------------t----------

AND, OR, XOR, NOT

         ( Logieal operations on booleans )

ADD, SUB, TIMES, DIV, MOD, NEG

         ( Arittmetie operations on integers )

EQ, NEQ, GT, GE, LT, LE

         ( Relational operations on integers )

CONTENT, ASSIGN

         ( Operations on arrays )

< >, PRI, PR2, PR3, PR4, PR5, PR6, PR7, PR8, PR9

         ( Operations on tuples )

----"-e"--------------------e-----------i---nt-nt--------------------------e-------t--t------id--

Note: sc AND, ." , ADD, ." , EQ, ." ete. are funetions which are

      equivalent to the funetions (operators) in commonly used languages

      (TIMES is multiplieation).

      ee The value of CONTENTS(X, i) is the i-th element of array X, and

      ASSZGN(X, i, d) is the array obtained by repiaeing the i-th

      element of X with d.

      " <di, d2, ". > is the tuple with dl, d2, ". as its eomponents,

      and PRI(Y), PR2(Y), ." are the first component, the second

      component, ". of tuple Y respeetively.
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the value of f is of sort s.

    A term of sort s is defined as follows. A eonstant of sort s or a

variable of sort s is a term of sort s. For a funetion f sueh that f:

sl s S2 ,."e sn -> s , if terms tl e."s tn are of sorts sl, .") sn

, respeetively, then f(tl, .", tn) is also a term of sort s.

[Defined Ftmetions and IP Funetions]

    There are three types of funetions in ASL/F; primitive functions,

IF funetions and defined funetions. A defined funetion g has its own

definition statement in a souree program:

    g(Xl ,..., xn) == rightg

where xl ,..., xn are distinet variabies. rightg is a term and no

variables except for xl ,..., xn appear in rightg. We eall g(xl ,...,

xn) and rightg the left•-hand side and the right-hand side of the

definition statement for g, respeetively.

     The value of an IF function is either the value of the second

argument if the value of the first argument is TRUE, or the value of the

third argument if FALSE. For every sort s, there exists an ZF funetion

IFs (IFs: bool , s , s -> s) that satisfies the following two axioms :

     ZFs(TRUE , Xl, X2) == Xl

     IFs(FALSE, Xl, X2) == X2

For eonveniences in what followss ttlFst, is simpiy written as ttlF't when

sort s is understood.

[Structure of ASL/F Programs]

     Figure 3.1 is an ASL/F program whieh sorts the integers (in an
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(1) SPEC QUXCKSORT ;
(2) INCLUDE ARRAY(INT, 5000, ARY) ;
(3) OP QSORT :ARY, INT, INT -> ARY;
(4) SPRQSORT : ARY, ZNT, INT, !NT, rNT, INT -> ARY ;
(5) LEFT :ARY, INT, INT •-> ZNT;(6) RZGHT :ARY, rNT, INT •-> INT ;
(7) EXCH :ARY, INT, INT -•> ARY;(8) MrD :INT, INT -> INT;(9) ZNC :ZNT -•> ZNT;(10) DEC :rNT -> ZNT;   AXZOM
(11) QSORT(X, I, J) == ZF( GE(I, J), X,
         SPRQSORT( X, r, J, Z, J, CONTENT(X, MID(r, J))) )
(12) SPRQSORT(X, 1, J, L, R, B) == .
       ZF( LT(LEFT(X, L, B), RIGHT(X, R, B)),
          SPRQSORT( EXCH(X, LEET(X, L, B), RrGHT(X, R, B)),
                    Is J,
                    INC(LEFT(X, L, B)), DEC(RrGHT(X, R, B))
                    B ),
          IF( EQ(LEFT(X, L, B), RIGHT(X, R, B)),
              QSORT( QSORT(X, I, DEC(RIGHT(X, R, B)) ),
                     rNC(LEFT(X, L, B)), J ),
              QSORT( QSORT(X, Z, RIGHT(X, R, B) ),
                     LEFT(X, L, B), J )))
(13) LEFT(X, L, B) ==
       IF( GE(CONTENT(X, L), B), L, LEFT(X, rNC(L), B) )
<14) RIGHT(X, R, B) =--.
        IF( LE(CONTENT(X, R), B), R, RIGHT(X, DEC(R), B) )
(15) EXCH(X, Pl, P2) == ASSIGN(ASSIGN(X, Pl,CONTENT(X, P2))
                              P2, CONTENT(X, Pl) )
(16) MID(:, J) == DIV(ADD(Z, J), 2)
(17) rNC(I) == ADD(I, 1)
(18) DEC(1) == SUB(I, 1)
    END
(19) QSORT(X, 1, N)

    SPRQSORT(X, Z, J, L, R, B) sorts the elements X[I],
X[r+1], .", X[J-1] and X[J] of array X under the assumption
that X[k] < B for eaeh k , I < k < L
and X[1] 5 B for each 1 , R Z l? J.

                <B >B             e--JkeX t---'---N

;

'

;

;

;

'

;

;

;

;

x
       1

index 1

1
I

f
L R

T
J

1
5000

Figure 3.1: Quicksort Program Written in ASL/F
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PROCEDURE
VAR N,Z :

QUrCKSORT ;
 :NTEGER ;

PROCEDURE SORT(L, R :INTEGER) ;
VAR I, J, M, W :INTEGER ;
BEGIN
  I:=L ; J:=R ; M:=X[(L+R) DIV 2 ];
  REPEAT
     WHILE X[I] < M DO 1:=Z+1 ;
     WHZLE M < X[J] DO J:=J-1 ;
     IF I<=J THEN BEGIN
      W:=X[Z] ; X[Z]:=X[J] ; X[J]:=W
      !:=I+1 ; J:=J-1
     END
  UNTrL I>J ;
  ZF L< J THEN SORT(L, J) ;
  ZF Z < R THEN SORT(Z, R)
END ;

;

BEGIN SORT(1, N) END

Figure 3.2: Quicksort Program Written in PASCAL
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array) in nondeereasing order by ttquieksorV'. Figure 3.2 aiso shows a

quicksort program in PASCAL by Wirth [Wirth 76]. They are considered to

be ttneltural irnplementationstt of the same quieksort aigorithm in those

languages.

     Zn Figure 3.1, "QUZCKSORTtt at line (1) is the name of this program.

Line (2) is a deelaration of a sort named ARY whieh is a one-dimensional

array consisting of 5000 integers.

     Lines (3) to (10) declare the sorts of the arguments and the value

of eaeh defined funetion. Lines (11) to (18) deseribe the definitions of

defined funetions. LÅ}ne (19) specifies 'the term, ealled the main program

term, whieh we want to evaluate. If the main program term has variables,

then input data must be assigned to them before evaluation.

3.1.2 The Meaning of ASL/F Programs

     Let P be an ASL/F program. Let SORT(P) denote the set of sorts of

the arguments of funetions or the values of funetions whieh appear in P,

and T(P) the set of all possible terms eonsisting of eonstants and

variables of sorts in SORT(P), and those functions whieh appear in P.

     A rewriting rule ti -> tj denotes that a term cr(ti) can be

replaced by a term a'(tj) where d(ti) and cr(tj) are possible terms

obtained by substituting terms for variables in ti and tj, if any,

respeetively. The set of the foliowing rewriting rules is denoted by

RULE(P).

(1) A rewriting rule g(xl,.") -> rightg for each defined function in

P whose definition is g(xl,.") == rightg.

(2) Rewriting rules IFs(TRUE, xl, x2) -•> xl and rFs(FALSE, xl, x2) -->

x2 eorresponding to the axioms Of IFS for each sort s in sORT(P).
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(3) (rnfinitely many) rewriting rules sueh as ADD(O, O) -> O,

ADD(O, 1) -> 1, ADD(1, O) -> 1, ". whieh define the values of the

primitive functions for all possible eonstant arguments.

    For terms t,t'E T(P), we write t ==> t' iff t' is obtained from t

by rewriting a subterm of t by using'a rdwriting rule in RULE(P).

    For term tl E T(P), if (1) tl ; t2, t2= t3 ,""
and tn.1 ; tn, (2) there is no tn+1 $ueh that tn==> tn+1, and (3)

tn is a constant, then tn is said to be the value of tl ( or tl has

value tn ) in P. For any t(E TERM(P), if t has a vaiue, then it is unique

(that is, if t has both values d and d', then d=d'), beeause RULE(P)

satisfies Church-Rosser property [Rosen 73].

    Let tp[xl,".,xn] be the main program term with variables xl, ." ,

xn of P. For input data D=<dl,.",dn>, if a term tp[dl,.",dn] (obtained

by the substitution of eaeh di for xi (ISiSn) in tp[xl,...,xn] ) has the

value, then we call the value of tp[dl,".,dn] the value of program P

for input data D.
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3.2 Needed Vertex Sequences

3.2.1 Tree RepresentatiQn of Tersns

     For a term t, let tree(t) = (V, E) be the direeted tree whieh

represents ts where V is the set of vertiees and E is the set of edges.

Eaeh vertex v in V has a label denoted by label(v). For a leaf vertex v,

label(v) is either a variable name or a eonstant, and for a vertex v

other than a leaf vertex, label(v) is a funetion name.

     Each edge e = (u, w) in E has a positive integer i whieh speeifies

that vertex w is the i-th son of vertex us and w eorresponds to the i-th

argurnent of the funetÅ}on, 'tlabel(u)'e. For a vertex v(i V, let term(v) be

the term whieh corresponds to the subtree with root v. The value of v

(with respeet to a substitution e' ) is define' d to be the value of

e'(term(v)), where u'(term(v)) is the term obtained from term(v) by

substituting constants for variables in term(v), if any, as specified

byCr'. To simplify the notation, we wUl not write c7' explieitly in the

following.

     When we use tree representationss we will say "rewriting vertex v"

instead of ttrewriting terrn(v)".

3.2.2 Rewriting Order

     In tree(t), the first son of a vertex v whose label is an IF

funetion, or eaeh son of a vertex v whose label is a primittve function,

is ealled a needed son of v. An edge from a vertex to its needed son is

                                                              .ealled a needed edge. Assume that a vertex vl has a son v2. Zf V2 XS a

needed son, then the rewriting of v2 must precede the rewriting of vl,
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otherwise the value of vl cannot be obtained by the definition of the

value as deseribed in Section 3.1.2. Zf v2 is not a needed son, then vl

should be rewritten before v2 in order to obtain the value of vl,

otherwise infinite or useless rewritings may oeeur.

    For example, suppose that funetion g(x, y) is defined by g(x, y)

== IF(EQ(x, O), 3, g(x, y)) , and consider a term t = g(O, g(1,

2)). The value of t, 3, ean be obtained if we rewrite the outermost

occurrenee of ttgi'. If the inner t'gtt is rewrittent howevers the

resulting term is again g(O, g(1, 2)), and unless we rewrite the

outer "g", the rewriting continues forevert and the value of t eannot be

obtained.

3e2.3 Needed Vertex Sequenees

    Let v be a vertex in tree(t)=(V, E) (where t is the right-hand side

of a definition or the main program term in P), and let NEED(v) be the

set of all vertiees whieh are reaehable from v via needed edges only.

     To obtain the value of v, we need to rewrite all the vertiees in

NEED(v) in a rewriting order called "leaf-to-rooVt untU we obtain the

values of the vertiees. Here, we assume that for each vertex u in

NEED(v) a total order <<u arnong u's needed sons is given (where <<u is

ealled the evaluation order for u). The following (1) and (2) define the

rewriting order of ail vertices in NEED(v) to obtain the value of v,

whieh is ealled the needed vertex sequence for v, denoted by Sv.

(1) Let wl, ." , wk, ." , wm be the needed sons of w in NEED(v). rf wk

is the last vertex of wl, ... , wm in Sv (i.e., no other vertiees in

wl, ". , wm follow wk), then w immediately follows wk. (This

restrietion of rewriting orders reduees the number of "intermediate
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Btates" of the eomputation, which need to be saved on the run-time staek

at the exeeution time of the objeet program that will be deseribed in

Section 3.3.)
                                     '
(2) rf wi <<w wj (where wi and wj are needed sons of w, and w is in

NEED(v)), then wi preeedes wj in Sv (the order of the needed sons of w

in a needed vertex sequenee agrees with the evaluation order for w,

<<w)' ['

   ' The needed vertex sequence for v defined above ean be obtained by

the postorder traversal [Aho et al. 83] of the subtree G of tree(t) (

G=(NEED(v), E'), E'={(u, u')GE u, u'( NEED(v)}), where the sons of a

                                                                   'vertex are visited in the same order as the evaluation order.

     For example, let t = TF(EQ(x, O), 1, f(sub(x, 1))), and for eaeh

vertex u in tree(t), let the evaluation order for u be "the i-th son

of u" <<u ,tthe j-th son of u't if i> j. (This evaluation order is

ealled the right-to-•left order.) Figure 3.3 shows tree(t) and the

needed vertex sequenee for eaeh vertex in tree(t).

     Let EO(P) denote the set of all evaluation orders for the vertiees

in the tree whieh represents the right-hand side of eaeh definition in

P. In the eurrent version of the eompiler, the right-to-•left order is

adopted as each evaluation order' in EO(P). Needed vertex sequenees are

used for the objeet program generation (deseribed in Section 3.3) and

the optimizations (described in Section 3.4).
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3.3 Objeet Programs

     In this seetion, we describe an objeet program whieh eomputes,

when the input data is given, the value of the main program term.

    Let def(P) be the set of all defined funetion names in P. Here, for

the main program term tp, we introduce an additional definition

MAZN(Xl, ". , xn) == tp (xl, ." , xn are distinct variables in tp) to

P in order to simplify the following diseussion. Let DEF(P) =

def(P)U{MAIN}, and RrGHT(P) = {rightg geDEF(P)}, where rightg is the

right-hand side of the definition of g (we use this notation in what

follows). That is, RIGHT(P) is the set of all right-hand sides of

definitions and the main program term in P.

3.3.1 Procedures and the Hain Program

     We ean easily implement a "lazy evaluation" method for arguments of

defined funetions by introdueing subroutines ealled master proeedures

and Blave proeedures. An objeet program eonsists of master proeedures,

slave procedurest and a main program.

 Master Rzggggdgzg : For eaeh defined funetion geDEF(P), we generate a

procedure Fg(pl, ." , pm) whieh eomputes the value of rightg.

Fg(pl, ". , pm) has formal parameters pl, ". , pm corresponding to the

variables Å~1, ." , xm in the left-hand side of the definition of g.

This proeedure is called a master proeedure and we may write Fg instead

of Fg(pl, ." , pm) for simplicity. Each actual parameter passed to a

master proeedure is an entry address of the slave proeedure whieh

computes the value of the argument.

Slave p.rpEtggdyzg : For eaeh terrn rightg (g(!DEF(p)) and for eaeh
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vertex v in tree<rightg) where v is a son of a vertex u whose label is a

defined function e, we generate a proeedure Hv which computes the value

of v. Hv is ealled a slave proeedure of Fg, Qr Fg is the master

proeedure of Hv. Hv has no t'explieit" formal parameters. When the value

of u is neeessary for obtaining the value of rightg, master proeedure Fe

is aetivated, and the entry address of Hv is passed to Fe as an aetual

parameter. Hv is aetivated at the time when the value of v is actually

neeessary for the eomputation in Fe or in a slave procedure of Fe.

!l!ain Rzgsgg!R : The main program exeeutes the following (1) to

(3). Let tp be the main program terrn with variables xl, ." , xn.

(1) Read input data dl, d2 ,"., dn.

(2) Aetivate master proeedure FMAIN(pl ,..., pn) with aetual parameters

dl ,'", dn'

(3) output the value returned by FMAIN(dl, ". , dn).

3.3.2 Frame Usage

     Aetivated proeedures use memory blocks ealled frames. There are two

kinds of frames, an M-frame and an S-frame. They are allocabed on a

single LIFO run-time staek. At the time of the aetivation of a master

proeedure F                               is alloeated on the top of the run-time              an M-frame for F          g'                             g
stack (see Figure 3.4), and the values needed or obtained in the

eomputation in Fg are referred to or stored into the M-frame (we will

deseribe this referring or storing in Section 3.3.3 (a)-(e)). While F                                                                   g
is aetive, the top of the M-frarne is pointed by Staek Pointer (SP), and

the bottom is pointed by Erame Pointer (FP).

                        consists of (1) the value of the frame pointer     The M-frame for F                      g
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                                       was aetive (we eall this valueFP when the proeedure whieh aetivated F                                     g
old-FP), (2) the return address, (3) the aetual parameters (i.e., the

entry addresses of siave proeedures of the proeedure whieh activated

Fg), and (4) temporary values (the number of the temporary values are

                  is active).not fixed whiie F                g
     On the other hand, at the time of the aetivation of a slave

proeedure Hv (of a master proeedure Fh), an S-frame for Hv is allocated

on the top of the run-time staek (see Figure 3.5). The temporary values

generated in Hv are stored in the S-frame for Hv (see Seetion 3.3.3

(a)-(d)). In addition to the S-frame, Hv uses the M-frame for Fh to

refer to the aetual parameters of Fh (see Section 3.3.3 (e)). While Hv

is aetive, the top of the S-frame for Hv is pointed by SP and the bottom

of the M-frame for Fh is pointed by FP.

     The S-frame for Hv eonsists of (1) old-FP, (2) the return address,

and (3) temporary values (the number of the temporary values are not

               is aetive).fixed while H             v

3.3.3 Znstruetion Sequenees

     Let a vertex r be the root of tree(rightg) where geDEF(P). A

master proeedure Fg eonsists of the following instruetion sequenees)(1)

and (2) (CODE(r) will be explained later).

Master Proeedure Eg:

(1) An instruetion sequenee CODE(r) whieh eomputes the value of r.

(2) An instruetion sequence to return the computed value and the control

to the proeedure which aetivated Fg.

     On the other hand, slave proeedure Hv eonsists of the following

instruetion sequences)(1) and (2).

slave Proeedure Uv:
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(1) An instruetion sequenee CODE(v) whieh eomputes the value of v.

(2) Instruetions to return the eomputed value and the control to the

proeedure which aetivated Hv.

     Let u be a vertex in tree(rightg) (gEDEF(P)) and let Su =

vl,v2,...,vk be the needed vertex sequenee for u. CODE(u) denotes an

instruction sequence Ivl,Iv2,,...,rvk to eompute the value of u where

Ivi is an instruetion sequenee defined by label(vi) as follows.

(a) Zf label(vi) is a primitive function, rvi is an instruetion sequenee

whieh eomputes the value of the primitive funetion. The values of the

arguments of the primitive funetion have been already eomputed and

stored as temporary values in the (M- or S-) frame on the top of the

run-time staek. As the other instruction sequenees from (b) to (e), the

exeeution result is stored to the top of the frame, after the values of

arguments (necessary for the eomputation of the primitive funetion) have

been removed.

(b) If label(vi) is a eonstant c, then Xvi is an instruetion sequenee to

generate the eonstant value e.

(c) If label(vi) is an IF funetion, then Ivi exeeutes the following:

test the value of the first son vil of vi (the value of vil has been

already eomputed by an instruetion sequenee that preeede Ivi). If it is

TRUE, then exeeute CODE(vi2), and otherwise exeeute CODE(vi3), where Vi2

and vi3 are the seeond and the third sons of vi, respeetively (neither

vi2 nor vi3 is contained in Su). CODE(vi2) and CODE(vi3) are also

included in Zvi.

(d) Zf label(vi) is a defined funetion q, then Ivi is an instruetion

sequenee to activate a master proeedure Fq, that is, the eontrol is

transferred to the entry address of F                                        after (1)the eurrent value of                                     qr
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FP, (2)the return address, and (3)the entry addresses of the slave

                (these slave procedures eompute the values of the sonsprocedures of F              g
of vi) are saved on the top of the run-time staek.

(e) If label(vi) is a variable xj, then Ivi is an instruction sequenee

to aetivate a slave procedure Hw. of a master procedure which aetivated
                               J
Fg or a master proeedure whose slave procedure aetivated Fg. The entry

address of Hwj has been already passed to Fg as the j-th aetual

parameter of Fg. That is, the eontrol is transferred to the entry

               after the eurrent vaXue of FP and the return address areaddress of H            Wj
saved on the top of the run-tirne staek.
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3.4 Optinizations

3.4.1 Pre--eomputing Needed Arguments of Defined Ftnctions

3.4.1.1 Needed-Argument-First Order

    lf, in order to get the value of g(tl, "., tn) (where g is a

defined funetion [ gedef(P)]), we always need to obtain the value of ti

regar.dless of the term rewriting order and the values of tl, "., tn,

then we say that the i-th argument of g is a needed argument or simply

that the i-th argument of g is needed. For example, let the definition

of g be

      g(x, y, z) == IF(EQ(x, O), ADD(y, 1), SUB(y, z)).

The value of EQ(x, O) is necessary to obtain that of rightg (the right-

hand side of the definition of g), and so is the value of x to obtain

that of EQ(x, O). Thus, the first argument x of g is needed. The value

of either ADD(y, 1) or SUB(y, z) is neeessary to obtain that of rightg,

and so is the value of y to obtain that of any one of ADD(y,1) and

SUB(y,z). Therefore, the second argument y of g is also needed.

    As described in Section 3.2.2, computing the value of an argument

of a defined funetion g before aetivating master procedure F                                                         may eause                                                       g
use16ss or infinite eomputation even if the value of g is defined. (To

avoid this, we have implemented the lazy evaluation method.) But

rearranging the eomputation order in sueh a way that the values of

needed arguments are computed before activating Fg does not eause

useless or infinite eomputation if the value of g is defined, since

those of the needed arguments are strietly neeessary for finding the

value.

     The following computation order for a needed argument x of a
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defined function g is ealled a needed-argument-first order for x: The

value of x is computed before the aetivation of master proeedure Fg, and

the computed value of the argument is passed to Fg as an aetual

parameter (passed by value).

                                   '
3.4.1.2 Effects of Needed-Argument-First Order

     The objeet program for an ASL!F program P as described in Section

3.3 is denoted by Op, and the objeet program whieh is executed in the

needed-argument--first order for every needed argument in P is denoted by

05. In general, OF is more effieient than Op due to the following

reasons.

(1) The aetivations of the slave procedures corresponding to needed

arguments in Op are not necessary in Cb'. Therefore, the overhead due to

the activations (e.g., saving and restoring the registers and ehanging

SP and FP) ean be saved in Oi.

(2) The maximum run-time staek length at the exeeution time of Cb' may

be redueed greatly. For example, let term(v2)=g2(g3( ... ), ." ) for

a vertex v2 in tree(rightgl) where gl, g2, and g3 are defined funetions

and rightgleRIGHT(P), and let v3 be the first son of v2 (i.e.,

term(v3)=g3( ". ) ). Suppose that we need the value of v2 in the

computation of master procedure Fgl, and the first argument of g2 is

needed . By the execution of Op, the run-time staek will grow as follows

(see Figure 3.6-(1)): '
(i) At the time of the aetivation of master proeedure Fg2 in Fgl, an M-

frame for Fg2 is alloeated. •
(ii) At the time of the aetivation of slave proCedUre Hv3 (of Fgl) in

                        is alloeated.      an S-frame for HF g2,                     v3
(iii) At the time of the activation of master proeedure Fg3 in Hv3, an
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               is aUoeated.M-frame for F            g3
    Thus, the M-frames for Fg2 and Fg3, and the S-•frame for Hh3 are on

the run-time staek at the same time.

    On the other hand, the run-time staek will grow as follows by the

exeeution of Oi (see Figure 3.6-(2)):

(i) At the time of the aetivation of Fg3 in Fgl, an M-frame for Fg3 is

alloeated.

(ii) At the time of the eompletion of Fg3, an M-frame for Fg3 is

dealloeated.

(iii) At the time of the activation of Fg2 in Fgl, an M-frame for Fg2 is

a!located.

    Thus, no S-frame for Hv3 is neeessary. Furthermore, the M-frames

       and F              are not on the run-time staek at the same tlme.for F    g2            g3

3.4.1.3 :mplementation of Needed-Ar'gument-First order

    It is not always easy to know whether an argument of a defined
                             cefunction in P is needed or not . rn Appendix A, we show a suffieient

condition for an argument of a defined funet•ion in P to be needed. The

eorrectness of this eondition is shown in [rnoue et al. 82b] [Seki et

al. 84]. This eondition Å}s so effective that all of the needed arguments

in sample ASLIF programs, whieh will be described in Seetion 3.5,

satisfy this eondition. But in general, as mentioned above, it is

------------"-------d----P------------d-------"d-----------------------ed---t---------d---d----------
f The general idea of "neededt' comes frorn [Huet and LCsry 79] and

[Sugiyama et al. 82], where onlythe left-hand sides of the rewriting

rules are eonsidered to deterrnine whether they are needed or not. rn

this suffieient eondition, the right-hand sides are also taken into

aceount .
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diffieult to deteet the set (denoted by AN(P)) of all the needed

arguments of defined functions in P. Therefore, a subset of AN(P),

denoted by SN(P), is assumed to be chosen in the foliowing diseussions.

     rn addition to needed sons deseribed in Seetion 3.2.3, let us call

the i-th son of a vertex whose label is a defined function gedef(P) a

needed son also, if the i-th argument of g is in SN(P). We also define

needed vertex sequenees in the same way as described in Seetion 3.2.3.

These needed sons and needed vertex sequenees are used in what follows.

     The generation of the object programs deseribed in Seetion 3.3 is

modified as deseribed below so that the generated objeet program (with

respeet to an EO(P) and an SN(P)) is exeeuted in the needed-argument-

first order for the needed arguments in SN(P).

(1) For each needed son v eorresponding to a needed argument in SN(P),

we generate no slave proeedure Hv and pass the eomputed value of v

before aetivation as an aetual parameter instead of the entry address of

Hv'

(2) For eaeh vertex vi whose label is a variable x corresponding to a

needed argument in SN(P), we replaee the instruetion sequence Ivi (which

aetivates a slave procedure) with an instruetion sequenee whieh simply

refers to the actual parameter.

3.ij.2 Avoidanee of Duplicate Computation for Common Subterms

     The objeet program deseribed in Section 3.3 may repeatedly eompute

the values of vertex vi and vj in tree(rightg) (ge DEF(P)), such that

term(vi) = term(vj). Here, we show a method of eliminating sueh a

duplieate eomputation.
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3.4.2.1 Common Vertices in rrees

    Let tree(rightg) = (V, E) (geDEF(P)), and vl, "., vn (n Z 2) be

distinet vertiees in V sueh that

(1) term(vl) = ... = term(vn) (i.e., eaeh subtree whose root is

Vl, ..., vn is identieal to eaeh other),

(2) for any u E V other than vl, .", vn, term(u) i term(vl), and

(3) there exist vertices vi and vj (i i j,1 S i S n, 1 S j S n) sueh

that term(ui) i term(uj) where ui and uj are parents of vÅ} and vj,

respectively.

Thens the vertex set {vl, "., vn} is called a eommon vertex set and

vertex set {vl, ..., vn} is denoted by COMMON(vi) for any vi (1 S i S

n). A vertex in a eommon vertex set is ealled a eommon vertex.

3.4.2.2 Elimination Method

                                             and its slave proeedures      We modify the instruction sequence of F                                           g
in the following way:

For eaeh distinct eommon vertex set C in tree(rightg), extra spaee ac

and bc deseribed be!ow are added to the M-frame for Fg, whieh Fg and its

slave procedures use.

     ac : a spaee for the value of a vertex in C."

----}-----------e-----------------O-----d------"-------------b----------------------------
N Zf the following (1) and (2) hold, there is no need to add the new

spaee ac but the space for an actual parameter pk in the M-frame ean be

used for ac: (1) The label of eaeh vertex in the eommon vertex set C is

a variable. (2) The size of ac does not exeeed the size of the spaee for

Pk.
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    bc : a spaee for a flag indieating whether the value to be

          stored in ac is "already eomputed,t or tinot yet cornputedtt.

          Initially bc is set to 'tnot yet eomputedtt.

(2) Before executing an instruetion sequenee CODE(v), whieh eomputes

the value of vertex v in C, the flag in bc is ehecked. (i) If the flag

is i'not yet eomputed't, then CODE(v) is exeeuted, and after the exeeution

of CODE(v), the value of v is stored in ac, and bc Å}s set to 'talready

eomputed't. Otherwise CODE(v) is not exeeuted but instead ac is referred

to.

    Let CMN-CODE(v) denote the modified instruction sequence of CODE(v)

as described above.

3.4.3 EliJnination or Redundant Plag Tests

    Let Ob' be the object program of P whieh, for eaeh eommon vertex

set, eomputes the values of the eommon vertices only onee in the way

                                                     ) (g (! DEF( P)),deseribed in Seetion 3.4.2. For vertiees in tree(right                                                    g
let COMMON(vl) = {vl, "., vm} = C where m Z 2. We say that vi is ttnot

preceded", if the result of the flag test in the instruetion sequenee

CMN-CODE(vi) (which obtains the value of vi by computing or referring as

mentioned in Seetion 3.4.2) in Ob' is always 'tnot yet eomputed" for any

input data D of program P.

    On the other hand, we say that vi is ttpreeededtt if the result of

the Mag test in the instruetion sequenee CMN-CODE(vi) in C}P is always

ttalready eomputedSt for any D of P.

    Suffieient eonditions for vi to be "not preceded" or t'precededtt,
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diseussed in [Seki et al. 8q], are shown in Appendix B. If a cemmon

vertex vi satisfies the sufficient eonditions, we ean modify an

instruction sequenee CMN-CODE(vi) as follows.

     If vi is "not preeeded", then the instruetions for the flag test

are deleted from CMN-CODE(vi), so that the eomputation of the value of

vi ean start immediately. If vi is 'ipreeeded", then the instruetions for

the Mag test, the eomputation of the value, and the assignment of the

computed value are deleted frorn CMN-CODE(vi), so that a reference only

to the value computed already is made.

     If eaeh eommon vertex of C is either 'tnot preeeded't or i,preeededttt

then the spaee for the flag is not neeessary.

3.4.4 Globalization of Sorts
   '

     Let 9p be the objeet program (with respeet to an EO(P) and an

SN(P)) generated aeeording to the needed-argument-first order deseribed

in Section 3.4.1 and the avoidance of duplieate computation for common

subterms deseribed in Seetion 3.U.2. (The other optimizations do not

affeet the argument here directly.)

     !f, at a point q of the execution of 9p, a vaiue A of a sort s has

been already obtained and is used for subsequent eomputation, then we

say that A is live at q; otherwise A is dead at q. If the number of live

values of sort s does not exeeed one at any point of the exeeution of 9p

for any input data D, we say that s is globalizable in gp.

     In Appendix C, we show a suffieient eondition, presented by [Seki

et al. 84], for a sort s in a program P to be globalizable (with respect

to EO(P) and SN(P)). The sort ARY appearing in the quieksort program
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shown in Figure 3.1 satisfies this eondition.

    If a sort s is globalizable in P, the objeet program whieh is

obtained by modifying 9p as deseribed below in (1) to (4) also eomputes

the value of program P. This modifieation of the objeet program is

ealled a globalization of sort s.

(1) At eompile-time, we statieally alloeate space Ws, whieh is

suffieient to hold any value of sort s, out of the run-time stack.

(2) For each instruetion whieh refers to a value of sort st we read the

value of sor,t s from Ws, and for eaeh instruetion whose exeeution

generates a value of sort s, we store the result into Ws.

(3) For each (master or slave) proeedure whieh computes a value of sort

s, we return the value of sort s not on the run-time staek but in Ws.

(4) For eaeh needed argument of g in SN(P) deseribed in 5.1, whose sort

is s, we store the value of sort s (as an aetual parameter eorresponding

to the needed argument) not on the run-time staek but in Ws.

3.4.5 Elimination of Tail Reeursions

     Let the definition of g be g(xl ,"., )fn) == rightg. Let r be the

root of tree(rightg), and u be a vertex in tree(rightg) whose label is

g. Tf g and u satisfy the following conditions, (1) and (2), we ea!1 u a

tail recursive vertex of g [Aho et al. 83].

(1) 'The label of every vertex exeept for u on the path from r to u is

an IF funetion, and eaeh edge on the path eonneets a vertex with either

its second or third son.

(2) For eaeh son vi of u (let vi be the i-th son of u), either vi Å}s a

needed son of u (i.e., the i-th argument of g is needed), or the label

of vi is a variable xi (i.e., term(vi) = xi).
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    Consider an instance I of a master proeedure Fg, whieh uses an M-

frame FR. After the value of tail reeursive vertex u is eomputed by the

aetivation of another instanee r'  of Fg whose M-frame is denoted by FR'
,

no instruction sequenees exeept for the instruetion sequenee which

terminates I are executed in I. Furthermore, any value in FR is not

neeessary for I'. Therefore, at the time of the aetivation of I' , FR on

the top of the run-time staek ean be deleted and FR' can be alloeated on

the same loeation where FR was (old-FP and the return address in FR' are

the same as those in FR). If we do so, the maximum staek length and the

execution time of the objeet program will deerease greatly.

3.4.6 Elimination of Auxiliary Funetions

    Let the following modifieation of the source program P be ealled

elimination of auxiliar'y functions P :

    Xf a subterm of each term in RIGHT(P) ean be rewritten by the

rewriting rules in RULE(P) without knowing the values assigned to

variabies, we rewrite (expand) it repeatedly before eompilation (exeept

for the rewritings of the funetions defined reeursively so that the

rewritings will terrninate) and replace the right-hand side of the

funetion definition or the main program term of P with the terms

obtained by such rewritings.

     The advantages of the elimination of auxiliary functions are as

follows :

(1) The number of proeedure aetivations at the time of exeeution may

decrease.

(2) The number of eommon subterms in eaeh term in RIGHT(P) may inerease

and duplieate computation may be avoided by the optimization in Seetion

3.4.2.
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(3) In order to inerease readability of a program, we ean introduee

auxiliary defined funetions without eausing inefficiency.

    The elimination of auxiliary funetions enlarges the size of the

objeet programs. And sometimes it may eause some inefficieney at the

time of exeeutions because of the increase of the frame size

corresponding to the increase of the number of common vertiees in the

term in RIGHT(P).
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3.5 Sample ASL/F Progr'ans

3.5.1 Outline of the System

    The optimizing ASL!F compiler runs under the UTS/VS operating

system on a MELCOM COSMO 900-II (it exeeutes about 6 million

instruetions per second), and it eompiles an ASLIF program into an

object program in an assembly language META-SYMBOL. The eompiler was

written in PASCAL, and is about 4000 lines long (ineluding parsing,

optimizing, and eode generation routines). It took about 7 man-months to

design and implement.

     In the eurrent version of the eompiler, primitive funetions on

integers, booleanst arrays, and tuples have been implemented as shown in

Table 3.1, and the right-to-left order is adopted as each evaluation

order in EO(P) as mentioned in Section 3.2.3.

     Zt always avoids the duplieate computation for eommon subterms as

described in Seetion 3.4.2. And the compiler generates an object program

only when the sorts of arrays in the souree program are globalizable as

deseribed in Seetion 3.4.4." Programmers can specify whether or not each

of the other optimizations deseribed in Seetion 3.5 is to be performed.

In addition to these optimizations, the compiler always earries out

e----t----------t--}nt-----------------------pb----t--------t-t--------------e------p----t----------
r In ASLIF, we ean deelare more than two sorts for the same data type,

an arra.y (i.e.s the dimensions the number of elements, the sort of eaeh

element are identieal). Thus, when as ASLIF program P eontaining a sort

of arrays is not globalizable, we may be able to modÅ}fy P by using more

than two sorts of the arrays so that each sort of the arrays ean be

globalizable.
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minor improvements of the objeet programs such as the removing of

obviously redundant transfer instruetions.

3.5.2 Effeets of Optintzations

     We examined the effeets of the optimizations by exeeuting several

sample programs. Algorithms to solve the following problems have been

programmed in ASLIF:

   (1) Sorting (Quieksort): program is shown in Figure 3.1.

   (2) Sorting (Bubblesort)

   (3) Towers of Hanoi

   (4) The eomputation of the base of natural iogarithm, tiet,

   (5) Matrix rnultiplieation

The programs are written in sueh a way that they can be considered to be

ttnatural implementations" of the algorithms in ASLIF.

     Table 3.2 shows the exeeution time and the maxirnum run-time staek

length" of those ASLIF programs. These experimental results demonstrate

that all of the optimizations adopted here are useful in reducing the

exeeution tirne andlor the maximum run-time stack length. Especially, (1)

pre--computing needed arguments of defined functions is effeetive to

reduee both of the exeeution tirne and the maximum run-time staek length

greatly, and (2) in some eases, the elimination of tail recursions

redueed the maximum run--time staek length considerably.

-i---e-----tny-----------------------d---------------"----t--------ttdd--p---d-----d--p-p---------
f In addition to the memory spaee for the run-time staek, the spaee for

the objeet program itself and for holding globalizable arrays as

mentioned in Section 3.4.4 are required.
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Table 3.2: Effects of Optirnizations

Execution time (milli sec.)

Optimization
method

Program

asb a)bsc aibscs
d

apbset
dse

asbtcs
d,eif

Quieksort
5000

integers 3200 990 830 670 430

inteers 53 18 14 10 6

Bubblesort1000
integers [20000] 7000 5900 380o 2400

stairs 160 20 20 15 10Towersof
Hanoi 15

stairs [5000] 630 630 460 350
1OO

diits 250 64 52 48 23Caleulation
ofe 1OOO

diits [14000] 3500 3200 2800 1300

Multiplieationof
two(50,50)-matriees 4700 11OO 650 640 640

The    .maximumrun-time staek length (word = 32 bits)

OptimÅ}zation
method

Program

a,b apbpe a)bJcJ
d

asbscs
d,e

asbies
dpeef

Quicksort
5000

integers 73700 ij9900 529 433 433

inteers 31600 225 27 24 17

ulesort1000inteers
[i.2eeio7] 4030 27 24 17

10
stairs 37800 194 194 163 162Towersof

Hanoi 15
stairs

[i.2scio6] 285 285 238 242
1OO

diits 44300 525 33 31 20
1OOO

diits
[2.sttio6] 3670 33 31 20

uzplieationof
two(50,50)-matriees 44100 818 36 36 31

Square
because

braekets denote that
 of memory shortage.

the objeet
The values

programs
in them

eould not be executed
are our estimates.

Optimization method:
a: Avoidance of duplieate eomputation for eommon subterms.
b: Globalization of arrays.
c: Pre-eomputaing needed arguments of defined funetions.
d: Elimination of tail reeursions.
e: Elimination of redundant flag tests.
f: Elimination of auxiiiary functions.
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     For example, when pre-computing needed arguments of defined

funetions is not performed for Towers of Hanoi, the maximum run-time

staek length is an order of exponential of n, where n is the number of

stairs. On the other handt when it is performed, the maximum run-time

staek length is linear in n as shown in Table 3.2. (In both ease,

optimizations (a) and (b) are performed.)

     When the elÅ}mination of tail reeursions is not performed for

Bubblesort, the maximum run-time staek length is approximately linear in

the number of integers to sort. On the other hand, when it is performed,

the maximum run-time stack length is fixed to a eonstantt 27 words. (In

both eases, optimizations (a), (b), and (e) are performed.)

3.5e3 Conpar'ison Between ASL/F and PASCAL Programs

     ASL/F programs mentioned above, and PASCAL programs, whieh

implement the same algorithms as ASLIF programs were executed on the

MELCOM eOSMO 900-rl. The exeeution time is shown in Table 3.3. These

PASCAL programs are natural implementations of the algorithms Å}n PASCAL,

where, for example, iterations sueh as FOR, WHILE, ete. are used

effeetively, and redundant computation is eliminated by using variabies

to store temporary values. ASLIF programs were eompiled acoording to ali

the optimizations deseribed in Seetion 3.4. The quieksort program in

PASCAL used here is shown in Figure 3.2 and is by Wirth [Wirth 76].

PASCAL programs were eompUed by a MELCOM PASCAL 8000 compiler whieh

generates machine codes directly. The time required for eompiling the

quieksort program, for example, was as foliows:

(a) From ASLIF to the objeet program in the assembly language META

SYMBOL: O.6 second (including O.1 seeond for optimizations),

(b) From PASCAL to maehine eodes : O.3 seeond.
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Table 3•3 : Execution Time of ASL/F and PASCALPrograms

(milli seeonds)

Prograrn ASL/F PASCAL
(datasize)

Quicksort
(5000integers) "es

320

Bubblesort
(50integers) 6 8

(1000integers) 2400 3200

TowersofHanoi
(10stairs) 10 11
(15stairs) 350 370

heeaieulationof
thebaseof

naturallogarithm
(100digits) 23 28
(looodigits) 1300 1500

ttMultiplieation
oftwomatriees

(50sc50) 640 820

 -
""

This
This
shown

program is
program is
 in Figure

shown in
by Wirth
2.

Fig.' 1.
[Wirth 76] and
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3.5.4 Yriting an Interpreter in ASL/F

    As an example of fairly long ASLIF programs, we have written an

ASL/F program whieh interprets (parses and exeeutes interpretively)

ASL!F programs. (In souree programs to be interpreted, only integer

andlor boolean sorts can be used.) The souree program to be interpreted

is given as a form eonsisting of an integer array of eharaeter eodes,
                                                  '
sinee the current version of our eompiler does not support the sorts

such as eharaeters or strings. The parser transforms the charaeter eode

sequenee in the array into integer sequenees eaeh of whieh represents

the term on the right-hand side of a definition. The execution part

rewrites the integer sequences aceording to the rewriting rules. Table

3.4 shows the size characteristies of this interpreter program. (If

funetions on eharacters or string are implemented in the compUer, eaeh

size may be redueed.)

    Zt took about 2 man-months to design and eomplete this interpreter

program. At the beginning of its development, we had some syntactie

errors but only two logical errors. Several programs were exeeuted by

this interpreter. The exeeution time of Ackermann funetion ACK(3, 3),

for exarnple, was 3.6 seeonds. (The program of the Aekermann funetion was

compiled by the optimizing compiier and exeeuted also. It took O.Ol

seeond to compute ACK(3, 3)).
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Table 3.4: Size Charaeteristies of the ASL/F

 Written in ASL/F

Interpreter

Parsingpart Exeeutionpart

Thenumberof
110 70

definedfunetions

Themaximumnumber

ofargumentsof 10 6

definedfunetions
'

Theaveragenumber

ofargumentsof 4 4

definedfunetions

Themaximumnesting

depthoffunctions 7 11

intheright-handsides
ofdefinitionstatements

Theaveragenesting

depthoffunctions

intheright-handsides 3 3

ofdefinitionstatements

Thenumberof'
350 200

linesinthetext
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CHAPTER 4

coNcLusroN

    We have descrÅ}bed two purely funetional languages, methods of

interpreting or eompiling their programs on eonventionai maehines, and
                                           'exeeution results of several sampie programs by using the systems

eonstrueted for those languages.

     rn Chapter 2, we have shown two systems for a funetional

programming ianguage FPL based on the Backus' FP System. Both of them

have been developed with little effor't. The effieieney of both is

satisfaetory for systems to perform small--seale eomputation.

     While FPL is very simple, it has partieular properties such that

every funetion has a single argument and no other data types exeept for

tree ean be proeessed. By these properties, it becomes diffieult to

inerease the effieieney of the systems as deseribed in Seetion 2.6.
                                          '
     For the sake of the general applieability of the system, the

language must be extended by, for example, inereasing the number of

arguments and addÅ}ng data strueture3 sueh as arrays.

    In Chapter 3f we have diseussed the compiZing and optimizing method

for a funetional programming ianguage ASL/F and shown that those methods

are effeetive to increase the time and spaee effieiency. The exeeution

time of an ASL/F program is about 75 to 135% of that of a PASCAL program

using the same algorithm.
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    If optimization teehniques adopted in eompilers of procedural

languages are used to improve the object program, the time and spaee

effie.ieney will be inereased further.

    It would be possible to improve the suffieient eonditions for

arguments to be needed, for flag tests to be eliminated, and for sorts

to be globalizable. Although in the eurrent version of the eompiler eaeh

evaluation order in EO(P) is the rÅ}ght-to-!eft one as deseribed in

Seetion 3.3, the exeeution tirne will be redueed further if a better
                                                  'EO(P) ean be found.

    We are deveioping a programming system for ASLIF with some

syntaetie sugar on a VAX-111780t which eonsists of an editor, a debugger

and a new eompiler. The new eompiler' is written in ASLIF itself and

generates an object program in language C.
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                            APPENDZX A

          A SUFFICIENT CONDITION FOR AN ARGUMENT TO BE NEEDED

    Let the definition of eaeh defined function g in P (i.e.,

g(Edef(P)) have the form g(xl, x2, ". , xng) == rightg . NoW, We

introduee boolean variables

    z[g, i] for eaeh gedef(P) and integer i , 1 S i S ng (if

                 Z[g, i] is TRUE, then the i--th argument of g is

                 needed), and

    Y[g, t, xi] for eaeh gedef(P), eaeh subterm t of rightg and

                 integer i , 1 S i S ng (if Y[g, t, xi] is TRUE, then

                 the value of xi is neeessary to obtain the value of

                 t)'

We set up equations as follows.

(1) for eaeh gE def(P) and integer i , 1 S i S ng :

        Z[g, i] = Y[g, rightg, xi]

(2) for eaeh gedef(P), eaeh subterm t of rightg and integer i,

     1SiSng:
  a. if t is a eonstant, Y[g, t, xi] = FALSE
  b. if t is a variable xi, Y[g, t, xi] = TRUE

  c. if t is a variable other than xi, Y[g, t, xi] = FALSE

  d. if t is IF(tl, t2, t3),

    y[g, t, xi] = Y[g, tl, xi]V {Y[g, t2, xi]AY[g, t3, xi]}

    (If the vaiue of xi is neeessary for tl, or both for t2 and t3, then

    it is neeessary for t.)

  e. if t is f(tl ,..., tm) where f is a primitive funetion,
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is

  Y[g, t, xi] = Y[g, tl, xi] V''' VY[g, tm, xi]

  (If the value of xi is necessary for any of tl, ... , tm, then it

  is neeessary for t.)

fe if t is g'(tl ,"•, tm) where g'(i def(P),

  Y[g, t, xi] = {Z[g', 1] AY[g, tl, xi]}V ''' V

                          {z[g', m] Ay[g, t., xi]}

  (If there exists an integer j ( ISjSm ) such that the value of xi is

  necessary for tj and the j-th argument of g' is needed, then the

  value of xi is neeessary for t.)

   A suffieient eondition for the k-th argument of g in P to be needed

 that there is a solution whieh satisfies Z[g, k]=TRUE.
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                            APPENDIX B

       SUI!FrCIENT CONDrT:ONS FOR A VERTEX rO BE "NOT PRECEDEDtt

                      AND THAT TO BE "PRKCEDED"

    Let tree(rightg) = (V, E) (geDEF(P)). Let COMMON(vl) = {vl, ".,

vm} =C where m Z 2.

     For eaeh pair va and vb in C, let the lowest eommon aneestor of va

and vb be denoted by rab as shown in Figure B.1, and let ua and ub be

the sons of rab which are aneestors of va and vb, respectively. (Note

that a vertex w is an aneestor of w itself. ua and va may be the same

vertex or ub and vb may be the same vertex.)

(1) A sufficient eondition for vi to be "not preeeded" in OP:

     For each vke C other than vi, at least one of the following, (la),

     (lb) and (le), holds (see Figure B.2) :

         (la) label(rki) is an rF funetion and uk and ui are the seeond

        and third (or third and seeond) sons of rki, respeetively. (The

        eomputation for uk is exelusive of that for ui, or viee

        versa, i.e., if the computation for ui is exeeuteds that for uk

        has never been executed.)

         (lb) ui is contained in needed vertex seqUenee Srki fOr rki,

        and uk is not eontained in Srki. (rf the computation for ui is

        exeeuted, it always preeedes that for uk, or the eomputation

         for uk may not be executed.)

         (le) Both uk and ui are eontained in Srki and ui preeedes uk

         in Srki. (!f the eomputation for ui is exeeuted, it always

         precedes that for uk.)

(2) A suffieient eondition for vi to be "preceded" in C\j':

     There exists at least one vk e C whieh satisfies at least one of
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    the following, (2a) and (2b) (see Figure B.3) :

        (2a) vk is eontained in Srki, and ui is not eontained in Srki.

        (2b) Both vk and ui are eontained in Srki and vk precedes ui

 ' inS            rki'
(Both (2a) and (2b) imply that if the eomputation for vi is executed,

then there exists a vertex vk sueh that the eomputation for vk always

preeedes that for vi.)
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                            APPENDIX C

         A SUFFICIENT CONDITION FOR A SORT TO BE GLOBALIZABLE

    Let tree(rightg) = (Vg, Eg) (gEDEF(P))• For a defined funetion g

and a sort s, let CHANGE(g, s) denote the smallest subset of V                                                                g
satisfying the following:

(1) rf the label of v in Vg is of sort s and is not a variable name,

then v is in CHANGE(g, s).

(2) If the label of v in Vg is a defined funetion and CHANGE(label(v),

s) is not empty, then v is in CHANGE(g,s).

    In an objeet program gp, the instructions eorresponding to the

vertiees in CHANGE(g, s) may eause storing of values of sort s on the

run-time staek.

     If the following both (1) and (2) hold, then a sort s is

globalizable (with respeet to EO(P) and SN(P)) in 9p.

(1) Any primitive or defined funetion g satisfies (la) or (lb).

    (la) Zf g is a primitive funetion of sort s, g has exaetly one

    argument of sort s.

    (lb) Xf g is either a primitive funetion of a sort other than s, or

    a defined funetion then g has at most one argument of sort s.

(2) For eaeh defined function g and for eaeh eommon vertex set C =

{vl, ..., vm} in Vg where label(vl) is of sort s (1 S i S m), eaeh pair

vi and vj in C satisfies at least one of the following (a) to (d).

     Let ui and uj denote the par'ents of vi and vj, respeetively. Let

rij be the lowest eornmon ancestor of ui and uj, and let wi and wj be the

sons of rij where wi is an ancestor of ui and wj is an aneestor of uj.

(Note that ui and uj may be the same vertex.)

  (a) term(ui) = term(uj)

                                  78



(b) label(rij) is an IF function, and wi and wj are the second and

third (or third and seeond) sons of rij, respeetively. (Henee, the

computation for ui is exelusive of that for uj, or viee versa.)

(e) Neither ui nor uj is in CHANGE(g, s). (The eomputation for ui and

uj eause no storing of values of sort s on the run-time staek.)

(d) ui and uj are distinct vertices, exaetly one of ui and uj is in

CHANGE(g, s), and all the foliowing hold. (Here we assume that uj is

in CHANGE(g,s).) (see Figure C.1)

  (d-1) ui is not an ancestor of uj.

  (d-2) rf uj is an aneestor of ui (i.e., if rij=uj), then wi ts a

  needed son of rÅ}j.

  (d-3) Zf rij does not eoincide with ui or uj, then either <1> wi is

  a needed son of rij and wj is not, or <2> both wi and wj are needed

  sons and wi preeedes wj in needed vertex sequenee Srij for rij.

(The eomputation for uj may eause storing a value of sort s on the

run-time staek, and that for ui may cause a referenee of a value of

vi, which is of sort s. Zf the eomputations for both ui and uj are

exeeuted, then that for ui must precede the eornputation for uj.)
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