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Abstract
We introduce an algebraic version of the translation algetfra group. We prove
that a quasi-isometry of two finitely generated groups irdublorita equivalence of
their algebraic translation algebras.

1. Introduction

Ring theoretic approaches for a quasi-isometry of groupevgéarted by Shalom
and Sauer [20], [18]. Shalom proved quasi-isometry invenéaof the cohomological di-
mensions of finitely generated amenable groups, and oRtBetti numbers of finitely
generated nilpotent groups. In his proof, it was importéat there exists a good topo-
logical coupling induced by a quasi-isometry. Sauer refinegart of Shalom’s argu-
ment. He showed that a good topological coupling induces atdequivalence between
Sauer rings of the coupled group actions (see Section 3).pHied this result to quasi-
isometry invariance of the (co)homological dimensions oitély generated groups with
finite dimensions, and of thR-cohomology rings of finitely generated nilpotent groups.

Morita theory of Sauer rings is important for classifying gps by quasi-isometry.
However, Sauer rings of the same group are not always Moritié&vaent. In order to
study ring theoretic invariants we should determine a riag dach finitely generated
group. We propose considering the rings as follows: kdie a ring with the multi-
plicative identity element 1, an@ a finitely generated group. We consider the skew
group ring G x| (G, k), wherel f(G, k) is the ring of functions with finite image. We
denote this ring byR(G, k), and call it an algebraic translation algebra®fwith the
coefficientk. In the case wher& = Q or C, we see thatR(G, k) is a subring of
Roe’s translation algebra [17, p.68]. In fa@®(G, k) is isomorphic to the Sauer ring
of a natural action ofG on BG, where 8G is the Stone€ech compactification 06
endowed with the discrete topology (see Lemma 3.2). We Hawartain theorem:

Theorem 1. If finitely generated groups G and 'Gare quasi-isometric then
R(G, k) and R(G/, k) are Morita equivalent.
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Two groups always have a good topological coupling such tiheit Stone€ech
compactifications are coupled (see Section 3). TherefoeoiEm 1 is the special case
of [18]. Without using a topological coupling and [18], weope this result in Sec-
tion 4. The cores of a quasi-isometry (see Definition 2.1y phaportant roles.

Morita invariants ofR(G, k) are quasi-isometry invariants by Theorem 1. In Sec-
tion 5, we give a formula to calculate the global dimension #me weak global di-
mension of R(G, k). They are well-known Morita invariants. The global dimemsi
of R(G, k) is estimated by the cohomological dimension®fand the global dimen-
sion of | f(G, k). The same result is true for the weak global dimension. ttush be
noted that some of well-known Morita invariants are triviglor example, the center
of R(G, k) coincides with that ok (see Lemma 2.4).

The Morita equivalence in the proof of Theorem 1 preservesesspecial modules
(see Theorem 4.7). For examplé(G, k) and (G, k) are preserved. The coarse co-
homology H'(G, Gk) is isomorphic to E&(G'k) (17(G, k), 1c(G, k)) (see Section 4.3),
and hence the coarse cohomology is a quasi-isometry imiagim already known. The
coarsel P-cohomology ([6]) is also obtained in this way.

If G is not amenable, then the Morita equivalence of Theorem 1 eareplaced
by a ring isomorphism. It is proved in Corollary 4.5. In thiase, isomorphism in-
variants of rings are also quasi-isometry invariants.

In Section 6, a geometric description &(G, k) is given by Mog (G x BG) by
using [4]. Indeed,R(G, k)-Mod is additively equivalent to MqdG x BG) (see The-
orem 6.6). From this we can construg(G, k)-modules by the geometry of Stone—
Cech compactification. In Appendix 7.1, we give an altemgaproof of Theorem 1
using the result in Section 6.

2. Preliminaries

2.1. Geometric group theory. We recall the basic notion of geometric group
theory and cores of a quasi-isometry [8, 0.2.C. p. 4, 5].

Let G be a finitely generated group with a finite generating syst&nG has a
metric dg,5 defined by

minfne N |[x=st--.shy s €S ixe{-1 1} if Xx#Y,
d(G,S)(x,y)={0 { [ X =58V, & k€ {-1, 1) y Xiz

which is called the word metric with respect ®

Let Z be a metric space. FON C Z and a real numbeK > 0, NV (W) = {z €
Z | 3w e W s.t.d(z, w) < K} is called aK-neighborhood ofW. If Nk (W) = Z, the
subspaceaV is said to beK-coarsely dense iZ.

A quasi-isometry is a mafd : X — Y between metric spaces such that for some
real numberK > 1, f satisfies
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1) (YK)d(x,x)—K =d(f(x), f(x)) < Kd(x, x)+ K for everyx, X' € X,
(2) f(X) is K-coarsely dense irY.

Two metric spaces are quasi-isometric if there exists aids@setry between them.
This gives an equivalence relation for metric spacesS Hnd S’ are finite generating
systems ofG, then G, dg,g) and G, d,s)) are quasi-isometric.

The definition of cores of a quasi-isometry is as follows:

DEFINITION 2.1. Let f: X — Y be a quasi-isometryA C X andB C Y are
called cores off if there exists a real numbé¢ > 0 such thatVk (A) = X, Nx(B) =,
f(A) = B and f|a is a bijective quasi-isometry.

For every quasi-isometry: X — Y there exist cores of . Indeed, we can define a
core B to be f(X), and A to be {x, € X | b € B} by choosingx, € f~(b) for eachb.

2.2. Algebraic translation algebra. Let G be a group, ancR a ring with the
multiplicative identity element 1 on whicts acts from the right. For e Randg e G
this action is denoted by9. The skew group rings * R is a free rightR-module on
G with the multiplication given by

(gr1)(hrp) = (gh)(r{‘rz) forevery g,heG, ry,re R

If G acts onR trivially, then we especially writé5 « R by GR. It is an ordinary group
ring (see [16] about skew group rings).

DEFINITION 2.2. (1) LetG be a group and a ring with the multiplicative iden-
tity element 1.

17(G, k) = {F: G — k| #(Im F) < 00}
is a ring with the following sum and multiplication:

(F1 + F2)(X) = Fu(x) + Fa(x),
(F1F2)(X) = F1(x)F2(x)

for every F1, Fo € 17(G, k) and x € G.
(2) G acts onl f(G, k) from the right by

FI9(x) = F(gx) for every ge G, x e G.

(38) We denoteG x| f(G, k) by R(G, k). It is called an algebraic translation algebra
of G with the coefficientk.

The multiplicative identity element off (G, k) is the constant function 1. Since
k € 17(G, k) as constant functions, a group rif@k is a subring ofR(G, k). e- 1 is
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the multiplicative identity element oR(G, k), wheree is the identity element 06. k
is regarded as a lef6k-module bygk =k (g € G, k € k).
For SC G the characteristic function

(x) = 1 if xe§
XS =00 if x¢s

is an element of f(G, k).
In the case wher&k = Z, Q or C, we see thatR(G, k) is a subring of Roe’s
translation algebra [17, p. 68].

2.3. Morita theory. We give the basic notion of Morita theory [1]. L& and
S be rings. R-Mod (Mod-R) is the category of left (right) modules ové. A left R
and right Smodule M is called a leftR-right S-bimodule if r(ms) = (rm)s (r € R,
se S me M). RM meansM is a left R-module, Mg meansM is a right R-module,
and kMg meansM is a left R-right S-bimodule.

Let F1, F2: B — C be functors, a setrg € Hom(F1(B), 72(B)) | B € Ob(B)} is
called a natural equivalence #,(f) o g = g o F1(f) (f € Hom(B, B")) and g is
an isomorphism for ever € Ob(B). Then F; >~ F, if there exists a natural equiva-
lence. A functorF: R-Mod — S-Mod is called an additive functor if Hord, B) —
Hom(F(A), F(B)) defined by f — F(f) is a homomorphism. An additive functor
F1: R-Mod — S-Mod is called an additive equivalence if there exists an tagdfunc-
tor F>: SMod — R-Mod such thatF, o 71 ~ id and F; o /> ~ id. A functor F; is
called an inverse equivalence &%.

R and S are said to béviorita equivalentif there exists an additive equivalence be-
tween R-Mod and S-Mod. Let M be a left (right)R-module. The moduléV is said to
be finitely generatedf there existn € N and a surjective homomorphisi: R" — M.

M is called a (inite) generatorif there existn € N and a surjective homomorphism
f: M" - R. M is said to beprojectiveif it is a direct summand of a free left (right)
R-module. A generator is called progeneratorif it is finitely generated and project-
ive. EndM) ={f: M — M | f is a left (right) R-homomaorphisrh is called the endo-

morphism ring. The multiplication is the opposite compiosit(ordinary compaosition)

of maps.

ee Ris called an idempotent & = e. If R has the multiplicative identity element
1, theneRe= {eree R|r € R} is a ring with the multiplicative identity elemer
Reis a left R-module, and Endfe is isomorphic toeRe eRis a right R-module,
and EndéR) is also isomorphic teRe

Theorem 2.3. [1, Corollary 22.5, p.265]let R be aring. If B is a progeneratar
then R and S= End(Pg) are Morita equivalent. Indeedf P® = Homg(Pr, R), then
sPr and gP¢ are bimodules andP ®r —): R-Mod — S-Mod, (P® ®s—): SMod —
R-Mod are inverse equivalences.
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If Pr =eRis a progenerator, theSB = eRe sPr = ¢r€ Rz and RPfRe: rR&Re

If R and S are isomorphic, therR and S are Morita equivalent. Indeed, let
®: S — R be a ring isomorphism. Sinc& ~ R ~ End(RR), an additive equiva-
lence cRr ®r —): R-Mod — S-Mod is obtained. kM is mapped tosM satisfying
sm= ®(s)m (s€ S, me M). We use the notation Rds = (sRg ®r —).

2.4. The center of R(G,k). The center of a rinRis CenR) ={r e R|rx =
xr (Vx € R)}. If rings R and S are Morita equivalent, then CeR) and Cen§) are
isomorphic [1, Proposition 21.10, p. 258].

Lemma 2.4. Cen(R(G, k)) = Cenk).

Proof. Leta € Cen(R(G, k)). For eachx # e € G there exists noF # 0 €
| /(G,k) such that for everg € G, xgxF = xFxgq is satisfied, and hencee el f(G,k).
Since for everyg € G we havega = ag, « is a constant functionka = ak is satisfied
for everyk € k, and hencex € Cenk). []

2.5. Transformation groupoids. Let Go, G1 be topological spaces, arsd G; —
Go, t: G1 — Go, M: G1 Xg, G1 = {(91, 92) € G1 x G1 | S(G1) = t(g2)} — G1 continuous
maps. We consider the following three conditions:
(1) m(M(g1, G2), g3) = M(gr, M(Gz, 93)) (91, Ga), (G2, G3) € G1 Xg, G1),
(2) there exists a continuous map Go — G1 such thats(u(x)) = t(u(x)) = x and
m(u(x), g) = g, m(g', u(x)) = g’ (X € Go, 9, 9’ € G1 with t(g) = x = s(g)),
(3) there exists a continuous map: Gi — G; such thatm(g, 1(g)) = u(t(g)),
m(1(9), 9) = u(s(9)) (9 € Gu).
G = (Go,G1,s,t,m,u, 1) satisfying the conditions above is calledapological groupoid
We use the notatio - g = M(ga, 92) ((91, G2) € G1 Xg, G1), & = U(X) (X € Go) and
gl =1(g) (g € G1). A topological groupoidg = (Go, G1,s,t,m,u, |) is called anétale
groupoidif s andt are surjective local homeomorphisms (see [14, Section 5hfore
on étale groupoids).

Let G be a finitely generated group, ar@ acts on a topological spacé from
the left. We define dransformation groupoid G« X by the following data:

(Gx X)o=X, (Gx X)1=GxX,
where G is regarded as a discrete space.
s(9,X) =x (geG,xeX), t(g,x)=9gx (geG,xeX),

(9,)-(d,X)=(gd,x) (9,9 €G, x, X' € X satisfyingx = g'x),
u) = (e x) (x € X),

wheree is the identity element o6G.
1@, x)=(g"9gx) (geG, xeX).

G x X is an étale groupoid.
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2.6. Stone€ech compactifications. We recall the StoneGech compactifications
for discrete spaces [9]. LdD be a set/ € 2P is called a filter onD if the following
conditions are satisfied.

(0) D elU,

(1) 9 ¢U,

(2) if Ay, Aoel,thenAiNAeld,

(3) if Aeud, B2 and AC B, thenB e 4.

In addition,/ is called an ultra filter it/ satisfies

(4) if D= AgU---U Ay, then there exists the unique<li < n such thatA € U.
The set of ultra filters orD is denoted bygD. For A € D we use the notatior =
{UeBD| Ael}. O is a topology onD generated by an open basé| A e 2P},
(BD,0) is called theStone€ech compactificatiomf D. Let G be a finitely generated
group. BG has a naturalG-action from the left. Indeed, fot/ € G and g € G,
g = {gA| Ac U} € BG. This action is a homeomorphic action.

Lemma 2.5. (1) gD is compact and Hausdorff. D is identified with a dense
subset of8D by an injection e D — BD satisfying{e(d)} = @ for every de D.
(2) For A e 2°, D-A-= BD — A. Therefore the topology g8D is generated by
clopen(closed and opénsets.
(3) If O is a clopen set o8D, then there exists & 2° such that O= A.

Proof. The proof of (1) is in [9, Theorem 3.18 (a) and (c)], ahd proof of (2)
is in [9, Theorem 3.17 (c)]. 1O is a clopen set 08D, then there exist#\ € 2P for
eachx € O such thatx € A, and O = | J,., Ax. SinceO is a closed set of Hausdorff
space,O is compact. Therefore there exists € O}, such thatO = [ J_, Axi. By

[9, Theorem 3.17 (b)] we hav® = m ]

2.7. Definition of Mod, (G). Let G be an étale groupoid. In [4], the abelian cat-
egory associated t6 was considered to study a homology theory §o([21, Appendix
A] is a good reference for abelian categories). This categordenoted by Mog(G).

In Section 6, we describe MG x G) and discuss a relation to the algebraic trans-
lation algebra.

First, we recall the definition of ). A left étale G-space X= (X, po, p1) IS
a topological space with continuous mapg: X — Go and py: G1 xp, X = {(g, X) |
s(g) = po(x)} — X such that
(0) po is a surjective local homeomorphism,

(1) Po(Pe(9, X)) = t(9) (9. X) € G1 xp, X),

(2) pu(h-g,x) = pu(h, p2(9, X)) ((9, X) € G1 xp, X, (h, 9) € G1 xg, Ga),

(3) Pr(epy)s X) = X (X € X).

p; is usually denoted by . Let X = (X, po, p1) andY = (Y, qo, 1) be left étale
Gg-spaces. A continuous map: X — Y is said to beequivariantif
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(1) Goo @ = po,

(2) ®(pu(9, X)) = qu(9, ©(x)) (9, X) € G1 xp, X)

are satisfied. SKy) is the category of which objects are left étalespaces and mor-
phisms are equivariant maps. (6h is calledthe category of left étalg-spaces

Second, we recall the definition of Mp@). Let X = (X, po, p1) andY = (Y,qo,q1)
be left étaleG-spaces. We define a finite product of(§h X &Y = (X xg, Y, ro, 1) by
XXg Y ={(X,y) € XXY | po(X) = do(Y)}, ro: X Xg, Y = Go With ro(X, y) = po(X) =
Qo(y) andry: Gy xr, (Xxg,Y) = Xxg,Y with r1(g,(X,y)) = (p1(9,X),d1(9,y))- ©® =Go =
(Go,id: Go — Go,t o Pri: G1 xg, Go — Go) Is a left étaleG-space and HonX, Go) = { po}.
© is a terminal objectk is regarded as a constant left étglespacek = (k x Go, pp =
Pro, p1) by pi(9, (k, 2)) = (k, t(9)). k has a natural structure of a ring. We consiler
module objects of (i), @, ©): A= (A, M, U, v, M) is called ak-module objecof
(ShG), @, ©) if morphismsM: A@A— A U: 0 - A v:A—> AandM: k@ A—
A satisfy
(1) (M, U, v) is an usual additive group structure @y
(2) M is an usuak-action giving ak-module structure onA, M, U, v).

M is usually denoted by, ¢/ by 0, v by — and M by -. Morphisms betweerk-
module objectsA and B of (ShG), &, ®) are morphisms of Si) preserving struc-
tures M, U, v and M. Thereforek-module objects form a category. It is denoted by
Mod, (G). Mod, (G) is an abelian category® = Gy is the zero object 0.

Mod, (G) always has an infinite coproduct. Such a category is called\#.3
category [21, A.4]. An infinite coproduct exists as followSor { A, € Ob(Mod (3)) |
A € A}, A, gives a presheaf dk-modulesFs, on Go by O+ I'(O, A)) ={f: O —
A, | T is continuous andy, o f = idp} for every open seO C Gy. Therefore for
presheak, ., Fa,: O > D, 4 Fa (O) its sheaf spac&g, , », has a natural struc-
ture of ak-module object of (S{@), ®,®) (about the relation of a presheaf and a sheaf
space see [2, 2.3]). ThiEg, , , is an infinite coproduct. Therefore Mp@) is an
A.B.3 category.

3. Proof of quasi-isometry invariance of the algebraic tramslation algebra
using a topological coupling

We recall the definition of Sauer rings. L& acts on a compact Hausdorff space
X from the left. F(X, k) = {F: X — k | F71(k) is clopen for everyk € k} has the
right action of G induced by the left action oz on X. In the paper [18], the skew
group ring G x F(X,k) was considered. We call this rirthe Sauer ring of G-space .X

Theorem 3.1([18]). If two finitely generated groups G and @re quasi-isometric
then there exist compact Hausdorff spacesol which G acts from the left and, Yon
which G acts from the left such that their Sauer ringssGF (Y1, k) and G * F (Y, k)
are Morita equivalent. A good topological couplig always gives such;Y= /G’ and
Y, = /G, where a topological coupling is said to be good if it has a compact clopen
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fundamental domain for each action.
We relate Sauer rings and our algebraic translation algebra
Lemma 3.2. Let G be a finitely generated group.
R(G, k) >~ G x F(BG, k).

Proof. ForF € F(BG,k), BG = ||« F (k). SinceBG is compact and for each
k, F~1(k) is open, and hence there exigt . .., k, € k such thatsG = | |_; F (k).
For eachi, F~1(k) is clopen, and hence by Lemma 2.5 (3) there edigt..., A, C
G such thatF(k) = A.. We definer: F(8G, k) — | 7(G, k) by A(F) = Flg =
> kixa- A is a bijective homomorphism and preserves the actio® oEvery func-
tion in 17(G, k) has an expressio[:{‘zlkix,*, and hence\ is surjective. Thisx is
extended toR(G, k) >~ G x F(BG, k). ]

By Lemma 3.2 if we have a good topological coupling such that= G and
Y, = BG/, then Theorem 1 is the special case of [18]. Indeed, we hawefditow-
ing theorem:

Theorem 3.3. Two quasi-isometric finitely generated groups G arica®ays have
a good topological coupling such that their Sto@®eh compactifications are coupled.

Proof. In the proof of Theorem 7.1 in Appendix, we have esabmbhorphisms
GxBG — G(|G|U|G|) < G'x BG’ (see [19, Section 3.4]). We take the weak pullback
G of this morphisms, and hence surjective essential morghism G < G — G’ x
BG’ are obtained (see [14, Exercise 5.22 (1)Jp has a natural @ x G’)-action. Gg
is a topological coupling such thal,/G’ = BG and Go/G = BG’. Since surjective
essential morphisms above are étale and the topologigsGoand G’ are generated
by clopen sets, we can construct a compact clopen fundahdortain for each action.
As a result,Gy is a good topological coupling. ]

We have the main theorem by Lemma 3.2, Theorems 3.1 and 3.3:

Theorem 1. If finitely generated groups G and’'Gare quasi-isometric then
R(G, k) and R(G’, k) are Morita equivalent.

4. Proof of quasi-isometry invariance of the algebraic tramslation algebra
without using a topological coupling

The proof is obtained by elementary argument: cores of aidg@m®etry and basic
Morita theory (see Sections 2.1 and 2.3).
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4.1. Some lemmas. In order to prove quasi-isometry invariance of the algebrai
translation algebra, we need Lemmas 4.1 and 4.4.

Lemma 4.1. Let H be a finitely generated group. For € H if there exists a
real number K> 0 such that Z is K-coarsely dense in, then a rightR(H,k)-module
Iz = xzR(H, K) is a progenerator.

Proof. SinceR(H, k) =1z & lq_z, |7 is finitely generated and projective.
We prove thatlz is a generator: For the identity elememt H, N (e) is finite,
and hence we have an expressigi(e) = {ho = e,hy,...,h,}. We defineZ,...,Z, by

Zo=12,
Z1=hZ-7Z,
Zo,=hyZ -hZ-2,

Zy=hyZ—-hp1Z—---—Z.

ZoU:--UZ,=H and hi—lzi C Z are satisfied. We defing: 1 — R(H, k) by
pi(xzy) = xzhiy foreveryy € R(H,k) and 0<i < n. They are well-defined as follows:
For everyy, y’ € R(H, k) satisfyingxzy = xzy’, by multiplying xz h; to this equation
from the left, we havecz hixzy = xzhixzy’. This impliesxz xnzhiy = xz xnzhiv'.
Thush1z; € Z shows thatyz hiy = xzhiy’, and hencep; is a well-defined homo-
morphism. As a result, we have a homomorphipre= @, pi: 13 — R(H, k). For
eachh € H andF € If(H, k) we havehF = 3" j xzhF = 3 xz (hih;Y)hF =
Yloxzhi(h7thF) =Y pi(xzh7thF) = p(xzhghF, ..., xzh;*hF). Thereforep
is surjective. [

Let H be a group andZ € H. My is the endomorphism ring of the right free
k-module on{sy | h € H}. M7 is the subring ofMy generated oré, | z€ Z}. We
consider a mag = €4,z): H x H — k satisfying

1 if zeh?'znz,

for everyh, ze€ H. By usinge, an injective homomorphisny: xzR(H,K)xz — Mz
can be defined by

iz(xzaxz)8: = Y _ Snze(hi, 2)Fi(2)
i=1

for everya =Y.' hiF € R(H,k), hie H, F €l f(H,k) andz € Z. This is shown
in the next lemma.
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Lemma 4.2. iz is well-defineda homomorphism and injective.

Proof. For everyn € H andz € Z if hz ¢ Z is satisfied, thers,¢(h, z) = O.
Therefore we havéz(xzaxz) € Mz. Sinceiz preserves the sum, to prove is well-
defined we will prove that for everg = Y, hiF € R(H, k) if xzaxz = 0, then
iz(xzaxz) =0. xzaxz =Y .hi Xn-1znzFi =0 implies} . xn1znzF = 0 for each
he H, and hencg _,_, (hi,2)Fi(2) = 0 for everyz € Z. This shows z(xzaxz)é; = 0.

In order to proveiz is a homomorphism, we only have to check thatpreserves
the multiplication for generators about the sum sing@reserves the sum and the iden-
tity element. x2R(H, k)xz is generated by HI(H, k)xz as an additive group, and
hence forg,he H, F, F, el f(H, k), andze Z

iz(xz9F1xz) o iz(xzhF2xz)d;
= iz(xz9F1xz)(6nz¢(h, 2)F2(2))
= dgn(9, h9)F1(hDe(h, 2)F(2)
= dgn(9, h2)e(h, 2)Fi(h2)F(2)
= Sghaxn-1g1zrn12(Dxn 120z (2)FL (2 F2(2)
= SgnzX(ghy22nz (@D (xh-12 F{ F2)(2)
= iz(xz9Nxn12 F{ F2x2)s:
=iz(xz9FixzxzhF2xz)s2.
This impliesiz is a homomorphism.
In order to proveiz is injective we will check that for everyr € R(H, k),
iz(xzaxz) = 0 implies xzaxz = 0. We have an expressian = Zinzl hi F for some

hi € H and F, € If(H, k), where we can assume thht, ..., h, are different from
each otheriz(xzaxz) = 0 implies

i2(xz0x2)82 = Y nz€(hi, DFi(D) = D dhaxniznz(DFi(2) = 0
i=1 i=1

for every z € Z. This shows that)(hrlz Fixz = 0 for everyi. Thus

n
xzaxz = Y hixnizFixz =0, O
i—1

Let G and G’ be finitely generated groupX € G, Y C G’ and f: X — Y a bijec-
tive quasi-isometry. Sinced is bijective, f induces a natural isomorphisth: My —
My as follows. For everyA € My and x € X we have an expressio\(dx) =
Zi“:l 8x 008 (X) by somex;(x) € X and g (x) € k. Thus by using this expression of
A(Sy), f satisfies

f(AGy) = Z St (- (FHY))

i=1
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for everyy € Y. By Lemma 4.2 we have injective homomorphisims xxR(G,K) xx —
My and iyl XyR(G/, k)XY — My.

Lemma 4.3.

foix(XxR(G, K)xx) € iv(xyR(G', K)xy)-

Proof. For everyge G andy € Y we have

o Serr B if gf~i(y) e X,
foix(xx9xx)(8y) = {Of(gf e ) othegrwis(ey)

since

ix(x9xx) (S 1-1y)) = Sgr-1)€@ (@, FHY)).

Since f is a quasi-isometryL. = {f(gf~1(y))y* |y e Y andgf~i(y) € X} is a fi-
nite set. Therefore we have an expresslorn= {hy, ..., hn}. We have§ = {y €

Y | gf~i(y) € X and f(gf~1(y))y ™t = hi}. Si, ..., Sy are disjoint for each other. If
gf1(y) € X, then there exists £ j <m such thatf(gf (y))y ! =h; and

St (gt-1y€G. (G FHY)) = Stgr-ayyyrye (@ FH(Y))
= 8n,ye, (@ FHY))

= 3hjy(z e (i, Y)xs (y)) @@ F7HY)

i=1

= Sy m i, Yxs Meex(@ f 1Y)
i=1

( Xy Zhl)(sG(G x(g, F7(- ))XY)(5y)

where e x)(9, f71(-)xy € f(G’, k). This shows thatf oix(xxgxx) is in the image
of iy.

On the other hand, for everf €17(G, k) andy € Y we have
foix(xxFxx)(8y) = 8yF(f(y))
= iv(xv(F o £ 79)xv)(3y),
where F o =Yy € 7(G, k). This shows thatf oix(xxFxx) is in the image ofiy.

xxR(G, K)xx is generated byxGyxx and xx! (G, k)xx as a ring. Therefore we
have f o ix(xxR(G, K)xx) S iv(xyR(G', K)xv)- 0



882 H. MORISHIMA

By Lemma 4.3 we have a homomorphistn yxR(G,K)xx — xyR(G',K)xy with
iyod = foiyx. Similarly, we haveW: xyR(G’,K)xy — xxR(G, K)xx with ix oW =
f1oiy. Therefored® o ¥ = id and ¥ o ® = id.

We summarize the discussion above as follows:

Lemma 4.4. Let G and G be finitely generated groupsX € G, and Y C G'.
If a bijective quasi-isometry fX — Y exists then xxR(G)xx and xyR(G')xy are
isomorphic. The isomorphism = @ : xxR(G, K)xx — xyR(G’, K)xy is given by

(xxxx) = xv Y_ hixseex(@ (- Dxv (g€G),

i—1
P(xxFxx) = xy(Fo fxy (Fel’(G,k)),

where { f(gf~1(y))y | yeY and gfi(y) € X} = {hy,..., hy} (m, hj depend on Y
and $={yeY|gfiy)eXand f(gf*(y)y*=h}.

Given two quasi-isometric non-amenable finitely generagemlips, we can find a
bijective quasi-isometry between them [5, Proposition0g]Lland hence by combining
this fact and Lemma 4.4, we have

Corollary 4.5. If non-amenable finitely generated groups G and &e quasi-
isometrig then (R(G),! (G,k)) and (R(G"),I (G',k)) are isomorphic as pairs of rings.

4.2. The proof of the main theorem. Let G andG’ be finitely generated groups,
and f: G — G’ a quasi-isometry. There exist cores bf X € G andY € G'. By
Lemma 4.1lx = xxR(G, k) is a progenerator. By Theorem 2R¥G, k) and End(x)
are Morita equivalent. Sincgy is an idempotent, Endl) ~ xxR(G, k)xx. Therefore
R(G, k) and xxR(G, k)xx are Morita equivalent. Furthermore, by Theorem 2.3

xR GK) o XX R(G, K)R(G k)

RGN R(G, K)XX 1 R(G k) 2x
are bimodules, and
(xxR(G, k) ®r(c.k —): R(G, k)-Mod — xxR(G, k)xx-Mod,
(R(G, K)xx ®yrGH1)xx =) XxxR(G, K)xx-Mod — R(G, k)-Mod

are inverse equivalences. Similarfg(G’, k) and xyR(G', k) xy are Morita equivalent.
Furthermore, by Theorem 2.3

wRG K XY R(G', K)r(G k)
RGN R(G K)xv g r@ b
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are bimodules, and
(xyR(G', k) ®r(c' k) —): R(G', k)-Mod — xyR(G', k) xy-Mod,
(R(G, K)xy ®yyr(ck)xy —): Xy R(G', K)xy-Mod — R(G', k)-Mod

are inverse equivalences.

Since f|x is a bijective quasi-isometry, by Lemma 4.4xR(G, k)xx and
xyR(G', K)xy are isomorphic.® = ®¢ |, : xxR(G, K)xx = xyR(G’, K)xy is the iso-
morphism, and hence

Reso: XY’R,(G/, k)Xy-MOd — X)(R(G, k)X)(-MOd,
Restb™1): xxR(G, k) xx-Mod — xyR(G', k) xy-Mod

are inverse equivalences. Therefore

F1=(R(G, K)xy ®r(@ i —) © Res®™) o (xxR(G, k) ®r(c.k) —),
F2 = (R(G, K) xx ®xxr(Gkxx —) © Res® o (xyR(G', k) ®r (G k) —)

are inverse equivalences. As a result, we obtain the maiorehe

Theorem 1. If finitely generated groups G and 'Gare quasi-isometric then
R(G, k) and R(G/, k) are Morita equivalent.

4.3. On some characteristic modules. Let H be a finitely generated group.
There exist characteristi® (H, k)-modules of functions orH preserved byF; of the
previous subsection. In this subsection, we use the nataticSection 4.2.

We consider a leftR(H, k)-modulel(H, k) = {F: H — k} with an action

(hF)F = F'F""  (hFL e R(H, K), F €I(H, k).
IT(H, k) orl(H, k) = {F: H — k | #(suppF)) < oo} are submodules df(H, k).

For Z € H a left xzR(H, k) xz-module xzR(H, k) ®z(H,k | (H, k) is isomorphic to
the left xzR(H, k)xz-modulel(Z, k) with an action

(xzhFixz)F = xz Flhil)(hzl:hi1 (xzhFixz € xz2R(H,K)xz, F € I(Z, k)).
Lemma 4.6. Under the notation ofSection 4.2

(Res®) o (xyR(G', k) ®r ek —)I(G', K)) = (xxR(G, k) ®r .10 —)I(G, K)).
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Proof. By Lemma 4.4 (Re®) o (xyR(G', k) ®r(c k) —)( (G, k)) is isomorphic
to the left xxR(G, k) xx-modulel (Y, k) with an action

(x9xx)F = (P, )(xx9xx)F

= (XY Z hi xs €)@, flx (- ))XY) F

i=1
m
_ —1 —1
= xv Y xns€ex(@ FIx )Y xnyF"
i=1

for everyg € G and F € (Y, k), and also

(xxFixx)F = (P 1,)(xx Fuxx)F
= (xv(Fro (f1x)™xv)F
= xv(Fro (flx) HxvF
for every F1 € I (G, k) and F € I(Y, k). We definex: I(Y, k) — I(X,k) by F — F o
flx. We will prove thatx is a left xxR(G, k) xx-isomorphism. Since. is a bijective
additive group homomorphism, we only have to check that ti®mis preserved. For
everyg € G, F €1(Y,k) andx € X, under the notation of Lemma 4.4,xf€ gX, then

there exists the only; such thatf(x) € h;S;, and also ifx ¢ gX, then there exists
no h;j such thatf(x) € h;§;. Therefore

MOx g F)X) = (P11, (xx 9xx) F)(F (X))

i=1

= (XY > xnseex (@ Flx (- ))"ilxhiYF“il)<f<x»
_ V() i xegX,
~]o if x¢gX

_ [Fof(gix) if xegX,
(0] if x¢&gX

= ((xx9xx)A(F))(x).
For everyF, €1 7(G, k), F € I(Y, k) andx € X

MOx FLxexd) F)(X) = (@11, (xx Fxx) F)(F (X))
= (ev(Fro (1) Dxy F)(f (X))
= F1(F o f)(x)
= ((xx Fuxx)A(F))(X). [
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Theorem 4.7. Under the notation ofSection 4.2
1) F((G, k) ~ (G, k), Fo(I(C', k)) >~ I(G, k),
2) F(7(G, k) ~11(G, k), Fo(1 (G, k) ~I7(G, k),
() F1lle(G, k) = 1c(G', k), Fa(lc(G, K)) > (G, K).

Proof. (1) We send the equation of Lemma 4.6 B(G, K)xx ®,,R(Gkxx —)-
Therefore we haver,(I(G',k)) ~ I(G, k). We also send this equation B, and hence
F1(1(G, k) ~ I(G/, k). Sincex of the proof of Lemma 4.6 is an isomorphism bh
andl;, (2) and (3) are also proved. []

We have a leflR(H,k)-moduleT = Ty = Tih k) = R(H,K)®nkk. Ty is isomorphic
to I '(H, k). Indeed,0: Ty — I'(H, k) defined byo (3, gFn ® k) = Y[, Fo 'k
(X", gnFn € R(H, k), k € k) gives an isomorphism. Le¥l be a leftR(H, k)-module.
SinceHk is a subring ofR(H, k), M is regarded as a lettlk-module. By the flatness
of R(H, k)nk (see Lemma 5.1 of the next section), we havenfggq()(l f(H, k), M) =
EXth ho(TH, M) = Extl (k, M) = H"(H, M). Sincelc(H, k) is isomorphic toHk,
H"(H, I.(H, k)) = H"(H, Hk). This cohomology group is the coarse cohomology (see
[7]). By Theorem 4.7 B(H, HK) is a quasi-isometry invariant.

In the case ok = C (or R) for 0 < p < oo we have a module op-summable func-
tionsIP(G, C) € I(G, C). We can also proveér1(1P(G, C)) ~ IP(G/, C), F2(IP(G, C)) ~
[P(G, C). Therefore EX;%(H,k)(I f(H,C),IP(H,C)) is a quasi-isometry invariant. This co-
homology group is isomorphic toiH, I°(H, C)): the coarséP-cohomology (see [6]).

5. The global dimension and the weak global dimension of aleaic trans-
lation algebras

Let G be a finitely generated group. We see tiRAG, k)cx is a flat Gk-module.
Let A={S=(S,...,S | S <SG, LI5S = G} be the set of finite decom-
positions of G. For « and B € A we denotea < B if B is a refinement otx. Let
Ly = i“;l(Gk) be a right freeGk-module. Ifa¢ < g, then for each X k < ng there
exists 1< iy < n, such thatfx C «;,. Let fgo: Ly — Lg be aGk-homomorphism such
that fg(X1,...,.%n,) = (Xiy,--- xinﬂ) (% € GK). These data define a direct system of right
Gk-modules, and hence we have a righk-module limL,. lim L, = (@,cp La)/N,
whereN is a submodule ofp, ., L. generated byfigo fg,(X)—to(X) | o < B, X € Ly}
, andg are injections toP, ., La-

Lemma 5.1. R(G, k)gk is a direct limit of flat Gk-modules
lim L, ~ R(G, k)gk-

ThereforeR (G, k)gk is a flat Gk-module and the functorR(G, k) ® sk —: Gk-Mod —
R(G, k)-Mod is exact.
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Proof. We define,: Ly — R(G, K) by ty(X1, ..., Xn,) = Y11 X Xi (Xi € GK).
The direct sum ofit, | « € A} defines an isomorphism. ]

We recall the definitions of some homological dimensionst Rebe a ring, and
M a left R-module.
(1) fdr(M) = sup(n | Ja right R-module N with Tor}(N, M) # 0}. This number is
equal to the minimal numbar such that there exists amlength flat resolution oM.
(2) pdx(M) = supn | Ja left R-module N with Ext}(M, N) # 0}. This number is also
equal to the minimal numben such that there exists amlength projective resolution
of M.
(3) wd(R) = supgfdg(M) | M is a left R-modulg.
(4) l.gl.dim(R) = sup{pdg(M) | M is a left R-modulg ([21, Section 3, 4] is a good
reference for Tor or Ext and homological dimensions).
wd and l.gl.dim are Morita invariants. We discuss l.gl.dR{G, k)) and wdR(G, k)).

Lemma 5.2. Let G be a finitely generated groupnd | a ring containingk as
a subring. We assume that G acts on | from the right triviallylo Let R = G = |,
and T =R ®ck k. For every leftR-module A and Band anR-projective resolution
C of A we have a spectral sequence

Exth (T, HY(Hom (C, B))) =, Ext (A, B),

where for a leftR-module G Hom(C, B) = Hom(C, B) is a left module with a left
action of R defined by

(@F)¢(x) = F¢ gp(g™*x)

for everyp € Hom(C,B), g€ G, F €l and xe C. The notation of a spectral sequence
is that of [3, Chapter XV]

Proof. This spectral sequence is obtained by modifying atsplesequence of
Cartan and Leray [3, Proposition 8.2].

First, we prove E)!,Q(T, Hom (R, B)) =0 (if p > 0) by direct calculation. Since
R =@y ! -9 andg € Hom (R, B) is decided byp(g) € B, we haveHom (R, B) =
[lgec By, Where By is a copy of B. For (g)gec € [[4c By, the R-action is given
by (xF)(bg)gec = (Fx’lxbxflg)geg (x € G, F €l). We consider free righk-modules
lp ={(00,...,0p) | 0i € G}k and¢y_1(00, ..., 0p) = Zipzo(—l)i (00, ..., Gi,...,0p).
I = {lp, pp} is the Gk-standard resolution df. Thenl = R ®qgk | is an R-projective
resolution of T. Sincef € Hom(fp,l-Ta/m (R, B)) is decided byf(1,01,...,0p)(0) € By,
we have

Hom(ip, Hom(R, B)) = [ Boyoopa:

01,...,0p,9€G
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where B, 5,g IS @ copy ofB. 9, = Hom(gy, Hom (R, B)) satisfies

ap((bm ..... op,g)al ..... Gp,geG)

(|) p+1 )
= Ulbaflag ..... o lopi1,07tg + Z(_l)l ba]_ ..... Gi1een0ps1,9
o1

i=1

By the definiton of Ext, EX4(T, Hom(R, B)) = Kerdp/Imd,_1. For every
(05,....00.0)01....0p0ec € Kerdp and in the case ofp > 1, we havec,, . o, ,q =
(—1)Pbo,,..0p1.g- This satisfies

(”) 8p—l(cal,...,ap,l,g)ol,...,op,l,geG = (bal ..... op,g)al ..... 0p,9€G
In fact,

3pfl(cal,...,ap,l,g)o-l,...,ap,l,geG

p
— i
= <01C01102 """ Uflapygflg-i- E (-1)co,y, 0. a,,,g)
(iii) 01,..,0p,0€G

i=1

i=1

p
= ((—1)%1@1102 _____ ot ortgortg + O (—1)PH bgg> :
1,--0p,9€G

By substitutingg for op;1 in (i), we have

p
(IV) Glbaflag ..... oflap,oflg,oflg + Z(_l)l bUl,---yCVYiy---vUpvgvg + (_1)p+1b51 ----- 0pg — 0.
i=1

(ii) is obtained by (iii) and (iv). Therefore Eﬁg(T, Hom (R,B) =0 (f p>0)is
proved. This shows EXK(T, Hom(P, B)) = 0 (if p > 0) for every projective left
R-module P.

Second, for leftR-modulesX and Y, p: Homg(T, Hom (X, Y)) — Homg (X, Y)
defined by f — f(1) is an isomorphism.

Let X be a projective resolution of and Y = Hom(C, B). Homg(X, Y) is a
double complex, and hence we have two spectral sequenceghgitsame limit:

159 = HP(HY(Homz (X, Y))) =, Tot"(Home (X, Y)),
1159 = HIHP(Homg (X, Y))) =>4 Tot"(Homz (X, Y)).

By the first assertion above PHomgz (X, Y)) = Homgz(T, Y) (f p = 0) and
HP(Homg (X, Y)) = O (otherwise). We have i = HI(Homz (T, Y)) = HY(C, B) =
ExtL (A, B) (if p=0) and If"* = 0 (otherwise) by the second assertion above. There-
fore Tof'(Homg (X, Y)) = Exty(A, B). Since each termX, of X is projective,
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Homg (X,, —) is exact.

HCI(Hon'}R(Xp, Y)) = Hq(HOI'TTR(Xp, |:|5/m (€, B)
= Homg (X, Hi(Hom (C, B)))

shows that 9 = Ext}, (T, HY(Hom (C, B))). O
Corollary 5.3.

Pdre(T) = LgLAIM(R(G, K)) < pdr(s(T) + L.gl.dim( (G, k)).

We can also prove th&or version of Lemma 5.2,and hence
fdrG.k)(T) < WA(R(G, K)) < fdr sk (T) +wd( ' (G, k)).
We estimate pgg (T) and fdz(c k) (T) by the homological dimensions @.

Lemma 5.4. (1) pdgck(T) = ck(G), wherecd(G) = pdgy (K).
(2) fdr@(T) = hd(G), wherehd((G) = fdck (k).
() If ck(G) < oo, then ck(G) = pdg g k) (T)-
(4) If hdk(G) < oo, then hd(G) = fdrc.K)(T).

Proof. Since the functoR(G,k) ®ck — is exact by Lemma 5.1, a projective reso-
lution (flat resolution) ofk is mapped to a projective resolution (flat resolution)Tof
by R(G, k) ®ck — Therefore (1) and (2) are obtained.

(3) and (4) are proved by the same argument as [18, Section 4]. O

We estimate l.gl.din( (G, k)) and wd( (G, k)).

Lemma 5.5. Let A be a countably infinite set.
(1) If k is a field thenwd( (A, k)) = 0.
(2) If k is Z, thenwd( f(A, k)) = 1.
If the continuum hypothesis is truthen
() if k is a field thenl.gl.dim( (A, k)) = 2,
(4) if k is Z, thenl.gl.dim( (A, k)) < 3.

Proof. (1) We see that for everly e f(A, k), F € F-17(A,Kk)- F is satisfied.
Thereforel f(A,k) is von-Neumann regular [11, xviii, the third paragraphhisTimplies
that wd( (A, k)) = 0 [11, (5.62a) p.185].

(2) 17(A, k) is not von-Neumann regular since¢2-17(A, k) - 2. Every ideal of
I (A, k) is generated by projective modules with the fotf{A, k) - xxn, and hence
every ideal ofl F(A, k) is flat. This implies wd(*(A, k)) = 1 [11, (5.69) p. 187].
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(3) By the theorem of Osofsky [15, Corollary 2.47] for eveigg R if every left
ideal of R is generated by, elements, then

.gl.dim(R) < wd(R) + h + 1.

Every ideal ofl (A, k) is generated by characteristic functions an Therefore if the
continuum hypothesis is true, then Lgl.di(A, k)) < 2. Sincel f(A, k) has a non-
projective ideal I(f (A, k) is not semi-simple and not hereditary), l.gl.dif{, k)) = 2
[11, (5.14) p.169].

(4) It is proved by the theorem of Osofsky and (2). []

We remark that wd((A, C)) > 1. Indeed, fors;, ..., S, ... € A there exists a
function f € 1°°(G, C) such thatf(s,) = exp(n), and f ¢ f -1°(A, C)- f.

Theorem 5.6. If k is a field then
(1) if hdk(G) < oo, thenwd(R(G, k)) = hd(G),
and if the continuum hypothesis is tfuben
(2) if ck(G) < o0, thencd(G) < l.gl.dim(R(G, k)) < cck(G) + 2.

Proof. The assertions (1) and (2) follow from Corollary 3.8mmas 5.4 and 5.5.
O

6. Geometric description of R(G,K)

In this section, we need some theorems of groupoid theorycaegory theory.
Everything needed in this section is in Sections 2.5, 2.6 2id Let G be a finitely
generated group with the identity elementandG = G x 8G an étale groupoid. We
consider_Mog/(G). We define the characteristic objedte Mod, (G).

DEFINITION 6.1. We defindJ = G x Gk, whereGk has the discrete topology.
An element X, @) € G x Gk is denoted by («). We also define
Po: U — BG by polx(@)) =X,
Pr: (GX BG) xp, U = U by  pa((9, X), x(«)) = gx(9),
M:U®U —>U by M({(),«(8) =xl@+pB) (xepG),
U.0—=U by UKX) =40 ((xepi),
viU—>U by v(x(@)=x(-a) (xepG),
M: kU —-U by Mk, (@) =xka) (xepG).

U = ((U, po, p1), M, U, v, M) is an object of Mod(G). po, p1, M, U, v and M are
open maps{x(e) | x € BG} can be identified with 3G by po.
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A morphism from the characteristic objeot is determined or8G C U:

Lemma 6.2. For every object S= ((S, do, 01), Ms, Us, vs, Ms) of Mod, (G) a
continuous mapw: G — S satisfying go w = idge defines the unique morphism
f: U — S such that fge = w.

Proof. We definef by f(x(3 (L, gk)) = i1k - (g, G2X) - w(g-1x(€)) for
every x € BG, g € G andk; € k. Therefore if f is a morphism, thenf is uniquely
defined. Sincepow = idgg, f satisfiesqoo f = po. In order to provef is a morphism
we may prove thatf is continuous, but this is a routine. ]

Let 4 be an A.B.3 categoryU € Ob(A) is called aprojective objectif for every
epi b € Hom(B, C) and morphisma € Hom(U, C) there existsc € Hom({U, B) such
thata = boc. A projective objectU € Ob(A) is called aprojective generatoif every
non-zeroA € Ob(A) satisfies Homl(, A) # 0. U € Ob(A) is said to besmall if every
morphism fromU into a coproducts: U — @, ., A, factors asU — @,.; Aw —
@D, .. A. whereJ is a finite subset ofA and morphism between the coproducts is the
one which preserves injections.

Theorem 6.3([12, Theorem 3.1, p.631]) Let.4 be anA.B.3 category with a small
projective generator U an&nd4(U) denote the endomorphism ring of U. Then the func-
tor T: A — Mod-End4(U) defined by TA) = Hom({U, A) is an additive equivalence.

To see that Theorem 6.3 is applied to M@d) we prove that the characteristic
objectU is a small projective generator of Mp@).

Lemma 6.4. (1) U € Ob(Mod,(G)) is a projective object.
(2) U € Ob(Mod,(9)) is a projective generator.
(3) U € Ob(Mog,(G)) is small.

Proof. (1) For everyB = (B, pog, P1.8), C = (C, poc, P1c) € Ob(Mod, (G)), a
morphisma: U — C and an epib: B — C there exists an open s¥% € C such that
a(x(e)) € Vx and pocly, is a homeomorphism for eache BG. Sinceb: B — C is an
epi, b is surjective. Therefore there exisyg € B such thatb(yx) = a(x(€)). b is con-
tinuous, and henceg, € b~1(V) is open. We have an open se} C b=1(Vy) such that
Yx € Ly and po gL, is @ homeomorphism. We also have a clopenlset pos(L}) N
po.c(Vx) since the topology oG is generated by clopen sets (Lemma 2.5 (B)kat-
isfies poc ob = po,s, and hencelx = (po,slL,) H(L}) satisfiesLy € b~(Vx), Yx € Lx
andb|_, is a homeomorphism. Clopen satg = a~1(b(Ly)) satisfy Uxepe Wx = BG.
BG is compact, and hendeJi_; Wy, = BG. We have a refinemenrftA }[_; of {W }T_;
such thatsG = |_|i“=1 A;. We can chosds; for eachi such thatA C W, and hence
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we define a continuous map by w|s = (b|Lin )_1oa|A,. By Lemma 6.2 there exists
a morphismc such thatc|gg = w. This ¢ satisfiesboc = a.

(2) By (1) U is a projective object. We will prove that every non-zero eabj
A= (A, poa, P1,a) € Ob(Mod, (G)) satisfies Hom(, A) # 0. SinceA is non-zero, there
existsa # 0 € A. For x = po a(a) € BG since po.a is a local homeomorphism and by
Lemma 2.5 (2) the topology oBG is generated by clopen sets, there exists clopen
Wy € A such thata € Wy and po.alw, iS @ homeomorphism. We define a continuous
map w by w|p, \wy) = (Po.alw,)~t and w|gc_pyaiy) = 0. By Lemma 6.2 there exists
a morphismf such thatf|gc = w. f(x) =a # 0 shows that Homy{, A) # 0.

(3) For every morphism from into a coproducs: U — €D, ., A; there exists a
finite setAx € A such thats(x) € D, .4, An € D, 4 A for eachx € BG. P, 5, A is
open in@P, ., A.. s is continuous and the topology @G is generated by clopen sets
(Lemma 2.5 (2)), and hence there exists clopgnc G such thats(Wy) € ;4 A
and x € Wy. 8G is compact, and hence there exigt ..., Xm such thatUrj“=1 Wy, =

BG. Therefores(BG) < EBMUT A, Av. This shows thas: U — P, ., A factors
= ]
asU — @P,.; A = P, A, whered = Urjnzl Ay, and morphism between the co-

products is the one which preserves injections. [

SinceU is a small projective generator, by Theorem 6.3 the fun€toMod, (G) —
Mod-Endyog, (6)(U) defined byT(A) = Hom(U, A) is an additive equivalence. We de-
scribe the ring Engog, ¢)(U)-

Lemma 6.5. (1) A morphism fU — U is determined by a finite decomposition
G= Uin=1 Li and ¢ € Gk such that {4(e)) = x(«;) for every xe Li.
(2) Enduod, (g)(U) is isomorphic to the ringR(G, k)°P.

Proof. (1) By Lemma 6.2 a continuous map= f|gc: SG — U uniquely de-
fines f. SinceU = G x Gk, we have a continuous projectiory: G x Gk — Gk.
The topology ofGk is discrete, and hence far € Gk, {«} is clopen. For clopen
W, = (20 w)~Y({a}), BG = || cox We- BG is compact, and henceG = | |, W,,.
By Lemma 2.5 (3)W,, = L; by someL; € G, andG = | ||, L;. Sincemowl; =,
w(x) = x(cv) for everyx € L;.

(2) We define a map : Endwog, (Gxpc)(A) — R(G, k) by

() =) xuai,
i=1

whereL; andw; are determined by (1). Sinaeis bijective by (1), we will prove that
it is a ring homomorphism. For every and g € Enduog, (expc)(A) such thato(f) =

S XL andé(g) = Z'j“:l xm, Bj we have an expressian = > " hi ki by hj; €
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G andk; € k. We have the following equations:

0(f)o(g) = (é XLiai) (é XMﬁj)
- (il XL :Zilhuku)(;i XM,-ﬂj>
) (2,1: noom

i=11=1 j=1

XLiﬁhHMj hl,|k|,|ﬂ])

On the other hand, we hav@ = | |; ;(Li N hi;M;), and for everyx e m

9o F(x(6) = gl(e)) = g(x (2 him,.))
=1
=3 kagllh, 0 (@)
1=1

= > ki (hi, i) - oa(By)
=1

= x<2 hi,lh,lﬁj)-
=1
Therefored(f)o(g) = 6(go f). O

By Theorem 6.3, Lemmas 6.4 and 6.5, we have

Theorem 6.6. The functor T: Mod,(G) — R(G, k)-Mod defined by TA) =
(Resv~1)(Hom(U, A)) is an (additive equivalencewheref is an isomorphism defined
in Lemma 6.5 (2)

7. Appendix

7.1. An alternative proof of Theorem 1. Let G and G’ be quasi-isometric fi-
nitely generated groups, we have Diagram 1.

Q.l. means quasi-isometric and W.E. means weak equivalent and # be étale
groupoids,G and#H are said to be weakly equivalent (Morita equivalent) if thexésts
an étale groupoidC and there exist essential morphisds £ — G, W: K — H (about
precise definitions see [4, 1.4, 1.5] or [14, Section 5]). Télowing theorems for a
quasi-isometry are known.
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Diagram 1.
G adoXh G’
¢ 0
Gx ﬂG ~W.E. G’ x ,BG/
¢ (i)
SHG x BG) Zastopos SHG' x BG’)
Y (i)
Mod, (G x BG) additive e.q. Mod, (G' x BG’)
[ Theorem 6.6 2 Theorem 6.6
R(G, k)-Mod R(G’, k)-Mod

Theorem 7.1([19, Corollary 3.6, p.820]) Let G and G be finitely generated
groups. If G and G are quasi-isometricthen Gx G and G x G’ are weakly
equivalent.

Theorem 7.1 is proved by the notion of the coarse space. Theerse of the
theorem is also true:

Theorem 7.2. Let G and G be finitely generated groups. If & 8G and G x
BG’ are weakly equivalenthen G and G are quasi-isometric.

Proof. If G x BG and G’ x BG’ are weakly equivalent, the@ and G’ have a
topological coupling2. Gromov’'s dynamical criterion [8, 0.2;] shows thatG and
G’ are quasi-isometric. O

(i) in Diagram 1 is obtained by Theorems 7.1 and 7.2. For ale &wupoidG the
category of left étalgj-spaces S{¢) is in fact a (Grothendieck) topos (see [13], and
about toposes see [10]) and its equivalence class is a wedakamnce invariant of an
étale groupoid, and also Mp(l7) is a weak equivalence invariant of an étale groupoid:

Theorem 7.3 ([4, Section 2.3]) Let G and G’ be étale groupoids. Ifj and G’
are weakly equivalenthen SHG) and SWG’) are equivalent agGrothendieck toposes
and henceMod, (G) and Mod, (G') are additively equivalent.

We have (iii) in Diagram 1. For §B) the converse is also true:

Theorem 7.4([13, 7.7 Theorem]) Let G and G’ be étale groupoids.G and G’
are weakly equivalent if and only 8h(G) and ShG’) are equivalent agGrothendieck
toposes.

(i) in Diagram 1 is obtained by Theorem 7.4. We lose somerimgtion about
guasi-isometry classes of finitely generated groups by ifiiDiagram 1. Thus, we
have the following problem:



894 H. MORISHIMA

PROBLEM 7.5. LetG andG’ be finitely generated groups. Is it true thaii{G, k)
and R(G/, k) are Morita equivalent, the@® and G’ are quasi-isometric? If not, give a
counter-example.
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