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Abstract

The class of invariant affine reflection algebras is the mesiegal known exten-
sion of the class of affine Kac—Moody Lie algebras, introduiced008. We develop
a method known as “affinization” for the class of invariarfiref reflection algebras,
and show that starting from an algebra belonging to thissctagether with a cer-
tain finite order automorphism, and applying the so calldfirfiaation method”, we
obtain again an invariant affine reflection algebra. This barconsidered as an im-
portant step towards the realization of invariant affineefon algebras.

1. Introduction

The class of affine Kac—Moody Lie algebras has been of greatesit in the past
fifty years, mostly for its applications to various areas oftivenatics and Theoretical
Physics. This has been a strong motivation for mathemasticita extend this class.
Among such extensions, the most important ones are the ofaggtended affine Lie
algebras([1], the class oftoral type extended affine Lie algebrkl, 21], the class of
locally extended affine Lie algebrd&8] and the most recent one which covers all of
the previous ones, the class ioivariant affine reflection algebra ARAs for short),
introduced in 2008 by E. Neher [19].

One of the central concepts of the theory of affine Kac—Moody &lgebras and
its extensions, which has captured the interest of many enadlicians, is the concept
of “realization”. Historically, the most popular way of fe@ng affine Lie algebras and
their generalizations is a developed version of a methodvknas ‘affinizatiorf, due to
V. Kac [16, Chapter 8]. Roughly speaking, the method of aféition can be described
as follows. Letg be a Lie algebra from a clasE, A the ring of Laurent polynomials,
ando a finite order automorphism gf. Then applying the affinization method to these
data, one obtains another elemgne g ® C @ D of the classT, whereg is a sub-
algebra of the loop algebrga ® A, C is a subspace contained in the center dnd
consists of certain derivations.
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One knows that affine Kac—Moody Lie algebras, which are exdraifine Lie al-
gebras of nullity one (see [4]), are obtained through thehoektof affinization starting
form finite dimensional simple Lie algebras, which are edtghaffine Lie algebras of
nullity zero. It is therefore natural to ask “whether it isgstble to obtain (to realize)
extended affine Lie algebras of higher nullity from the onéthwower nullity, through
the affinization method. This question was positively amsdeby U. Pollmann [20],
where she realized extended affine Lie algebras of nullity®to derivations and cen-
tral extensions, starting from the ones of nullity one. le thast two decades, there
have been several other attempts of applying the affinizatiethod, either directly or
indirectly by using a closely related method, in order tolizeaextended affine Lie al-
gebras; see for example [8, 9, 10, 22]. In [5], the method fifiaktion was defined in
a general setting, in fact this setting provides a framewarkroducing new Lie alge-
bras from the old ones in a prescribed way. The mentioned wask led to realization
of almost all centerless Lie tori (see [6, 2, 3]), a class @ hlgebras characterizing the
core modulo center of extended affine Lie algebras.

In this paper, we consider the method of affinization for thes€ of IARA’S, in
an extended way. Namely, in our method, the ring of Lauremgrmomials is replaced
with a certain associative algebra, and moreover, the wapsegfiting the central elem-
ents and derivations to the construction allows us to predd&A’s of arbitrary higher
nullity from the ones we start with. So our work extends thsules of [5], and in
part [13].

The paper is organized as follows. In Section 1, we gathdingrery definitions
and results needed throughout the work. In Section 2, weystwd special types of
gradings imposed by certain automorphisms on the underliie algebras. In Sec-
tions 3 and 4, we study the effect of these gradings on sedatiral pairs in general
and on IARAs in particular. In the latter case, it is showrattlif the corresponding
toral subalgebra is replaced with its degree zero homogensabspace, one gets a
new IARA with a generally different root system. In Sectionas a by-product of the
results in earlier sections, we show that the fixed point igama of an IARA under a
certain finite order automorphism is again an IARA. This giaenew perspective to an
old question, going back to [15], concerning the structuirdideed point subalgebras.
Finally, Sections 6 and 7 are devoted to our results on affiiiz of IARA'S. Roughly
speaking, we show that the outcome of “affinization” of an BARnder a certain auto-
morphism is again an IARA. We consider this as an importagp $dowards realization
of IARAs. We use our method to give examples of IARAs whicte aneither locally
extended affine Lie algebras nor toral type extended affimealgebras.

The authors would like to thank Professor Eerhard Neher amdfegsor
Mohammad-Reza Shahriary for some helpful comments on tie\easion of this work.
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2. Preliminaries

In this section, we gather preliminary definitions and reswhich we need through-
out the paper. In this work, all vector spaces are consideved a fieldF of character-
istic zero. For any vector spad®’, we denote its dual space W*. For a nonempty
setS, by ids, we mean the identity map o8 and by|S| the cardinal number o8. If
R is an integral domain with the field of fractiord, A an R-module andS a subset of
A, we denote by(S), the R-span ofS. Amap (-, -): Ax A— Q is called asymmet-
ric bihomomorphisnif (-, -) is an R-module homomorphism on each component and
(a, b) = (b, @) for all a, b € A. For a symmetric bihomomorphism (-): Ax A — Q,
the setA® := {a e A|(a,b) = 0; for all b € A} is called theradical of the form (-, -).

We also set

L:=SnA® and S*:=S\<

The elements of° (resp.S*) are calledisotropic (resp.nonisotropi¢ elements of
S. A subsetS of A is calledindecomposabl®r connectedf S* cannot be written as
a disjoint union of two its nonempty orthogonal subsets weéhpect to (, -). In the
special case wheR = Z, the bihomomorphism-( -) is called apositive definite form
(resp.positive semidefinite fonnif (a, a) > 0 (resp. &, a) > 0) for all nonzeroa € A.
For a subseSt of A equipped with a positive semidefinite form,(-), we have

L={aeS|(e,a)=0} and S*={aecS|(x a)#0).

DEFINITION 2.1. Letg be a Lie algebra and < g a subalgebra, we call a
toral subalgebra or amad-diagonalizablesubalgebra if

(2.2) g=EP o.(T)

aeT*

where for anya € T*,
g,(T)={xeg]|[t,X] =at)x, forallt € T}.

In this case ¢, T) is called atoral pair, the decomposition (2.2) th®ot space decom-
positionof (g, T) and R:= {o € T* | g,(T) # 0} the root systemof (g, T). We will
usually abbreviatey,(T) by g,. Since any toral subalgebra is abelidhC g, and so
0 € R unlessT = {0} = g. A toral subalgebra is called splitting Cartan subalgebra
if T =g, in this cased, T) is called asplit toral pair.

Now let (g, T) be a toral pair with root systerR, namelyg = @,.g g9,. Suppose
that g satisfies the following two axioms:
(IA1) g has an invariant nondegenerate symmetric bilinear forym) (whose restriction
to T is nondegenerate.
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(IA2) For eacha € R\ {0}, there existe, € g, and f, € g_, such that G# [e,, f,] € T.
One can see that for eaeh € R, there exists a uniqug¢, € T which representsy
via (-, -) (i.e. aft) = (t,, t) for all t € T) and that the map: T — T* given by
v(t) = (t, -) is a monomorphism whose image contains gp&n Now it follows that
the bilinear form onT can be transferred to a bilinear form on spéh defined by

(o, B) = (to, tg), for all «, g € spap R.

Here, we record the definition of an invariant affine reflattagebra, the main
object of this study.

DEFINITION 2.3 ([19, Section 6.7]). Letg( T) be a toral pair with root system
R. Assumeg # 0. The pair §, T) (or simply g) is called aninvariant affine reflection
algebra (IARA for short) if it satisfies (IA1), (IA2) as above and (I1A®elow:
(IA3) For everya € R with (o, @) # 0 and for allx, € g,, the adjoint map ad, is
locally nilpotent ong.

We call an invariant affine reflection algebrg, T) division if (IA2) is replaced
with the stronger axiom (IA2)below:
(IA2)" For eacha € R\ {0} and any 0+# e, € g,, there existsf, € g_, such that
0#[e, f] €T.

REMARK 2.4. (i) In this work, we always assume for a toral pajr T) satis-
fying (IA1), the corresponding root system is not the zerb se
(i) If (g, T) is a split toral pair, then axiom (IA1) implies (IA2)in particular any
invariant affine reflection algebra with a splitting Cartarbalgebra is division. To see
this, one can combine Lemma 2.7 and (3.1) below.

Let us also recall the definition of an affine reflection systérhis notion is due
to E. Neher [19, Chapter 3] but here we state an equivalennitiefi given in [12,
Definition 1.3].

DEFINITION 2.5. Let A be an abelian group equipped with a nontrivial symmet-
ric positive semidefinite form-(-) and R be a subset oAA. The triple (A,(-,-),R), or R
if there is no confusion, is called aaffine reflection systenf it satisfies the following
3 axioms:
(R1) R=—R,
(R2) (R) = A,
(R3) for @ € R* and B € R, there existd, u € Z>¢ such that

B+Za)NR={B—da,...,B+ua} and d—u=(B,a").

Each element oR is called aroot. Elements ofR* (resp.R°) are callednon-isotropic
roots (resp.isotropic roots.
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The affine reflection systerR is calledirreducible, if
(R4) R* is indecomposable.
Moreover, R is calledtame if
(R5) R° € R* — R* (elements ofR® are non-isolated).
A locally finite root systenis, by definition, an affine reflection system for which
A° = {0}, see [17, 12].

REMARK 2.6. It is shown in [19] that the root systeR of an IARA (g, T) is
an affine reflection system in thg-span of R. We note that as in this cade € T*
andF is of characteristic zero,th&-span ofR is a torsion free abelian group.

Lemma 2.7. Let(g, T) be a toral pair with root system Rsatisfying(IA1) and
(IA2). fa e R, x€eg,, YEg_, and[x,y] € T, then[x, y] = (X, Y)ty.

Proof. We will show that X, y] — (X, y)t, is an element of the radical of the form
on T; then we are done as ( -) is nondegenerate om. For this, suppos¢ € T is
arbitrary. Then

([X! y] - (X! y)totl t) = ([X, y]! t) - (X1 y)(tou t)
= (X, [y, th) = (x, y)(t)
= (X, a(t)y) — (x, y)a(t) = 0. O

We recall that an algebrad is called G-graded G an abelian group, if4 =
Py A9, where eachA? is a subspace ofl, such that49.4" C A%*" for all g,h € G.
We will usually indicate this by saying “Le#d = @gee A9 be aG-graded algebra”.
Each A9, g € G, is called ahomogeneous spacand each element afl% a homo-
geneous elemenA subalgebras of A is called agraded subalgebrdf 5B = P y.c(BN
A9). The supportof a G-graded algebrad is the set supp.A:={g e G | AY # {0}}.
We usually use superscripts to indicate homogeneous splacesver, whend admits
two gradings, we use subscripts to distinguish two gradimgsnely A = P, g A°
and A = @qu Ag. In this case, we sayl admits acompatible(G, Q)-grading if for
all g € G, A9 = Pycq Ag Where A := A% N Aq. A bilinear form (-, -) on aG-
graded algebrad = 69966 A9 is called G-graded if (A9, A") = {0} for g,h € G with
g+h#0.

DEFINITION 2.8. Let.A be a unital associative algebra. An element A is
called invertible if there exists a unique elemeat?! € A such thataa™ = a~'a = 1.
SupposeA = Py A? is G-graded, then it is called
e predivision G-gradedif every nonzero homogeneous space contains an invertible
element;

e division G-gradedif every nonzero homogeneous element is invertible;
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e anassociative G-torusif A is predivision graded and dind% < 1 for all g € G.

We close this section by recalling some facts from repregiem theory of
finite groups.

Let G be an arbitrary finite group. B¥[G], we mean the group algebra &f over
F. Let{x1,...,xn} be the set of all irreducible characters®fin which x; corresponds
to an irreducible moduld/i. AssumeF contains all eigenvalues of ajj € G acting on
Vi, 1<i =n. For each I=i < n, define an elemerd; in F[G], by

(2.9) — ul )Z xi(gg,
Gl =

in which by |G| we mean the order of the group. It follows that{ey,...,e,} forms a
complete set of orthogonal idempotentsHfG], i.e. e e = §j& ander +---+e, = 1.
So if M is any F[G]-module, then

n
(2.10) M=@Ee-M.

j=1
Now if 7j: M — € - M is the projection ontoej - M, then _7_, 7; = id and
TiTj = 8”'7'[;.

Suppose now thab is a finite cyclic group of order m, sa@ = {1,0,...,0™1}.
Assume thafF contains anm-th primitive root of unity ¢. Since G is abelian, any
finite dimensional irreduciblé&s-module is one dimensional. Now it follows that for

xj:G—T, o'l (0<i,j<m-1),

Xos - - -, Xm—1 form a complete set of irreducible characters@®f Therefore, ifM is
any F[G]-module, we haveM = @Tj M;, whereM; :={x e M | o(X) = ¢ix}, and

-1
gt

3

(2.11) T =

3l
I

i
3. Gradings induced by automorphisms
In this section, we consider two gradings induced by a finitdeo automorphism
on a toral pair, and study their basic properties. trebe a fixed positive integer and
supposeF contains anm-th primitive root of unity ¢. Throughout this section, we

assume ¢, T) is a toral pair, with root systenR, satisfying axioms (IA1l) and (1A2)
of an IARA. Theng = @, g 9, Where for eachr € R,

={xegl[t,x] =a(t)x,forallteT}.
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Also, by (IA1), g is equipped with an invariant nondegenerate symmetriodali form
(-, -), such that the form restricted f© is nondegenerate. It is easy to see that for
any o, B € R, [g,, 95] € 9415 and fg,, 9] = {0} if « + B ¢ R. Also as the form is
invariant, one sees that

(3.1) ©q, 95) = {0} unless a +B=0, (@ BeR),
and concludes that
3.2) (-, -) restricted tog, ® g_,, @ € R, is nondegenerate.

In addition, by (IA1l) and (IA2) for eaclr € R, there exists a unique elemeipte T
such thatx(t) = (t,t,) forallt € T.
Now let o be an automorphism af satisfying
(Al) o™ = idg,
(A2) o(T) =T,
(A3) (0(x),0(y)) =(x,y) for all x,ye€g.
Fori € Z, leti be the image of in Z, under the canonical map (for the simplicity
of notation, we always denot@ by 0). Then setting

(3.3) g i={xegloX) =¢x

for eachi € Z, it is easy to see that = Dy, gi_ which defines a@p,-grading ong.

Also by (A2), one can define a similar gradifig= Py, T on T, making T into

a graded subalgebra @f Using o, we may define an automorphism, denoted again
by o, on the vector spac&* by o(a) ;= oo L, « € T*. Theno™ = id7. and so

o induces aZn-grading onT* as above. One can easily see that for each R,
0(82) = 85()- Thus

(3.4) o(R) = R.

Note that, ifi, | € Zm, X € g andy € g, then by (A3), &, y) = (6(X), o (y)) =
(¢'x, ¢ly) = ¢'"i(x, y). Thus &,y) =0 if i + ] # 0. Consequently

(3.5) (+, +) is aZn-graded bilinear form ory.

For « € R, we definerr («) to be the restriction o to T°. Since we may consider
any elements € (T%* as an element of * by ﬂ(Zi—#on) = 0, we can considett ()
as an element of*.

ForjeZ, letrnj:g— gl be the projection ofy onto g/ with respect to the grad-
ing g = Zj—ezm gf. We use the same notation; for the projection of T onto T,
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and T* onto (I'*)J'_, with respect to theZ,-gradings onT and T*, respectively. One
observes that

(3.6) (7077,’j=7'[j00’=§'j7'[j.

Since the grougl,o,...,0™ 1} acts ong, T and T*, the following lemma follows
immediately from (2.11).

Lemma 3.7. For any je€ Z, we haver; = (1/m) Yt ¢ ol
For « € T*, define
(3.8) Or) = (X €g|[t,x] = a(t)x, for all t e T°}.

Then we havgy = @n(a)en(R) 9 and

(3.9) Or(e) = > g aeR
(BRI (B)=m ()}

Lemma 3.10. For @ € T*, 7 (o) = mo().

Proof. Suppose & j <m—1 andt € Ti. Then by Lemma 3.7, we have

m-1
T = = 3 o' @)

i=0
1 m-1 )
= — Yl '(M)
m i=0
1 m—1 -
= E(Z ;J')a(t).
i=0
Now since¢ is a primitive m-th root of unity, we have) "' ¢=i' = 0 unlessj = 0.
Thus mo(a)(t) = «(t) for t € T and mo()(t) = 0 for t € ZHOTf. Therefore by the
way 7 («) is defined, we haver (a) = (). ]

We note thato (9, ()) = Jo(r(@) = Br@) @ € R Thus fora € Rand j € Z,

(3.11) 7 (8a) € () = gyjr(a)'
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Thanks to Lemma 3.10, we have(a) = mo(a) = (1/m) Zi’“:_ol ol (x) for o € T*,
so from now on and for the simplicity of notation, we denotkpabjectionsg — g°,
T - T%and T* — (T*)°, with respect to the corresponditfy,-gradings, byr, that is

3
i

3l
I

Lemma 3.13. Let y € spag R. Thenz(t,) = t,) and it is the unique element
in TO satisfyingz (y)(t) = (t, ts(,)) for all t € TC.

Proof. First, we note that by (3.4) and (3.12)(y) € spa R. Now fort e T
and« € span R, we have

(@(ta) 1) = (toy 0 (1) = (0 (1)) = o (@)(1).
Thust,) = o(t,). Using this, we are immediately done. O

Now (3.9) together with Lemma 3.13 and the same argument dsinma 2.7,
gives the following result.

Proposition 3.14. The pair (g, T%) is a toral pair, with root systemr(R), satisfy-
ing axiom(IA1) of an IARA. Moreoverif « € R, X € gy(,), Y € 8-z @nd [X, Y] € TO,
then [x, y] = (X, Y)tz(q)-

Recall that we now have two gradings gnnamely theZ,-grading induced from
automorphismr and the one induced from the se{R). For« € R andh € Z,, set

h . h
Ir@) = 9 n ()"

Since the adjoint action of © stabilizesg" we have

h __ h
(3.15) "= P e

w(a)en(R)

Thus the following is established.

Lemma 3.16. The Lie algebrag admits a compatiblé(z(R)), Z)-grading

s= P &

y€({m(R)),heZn

such that for any te Zm, g/ = {0} whenevery ¢ 7(R).
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Lemma 3.17. Leta,B € R and hk € Zp,.
() If w(a) + 7 (B) # O then (g, (), 9x(5) = {0}
(i) 1f (83 05 (5) # (O}, then h+k = 0 and 7 («) + 7(B) = O.

Proof. (i) Since the form <, -) is invariant, a standard argument as in the finite
dimensional theory, gives the result.

(iiy It follows from part (i) together with the fact that th@fm ong is Zy,-graded
and nondegenerate. ]

Next, we use Lemma 3.13 to define a bilinear form on Fhspan ofz(R) by

(T (@), 7(B)) := (tr(@), trip) = (L), 7 (tg)).

We conclude this section with the following useful resultiethwill be used in
the sequel. In the following lemma, in addition to (IA1) anéZ), we suppose that
(g, T) satisfies (IA3).

Lemma 3.18. Let (g, T) be an invariant affine reflection algebra. If R is in-
decomposablethen 7 (R) := {7 («) | « € R} is indecomposable.

Proof. We first note that by Remark 2.R is an affine reflection system. So by
[12, Theorem 1.13], fox € R, Za C Rif and only if « € R®. Therefores (spar(R?)) €
spar(R%. Now one only needs to adjust the proof of [13, Propositiod @)] to
our situation. O

4. Toral pairs and automorphisms

In this section, we use the same notation as in previousosectiAs in Section 3,
we assume thatg(T) is a toral pair, with root systenR, satisfying axioms (IA1l) and
(IA2). We also assume that is an automorphism of which in addition to axioms
(A1)—(A3) satisfies the following axiom:

(A4) Cpo(TY :={xe g’ |[t,x] =0; for all t € T% C g,.

Recall that, we have

0= 0= Ga@w=2_0"= D  Gna,

aeR aeR heZn aeR,heZn,

andT =Y, TN

Fora € R, letl, («) be the least positive integer such that® («) = «, thenl, () |
m and we have the following lemma which gives an equivalentdd@n to (A4). The
proof of this lemma is essentially similar to the proof of Broposition 3.25], however
for the convenience of the reader, we provide a proof here.
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Lemma 4.1. (A4) is equivalent to(A4) below
(A4Y For a € R\ {0}, either 7(a) # 0 or {x € g, | 0" (x) = x} = {0}.
Moreover if m is primgthen (A4) and (A4) are equivalent to
(A4)" m(a) # O for everya € R\ {0}.

Proof. Suppose (A4) holds but (A4fails, then there existt € R\ {0} and 0#
X € g, such thatr(a) = 0 and o' (x) = x. Abbreviatel,(«) by | and lety :=
X +o(x)+---+ o' 7L(x), theno(y) = y and soy € g°. Also since the elements'(x)
(0=i =1-1) belong to different root spaceg, 0. In additiony € g, = 9(0) =
Cy(T9), soy € Cyp(TO) < go which is a contradiction ay ¢ go.

Conversely, assume (A4holds and letx = Y, g X, € Cyo(T?), wherex, € g,.
Sinceo (X) = X, 0(X,) = Xy («) for any« € R, thereforec'=@(x,) = x,. Thus by (A4),
for any 0# « € R with 7(a) = 0, X, = 0. On the other hand, for eveye T,
0=t x] = ,cr7(@)(t)X.. Hencex, = 0 for anyo € R\ {0} with 7(x) # 0 and
SO X = Xg € @p-

Finally, suppose thain is a prime number. Clearly it suffices to show that (A4)
implies (A4). Suppose to the contrary that(w) = O for some nonzerax € R. By
Lemma 3.7,0(x) # «, sol,(a) # 1. Now asl,(«) dividesm and m is prime, we
havel, («) = m. Henceo'"@(x,) = x, for all x, € g, which contradicts (A4) O]

Lemma 4.2. Supposex, g € R witha # g and n(¢) = #(B). If x € g, and
y € g 4 thenz([x,y]) =0.

Proof. If « — B &€ R, there is nothing to prove, so suppase- 8 € R. We have
[X! y] € ga—ﬁ - gn(a—ﬂ) = gn(O) = CE(TO)

Therefore,a' ([X, y]) € C4(T?), for all i, and sox([x, y]) € Cpo(T°). Thus by (A4),
7([X, Y]) € go. On the other handy' ([x, y]) € Ooi(a—p), fOr all'i, also asae — g # 0,

we haveo'(a — B) # 0. Son([x,y]) is a sum of elements, each belongs to a root
space corresponding to a nonzero root. But sin¢e, y]) € go, this can happen only

if 7([x,y]) =0. O

Lemma 4.3. () For x,yegand j,k € Z, we have
[ (%), m(W)] = 7)1k ([X, (YD)
In particular,
m—-1

[ (), 7 ()] = 7 ([x, 7 ;(V)]) = %Zn([x, ol (y)D).

i=0
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(i) feeR xeg,, yeg_, and |:=1,(x), then for je Z,

1 (m/H)-1 o
[7 00, w1 = = Y w((x " (W),

m i=0

Proof. (i) It is clear, sincer; is the projection ontOgi_ with respect toZp-
gradation ofg.
(i) Assume thate, x, y and| are as in the statement. By part (i),

[m—(x),n,-(yn:%( o rx ety + )] n([x,;“ot(y)])).

{0<t=m-1: 1]t} {0<t<m—1: 14t}

So it is enough to show that([x,ot(y)]) =0 for all 0<t <m—1 with | } t. Assume
thatl +t. Thena —o'(a) # 0, X € g4, 0'(Y) € g1 and () = 7(o'()), thus by
Lemma 4.2,7([x, a'(y)]) = 0. O

Next, consider Autf), the automorphism group @f. One knows that the subgroup
(o) of Aut(g) generated by, acts naturally onR. We call any orbit of this action,
a o-orbit. Then two rootsy, B belong to the same -orbit if and only if o' («) = 8,
for somei. Fix a set orbR) of distinct representatives for adt-orbits, namelyR =
Lﬂaeorb(R)(U)‘“- The following two lemma is of great importance for our goal.

Lemma 4.4. Let0O<j<m-1.
() If a, B € R belong to the same-orbit, thenz;(g,) = 7j(gp)-
(i) For @ € R,

Eyjf(a) = Z T (9/3)-

{Beorb(R) | 7 (B)=m ()}

(i) Let o, B belong to distincto-orbits of R withm(a) = 7(B). If X € g,, ¥ € g4,
then [j(x), 7—j(y)] = 0.

Proof. (i) Suppose8 =o"(a), n € Z. By (3.6), 7j o o™ = ¢"xj. Therefore
7(8) = 7 (Gon@) = m10"(g,) = ¢V () = 7 (g,).

(i) By Lemma 3.16, for every & j =m—1 and everyx € R we haveg,‘;(a) =
7j(9x(0))- Now this together with (3.9) implies that

(4.5) b= > 7).

{BeR | m(B)=m ()}
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and so the result follows immediately from part (i).

(i) By part (i) of Lemma 4.3, frj(x),7_(¥)] = (I/m) X{Zg 7 ([x,¢'o' ()]). By
the assumption, for any, o — o' (B8) # 0 and so by Lemma 4.27([x, ¢'o'(y)] =0,

hence frj(x), 7_j(y)] = 0. []
Lete e R, | :=1,(e) and j € Z. For x € g,, we set
(m/1)—1
(4.6) xji= > e (x) € g,.
i=0

Note that the implicatiork; € g, follows from the fact thav' (g,) = O5l(@) = Oo- The
following observation is a key result for the rest of the work

Lemma 4.7. Supposer € R, | :=1,(«), Xx€ g, and je€ Z. Then

() 7)) =@/m Y b iiol(%)),
(i) 7;(x) # 0 if and only if X; # O.

Proof. Setk := (m/l) — 1. Using Lemma 3.7, we have

m-1
mrj(x) = > ¢ Vo' (x)
i=0
2-1

-1 me1
=Y i+ Y e o0+t Y el (x)
i=0 =

i=kl

k 1-1
_ Z ij(sl+i)a,sl+i x)
s=0 i=0
— Z g.—]lo,l (Z {—Jslo,sl(x))
i=0 s=0
-1 o
=Y ¢l (x).

i=0
This proves (i). .

(i) Since for each G<i <1-1, 0'(X]) € g,i(y) anda,o(@),...,0'"«) are distinct
roots, we concluded thaf|_% ¢ o' (X;) = 0 if and only if X; = 0. Therefore using
part (i), we are done. [

5. Division IARA's and automorphisms

In this section, we use the same notation as in previousosectie also assume
that (g, T) is a division IARA with root systenR, that is, @, T) satisfies axioms (IA1),



1052 S. &AM, S.R. HOSSEINI AND M. YOUSOFZADEH

(IA2)" and (IA3). Further suppose that is an automorphism ofy satisfying (Al)—
(A4). In Section 4, we saw hatg(T9) is a toral pair satisfying axiom (IA1), and
established several other properties @fT°). Our main aim in this section is to show
that @, T?) is an IARA with root systemr(R). This in particular implies that (R) is
an affine reflection system.

Lemma 5.1. Leto e R, xeg, and ye g ,. If | € Z and X; is defined as in
(4.6), then
() [7i(x), 7—; (] = A/m)z (X}, YD),
@ity (7 (), 7-j(y)) = (I/m)(X;, Y)-

Proof. (i) Letk:=(m/l)—1. By Lemma 4.3, replacing with —j, o with —«
and x with y, we have

k
[ 0, (1 = = 32 ll 6" 00, ¥)
i=0

()

(%), y).

(i) By Lemma 4.7 (i), 7j(x) = (1/m) Y1t ¢ Toi(X;) and 7_j(y) = (1/m)x
Siteliol(y)). Also, using the definition off := I,(¢) and (3.1), we see that
(goi(a)’ gai(fot)) = {0}, if O < i # J < | —1. Hence

-1
(00710 = 1 30 R0 5-)
= 16,9 )
1 & .
= izg(x i Mot (y)
1 it il (o
= WI ;C (@ (X)) y)
1 k
=l §(Xj, y)

1 _
=a(x1,y). O
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Lemma 5.2. Leta € R withn (o) # 0. Suppose x g, and rj(x) # O, for some
j € Z. Then there exists ¥ g_, such that0 # [rj(X), 7_;j(y)] € T°.

Proof. Contemplating (4.6), Lemma 4.7 implies ti¥gtis a nonzero element of
g,- Since by our assumption, the axiom (IA2jolds for @, T), there existsy € g_,
such that O# [X;, y] € T. Therefore, by Lemma 2.7,

(5.3) ;. y) # 0.

Now combining this, Lemmas 5.1, 2.7 and 3.13, we get

1.
[7j(x), m—;(Y)] = E(ij W) € TC.
But asn(x) # 0, we havet,) # 0, and so we are done by (5.3). []

Lemma 5.4. Leta € R with 7 («) # 0, and j € Z. Then for eveny0 # e (a) €

gn(a) there exists ,j‘( yE€0- n(a) such thatO # [} (@) n(a)] € T In particular, axiom
(IA2) holds for the toral pair(g, T°).

Proof. By Lemma 4.4¢ (a) = mj(X1) + --- + mj(xn) wherex € g, for some
a;'s belong to distincto-orbits of R, satlsfylng (o) = m(x), for all i. Thus for
some 1<i =<n, mj(x) # 0, and by Lemma 5.2, there exisyse g_, such that 0#
[7j(X), 7_j(y)] € T° So using Lemma 4.3 (jii), we have

(€] @y 71 (V)] = [ (%), 7 ()] € TO\ {0},

Now setting fjf(a) = m_j(y), we get the first assertion as by (3.1%),;(y) € g;jt(a). To
see the final assertion in the statementddet R with 7(a) # 0. As 0# g, € gr(0) =

> iezn gn(a)’ we haveg @ 7 0 for somej Now by the first part of the statement,

there existe () € gn(a) and fn(a) € 01, Such that O% [e] ., ﬂ(a)] € T%. This means
that (IA2) holds for §, T9). O]

We are now ready to state the main result of this section, whidends [13, The-
orem 3.4] to a rather larger class.

Theorem 5.5. Let (g, T) be a division IARA with corresponding root system R
and bilinear form(-, -). Supposer is an automorphism of satisfying(A1)—(A4), and
TY is the set of fixed points @f on T. Fora € R, let 7(«) be the restriction ofx to
TO. Then(g, T% is an IARA with root system(R) := {7 («) | « € R}. In particular,
7(R) is an affine reflection system. MoreovérR is indecomposableghen so isz(R).
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Proof. We have shown in Lemma 3.14 that T°) is a toral pair such thag =
@”(a)eﬂ(m Or() and that axiom (IA1) of Definition 2.3 holds forg(T?). Also by
Lemma 5.4, (IA2) holds forg. So it remains to prove (IA3).

Let o, B € R with (7(«), m()) # 0, X € gr(o) ANAY € g,(5- We must show that
ad)"(y) = 0 for somen. We know that ad()"(y) € gny(e)+(s), SO

[tz (), (@dX)"(Y)] = (N7 () + 7 (B))(tr ) (@AX)"(y).

Therefore if (adk)"(y) is nonzero, it is an eigenvector for g,y with eigenvalue
(N7 (o) + 7(B))(tr(w)). But for distinct values ofn, the scalersrm (o) + 7(8))(tr(«))
are distinct, so it is enough to show thattag) has a finite number of eigenvalues
as an operator og. One knows that each eigenvalue oftady on g is of the form
7(¥)(tz(«)) for somey € R, and by Lemma 3.13,

1(V)(tr@) = (@ (¥), 7(@)) = (v, 7(a)) < %(A+ At---+ A

m-times

where A := {(y, B) | ¥, B € R}. Now sinceR is an affine reflection system, the set
A is finite; see [19, Sections 3.7, 3.8] and [17, Theorem 8.4jer&fore ad,) has
only a finite number of eigenvalues. These all together shat ¢, T°) is an IARA.
Thus its root systemr(R) is an affine reflection system, by [19, Theorem 6.8]. The
final assertion of the statement follows from Lemma 3.18. O

REMARK 5 6. Supposer(a) € yr(R)X andh € Zn,. By Lemmas 5.4 and 2.7, we
may choosee]} ,, € gn( , and fn(a) € 0" such that &, £7 1 = (&) ), Frlo)te@) #
0. So multiplying f”(a) by 2/((e" (@) fjf(a))(n(a) 7 («))) we have

2y
[ 7 (cr)? fﬂ(vt)] m‘

Thus settind; o) := 2tz () /(7 (o), (), the tnple{ ) Nz (w)s ﬂ(a)} forms ansl,-triple.

T (e

Lemma 5.7. Let je Z, « € R\ {0}, m(e) = 0 and 7j(g,) # {0}.
(i) For each xe g, with mj(x) # 0, there exists ¥ g, such that[z;(x),7_;(y)] =0,
but (; (x), 7 (¥)) # O.

(i) There exists & gﬂ(o) and fe gn(o) such that[e, f] = 0 but (e, f) # 0.
Proof. (i) Letx e g, andm;(x) # 0. By Lemma 4.7 (i), we have & X;j € g,.

Since (IA2) holds for @, T), there existsy € g_, such that G% [X;,y] € T. Therefore,
by Lemma 2.7, X;, y) # 0. Now this, together with Lemma 5.1 (ii), gives

() (0, 7 () = — (%}, ) £0.
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On the other hand, combining Lemmas 5.1 (i), 2.7 and 3.13, biaio

m[j(x), 7—j(Y)] = 7j([Xj, Y]) = (X}, V)7 () = (Xj, Vr@) = X}, Y)to = 0.

(i) By a§sumption,n,- (g,) # O. Sp 7i(x) # 0 for somex € g,. Now taking
e:=mj(X) € g and f :=7_j(y) € g, as in part (i), we are done. O

As it will be revealed from the sequel, if, is abelian, the axioms (Al)—(A4)
imposed on the automorphism, are enough for our purposes in this work. However,
this is not the case for a general IARA. To be more precise, ote that the main
difference of the class of invariant affine reflection algebwith extended affine Lie
algebras or locally extended affine Lie algebras, is thahélatter ones, the subspaces
T and g, coincide, while in an IARA,T might be a proper subspace gf. This in
particular, forcesg, not to be necessarily abelian. In this case, to have a coaotrol
the action ofo on the pair §,, T), we need the following “tameness condition” whose
offshoot is given in Lemma 5.8.

(A5) If {0} # gl o) € 0, then T1 {0}, j € Z.

Lemma 5.8. Supposer satisfies(Al)—(A4). Also suppose thag, is abelian or

(A5) holds foro. If j € Z and gjf(o) # {0}, then there exist & gjf(o) and f e g;(JO)
such that[e, f] =0, but (e, f) # 0.

Proof. Assumej € Z and gjlr(o) # {0}. By (3.9),937(0) = D (weR | n()=0) Ti(8a)- If
7j(g,) # 0 for some nonzero roat with 7(«) = 0, we are done by Lemma 5.7. Other-

wise, {0} # gj;(o) = g(j, = mj(g0) € go. Now if go is abelian, then since-( -) is non-
degenerate and,-graded ong,, there existe € g(j) and f € ggj such that ¢, f) #0
but asg, is abelian ¢, f] = 0. If (A5) holds, then,T! = rj(T) # 0. Since ,-) is non-

degenerate ané,-graded onT, there existe € Ti and f € T-J such that ¢ f)#0
but asT is abelian ¢, f] = 0. []

Assumption (A5) (Lemma 5.8) will be used to prove conditidA2) holds for a
Lie algebrag which will be introduced in Section 7.

6. Fixed point subalgebras of IARA's

An interesting subject of research on algebras is the stlidyuloalgebra of points
which are fixed by certain types of automorphisms. The sigutioint of such a study,
in our context, is the work of Borel and Mostow [15] on semisienjhie algebras.
They showed that the subalgebra of fixed points of a finite roedgomorphism of a
semisimple Lie algebra is a reductive Lie algebra. Motivatgdthis work, in [9], the
authors showed that the fixed point subalgebra of an extenffawt Lie algebra is a
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sum of extended affine Lie algebras (up to existence of sowlatésl root spaces), a
subspace of the center and a subspace which is contained oettralizer of the core.
They also showed that the core of the fixed point subalgebrdutodts center is iso-

morphic to the direct sum of the cores modulo centers of thelved summands. In
[10], the authors did a similar study on the fixed points of & torus under certain
automorphism and obtained some similar results. In [22, dluthor considered the
same study in a rather more general context, namely rootedrade algebras. She
proved that the core of the subalgebra of fixed points of a gyatled Lie algebra
under a suitable automorphism is the sum of a root graded lgiebea £ and a sub-

space/C whose normalizer contains.

We now consider the same question for an IARA, namely whahés dtructure
of fixed points of a division IARA §, T) under an automorphism satisfying ax-
ioms (Al)—(A4). We will show, using the results of the prawosections, that this
subalgebra is a division IARA with toral subalgebf&. Since conditions (Al)—(A4)
introduced in [9] and [10] coincide with conditions (Al)-4Agiven here, the follow-
ing theorem generalizes and at the same time gives a newegéivgto some of the
results there.

Theorem 6.1. Let (g, T) be a division IARA with corresponding root system R
and bilinear form(-, -). Supposer is an automorphism of satisfying(A1)—(A4) and
g° (resp. 19 is the set of fixed points af on g (resp. T). Then(g® T?) is a division
IARA with root system

(6.2) R = {n(e)| @ €R g0 #0).
In particular, R° is an affine reflection system.

Proof. By Lemma 3.16,

go = @ gg(a) = @ gg

7(a)en(R) aeR

where R’ is given by (6.2). Sog® T9 is a toral pair. In addition, since by (3.5)
the form (-, -) is Zn-graded ong, it is nondegenerate on bo#? and T°, therefore
(IA2) holds. Also (IA2) holds by Lemma 5.4. Next let € R” with (7 («), 7(x)) # O,
and x € gJ,). By Theorem 5.5, , T°) is an IARA and so (IA3) holds forg( T°).
Therefore aSgg(a) C 9,() adx is locally nilpotent ong and so ong®. This shows
that (IA3) holds for ¢° T°) and so ¢° TO) is a division IARA. Now R° as the root
system of an IARA is an affine reflection system. O

REMARK 6.3. By Theorems 5.5 and 6.1, bati{R) and R are affine reflection
systems withR” € 7(R). It is shown in [9] thatR® might be a proper subset af(R),
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and in fact in many examples this is the case. It is worth roeitg thatR” andz(R)
might not be necessarily of the same type, see [9, Examp®.3.7

7. Extended Affinization

In this section, we studextended affinizatigna process in which starting from
an IARA g with root systemR and a finite order automorphism gf we get a new
IARA whose root system is an extension #{R) (see (3.12)). The notion ddffiniza-
tion was initiated by V. Kac [16] in order to realize affine Kac—Mgolie algebras.
Since then, this method has been used by different authoesatize certain generaliza-
tions of affine Lie algebras, e.g. in [5], the authors use thithod to realize extended
affine Lie algebras, also in [2] and [3], using this method #uthors realize Lie tori.

Throughout this sectiong(T) is an IARA with root systenR, o an automorphism
of g satisfying (A1)—(A3), andT® the set of fixed points of on T. We recall that
for « € R, («) is the restriction ofx to T® and that we have a£(R)), Zm)-grading
on g as in Lemma 3.16. Suppose is a torsion free abelian group and jet A — Zn,
be a group epimorphism. Fare A, we takei := p(1).

SupposeA is a unital commutative associative algebra. In additiappeseAd =
D, ., A is predivision A-graded. It is easy to see that in this case g@gb) is a
subgroup ofA. Since theA-grading ofg depends only on supig.4), we may assume
without loss of generality thath = supp, (A4), that is,

(7.1) A" #£ {0} forall AeA.

Further assume thafl admits aA-graded invariant nondegenerate symmetric bilinear
form ¢, where “invariant” means(ab, c) = ¢(a, bc) for all a,b,c € A. In addition, we
assume that

(7.2) e(1,1)#0.

One gets using this that(a, a=) # 0 for all invertible elements € A as the form is
invariant. We now consider the Lie algebga® A with multiplication defined by

[x®a,y®Db] =[x, y]®ab
for everyx,y € g anda, b € A. Now define a form ormg ® A by linear extension of
(7.3) k®a,y®b)=(x,ye(@ b),

for x,y € g anda, b € A. It is easy to see that this form is &-graded invariant
symmetric bilinear form org ® A.
The following is a slight generalization of [2, Definition131].
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DEFINITION 7.4. The subalgebra

i:=L,(aA) =P ® A
AEA

of g® A is called theloop algebraof g relative top and A. In the case thap = 0,
we denoteL ,(g, .A) by L(g, .A) and note that (g, A) = g ® A.

From definition, it is clear thafy is a A-graded Lie algebra with homogenous
spacesi’ := g* ® A*, A € A.

In the following lemma, we make use of a fact from linear algelnamely if
V is a vector space equipped with a nondegenerate symmelinedsi from andwW a
finite dimensional subspace &, then there is a finite dimensional subspateof V
containingW such that the form restricted 10 is nondegenerate (for a proof see [18,
Lemma 3.6]).

Lemma 7.5. The form ong ® A restricted tog is a A-graded invariant non-
degenerate symmetric bilinear form.

Proof. As we have seen above the form gm® A is A-graded symmetric and
invariant. So it remains to prove the nondegeneracy of the.fdSince (-, -) is A-
graded ong, it is enough to show that for fixed € A and 0# X € g* ® A*, there
existsy € g‘;‘ ® A~* such that §, ¥) # 0. Now we may writeX = Y ' ; x; ® &, Where
{a1,...,a,} is a linearly independent subset df andx; € g;\ for 1 <i <n. Sincee is
nondegenerate od* & A=, there exists a finite dimensional subspacef A* ¢ A~
such that{ay, ..., a,} € X and that the form restricted t& is nondegenerate. Extend
{aq,...,an} to a basis{ay, ..., an, @41, ...,am} Of X. Now ase is nondegenerate
on X, there existby, ..., by € X such thate(a;, bj) = §; for all i, j. For 1< j <n,
let b; be the projection ob; into .A~* with respect to the decompositiod* & A~
Sincee is A-graded andhy, .. ., a, € A*, we have

(@,b)) =(a,b)=46,; foral 1<i,j=<n.

Now x; # O for somej, asX # 0. Since (-, -) is nondegenerate ar@,-graded on
g* @ g*, there existsy; € g such that Xj,y;) # 0. So, settingy := y; ®b;, we have

(X, §) = (ZXa ®a, Y] ®5j>

i=1
= > (%, ¥j)e(a, by)
i=1
= (xj, ¥j)e(aj, by)
= (Xj’ yJ) # 01
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as required. This shows that the form gris nondegenerate. [

Next suppose. € A, then by Proposition 3.14 and (3.15), we have

(7.6) F=0ed= P @)
w(ax)en(R)
Now we set
T=T®1.

Then fora € R, 7(x) can be considered as an elementTdf by linear extension of
7(e)(t ® 1) = a(t) for t € T%. We consider the adjoint action &f on §. Suppose
teTO x € g anda € A*, for someir € A. We have

tolxa=[tx®acgyg @A
So the adjoint action off on § stabilizesg* ® A*. Define, fora € R,
G = (x€d|[f, x] =7(@))x for all T € T}.

Then it is easy to check that. ) ® A" € §x( for @ € R and € A. So by (7.6),

i=Pi=Pp P @nyod)

rEA reA w(a)en(R)

P PEiwe A

7.7)
m(a)ex(R) A€A
- @ gn(a) - g
7(x)en(R)
Thus we have
(7.8) i= P bw
7(a)en(R)
with
(7.9) Or@) = @(Q;(a) ® AY).
reEA

Therefore we have the following lemma.

Lemma 7.10. g admits a compatiblé(rz(R)), A)-grading

i= @ oA

reA,ye(n(R))
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. .
where for anyi € A, g, = {0} if y ¢ 7(R).
Consider theF-vector space
(7.11) V:=F ®z A.

Since A is torsion free, we may identifA with the subspace ® A of V. Now asA
spansV, it contains a basi¢A; |i € 1} of V. For anyi € I, setd; € V* by di(%;) := §j,
j €1, and letV' be the restricted dual oP with respect to the basigy; | i € 1},
namely

(7.12) Vi :=spag {d |i €1} C V"
Define
(713) §:= L (g, A):=goVeaV and T:=ToveVi =T2)aVeV

If p =0, we denoteg by m). We makeg into a Lie algebra by letting the Lie
bracket be

[d,x] =d()x, deVl, xegh reA,
(7.14) [V, g] = {0},

X, Y] =[x ¥ls + Y _(Id. X] )ui, X y€d,

iel

where by [-, -]z and (-, -), we mean the Lie bracket and the bilinear form g@n
respectively. Note that for each y € g, > i, ([di, X], y)Ai makes sense asi[x] =0,
for all but a finite number of € |. We next extend the form off to a bilinear form
on g by
7.15) V) =Lvh =, 8 =08 = {0},

' (v, d)=(d,v):=d(v), deVl, ve.
The above form is clearly nondegenerate fonFor anyi € A, defines, € T* by

S((TeLeV) =0}, &) =(@xd), deVh

Then the assignment— §, affords an embedding of into T*, by the nondegeneracy
of (-, -). So we may identifyx with 8, and suppose that C T*.
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For « € R, one can extendr(«) € 7(R) to T* by definingz(a)(V @ V) := {0}.
Now letx € 2, A €A, e e R and (®@1)+v+ieT,teT veV, ve Vi, then
(t®L)+v+v,x]=[t®1, x5+ d(A)x
= (m(a)(t ® 1) + v(1))x

= (m(o) + A)((t ® 1) + v + V)X.
This shows that

(7.16) i=&P s
aet*
where
G = (xegd|[t,x] =a()x for all f e T}.
That is, §, T) is a toral pair. Moreover, iR is the root system ofg( T), then
(7.17) RS (R @ A,

and fore € Rand X € A,

A Py ;
. g ® A it m(e)+ A #0,

7.18 oin = 5@ |
(7.18) @) {gf’,(o)@)AO)EBVEBVT if 7(@)+ir=0.

Next for A € A, we put

(7.19) R = {o € R| gk # (0},

then it follows from Lemma 3.16, (7.16), (7.18), (7.8), (7&nhd (7.1) that

(7.20) R=|JR and R=[]J@(R)+2).

LEA LEA

Now we can prove the main theorem of this section which is heratomprehen-
sive extension of [5, Theorem 3.63].

Theorem 7.21. Let (g, T) be a division IARA with corresponding root system R.
Supposes is an automorphism of satisfying(Al)—(A4). Assume further that either
(A5) holds or g, is abelian. Supposa is a torsion free abelian group ang: A — Zn,

a group epimorphism. In additioret A be a unital commutative associative predivi-
sion A-graded algebrawith supp, (4) = A. Then(@ = L, (g, A), T) is an IARA with
root systemR = Usea(m(R;)+21). Moreover if R is indecomposable then so . Fi-
nally, if T is a splitting Cartan subalgebra of and A° = F, thenT is also a splitting
Cartan subalgebra ofj.
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Proof. We have already seen that T) is a toral pair, so it remains to verify
conditions (IA1)—(IA3) of Section 2. We know that the formtrimduced by (7.15) on
3 is nondegenerate on bothand T and so (IA1) holds forf.

We next show that (IA2) holds. Assume thate R, L € A, n(¢) + A # 0 and
Gr@+r # 0. BY (7.18), r(wy+r = Gh(q) ® A*, SO gk, # 0 and A* # 0. As A is
predivision A-graded, there exista € A* andb € A= such thatab = 1. To proceed
with the proof, we divide the argument into two casd#) # 0 andxz(«) = 0. Assume
first that 7 (o) # O, then by Lemma 5.4, there existAXx e gi(a) and O# vy e g:i(a)
such that 0% [x, y] € T, and thus

x®ayeb=(xyl®1)+) (d x®al, y®bx cT\{0},

i€l

as required.
Next, assumer(a) = 0, then by Lemma 5.8, there existe gﬁ(o) andy e g;%o)
such that X, y] = 0 but &, y) # 0. So we have

[x®a y®bl=(xyl®1)+ ) (d x®a], y®b)

iel

=0+ Y e(a b)d @)X y)u.

iel

This is a nonzero element of since &, y) # 0, e(a, b) = ¢(1, 1) # 0 and asi =
0+ A =m(ax)+ X1 #0, d(r) # 0 for somei € |. This means that (IA2) holds faj.

Finally, we consider (IA3). Lex € R, A € A and @@(«) + A, w(a) + A) # 0. As
(A, A) = (A, () = 0, we have £ (), 7(«)) # 0. Since by Theorem 5.57(R) is an
affine reflection system, one can use a similar technique #seiproof of Theorem 5.5
to show that ad() is locally nilpotent for anyx € §,)+1. SO § satisfies (IA3) andy
is an IARA. Moreover, the root systerR of (§, T) satisfiesR = |, _, (7(R;) + 1),
by (7.20).

Next, supposeR is indecomposable. Sinca is contained in the radical of the
form, R is indecomposable if and only i, A7 (R;) is indecomposable. But by (7.20)
this union isz(R) which is indecomposable by Lemma 3.18.

To see the final assertion of the theorem, we note that = T, then by (A4),
Cyo(T%) = TO. Therefore asd® =F, using (7.18), we have

B =(g0N) @A) BV D V!
=Cp(TY®1)dVea V!
=(T'@eveVi=T.

Thus T is a splitting Cartan subalgebra @fas required. ]
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Corollary 7.22. Let (g, T) be an IARA with corresponding root system R and
bilinear from (-, -). Let A be a torsion free abelian group and be a unital com-
mutative associative predivision-graded algebrawith supp, (A4) = A. Defineg :=
@A VeV andT :=(T® 1)@V @ Vi, whereV and V' are defined as in
(7.11) and (7.12), respectively. Theffg, f) is an IARA with root systerﬁl =R A.
Moreover if R is indecomposable then so K.

Proof. Takingo to be the identity automorphism and recalling from Remark 2.
that T # {0}, it is apparent that satisfies conditions (A1)—(A5). Therefore, if,(T)
is division, we are done by Theorem 7.21. Now a close look atptoof of The-
orem 7.21, shows that the division property, that is (TAguarantees the existence of
nonzero elements € g%, andy € g=.,, (¢ € R and 1 € A with (@) + A # 0)
such that

[x, y] € T2\ {0} if () #0,
(7.23) {[x, y]=0and k, y) #0 if =m(x)=0.

However whery is the identity automorphism, (7.23) clearly holds with theaker ax-
iom (1A2). Finally, sinceo is the identity automorphism, it follows immediately from
Theorem 7.21 thaR = R A O

Corollary 7.24. Let (g, T) be a division IARA with corresponding root system
R. Supposer is an automorphism of satisfying(Al)—(A4). Assume further thagy
is abelian. Supposé\ is a torsion free abelian group and: A — Z;, a group epi-
morphism. In additionlet .4 be a commutative associative-torus, with supp, (A) =

A. Then(§ = L,(g, A), T) is a division IARA with root systemR.

Proof. By Theorem 7.21,§( T) is an IARA. So the only condition which we
should verify is (IA2). Supposex € R, » € A, 7(@) + A # 0 and fr(@)+1. = ghyy ®
A* # {0}. Since A is a A-torus, A* is one dimensional, sayl* = spar{a}, where
a is invertible with inverseb. Then any element of; )+, is of the formx ® a for

some 0# X € gi(a). Now fix a nonzero elememt ® a € Gy(g)+2- If 7() # 0, then
by Lemma 5.4, there existg gjr(a) such that 0# [x,y] € T%. So as &, y] # 0,
we have

[x®a y®bl =(x y1®1)+ ) (Id,x], y)n € T\ {0}

i€l

Now supposer(«) = 0. We claim that there existg € g;(io) such that x, y] =0
and &, y) # 0. For this, takej € Z such thatj = . By Lemma 4.4 (ii), we have

Ao 0
92(0) = 9x(0) = > 7i(gp)-
(Beorb(R) | 7(6)=0)
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Therefore x = mj(X1)+- - - +mj(Xn) wherex; € g, for someas,...,an belong to distinct
o-orbits of R and 7 () =0, 1<i =n. As X # 0, mj(x) # O for someF. Now if

ax # 0, then by Lemma 5.7, there exisyg € g_,, such that £;(x), 7_j(y)) # 0 and
[7; (%), m7—j(W)] = 0. Sety := 7_j(y), then by Lemma 4.3 (iii), we havex[y] =

[7; (%), m—;j(Yx)] = 0. Also by Lemma 5.1 (i), we have

X, y) =Y (), 7 (¥) = % D09 W) = (%), -5 (%)) # O,

i=1 i=1

where considering (4.6), we note that fiog k, (Wj, Yi) € (80> 9-0,) = {0}, asa;j —
ax # 0. So we are done in the casg # 0.

Next, suppose thaty = 0. Then 0# mj(x¢) € 7wj(g0) S g,jr(o). Since (-, -) is
nondegenerate op,, there existsy € g, such that £;(x), y) # 0. But as (-, -) is
Zm-graded, we may assume that= 7_j(y) € ggi c g;(jo). Then [z;(x), y] =0, as
by assumptiorg, is abelian. Now repeating the same argument as in the @ase0
(using Lemmas 4.3 (iii) and 5.1), we get,{/) # 0 and K, y] = 0. This completes the
proof of the claim. Now we note that # 0 asw(«) + A # 0. Sod;(x) # 0 for some
j € |. Therefore we have

[x®a y®bl=0+) (d,x®al, y®@br =Y d®)e@ b)x, )i T,

iel i€l
which is nonzero, as(a, b) # 0, (x, y) # 0 andd;(1) # 0. ]

Suppose thatg( T) is an IARA with root systemR and o is an automorphism of
g satisfying (A1)—(A4) such that the order of is prime. As we have already seen,
the automorphismy induces a linear isomorphism: T* — T* with o(R) = R. In
fact o is an automorphism oR in the sense of [19]. The following lemma shows that
o(8) = 8 for eachs € RO. In particular, one gets that an automorphism of an IARA,
satisfying the above conditions, preserves each isotnamt space. This is a nontrivial
fact that one should consider in constructing suitable rmotphisms of IARAS.

Lemma 7.25. Suppos€A,(-,-),R) is a tame affine reflection system. In addition
suppose that A ig-torsion free and o is an automorphism of A with(R) = R (a
root system automorphignof period m such thatr(§) := (1/m) Zim:_ll o' (8) # 0 for
any nonzeros € R%. Theno(8) = § for eachs € RO.

Proof. SinceR is tame, it follows from [12, Theorem 1.13] that
(7.26) R% + 2(R% c RO.

Now supposes € RC. Then by (7.26)ns € R® for all n € Z and sono (8) € R for all
n. But this can happen only &(8) € R° [12, Theorem 1.13]. Now again from (7.26),
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we have 32 —0(28) € R%. But 7 (28 —o(28)) = 0 and so by assumption &€ (8)) = 0.
Now since A is 2-torsion free, we get(§) = & as required. []

REMARK 7.27. In this remark, we discuss the structure of a comnvetadis-
sociative predivisionA-graded algebrad, A an abelian group. We refer the reader
to [19, Section 4.5] for a more general discussion. As we raveady mentioned,
supp, (A) is a subgroup ofA, and so without loss of generality we may suppose that
supp, (A) = A. Suppose{u; | A € A} is a family of invertible elements, € A*. Put
B := A% thenA* = Bu, for all » and {u,},c, is a free basis for thé-module A
and the multiplication onA is uniquely determined by

(7.28) uau, = t(k, w4, and ub=Dbu, (beB),

wheret: A x A — U(B) is a function,U(B) being the group of units oB. Associa-
tivity and commutativity ofA leads to

(729) l'()\., /J“)T()‘ + u, V) = ‘E(/,L, V)'L'()», w+ V), T()‘r /’L) = T(,LL, )\)!

for A, u,v € A. In other wordsz: A x A — U(B) is asymmetric2-cocycle Conversely,
given any unital commutative associatifealgebraB and a symmetric 2-cocycle: A x
A — U(B), one can define a commutative associative predivigiegradedF-algebra
by (7.28). To be more precise, lgt be the freeB-module with basiqu,};ca, hamely
A:=@,., Bui. Then, identifyingB with Bug throughb — bz (0, 0y tuo, b € B, and
using (7.28) as the multiplication rule o#, we get the desired algebra. A commutative
associative algebra arising in this way is callevésted group algebrand is denoted by
B'[A]. To summarize, any commutative associative predivisicadgd algebrad with
supportA is graded isomorphic to a twisted group alge®4A]. It follows that, A is
division graded if and only ifB is a field, and is an associative-torus if and only if
B=F.

8. Examples

In this section, we illustrate extended affinization thdougpme examples. In the
first example, using extended affinization process, we cactsh generalization of the
class oftoroidal Lie algebras. In the second example, starting from a cel@ivA,
we show that we can iterate extended affinization processetoagseries of IARA'S.
Finally, in the last example, we apply extended affinizatsvarting from an IARA of
type A and ending up with an IARA of typdC. Before going to the main body of
this section, we make a convention that in each example,

B is a unital associative algebra ov@radmitting an invariant
nondegenerate symmetric bilinear forrsuch thate(1, 1) # 0.

(*)
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ExampPLE 8.1. Supposeg( T) is an IARA with corresponding root systermR
and bilinear form ¢, -). AssumeB is commutative and let be a torsion free abelian
group. Consider the twisted group algelB§A] := &, ., BZ' and recall that we have
bZ'cz* = ber(h, p)zZ***, Z"b = bZ* for b,c € B, A, u € A wheret: A x A — U(B)
is a symmetric 2-cocycle. We exterdto B'[A] by linear extension of

e0,¢) A+u=0

(8.2) (b, cz') := {0 o

SetB'[A]* := BZ*, A € A. Then by Remark 7.27B![A] is a commutative associative
predivision A-graded algebra oveF and one can easily verify that is a A-graded
invariant nondegenerate symmetric bilinear form BfA].

Define g andT as in (7.13) withp = 0. Namely

§=L(s BIA) = @®B[AD @ V@V and T=Telaevell

with corresponding Lie bracket and bilinear form defined ByL4) and (7.15), respect-
ively. Then by Corollary 7.22,§T) is an IARA with root systemrR = R®A. We note
that this structure in fact generalizes the well known dtriee of toroidal Lie algebras

ExAmPLE 8.3. We continue with the same notations as in Example 8.pain

ticular g = m Set A := B!'[A] and supposer € Aut(g) satisfies axioms
(A1)—(A4). Let u: A — Z be a group homomorphism. The mapinduces an auto-
morphism of.A, denoted again by, defined byu(x) := ¢*®x for any x € A*, where

¢ is a primitive m-th root of unity. Botho and « can be considered as automorphisms
of g by

c=0®idong® Aando =id onV @ Vi,
p=id®pong®Aandu =id on Ve V.
Setd :=opu € Aut(g). We claim thats satisfies (A1)—(A4). Since and . commute
and both are of perioth over g, (A1) holds. Also (A2) holds since and p stabilize

T®1,V as well asVt, and (A3) holds since preserves the form-( -) on g and u
preserves the formna on A. For (A4), first note that

P = (Zgum@m) aveV and T°=(T°0le VeV
AEA
Also

C;(T) = (C,(TY 2 )@V eVt

SO
Co(T) = Cp(TY 2 A a Ve V.
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Sinceo satisfies (A4),Co(T?) C go. Thus
Co(M) S (@A) e VeV =g

and (A4) holds fors.

We now further assume that is division, g, is abelian andB = F. Then by
Remark 7.27 and Corollary 7.243,(T) is a division IARA. In addition,d = (go ®
B)@& V@ V! is abelian. Thereforeg(T) andé satisfy conditions of Theorem 7.21, with
3, T andé in place ofg, T ando, respectively. Now letA’ be a torsion-free abelian
group, p': A’ — Zny a group epimorphism andl’ a suitable A’-graded commutative
associative algebra. Then starting frofy T) and &, one can use Theorem 7.21 to

construct a new IARm. This process can be iterated using suitable inputs.

ExXAMPLE 8.4. Supposel is a nonempty index set, with a fixed total ordering,
andqg = () is a J x J matrix overF such thatg; = +1, q;; = g andg; = 1, for
all i, j € J. We recall thatB ande are as in £). Let A := Bq[z"];c; be the unital
associative algebra generated {zy, zj‘l, b|j e J, be B} subject to the relations

(85) zz'=z'2=1, zzj=qjzjz and zb=bz, (i,jeJ, beB).

Take A :=ZPl and fori = (1j)jes € A. Setz* := Hjejz?‘ € A, where product makes
sense with respect to the total ordering dn Then A is a predivisionA-graded as-

sociative algebra withd* = BZ* for eachi € A. Moreover, a similar argument as in
[14, Proposition 2.44] shows that

(8.6) A=[A Al @ Z(A).

Let K be a nonempty index set and denote k¥, the setk W {0} & (—K) where
—K is a copy ofK whose elements are denoted b¥, k € K. Let K be the Lie sub-
algebrasly+ (A) of all finitary K* x K* matrices overd generated by the elementary
matricesag;j, i # j € K*, a€ A (for details the reader is referred to [19, Section 7]).
One knows that there is a unique-grading onkC such that for each # j € K* and
ae A, agj € KM

One can extend from B to A as in (8.2), then we can definefa-graded invariant
nondegenerate symmetric bilinear form on the set of finitsry x K*-matrices by
linear extension of

(agj, baw)k = 8isdjke(@ b) for a,be A, i, jkseK®™.

By [19, Section 7.10] the restriction of this form #0 is nondegenerate if and only if
Z(K) = {0}. Also by [19, Section 7.4]Z(K) = {0} if |[K| = o0, and

(8.7) Z(K) ={zlns1|z€ Z(A), (2n+ 1)z [A, A},
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if |K|] =n < oo, where byl,1 we mean the identity 2+ 1) x (2n + 1) matrix.
Therefor by (8.6),Z(K) = {0} in this case too. So the restriction of the form Kois
A-graded and nondegenerate.

SupposeT := span{ei —ejj | i # |j € K*}. Fori € K*, definee; € T* by &i(ej; —
&) 1= 3ij — ik, for j #ke K=. Fori, j € K=, putdij =& — & andR:= {dij li,] €
K*}). Ford € R, setKy := {x € K| [t,x] = a(t)x for all t € T}. ThenK = P,z K-
We note thatlCy consists of diagonal elements &f. In addition, if we assume that
€(1,1)= 1, then for anyi, j,s, ke  with i # j ands # k, we have

(8 —€jj, &k — Ess)k = dik — dis — (Sjk — &js)
= € (&k — €ss) — €j(Exk — €s9)
= dj (Exk — €ss)-
Thustg, := &; —ej; is the unique element i representingy;; via (-, - ).
Next, consider thé& -vector space) :=F ®z A, identify A as a subset oy and

fix a basis{ij | j € J} for V. Define the vector spack’ := Y jeaFdj S V" asin
(7.12). Set

g=KeVaeV and T:=TeVveV.

Define the Lie bracket oy as in (7.14), and extend the form ,(-)x on K to a
form (-, -) ong as in (7.15). Then it is clear that ( -) is nondegenerate both agn
andT.

We note that eaclix € R can be considered as an elementTof by requiring
a(V) = a(V') := {0}. One can easily see thaf representsy via (-, -) for each
& € R. Also we can consider any € A as an element of* by A(T) = A(V) := {0}
and A(d) := d(») for any d € V. Then clearlyt, = A. If for « € T* we defineg, in
the usual manner, then it is easy to verify that for ang A,

9oy = A'ej, (@) #0),
(8.8) g, = the set of diagonal matrices i with enteries fromA4*, (1 # 0),
go = (the set of diagonal matrices i with enteries from4° @V @ V1.

S0 g = Dycrica 9o+ Therefore §, T) is a toral pair with root system
R=R+A,

and (IA1) holds forg. We next show that (IA2) holds. Fix € A and choose an
invertible elementa € A%, then fori # j we have

[agj, a 'eji] = &i — ) + Z([ds, agj], ateji)rs € T,

(8.9) seJ
[a(ei —ejj), a Y& — &) = ZZ ds(Me(@ a Hrse T,

sed
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where the first equality is always nonzero and the secondliggisanonzero if 1 # O.
Note that ifi # j, thena*'e; € g; 1;, anda*'(e;i — ;) € g.,- So (1A2) holds.
Finally, sinceR is a locally finite root system of typd:, (IA3) holds by a similar
argument as in the proof of Theorem 5.5. ConsequenilyT ) is an IARA.

We further show thag is division if and only if A is division graded. Using the
fact that the elements of are diagonal matrices with trace zero, it is not difficult
to see that ifg is division, thenA is division graded. Assume now that is division
graded. We must show that (IA2)olds forg. Letr € A, 0#aec A" andi # j € K¥,
then

[agj, a"eji] = ei —ejj + ) _([ds, ag;], a "eji)rs € T \ {0}

sel

as required. Also ify ;x+ai&i € g, for a finite subseKy™ of K=, where 0# & € A*
and 1 # 0, then

{Z aei, ) aulai} = st(x)(z e(a, aﬁ)xs

ieKg ieKg seJ ieKg

=Y ds(W)[Kg|rs € T\ {0}

seld

as required. Thereforg is division if and only if A is division graded. Indeed by [19,
Section 4.5],g is division if and only if B is division. So from now onwe assume
that B is division

There exists an involution (a self-inverting anti-automorphism) oA (see [7,
Section 2]) such that; = z;, for any j € J andb = b for all b € B. By definition, it
is clear thate(a, b) = €(a, b) for any a, b € A. Using the involution™, we can define
an involution* on K by (ag;)* = ae_j_. | t is straightforward to see that the linear
mapo: g — g defined by

*

o(x)=—x* for xeK and o(x)=x for xeVaVl,

is a Lie algebra automorphism.

We will show thato satisfies (A1)—(A5). Clearly?(x) = x for any x € g, thus
o satisfies (A1) withm = 2. Also it is clear from definition that- satisfies (A2). In
addition, observe that

(0 (aqj), o(bes)) = ((ag))”, (bas)*)
= (ae_j i, be_s )
= Sjkdise(a, b)
= Sjkdise(a, b)
= (aej, be).
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So (A3) holds foro. Sincem = 2 is prime, instead of (A4) we will show that
satisfies the equivalent condition (A4jsee Lemma 4.1) namely, we show that fog0
a € R, m(e) # 0. Recall from Section 3 that since satisfies (A2), it induces an
automorphism orT*, denoted again by. We now note that maps diagonal matrices
to diagonal matrices and preserves homogeneous subspacegloffhus by (8.8) for
any A € A, o(g,) = g,, implying o (1) = A. Consequentlyz (1) = A and so ifA # 0,
then so ist(1). On the other hand, we have ! = o so for anyt € T andi # j € K*,

1
(@ )(t) = 5 (@j + o (é;)()
1
= 5(@;(t) +dij (o (1))
1.
= 5t + o).
Using this, we see that fdr# j € K* andt :=e; —e¢j;,

—j #i andi, j #0,

n@)®) =1z —j#i,i=00rj=0,

NN~ P

-] =1

Consequentlysr (@) # 0 for any 0# « € R. In particular (A4) holds.
We next show that (A5) holds. Leét# j € K U {0}, then we have

O0#ei—ej_ € T% and 0# g; —€jj + e —€ej_j€ Ti.

In particular (A5) holds. Thereforgy(T) ando satisfy all requirements of Theorem 7.21
and so we can construct a new I1ARA, (f).
Note that by (8.8),

go = (the set of diagonal matrices i with entries from.A°%) & V & 1°.

So, g, is abelian if and only ifA° = B is abelian, indeed, if and only iB is a field.
Now that we have a suitable automorphism gnchoosing a torsion-free abelian
group A’, a group epimorphismp: A’ — Z, and a predivisionA’-graded commutative
associative algebral’, we can use Theorem 7.21 to construct another IARAvith a
root systemR.
It is now interesting to have a discussion on the typdj.ofNote that we have

R={e—¢ +A|i #]eK* el
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By definition of o one can easily check that for amye K, o(¢) = —e_j, and as we
have already sees()r) = X for any A € A. Therefore

n(R) = {%(ei —€j+ej—ei)+A

i;éjeKi,AeA}

= {ﬂ:;(fi —€i)+ A

ieK,AeA}

U {:l:%((éi —€ )+ (Gj —ij)) + A

i;éjeK,AeA}

U{x(e6 —e)+A1]i €K, Ae A}

This makes it clear that (R) is an affine reflection system of ty@@C. But by (7.20),
R and 7 (R) have the same type. Thisis an IARA of type BC.
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