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Abstract
For a blockb of a normal subgroup of a finite group, E.C. Dade has defined
a subgroupGl[b] of G. We give a character-theoretical interpretation of hiqultes
on G[b]. In the course of proofs we determine a defect group of akblaicG[b]
coveringb. We also consider character-theoretical characterizaitiof isomorphic
blocks with respect to nhormal subgroups.

Introduction

Let G be a finite group andp a prime. Let [C, R, k) be a p-modular system.
We assume thaiC is sufficiently large forG. In this paper a block ofG means a
block ideal of RG. For a normal subgrouk of G and a blockb of K, Dade [3] has
defined a normal subgrou@[b] of the inertial group ofb in G such thatG[b] > K.
More precisely puC = Crg(K). We haveC = ;. Cx, whereG = G/K andCy =
C N RKx. Let g, be the block idempotent di. The subgroupgs[b] is defined by

G[b] = {x € G | (&Cx)(erCx1) = &Cy}.

(Strictly speaking, Dade defines a subgro@/K)[b] of G/K. The subgroupGl[b]

is the preimage of&/K)[b] in G.) In [3, Corollary 12.6] Dade has determin&ib]

in terms of Cg(Q) and a root ofb in Ck(Q), where Q is a defect group ob. In
Section 3 we shall give a character-theoretical charaeton of elements ofG[b]
and give a character-theoretical interpretation of Dade&ilt above. In the course of
proofs we determine a defect group of a block@b] covering b, which is a refine-
ment of a result in [9]. In Section 1, we shall consider weatdgular and regular
blocks with respect to normal subgroups. In Section 4, actardheoretical characteri-
zations of isomorphic blocks with respect to normal subgsowhich involveG[b] will
be obtained. More applications &[b] will be given in a separate paper [11].

Notation

Let B be a block of G. The block idempotent oB will be denoted byeg. For
an irreducible charactey in B, put wg(z) = w,(2), z € Z(RG). For a subsetS of
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1008 M. MURAI

G, let S= Y _sse RG. Forx e G, let Ky be the conjugacy class @& containing
x, and soK, is the class sum oK. Let D(Ky) be a defect group oK. Let eg =
ZyaB(Ky)Ky, wherey runs through a set of representatives of conjugacy clagsés o

Let Byo(G) be the principal block of5. Let Irr(B) be the set of irreducible charac-
ters in B. Let Irrp(B) be the set of irreducible characters of height 0Bnd(B) is the
defect of B. For a blockb of a normal subgrougk of G, let G, be the inertial group
of b in G and let BLG | b) be the set of blocks o6 coveringb. For an irreducible
charactett of K and a blockB of G, let Irr(B | &) be the set of irreducible characters
in B lying over &. Put

Irro(B [ §) = {x € Irr(B | §) | ht(x) = ht(§)},

where htf) is the height ofx. Let *: R — k be the natural map. For a function
¢: S— R defined on a se6, the functiongp*: S — k is defined byg*(s) = ¢(s)*,
se S Let v be the valuation ofC normalized so that(p) = 1.

1. Weakly regular and regular blocks with respect to normal sibgroups

In this section we strengthen Theorem 2.1 of [9].

Proposition 1.1. Let N be a normal subgroup of G. Let b be a block of N
covered by a block B of G. Let D be a defect group of B. The fallpveonditions
are equivalent.

(i) B is a unique weakly regular block of G covering b.

(i) For a blockb of DN, we haveb® = B.

(iii) For any p-element x of G satisfyingfg(Kx) # 0, we have xe N.

(iv) For any p-element x of G satisfying)’g(Kx) # 0 and D(Ky) =¢ D, we have
x e N.

(v) For any xe G satisfying a(Ky)* # 0 and D(Ky) =g D, we have xe N.

Proof. (i) = (ii). By replacing D by a conjugate, we may assunieis a de-
fect group of the Fong—Reynolds correspondentBobver b in the inertial group of
b in G. Let b be a unique block oDN coveringb. Thenb® = B, see the proof of
Theorem 2.1 of [9].

(i) = (iii). This is easy to see.

(i) = (iv). This is trivial.

(iv) = (v). Sinceag(Ky)* # 0,x is a p’-element. Let{g;} be the set of ir-
reducible Brauer characters iB. Let ®; be the principal indecomposable character
corresponding tap;. Let {x;} be the set of irreducible characters B Put

o = Z nijx; (on the set ofp’-elements ofG),
i
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wheren;; are integers. Then

1

ag(Ky) = 1G]

Z @i (e (x 1)

N2 e X1
_iz G| Jzn”w“(KX’l) Kl

Since ®;(1)/|G| and x;(1)/|K«]| lie in R for anyi and j, we obtain

®i(Dei(1)

mod JR).
|G| [Kx]

as(Ky) = wp(Ky2) )

Since ®;(1)¢i (1)/(|G] |Ky]) lies in R for any i, ag(Ky)* # 0 implies a)E(KX—l) # 0.
Hencex € N by (iv).

(v) = (i). Let Ks be a defect class foB ([12, p.311]). ThenKs C N by (v).
Sincew’g(Rs) # 0 andD(Ks) =g D, B is weakly regular with respect td by definition
([12, p. 344]). LetB; be any weakly regular block @& coveringb. Puteg = sy(eg) +a,
wheresy (eg) = ZKycN aB(Ky)Ky. We claimeg (a) = 0. Assume this were false. Then
there would be an element¢ N such thataB(KX)*a)"él(Kx) # 0. Sinceag(Ky)* # 0,
D(Ky) <g D. Sincew’gl(Kx) # 0, D(Ky) >g D;, whereD; is a defect group oB;. By
Fong’s theorenD =g D;. ThusD(Ky) =g D. Sox € N by (v), a contradiction, and
the claim follows. Nowwg (eg) = wg (Sn(€s)) = wp(sn(es)) by [12, Theorem 5.5.5].

Since B is weakly regularw; (sn(eg)) = i (sn(es)&) # 0 by [9, Theorem 1.10]. Thus
wg, (es) # 0. HenceB; = B and (i) follows. The proof is complete. []

REMARK 1.2. The equivalence of (i) and (ii) is proved in [4, Theorem]2

Theorem 1.3. Let N be a normal subgroup of G. Let b be a block of N covered
by a block B of G. Let D be a defect group of B. The following dtmts are equivalent.
(i) B is a unique weakly regular block of G covering b an@DJ < N.

(i) B =hC.

(iii) For any xe G satisfyingw’g(Kx) # 0 and D(Ky) =g D, we have xe N.

(iv) (iv a) For any p-element x of G satisfying)’g(Kx) # 0 and D(Ky) = D, we
have xe N, and

(iv b) Z(D) < N.

(v) (v a) For any xe G satisfying a(Ky)* # 0 and D(Ky) =¢ D, we have xe N,
and

(v b) Z(D) < N.

Proof. (i) < (ii). This is Theorem 2.1 of [9].
(i) = (ii). This is trivial.
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(i) = (iv). (iv a) is trivial. Let K be a defect class foB ([12, p.311]). Sos
is a p’-element. We may assunie is a Sylow p-subgroup ofCg(s). Let u € Z(D).
Then, as in [13, Lemma 5.15P(Kys) =g D andafg(RUS) # 0. Thenuse N by (iii).
Soue€ N, and Z(D) < N.

(iv) = (v). This follows from (iv) = (v) of Proposition 1.1.

(v) = (i). This follows from (v) = (i) of Proposition 1.1. ]

REMARK 1.4. The equivalences of (i), (ii), (v) have been proved im & The-
orem 2.3] in a different way.

2. A lemma on G[b]

In the rest of this papeK is a normal subgroup of a grou@, andb is a block
of K with a defect groupQ. The following lemma is certainly well-known. We give
a proof for completeness sake. We shall use this lemma witbxqpiicit reference.

Lemma 2.1. Let x be an element of G. The following are equivalent.
(i) x € G[b]; that is (:Cx)(erCx-1) = &C;y.
(i) eCy contains a unit of gC.
(iii) ([6, p.210]) x € G and x induces an inner automorphism of b.

Proof. (i) = (ii). This follows from [15, p.551, IIl. 5-7

(i) = (iii). This follows from [3, Proposition 2.17] and [15, p.55Il. 7-9F.

(i) = (). Let u be a unit ofb such thatv* = v for all v € b. We claim
ux—! € Cz1. Indeed, gx v = v(ux?) for all v € b. Let b’ be any block ofK
with b’ # b. Let v € . Then Ox v’ = uw*x ™t =0 = v/(ux?). Soux?eC.
Then the claim follows. Let/ be an element ob such thatuu = u'u = g,. Then we
obtain similarly thatxu € e,Cx. We have xu)(ux?) = &. So @Cx)(eCx1) > &,
which implies €,Cx)(epCx-1) = &,C3. The proof is complete. O

REMARK 2.2. See Hida—Koshitani [5, Lemma 3.2] for a module-thecaétre-
formulation of the definition ofG[b].

3. The subgroup G[b]

Navarro [14] has obtained a relative version of a well-knaWwaorem of Burnside
as follows (lettingK = 1, we recover the original theorem of Burnside):

Lemma 3.1 (Navarro [14, Theorem A]) Let x be an irreducible character of G.
The following are equivalent.

INote thate,C; = Z(b) is a local R-algebra.
2In 1.9 OG should beeDG.
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(i) xx is irreducible.
(i) For any xe G, there is an element y in XK such tha{y) # 0.

Proposition 3.2. Assume that &K is abelian. Let B be a block of G covering
b. The following are equivalent.
(i) G = G[b] and for any irreducible characteg in B, xk is irreducible.
(i) For any xe G, there is an element y in XK such th@g(Ky) #0.

Proof. In both cases, the following holds:
(x) For any irreducible charactey in B, xx is irreducible.
Indeed, if (i) holds, trivially &) holds. Assume (ii) holds. Lej be an irreducible
character inB. Since a);g(Ky) # 0, we havey(y) # 0. Then, by Lemma 3.1xk
is irreducible.

Let {Bj} be the set of blocks of5 coveringb. We show that ) implies the
following:

(x*) For any irreducible charactey in B; for anyi, xx is an irreducible character
in b.

Indeed, lets € Irr(b) be an irreducible constituent ¢f. Let ¢ be an irreducible char-
acter in B lying over&. By (%), ¢x = &. Hencey = ¢ ® 6 for some6 € Irr(G/K).
Since G/K is abelian, we haverx = &. Hence §x) holds. Thus for the proof of
proposition we may assume:) holds.

Recall thatC = Crg(K). We claim the following:

(+#%) @C = Z(Gh) = @, Z(B),

where Gb = RGeg,. By (xx*), b is G-invariant. This yields the second equality. We
prove the first equality. ClearlZ(Gb) € ,C. To prove the reverse containment, let
ae€ gC andv € KGb, where KXGb = KGeg,. Let T be any irreducible matrix repre-
sentation offCGh. By (xx), restriction of T to Kb is irreducible, whereCb = KKe,.
Since ,C € KGb N C(Kb), T(a) is a scalar matrix by Schur's lemma. Sqav —
va) = 0. It follows thatav — va = 0, since Gb is semi-simple. Thereforeg,C <
Z(KGb) N RG = Z(Gh). (xx*x) is proved.

(i) = (ii). Let x € G. By (i), there exists a uniti of &C in &Cx. Then, by
(x#x), wg(u) # 0. Sinceu € Z(RG) by (x*x) andu € RKx, u is an R-linear com-
bination of K, for z € xK. Thus there is somg € xK such thatw’g(Ky) # 0. Thus
(ii) follows.

(i) = (). The latter part follows from x). Let & be an irreducible character
in b. Then, by &x), any irreducible character d& lying over & is an extension of
&. Therefore for anyi, there is a linear character: G/K — k*, wherek* is the
multiplicative group ofk, such thatw (Kg) = wj(Kg)ai(gK) for any g e G. Let x €
G and lety be as in (ii). Therwj (&Ky) = wj (Ky) = w}(Ky)ai(yK) # 0. Therefore,
by (x#x*), &Ky is a unit of&,C. SinceG/K is abelian,e,K lies in &,Cz. Thus we
obtain G = G[b]. The proof is complete. []
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The following corollary will be used repeatedly.

Corollary 3.3. Assume that G/K is cyclicand let G= (x, K) for an element
x € G. Let B be a block of G covering b. The following are equivalen
(i) x € G[b]; that is G = G[h].
(i) There exists an element y in xK such th@(ﬁy) #0.

Proof. (i) = (ii). G induces inner automorphisms bf so any irreducible char-
acter inb is G-invariant. Then, sincé&s/K is cyclic, any irreducible character iB
restricts irreducibly toK. Thus (ii) holds by Proposition 3.2.

(i) = (). For any positive integet, »%((K,)') # 0. Sincey € xK, (K,)' is an
integral combination oK, with z € x' K. Sow4(K,) # 0 for somez € x' K. Thus (i)
holds by Proposition 3.2. The proof is complete. ]

Proposition 3.4. Assume that &K is a cyclic p-group. Let b be G-invariant.
Let B be a unique block of G covering b. The following are emjaiv.
(i) G = G[bh].
(i) For any defect group S of B with SQ, S= Z(9Q.
(i)’ For some defect group S of, B = Z(9Q.
(iii) For any defect group S of B with $ Q, S= Cg(Q)Q; that is S induces inner
automorphisms of Q.
(iif)” For some defect group S of, B = Cs(Q)Q.

Proof. The assertion is trivial i = K. So we assum& # K. PutG = (x, K).
Let B be a block of(xP, K) covered byB.

(i) = (ii)). AssumeS # Z(9Q. Sinceb is G-invariant, G = SK. So S/Q ~
G/K is cyclic. ThereforeZ(S) < (xP, K). Then B = 8¢ by Theorem 1.3. Thus
wg(Ky) =0 for all y € xK. Thenx ¢ G[b] by Corollary 3.3, a contradiction.

(i) = (). Assumex ¢ G[b]. Thenx' ¢ G[b] for any p'-integeri. ThUSw’g(Ky) =
0 for anyy € G — (xP, K) by Corollary 3.3. HenceB = 8¢. Then Z(S) < (xP, K)
by Theorem 1.3. Since is G-invariant, G = SK. ThereforeG = SK = Z(SQK =
(xP, K) < G, a contradiction. Thug € G[b], and G = G[b].

(i) = (iii). Trivial.

(i) = (i)). Sinceb is G-invariant, G = SK. So G/K ~ S/Q ~ Cs(Q)/Z(Q)
is cyclic. HenceCgs(Q) is abelian, andCs(Q) < Z(S). ThusS= Z(9Q.

(iiiy = (iii)’. Trivial.

(i)’ = (ii)). Let U be any defect group oB with U > Q. We haveU = &
for somege G. ThenQ=UNK =SNK =(SNK)?=0Q% SoQ = Q9% Then
Cu(QRQR =Cx(Q9)Q? =5 =U.

(iiy < (ii)’. This is proved similarly.

This completes the proof. O
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Theorem 3.5. Let b be G-invariant. Let B be a block of G covering b. We
choose a block Bof G[b] so that B covers B(and B covers B. Let D, S be defect
groups of B B/, respectivelysuch that Q< S< D. The following holds.

() B = B°. In particular, B is a unique block of G that covers'.B

(i) S=QCp(Q).

Proof. We first note thaG[b] < G, so the statement makes sense.

(i) We showB = B’®. By Theorem 1.3, it suffices to show the following:
(%) For anyx € G satisfyinga)g(Kx) # 0 and D(Ky) =¢ D, we havex € G[b].
We may assum® is a Sylow p-subgroup ofCs(x). Let x be an irreducible character
of height 0 inB. Put k) = Y_; ni&i, Where¢; are distinct irreducible characters of
(x, K) and n; are positive integers. Then

; ~ G DIGCk (X)]

wy(Kx) = zl: nia)a('—x)ma

where L, is the conjugacy class gk, K) containingx. For anyi, let b; be the block
of (x, K) containing¢i. Thenb; coversb. We claim d) — d(b) = v(|(x, K)]) —

v(|K]). Indeed, letH/K be a (normal) Sylowp-subgroup of(x, K)/K. Let b be a
unique block ofH coveringb. Then, sinceb, coversb, d(b) = d(b). Furthermore,
d(b) — d(b) = v(|H|) — v(|K|). Thus the claim follows. On the other hand, sinDeis

a Sylow p-subgroup ofCg(x), D N K is a Sylow p-subgroup ofCk (x). Furthermore
D N K is a defect group ob. Thus

G@IGTCk (Y _ A .
v(m) = v([{x, K}]) = d(0r) + ht(&i) + v(IG]) + v(ICk (X)])

— {v(IG]) — d(B) + v(IK]) + v(ICc(x)])}
= v(|(x, K)) = v(|K[) — d(by) + d(b) + ht(5i)
= ht() = 0.

Sincew’(Ky) # 0, there exists such thatw} (Ly) # 0. Thenx € (x, K)[b] by Corol-
lary 3.3, andx € G[b]. Thus ¢) follows andB = B'C.
If By is another block ofG covering B’, then similarly B, = B’®. So B; = B.
(i) Since Q = DNK, Q is a normal subgroup ob. Put

| ={ue D |uinduces an inner automorphism &f}.

Clearly | = QCp(Q), so it suffices to show = S. For anyu € D, put Q, = (u, Q). If
b, is a unique block ofQ,K coveringb, thenQ, is a defect group oy, cf. Lemma 4.13
of [9].

Let u € I. Then Q induces inner automorphisms @. Since Q K = (u, K),
QuK = (QuK)[b] < G[b] by Proposition 3.4. Sai € G[b], and| < G[b] N D = S.
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Conversely letu € S. Then, sinceu € G[b] and QK = (u, K), we haveQ,K =
(QuK)[b]. Thus Q, induces inner automorphisms & by Proposition 3.4. Sa € |,
andS< 1. Thus| = S. The proof is complete. [l

REMARK 3.6. (1) Theorem 3.5 sharpens Lemma 4.14 of [9].
(2) Theorem 3.5 (i) is implicit in [3]. It follows from Lemma.3 and Proposition 1.9
of [3].
(3) Proposition 3.1 of [1] follows immediately from Theore®rb (ii). (The assumption
made there that is nilpotent is unnecessary.)

The following extends Proposition 3.4.

Corollary 3.7. Assume that &K is a p-group. Let B be a unique block of G
covering b. Let D be a defect group of B such that>DQ. Then the following
are equivalent.

(i) G = G[bh].
(i) b is G-invariant and D= QCp(Q).
In particular, if D is abelian and b is G-invariantthen G= G[b].

Proof. (i) = (ii). This follows from Theorem 3.5.

(i) = (). Let B’ be a block ofG[b] such thatB coversB’ and thatS:= D N
G[b] is a defect group oB’. Then B’ coversh. Sinceb is G-invariant, G = DK and
G[b] = SK. By Theorem 3.5S = QCp(Q) = D. ThereforeG = G[b]. ]

REMARK 3.8. The last statement of Corollary 3.7 is implicit in the@gk of The-
orem of [7].

Proposition 3.9. Assume that &K is a cyclic p-group. The following are
equivalent.
(i) G =G[bh].
(i) [BL(G [ b)[ =[G/K].

Proof. (i) = (ii). Put G = (x, K). Let B be a block ofG coveringb. By
Corollary 3.3, there exists somein xK such thatwg(Ky) # 0. Let x be an irredu-
cible character inB. Let A be any linear character @ /K. Assume thaty ® A lies in
B. Thenw?, (Ky) = w}(K,), which impliess*(y) = 1. SinceG/K is a p'-group, we
see that) is a trivial character. Therefore we obtaBL(G | b)] > |G/K|. To prove
the reverse inequality, let € Irr(b). Let m be the number of irreducible characters
of G lying over &. Any block of G coveringb contains an irreducible character lying
overé&, so|BL(G | b)| <m. On the other handn < (£©,£%)g = ((%)k, &)k < |G/K].
Thus |BL(G | b)] < |G/K], and (ii) follows.
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(i) = (). We claim that any blockB in BL(G | b) is induced from a block in
BL(G[b] | b). To see this, letB be the Fong—Reynolds correspondent Bfin Gy,
Choose a blockB’ of G[b] such thatB coversB’ and B’ coversb. Then B = B/®®
by Theorem 3.5. SdB = B¢ = (B'®")® = B'®. Thus the claim is proved. Then
IBL(G[b] | b)| > |BL(G | b)|. Since|BL(GI[b] | b)| < |G[b]/K| (as above), it follows
that |G/K| < |G[b]/K|. Thus G = G[b]. The proof is complete. []

REMARK 3.10. Application of Theorem 3.7 of [3] would shorten the gfrof
Proposition 3.9.

The following gives a necessary and sufficient condition @rto coincide with
G[b] when G/K is an arbitrary group.

Theorem 3.11. Let B, be a weakly regular block of G covering b. Let,be a
defect group of B such that ), > Q. The following are equivalent.
(i) G = G[bh].
(i) (it @) b is G-invariant
(ii b) For any subgroup L of G such that & K and that L/K is a cyclic pgroup,
it holds that|BL(L | b)] = |L/K|; and
(iic) D, = QCDw(Q)'

Proof. (i) = (ii). This follows from Proposition 3.9 and Theorem 3.5.

(i) = (i). Let x be ap’-element ofG and putH = (x, K). By (ii b) and Prop-
osition 3.9,x € H = H[b]. So x € G[b]. Let x be a p-element of G. By (ii a)
and Fong’s theorenb, K /K is a Sylow p-subgroup ofG/K. Sox9 € D, K for some
ge G. By (iia) and [9, Lemma 2.2]D,, is a defect group of a unique block @f, K
coveringb. So by (ii ¢) and Corollary 3.7,03,,K)[b] = D,,K. Thusx9Y € G[b]. Since
G[b] < G by (ii a), x € G[b]. HenceG = G[b]. []

We introduce some notation. L& be the Brauer correspondent bfin Nk (Q)
and let 8 be a block of QCx(Q) covered byb. Put Lo = QCk(Q). Let B be a
block of Ck(Q) covered byg. Let 6 be the canonical character gfand letg be the
restriction of 0 to Cx(Q). So ¢ is the canonical character ¢f. Let S = Ng(Q)s
and T = Nk (Q)g. SoT is the inertial group offy in Nk(Q). PutL = QCg(Q) and
C =Cs(Q).

Noting thatT andLg are normal subgroups @&, we have T,Lg] <LgNT = Lo.
So we can define (after Isaacs [6, Section @&}) X))y € I* for (t,x) € T x Lg, where
K* is the multiplicative group ofC. The definition is as follows: lek € Lg and let
6 be an extension of to (x, Lo). Lett € T. Then, sinced! is also an extension of
0 to (X, Lo), there exists a unique linear charactgrof (X, Lg)/Lo such thatd! =
6 ® Ar. Then put((t, X))y = A(X). This definition is independent of the choice @f
It is bilinear in the sense thafts, x))s = ({t, X))o ((S, X))p for t,s e T andx € Ly
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and ((t, xy))s = ({t, x))o({t, y))o for t € T and x, y € Lg, see [6, Lemma 2.1 and
Theorem 2.3]. Similarly we can definfdt, x)), € K* for (t, X) € T x Cg,. It is also
bilinear. Define

Lo =1{xelg|{{t,x))y =1foralteT},
C, ={xeCgq|({t,x)), =1forallteT}.

By definition, we see that fok € Lg, the condition thatx € L,, is equivalent to
the condition that any (equivalently, some) extensiorg db (X, Lo} is T-invariant.

Lemma 3.12. (i) L, is a normal subgroup of i such that lg/L,, is a p-group.
(i) L,K =C,K.

Proof. (i) Putax(t) = ({t, x))s for (t,x) € T x Lg. Sinceay(t) =1 fort € Lo,
ay may be regarded as an element of HO(o, £*). Then the mapx sendingx
to ax is a group homomorphism frorhz to Hom(T /Lo, £*). Since Kerr = L,, and
T/Lo is a p’-group, the result follows.

(i) We havelg = CgLo. SoL, = (L, N Cpg)Lo. It is easy to sed(t, x)), =
((t, X))y fort € T andx € Cg,. So L, NCg, =C,. ThusL, = C,Lo, and hence
L,K = C,K. O

Theorem 3.13. We have @b] = C,K.

Proof. By Lemma 3.12 it suffices to sho@[b] = L,K. We fix a blockB of G
coveringbh. Let B be the Harris—Knorr correspondent Bf over b in Ng(Q).

We first claimG[b] < LgK. Let x € G[b]. Put Gx = (x, K) andLy = L N Gy.
Then Ly = QCg,(Q). Since the condition that € G[b] is equivalent to the condition
that b is (x)-invariant and(x) acts onb as inner automorphisms, € G[b] if and only
if X € Gy[b]. Thus it suffices to showGy[b] < (Lx)sK, where (y)p is the inertial
group of B in Ly. Thus we may assum& = G4 = (x, K). By Corollary 3.3, there
is somey € xK such thatw}(K,) # 0. SinceB coversb, B coversf. So there is a
block B’ of L such thatB coversB’ and B’ coversB. Let 8’ be the Fong—Reynolds
correspondent oB’ over 8 in Lg. Since a defect group oB’ containsQ, we have
B'H = B. This impliesB = g'°. So wi(K,) = w;,(m). Thus there isg € G
such thaty? € Ly < LgK. Theny € LgK, sinceG/K is abelian. Thux € LgK, and
the claim is proved.

Then G[b] = (Lg N G[b])K. Therefore it suffices to proveg N G[b] = L,. We
shall show both sides contain the samelements andg’-elements. It suffices to show
that under the assumption thatis either ap-element or ap’-element, it holds thax
LgNG[b] if and only if x € L. Sincex € Lg N G[b] if and only if x € (Lx)s N Gx[b]
andx € L, if and only if x € (Ly),, (here L), is defined in a manner similar to,,),
we may assumé& = Gy.
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Let x be ap-element. Ifx € Lg N G[b], thenx € L, sinceLg/L,, is a p’-group
by Lemma 3.12. Conversely late L,. ThenL = (x,Lg). SoL =Lg <S ThenS=
(X,T) =LT. ThusS/L >~ T /Lo, andS/L is a p’-group. LetB; be the Fong—Reynolds
correspondent o8 over g in S. Let D be a defect group oB;. ThenD > Q. Since
S/L is ap’-group,D < L. SoD = QCp(Q). By the Fong—Reynolds theorer, is a
defect group ofB. So D is a defect group oB. Sincep is (x)-invariant,b = gX is
G-invariant. ThereforeG = G[b] by Proposition 3.4, anck € Lg N G[b]. The proof
is complete in this case.

Let x be ap’-element. It suffices to show that under the assumptionthat. g,

x € G[b] if and only if x € L,,. Assumex € Lg. ThenL = (x, Lg) = Lg. We have

IBL(G | b)| = |BL(Ng(Q) | b)| (by the Harris—Knorr theorem)
= |BL(Ng(Q) | B)] (sinceb is a unique block ofNk (Q) covering 8)
= |BL(S| B)| (by the Fong—Reynolds theorem).

Sincep is S-invariant, if B; € BL(S | 8) covers a blockB’ of L, thenB’ € BL(L | B).
If B' € BL(L | B) and a blockB; of S coversB’, thenB; € BL(S| B). Further in this
caseB’ is determined up t&-conjugacy byB; andB; = B’S, sinceL = QCg(Q). Thus
IBL(S| B)| = |IBL(L | B)/S|, where BL(L | 8)/Sis a set of representatives Sfconjugacy
classes of BL | B). SinceG = (x, K), we haveS = (x, T). So|BL(L | B)/S =
IBL(L | B)/T| = [BL(L | B)I.

Sincel /Ly is cyclic andd is L-invariant, there is an extension éfto L. Let £ be
the set of such extensions. We show there is a bijection olLBL{) onto £. For any
B’ € BL(L | B), B’ contains an irreducible characterying over 6. Thené € £. Since
L/Lo is a p’-group, B’ has defect group. Therefored is the canonical character of
B’ and § is uniquely determined. Of course amye £ is contained in someB’ e
BL(L | B). Therefore the maB’ — @ is the required bijection. S¢BL(L | B)| =
|€] = [L/Lol.

Since |[L/Lo| = |G/K|, we obtain|BL(G | b)| < |G/K|. By Proposition 3.9x €
GI[b] if and only if the equality holds here. The last conditioneiguivalent to the con-
dition that any extension daf to L is T-invariant. Thus it is equivalent to the condition
thatx € L,, sinceL = (x, Lp). Thusx € G[b] if and only if x € L,. This completes
the proof. Ll

Corollary 3.14. Our C, in Theorem 3.13s the same as £(= C(D in H),, in
Dadeés notatior) appearing inCorollary 12.60f [3].

Proof. If we denote byC/ the groupC, defined above, then Theorem 3.13 be-
comesG[b] = C/ K. ThenC/ = CNG[b]. From Dade’s theorem th&s[b] = C,K [3,
Corollary 12.6], we also obtai, = C N G[b]. Thus (our)C, = C, = (Dade’s)C,,.

O
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Corollary 3.15 (Kiilshammer [8, Proposition 9]) G[b] = Ng(Q)[b]K .
Proof. Use Theorem 3.13 t6[b] and Ng(Q)[b]. O

4. Isomorphic blocks

The following theorem gives characterizations of isomarpblocks with respect
to normal subgroups. For isomorphic blocks, see [5, Sectjoand references therein.

Theorem 4.1. Let B be a block of G covering b. The following are equivalent.
(i) G = G[b], d(B) = d(b) and for some irreducible charactey in B, xx is
irreducible.
(i) G/K is a p-group and for any xe G, there is an element y in xK such that
wg(Ky) # 0.
(iif) The restrictiony — xx is a bijection oflrr(B) onto Irr(b).
(iv) The restrictiony +— xk is a bijection oflrro(B) onto Irrg(b).
(v) For some charactek € Irr(b), we havelrr(B | §) = {x} with xx = &.
(vi) For some charactek < Irr(b), we havelrro(B | &) = {x} with xx = &.

Proof. (i) = (ii). Since x = x ® 1g/k, we seeByg(G/K) is x-dominated by
B (for x-domination see [10, p.35]). So a defect groupBy{G/K) is contained in
QK/K =1 by [10, Corollary 1.5]. Thusz/K is a p’-group.

Let x € G and putH = (x, K). SinceH = H[b], by Corollary 3.3, there is some
y € xK such thata);(liy) # 0, whereL is the conjugacy class dfi containingy. Now
Ca(y) normalizesH. SoCg(y)H is a subgroup of5 containingK. Thus|G : Cg(y)H|
is a p'-integer. On the other hand, we hawe(K,) = o, (L,)|G : Cs(y)H|. Therefore
wy(Ky) # 0.

(i) = (iii). Let x €lrr(B). For anyx € G, there is an element € xK such that
x(y) # 0 by (ii). Then, by Lemma 3.1xx is irreducible andyx € Irr(b). Of course,
then the restriction is surjective. Let € Irr(B) such thatxx = x. Theny' = x ®0
for a linear characte§ of G/K. For anyx € G, let y € xK be such thatuj‘((liy) #0.
We have

@y (Ky) = 0} (Ky) = 0} (Ky)o(x)".

So0(x)* = 1. SinceG/K is a p’-group, we see that is the trivial character. Thus
x'=x.

(i) = (iv). Puta = v(|G]) anda’ = v(|K|). We havea —d(B) + ht(x) = a’ —
d(b) + ht(xk) for all x € Irr(B). If ht(x) = 0, we obtaina — d(B) > & — d(b). If
ht(xk) = 0, we obtaina’ —d(b) > a—d(B). Thusa—d(B) = a —d(b). Hence htf) =
ht(xk) for all x € Irr(B). Thus (iv) follows.

(i) = (v). This is trivial.
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(iv) = (vi). This is trivial.

(v) = (vi). Letaanda be as above. We hawe— d(B) + ht(x) = a —d(b) +
ht(¢). Let B, be a weakly regular block o& coveringb. Sinceb is G-invariant, we
havea — d(B,) = @ — d(b). Thusa —d(B) > a—d(B,) = & — d(b). On the other
hand, we have hi) > ht(¢) by [10, Lemma 2.2]. Thus equality holds throughout and
ht(x) = ht(). So Irp(B | §) = {x}.

(vi) = (i). Let 6 be an irreducible character gf-degree inBy(G/K). Then
x ®6 €lrr(B | &). We have hty ® ) = ht(x) = ht(§). Thusxy ® 0 = x, and@ is
the trivial character. S®By(G/K) has defect 0 by the Cliff—-Plesken—Weiss theorem [2,
Proposition 3.3] ([13, Problem 3.11]), ar@d/K is a p’-group. So dB) = d(b). Put
¢ = xcemy- We claim IrrG | ¢) = {x}. Let x" € lrr(G | ¢). Thenv(x'(1)) = v(¢ (1)) =
v(x(1)). Sincey’ lies in B by Theorem 3.5, hi') = ht(x). Thereforeyx’ = x by
assumption, and the claim follows. Then, by Frobenius recity, ¢¢ = x. Since
(1) = x(1), we obtainG = GJb].

The proof is complete. O

REMARK 4.2. The equivalence of (i) and (iii) in Theorem 4.1 followsrh [5,
Proposition 2.6, Theorem 3.5, and Theorem 4.1].
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