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ABSTRACT

Purely functional languages have good properties such as simply
defined semantics and mathematical elegance.

A purely functional language called FP System proposed by Backus
has particular properties such that each function has a single argument
and an object (data) which can be processed is an atom or a tree. In
order to present the problems of languages such as FP System and their
implementations, we have constructed two interpreters for a purely
functional language FPL based on FP System. The interpreters do nét
rewrite expressions directly but repeatedly compute the values of the
objects. One interpreter has been developed on an ACOS-900 and written
in PASCAL. The objects processed by this interpreter are represented by
binary lists. The other has been developed on a small microprogrammable
machine HOP and written in an assembly language for its microcodes. The
objects processed are represented by linear sequences in a one-
dimensional array. The efficiency of these interpreters was almost
satisfactory for performing small-scale computation. However, several
problems of the interpreters were discovered, which are caused by the
particular properties of FPL.

Next, we present a purely functional language ASL/F based on an
algebraic specification language, in which there are no restrictions on
the number of arguments of functioﬁs or on types of data to be
processed. Methods of compiling and optimizing an ASL/F program are
studied. We propose a "lazy evaluation" method which can be implemented
very simply by using a single LIFO stack, and optimization techniques

which are different from ordinary ones applied to procedural languages.



An optimizing compiler for ASL/F has been implemented on a MELCOM COSMO
900-1II, which generates an object program in assembly language.
Experimental results show that (1) all optimization techniques proposed
here are useful in reducing the execution time and/or memory
requirement, and (2) the execution time of an ASL/F program is about 75

to 135% of that of a PASCAL program using the same algorithm.

ii



ACKNOWLEDGMENTS

I would like to thank Professor Tadao Kasami of the Department of
Information and Computer Sciences, Osaka University. He provided me with
continuous support and invaluable suggestions.

I am deeply grateful to Professor Toshio Fujisawa, Professor Koji
Torii,.Professor Nobuki Tokura, Professor Kensuke Takashima, Professor
Junichi Toyoda, and the late Dr. Kokichi Tanaka for their invaluable and
pertinent suggestions.

I wish to express my deep gratitude to Associate Professor Takuji
Okamoto of Okayama University and Dr. Saburo Yamamura of Kobe University
of Mercantile Marine for their important suggestions.

i express my gratitude to Associate Professor Kenichi Taniguchi,
Associate Professor Hideo Miyahara, and Associate Professor Shinichi
Tamura of our department for their important and pertinent guidance. I
would like to express my thanks Dr. Yuji Sugiyama and Mr. Toru Tanizawa
for their useful help and discussions. I am grateful to Mr. Hiroyuki
Seki for his hearty help and fruitful discussions. I thank Mr. Susumu
Masuda of Nippon Elec. Co. for his useful assistance in developing

important programs.

iii



TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGMENTS
TABLE OF CONTENTS

LIST OF PUBLICATIONS
1. INTRODUCTION

2. IMPLEMENTATIONS OF FUNCTIONAL PROGRAMMING LANGUAGE FPL
2.1 Functional Programming Language FPL
2.1.1 Functions, Objects, and Applications
2.1.2 FPL Programs
2.2 Methods of Interpretation
2.3 Interpreter
2.4 Sample Programs
2.5 An Implementation on a Small Machine
2.5.1 OQutline of the System
2.5.2 Execution Results

2.6 Discussion

3 FUNCTIONAL PROGRAMMING LANGUAGE ASL/F AND ITS OPTIMIZING COMPILER
3.1 Summary of ASL/F
3.1.1 Syntax of ASL/F Programs
3.1.é The meaning of ASL/F Programs
3.2 Needed Vertex Sequences
3.2.1 Tree Representation of Terms
3.2.2 Rewriting Order

3.2.3 Needed Vertex Sequences

iv

iii
iv

vi

12
14
18
23
29
29
31
32

3y
34
34
39
41
41
41

42



3.3 Object Programs
3.3.1 Procedures and the Main Program
3.3.2 Frame Usage
3.3.3 Instruction Sequences
3.4 Optimizations
3.4.1 Pre-computing Needed Arguments of Defined Functions
3.4.1.1 Needed-Argument-First Order
3.4.1.2 Effects of Needed-Argument-First Order
3.4.1.3 Implementation of Needed-Argument-First Order
3.4.2 Avoidance of Duplicate Computation for Common Subterms
3.4.2.1 Common Vertices in Trees
3.4.2.2 Elimination Method
3.4.3 Elimination of Redundant Flag Tests
3.4.4 Globalization of Sorts
3.4.5 Elimination of Tail Recursions
3.4.6 Elimination of Auxiliary functions
3.5 Sample ASL/F Programs
3.5.1 Outline of the System
3.5.2 Effects of Optimizations
3.5.3 Comparison Between ASL/F aﬁd PASCAL Programs

3.5.4 Writing an Interpreter in ASL/F
4 CONCLUSION

APPENDIX A A SUFFICIENT CONDITION FOR AN ARGUMENT TO BE NEEDED

APPENDIX B A SUFFICIENT CONDITION FOR A VERTEX TO BE ‘NOT PRECEDED’
AND THAT TO BE “PRECEDED’

APPENDIX C A SUFFICIENT CONDITION FOR A SORT TO BE GLOBALIZABLE

REFERENCES

45
45
46
u8
51
51
51
52
54
55
56
56
57
58
59
60
62
62
63
65

67

69

T1

73
78

81



(1]

(2]

3]

[4]

LIST OF PUBLICATIONS

Inoue, K., Ito, M., Sugiyama, Y., Taniguchi, K., Tanizawa, T., and
Okamato, T., " An Implementation of a Functional Programming
Language on a Microprogrammable Computer", Papers of Technical
group on Electronic Computers, IECE Japan, EC80-36, Sep. 1980 (in
Japanese).

Inoue, K., Tanizawa, T., Taniguchi, X., and Okamoto, T.,
"Implementations of a Functional Programming Language FPL", Trans.
of IECE Japan, Vol.J65-D, No.5, May 1982 (in Japanese).

Inoue, K., Seki, H., Sugiyama, Y. and Kasami, T., "Code
Optimization at Compilation of Functional Programming Language ASL~
F Programs", Papers of Technical Group on Electronic Computers,
IECE Japan, EC82-18, June 1982 (in Japanese).

Inoue, X., Seki, H., Taniguchi, K., and Kasami, T., "Functional
Programming Language ASL/F and Its Optimizing Compiler", Trans. of

IECE Japan (to appear).

vi



CHAPTER 1

INTRODUCTION

Many functional programming languages have been proposed. Some of
them are called purely functional languages in the sense that there are
no assignment statements to variables and the order of the program
statements does not affect the computation results unless explicitly
specified. For example, pure LISP and FP [Backus 78] are purely
functional languages.

Since the meaning of the program written in those languages is
defined very clearly by using, for example, rewriting of expressions,

the correctness of programs can be verified relatively easily.

A purely functional programming language called FP System has been
proposed by Backus [Backus 78]. In addition to the properties of purely
functional languages mentioned above, FP System has particular
properties such that, each function has a single argument, and the
structure of objects (data) which are the values of the arguments is an
atom or a sequence representing a tree.

In order to present the problems of languages such as FP System
and their implementations, we have constructed two interpreters for a
purely functional language FPL based on FP System. Though several non-

von Neumann computers which directly execute those programs have been



proposed [Magd T79] [Berkling 76], construction of them remains
difficult.

Semantics of FPL is defined by using the concept of rewriting of
expressions. Hence, we can easily interpret an FPL program in such a way
that an expression to be evaluéted is represented by, for example, a
linked 1list and the expression is rewritten repeatedly according to the
definition of the semanties. But this method does not seem to be
efficient. Therefore, we adopt a method of interpretation by which only
the objects are "computed" repeatedly.

In order to be interpreted efféctively, an FPL program P is
transformed to a directed graph Py which shows correspondence between
functions and their arguments. Then, the intérpreter refers to PM and
computes objects at the time of execution.

One éystem for FPL, including the interpreter and translators for
the program text and input data, has been developed using PASCAL on
an AC0S-900. Objects processed by the interpreter are represented by
binary lists to avoid redundant cobying of objects.

We have also developed a similar system for FPL on a small
microprogrammable computer HOP [Hosomi et al. 76]. The interpreter in
this system has been written in an assembly language of its microcodes,
and the objects to be processed are represented by linear sequences in a
one-dimensional array. Since this representation does not allow sharing
of the objects, copying of the objects occurs frequently.

We show the execution time and the number of consumed cells (used
for representing objects), obtained by executing several quicksort
programs on both systems. The efficiency of the systems was satisfactory

for small-scale computations.



The following problems in the interpretation were found, which are
caused by the particular properties of FPL.
(1) Since every function in FPL has only one argument, we need to use
time- and space—consuming operations to separate certain elements from
sequences or put elements together.
(2) Data structures of objects which can be directly computed in FPL
are sequences (representing trees) only. Therefore, if other data
structures and functions operating oh them are essential to solve the
problem, we must simulate the needed data structures and the functions

by using sequences and the functions on the sequences.

In Chapter 3, we present a purely functional language ASL/F (a
Functional language as a subset of Algebraic Specification Language
[Nakanishi et al. 1979] [Sugiyama et al. 82b]), and study methods of
compiling and optimizing ASL/F programs.

There are three types of functions in ASL/F; primitive functions
(corresponding to built-in operations in commonly used programming
languages such as arithmetic operations), IF functions (corresponding to
conditional statements) and defined functions. A defined function g has
its own definition statement in a source program:

8(Xq yeeey xp) == rightg
where x, ,..., x, are distinct variables. rightg is a term and no
variables except for X1 yeeey X @ppear in rightg.

The semantics of ASL/F is defined clearly by using the concept of
rewriting of terms. In an ASL/F program text, it is not necessary for

the p;ogrammer to present rewriting rules for built-in sorts (e.g.,

integer or boolean) and their primitive functions (e.g., ADD or AND). In
3



addition to these built-in sorts, any data type and its primitive
functions can be included in ASL/F and used in the program text very
naturally if additional rewriting rules for them are presented by
ﬁhe programmer.

Here, we adopted a compiling method such that a generated object
program "computes" the values of terms instead of rewriting terms
directly. At the time of execution of this object program, we use only
a simple LIFO stack fqr storage allocation.

The primary aim of the optimizations studied here is to reduce the
execution time and memory requirement of the object program._Reducing
such time and space is considered to be more important than reducing the
size of the object program and the time for compilation and
optimization. The following (a) to (d) are the optimizations discussed

in this paper and implemented in the compiler we have constructed.

(a) Pre-computation of arguments of defined functions: In order to
obtain the computation value of an ASL/F program without fail, we
usualiy adopt a method calied "lazy evaluation" [Henderson 80] for
computing values of an argument of a defined function. However, this
method is inefficient.

To increase the efficiency, we propose the following method: At
compile-time, the compiler detects "needed" arguments of defined
functions. The i-th argument of g is said to be needed if, in order to
get the value of g(t1,.",tn), we must always compute the value of tj
regardless of the computation order and the terms t,,...,t,. Hence, the
values of needed arguments can be pre-computed and passed as actual
parameters to a procedure without causing useless or infinite

computation.



This optimization may be applied to procedural languages, but it
has not been discussed. The reason for this is that, in most procedural
languages, it is easy for programmers to specify the time to start the
computation of a value which is passed from one procedure to another. In
a funétional language propbsed by Keller [Keller 82], a related problem
of "evaluation of demand flow" which corresponds to a simplified case of
this optimization problem is presented [Tanaka and Keller 82].

Here, we formulate this optimization problem , give a general
method for the optimizations, and show how effective this optimization
is in reducing the execution time and memory requirement (maximum length

of the run-time stack).

(b) Avoidance of duplicate computation for common subterms: In order to
avoid the duplicate computation for common subterms (subexpressions)
within a term in a program, we use a flag indicating whether or not the
value of the common subterm has been already computed.

The object program computes the value of each term in such a way
that the value of each term is defined in terms of rewriting of DAG’s
(Directed Acyclic Graphs) [Sugiyama et al. 82a] instead of rewriting of
terms. In addition to the elimination of duplicate computation, flag

tests are also eliminated, if possible.

{c) Globalization of sorts: For a sort (data type) such as an array
which requires large memory space to store its value, we should
allocate no memory space for the values of the sort dynamically. Instead
we should only allocate a fixed memory space statically (which is
sufficient to store any single value of the sort), if the source program
satisfies certain conditions. If this optimization was not performed,

the arrays would be copied repeatedly on the run-time stack in general,
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and memory space and execution time would be exhausted. Thus, this
optimization is essential.

This optimization is related to the problems of "live variable
analysis" and "register allocation" applied to procedural languages
[Aho and Ullman 77] , and the problem of "attribute allocation" applied

to an attribute grammar [Sasaki and Katayama 83].

(d) Elimination of tail recursions: Tail recursions are transformed into
iterative forms as seen in functional and procedural languages [Aho et
al. 83]. This optimization reduces the memory requirement at the time of

execution.

(e) Elimination of Auxiliary Functions: If in the source text of an
ASL/F program, there are subterms which can be rewritten without knowing
the values assigned to variables, we can then rewrite (expand) such
subterms repeatedly before compilation and other optimizations.

This optimization may correspond to the expansion of open

subroutines in procedural languages.

These optimization techniques can be applied not only to ASL/F but
also to other functional languages. For these optimizations, only the
source text of the program is analyzed. Although many ordinary
optimization techniques which are used for procedural languages such as
FORTRAﬁ(e.g” register allocation, loop-invariant move, etec.) can be
applied further to the procedural program generated by our compiling and
optimizing method, those optimizations are not considered in this
thesis,

An optimizing compiler for ASL/F has been implemented on a MELCOM

COSMO 900-II, which generates an object program in assembly language. We



also present the time and space efficiency of several sample programs.
Experimental results show that (1) all optimization techniques adopted
here are useful in reducing the execution time and/or memory
requirement, and (2) the execution time of an ASL/F program is about 75

to 135% of that of a PASCAL program using the same algorithm.

In Chapter U4, we present the conclusion and directions for further

study.



CHAPTER 2

IMPLEMENTATIONS OF FUNCTIONAL PROGRAMMING LANGUAGE FPL

In this chapter, we present a purely functional programming
language FPL based on FP System proposed by Backus [Backus 78], and
systems for FPL on conventional machines.

In Section 2.1, the definition of FPL is given. A method of
interpreting FPL programs is shown in Section 2.2 and Section 2.3. We
have constructed an interpreter using this method on a relatively large
machine and executed several quicksort programs. The time and space
efficiency of these sample programs are presented in Section 2.4. In
Section 2.5, we also present another system for FPL on a small machine.
This system uses the same method of interpretation as the former system

but has distinct representation of data objects.

2.1 Functional Programming Language FPL

FPL is based on FP System proposed by Backus. The details of FP are

described in [Backus 781.

2.1.1 Functions, Objects, and Applications
Objects

An integer, a boolean value, or ¢ (a sequence of length 0) is an
atom. An atom is an object. A sequence <xq, ... ,xp> consisting of

elements x; which are themselves objects is also an object (where n is



called the length of the sequence, and n>»0). For example, <5, <9,
25>,73> is a sequence of length 3.
Functions
There‘are three types of functions in FPL.
1. Built-in primitive functions (see Table 2.1).
2. UD-functions (User-Defined function) defined by the programmer in the
program text.
3. Functions defined by built-in functional forms (see Table 2.2).

Each function has an object as its argument and the (resulting)
value of the function is also an object.

A primitive function ID is the identity function. For a sequence
<x1, Xpy eee y Xp> as an argument, the values of primitive functions,
(a)HEAD, (b)SELi, (c)TAIL, and (d)LEN,are objects (a)xq, (b)xy,
(c)<x2, «es 3 Xp>, and (d)n, respectively. LEN1 is a predicate whether
or not the argument is a sequence of length 1, and LT compares two
integers. PHI generates 4 (a sequence of length 0) and CONSTi generates
integer i for any argument. NULL is a predicate whether or not the
argument is 4.

The syntax of a definition statement of a UD-function is as

follows.
"DEF" the name of UD-function non the definition body

The name of a UD-function on the left-hand side is a string of
alphanumeric characters (maximum of 8 characters) with a leading
alphabetic character and is not a the key words (e.g., DEF, END,
ADD, ...). The definition body on the right-hand side is a description

of a function which is usually a function defined by functional forms.



Table 2.1

Primitive Functions of FPL

1.ID
6.AND

- 11.MULT
16.SEL1

19.PHI (PHI:x = 0)
20.UNION (UNION:x =

2.HEAD 3.TAIL 4, LEN 5.LEN1
7.0R 8.NOT 9.ADD 10.SUB
12.D1IV 13.MOD 14.LT 15.EQ
17.CONSTi 18.NULL
x is <y,?> => <y> j
x is <@,2> => <z> ;

x is <y,<21,.¢.,202> => <y,Z21,...,20> 3}
else undefined
z is True

21.IF (IF:<x,y,z> =

=> Y

z is False -> x ;
zZ is a sequence or an atom other than
True,False -> undefined ;
IF:<x,y,2>

Inside the brackets of 20 and 21

McCarthy's expression is used.

)

Table 2.2

Functional Forms of FPL

CONSTR(Construction)

[f1,f2, o0

COND(Condition)

[f1,f2, ...
fn] :x = <f1:x,f2:x,
(f1 ; £2 <~ £3)

,fn)

(f1 3 £f2 <~ £3):x = IF:<f1:x,f2:x,f3:x>
COMP(Composition) f1.f2.

f1.f2¢ oo fnix = f1:
/N

INS(Insert)
/f\:x = x 1is
x is

else
APPL(Apply to
‘fMix = x is
x 1s

else

<xX1> -> x1

<XT,X2, aee"

ese ofn
f2: ...

’

: fn:x

/ENi<Fe<x1,x2>,%3, s

undefined
all) °fv
2 ->0 ;
<x1,%X2, «».

y XN <>

<f:x1,f:1x2,

undefined

,£1xn>

yfnexd>

, Xn>

H
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A functional form has some functions as its functional arguments
and it defines a function. CONSTR gives a sequence consisting of the
values of functions which are the functional arguments of CONSTR. COND
is defined by a primitive function IF. The value of IF is the value of
the second element of its argument when the third element is a boolean
value - True, and that is the value of the first element when the third

element is False.* In FPL, programmers cannot define any functional

form.

Applications

An application denoted by ":" is the only operation in FPL, and it
generates an expression by giving an object to the function as an
argument. We call an object an expression. f:E is also called an
expﬁession where £ is any function (including a function defined by
functional forms) and E is an expression. f:E denotes that a function f

is applied to an object E. If this expression can be rewritten into an

# Assume that we rewrite an expression IF:A. If A is not a sequence of
length 3 or if the third element of A is either a sequence or an atom
other than True or False, the value of IF is not defined. If the third
element of A is an expression E including application symbols ":", the
resulting expression is still IF:A (the third element must be evaluated
first.) These definitions of COND and IF seem to be complicated. But by
the definition of the éonditional expression in Backus” FP System, the
rewritings for the value of a predicate must be executed on an equation
other than the equation for the value of the program. By using those
defini£ions for COND and IF, however, all réwritings can be executed on

a single equation.

11



expression E° by using the definitions of primitive functions, UD-

funtions, and functional forms, we write f:E == E’.

2.1.2 FPL Program

Structure of Program

An FPL program P as a whole defines a UD-function fP to be
evaluated. At the top of the program text, the name of fp is written,
which for input data D generates the value of P.

Figure 2.1 shows an FPL program which computes the greatest common
divisor of two integers by the Euclid’s algorithm. In this program, fP
is GCD. EQO is a predicate whether the argument is 0 or hot. The outline

of the definition of GCD is as follows.

If (xmod y) = 0
then GCD(x, y) =¥y
else GCD(x, y) = GCD(y, (x mod y))
Semantics

The value of an expression is an object obtained by rewriting the
expressions repeatedly according to the definition of the functions or
functional forms until no application symbols ":" appear in the
expression.

Data D for a program P is an object and is passed to P at the time
of execution. The value of expression fp:D 1s called the value of P for
D.

Assume that an expression E has more than two subexpressions which
can be rewritten. The value of E does not depend on the order of the
applications among those subexpressions. Suppose we evaluate an

12



expression E where E is IF:<f1:x, f2:x, f3:x>. Rewriting for the value
of f1:x or f2:x before rewriting for the value of f3:x may cause useless
or infinite rewritings even if E has a value. Then, we rewrite
subexpression f3:x first. Figure 2.2 shows an example of rewriting steps

where <6,4> is passed to the program of Figure 2.1 as input data.

GCD~

DEF EQO =EQ.[CONSTO , ID]

DEF GCD =(GCD.[SEL2 , MOD] ; SEL2 <~ EQ0.MOD)
END

Figure 2.1 An FPL Program which Computes

the Greatest Common Divisor

GCD:<6,4>

(GCD.[SEL2,MOD];SEL2 <~ EQO.MOD):<6,4> _
IF:<GCD.[SEL2,MOD]:<6,4>,SEL2:<6,4>,EQ0.MOD:<6,4>>
IF:<GCD.[SEL2,MOD]:<6,4>,SEL2:<6,4>,EQ0:2>
IF:<GCD.[SEL2,MOD]:<6,4>,SEL2:<6,4>,EQ.[CONSTO0,ID]:2>
IF:<GCD.[SELZ,MOD]:<6,4>,SEL2:<6,4>,EQ:(CONSTO:2,ID:2>>
IF:<GCD.[SEL2,MOD]:<6,4>,SEL2:<6,4>,EQ:<0,2>>
IF:<GCD.[SEL2,MOD]:<6,4>,SEL2:<6,U4>,False>
GCD.[SEL2,MOD]:<6,4>

GCD:<4,2>

(GCD.[SEL2,MOD];SEL2 <- EQO.MOD):<4,2>
IF:<GCD.[SEL2,MOD]:<4,2>,SEL2:<}4,2>,EQ0.MOD:<4,2>>
IF:<GCD.[SEL2,MOD]:<4,2>,SEL2:<4,2>,True>

SEL2:<4,2> '

2

oo o unonoun
[ T A T T | L | IO £ S ¢ B 1

n nn
tH o n e

Figure 2.2 Rewriting Steps for GCD: <6, 4>

13



2.2. Methods of Interpretation

We compared the following methods, (1) and (2), of interpreting an

FPL program P for input data D.

(1) We represent the expression to be evaluated by a linear sequence in,
for example, a one-dimensional array. Then, the represented expression
is scanned repeatedly for subexpressions which can be rewritten
immediately and the found subexpressions are rewritten in the array,
until no application symbols ":" appear in the array. It is easy to
implement this method, but repeated scanning of the array may cause

inefficiency.

(2) We first store P and D in distinct areas. Then the objects including
D are modified repeatedly according to the definition of functions or
functional forms in P until the value of P is obtained. In this method,
we have to save many temporary objects and states of intermediate steps
for later computation. But this can be achieved easily by using
subroutine calls of high-level languages (e.g., PASCAL, PL/I, ...).

Therefore, we adopted this method.

The order of functions or functional forms to be applied may be
determined partially before execution (interpretation), but for ease of
implementation we adopted a method where the order of applications is
determined by the interpreter (the interpreter is denoted by I) at the
time of execution. For ease of referring to P by I, we transfer P into a
directed graph Py before interpretation.

Figure 2.3 shows a directed graph Py representing P of Figure 2.1.

Each vertex in Py corresponds to an occurrence of a function or a

14



functional form in P and has a label of the name of the function or
functional form. Each edge connects f and g as f -> g, where f is a
vertex whose label is a functional form F and g is a vertex whose label
is a function G (G may be a function defined by functional forms) which
is one of the functional arguments of F. There are no vertices
corresponding to the occurrences of UD-funtions in P, since a vertex
whose label is the functional form having a functional argument of a
UD-function H is connected directly with the vertex which corresponds to
the occurrence of the outermost functional form (or maybe a function) on
the right-hand side of the definition of H.

For example, the vertex labeled COMP at the top left of Figure 2.3
is connected with the vertex labeled COND which corresponds to the
outermost functional form on the right-hand side of UD-function GCD. The
number of sons of a vertex corresponding tp a functional form F is the
same as the number of functional arguments of F.

Here we call son u of a vertex v the "i-th son of v", if u
corresponds to the i-th functional argument of the functional form
whicﬁ corresponds to v. For example, for the vertex labeled COND at the
top of Figure 2.3, the vertex labeled COMP at the top left is the first
son, the vertex labeled SEL is the second son, and the vertex labeled
COMP at the top right is the third son.

PM can be easily represented by a binary list as shown in Figure

2.4.% To convert P to this binary list representing Py, we have designed

*# In Figure 2.4, each cell corresponding to a functional form contains
the name of the functional form in the left portion and a pointer in the

right portion of the cell.

15



ONST

| SELéI MOD

Figure 2.3 An Example of Directed Graph PM

[_Cong
ol [ — [ /]
MOD = [, | s
— [, ]
L —]

Figure 2.4 Representation of P, by List

M
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a translator T,.

Objects (including input data D) can be easily represented by
treés. Hence, they are also represented by binary lists as in Figure
2.5. Each cell corresponding to an atom in a 1ist which represents an
object has an integer value (-235 - +235.1) or a boolean value. Input
data'D is transformed into this binary list by a translator T2 before
interpretation.

Then, the entire system for FPL consists of the translators Tq, T,,
and interpreter I. T1, Ty, and I are written in PASCAL, a language with
which we can write recursive procedures and list operations relatively
easily. This system runs under TSS on an AC0S-900 (where a user can use
a memory space having a maximum of 112K words [ one word is 36 bits]). A
cell containing an atom occupies 2 words and a cell containing two
pointers occupies 3 words. The memory space having a maximum of 60K
words (called the heap area) is reserved for these cells.

Together, T1, T5, and I are about 2000 lines long and it took 3

man-months to design and implement them.

.

Figure 2.5 Representation of Object <5,<9,25>,73>

17



2.3 Interpreter

Figure 2.6 shows the outline of interpreter I. Here, we assume that
a variable of type "obj" contains an object (even if it is a sequence),
a variable of type "node" contains a vertex in PM' The following, (1)
to (5), describe interpreter I shown in Figure 2.6.
(1) Procedure "interpret" has blocks éorresponding to the primitive
functions and functional forms in FPL. One block is selected by the
label of the vertex in variable "pc" (which is the first argument of
procedure "interpret") and executed. The resulting object of "interpret"
is computed for the second argument "data" in the selected block and
stored in the third argument "return". The main program activates
"interpret" with the vertex corresponding to fP (the function to be
evaluated) and input data D as an actual argument, and prints out the
resulting object of the activated "interpret',
(2) In each block corresponding to a functional form F, we must obtain
the values of several functions which are the functional arguments of F.
Therefore, in each block corresponding to a functional form, "interpret!
is activated recursively with the label of a vertex which is a son of a
vertex in "pc". By using procedure activations of a high-level
language, temporary objects (e.g., the content of "return" in "CONSTR"
block) and intermediate states are saved and restored automatically.
(3) An object is represented by a binary list as mentioned above. Thus,
a variable of type "obj" is implemented by a pointer pointing to a cell
inalist. We make a cell on a 1ist representing an object X pointed by
the other pointer r so that r represents other object Y which is a
subsequence of X. This reduces the number of cell copying operations.

But the .1ist pointed by the pointer in "data" of one instance of
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PROGRM main
VAR work: obj ;

PROCEDURE interpret(pec: node, data: obj, VAR return:obj) ;
VAR 1i: INTEGER ;
work1,work2: obj ;

CASE sort(pc) OF — Q@
‘ID’ :return:=data ;
‘HEAD® :returm:=select(1,data) i —Q@
®
‘PHI®  :return:=null ; __@
"OONSTR * : BEGIN
retum:=null ;3 '
FOR 1:=numson(pc) DOWNTO 1 —_— @
BEGIN
interpret(son(pe,i), data, workl) ;3 — (6)
return: zunion(work1,retumn) ; — @
END 3
END ;
‘COND”  :BEGIN

interpret(son(pe,3), data,.workl) ;
IF work1=TRUE THEN interpret(san(pc,2), data, return)
ELE interpret(sa(pc,1), data, return) ;
END 5
‘OMP°  :BEGIN
workl:=data ;
FOR i:=numscn(pe) DOWNTO 1
BEGIN
interpret(son(pe,i), workl, work2) ;
work1:=work?2 ;
END ;
retumn:=work? ;
D 5
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“INS®  :BEGIN
work1:=select(1,data) ;
FOR i:=2 TO length(data) —®
BEGIN
interpret(son(pe, 1), union(workl,select(i,data)), work2) ;
work1l:=work2 ;
END ;5
retum:=work?2 ;
END
‘APPL°  :BEGIN
retum:=null ;
FOR i:=length(data) DOWNTO 1
BEGIN
interpret(son(pe, 1), select(i,data), workl) ;
return: =union(work1i,retum) ;
END ;

END ;

BEGIN /% OF MAIN ¥/
interpret(fp, D, work) ;
WRITE(work)

END.

@Selection of the following blocks depending on the label contained in
npeh

@"select(i,data)" is the i-th element of the sequence contained in
"data",

@apply each operation according to the definition of the primitive
function.

@"null" is 4 (a sequence of length 0).

@“numson(pc)" is the number of sons of the vertex whose label is
contained in "pc".

@"son(pc)" is the i-th son of the vertex whose label is contained in
"peh.

@“union(worm,return) is sequence <f;(x), £141(X)y ooy £,(x)> where
"return" contains <f;  4(x), ... , £ ,(x)> and "work1" contains f;(x).

"1ength(data)" is the length of the sequence contained in "data".

Figure 2.6 Outline of Interpreter
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tinterpret" cannot be released and reclaimed after the completion of the
instance, since parts of the 1list may be shared. For example, as shown
in Figure 2.7, after the completion of one instance of "UNION" block
which has data <5, <9, 25>> in variable "data", cell 1 and 2 cannot be
released because the other pointers pointing them may exist.*
(4) When no more new cells can be obtained in the heap area, a garbage
collection routine GC in I begins to reclaim wunused cells. GC first
traverses only used cells and marks them, and then traverses all cells
in the heap area and reclaims unmarked cells. GC is also written in
PASCAL, so that it takes a relatively long time to execute (for example,
in the quicksort program which will be described later, the time for GC
is about the same as the time for sorting). If it were possible to write
the garbage collection routine in a lower level language, its execution
time would be reduced greatly.
(5) When one of the following errors (a), (b), and (c¢) occurs,
interpreter I prints out the content of "data" and the name of the
function or the functional form corresponding to the block in which the
error has occurred, and halts.

(é) The resulting value of the block is not defined for the object in

"data".

(b) An overflow occurs,

(¢) No cells can be reclaimed by GC (i.e., the heap area is not

sufficient).

* 1t may be possible to check whether or not the cells can be released
and reclaimed at the time of completion of each instance. But we are not

aware of any simple and efficient method.
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<5,<9,25>>

Before

Figure 2.7 Execution of UNION:<5, <9, 25>>
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2.4 Sample Programs

Quicksort 1

Figure 2.8 shows a quicksort program in FPL, which sorts a given
integer sequence in nonincreasing order. This program was written in
such a way that it can be considered to be a natural implementation of
the quicksort algorithm in FPL; therefore no special attention on the

execution time and memory usage was paid.

A UD-function QSORT1 takes an integer sequence x as its argument
and sorts the sequence as follows:
(a) First, apply a UD-function SPLIT1 to an integer sequence x and
obtain a sequence consisting of three elements denoted by <1st-elem,
2nd-elem, 3rd-elem>, where 1st-elem is BIGGER:x, 2nd-elem is HEAD:x, and
3rd-elem is SMALLER:x. 1st-elem is a sequence of the integers which
appear in a sequence TAIL:x (a sequence obtained by removing the first
element of x) and which are greater than an integer HEAD:x (i.e., the
first element of x). 3rd-elem is a sequence of the integers which appear
in TAIL:x and which are not greater than HEAD:x.
(b) Next, apply QSORT1 to both sequence 1st-elem and 3rd-elem
obtained by (a).
(¢) Finally, make the value of QSORT1:x by concatenating the
sequences obtained by (b) and HEAD:x. When x is @, the resulting object

is also d.

The value of BIGGER:x is obtained as follows.
First we construct a sequence of three elements denoted by <1st-elem,

2nd-elem, 3rd-elem>, where 1st-elem is ¢, 2nd-elem is HEAD:x, and 3rd-
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QSORT1

DEF QSORT1=(FORM.[QSORT1.HEAD , SEL2 , QSORT1.SEL3].SPLIT1 ; PHI <~ NULL)
DEF SPLIT1 =([ BIGGER , HEAD , SMALLER ] ; [ PHI , HEAD , PHI ] <- LEN1)
DEF BIGGER=BLOOP.[ PHI , HEAD , TAIL ]
DEF BLOOP=( (BLOOP. [HEAD,SEL2,TATL. SEL3)

; BLOOP. [UNION. [HEAD. SEL3,HEAD], SEL2, TATL,, SEL3]

<~ LT.[SEL2 , HEAD.SEL3]) ;HEAD <- NULL.SEL3 )
DEF SMALIFR=SLOOP.[PHI , HEAD , TAIL]
DEF SLOOP=( (SLOOP. [UNION. [HEAD. SEL3,HEAD],SEL2, TATL. SEL3]

s SLOOP.[HFAD,SFL.2, TATL.SEL3])

<~ LT.[SEL2,HEAD.SEL3]) ; HEAD <~ NULL.SEL3 )
DEF FORM =APPEND.[HEAD , UNION.[SEL2 , SEL3]]
DEF APPEND=(UNION.[HEAD.HEAD , APPEND.[TAIL.HEAD , SEL2]] ; SEL2<-NULL.HEAD)

END

Figure 2.8 Quicksort 1

Table 2.3 Execution of Quicksort 1

The number of integers 50 100 200

300 4oo 500
to be sorted

Execution time (sec.) 1.4 3.0 7.7 113.3119.11| 24,9

The number of consumed Y, 0.6 | 26. 47.2 . )
cells ( x 1000) 911 7|47 67.4 | 88.5
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elem is TAIL:x initially. Then, each integer in 3rd-elem is picked up
one by one, and compared with 2nd-elem repeatedly. If it is greater than
2nd-elem, it is added to 1st-elem. The value of BIGGER:x is 1st-elem at
the time when 3rd-elem becomes ¢g.

On the other hand, SMALLER:x is obtained by the similar operations
but the integers to be added to 1st-elem are not greater than 2nd-elem.

APPEND connects two sequences.

In Table 2.3, we show the execution time (except for the time for
T1, T2, and GC) and the number of consumed cells (cells reclaimed by GC
are counted every time they are reused) of Quicksort 1. It took 0.7
second to transform the source text of Quicksort 1 by T1, and 2 seconds

to transform a sequence of 500 integers by T2.

Quicksort 2

In Quicksort 1, in order to obtain the sequences of greater
integers and not greater integers than HEAD:x, we used two UD—functidns
BIGGER and SMALLER. But if both sequences, BIGGER:x and SMALLER:x, can
be obtained by a UD-function at the same time, the efficiency will be
increased. Thus, we defined SPLIT2 and LOOP in Quicksort 2 as shown in
Figure 2.9, instead of SPLIT1, BIGGER, BLOOP, SMALLER, and SLOOP in
quicksort 1. The argument of LOOP is a sequence of four elements
denoted by <1st-elem, 2nd-elem, 3rd-elem, Uth-elem>. 1st-elem is a
sequence whose elements are greater than 2nd-elem, 3rd-elem is a
sequence whose elements are not greater than 2nd-elem, U4th-elem is a
sequence whose elements have not yet been compared with 2nd-elem. The
elements in U4th-elem are picked up one by one, compared with 2nd-elem,

and added to 1st-elem or 3rd-elem according to the results of the
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QSORT2
DEF QSCRT2=(FORM.[QSORT2.HEAD , SEL2 , QSORT2.SEL3].SPLIT2 ; PHI <~ NULL)
DEF SPLIT2 =(LOOP.[PHI , HFAD , PHL , TAIL] ; [PHI , HEAD , PHI] <~ LEN1)
DEF LOOP=((LOOP.[HEAD, SHL2 , UNION.[HEAD.SELY4 , SEL3] , TAIL.SELY4] ;
LOOP. [UNION. [HEAD.SELY , HEAD] , SEL 2 , SEL3 , TAIL.SELY]
<- LT.[SEL2 , HEAD.SEL4]) ; [HEAD , SEL2 , SEL3] <~ NULL.SELY)
DEF FORM =APPEND.[HEAD , UNION.[SEL2 , SEL3]]
DEF APPEND=(UNION.[HEAD.HEAD , APPEND.[TAIL.HEAD , SFL2]] ; SEL2<-NULL.HEAD)
D

Figure 2.9 Quicksort 2

Table 2.4 Execution of Quicksort 2

The number of integer‘s 50 100 200 300 uoo 500

to be sorted

Execution time (sec.) 1.0 2.1 5.3 8.9 113.0] 16.8
The number of consumed . 8. . .
cells ( x 1000) 3.7 '20.-1]35.1150.6166.4
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comparisons. The resulting object of LOOP is a sequence consisting of
1st-elem, 2nd-elem, and 3rd-elem at the time when l4th-elem becomes 4.
The execution time and the number of cells consumed by Quicksort 2

were reduced by 30% and 25%, respectively (see Table 2.4).

Quicksort 3 and 4

A UD-function APPEND in Quicksort 1 and 2 is defined recursively.
For the number (denoted by n) of integers té sort, APPEND is executed
about (1/2)n logn times, and uses (5/2)n logn cells as a result.
(In most cases for each execution of APPEND, two cells for the outside
CONSTR on the definition of APPEND, another two cells for the inside
CONSTR, and one cell for the UNION, a.total of five cells are usually
consumed. )

Thus, we added a block for APPEND to interpreter I so that APPEND
can be executed as a primitive function. As a result about (1/2)n log n
cells are consumed for APPEND, and compared with Quicksort 2 the
execution time was reduced by 20% and the number of cells consumed was
reduced by 15%. (Quicksort 3 is defined by removing the definition of
APPEND from Quicksort 2.)

For each execution of a function LT.[SEL2, HEAD.SEL4] on the
definition of LOOP, two cells are consumed, and this funcpion is
executed n log n times. Thus, we also added a block for this function to
the interpreter as a primitive function denoted by LT24. As a result
both the execution time and the number of cells consumed were reduced by
20% compared with Quicksort 3. (The quicksort program using the
primitive function LT24 is called Quicksort U4.) The execution time and

the number of consumed cells of Quicksort 4 are shown in Table 2.5.
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Table 2.5 Execution of Quicksort U

The number of integers

50 100 200 300 400 500

to be sorted
Execution time (sec.) 0.7 1.5 3.5 6.2 8.5 11.4
The number of consumed 2.8 5.9 14.7125.8{36.11]47.3

cells ( x 1000)
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2.5 An Implementation on a Small Machine

Using the methods mentioned in the preceding sections, we have also
implemented a similar system for FPL on a small machine in a low level

language.
2.5.1 Qutline of the System

(1) We have developed the system for FPL on a microprogrammable machine
HOP [Hosomi et al. 76]. HOP has a main memory of 32K bytes and a control
memory of 3K words (one word is 30 bits). It executes one
microinstruction in 350 ns. The tools for developing programs, e.g., a
self-assembler, a disassembler, an editor, a debugger and an emulator
for the 8080 microprocessor had been developed on it.

(2) The system consists of translators T1',T2’ and an interpreter I’
corresponding to T4, T, and I mentioned in Section 2.2, respectively.
T,” and T," were written in the 8080 assembly language and together are
about 1500 steps long. The interpreter I° was written in an assembly
language for HOP s microcodes and is about 1000 steps long. It took
about 3 man-months to complete them.

(3) In this system, objects are represented by linear sequences in a
one-dimensional array (as shown in Figure 2.10) rather than binary
lists, since operations for the sequences are considered to be
relatively easy by using HOP’s instructions. The array has a maximum
length of 24K bytes. A cell containing an integer occupies U bytes and a
cell containing a symbol occupies 1 byte.

(4) The structure of I° is similar to that of I shown in Figure 2.6. In
I°, variables of type "obj" are implemented with pointers pointing to

ends of the linear sequences representing objects in the array. One
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* [object

25(>173

0
S ther

Object] """~

Figure 2.10 Representation of Object <5,<9,25>,73> in I'

»

Table 2.6 Execution of Quicksort 3 using I°

The number of integer's 50 100 200 300 uoo 500
to be sorted
Execution time (sec.) 1.0 6.2]123.6 159.0]90.9 | 152.8
The number of consumed 0.6 1.0 2.0 .8 4.6 o
cells ( x 1000) 3 7
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linear sequence in the array is pointed by exactly one pointer, and no
subsequences are pointed by other pointers. In I°, the instructions for
saving and restoring the local variables at the time of procedure
activations and returns from procedures are written explicitly, since I

was written in a low level language (microcodes).
2.5.2 Execution Results

Quicksort 2, shown in Figure 2.9, can not be executed by I’ when
the number of integers to be sorted exceeds 100, since there is not
enough space in the array. This shortage occurs because at the time of
execution of the UD-function APPEND, the objects created by repeated
execution of TAIL are stored in the array successively. ( For the number
(denoted by n) of integers to sort n, 0(n2) cells are consumed each time
APPEND is executed.)

Then, we added the block for computing APPEND as a primitive
function to I” so that the number of consumed cells is 0(n) each time
APPEND is executed. The execution time and the number of cells of
Quicksort 3 by I° are shown in Table 2.6.

The time required for of Quicksort 3 is O(n log n) by I. On the
other hand, it is 0(n2) by I°. The reason for the difference is that the
time required for executing the primitive functions such as TAIL is 0O(n)
by I°, while it is a constant by I.

Unused objects (e.g., an object pointed by a pointer in "data" at
the time of completion of procedure "interpret") can be removed from the
array instantly. The maximum size of the space for the cells in the
array (i.e., the maximum length of all objects together) is

approximately proportional to n when Quicksort 3 is executed by I°.
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2.6 Discussion

(1) No difficulty occurred when boph systems were developed, and the
efficiency of the systems is satisfactory for small-scale computation'.
The implementation methods discussed here are considered effective for
executing programs of functional languages such as FPL.

(2) The following (<a>, <b>, and <c>) are the disadvantages of FPL found
during the development of some FPL programs.

<a> The number of primitive functions and functional forms in the
current version of FPL is insufficient, since we sometimes had
difficulty in writing straightforward programs.

<b> Since every function in FPL takes only one argument, we often need
to use primitive functions which separate certain elements from
sequences (e.g., SELi, HEAD, TAIL, etc.) and primitive functions or
functional forms which put elements together (e.g., UNION, CONSTR, etc.)
as seen in the definition of LOOP of Quicksort 2, for example. Those
primitive functions and functional forms would be unnecessary if
functions could take more than one argument.

<e> Data structures whose values can be directly processed in FPL are
restricted to sequence only. Therefore, if other data structures and
functions on them are essential to solve the problem, we must simulate
the needed data structures and the functions by using sequences and the
functions on the sequences.

(3) By the interpreter I, one memory cell is consumed each time UNION is

¥ A LISP program corresponding to Quicksort 2 was executed on the ACOS-

900. It took 3.5 seconds to sort 500 integers.

32



executed, and n cells are consumed each time CONSTR (having n functional
arguments) is executed. The repeated execution of those primitive
functions and functional forms may consume a large number of memory
cells and cause inefficiency. Therefore, we attempted to avoid using
them for the sake of efficiency, but eventually used many of them for
the reason mentioned in (2)-<b>.

(4) The time required for executing primitive function LEN by
interpreter I or I°, and the time required for executing TAIL by 1 are
proportional to the length of sequences which are the arguments of the
primitive functions. The usage of those primitive functions may
increase the order of execution time by one. Therefore, we must be

careful in using them.
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CHAPTER 3
FUNCTIONAL PROGRAMMING LANGUAGE ASL/F AND

ITS OPTIMIZING COMPILER

In this chapter, we present a purely functional programming
language called ASL/F, and propose compiling and optimizing methods
applicable to ASL/F.

The definition of ASL/F is given in Section 3.1. A method of
compiling an ASL/F program is studied in Section 3.2 and Section 3.3.
Several optimization problems are discussed in Section 3.4. The
execution time and memory requirement of the object programs of several

sample ASL/F programs such as quicksort are given in Section 3.5.

3.1 Summary of ASL/F

3.1.1 Syntax of ASL/F Programs
{Sorts, Functions and Terms]

A Sort is the name of a data type such as integer, boolean,... .
ASL/F supports most sorts found in commonly used programming languages
(e.g., integer, real, boolean, character string, array, tuple, etec.) and
primitive fur;ctions (e.g., ADD, SUB, AND, OR, ... .) on them. (Table
3.1 shows primitive functions which are implemented in the current
version of the compiler.) By the notation f : 84 9 Sp yeeey Sp -> 8,

we mean that function f has n-arguments of sorts 813y S jeesy Sp, and
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" Table 3.1: Primitive Functions Implemented in the

Current Version of the Compiler

OR, XOR, NOT

( Logical operations on booleans )

ADD, SUB, TIMES, DIV, MOD, NEG

( Arithmetic operations on integers )

EQ, NEQ, GT, GE, LT, LE

( Relational operations on integers )

CONTENT, ASSIGN

( Operations on arrays )

< >, PR1, PR2, PR3, PRY4, PR5, PR6, PR7, PR8, PR9

( Operations on tuples )

Note: *® AND, ... , ADD, ... , EQ, ... ete. are functions which are

equivalent to the functions (operators) in commonly used languages
(TIMES is multiplication).

¥ The value of CONTENTS(X, i) is the i-th element of array X, and
ASSIGN(X, i,.d) is the array obtained by replacing the i-th
element of X with d.

¥ <dj, d2, .ee > i3 the tuple with d1, d2, ... a8 its components,
and PR1(Y), PR2(Y), ... are the first component, the second

component, ... of tuple Y respectively.
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the value of f is of sort s.

A term of sort s is defined as follows. A constant of sort s or a
variable of sort s is a term of sort s. For a function f such that £
Sq1 s Sp yeesy Sy -2 8 y 1f terms tq ,..., t

are of sorts sq, «., s

n n

, respectively, then f(t1,..” tn) is also a term of sort s.

[Defined Functions and IF Functions]

There are three types of functions in ASL/F; primitive functions,
IF functions ahd defined functions. A defined function g has its own
definition statement in a source program:

g(xq ,eeey xy) == right

where x; ,..., X, are distinct variables. right_ is a term and no

g
variables except for Xq seeey X, appear in rightg. We call g(x1 gessy

xn) and right_ the left-hand side and the right-hand side of the

g
definition statement for g, respectively.

The value of an IF function is either the value of the second
argument if the value of the first argument is TRUE, or the value of the
third argument if FALSE. For every sort s, there exists an IF function
IFg (IFS: bool , s, 8 => s) that satisfies the following two axioms :

IFS(TRUE , xq, X,) == X4

IFS(FALSE, X1y x2) == Xp

For convenience, in what follows, "IFS" is simply written as "IF" when

sort s is understood.

[Structure of ASL/F Programs]

Figure 3.1 is an ASL/F program which sorts the integers (in an
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(1) SPEC QUICKSORT ;
(2) INCLUDE ARRAY(INT, 5000, ARY) ;

(3) OP QSORT : ARY, INT, INT -> ARY ;
€)) SPRQSORT : ARY, INT, INT, INT, INT, INT -> ARY ;
(5) LEFT : ARY, INT, INT -> INT ;
(6) RIGHT : ARY, INT, INT ~> INT 3
(n EXCH ¢ ARY, INT, INT -> ARY ;
(8) MID + INT, INT -> INT ;
(9) INC ¢ INT -> INT ;
(10) DEC : INT ~> INT ;
AXIOM

(11) QSORT(X, I, J) == IF( GE(I, J), X,
SPRQSORT( X, I, J, I, J, CONTENT(X, MID(I, J))) )
(12) SPRQSORT(X, I, J, L, R, B) ==
IF( LT(LEFT(X, L, B), RIGHT(X, R, B)),
SPRQSORT( EXCH(X, LEFT(X, L, B), RIGHT(X, R, B)),
I, J,

H

INC(LEFT(X, L, B)), DEC(RIGHT(X, R, B)),

B ),
IF( EQ(LEFT(X, L, B), RIGHT(X, R, B)),
QSORT( QSORT(X, I, DEC(RIGHT(X, R, B)) ),
INC(LEFT(X, L, B)), J ),
QSORT( QSORT(X, I, RIGHT(X, R, B) ),
LEFT(X, L, B), J ) ) )
(13) LEFT(X, L, B) ==
IF( GE(CONTENT(X, L), B), L, LEFT(X, INC(L), B) )
(14) RIGHT(X, R, B) ==
IF( LE(CONTENT(X, R), B), R, RIGHT(X, DEC(R), B) )

.
’
.

’

’

(15) EXCH(X, P1, P2) == ASSIGN(ASSIGN(X, P1,CONTENT(X, P2)),

P2, CONTENT(X, P1) )
(16) MID(I, J) == DIV(ADD(I, J), 2)
(17) INC(I) ADD(I, 1)
(18) DEC(I) SUB(I, 1)
END
(19) QSORT(X, 1, N)

SPRQSORT(X, I, J, L, R, B) sorts the elements X[I],
X[I+1], ...y X[J-1] and X[J] of array X under the assumption
that X[k] < B for each k , I < k<L
and X[l]Z_Bforeachl,Ril(J.

< B >B
e A P .
X L |
[ I I
index 1 I L R J 5000

Figure 3.1: Quicksort Program Written in ASL/F
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PROCEDURE QUICKSORT ;
VAR N,I : INTEGER ;

PROCEDURE SORT(L, R :INTEGER) ;
VAR I, J, M, W :INTEGER ;
BEGIN
I:=L 3 J:=R ; M:=X[(L+R) DIV 2 ] ;
REPEAT
WHILE X[I] < M DO I:=I+1
WHILE M < X[J] DO J:=J-1
IF I<=J THEN BEGIN
We=X[I] ; X[I]:=X[J] ;
I:=2I+1 5 Je=d-1
END
UNTIL I>J ;
IF L < J THEN SORT(L, J) ;
IF I < R THEN SORT(I, R)
END ;

“we we

>4
—
("
L
*e
"
=

BEGIN SORT(1, N) END

Figure 3.2: Quicksort Program Written in PASCAL
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array) in nondecreasing order by "quicksort". Figure 3.2 also shows a
quicksort program in PASCAL by Wirth [Wirth 76]. They are considered to
be "natural implementations" of the same quicksort algorithm in those
languages.

In Figure 3.1, "QUICKSORT" at line (1) is the name of this program.
Line (2) is a declaration of a sort named ARY which is a one-dimensional
array consisting of 5000 integers.

Lines (3) to (10) declare the sorts of the arguments and the value
of each defined function. Lines (11) to (18) describe the definitions of
defined functions. Line (19) specifies the term, called the main program
term, which we want to evaluate. If the main program term has variables,

then input data must be assigned to them before evaluation.

3.1.2 The Meaning of ASL/F Programs

Let P be an ASL/F program. Let SORT(P) denote the set of sorts of
the arguments of functions or the values of functions which appear in P,
and T(P) the set of all possible terms consisting of constants and
variables of sorts in SORT(P), and those functions which appear in P.

A rewriting rule t; -> tj denotes that a term o'(ti) can be
replaced by a term<f(tj) where d(ti) and d(tj) are possible terms
obtained by substituting terms for variables in t; and tj, if any,
respectively. The set of the following rewriting rules is denoted by
RULE(P).

(1) A rewriting rule g(xqye..) => rightg for each defined function in
P whose definition is g(x1,.“) == rightg.
(2) Rewriting rules IFG(TRUE, x4, x,) -> x4y and IFS(FALSE, x4, Xp) ->

x5 corresponding to the axioms of IFS for each sort s in SORT(P).
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(3) (Infinitely many) rewriting rules such as ADD(0, 0) -> 0,
ADD(O, 1) -> 1, ADD(1, 0) => 1, ... which define the values of the
primitive functions for all possible constant arguments.

For terms t,t’¢ T(P), we writet =——=> t " iff t’ is obtained from t
by rewriting a subterm of t by using a réwriting rule in RULE(P).

For term t; € T(P), if (1) t; == t,, tr, == t3 e

and t,_¢ = t,, (2) thereisno t, 4 suchthat t, == ¢ and (3)

n+1?
tn, is a constant, then t,;, is said to be the value of t, (or t4 has
value t, ) in P. For any t € TERM(P), if t has a value, then it is unique
(that is, if t has both values d and d°, then d=d”), because RULE(P)
satisfies Church-Rosser property [Rosen 731].

Let tP[x1,...,xn] be the main program term with variables X3 een s
X, of P. For input data D=<dq,...,d >, if a term tpldq,...,d, ] (obtained
by the substitution of each d; for x4 (1£i<n) in tP[x1,...,xn] ) has the

value, then we call the value of tP[d1,...,dn] the value of program P

for input data D.
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3.2 Needed Vertex Sequences

3.2.1 Tree Representation of Terms

For a term t, let tree(t) = (V, E) be the directed tree which
represents t, where V is the set of vertices and E is the set of edges.
Each vertex v in V has a label denoted by label(v). For a leaf vertex v,
label(v) is either a variable name or a constant, and for a vertex v
other than a leaf vertex, label(v) is a function name.

Each edge e = (u, w) in E has a positive integer 1 which specifies
that vertex w is the i-th son of vertex u, and w corresponds to the i-th
argument of the function, "label(u)". For a vertex vg V, let term(v) be
the term which corresponds to the subtree with root v. The value of v
(with respect to a substitution ¢ ) is defined to be the value of
o(term(v)), where ¢¢(term(v)) is the term obtained from term(v) by
substituting constants for variables in term(v), if any, as specified
by¢’. To simplify the notation, we will not write o  explicitly in the
following.

When we use tree representations, we will say "rewritiné vertex v"

instead of '"rewriting term(v)".

3.2.2 Rewriting Order

In tree(t), the first son of a vertex v whose label is an IF
function, or each son of a vertex v whose label is a primitive function,

is called a needed son of v. An edge from a vertex to its needed son is

called a needed edge. Assume that a vertex vy has a son v,. If v, is a

needed son, then the rewriting of vy must precede the rewriting of Vis
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otherwise the value of V4 cannot be obtained by the definition of the
value as described in Section 3.1.2. If Vo is not a needed son, then V4
should be rewritten before V, in order to obtain the value of 1)
otherwise infinite or useless rewritings may occur.

For example, suppose that function g(x, y) is defined by g(x, y)
== IF(EQ(x, 0), 3, g(x, y)) , and consider a term t = g(0, g(1,
2)). The value of t, 3, can be obtained if we rewrite the outermost
occurrence of "g". If the inner "g" is rewritten, however, the
resulting term is again g(0, g(1, 2)), and unless we rewrite the
outer "g", the rewriting continues forever, and the value of t cannot be

obtained.

3.2.3 Needed Vertex Sequences

Let v be a vertex in tree(t)=(V, E) (where t is the right-hand side
of a definition or the main program term in P), and 1let NEED(v) be the
set of all vertices which are reachable from v via needed edges only.

To obtain the value of v, we need to rewrite all the vertices in
NEED(v) in a rewriting order called "leaf-to-root" until we obtain the
values of the vertices. Here, we assume that for each vertex u in
NEED(v) a total order <<, among u’s needed sons is given (where <<, is
called the evaluation order for u). The following (1) and (2) define the
rewriting order of all vertices in NEED(v) to obtain the value of v,
which is called the needed vertex sequence for v, denoted by Sy
(1) Let Wqy eee y Wyy ey, W be the needed sons of w in NEED(v). If wy

is the last vertex of w,, vee y Wp in S, (i.e., no other vertices in

m
Wiy ees , W, follow wk), then w immediately follows Wi (This

restriction of rewriting orders reduces the number of "intermediate
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states" of the computation, which need to be saved on the run-time stack
at the execution time of the object program that will be described in
Section 3.3.)

(2) 1If Wy << W j (where w; and Wy are needed sons of w, and w is in
NEED(v)), then w; precedes W in 8, (the order of the needed sons of w
in a needed vertex sequence agrees with the evaluation order for w,
<<w) .

The needed vertex sequence for v defined above can be obtained by
the postorder traversal [Aho et al. 83] of the subtree G of tree(t) (
G=(NEED(v), E"), E’={(u, u’) ¢E| u, u"¢ NEED(v)}), where the sons of a
vertex are visited in the same order as the evaluation order.

For example, let t = IF(EQ(x, 0), 1, f(sub(x, 1))), and for each
vertex u in tree(t), let the evaluation order for u be "the i-th son
of u" <<, "the j-th son of u" if i > j. (This evaluation order is
called the right-to-left order.) Figure 3.3 shows tree(t) and the
needed vertex sequence for each vertex in tree(t).

Let EO(P) denote the set of all evaluation orders for the vertices
in the tree which represents the right-hand side of each definition in
P. In the current version of the compiler, the right-to~-left order is
adopted as each evaluation order in EO(P). Needed vertex sequences are

used for the object program generation (described in Section 3.3) and

the optimizations (described in Section 3.4).

43



v:needed vertex
sequence for v

V]. !Vu;V3;V2;Vl

Note: f is a defined function. Y9‘V9
Right-to-left ordering is adopted for <<,

Figure 3.3 Example of Needed Vertex Sequences
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3.3 Object Programs

In this section, we describe an object program which computes,
when the input data is given, the value of the main program term.

Let def(P) be the set of all defined function names in P. Here, for
the main program term tP’ we introduce an additional definition

MAIN(Xq, «. , X,) == tp (x4, ... , X, are distinet variables in tp) to

n
P in order to simplify the following discussion. Let DEF(P) =
def(P) {U{MAIN}, and RIGHT(P) = {r‘ightg g € DEF(P)}, where r'ightg is the
right-hand side of the definition of g (we use this notation in what

follows). That is, RIGHT(P) is the set of all right-hand sides of

definitions and the main program term in P.

3.3.1 Procedures and the Main Program

We can easily implement a "lazy evaluation" method for arguments of
defined functions by introducing subroutines called master procedures
and slave procedures. An object program consists of master procedures,
slave procedures, and a main program.

Master procedure : For each defined function g&DEF(P), we generate a

procedure Fg(p1, «ss 3 Pp) which computes the value of rightg.
Fg(p1, cee pm) has formal parameters pq, ..., Py corresponding to the

variables x4, ... , X in the left-hand side of the definition of g.

m

This procedure is called a master procedure and we may write Fg instead
of Fg(p1, cer pm) for simplicity. Each actual parameter passed to a
master procedure is an entry address of the slave procedure which

computes the value of the argument.

Slave procedure ¢ For each term r'ightg (g€ DEF(P)) and for each
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vertex v in tr‘ee(r‘ightg) where v is a son of a vertex u whose label is a
defined function e, we generate a procedure H, which computes the value

of v. H, is called a slave procedure of F

v or F_ is the master

g’ g

procedure of H,. H, has no "explicit" formal parameters. When the value
of u is necessary for obtaining the value of r'ightg, master procedure Fe
is activated, and the entry address of H, is passed to F, as an actual
parameter. Hv is activated at the time when the value of v is actually

necessary for the computation in Fe or in a slave procedure of F.

Main program : The main program executes the following (1) to

(3). Let tP be the main program term with variables Xqy  eee y Xpo

(1) Read input data dq, d, ,..., dj.
(2) Activate master procedure Fypy(Pq s p,) With actual parameters
d1 gy dn.

(3) Output the value returned by FMAIN(d1’ cee 5 dp)e

3.3.2 Frame Usage

Activated procedures use memory blocks called frames. There are two
kinds of frames, an M-frame and an S-frame. They are allocated on a
single LIFO run-time stack. At the time of the activation of a master

procedure F an M-frame for F_ is allocated on the top of the run-time

g’ g
stack (see Figure 3.4), and the values needed or obtained in the

computation in F_ are referred to or stored into the M-frame (we will

g

describe this referring or storing in Section 3.3.3 (a)-(e)). While F‘g
is active, the top of the M-frame is pointed by Stack Pointer (SP), and

the bottom is pointed by Frame Pointer (FP).

The M~frame for Fg consists of (1) the value of the frame pointer
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FP when the procedure which activated Fg was active (we call this value
0l1d-FP), (2) the return address, (3) the actual parameters (i.e., the
entry addresses of slave procedures of the procedure which activated
Fg)’ and (4) temporary values (the number of the temporary values are
not fixed while Fg is active).

On the other hand, at the time of the activation of a slave
procedure HV (of a master procedure Fh), an S-frame for Hv is allocated
on the top of the run-time stack (see Figure 3.5). The temporary values
generated in H,, are stored in the S-frame for H, (see Section 3.3.3
(a)-(d)). In addition to the S-frame, H; uses the M-frame for F, to
refer to the actual parameters of Fy (see Section 3.3.3 (e)). While Hy,
is active, the top of the S-frame for HV is pointed by SP and the bottom
of the M-frame for Fh is pointed by FP.

The S-frame for H, consists of (1) old-FP, (2) the return address,

and (3) temporary values (the number of the temporary values are not

fixed while H, is active).
3.3.3 Instruction Sequences

Let a vertex r be the root of tree(rightg) where ge¢ DEF(P). A
master procedure Fg consists of the following instruction sequences,(1)
and (2) (CODE(r) will be explained later).

Master Procedure F,:

€

(1) An instruction sequence CODE(r) which computes the value of r.

(2) An instruction sequence to return the computed value and the control
to the procedure which activated Fg'
On the other hand, slave procedure Hv consists of the following

instruction sequences,(1) and (2).

Slave Procedure H,:
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(1) An instruction sequence CODE(v) which computes the value of v.
(2) Instructions to return the computed value and the control to the

procedure which activated Hv‘

Let u be a vertex in tree(rightg) (g€ DEF(P)) and let S, =
V13Vojyeee,Vy be the needed vertex sequence for u. CODE(u) denotes an
instruction sequence Iv1,Iv2’,".,Ivk to compute the value of u where
Iv; is an instruction sequence defined by label(vi) as follows.

(a) If label(vi) is a primitive function, Iv; is an instruction sequence
which computes the value of the primitive function. The values of the
arguments of the primitive function have been already computed and
stored as temporary values in the (M- or S-) frame on the top of the
run-time stack. As the other instruction sequences from (b) to (e), the
execution result is stored to the top of the frame, after the values of
arguments (necessary for the computation of the primitive function) have
been removed.

(b) If 1abel(vi) is a constant ¢, then Iv; is an instruction sequence to
generate the constant value c.

(¢) If label(v;) is an IF function, then Iv; executes the following:
test the value of the first son v;4 of vy (the value of Vi has been
already computed by an instruction sequence that precede Ivi). If it is
TRUE, then execute CODE(viZ), and otherwise execute CODE(vi3), where v,
and Vi3 are the second and the third sons of Vi respectively (neither
Vijp nor v;3 is contained in Sy). CODE(v,,) and CODE(vi3) are also
included in Ivj.

(d) 1Ir label(vi) is a defined function q, then Iv; is an instruction
sequence to activate a master procedure Fq, that is, the control is

transferred to the entry address of Fq, after (1)the current value of
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FP, (2)the return address, and (3)the entry addresses of the slave

procedures of F_, (these slave procedures compute the values of the sons

g

of vi) are saved on the top of the run-time stack.

(e) If label(vi) is a variable X3 then Iv; is an instruction sequence

to activate a slave procedure H, of a master procedure which activated
J

F_. or a master procedure whose slave procedure activated F The entry

g g

address of Hw- has been already passed to Fg as the j-th actual
J

parameter of F That is, the control is transferred to the entry

g

address of Hw. after the current value of FP and the return address are
J

saved on the top of the run-time stack.
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3.4 Optimizations
3.4.1 Pre-computing Needed Arguments of Defined Functions
3.4.1.1 Needed-Argument-First Order

If, in order to get the value of g(t1, ey t,) (where g is a
defined function [ gedef(P)]), we always need to obtain the value of t;
regatdless of the term rewriting order and the values of t1,..q tho
then we say that the i-th argument of g is a needed argument or simply
that the i-th argument of g‘is needed. For example, let the definition
of g be

g(x, y, z) == IF(EQ(x, 0), ADD(y, 1), SUB(y, z)).

The value of EQ(x, 0) is necessary to obtain that of r-ightg (the right-
hand side of the definition of g), and so is the value of x to obtain
that of EQ(x, 0). Thus, the first argument x of g is needed. The value
of either ADD(y, 1) or SUB(y, z) is necessary to obtain that of rightg,
and so is the value of y to obtain that of any one of ADD(y,1) and
SUB(y,z). Therefore, the second argument y of g is also needed.

As described in Section 3.2.2, computing the value of an argument

of a defined function g before activating master procedure F_ may cause

g

useléss or infinite computation even if the value of g is defined. (To
avoid this, we have implemented the lazy evaluation method.) But
rearranging the computation order in such a way that the values of
needed arguments are computed before activating Fg does not cause
ﬁseless or infinite computation if the value of g is defined, since
those of the needed arguments are strictly necessary for finding the
value.

The following computation order for a needed argument x of a
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defined function g is called a needed-argument-first order for x: The
value of x is computed before the activation of master procedure Fg, and
the computed value of the argument is passed to F_ as an actual

g
parameter (passed by value).

3.4.1.2 Effects of Needed-Argument-First Order

The object program for an ASL/F program P as described in Section
3.3 1is denoted by Op, and the object program which is executed in the
needed-argument-first order for every needed argument in P is denoted by
Oé. In general, Oé is more efficient than Op due to the following
reasons.
(1) The activations of the slave procedures corresponding to needed
arguments in OP are not necessary in 05. Therefore, the overhead due to
the activations (e.g., saving and restoring the registers and changing
SP and FP) can be saved in Og.
(2) The maximum run-time stack length at the execution time of‘Cg may
be reduced greatly. For example, let term(v,)=g2(g3( ... ), ... ) for
a vertex Vo in tree(rightg1) where g1, g2, and g3 are defined functions
and rightg,, & RIGHT(P), and let v3 be the first son of v, (i.e.,
term(v3)=g3( ess ) ). Suppose that we need the value of vV, in the
computation of master procedure Fg1, and the first argument of g2 is
needed . By the execution of Op, the run-time stack will grow as follows
(see Figure 3.6-(1)):

(i) At the time of the activation of master procedure ng in F an M-

g
frame for ng is allocated.
(ii) At the time of the activation of slave procedure Hv3 (of Fg1) in

ng, an S-frame for Hv3 is allocated.

(iii) At the time of the activation of master procedure Fg3 in Hv3’ an
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M~frame for F83 is allocated.

Thus, the M-frames for ng and Fg3, and the S-frame for Hh3 are on
the run-time stack at the same time.

On the other hand, the run-time stack will grow as follows by the
execution of‘Oé (see Figure 3.6-(2)):
(i) At the time of the activation of Fg3 in Fg1, an M-frame for Fg3 is
allocated.
(ii) At the time of the completion of Fg3’ an M-frame for Fg3 is
deallocated.

(iii) At the time of the activation of ng in F an M-frame for ng is

g1
allocated.
Thus, no S-~frame for HV3 is necessary. Furthermore, the M-frames

for ng and Fg3 are not on the run-time stack at the same time.
3.4.1.3 Implementation of Needed-Argument-First order

It is not always easy to know whether an argument of a defined
function in P is needed or not*.In Appendix A, we show a sufficient
condition for an argument of a defined function in P to be needed. The
correctness of this condition is shown in [Inoue et al. 82b] [Seki et
al. 847. This condition is so effective that all of the needed arguments
in sample ASL/F programs, which will be described in Section 3.5,

satisfy this condition. But in general, as mentioned above, it is

*# The general idea of "needed" comes from [Huet and Lévy 79] and
[Sugiyama et al. 82], where only the left-hand sides of the rewriting
rules are considered to determine whether they are needed or not. In
this sufficient condition, the right-hand sides are also taken into

account.
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difficult to detect the set (denoted by AN(P)) of all the needed
arguments of defined functions in P. Therefore, a subset of AN(P),
denoted by SN(P), is assumed to be chosen in the following discussions.

In addition to needed sons described in Section 3.2.3, let us call
the i-th son of a vertex whose label is a defined function g&def(P) a
needed son also, if the i-th argument of g is in SN(P). We also define
needed vertex sequences in the same way as described in Section 3.2.3.

These needed sons and needed vertex sequences are used in what follows.

The generation of the object programs described in Section 3.3 is
modified as described below so that the generated object program (with
respect to an EO(P) and an SN(P)) is executed in the needed-argument-
first order for the needed arguments in SN(P).

(1) For each needed son v corresponding to a needed argument in SN(P),
we generate no slave procedure Hv and pass the computed value of v
before activation as an actual parameter instead of the entry address of
Hy.
(2) For each vertex v; whose label is a variable x corresponding to a
needed argument in SN(P), we replace the instruction sequence Iv; (which
activates a slave procedure) with an instruction sequence which simply

refers to the actual parameter.

3.4.2 Avoidance of Duplicate Computation for Common Subterms

The object program described in Section 3.3 may repeatedly compute
the values of vertex v; and vj in tree(rightg)(gé:DEF(P)),such that
term(vi) = term(vj). Here, we show a method of eliminating such a

duplicate computation,
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3.4.2.1 Common Vertices in Trees

Let tree(rightg) = (V, E) (g& DEF(P)), and Viy eeey V(0 > 2) be
distinct vertices in V such that
(1) term(vqy) = .0 = term(v,) (i.e., each subtree whose root is
Vqs eeey Vv, is identical to each other),
(2) for any u € V other than v1,;." Vs term(u) # term(v1), and
(3) there exist vertices vy and vj (L # 341 <1i<n, 1< J<n) such
that term(ui) £ term(uj) where u; and uj are parents of v; and Vi
respectively.
Then, the vertex set {v1, eeey vn} is called a common vertex set and

vertex set {vq, ..., Vn} is denoted by COHMON(vi) for any vy (1 < 1 ¢

n). A vertex in a common vertex set is called a common vertex.

3.4.2.2 Elimination Method

We modify the instruction sequence of Fg and its slave procedures
in the following way:
For each distinct common vertex set C in tree(rightg),exxra space ag

and bg described below are added to the M-frame for Fg, which F_ and its

g

slave procedures use.

ac : a space for the value of a vertex in Cf

*# Tf the following (1) and (2) hold, there is no need to add the new
space ag but the space for an actual parameter Pk in the M-frame can be
used for acg: (1) The label of each vertex in the common vertex set C is

a variable. (2) The size of ag does not exceed the size of the space for

Pk
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bC ¢ a space for a flag indicating whether the value to be
stored in ag is "already computed" or "not yet computed".

Initially bC is set to "not yet computed".

(2) Before executing an instruction sequence CODE(v), which computes
the value of vertex v in C, the flag in bC is checked. (i) If the flag
is "not yet computed", then CODE(v) is executed, and after the execution
of CODE(v), the value of v is stored in ag, and bc is set to "already
computed". Otherwise CODE(v) is not executed but instead ac is referred
to.

Let CMN-CODE(v) denote the modified instruction sequence of CODE(v)

as described above.

3.4.3 Elimination of Redundant Flag Tests

Let Op be the object program of P which, for each common vertex
set, computes the values of the common vertices only once in the way
described in Section 3.4.2. For vertices in tree(rightg) (g €DEF(P)),
let COMMON(v4) = {vqy «esy vy} = C where m > 2. We say that vy is "not
preceded”, if the result of the flag test in the instruction sequence
CMN-CODE(vi) (which obtains the value of vy by computing or referring as
mentioned in Section 3.4.2) in Of is always "not yet computed" for any
input data D of program P.

On the other hand, we say that vy is "preceded" if the result of
the flag test in the instruction sequence CMN-CODE(vi) in Of is always
"already computed" for any D of P.

Sufficient conditions for vy to be "not preceded" or "preceded",
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discussed in [Seki et al. 8471, are shown in Appendix B. If a common
vertex v; satisfies the sufficient conditions, we can modify an
instruction sequence CMN-CODE(v;) as follows.

If v; is "not preceded", then the instructions for the flag test
are deleted from CMN-CODE(v;), so that the computation of the value of
v; can start immediately. If vy is "preceded", then the instructions for
the flag test, the computation of the value, and the assignment of the
computed value are deleted from CMN-CODE(vi), so that a reference only
to the value computed already is made.

If each common vertex of C is either "not preceded" or "preceded",

then the space for the flag is not necessary.

3.4.4 Globalization of Sorts

Let Op be the object program (with respect to an EO(P) and an
SN(P)) generated according to the needed-argument-first order described
in Section 3.4.1 and the avoidance of duplicate computation for common
subterms described in Section 3.4.2. (The other optimizations do not
affect the argument here directly.)

If, at a point q of the execution of QP’ a value A of a sort s has
been already obtained and is used for subsequent computation, then we
say that A is live at q; otherwise A is dead at q. If the number of live
values of sort s does not exceed one at any point of the execution of QP
for any input data D, we say that s is globalizable in Op-

In Appendix C, we show a sufficient condition, presented by [Seki
et al. 84], for a sort s in a program P to be globalizable (with respect

to EO(P) and SN(P)). The sort ARY appearing in the quicksort program
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shown in Figure 3.1 satisfies this condition.

If a sort s is globalizable in P, the object program which is
obtained by modifying Op as described below in (1) to (4) also computes
the value of program P, This modification of the object program is
called a globalization of sort s.

(1) At compile-time, we statically allocate space Wg, which is
sufficient to hold any value of sort s, out of the run-time stack.

(2) For each instruction which refers to a value of sort s, we read the
value of sort s from Ws’ and for each instruction whose execution
generates a value of sort s, we store the result into Ws.

(3) For each (master or slave) procedure which computes a value of sort
S, we return the value of sort s not on the run-time stack but in W..
(4) For each needed argument of g in SN(P) described in 5.1, whose sort
is s, we store the value of sort s (as an actual parameter corresponding

to the needed argument) not on the run-time stack but in WS.

3.4.5 Elimination of Tail Recursions

Let the definition of g be g(x1 goeoy xn) == right Let r be the

g
root of tree(rightg), and u be a vertex in tree(rightg) whose label is
g. If g and u satisfy the following conditions, (1) and (2), we call u a
tail recursive vertex of g [Aho et al. 83].

(1) 'The label of every vertex except for u on the path from r to u is
anFIF function, and each edge on the path connects a vertex with either
its second or third son.

(2) For each son v, of u (let V; be the i-th son of u), either v; is a
needed son of u (i.e., the i-th argument of g is needed), or the label

).

of vi is a variable X4 (i.e., term(vi) = X4
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Consider an instance I of a master procedure Fg, which uses an M-
frame FR. After the value of tail recursive vertex u is computed by the
activation of another instance I’ of Fg whose M-frame is denoted by FR’,
no instruction sequences except for the instruction sequence which
terminates I are executed in I. Furthermore, any value in FR is not
necessary for I°. Therefore, at the time of the activation of I°, FR on
the top of the run-time stack can be deleted and FR® can be allocated on
the same location where FR was (old-FP and the return address in FR® are
the same as those in FR). If we do so, the maximum stack length and the

execution time of the object program will decrease greatly.
3.4.6 Elimination of Auxiliary Functions

Let the following modification of the source program P be called
elimination of auxiliary functions P :

If a subterm of each term in RIGHT(P) can be rewritten by the
rewriting rules in RULE(P) without knowing the values assigned to
variables, we rewrite (expand) it repeatedly before compilation (except
for the rewritings of the functions defined recursively so that the
rewritings will terminate) and replace the right-hand side of the
function definition or the main program term of P with the terms
obtained by such rewritings.

The advantages of the elimination of auxiliary functions are as
follows :

(1) The number of procedure activations at the time of execution may
decrease.
(2) The number of common subterms in each term in RIGHT(P) may increase
and duplicate computation may be avoided by the optimization in Section
3.4.2.
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(3) In order to increase readability of a program, we can introduce
auxiliary defined functions without causing inefficiency.

The elimination of auxiliary functions enlarges the size of the
object programs. And sometimes it may cause some inefficiency at the
time of execution, because of the increase of the frame size
corresponding to the increase of the number of common vertices in the

term in RIGHT(P).

61



3.5 Sample ASL/F Programs
3.5.1 Qutline of the System

The optimizing ASL/F compiler runs under the UTS/VS operating
system on a MELCOM COSMO 900-II (it executes about 6 million
instructions per second), and it compiles an ASL/F program into an
object program in an assembly language META-SYMBOL. The compiler was
written in PASCAL, and is about 4000 lines long (including parsing,
optimizing, and code generation routines). It took about 7 man-months to
design and implement.

In the current version of the compiler, primitive functions on
integers, booleans, arrays, and tuples have been implemented as shown in
Table 3.1, and the right-to-left order is adopted as each evaluation
order in EO(P) as mentioned in Section 3.2.3.

It always avoids the duplicate computation for common subterms as
described in Section 3.4.2. And the compiler generates an object program
only when the sorts of arrays in the source program are globalizable as
described in Section 3JL4,* Programmers can specify whether or not each
of the other optimizations described in Section 3.5 is to be performed.

In addition to these optimizations, the compiler always carries out

* In ASL/F, we can declare more than two sorts for the same data type,
an array (i.e., the dimension, the number of elements, the sort of each
element are identical). Thus, when as ASL/F program P containing a sort
of arrays is not globalizable, we may be able to modify P by using more
than two sorts of the arrays so that each sort of the arrays can be

globalizable.
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minor improvements of the object programs such as the removing of

obviously redundant transfer instructions.

3.5.2 Effects of Optimizations

We examined the effects of the optimizations by executing several
sample‘programs. Algorithms to solve the following problems have been
programmed in ASL/F:

(1) Sorting (Quicksort): program is shown in Figure 3.1.

(2) Sorting (Bubblesort)

(3) Towers of Hanoi

(4) The computation of the base of natural logarithm, %"e"

(5) Matrix multiplication
The programs are written in such a way that they can be considered to be
"natural implementations" of the algorithms in ASL/F.

Table 3.2 shows the execution time and the maximum run-time stack
1ength* of those ASL/F programs. These experimental results demonstréte
that all of the optimizations adopted here are useful in reducing the
execution time and/or the maximum run-time stack length. Especially, (1)
pre-computing needed arguments of defined functions is effective to
reduce both of the execution time and the maximum run-time stack length
greatly, and (2) in some cases, the elimination of tail recursions

reduced the maximum run-time stack length considerably.

* In addition to the memory space for the run-time stack, the space for
the object program itself and for holding globalizable arrays as

mentioned in Section 3.4.4 are required.
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Table 3.2: Effects of Optimizations

Execution time (milli sec.)

Optimization a,b a,b,c a,b,c, a,b,c, a,b,c,
Program

5000

Quicksort inte%ers 3200 990 830 670 430

intzgers 53 18 1 10 6

Bubblesort inlgggrs (20000] 7000 5900 3800 21400
10

Towers of stairs 160 20 20 15 10

Hanot stgirs [5000] 630 630 460 350
100

Calculation | digits 250 64 52 48 23

of e dlgiﬂs [ 14000] 3500 3200 2800 1300
Multiplication of

two (50,50)-matrices 4700 1100 650 640 640

The maximum run-time stack length (word = 32 bits)

Optimization a,b a,b,c a,b,c, a,b,c, a,b,c,
method d d,e d,e,f
Program
5000 A ) )
Quicksort |integers 73700 9900 529 33 33
inbogers | 31600 225 27 24 17
UDDLESOTt rtemers [[1-2#1071| 1030 27 24 17
Towers of stggrs 37800 194 194 163 162
Hanot st;?rs [1.2%10°] 285 285 238 242
100
Calculation | digits 44300 525 33 31 20
of e d;gggs [2.8*106] 3670 33 31 20
Multiplication of
two (50,50)-matrices 44100 818 36 36 31

Square brackets denote that the object programs could not be executed
because of memory shortage. The values in them are our estimates.

Optimization method:

a: Avoidance of duplicate computation for common subterms.
b: Globalization of arrays.

¢: Pre-computaing needed arguments of defined functions.
d: Elimination of tail recursions.

e: Elimination of redundant flag tests.

f: Elimination of auxiliary functions.
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For example, when pre-computing needed arguments of defined
functions is not performed for Towers of Hanoi, the maximum run~time
stack length is an order of exponential of n, where n is the number of
stairs. On the other hand, when it is performed, the maximum run-time
stack length is linear in n as shown in Table 3.2. (In both case,
optimizations (a) and (b) are performed.)

When the elimination of tail recursions is not performed for
Bubblesort, the maximum run-time stack length is approximately linear in
the number of integers to sort. On the other hand, whén it is performed,
the maximum run-time stack length is fixed to a constant, 27 words. (In

both cases, optimizations (a), (b), and (c) are performed.)
3.5.3 Comparison Between ASL/F and PASCAL Programs

ASL/F programs mentioned above, and PASCAL programs, which
implement the same algorithms as ASL/F programs were executed on the
MELCOM COSMO 900-II. The execution time is shown in Table 3.3. These
PASCAL programs are natural implementations of the algorithms in PASCAL,
where, for example, iterations such as FOR, WHILE, etc. are used
effectively, and redundant computation is eliminated by using variables
to store temporary values. ASL/F programs were compiled according to all
the optimizations described in Section 3.4. The quicksort program in
PASCAL used here is shown in Figure 3.2 and is by Wirth [Wirth 761].
PASCAL programs were compiled by a MELCOM PASCAL 8000 compiler which
generates machine codes directly. The time required for compiling the
quicksort program, for example, was as follows:

(a)_ From ASL/F to the object program in the assembly language META
SYMBOL: 0.6 second (including 0.1 second for optimizations),

(b) From PASCAL to machine codes : 0.3 second.
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Table 3.3: Execution Time of ASL/F and PASCAL Programs

(milli seconds)

Program ASL/F PASCAL
(data size)
Quicksort * -
(5000 integers) 430 320
Bubblesort :
( 50 integers) 6 8
(1000 integers) 2400 3200
Towers of Hanoi
(10 stairs) 10 11
(15 stairs) 350 370
The calculation of
the base of
natural logarithm
( 100 digits) 23 28
(1000 digits) 1300 1500
Multiplication
of two matrices
( 50%¥50 ) 640 820

¥ This program is shown in Fig. 1.
#% This program is by Wirth [Wirth 76] and
shown in Figure 2.
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3.5.4 Writing an Interpreter in ASL/F

As an example of fairly long ASL/F programs, we have written an
ASL/F program which interprets (parses and executes interpretively)
ASL/F programs. (In source programs to be interpreted, only integer
and/or boolean sorts can be used.) The source program to be interpreted
is given as a form consisting of an integer array of character codes,
since the current version of our compiler does not suvppor’t the sorts
such as characters or strings. The parser transforms the character code
sequence in the array into integer sequences each of which represents
the term on the right-hand gside of a definition. The execution part
rewrites the integer sequences according to the rewriting rules. Table
3.4 shows the size characteristics of this interpreter program. (If
functions on characters or string are implemented in the compiler, each
size may be reduced.)

It took about 2 man-months to design and complete this interpreter
program. At the beginning of its development, we had some syntactic
errors but only two logical errors. Several programs were executed by
this interpreter. The execution time of Ackermann function ACK(3, 3),
for example, was 3.6 seconds. (The program of the Ackermann function was
compiled by the optimizing compiler and executed also. It took 0.01

second to compute ACK(3, 3)).
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Table 3.4: Size Characteristics of the

Written in ASL/F

ASL/F Interpreter

Parsing part

Execution part

The number of

defined functions

70

The maximum number
of arguments of

defined functions

10

The average number
of arguments of

defined functions

The maximum nesting
depth of functions
in the right-hand sides

of definition statements

11

The average nesting
depth of functions
in the right-hand sides

of definition statements

The number of

lines in the text

350

200
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CHAPTER 4

CONCLUSION

We have described two purely functional languages, methods of
interpreting or compiling their programs on conventional machines, and
execution results of several sample programs by using the systems

constructed for those languages.

In Chapter 2, we have shown two systems for a functional
programming language FPL based on the Backus® FP System. Both of them
have been developed with little effort. The efficiency of both is
satisfactory for systems to perform small-scale computation.

While FPL is very simple, it has particular properties such that
every function has a single argument and no other data types except for
tree can be processed. By these properties, it becomes difficult to
increase the efficiency of the systems as described in Section 2.6.

For the sake of the general apblicability of the system, the
language must bg extended by, for example, increasing the number of

arguments and adding data structures such as arrays.

In Chapter 3, we have discussed the compiling and optimizing method
for a functional programming language ASL/F and shown that those methods
are effective to increase the time and space efficiency. The execution
time of an ASL/F program is about 75 to 135% of that of a PASCAL program

using the same algorithm.
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If optimization techniques adopted in compilers of procedural
languages are used to improve the object program, the time and space
efficiency will be increased further.

It would be possible to improve the sufficient conditions for
arguments to be needed, for flag tests to be eliminated, and for sorts
to be globalizable. Although in the current version of the compiler each
evaluation order in EO(P) is the right-to-left one as described in
Section 3.3, the execution time will be reduced further if a better
EQ(P) can be found.

We are developing a programming system for ASL/F with some
syntactic sugar on a VAX-11/780, which consists of an editor, a debugger
and a new compiler. The new compiler is written in ASL/F itself and

generates an object program in language C.
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APPENDIX A

A SUFFICIENT CONDITION FOR AN ARGUMENT TO BE NEEDED

Let the definition of each defined function g in P (i.e.,

g&def(P)) have the form g(x1, Xoy eee 5 Xp )y == 1r'igh‘cg . Now, we
g

introduce boolean variables

Zlg, il for each g&def(P) and integer i , 1 < i < n, (if

g
Zlg, i] is TRUE, then the i-th argument of g is
needed), and

Y(g, t, x;]1 for each g&def(P), each subterm t of rightg and
integer i , 1< i< ng (if Y(g, t, x;] is TRUE, then

the value of x; 1s necessary to obtain the value of

t).

We set up equations as follows.

(1) for each g€ def(P) and integer 1 , 1< i< ng :

Z[g, 1] = Y(g, r'ightg, x5 ]

(2) for each gedef(P), each subterm t of right

g and integer i,
1T<1<ng:
a. if t is a constant, Yig, t, xi] = FALSE
b. if t is a variable xy, Y(g, t, x;] = TRUE
c. if t is a variable other than x;, Y[g, t, x;] = FALSE

d. if t is IF(t1, t2, t3),
Y[g, t, xi] =Yg, t1, Xi] \4 {Y[g, t2, xi]/\Y[g, t3, xi]}

(If the value of X

i is necessary for t,, or both for t, and t3, then

it is necessary for t.)

e. if t is f‘(t1 seevy tm) where f is a primitive function,
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Ylg, t, x;] = Ylg, tq, %;1 V- Vilg, oy %41
(If the value of X; 1s necessary for any of tyy ey tp, then it
is necessary for t.)
f. if t is g'(tq ,..., t) where g'€ def(P),
tlg, t, x;] = (2lg"y, 11NYg, ty, x;, 1BV =+ V
{zlg”, m] NYlg, tg, x;1}
(If there exists an integer j ( 1<j<m ) such that the value of x; is
necessary for tj and the j-th argument of g° is needed, then the
value of X5 is necessary for t.)
A sufficient condition for the k-th argument of g in P to be needed

is that there is a solution which satisfies Z[g, k]=TRUE.
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APPENDIX B
SUFFICIENT CONDITIONS FOR A VERTEX TO BE "NOT PRECEDED"

AND THAT TO BE "“PRECEDED"

Let tree(rightg) = (V, E) (8E€DEF(P)). Let COMMON(v4) = {vq, ...

v =therem22.

m!

For each pair v_, and Vp in C, let the lowest common ancestor of v

a a

and vy be denoted by rpp as shown in Figure B.1, and let u_, and uy, be

a
the sons of ab which are ancestors of Va and Vi respectively. (Note

that a vertex w is an ancestor of w itself. u, and v, may be the same

a
vertex or uy, and vy may be the same vertex.)
(1) A sufficient condition for vy to be "not preceded" in Og:
For each v, € C other than v;, at least one of the following, (1a),
(1b) and (1¢), holds (see Figure B.2) :
(1a) label(ry;) is an IF function and u, and u; are the second
and third (or third and second) sons of ryi» respectively. (The
computation for up is exclusive of that for u;, or vice
versa, i.e., if the computation for uy is executed, that for U
has never been executed.)
(1b) u; is contained in needed vertex sequence Sr,k for ryy,
and uy is not contained in Srki. (If the computation for uy is
executed, it always precedes that for U, or the computation
for u, may not be executed.)
(1e) Both uy and u; are contained in S,, =~ and uy precedes up

ki
in Sr.ki. (If the computation for uy is executed, it always
precedes that for u.)
(2) A sufficient condition for vy to be '"preceded" in ng

There exists at least one vy € C which satisfies at least one of
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the following, (2a) and (2b) (see Figure B.3) :

(2a) vy is contained in Sr y and uy is not contained in S

ki Ty
(2b) Both Vi and uy are contained in Sr.ki and Vi precedes uy

(Both (2a) and (2b) imply that if the computation for v; is executed,

then there exists a vertex Vi such that the computation for Vi always

precedes that for viJ
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an eddge —— an arbitrary path ———
(possibly length zero)

Figure B.1 Lowest Common Ancestor b of v, and vy
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(1) | (2)

(3) ()

memy ¢ NceCEd edoe
—— : non needed edee
——> : arbitrary edce

~—" : arbitrary path
(possibly of length zero)

Figure B.2 TIllustrations for (la),(lb) and (1lc)
in Appendix B
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(1) (2)

s Necded edoe T~ arbitrary path
——» : non neeced edge (possibly of length zero)

Figure B.3 Illustrations for (2a) and (2b)
in Appendix B
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APPENDIX C

A SUFFICIENT CONDITION FOR A SORT TO BE GLOBALIZABLE

Let tree(rightg) =(vg, Eg)(gGEDEF(P)L For a defined function g
and a sort s, let CHANGE(g, s) denote the smallest subset of Vg
satisfying the following:
(1) If the label of v in V8 is of sort s and is not a variable name,
then v is in CHANGE(g, s).
(2) If the label of v in Vg is a defined function and CHANGE(label(v),
s) is not empty, then v is in CHANGE(g,s).

In an object program gp, the instructions corresponding to the

vertices in CHANGE(g, s) may cause storing of values of sort s on the

run-time stack.

If the following both (1) and (2) hold, then a sort s is
globalizable (with respect to EO(P) and SN(P)) in Op.
(1) Any primitive or defined function g satisfies (1a) or {(1b).
(1a) If g is a primitive function of sort s, g has exactly one
argument of sort s.
(1b) If g is either a primitive function of a sort other than s, or
a defined function then g has at most one argument of sort s.
(2) For each defined function g and for each common vertex set C =

{v1, eeey Vp} in V where label(vl) is of sort 3 (1 < 1 < m), each pair

g
viand vy inC satisfies at least one of the following (a) to (d).

Let uy and u‘j denote the parents of vy and vj, respectively. Let
Pij be the lowest common ancestor of u; and uj, and let w; and Wy be the
sons of Tij where w; is an ancestor of uy and w3y is an ancestor of uj.
(Note that u; and uj may be the same vertex.)

(a) term(ui) = term(uj)
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(b) 1abel(rij) is an IF function, and w; and Wy are the second and

third (or third and second) sons of r.

132 respectively. (Hence, the

computation for u; is exclusive of that for ujy, or vice versa.)

(¢) Neither u; nor ug is in CHANGE(g, s). (The computation for u; and

uj cause no storing of values of sort s on the run-time stack.)

(d) u; and uj are distinet vertices, exactly one of u; and uj is in

CHANGE(g, s), and all the following hold. (Here we assume that uj is

in CHANGE(g,s).) (see Figure C.1)
(d=-1) uy is not an ancestor of u e

(d-2) 1If uj is an ancestor of uj (i.e., if rijzuj), then wy is a

needed son of ryye

(d-3) If ryj does not coincide with u; or Uy then either <1> wy is

a needed son of rij and Wy is not, or <2> both Wy and wy are needed

sons and Wy precedes wJ in needed vertex sequence S for pij'

l"ij

(The computation for uj may cause storing a value of sort s on the
run-time stack, and that for uj may cause a reference of a value of
Vi which is of sort s. If the computations for both uj and ujy are

executed, then that for uy must precede the computation for uJJ
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: Needed edge

——

——> : non needed edge

——> : arbitrary edge
—>

+ arbitrary path
(possibly of length zero)

: vertex in CHANGE(g,s)

O
@ . vertex not in
O

CHANGE(g,s)
» arbitrary vertex

Figure C.1 Illustrations for (2d) in Appendix C
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