u

) <

The University of Osaka
Institutional Knowledge Archive

Title RBEHWRIBAEBAWN ATV NEEBICDWT

Author(s) |FH_L, =ER; BF, BX

Citation | BT BEHMEEFRRMMARES. SS, VI zTH
4 TR, 1990, 90(114), p. 49-58

Version Type|VoR

URL https://hdl. handle.net/11094/26836

rights Copyright © 1990 IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

559086

ﬁﬁ%%ﬁ%ﬁwkﬁfylﬁ$%ﬁﬁom(

Fr L TEER RIERR

N R e e
560 FBAFE A TTRRILNT 1 — 1

HbIL

97 b T BB I BHA OEEICGET P2 7 FEV)R E D TRBNICIY B ble,
fEER R E S o4 (FIEOAR (Object Management Language with Algebraic Representation)
FHRETD, OARRHWTA 7V 24 oS RPEREEERNL LTRTHEE DV TER
& o

Object Management Language with
Algebraic Representation

Katsuro INOUE and Koji TORII

Department of Information and Computer Sciences
Faculty of Engineering Sclence

Osaka University

1-1 Machikaneyama, Toyonaka, Osaka 560, Japan
Telephone : 06-841-9741

E-mail address : inoue@ics.osaka-w.ac.jp

Abstract

Requirement of formal management of various software products (objects) has been
increased. In this paper, we propose an object management language Car (Object
Management Language with Algebraic Representation), which are based on algebraic
specification languages and functional programming languages. In Oar, we can easily
define objects with various attributes, relations, or operations using the definitions of
abstract dala types. Creation and modification of the objects are performed by applying
functions (operators), and the results of those applications can be seen as forms of the
algebraic expressions. From these expressions, we can formally obtain and verify the
characteristics of the objects.

1 Introduction

It is being widely recognized that
formalizing software development processes plays
the crucial roles of improving productivity and
reliability of softwarelél. We have studied a
formalization method for the development
processes with a functional programming
language PDL {Process Description Language)3l,
Through this study, we knew that formalization
of software products is very important as well as
that of the development processes.

Software products are artifacts which are
created, modified, or referred, during software
developments. Specification documents, source
texts, load modules, executable programs are
examples of the software products. These software
products are called objects. Object may be generally
used to mean broader sense; however, our
formalization for the objects can be widely
applicable not only to software products but to
other things which can be considered objects.

Object management is to efficiently store,
retrieve, or restructure objects. Studies on the
object management are initiated recentlyl53). In
this paper, we propose an object management
language Ouar (Object management language with
Algebraic Representation), which is based on an
algebraic language ASL[I0] and functional
language ASL/FEL Objects in Oar are represented
as algebraic expressions, and operations to the

objects are represented as function applications.
The algebraic representation of objects has

benefits such that data types with operations can
be abstractly defined and the semanlics of the
expressions are simply and formally given. In
addition to these merits originated from typical
algebraic specification languages, Qar has facility
to dynamically create operation names, by which
various constant values of a data type are easily

created from one skeletal function symbol. Also it

has facility {o specify persistent objects to be
preserved in the system. Temporary objects
generated during execution could be deleted for
efficlency. These facilities resolve inherent
problems which would happern when we use
algebraic languages for the object management.

In this paper, we also propose an
architectural design of the Qar system. It bases on
implementation methods for the functional
languages with an environment stack, and
methods for a class of algebraic languages with
linked lists. The user interface of the system
allows us to access objects in algebraic expressions
forms.

We will discuss some requirements to the
object management in Section 2. In Section 3,
syntax and semantics of QOar are described.
Through some examples, we will show how we
manage objects in Oar in Section 4 and Section 5.
In Section 6, we will show an architectural design

of the QOar system.

2. Requirements of Object
Management

There would be various kinds of
requirements to the systems which manage
various kinds of objects. For example, the data
contained in a sequence of objects might be
reirieved by following some predetermined
structure of objects. Objects for toad modules
having identical attributes should be linked
together. Various relations between objects such as
a_part_of, version_of, etc. would be consistently
maintained.

In order to satisfy these widely spread
requirements, it would be insufficient for object
management systems to have a single modei
(scheme) to handie objects. For example, a
relational database model wouid not be powerful
enough (o r;:present hierarchy structures of

objects, or a tree structure model might not atlow

.'it'r.az‘.y:.:quects. New object

m'anag:ehje_nt_sys m suéh as hyper media, which

are - quite: different fi'Bm_ existing orne, would
require quite different models.

To be able 6 use various object models in a
jl.f_system., 1& wéﬁ[d be better to have facility to define

_those object models in some manners. Through

“the defined-models, user would manage objects
(easily and straightforwardly according . to the

;;;"i__zature of the objects (see Figure 1).

For the purpose of defining various object

odels in formal ways, we would use some
rogramming languages. Building object maodels

would be realized naturally by using facilities to
idefine various data types in the programming
_languages. Some procedural languages would be

f:‘_sﬁfficiently powerful to define abstract data types,

‘although the semantics of those procedural

ilanguages are not defined clearly and formally in
..;éeneral.

Algebraic specification languages have good
:_::ﬁatures, such that their semantics are defined very

ff__imply and formally, and they can define various

“abstract data types easilylll. Verification can be
E:"performed very formally if needed. We have
chosen an algebraic specification language as a base

language to define object models, and designed

f_:?'bject management language Oar.

Object Structures

through Models Actual Objects

Modet Definitions

:(_I’igure 1 Objects with Various Object Models

3. Object Management
Language with Algebraic
Representation

3.1 Overview of Oar

In this section, we will briefly show
language Oar, which has been designed for
treating various software objects in formal
manners.

Oar is based on algebraic specification
Ianguage ASL/1 [10], functional programming
language ASL/F [2], and process description
language PDL Bl

The characteristics of the Oar, which are
originally the characteristics of those base
languages, are as follows.

(1) The semantics are defined by the equivalence
relation of expressions very simply and
formally. Thus, the verification of the

correctness is relatively easy. The semantics of

the ordinary programming languages are
generally based on the behavior of compilers or
particular processors, and they are more

complicated.

(2) We can write descriptions in various
abstraction levels. In any abstraction level, the
description is meaningfu! in the sense that the

semantics of those descriptions are formally

given.
1 new_stack | > stack
2 push lelement, stack > stack;
3 pop Istack - stack;
4 top Istack => elemant;
5 f pop (push{E, §)) = 8 21
13 { top (push(E, 8}) e E il

Figure 2 Example of Stack in Oar

3.2 Syntax and Semantics
Figure 2 shows a simple example of an Oar
program for the definition of stack. From line 1 to

4, data types of the domains and ranges are

declared for each function. Line 5 and 6 are axioms
defining each function using function symbols
and variables.

We will describe two major components of
Qar, type declarations and axioms.
Type Dedaration

For each function, there is one type
declaration statement, which shows the data type
of domains (arguments} and ranges {(function

values}) in the following ways.
£ | typel, type2,..., typen-> typaf:

where typel, type2,... are the domain types and
typef is the range type.

These type declarations for the built-in
functions in the system are shown to the users if
required. Those for user defined functions are
supplied by the users.

Axiom
Axioms which define the functions are

denoted by
{ hiX1,X2,...) == expression i}

or
[£lgixy, Xe, .. .)) == exprassion ;]

Here, X1, X2, ... are distinct variables, &, f,
and g are function names, and expression is one of -
the following; a variable X; a constant, a built-in
function including if then else, a user defined
function, or a composite expression of these. If no
variables appear, the axiom is a definition of &
constant.

To simplify the implementation, we limited
the left-hand side forms to simple functional
styles, or simple constructor styles(10], The same
function names cannot appear twice as outer most

function symbols of the left-hand sides of axioms.
Functions appearing as only inner function as g is

called constructor. The constructors may appear
more than one left-hand side expression.

The semantics of an QOar expression are
defined by the equivalence relation created by the
axiomsl10l, The value of an expression is a single

constant expression or an expression with a

constructor as the outer most function symbol,
which is equivaleﬁt to the expression. The axioms
for built-in functions are assumed to exist,
however, they are not used for implementation.
3.3 Characteristics of Qar

In addition to the characteristics of ordinary
algebraic programming languages and functional
languages, Oar has special features useful to object

management,

1) With help of Qar programming system, we can
create various constant objects. In the ordinary
algebraic and functional language systems, we
have to prepare distinct constant functions for
each different object. In Oar, however, using
skeletal constant function, we can create unique

objects very simply as discussed in Section 4.2,

2) When we need to modify objects, no original
objects would be necessary after the modification
in many cases {although there may be exceptional
cases such that we intenfionally keeps older
versions for making backup copies or other
reasons). ‘

On the other hand, when we perform these
operations on the algebraic or functional
languages, the original objects represented by the
expressions might be still preserved. Therefore, if
we evaluate Qar expressions by using ordinary
implementation methods of algebraic and
functional languages, many copies of objects are
generated and the execution would be very
inefficient.

To resolve this problem, Car allows users o
specify object names to be preserved until the
execution terminates. If there is no specific
indication of the preservation, those objects are

deleted as temporary objects (discussed in Section

5.

4. Interactive Operation of

As we have discussed in previous sections,
xpressions of Oar represent objects such as files in
i actual computer system. In this section, we will
sée’ how the expressions are created under
diairelopment processes of a C program. At first, a
pé'cification for the objective program is made
step 1), next C source program for the
pecification is developed (step 2), then the C

rogram is compiled (step 3), and finally the load

odule is linked and an executable program is

Create a text-type object. The user looks for a

nitable operation (function) which creates text

type objects. The Oar system displays the possible
operations whose range type is the text. Assume

that the user selects create_fext defined as follows.
create_text | b
[]

By applying this create_tfext, a text editor is

text
create_text == exec(editor)

7

activated according to the axiom. Exec is a built-in
function which activates a tool specified by the
argument. In this case, a text editor in the system
is invoked and a text created by the editor is
returned. This text is now represented as

crenfe_fexi.

Create C source program. The user selects and

applies create_c_source defined as follows.
b

create_c_source | &_source
[create_c_source== exec{editor);]
By this application, a text editor for C source
programs is invoked. After the completion of the
editing, the created object of a C source text is

epresented as create_c_source.

Operation Object

Stepl

T

create kext

{texttype]

Step2 C! -

create_c_sourge
create_¢_source

{c_source typp }

-
c_compile(createrc_jource)
{load Imodute type

creaté_c_source

Step3

crefietexd

o~

2
arce))
ype]

Stepd create_g_so

executable

o

creale_c_source
Figure3 CProgram Development

Step 3
Compile the C source program. The user selects an

operation ¢_compile defined as follow.

c_compile | ¢ _source ~>load module

Xy ;)

Here, X represents a variable, which is replaced

[c_compile{X}) == execlcc,

with an actual object of the C source type. In what
follows, a single capital character denotes a
variable. By applying this operation with object
create_c_source as X, C compilation is performed.
A load_module object obtained is expressed as
follows.

¢_compile (create c_source)

Step 4
Link the load module. Operation link is chosen

and applied with the load module object.
iinki load module -> executabls
{ link (X) exec (1n, i1

After completion of these four steps, we get

X)

four objects represented by the following

expressions.
create_text
create ¢ source
c_compile (create_c_source)
link{c_compile{create_c_source))

These four objects directly show the characteristics
and the history of operations applied to the
objects.

4,2 Unique operation names

In the previous example, we simply create
one object of the specification text. We may want
to create more than one object of the specification.
It would be considered that we simply repeat Step
1 to get more objects; however, repealing the same
steps creates more than one object having the
same object name (i.e., same expressions),
create_text, although we may intend to have
distinct object names.

To prevent this object name crush, we have
devised a mechanism for assigning unique object
name to each object. The Oar system always
provides unique operation names when the user
selects an operation to apply, instead of always
displaying same operation names as shown in
Section 4.1. For example, the operation shown at

Step T was
create_text | - text

Insiead, a unique operation name actually the

system provides is as follows:

cbjl:create text | > tent
[objl:create_text== exec{editor);]

Here, the unique name is objl:create_text. It is
composed of a variable part (a unique part) objI:
and a fixed part (a skeletal part) ¢rente_text. The
unique part is generally represented by objl:, obj2:,
w., 6Bji:, ..., In this paper. It is automatically
supplied by the Oar system or specified by the user.
The user may choose either a supplied name or
his/her favorite name as the unique parl. If the
user’s favorite name is not unique in the system,
i.e., the same unique part is already used, the
system warns. The overall name is an operation
which creates a unique constant of the text type.
The object created by this constant operation
is also objl:crente_texf. We can simply use an
abbreviation form objI for this object. When we

repeat Step 1, the system provides the same

skeletal operation name with a different unique
part such that,

obj2:create text | -> text
[objZ:create text== exec({editor) ;]

By applying this operation, the editor is again
invoked and a different object obj2:create_text(or
simply obj2) is generated.

Using this mechanism, revisions of objects
are easily realized. An object already created is
modified, and a new object is created. The
modification of the text type object is performed by

operation,
obj3imodify text | text -> text ;
[okj3 imodify_text(Y) == exec{editor, ¥):]

Here, obj3 is a unique part given by the system,
and application of this operation with olj2
generates object obj3:modify_texHobj2} (or simply
obj3).
4.3 Overloading operation names

For the cases such that an executable
program consists of several modules as discussed
in the previous section, first we would separately
compile each module and next link them
together. These operations are expressad in Oar as

follows.
objl:create text /* Spscification of module 1 */
objZ:create_c_source /* C source of madule 1 =/
obi3:c_compile (obj2) /% Compile and generate

a load module of module 1 */
objd:create_text /* Specification of module 2 */
obj5:create_c_source /* € source of module 2 */
objé:c_compile{objs5) /* Compile and generate

a lead medule of module 2 */
obj7:1link(obi3, objé) /* Create an epecutable

obiect */

In this case, operation link has two load
modules as its arguments. Since it is not practical
to limit the number of arguments to two, we
allow to take arbitrary number of arguments by

using overload of the function names defined as

follow.
obji:link | load _medule -> exzecutable:
obji:link | load medule, lead medule ->

executable

4 User detined types and canstructors

" In Section 4.5, the data types and functions
n them are provided by the system. [n addition
o these types and functions, users can define new
ypes and functions on them.)

Consider the example of C program
development. If we may want to combine together
text for specification, a C source text and a load
module, into one module, we will define a new
unction mk_module, which creates a new type
odule. This module is a tuple of those three
lements, and the type declaration would be as

ollows.

obi4:mk_module | text, ¢ source, load module
—> module i

Por example, let obji, obj2, obj3 be the types

of fext, c_source, lond_module, respectively, and

applying this function creates object
objd:mk_madule(objl, obj2, obj3).

Extracting a componeat from a module
requires additiona! function geil, gei2, geld.
Together with these functions, axioms for

nk_module is defined as a constructor.
obj5:getl | madule-~> text
C_SDU.L’CE.‘
load_medule ;

obiS:get2 1 module->
obj5Siget3d | module—>
i obi5:gett {mk_module (X, Y, 2}) == X 1
[objb:get2 (mk_module (X, ¥,2)) == ¥]
I ob3S:get3{mk_module(X,¥,2)}} == I]

Note that no unique names are attached to
mk_module.

When a constructor funciion is apply t¢ an
object, the system does nothing but simply
generates an expression, such as
obj4:mk_moduie(objI, obj2, obj3). When an
e.xtracting function such as getl is applied,
expression obj5:get(mk_module(objl, obj2, cbj3))
is first made. Since it is equivalent to objT by the
axiom, the system tells users that obj5 is
equivalent to objl, and it changss the display
rame from objs to abjl. '

4.5 Built-in data structures

Commonly used data types such as list are

provided by the system as system built-in data
structures (types). Users can use these data
structures without declarations of the data types
and functions on them.

For example, a list of any objects can be
created by performing built-in function cons. If the
type of the element is, say, lond_medule, the
object cons(objl, nil) will be of the type of
Iist_of_laad_module. The users can also use car
and cdr for this list_of load_module without
declarations. We cannot append different data

types such as ¢ _source to list_of _load_module.

5. Programming in Functional
Style

We have discussed how to define data types
and how to create objects interactively. In this
section, we wiil discuss how to define functional
programs which perform various operations on
objects. Using functons and data types already
defined as discussed in previous sections, we can
define the functional programs.
5.1 Simple iteration

Consider a case such that there is a list of C
source programs, and each of the elements is to be
compiled into load meodules and connected
together into another list of the load modules. For
this purpose, we define a function compile_all as

follows.
obji:compile 2ll
| list_of_c_source program —>
iist_of load module;
[obji:compile all(L) == if null{L) then nil
else cons{c_compile{car (L)),
compile all{edr(L})))

After defining this function, the user
applies this function to an existing list of C source
programs.

The following example shows a process to

repeat text editing until a condition is satisfied.

obiji:repeat | text - text
[obji:repeat(X) == if cond{X} then X
else repeat (modify text (X)) 1

Note that each time when modify _fext is

invoked, the generated object is not preserved
except for the final result returned as obji. This
happens when executing a function having the
same range and domain types, and conditions for
satisfied{2], This

implementation method heips to execute the

'globalization® are

programs efficiently since there is no need to
remember each copy of original values. However,
it would cause some inconsistency for the

programs such as shown below.
obji:fitext = list_of text;
fobji:E{X) ==cons(modify text(X),
cons (modify text (X), nil))]

In this case, modify_text(X} is evaluated
twice if no optimization for eliminating duplicate
computation is performed(2], If we assume that an
expression is evaluated from the left to right, the
right expression modify_texi(X) is evaluated later,
and when the right expression is evaluated, object
X has been already modified and no original object
exists.

To prevent this problem, when the
globalization conditions are not satisfied, we will
specify them on the definitions of those functions

with key word olj: shown as follows
ebji:f |bext -> iist_of text:
[obji:E£(X) = cons (obiimodify teut (X),
cons (cbjimodify text{X}, nil))]

The system keeps the original objects when
it evaluates the sub-expressions with obj:, and the
objects created for those subexpressions are named
with the system-assigned unique names.

5.2 Sequence of development processes

Consider the development processes shown
in Section 4.1. In that case, we first get a text of
specification, a C source program, a load module,
and finally an executable object. Since each
operation is applied manually step by step, there
was no need to have control mechanism for these
application order.

If we want to perform those application
automatically, we will define user defined

functions, which will create these objects as the

result. Consider the following definition of g,
which creates those objects as a form of a tuple

with type name fup.

gl -» tup

[obji:rg(} == mk_tupi
cbi:create text,
ebirlink(obj:c _compile(

obj:create ¢ source))) 1

mk_tup | text, executable -> tup;
[getl (mk_tup (X, Y)) ==X 1
[get2 (mk_tup (X, Y))==Y 1

Although the application of this constant
function g generates the four objects we want, the
order of invocation of two editors for the
specification text and the C source program are nat
determined {actually, it would be determined by
the system implementation ways}.

If the invocation order is essential to create
the objects, we consider that an object created by a
later invocation depends on the previous one and
the later invocation takes previous objects as its
argument .

To realize this, we modify create_c_source

and define crenfe_c_source’ shown below.
objiicreate c source', text -> ¢_source;
[obji:create_c_source’ (X} == axec{editor)]

In this definition, variable X does not affect the
result, If we assume that the functions are calied
by value, the editor is not activated until object X
is passed to the function. Using this function, we

can redefine g as follows.
gl -> executable ;
[obji:gl) ==
obj:link(
obj:c compiled
obj:cxeate_c source' (obj:create_text))) 1

6. Implementation

In this section, we will discuss how the Ora
system is implemented on actual computer
system. We may think of various kinds of
architectural design. Figure 4 shows one candidate

architectural design.

1) The user interface provides a visual interface
between the Ora system and the users. In order

that the user is able to find out easily appropriate

¥ N\
Tyge Delinition Containgr ~ Expression List Cantainer
: ;

User Interface <pression Object Interfade

{~#— Function |-

: Functim\Definirion Container

“operations to apply, the user interface shows
possible operaticmé searched by the operation
ames, the data types of the ranges, or those of the
‘domains. The users are nat necessary to input
“algebraic expressions, but simply selects a possible
- operation. It also displays current objects existing
in the expression list container in various ways,
“ such as expressions sorted by the object names or

© tree structures showing relations among objects.

2} The type definition confainer stores definitions
of the built-in data types and user defined data
ypes (i.e., definitions of constructors and
cextraction functions). It keeps both type

eclarations and axioms.

) The expression list container holds lists
. reiaresenting the objects which are created by the
‘user's interactive operations or by the applications
-of user defined functions. A node in the list may
‘have an object name annotated automatically by

he system or by the users. More than one list

ouid co-exist in the container at the same time,
nd the user can specify and remove some of

hem from the container.

) The expression” . confral controls the type
efinitions and. the expression list container. It

hecks the equivalence relations and renames

|—e={Control |=a—&|
1 -
y
Achu

al File System

Environment Stack Container

Figure 4 Axchitectural Design of Oar System

objects, when an extraction function for
constructors is applied. It also generates unique
object names to distinguish newly created objects

from existing ones.

5) The function definition container contains the
definitions of user defined functions which are
recursive forms or simple calls to the builtin
functions such as tool (utility program) invocation
function exec. This container keep; both type

declarations and axioms.

6) The environment stack container has a stack
which stores values for current environment,
such as actual parameters or temporary results of

the evaluation.
7) The function control is responsible for the

execution of user defined functions. It controls
mutual and self recursive activations of the
functions. It also adds, deletes, and modifies the

definitions in the function definition container.

8) The object interface maps the expression lists
into files on the actual file systerns. A node in the
expression list container, corresponding to a
constructor, is not mapped to an actual file, since
creating a file to remeinber information of only a
constructor is expensive. Other objects such as
texts of specifications and C source programs are

mapped on the actual file system.

7. Conclusions

We have discussed the concepts of object
management language Oar and the Oar system. By
using the Oar system, we can formally define
various object schemes, and can naturally manage
objects based on those schemes. Formal
verification of characteristics of objects can be
performed relatively easily using various

verification techniques of algebraic specifications.

We are currently doing detail design of the
Qar system and will start implementation of a
prototype. It wilt work stand-alone as an object
management system, and also it will work with
our PDL system[®] which manages software
development processes. Together with the PDL
system, the Oar system would be a prototype of
Software Designer's Associatest® % 11l We are also
developing a relaiively large examples of Oar
programs. This program will manage not only
objects but also development processes associated

with objects.

Acknowledgement We are grateful to the

members of Software Designer's Associates
Consortium whose iiiscussicms contributed to the
design of our language and system. Especially,
authors would like to thank W. E. Riddle, L. G.
Wiiliams, J. H. Sayler, and K. Kishida. Many of the

ideas in this paper are results discussions with

them.

References

(1] Ehrig, H. and Mahr, B, "Fundamentals of
Algebraic Specification 17 Springer-Verlag,
1985.

1 Inoue, K., Seki, H., Taniguchi, K., and Kasami,
T., "Compiling and Optimizing Methods for
the Functional Language ASL/F", Science of
Computer Programming, 7, 11, pp.297-312,
Nov. 1986.

Bl Inoue, K., Ogihara, T, Kikuno, T., and Torii,
K., " A Formal Adaptation Method for Process
Descriptions”, Proceedings of the Tith
International Conference on Software
Engineering, Pittsburgh, PA, pp. 145-153, May
1989. .

4] Kim, W., Banerjee, J., Chou, H., Garza, J., and
Woelk, ., "Composite Object Suppori in an

Object-Oriented Database System”,
Proceedings of OOPSLA-87, Orlando, FL,

pp.118-125, October 1987.

i3

[6)

el

©l

{10]

[11}

Kishida, K., Katayama, T., Matsuo, M.,

Miyamoto, 1, Ochimizu, K., Saito, N., Sayler, -

J. H., Torii, K., and Williams, L. G., "SDA A
Novel Approach to Software Environment
Design and Construction”, Proceedings of the
10th International Conference on Software
Engineering, Raffes City Singapore, pp. 69-79,
April 1988.

Osterweil, L., "Software Process Are Software
Too", Proceedings of the 9th International
Conference on Software Engineering,
Monterey, CA., pp.2-13, April 1987.

Patel, S., Orr, R., Norris, M., and Bustard, 1.,
"Tools to Support Formal Methods”,
Proceedings of the iith International

Conference on Software Engineering,

Pitisburgh, PA, pp. 123-132, May 1989.

Penedo, M. H., and Riddle, W, E., "Software
Engineering Environment Architectures”,
IEEE Sofiware, 14, 6, pp. 689-696, June 1985.
Riddile, W. E. “Software Designer's
Associates : A FPreliminary Description”,
Proceedings of the 20th Hawaii International
Conference on System Sciences, Kona,
Hawaii, pp.371-381, January. 1987.

Torii, K., Morisawa, Y., Sugiyama, Y., and
Kasami, T., "Functional Programming and
Logic Programming for the Telegram
Analysis Problem”, Proceedings of 7th

International Conference on Software

Engineering, Ortando, FL. pp.57-64, March,

1984.

Williams, L. G., "Object Management Issues
for Software Designer's Associates”, Software
Engineering Research, Boulder, CO, july 1988.

RECENRIFR

