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Abstract
The localized induction hierarchy in three-dimensional space forms is studied. In

particular, we determine all the generating curves of congruence solutions to each
evolution equation belonging to the localized induction hierarchy. Here, a congru-
ence solution means a solution moving without changing shape. Also, we give the
characterization of some low-order soliton curves.

1. Introduction

We consider the motion of thin vortex filaments in ideal three-dimensional fluids.
In the so-called localized induction approximation, the motion of vortex filaments is
governed by the following evolution equation:

(1.1) Q
t D Q
s � Q
ss,

where Q
 D Q
 (s, t) 2 R3 represents the position of the centerline of a vortex filament in
the three-dimensional Euclidean spaceR3, and t is time ands is the arclength param-
eter along the centerline of the vortex filament ([1]). The equation (1.1) is called the
localized induction equation(LIE). (It is also called theBetchov–Da Rios equation, the
vortex filament equation, the filament model, etc.)

In [9], Hasimoto discovered a transformation which associates the LIE with the
cubic nonlinear Schrödinger equation, a well-known example of a soliton equation.
Also, Marsden–Weinstein ([27]) showed that the LIE is described as a Hamiltonian
flow on an appropriate space of curves inR3, the Hamiltonian being just the arclength
functional. By using a similar framework to [27] and the Hasimoto transformation,
Langer-Perline ([23]) constructed an infinite sequence of commuting Hamiltonian vec-
tor fields X1, X2, : : : and the associated infinite sequence of flows starting with (1.1).
Therefore, the LIE (1.1) is viewed as an infinite-dimensional completely integrable
Hamiltonian system.
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In [23], the sequenceXn had been constructed by successively applying an integro-
differential operatorR, called therecursion operator, to the vector fieldX0 D �
s. In
[22], however, Langer obtained an inductive formula ofXn without integral operators.
According to this formula, the first few vector fields are calculated as follows:

X0 D �
s,

X1 D �
C1

2

sC 
s � 
ss,

X2 D

�

3

2
j
ssj

2
C

C2
1

8
�

C2

2

�


sC 
sssC
C1

2

s � 
ss,

where C1, C2 are real constants. EachXn D Xn[
 ] can be viewed as an (n C 1)-st
order ordinary differential operator with respect tos depending onn real parameters
C1, : : : , Cn. Then the evolution equationQ
t D Xn[ Q
 ], with C1, : : : , Cn fixed, is called
the n-th localized induction equation, and the infinite sequence of these equations is
called the localized induction hierarchy(LIH). The first localized induction equation
Q
t D X1[ Q
 ] with C1 D 0 is equal to the original localized induction equation (1.1).
Furthermore, it is known that the second and third localizedinduction equations also
arise in contexts of fluid mechanics (cf. [4], [5], [6], [30],[35], etc.).

An arclength-parametrized curve
 D 
 (s) is said to be ann-th soliton curveif 

is a solution to then-th stationary equationXn[
 ] D 0 for some constantsC1,: : : ,Cn. It
is known that low-order soliton curves are applied to surface theory in a wide variety of
contexts. In these cases, it is often useful to consider the natural generalization of soli-
ton curves innon-Euclidean space forms S2, H2, S3, etc. ([3], [7], [25], [31], etc.). For
example, by using elasticae (a type of third soliton curves)in S2, Pinkall ([31]) con-
structed the first examples of Willmore surfaces inR3 not coming from stereographic
projections of minimal surfaces inS3. Also, some fourth soliton curves inH2 were
applied to construct explicit examples of the Konopelchenko-Taimanov motions of im-
mersed Riemann surfaces inR3 ([7]). These examples imply the significance of in-
vestigating the localized induction hierarchy and solitoncurves in space forms, or in
general Riemannian manifolds.

In this paper, we consider the localized induction hierarchy in oriented three-
dimensional Riemannian manifolds. In particular, we investigate congruence solutions
to the n-th localized induction equation. Here, a congruence solution is defined to be
a solution which evolves without changing shape. This permanent shape is called the
generating curveof the congruence solution.

Our main results are as follows: we prove that in the case of the three-dimensional
space formsR3, S3, H3, the set of all the generating curves of congruence solutions to
the n-th (n > 1) localized induction equation coincides with the set of all (n C 2)-
nd soliton curves (Theorem 5.1). Also, we investigate some low-order soliton curves.
In particular, we prove that the set of all first (resp. second) soliton curves in an ori-
ented three-dimensional Riemannian manifold coincides with the set of all geodesics
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(resp. helices). Further, in the case ofR3, S3, H3, we prove that the set of all third
soliton curves coincides with the set of allKirchhoff rod centerlines(Theorem 3.3).

Unless otherwise specified, all manifolds, curves, vector fields, etc., are assumed
to be C1 throughout this paper. LetM be an oriented three-dimensional Riemannian
manifold. We denote byh , i the Riemannian metric, byr the Levi-Civita connection
and by� the vector product.

In Section 2, we define the localized induction hierarchy inM (Definition 2.6). Let

 D 
 (s) be an arclength-parametrized curve inM . We denote byT(s) D �
 (s)=�s
the unit tangent vector to
 . Let {Cn}

1

nD1 be an arbitrary real sequence. We inductively
define a sequence{Xn}

1

nD0 of vector fields along
 by

X0 D �T , Xn D

 

�

Cn

2
C

1

2

n�1
X

kD1

hXk, Xn�ki

!

T � T � rT Xn�1.

Here, whenn D 1, we treat the term (1=2)
Pn�1

kD1hXk, Xn�ki as zero. For example,X2

is calculated as follows:

X2 D

�

3

2
jrT T j2C

C2
1

8
�

C2

2

�

T C (rT )2T C
C1

2
T � rT T .

The evolution equation

(1.2)
� Q
 (s, t)

�t
D Xn[ Q
 (s, t)]

of arclength-parametrized curves inM is called then-th localized induction equation
(n-th LIE), and the infinite sequence of the equations (1.2),n D 0, 1, 2,: : : , is called
the localized induction hierarchy(LIH).

We introduce the definition of a congruence solution to then-th LIE as follows:

DEFINITION 2.9. LetM be an oriented three-dimensional Riemannian manifold.
A solution Q
 W R�R!M to then-th localized induction equationQ
t D Xn[ Q
 ] is called
a congruence solutionif Q
 is expressed as follows: there exist an arclength-parametrized
curve
 W R!M , a constantc 2 R and a one-parameter group{'t}t2R of isometries of
M such thatQ
 (s, t) D 't (
 (s� ct)). This 
 is uniquely determined byQ
 and is called
the generating curveof the congruence solutionQ
 .

In Section 3, in the same way as [22], we define ann-th soliton curve as a solution
to then-th stationary equation (Definition 3.1). That is, an arclength-parametrized curve

 W R!M is called ann-th soliton curveif Xn[
 ] D 0 holds for someC1, : : : ,Cn 2 R.
The set of alln-th soliton curves is called then-th soliton class, and is denoted by0n.
Then we obtain the following theorem, which is a generalization of the Euclidean case
obtained by Langer ([22]).
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Theorem 3.3. Let M be an oriented three-dimensional Riemannian manifold.
Then0n � 0nC1 holds for any positive integer n. Also, let 
 W R!M be an arclength-
parametrized curve. Then the following holds:
(i) 
 2 01 if and only if 
 is a geodesic.
(ii) 
 2 02 if and only if 
 is a helix.
(iii) Suppose thatM D R3, S3, H3. Then 
 2 03 if and only if 
 is a Kirchhoff
rod centerline.

Here, aKirchhoff rod centerlineis one of the mathematical models of thin elastic
rods. We defer the precise definition of a Kirchhoff rod centerline and the proof of (iii)
of Theorem 3.3 to Section 6.

In Section 4, as a preparation for the proof of the main theorem (Theorem 5.1),
we summarize some fundamental properties of thenatural frame, natural curvatures
and complex curvatureof a curve in three-dimensional space forms.

In Section 5, we state and prove the main theorem. We considerthe problem of
determining the generating curves of congruence solutionsto then-th LIE. First, by the
definition of ann-th soliton curve, it is easily shown that any
 2 0n is the generating
curve of a congruence solution to then-th LIE with someC1, : : : ,Cn 2 R. This is valid
for the case whereM is a general oriented three-dimensional Riemannian manifold.

In the case whereM D R3, S3, H3, however, we can prove that any curve
 in
0nC2 (� 0n) is the generating curve of a congruence solution to then-th LIE. More
precisely, the following main theorem holds.

Theorem 5.1. Let M D R3,S3, H3, and n> 1. Let 
 W R!M be an arclength-
parametrized curve. Then the following(i) and (ii) are equivalent.
(i) 
 2 0nC2.
(ii) 
 is the generating curve of a congruence solution to the n-th localized induction
equation with some C1, : : : , Cn 2 R.

In the case whereM D R3, the part of (i)) (ii) of Theorem 5.1 is proven in
(b) of Proposition 12 of [22]. One of the different points of the proof of the case of
M D S3, H3 from that of the Euclidean case is that finding the constantsC1, : : : , Cn

in (ii) is not trivial.
In the last part of this section, we consider special congruence solutions. Suppose

that M D R3. Then we can consider congruence solutions evolving bytranslation.
A solution Q
 (s, t) to the n-th LIE is called a translation solutionif Q
 (s, t) satisfies
the condition obtained by replacing “isometries ofM ” in Definition 2.9 by “transla-
tions of R3” (Definition 5.6). We give the translation solution versionof Theorem 5.1
(Proposition 5.7).

In Section 6, we review the concept of aKirchhoff elastic rodand define aKirchhoff
rod centerline, and give the proof of (iii) of Theorem 3.3.



CONGRUENCE SOLUTIONS TO THE LIH 925

This paper is the detailed version of the former part of the announcement [16]. In
the present paper, the author uses one different terminology from [16]. The “traveling
wave solution” in the abstract of [16] is identical to our “congruence solution”.

2. The localized induction hierarchy

In this section, we give the definition of the localized induction hierarchy Q
t D

Xn[ Q
 ], n D 0, 1, 2,: : : , in an oriented three-dimensional Riemannian manifold (Defin-
ition 2.6), which is obtained by replacing the ordinary differentiation of the Euclidean
case in Section 2 of [22] by the covariant differentiation. Also, we define a congruence
solution to then-th localized induction equation (Definition 2.9). In the last part of this
section, we introduce the normalization ofXn, which will be used in the following sec-
tions. Although the contents of this section are basically parallel to the Euclidean case
in Section 2 of [22], we describe the details for self-containedness.

Unless otherwise specified, all manifolds, curves, vector fields, etc., are assumed to be
C1. Let M be an oriented three-dimensional Riemannian manifold. We denote byh , i
the Riemannian metric, byr the Levi-Civita connection and by� the vector product.

Let I (� R) be an open interval, and let
 W I !M be a curve parametrized by
arc lengths. We denote byT(s) D �
 (s)=�s the unit tangent vector to
 . Also, we
denote by�s the differentiation with respect tos, and by ��1

s the antidifferentiation
with respect tos, that is,��1

s f is a function whose differentiation with respect tos is
equal to f .

We define a sequence{Xn}
1

nD0 of vector fields along
 . This Xn D Xn[
 ] is the
direction in which a solution of then-th LIE evolves. Since then-th LIE is an evo-
lution equation of arclength-parametrized curves, the vector field Xn must satisfy one
condition mentioned below (Definition 2.2). First, the following lemma holds.

Lemma 2.1. Let 
 (u, t) D 
t (u) (jt j � 1) be a variation of curves inM with
variation parameter t, and let WD �
 =�t be the variation vector field. We assume
that the curve u7! 
0(u) is unit-speed. Then the curve u7! 
t (u) is unit-speed for any
fixed t if and only if W satisfies the conditionhr

�=�uW, �
 =�ui D 0.

Proof. Suppose that for any fixedt , the curveu 7! 
t (u) is unit-speed. That is,
j�
 =�uj2 D 1 for all (u, t). Then (�=�t)h�
 =�u, �
 =�ui D 0. Since

�

�t

�

�


�u
,
�


�u

�

D 2

�

r

�=�t
�


�u
,
�


�u

�

D 2

�

r

�=�u
�


�t
,
�


�u

�

D 2

�

r

�=�uW,
�


�u

�

,

we seehr
�=�uW, �
 =�ui D 0. The converse also holds immediately.

And so we define as follows:
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DEFINITION 2.2. Let W be a vector field along an arclength-parametrized curve

 . Then W is called locally arclength-preserving(LAP) if W satisfieshrT W, Ti D 0.

A trivial example of a LAP vector field is given by the vector field cT along 
 ,
wherec is a constant.

Before giving the definition of{Xn}
1

nD0, we introduce therecursion operatorR,
which gives a method making another LAP vector field from one LAP vector field.

First, let W be a not necessarily LAP vector field along
 . Then we can make
W LAP by modifying its tangential component. More precisely, the following propos-
ition holds.

Proposition 2.3. Let W be a vector field along
 . Let WD f T C W? be the
decomposition of W into the tangential and normal components, where f is a function.
Then the following holds:
(i) W is a LAP vector field along
 if and only if �s f D hW?, rT Ti holds.
(ii) We setPW D (��1

s hW
?,rT Ti)T CW?. ThenPW is a LAP vector field along
 .

Proof. By using the Leibniz rule, we seehrT W, Ti D �s f ChrT W?, Ti D �s f �
hW?, rT Ti. Therefore (1) holds. Also, (2) immediately follows from (1).

We note thatPW is only defined up to addition of a constant multiple ofT . The
operatorP is called thereparametrization operator.

Let J denote the operator which takes vector product with the unittangent T .
That is, J X D T � X for X 2 T


 (s)M , wheres 2 I . Note thathJ X, Yi D �hX, JYi
and J2X D J(J X) D �X? holds, whereX, Y 2 T


 (s)M . Then the following propos-
ition holds.

Proposition 2.4. Let W be a LAP vector field along
 . Then there exists a LAP
vector field X along
 satisfying J XD rT W. Such X is uniquely determined up to
addition of a constant multiple of T, and X is expressed as follows: X D P(�J(rT W)).

Proof. First, we seek for all vector fieldsX along
 satisfying J XD rT W. Sup-
pose that a not necessarily LAP vector fieldX satisfies J X D rT W. Then X?

D

�J2X D �J(rT W), and soX is expressed as

(2.1) X D f T � J(rT W),

where f is a function of s. Conversely, for any functionf , the vector fieldX de-
fined by (2.1) satisfiesJ XD�J2(rT W)D (rT W)? DrT W. Consequently,X satisfies
J X D rT W if and only if X is expressed as (2.1), wheref is any function.

Therefore, by Proposition 2.3, we obtain that theX defined by (2.1) is LAP if and
only if X is expressed asX D P(�J(rT W)). This completes the proof.
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For a LAP vector fieldW along 
 , we set

RW D P(�J(rT W)) D (��1
s h�J(rT W), rT Ti)T � J(rT W).

The operatorR, which sends a LAP vector field to another LAP vector field, is called
the recursion operator. Note that in the same way asPW, RW is only defined up to
addition of a constant multiple ofT .

In later sections, we also use the following notationPc, Rc to eliminate the am-
biguity of the definitions ofP, R. We first fix a points0 2 I . Let c 2 R, and we set

PcW D

�

Z s

s0

hW?, rT Ti dsC c

�

T CW?,

RcW D Pc(�J(rT W)) D

�

Z s

s0

h�J(rT W), rT Ti dsC c

�

T � J(rT W).

If two LAP vector fieldsX, W satisfy J X D rT W, then there exists a uniquec 2
R such thatX DRcW. Also, for a fixedc, Rc is viewed as a map of the vector space
of all LAP vector fields along
 into itself. In particular,R0 is a linear transformation
on this vector space. Noting thatRcW D R0WC cT holds, we can verify that

(2.2) Ra1Ca2(W1CW2) D Ra1W1CRa2W2, Rca(cW) D cRaW

for any LAP vector fieldsW1, W2, W along 
 and anya1, a2, c, a 2 R. We note that
Rc is determined only after a reference points0 in the domain of
 is fixed. In what
follows, however, we use the notationRc without mentioning each time that we take
a reference points0.

Now let us construct a sequence{Xn}
1

nD0 of LAP vector fields satisfying

(2.3)

�

X0 D �T,
J Xn D rT Xn�1 (n > 1).

By Proposition 2.4, such{Xn}
1

nD0 is constructed as follows:Xn D Rdn(Xn�1), where
{dn}

1

nD1 is any real sequence. Note that this formula is written in terms of the integro-
differential operatorRdn . In Section 2 of [22], however, Langer expressedXn by
X0,: : : , Xn�1 without integral, in the case ofM D R3. This result is naturally extended
to the case of an oriented three-dimensional Riemannian manifold (Proposition 2.5).

To prove Proposition 2.5, it is convenient to use the conceptof a formal power se-
ries with coefficients of vector fields along a curve. LetC1(I ) denote the algebra of all
C1 functions onI , and letX (
 ) denote the vector space of allC1 vector fields along

 . Then X (
 ) is a C1(I )-module. LetC1(I )[[�]] denote the algebra of all formal
power series in the indeterminate� with coefficients inC1(I ) and letX (
 )[[�]] de-
note the vector space of all formal power series in the indeterminate� with coefficients
in X (
 ). For (g, X) D

�

P

1

nD0 �
ngn,

P

1

nD0 �
n Xn

�

2 C1(I )[[�]] � X (
 )[[�]], where
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gn 2 C1(I ), Xn 2X (
 ), we definegX 2X (
 )[[�]] by gXD
P

1

nD0�
n
�

Pn
kD0gk Xn�k

�

.
Under this action,X (
 )[[�]] becomes aC1(I )[[�]]-module.

The linear operator�s on C1(I ) naturally extends to that onC1(I )[[�]], which is
also denoted by the same notation. The linear operatorsJ andrT on X (
 ) naturally
extend to those onX (
 )[[�]], which are also denoted by the same notation. That is,
for X D

P

1

nD0�
nXn 2X (
 )[[�]], where Xn 2X (
 ), we defineJ X, rT X as follows:

J X D
P

1

nD0 �
n J Xn, rT X D

P

1

nD0 �
n
rT Xn. Similarly, the symmetric bilinear form

h , i on theC1(I )-moduleX (
 ) naturally extends to that on theC1(I )[[�]]-module
X (
 )[[�]]. That is, for X D

P

1

nD0�
nXn, Y D

P

1

nD0�
nYn 2X (
 )[[�]], where Xn,Yn 2

X (
 ), we definehX, Yi (2 C1(I )[[�]]) by hX, Yi D
P

1

nD0 �
n
�

Pn
kD0hXk, Yn�ki

�

.

Proposition 2.5. Let {Cn}
1

nD1 be an arbitrary real sequence. We inductively de-
fine a sequence{Xn}

1

nD0 of vector fields along
 as follows:

X0 D �T,(2.4)

Xn D fnT � J(rT Xn�1) (n > 1),(2.5)

where

(2.6) fn D

8

�

�

�

<

�

�

�

:

�

C1

2
(n D 1),

�

Cn

2
C

1

2

n�1
X

kD1

hXk, Xn�ki (n > 2).

Then{Xn}
1

nD0 is a sequence of LAP vector fields satisfying(2.3).
Conversely, if {Xn}

1

nD0 is a sequence of LAP vector fields satisfying(2.3), then there
exists a unique real sequence{Cn}

1

nD1 such that(2.5) and (2.6) hold. The{Cn}
1

nD1 is
given by Cn D

Pn
kD0hXk, Xn�ki.

Under the above relation, the set of all real sequences{Cn}
1

nD1 is in one-to-one cor-
respondence with the set of all sequences{Xn}

1

nD0 of LAP vector fields satisfying(2.3).

Proof. We first prove the latter part. Let{Xn}
1

nD0 be a sequence of LAP vector
fields satisfying (2.3). ThenX?

n D �J(J Xn) D �JrT Xn�1. We express the tangential
componenthXn, Ti of Xn by X0, : : : , Xn�1. We setX D

P

1

nD0 �
nXn (2 X (
 )[[�]]).

Then (2.3) implies

(2.7) J X D J X0C

1

X

nD1

�

n J Xn D

1

X

nD1

�

n
rT Xn�1 D �rT X.

Now, we show�shX, Xi D 0. Note thatJ is skew-adjoint, that is,hJ X, Yi D �hX, JYi
holds for anyX,Y 2X (
 )[[�]]. The skew-adjointness ofJ and (2.7) yield��shX, Xi D
2h�rT X, Xi D 2hJ X, Xi D 0. Thus we have�shX, Xi D 0. Therefore, the coefficient
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of each�n term of hX, Xi is independent ofs, that is, there exists a real sequence
C0, C1, C2, : : : such that

(2.8) hX, Xi D
1

X

nD0

�

nCn.

Hence the definition ofhX, Xi yields Cn D
Pn

kD0hXk, Xn�ki. Since X0 D �T , we see
C0 D 1 andC1 D �2hX1, Ti. Thus hX1, Ti D �C1=2. Whenn > 2, we see that

Cn D

n
X

kD0

hXk, Xn�ki D �2hXn, Ti C
n�1
X

kD1

hXk, Xn�ki,

from which it follows thathXn, Ti is expressed as the right hand side of (2.6). Thus
Xn (n > 1) is expressed as (2.5). Also, we can easily check the uniqueness of{Cn}

1

nD1,
and hence the proof of the latter part is completed.

Next we show the former part. Let{Cn}
1

nD1 be an arbitrary real sequence, and
{Xn}

1

nD0 the sequence of vector fields along
 defined by (2.4), (2.5) and (2.6). First,
X0 D �T is LAP, as stated earlier.

We show, by induction, that for alln > 1, J Xn D rT Xn�1 holds andXn is LAP.
First, RX0 D P(�J(rT X0)) D (��1

s hJrT T, rT Ti)T C JrT T D CT C JrT T , where
C 2 R. On the other hand, (2.5) yieldsX1 D �(C1=2)T C JrT T . Therefore, it follows
from Proposition 2.4 thatX1 is LAP and J X1 D rT X0. Next, we assume thatJ Xl D

rT Xl�1 holds for l D 1, 2, : : : , n and Xn is LAP. We show thatJ XnC1 D rT Xn and
XnC1 is LAP. First, by (2.5) together with the assumption thatXn is LAP, we have
J XnC1 D �J2(rT Xn)D (rT Xn)? D rT Xn. It remains only to show thatXnC1 is LAP.
By the assumptionJ Xl D rT Xl�1 (l D 1, 2, : : : , n) and J XnC1 D rT Xn, we see

2�s fnC1 D

n
X

kD1

(hJ XkC1, XnC1�ki C hXk, J XnC2�ki)

D

n
X

kD1

(hJ XkC1, XnC1�ki � hJ Xk, XnC2�ki)

D hJ XnC1, X1i � hJ X1, XnC1i D �2hXnC1, J X1i.

Therefore,�s fnC1 D hXnC1, rT Ti, which implies thatXnC1 is LAP. Hence the proof
of the former part is completed.

It is easily checked that under the above relation, the set ofall real sequences
{Cn}

1

nD1 is in one-to-one correspondence with the set of all sequences {Xn}
1

nD0 of LAP
vector fields satisfying (2.3). This completes the proof of the proposition.
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In what follows, we setC0 D 1, and instead of a sequenceC1,C2, : : : , we consider
the sequenceC0 D 1, C1, C2, : : : whose index starts from zero. We set

(2.9) S D {{Cn}
1

nD0 j Cn 2 R (8n > 0), C0 D 1}.

Since Xn does not depend onCnC1, CnC2, : : : , we also writeXn as XC0,C1,:::,Cn
n . Ac-

cording to (2.5), we can calculateX0, X1, X2 as follows:

X0 D �T,

X1 D �
C1

2
T C T � rT T,

X2 D

�

3

2
jrT T j2C

C2
1

8
�

C2

2

�

T C (rT )2T C
C1

2
T � rT T .

Each XC0,:::,Cn
n D XC0,:::,Cn

n [
 ] can be viewed as an (nC 1)-st order ordinary differential
operator with respect tos.

We define then-th localized induction equation and the localized induction hier-
archy in M as follows:

DEFINITION 2.6. Let {Cn}
1

nD0 2 S and let {Xn}
1

nD0 be the sequence of the dif-
ferential operators defined by (2.4), (2.5) and (2.6). The evolution equation

(2.10)
� Q
 (s, t)

�t
D XC0,:::,Cn

n [ Q
 (s, t)]

of arclength-parametrized curves inM is called then-th localized induction equation
(n-th LIE). Here,s is the arclength parameter andt is time. Also, the infinite sequence
of the equations (2.10),nD 0,1,2,: : : , is called thelocalized induction hierarchy(LIH).

REMARK 2.7. As mentioned in the introduction, inR3, the LIE is described as
a Hamiltonian flow on an appropriate space of curves, and the LIH is interpreted as
a sequence of commuting Hamiltonian flows of this Hamiltonian system. As for the
Hamiltonian formulation in the case of a general oriented three-dimensional Riemann-
ian manifold, we refer the reader to [36]. In this general case, the existence of a se-
quence of commuting Hamiltonian flows is not expected. However, in the case of three-
dimensional space forms, it is shown in [36] that there exists a sequence of commuting
Hamiltonian flows, which is essentially equivalent to the LIH in Definition 2.6.

REMARK 2.8. The first LIE withC1 D 0, that is,

(2.11)
� Q


�t
D

� Q


�s
� r

�=�s
� Q


�s
,

is the natural generalization of the original LIE (1.1) fromthe point of view of Riemann-
ian geometry. For the initial value problem of this evolution equation, we refer the reader
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to [19], [20], [21]. Also, the second LIE withC2 D C2
1=4 is the natural generalization

of the Fukumoto–Miyazaki equation

(2.12) Q
t D
C1

2
Q
s � Q
ssC

�

Q
sssC
3

2
j Q
ssj

2
Q
s

�

from the point of view of Riemannian geometry. The Fukumoto–Miyazaki equation
(2.12) is a model of the motion of vortex filaments with the effect of axial flow. For
details, we refer the reader to [5], [6], [28], [33], etc. Furthermore, it is known that
the third LIE also arises in fluid mechanical contexts ([4], [30], [35], etc.).

Now we define a congruence solution, that is, a solution evolving without changing
shape. We will investigate congruence solutions to then-th LIE in Section 5.

DEFINITION 2.9. LetM be an oriented three-dimensional Riemannian manifold.
A solution Q
 W R�R!M to then-th localized induction equationQ
t D Xn[ Q
 ] is called
a congruence solutionif Q
 is expressed as follows: there exist an arclength-parametrized
curve
 W R!M , a constantc 2 R and a one-parameter group{'t}t2R of isometries of
M such thatQ
 (s, t) D 't (
 (s� ct)). This 
 is uniquely determined byQ
 and is called
the generating curveof the congruence solutionQ
 .

For a convenience in Section 5, we consider thenormalization Yof X D
P

1

nD0�
nXn

in the same way as in the case ofM D R3 (p. 29 of [22]). WhenCn D 0 for all n > 1,
we denote theXC0,:::,Cn

n by Yn. For example,

Y0 D �T,

Y1 D T � rT T,

Y2 D
3

2
jrT T j2T C (rT )2T .

We setY D
P

1

nD0 �
nYn. Then (2.8) implies

hY, Yi D 1.

We investigate the relation betweenX and its normalizationY. The following propos-
ition holds.

Proposition 2.10. If {An}
1

nD0 2 S, then there exists a unique{Cn}
1

nD0 2 S such
that XD AY, where XD

P

1

nD0�
nXn D

P

1

nD0�
n XC0,:::,Cn

n and AD
P

1

nD0�
n An. More-

over, the map sending{An}
1

nD0 2 S to {Cn}
1

nD0 2 S is bijective. Also, the {Cn}
1

nD0 is
given by the relation CD A2, where CD

P

1

nD0 �
nCn.
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Proof. Let{An}
1

nD02S. Then AYD
P

1

nD0�
nZn, where we setZnD

Pn
kD0 An�kYk.

It follows from Z0 D Y0 D �T and JYk D rTYk�1 that J Zn D
Pn

kD0 An�k JYk D
Pn

kD1 An�krTYk�1DrT Zn�1, wheren>1. Also, eachZn is LAP, becausehrT Zn,TiD
hJ ZnC1, Ti D 0. Therefore, by the latter part of Proposition 2.5, there exists a unique
{Cn}

1

nD0 2 S such thatZnD XC0,:::,Cn
n for all n> 0. Thus XD AY holds.

Next we showC D A2. Note that (2.8), that is,hX, Xi D C holds. On the other
hand, it follows fromXD AY and hY, Yi D 1 that hX, Xi D A2

hY, Yi D A2. Therefore,
CD A2 holds, that is,CnD

Pn
kD0 Ak An�k holds for all n> 0.

We show the bijectivity of the map sending{An}
1

nD0 2 S to {Cn}
1

nD0 2 S. Let
{Cn}

1

nD0 2 S. Then we can check that there exists a unique{An}
1

nD0 2 S satisfying
CD A2. Thus, by the above assertion, this{An}

1

nD0 satisfiesXD AY. Also, the unique-
ness of{An}

1

nD0 satisfyingCD A2 yields the uniqueness of{An}
1

nD0 satisfyingXD AY.
This completes the proof of the bijectivity.

3. Soliton curves

In this section, we define ann-th soliton curve as a solution to the stationary equa-
tion corresponding to then-th LIE, and investigate some low-order soliton curves. In
particular, we give the characterizations of first and second soliton curves in an ori-
ented three-dimensional Riemannian manifoldM and that of third soliton curves in
R3, S3, H3 (Theorem 3.3).

DEFINITION 3.1. Let n > 1. An arclength-parametrized curve
 W R ! M is
called ann-th soliton curveif XC0,:::,Cn

n [
 ] D 0 holds for someC1, : : : , Cn 2 R. Also,
the set of alln-th soliton curves is called then-th soliton class, and is denoted by0n.

An n-th soliton curve is also characterized in the following way.

Proposition 3.2. Let 
 W R ! M be an arclength-parametrized curve. Then

 2 0n if and only if there exists(C0, C1, : : : , Cn�1) 2 Rn with C0 D 1 such that
rT XC0,:::,Cn�1

n�1 D 0.

Proof. Let 
 2 0n. Then there exists (C0, : : : , Cn) 2 RnC1 with C0 D 1 such
that XC0,:::,Cn

n [
 ] D 0. Thus the normal componentX?

n D �JrT Xn�1 of Xn is equal to
zero. Therefore, (rT Xn�1)? D �J(JrT Xn�1) D 0. On the other hand, sinceXn�1 is
a LAP vector field, the tangential component ofrT Xn�1 is also equal to zero. Hence
rT Xn�1 D 0.

We show the converse. Suppose that there exists (C0,C1,:::,Cn�1) 2 Rn with C0D 1
such thatrT XC0,:::,Cn�1

n�1 D 0. Then it follows from the definition ofR0 thatR0(Xn�1) D

0. On the other hand, there existsCn 2 R such thatXC0,:::,Cn
n D R0(XC0,:::,Cn�1

n�1 ). Thus
XC0,:::,Cn

n D 0, and hence
 2 0n.
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We investigate some low-order soliton classes. An arclength-parametrized curve

in M is said to be ahelix if 
 is a geodesic or has a constant Frenet curvature (> 0)
and a constant Frenet torsion.

Theorem 3.3. Let M be an oriented three-dimensional Riemannian manifold.
Then0n � 0nC1 holds for any positive integer n. Also, let 
 W R!M be an arclength-
parametrized curve. Then the following holds:
(i) 
 2 01 if and only if 
 is a geodesic.
(ii) 
 2 02 if and only if 
 is a helix.
(iii) Suppose thatM D R3, S3, H3. Then 
 2 03 if and only if 
 is a Kirchhoff
rod centerline.

Here, we do not give the proof of (iii). We will describe the definition of a Kirchhoff
rod centerline and give the proof of (iii) in Section 6.

Proof of Theorem 3.3. First we show0n � 0nC1. Let 
 2 0n. ThenXC0,:::,Cn
n [
 ] D

0 for some (C0, C1, : : : , Cn) 2 RnC1 with C0 D 1, and hencerT XC0,:::,Cn
n D 0. Therefore,

Proposition 3.2 yields
 2 0nC1. Hence0n � 0nC1 follows.
Next we show (i). By Proposition 3.2,
 2 01 holds if and only if rT XC0

0 D

�rT T D 0. Hence the proof of (i) is completed.
We show (ii). By Proposition 3.2,
 2 02 holds if and only if rT XC0,C1

1 D

rT (�(C1=2)TCT�rT T)D 0 for someC1 2 R. Let 
 2 02. We denote by� D jrT T j
the Frenet curvature of
 . Suppose that
 is not a geodesic. Lets0 2 R be a point such
that �(s0) > 0. We denote by (T, N, B) the Frenet frame along
 and by� the Frenet
torsion of 
 arounds D s0. A straightforward calculation yields (�(C1=2)� � )�N C
�

0B D 0. Therefore,� D �0 and � D �C1=2 arounds0, where�0 is a positive constant.
By using the continuity of�, we see that�(s) D �0 on the wholeR, and hence the
Frenet frame is defined on the wholeR. Thus � (s) D �C1=2 on R, and hence
 is a
helix. Conversely, we can check that if
 is a helix, then
 2 02. Hence the proof of
(ii) is completed.

4. Natural curvatures and complex curvature

In this section, we define the natural frame, natural curvatures and complex curva-
ture of a curve in three-dimensional space forms, and describe some fundamental prop-
erties. Although these notions are originally defined for a curve in the three-dimensional
Euclidean space, they are naturally extended to a curve in three-dimensional space forms.
Since the proofs of the facts in this section are similar to those of the Euclidean case,
we omit them. For more details about these notions, we refer the reader to [2], [22],
[24], [26], etc.
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Let 
 be an arclength-parametrized curve inM D R3, S3, H3. Then there exists a
positive orthonormal frame (T, U1, U2) along 
 such that

(4.1) rT T D u1U1C u2U2, rTU1 D �u1T, rTU2 D �u2T,

whereu1, u2 are functions ofs. Such (T, U1, U2) is called anatural frame(or Bishop
frame) along 
 . Also, the functionsu1, u2 are called thenatural curvaturesof 
 , and
the complex-valued function D  (s) defined by D u1C iu2 is called thecomplex
curvatureof 
 .

We denote byT?M the normal bundle along
 , and byr? the normal connection
in T?M . That is,r?T U D rTU � hrTU, TiT for a normal vector fieldU along 
 .
Then a positive orthonormal frame field (T, V1, V2) along 
 is a natural frame if and
only if r?T V1 D r

?

T V2 D 0.
Compared to the Frenet frame (T, N, B), the natural frame (T, U1, U2) has the

advantage that it can be defined even on a point whererT T D 0. On the other hand,
unlike the Frenet frame, the natural frame is not uniquely determined by
 . For a
given 
 , the natural frame is uniquely determined only up to rotation aroundT by a
constant angle. Also, the complex curvature is determined only up to multiplication by
a complex unit. To be precise, if (T, U1, U2), (T, OU1, OU2) are two natural frames along

 , and  , O the corresponding complex curvatures, respectively, thenthere exists a
unique� 2 R=(2�Z) such that OU1D (cos�)U1C (sin�)U2, OU2D �(sin�)U1C (cos�)U2.
Also, O D e�i �

 holds.
In the same way as curves inR3 (Theorem 3 of [2]), the following proposition

(an analog of the classical fundamental theorem of curve theory) holds, whose proof
is omitted. Two curves
1, 
2 in M are calledproperly congruentif there exists an
orientation-preserving isometry' of M such that
2 D ' Æ 
1.

Proposition 4.1. Let M D R3, S3, H3. Two arclength-parametrized curves inM
are properly congruent if and only if their complex curvatures are identical up to multi-
plication of a complex unit. For any complex-valued function  W I ! C, there exists an
arclength-parametrized curve
 W I !M whose complex curvature corresponds to .

For the following section, we introduce another notation. Let 
 D 
 (s) be an
arclength-parametrized curve inM D R3, S3, H3, and (T,U1,U2) a natural frame along

 . For a vector fieldX along 
 , we define a complex-valued functionZ(X) of s by

Z(X) D hX, U1i C i hX, U2i.

We call Z the normal coordinate mapwith respect to the natural frame (T, U1, U2).
Then the complex curvature of 
 is expressed as D Z(rT T).
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5. Main theorem

In this section, we state and prove the main theorem (Theorem5.1). Also, in the
last part of this section, we show the translation solution version of the main theorem
(Proposition 5.7).

We consider the problem of determining the generating curves of congruence solu-
tions to then-th LIE. First, let
 2 0n. Then Xn[
 ] D 0 holds for someC1, : : : ,Cn 2 R.
Therefore, by settingQ
 (s,t) WD 't (
 (s))D 
 (s), where't

W M !M is the identity map
for all t 2 R, we see that the both sides of (2.10) are equal to zero. Thus, this Q
 (s, t)
is a congruence solution. Consequently, any
 2 0n is the generating curve of a con-
gruence solution to then-th LIE with someC1, : : : , Cn 2 R. This is valid for the case
whereM is a general oriented three-dimensional Riemannian manifold.

In the case whereM D R3, S3, H3, however, we can prove that any curve
 in
0nC2 (� 0n) is the generating curve of a congruence solution to then-th LIE. More
precisely, the following main theorem holds.

Theorem 5.1. Let M D R3, S3, H3, and n> 1. Let 
 W R!M be an arclength-
parametrized curve. Then the following(i) and (ii) are equivalent.
(i) 
 2 0nC2.
(ii) 
 is the generating curve of a congruence solution to the n-th localized induction
equation with some C1, : : : , Cn 2 R.

Let us sketch the basic idea of the proof of Theorem 5.1. We need three lemmas,
that is, Lemma 5.3, Lemma 5.4 and Lemma 5.5. Before Lemma 5.3,we first seek for
the variation formula for the complex curvature of a curve (Proposition 5.2). Using this
formula, we derive the condition of a vector field along a curve in M to extend to a
Killing vector field on M (Lemma 5.3).

Now, suppose that (i) holds. ThenXnC2[
 ] D 0 for someC1, : : : , CnC2 2 R. In
the case whereM D R3, as is shown in Proposition 12 of [22], (ii) of Theorem 5.1
holds for the constantsC1, : : : , Cn. However, in the case whereM D S3, H3, (ii) does
not necessarily holds for the same constantsC1, : : : , Cn. In order to replace them by
appropriate different constants, we prove Lemma 5.5. Here,Lemma 5.4 is a preparation
for proving Lemma 5.5. By using Lemma 5.3 and Lemma 5.5, we show that theXn for
these new constants extends to a Killing vector field onM . This implies that the shape
of 
 does not change infinitesimally in the directionXn. By letting {'t}t2R denote
the one-parameter group of isometries ofM generated by the Killing vector field, we
see thatQ
 (s, t) WD '

t (
 (s)) is a congruence solution to then-th LIE, from which (ii)
follows. The proof of (ii)) (i) is carried out by reversing this process.

We first seek for the variation formula for the complex curvature of a curve inM
(Proposition 5.2). Proposition 5.2 is the space form version of Theorem 14 of [22] (see
also [24]).
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Proposition 5.2. Let 
 (s, t) be a variation of arclength-parametrized curves in
M D R3, S3, H3, where t is the variation parameter. Let T(s, t), U1(s, t), U2(s, t) be
vector fields along
 such that for each fixed t, (T, U1, U2) is a natural frame along
the curve s7! 
 (s, t). We denote by u1,u2 the corresponding natural curvatures and by
 D u1 C iu2 the complex curvature. Let WD �
 =�t be the variation vector field of
the variation
 . Then the following variation formula of the complex curvature holds:
there exists b2 R such that

(5.1)
� 

�t

�

�

�

�

tD0

D Z(�R2
bWC GW),

where R denotes the recursion operator with respect to the curve s7! 
 (s, 0)
and Z denotes the normal coordinate map with respect to the natural frame
(T(s, 0), U1(s, 0), U2(s, 0)).

Proof. We denote the induced connection in the induced bundle 


�1TM by

r




�1TM , and writer


�1TM

�=�s andr


�1TM

�=�t asrT andrW, respectively. We can verify
that rWT D rT W and

(5.2) rTrWY � rWrT Y D G(hW, YiT � hT, YiW),

whereY is an arbitrary vector field along
 .
Since (T,U1,U2) is an orthonormal frame field along
 , there exist three functions

A(s, t), B(s, t), C(s, t) such that

rWT D CU1 � BU2, rWU1 D �CT C AU2, rWU2 D BT � AU1.

Let ! D !(s, t) be the t-angular velocity of the orthonormal frame field (T, U1, U2),
that is, let! D AT C BU1C CU2. Then the following equations hold:

(5.3) rWT D ! � T , rWU1 D ! �U1, rWU2 D ! �U2.

We show that! is expressed byW as follows: for each fixedt , there exists a
constantb(t) 2 R such that

(5.4) ! D �Rb(t)W,

where R denotes the recursion operator with respect to the arclength-parametrized
curves 7! 
 (s,t). First, the first equation of (5.3) andrWT DrT W imply T�(�!)D
rT W. Also, we see that�! is a LAP vector field along the curves 7! 
 (s, t).
(We give the proof, below.) Therefore, we obtain that there exists b(t) 2 R such that
�! D Rb(t)W.



CONGRUENCE SOLUTIONS TO THE LIH 937

We prove that�! is a LAP vector field along the curves 7! 
 (s, t). By Prop-
osition 2.3, it is sufficient to prove�A=�s D h!, rT Ti. By using (5.2), (4.1), (5.3),
we have

�A

�s
D

�hrWU1, U2i

�s
D hrTrWU1, U2i C hrWU1, rTU2i

D hrWrTU1, U2i C hrWU1, rTU2i

D h�u1rWT, U2i C hrWU1, �u2Ti

D h!, u1U1C u2U2i D h!, rT Ti.

Now, we calculate�u j =�t , where j D 1, 2. It follows from (5.2) and (5.3) that

�u j

�t
D

�hrT T, U j i

�t
D hrT (! � T)C GW, U j i C hrT T, ! �U j i

D h(rT!) � T C GW, U j i D hR!C GW, U j i.

Therefore,

� 

�t

�

�

�

�

tD0

D

�

�u1

�t
C i

�u2

�t

�

tD0

D Z(R!C GW)

D Z(R(�Rb(0)W)C GW) D Z(�R2
b(0)WC GW),

which completes the proof of the proposition.

By using Proposition 5.2, we obtain the following

Lemma 5.3. Let 
 W I !M D R3, S3, H3 be an arclength-parametrized curve,
and let W be a vector field along
 . If W extends to a Killing vector field onM ,
then W is LAP and

(5.5) �RaRbWC GWD 0

holds for some a, b 2 R. Also, if 
 is not a geodesic, then the converse is again true.
That is, if W is LAP and(5.5) holds for some a, b 2 R, then W extends to a Killing
vector field onM . Moreover, the Killing vector field is uniquely determined.

Proof. Suppose thatW extends to a Killing vector fieldQW on M . We prove that
W is LAP and (5.5) holds for somea, b 2 R. Let {'t}t2R denote the one-parameter
group of isometries ofM generated byQW, and't

�

the differential map of't for each
t . We set Q
 (s, t) D '

t (
 (s)). Since Q
 (s, t) is a curve with arclength parameters for
each fixedt , it follows from Lemma 2.1 thatW is LAP. Next we show (5.5) holds for
somea, b 2 R. Let (T(s), U1(s), U2(s)) be a natural frame along
 , u1(s), u2(s) the
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corresponding natural curvatures and (s) D u1(s)C iu2(s) the complex curvature. Let
QT(s, t) D 't

�

(T(s)) D � Q
 =�s, QU1(s, t) D 't
�

(U1(s)) and QU2(s, t) D 't
�

(U2(s)). Since't is
an isometry ofM , we see that for each fixedt , the frame{ QT(s, t), QU1(s, t), QU2(s, t)}
is a natural frame along the curves 7! Q
 (s, t), and the corresponding complex curva-
ture Q (s, t) of the curves 7! Q
 (s, t) is equal to (s). Therefore, from Proposition 5.2,
we see thatZ(�R2

bW C GW) D 0 for someb 2 R, which implies that the normal
component of the LAP vector field�R2

bW C GW is zero. On the other hand, (i) of
Lemma 2.3 yields that a LAP vector field whose normal component is zero is a con-
stant multiple ofT . Therefore,�R2

bW C GW D qT holds for someq 2 R. Thus,
�RbCqRbWC GWD 0, and hence we obtain (5.5) by settinga D bC q.

Before proving the rest part, we introduce some notation. Let X (M ) denote the
vector space of all vector fields onM , and let
 � W X (M )!X (
 ) denote the pull-
back by
 . That is, for X 2X (M ), 
 �X 2X (
 ) is defined by (
 �X)(x) D X(
 (x)),
where x 2M . Let K (M ) denote the vector space of all Killing vector fields onM .
It is well known thatK (M ) is a 6-dimensional linear subspace ofX (M ). Also, let

(5.6) K (
 ) D {W 2X (
 ) j W is LAP and satisfies (5.5) for somea, b 2 R}.

Since (2.2) holds for any LAP vector fieldsW1, W2, W along
 and anya1,a2,c,a 2 R,
it follows that K (
 ) is a linear subspace ofX (
 ). Also, the former part of the proof
implies that if X 2 K (M ), then 
 �X 2 K (
 ). Hence
 � can be viewed as a linear
map of K (M ) into K (
 ).

Suppose that
 is not a geodesic. We show that ifW is LAP and (5.5) holds for
somea,b 2 R, thenW uniquely extends to a Killing vector field onM . To prove this,
it is sufficient to prove that the linear map
 � W K (M )! K (
 ) is bijective. Thus it
is sufficient to prove that
 � is injective and dimK (
 ) 6 6. We note the fact that the
set of all zeros of a Killing vector field onM is either the empty set, the wholeM ,
or one geodesic inM . From this fact and the assumption that
 is not a geodesic, the
injectivity of 
 � W K (M )! K (
 ) follows.

It remains only to show dimK (
 ) 6 6. Let (T, U1, U2) be a natural frame along

 , and u1, u2 the corresponding natural curvatures of
 . Then the condition ofW D
f T C gU1C hU2 2X (
 ) to be LAP is fs D u1gC u2h, where f , g, h are functions
of s on I , and the subscripts denotes the derivative with respect tos.

Let W 2K (
 ). First, we show that thea and b in (5.5) are uniquely determined
by W. Suppose that�R

OaRObW C GW D 0 for some Oa, Ob 2 R. Since RaRbW D

R2
0W � bT � rT T C aT, it follows that �(b � Ob)T � rT T C (a � Oa)T D 0. There-

fore, by the assumption that
 is not a geodesic, we seea D Oa and bD Ob. Hence the
uniqueness ofa and b holds. In what follows, we also write thea and b as a(W) and
b(W), respectively.
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Let f , g, h denote theT, U1, U2 components ofW, respectively, and setA D
h�Rb(W)W, Ti. Then f , g, h, A satisfy the following system of linear ordinary differ-
ential equations:

fs D u1gC u2h,(5.7)

As D u2gs � u1hs,(5.8)

gssD �(u1)s f � (u2
1C G)g� u1u2h � u2A,(5.9)

hssD �(u2)s f � u1u2g� (u2
2C G)hC u1A.(5.10)

We show these four equations. First, (5.7) follows from the condition of W to be LAP.
Also, by a straightforward calculation, we see

RbW D �AT C (hsC u2 f )U1 � (gsC u1 f )U2,(5.11)

h�RRbWC GW, U1i D gssC (u1)s f C (u2
1C G)gC u1u2hC u2A,(5.12)

h�RRbWC GW, U2i D hssC (u2)s f C u1u2gC (u2
2C G)h� u1A.(5.13)

The condition ofRbW to be LAP yields (5.8). Also, by�RaRbW C GW D 0, we
have (5.9) and (5.10).

Let F denote the set of all pairs (f, g, h, A) 2 (C1(I ))4 satisfying (5.7), (5.8),
(5.9) and (5.10). ThenF is a 6-dimensional subspace of (C1(I ))4. Therefore, to prove
dimK (
 ) 6 6, it is sufficient to prove that the mapW (2K (
 )) 7! ( f,g,h, A) 2F is
linear and injective. First, by using (2.2), we see that the map W (2K (
 )) 7! b(W) 2
R is linear, and that the mapW (2 K (
 )) 7! ( f, g, h, A) 2 F is also linear. Also,
the injectivity of the linear mapW (2K (
 )) 7! ( f, g, h, A) 2F immediately follows.
Hence we obtain dimK (
 ) 6 6. The proof of Lemma 5.3 is completed.

We state the second lemma.

Lemma 5.4. Let {Bn}
1

nD0, {Cn}
1

nD0 2 S, and set BD
P

1

nD0�
nBn, C D

P

1

nD0�
nCn

and XD
P

1

nD0 �
nXn D

P

1

nD0 �
n XC0,:::,Cn

n . Then there exists{ OCn}
1

nD0 2 S such that

B OX D X, where OX D
P

1

nD0 �
n
OXn, OXn D X OC0,:::, OCn

n . Also, there exists{ QCn}
1

nD0 2 S such

that BXD QX, where QX D
P

1

nD0 �
n
QXn, QXn D X QC0,:::, QCn

n .

Proof. We prove the former part. By Proposition 2.10, there exists a unique
{An}

1

nD0 2 S such thatX D AY, where A D
P

1

nD0 �
n An. We deform thisA. We

can check that there exists a unique{ OAn}
1

nD0 2 S such that B OA D A, where OA D
P

1

nD0 �
n
OAn. We set OC D OA2, and define{ OCn}

1

nD0 2 S by OC D
P

1

nD0 �
n
OCn. Then Prop-

osition 2.10 yields OX D OAY. Therefore,B OX D (B OA)Y D AY D X, which completes
the proof of the former part.

We prove the latter part. Let{An}
1

nD0 and A be as above. We setQAD B A and de-

fine { QAn}
1

nD0 2 S by QAD
P

1

nD0 �
n
QAn. And we set QC D QA2 and define{ QCn}

1

nD0 2 S by
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QC D
P

1

nD0�
n
QCn. Then Proposition 2.10 yieldsQX D QAY, and henceQX D B(AY)D BX.

We state the third lemma.

Lemma 5.5. Let n> 0 and let 
 W R!M be an arclength-parametrized curve
in an oriented three-dimensional Riemannian manifoldM . Let p be an arbitrary real
constant. Then
 2 0nC2 if and only if there exists( OC0, OC1, : : : , OCnC2) 2 RnC3 with

OC0 D 1 such that X
OC0,:::, OCnC2

nC2 [
 ] � pX OC0,:::, OCn
n [
 ] D 0.

Proof. Let 
 2 0nC2. Then there exists (C0, : : : , CnC2) 2 RnC3 with C0 D 1
such thatXC0,:::,CnC2

nC2 [
 ] D 0. Let C j D 0 for j > n C 3, and X D
P

1

nD0 �
nXC0,:::,Cn

n .
We define{Bn}

1

nD0 2 S by B0 D 1, B1 D 0, B2 D �p and Bn D 0 for n > 3, and
set B D

P

1

nD0 �
n Bn. Then it follows from the former part of Lemma 5.4 that there

exists { OCn}
1

nD0 2 S such thatB OX D X, where OX D
P

1

nD0 �
n X OC0,:::, OCn

n . By taking the

coefficients of the�nC2 terms of the both sides ofB OX D X, we have X
OC0,:::, OCnC2

nC2 �

pX OC0,:::, OCn
n D XC0,:::,CnC2

nC2 D 0.

We show the converse. Suppose that there exists (OC0, OC1, : : : , OCnC2) 2 RnC3 with
OC0 D 1 such thatX

OC0,:::, OCnC2

nC2 [
 ] � pX OC0,:::, OCn
n [
 ] D 0. Let OC j D 0 for j > n C 3 and

let OX D
P

1

nD0 �
nX OC0,:::, OCn

n . We define{Bn}
1

nD0 and B in the same way as above. Then
it follows from the latter part of Lemma 5.4 that there exists{Cn}

1

nD0 2 S such that

B OX D X, where X D
P

1

nD0 �
n XC0,:::,Cn

n . By taking the coefficients of the�nC2 terms

of the both sides ofB OX D X, we have 0D X
OC0,:::, OCnC2

nC2 � pX OC0,:::, OCn
n D XC0,:::,CnC2

nC2 . Hence

 2 0nC2, which completes the proof.

Now we give the proof of the main theorem.

Proof of Theorem 5.1. We show (i)) (ii). Let 
 2 0nC2. First we consider the
case where
 is not a geodesic. By Lemma 5.5, there exists (C0, C1, : : : , CnC2) 2 RnC3

with C0D 1 such thatXC0,:::,CnC2

nC2 �G XC0,:::,Cn
n D 0. We simply writeXC0,:::,Cn

n etc. asXn

etc. Since there exista, b 2 R such thatXnC1 D RbXn and XnC2 D Ra XnC1, we have
RaRbXn �G Xn D 0. Therefore, it follows from Lemma 5.3 thatXn uniquely extends
to a Killing vector field QXn on M . Let {'t}t2R denote the one-parameter group of iso-
metries ofM generated byQXn, and setQ
 (s, t) D 't (
 (s)). Since't is an orientation-
preserving isometry, we seeXn['t

Æ 
 ] D 't
�

(Xn[
 ]). Thus, Q
 (s, t) satisfies

� Q


�t
D

QXn('t (
 (s))) D 't
�

(Xn[
 ](s)) D Xn['t
Æ 
 ](s) D Xn[ Q
 (s, t)].

Therefore,Q
 (s, t) is a congruence solution with generating curve
 , and hence (ii) holds.
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Next we consider the case where
 is a geodesic. Then, by Theorem 3.3,
 2 01�

0n. Thus, there exists (C0, C1, : : : , Cn) 2 RnC1 with C0 D 1 such thatXC0,:::,Cn
n D 0. By

setting Q
 (s, t) D 
 (s), we have� Q
 =�t D 0 D XC0,:::,Cn
n [ Q
 ], and hence (ii) holds. The

proof of (i) ) (ii) is completed.
We show (ii)) (i). Suppose that
 is the generating curve of a congruence

solution Q
 (s, t) to (2.10) with someC1, : : : , Cn 2 R. Then Q
 (s, t) is expressed as
Q
 (s, t)D 't (
 (s�ct)), wherec 2 R and{'t}t2R is a one-parameter group of isometries
of M . Let Z denote the Killing vector field onM corresponding to{'t}t2R. Since
[�'t (
 (s� ct))=�t ]tD0 D (
 �Z � cT)(s), we have
 �Z D Xn C cT D Xn � cX0.

Now, we show that there exists (QC0, QC1, : : : , QCn) 2 RnC1 with QC0 D 1 such that

Xn � cX0 D X QC0,:::, QCn
n . Let C j D 0 for j > nC 1 and setX D

P

1

jD0 �
j X

C0,:::,C j

j . We
define {B j }

1

jD0 2 S by B0 D 1, Bn D �c and B j D 0 for j ¤ 0, n, and setB D
P

1

jD0 �
j B j . Then it follows from Lemma 5.4 that there exists{ QC j }

1

jD0 2 S such that

BX D QX, where QX D
P

1

jD0 �
j X

QC0,:::, QC j

j . By taking the coefficients of the�n terms of

the both sides ofBX D QX, we haveXn � cX0 D X QC0,:::, QCn
n .

In what follows, we rewrite QC0, QC1, : : : , QCn as C0, C1, : : : , Cn, and write XC0,:::,Cn
n

etc. as simplyXn etc. Thus
 �Z D Xn. Therefore, by Lemma 5.3, there exista, b 2
R such thatRaRbXn � G Xn D 0. Since there exists a uniqueCnC1 2 R satisfying

XC0,:::,CnC1

nC1 D RbXC0,:::,Cn
n and there exists a uniqueCnC2 2 R satisfying XC0,:::,CnC2

nC2 D

Ra XC0,:::,CnC1
n , we haveXC0,:::,CnC2

nC2 � G XC0,:::,Cn
n D 0. Hence Lemma 5.5 implies
 2

0nC2, which completes the proof.

We consider the case ofnD 1. It is verified that if Q
 (s, t) is a congruence solution
to the first LIE Q
t D XC0,C1

1 [ Q
 ], then Q
 (sC (C1=2)t, t) is a congruence solution to the
first LIE with C1 D 0, that is, the equation (2.11). This implies that the set of all
the generating curves of congruence solutions to (2.11) coincides with the set of all
Kirchhoff rod centerlines. In the case whereM D R3, the essentially equivalent result
is obtained in [10], [26]. For details about congruence solutions to the original LIE
(1.1), see also [8], [18], etc.

In the rest of this section, we investigate special congruence solutions to then-th
LIE in the case whereM D R3. An isometry' W R3

! R3 is called atranslation if
there existsa 2 R3 such that'(x) D x C a for all x 2 R3. We define a translation
solution as follows:

DEFINITION 5.6. Let M D R3. A solution Q
 W R � R ! M to the n-th LIE
Q
t D Xn[ Q
 ] is called atranslation solutionif Q
 is expressed as follows: there exist an
arclength-parametrized curve
 W R!M , a constantc 2 R and a one-parameter group
{'t}t2R of translations ofR3 such that Q
 (s, t) D '

t (
 (s � ct)). This 
 is uniquely
determined byQ
 and is called thegenerating curveof the translation solutionQ
 .
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Then we have the translation solution version of Theorem 5.1as follows. The part
of (i) ) (ii) of Proposition 5.7 is obtained in (b) of Proposition 12 of [22]. Also,
in [5], it is shown that the permanent form of a steadily translating vortex-jet filament
is identical to a Kirchhoff rod centerline. The case ofn D 2 of Proposition 5.7 is
analogous to this result in [5].

Proposition 5.7. Let M D R3, and n> 1. Let 
 W R ! M be an arclength-
parametrized curve. Then the following(i) and (ii) are equivalent.
(i) 
 2 0nC1.
(ii) 
 is the generating curve of a translation solution to the n-thlocalized induction
equation with some C1, : : : , Cn 2 R.

Proof. We show (i)) (ii). Let 
 2 0nC1. By Proposition 3.2, there exists (C0,
C1, : : : , Cn) 2 RnC1 with C0 D 1 such thatrT XC0,:::,Cn

n D 0. SinceM D R3, the vector

field XC0,:::,Cn
n along
 extends to a constant vector fieldQXn on M . Let {'t}t2R denote the

one-parameter group of translations ofM generated byQXn, and let Q
 (s, t) D '

t (
 (s)).
By a similar argument to the proof of Theorem 5.1, we have� Q
 =�t D XC0,:::,Cn

n [ Q
 ], and
hence (ii) holds.

Next we show (ii)) (i). Suppose that
 is the generating curve of a translation
solution Q
 (s, t) to (2.10) with someC1, : : : , Cn 2 R. Then Q
 (s, t) is expressed as
Q
 (s,t)D 't (
 (s�ct)), wherec 2 R and{'t}t2R is a one-parameter group of translations
of M . Let Z denote the constant vector field onM corresponding to{'t}t2R. By a
similar argument to the proof of Theorem 5.1, there exists (QC0, QC1, : : : , QCn) 2 RnC1

with QC0 D 1 such that
 �Z D X QC0,:::, QCn
n . Since Z is a constant vector field onM ,

we seerT X QC0,:::, QCn
n D 0. Hence Proposition 3.2 implies
 2 0nC1, which completes

the proof.

6. Third soliton curves in space forms

In this section, we describe the definition of a Kirchhoff rodcenterline, and give the
proof of (iii) of Theorem 3.3. That is, we prove that in the case whereM D R3, S3, H3,
the third soliton class03 coincides with the set of all Kirchhoff rod centerlines.

First, we recall the notion of aKirchhoff elastic rod (or simply Kirchhoff rod),
which is a mathematical model of an elastic rod with the effects of both bending and
twisting. Let 
 D 
 (s) W [s1, s2] !M be a unit-speed curve inM D R3, S3, H3 and
let M D (M1, M2) be an orthonormal frame field in the normal bundleT?M along 
 .
We call such a pair{
 , M} a unit-speed curve with adapted orthonormal frame.

Let � be a fixed positive constant, which is determined by the material of the elas-
tic rod. We define the energyT, which includes the effects of both bending and twist-
ing, as follows:

T({
 , M}) D
Z s2

s1

jrT T j2 dsC �
2
X

iD1

Z s2

s1

jr

?

T Mi j
2 ds.



CONGRUENCE SOLUTIONS TO THE LIH 943

Here, the first term ofT({
 , M}) expresses the energy of bending, and the second term
that of twisting. We call{
 , M} a Kirchhoff rod if {
 , M} is a critical point ofT
with respect to the variations of unit-speed curves with adapted orthonormal frames
which preserve the end points
 (s1), 
 (s2) and the orthonormal frames (T(s1), M(s1)),
(T(s2), M(s2)) at the end points. More precisely, a Kirchhoff rod is definedto be a
solution of the associated Euler–Lagrange equations.

DEFINITION 6.1 (Definition 2.1 of [15]). LetM D R3,S3,H3. A unit-speed curve
with adapted orthonormal frame{
 , M} is called aKirchhoff rod if the following two
equations hold for some real constantsa and�.

rT

�

(rT )2T C

�

3

2
jrT T j2 �

�

2
C GC �a2

�

T � 2�aT � rT T

�

D 0,(6.1)

hr

?

T M1, T � M1i D a.(6.2)

The constanta is uniquely determined, and is called thetwist rateof {
 , M}.

We define a Kirchhoff rod centerline as follows:

DEFINITION 6.2 (the case ofn D 3 in Definition 2.4 of [17]). A unit-speed curve

 in M D R3, S3, H3 is called aKirchhoff rod centerlineif there exists an orthonor-
mal frame fieldM D (M1, M2) in the normal bundle along
 such that{
 , M} is a
Kirchhoff rod.

Many authors have been studying explicit expressions of Kirchhoff rod centerlines
(see, e.g., [11], [12], [13], [14], [15], [26], [29], [32], [34]). In [26], Langer–Singer
obtained explicit formulas of Kirchhoff rod centerlines inR3 by Jacobi sn function and
the elliptic integrals in terms of cylindrical coordinates. Also, in the case whereM D

S3, H3, analogous explicit formulas of Kirchhoff rod centerlinesare obtained in [15].
Before the proof of (iii) of Theorem 3.3, we give the following characterization of

Kirchhoff rod centerlines.

Proposition 6.3. A unit-speed curve
 in M D R3, S3, H3 is a Kirchhoff rod
centerline if and only if(6.1) holds for some�, a 2 R.

Proof. Suppose that
 is a Kirchhoff rod centerline. Then it follows from Def-
initions 6.1 and 6.2 that (6.1) holds for some�, a 2 R. Conversely, suppose that a
unit-speed curve
 satisfies (6.1) for some�, a 2 R. We take a unit normal vectorU0

at a point
 (s0), and let U D U (s) be the parallel translation ofU0 with respect to
the normal connectionr?. We define an orthonormal frame fieldM D (M1, M2) in
T?M by settingM1 D (cossa)U C (sinsa)T �U , M2 D �(sinsa)U C (cossa)T �U .
Then (6.2) holds, and hence{
 , M} is a Kirchhoff rod. Therefore,
 is a Kirchhoff
rod centerline, which completes the proof.
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Now, we give the proof of (iii) of Theorem 3.3.

Proof of (iii) of Theorem 3.3. By Proposition 3.2,
 2 03 holds if and only if
rT XC0,C1,C2

2 D 0, that is,

(6.3) rT

�

(rT )2T C

�

3

2
jrT T j2C

C2
1

8
�

C2

2

�

T C
C1

2
T � rT T

�

D 0,

for some C1, C2 2 R. On the other hand, by Proposition 6.3,
 is a Kirchhoff rod
centerline if and only if (6.1) holds for some�, a 2 R. By comparing (6.1) with (6.3),
we see that
 2 03 if and only if 
 is a Kirchhoff rod centerline.
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