
Title 代数的表現を用いたオブジェクト管理について

Author(s) 井上, 克郎; 鳥居, 宏次

Citation 電子情報通信学会技術研究報告. SS, ソフトウェアサ
イエンス. 1990, 90(114), p. 49-58

Version Type VoR

URL https://hdl.handle.net/11094/26836

rights Copyright © 1990 IEICE

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

SS90-6

代数的表現を用いたオブジェクト管理について

井上克郎 鳥居宏次

大阪大学法枕工学部情報工学科

560 大阪府遊中市待兼山町 1 ー l

あらまし

ソフトウェア開発に関する恐々の生成物件フ'ジエクトという)をより形式的に取り扱うために、

代数的記述言語に基づく言諒OAR (口bjectManagement Lang山:ge with Algebraic Representation)

を提言主する。 OARを用いてオプジェクトの生成や変更を表現式として表す方法について述べ

る。

Object Management Language with
Algebraic Representation

Katsuro INOUE and Koji TORII

Department of Information and Cor_nputer Sciences

Faculty of Engineering Science

Osaka Universiげ

1-1 Machîkaneyama, Toyonaka, Osaka 560, Japan
Telephone: 06-841-9741

E.-mail address : inoue@ics.osaka-u.ac.jp

Abstract

Requi日ment of formal managernent of various soHware products (cわIjects) has been

increased. In this paper, we propose an object management language 0田 (0切ect

Management Language with Algebraic Representation), which are based on algebraic

spedfication languages and functional programming languages. In Oar, we cal1 easily

define objects も.....ith variOllS attributes, relations, or operations using the definitions of
abstract data types. Creation and modification of the objects are performed by applying

functions (operators), and the results of those applications can be seen as forms of the

algebraic expre田ions. From these expressions, we 田n formally obtain and verify the

characteristics of the objec包

-49

1 Introducfion
It is being widely recognized that

formalizing software development proceS5田 plays

the crucial roles of improving productivity and

reliability of software[6J. We have studied a

formalization method for the development

processes with a funct綷nal programming

language PDL (Process Description Language)[31

Through 血is study, we knew that formalization

of software products is very important as well as

that of the development processes

Software products are artifacts which are

created, rnodified, or referred, during software
developments. Specification documents, source
texts, load modules, executable programs are
examples of 出e software products. These software

produc悩 a目 called objects. Object may be generally

used to mean broader sense; however, our

formalization for the objects can be widely

applicable not only to software products but to

other things which can be considered ob戸cts

Object management is to efficiently store,
retrieve, or restructure objects. Studies on the
object management are initiated re目ntly[5 ，91. In

this paper, we propose an object management

language 。町 (0旬町t management language 切な"

Algebraic Representation), which is based on an

algebraic language AsL[101 and functional

language ASL/F[3J. Objects 絜 Oar are represented

as algebraic expressions, and operations to thE
objects are represented as funct綷n app1icat綷ns

The algebraic representation of objec士s has

benefits 5uch that data types with operation5 can

be abstractly defined and the semantics of the

expressions are 5imply and forrnally given. In

addition to these merits originated from typical

algebraic specification languages, Oar has facil羡y

to dynamically create operation names, by which

various constant values of a data type are easily

created from one 5keletal funct綷n symbol. Also it

has facility to specify pcrsistent objects to be

preserved in the system , TCn�.porary objects

generated during execut綷n could be deleted for

efficiency. These fac�ities resolve inherent

problems which would happen when we use

algebraic languages for the object management

In this paper, we also propose an

architectural design of the Oar system. It bases on

implementation methods for the functional

languages with an environment stack, and

methods for a class of algebraic languages with

linked 1ists. The user interface of the system

allows U5 to access objects in algebraic expressions

forms

We wil1 discuss some requirements to the

o切ect management in Section 2. In Sect綷n 3,
syntax and 5emant祥s of Oar are described

Through some examples, we wi11 show how we

manage objec恰 in Oar in Section 4 and Section 5

In Section 6, we w精l show an architectural design

of the Oar system

2. Requirements of Object
Managemel1t

There would be various kinds of

requirernents to the systems which rnanage

various kinds of objects. For example, the data

contained 絜 a sequence of objects rnight be

retrieved by following sorne predetermined

structure of objects. Objects for load modules

having identical attributes should be linked

拍gether. Variou5 relations behveen 0切ects such as

ιpart_o[r versiol1_O[r etc. would be consistently

maintained

In order to satisfy these widely spread

requirements, it would be insufficient for 0切ect

management systems to have a single model

(scheme) to handle objects. For example, a

relational database model would not be powerful

enough to represent hierarchy structures of

objects, or a tree structure model might not allow

-50ー

3. Object Management

Lang�ge with Algebraic

Representation

3.1 Overview of Oar

between , arbitrary , objects. New o�ject

systems such as hyper media, which

quite"different, Jrom existing one, would

this section, we will briefly 5how

language Oar, which has been designed for

treating various software objects in formal

In

ロ\anners.

Oar is based on algebraic .!ipecification

language ASL/l I1 0], functional programming

language ASL/F [2], and process description

language PDL [3J

The characteristics of the Oar, which are

original1y the

languages, are a5 follows

(1) The semantics are defined by the equivalence

of expressions very simply and

formal1y. Thus, the verification of

correctnes5 is relatively easy. The semant�s of

the ordinary programming languages are

general1y based on the behavior of compilers or

particular processors, and 出ey are more

complicated

of those base

the

descriptions in

abstraction levels. In any abstraction level, the

description is meaningfuJ in the sense that the

semantics of those descriptions are formally

various 、べrritecan 、lVe(2)

quite different models

To be able to use various object models in a

it would be better to have faαlity to define

o切ect models in some manners. Through

defined models, user would manage objects

and straightforwardly according to the

of the objects (see Figure 1)

For the purpose of defining various object

in formal ways, we would use some

languages. Building object models

be rea1ized naturally by using facilities to

define various data types in the programming

Some procedural languages would be

poもverful to define abstract data types,

although the semant祥s of those procedural

languages are not defined clearly and formally in

general

Algebraic specification languages have good

natures, such that their semantics are defined very
simply and formallYI Ð,nd they can define various

abstract data type5 easilyll1. Verification can be

very formally if needed. We have

an algebraic specification language as a base

l疣guage to define object models, and designed

management language Oal

characteristics

relation

sヒ，ek

stack;

stack;

何> element;

"

一〉

一〉

ー〉

S

E

lelement , stack
Jstack

! stack

pop (push (E, 5))
top (push (E, 5))

glven

new s乞，ek

push

pop

top

{

1

2

3

4

5

6

Actual Objects

ムムe二〉

Object Struclures
through Models

骨骨(仏闇
介
汁V Figure 2 Example of Stack in Oar

3.2 Syntax and Semantics

Figure 2 ShOW5 a simple example of 8n Oar

program for the definition of stack. From line 1 to

4, data type5 of the domains and ranges are

51

Model Definitions

Objects with Various Object Models

declared for each function. Line 5 and 6 are axioms

defining each function using function symbols

and variables

We will describe two major components of

Oar, type declarations artd axioms

Type Declaration

For each function, there is one type

declaration statement, which shows the da礼 type

of domains (arguments) and ranges (function

values) in the following ways

f I 乞ypel，乞ype2，ー，乞ypen-> ヒypef;

where typel , type2r.. are the domain types and

typef is the range type

These type declarations for the built-in

functions in the system are shown to the users 禛

re司uired. Those for user defined functions are

supp1ied by the users

Axiom

Axioms which define the functions are

denoted by
{ h(Xl ,X2 ,...) ..冨 express斗on ;]

or
[f(g(Xl , X2, ...)) 標語 e勾::lressエon ;]

Here, Xl , X2 , ••• are distinct variables, h, f ,

and g are function names, and expression is one of -

the following; a variable Xj, a constant, a built-in

function including 凬 tJzen else, a user defined

function, or a composite expression of these. If no

variables appear, the axiom is a definition of a

constant.

To simp1ify the implemen恒 tiOll， we limited

the left-hand side forms to simple functional

styles, or simple constructor styles[101 , The same

function names cannot appear twice as outer most

function symbols of the left-hand sides ofaxioms

Functions appearing as only inner function as g is

called constructor , The constructors may appear

more than one left-hand side express�n

The semantics of an Oar expression are

defined by the equivalence relation created by the

axioms[101. The value of an expression is a single

constant expression or an expression with a

-52

constructor as the outer most function symboI.

which is equivalent to the expression. The axioms

for built-in functions are assumed to exist,

however, they are not used for implementation
3.3 Characteristics of Oar

In addition to the characteristics of ordinary

algebraic programming languages and functional

languagesI Oar has special features useful to object

management

1) With help of Oar programming system, we can

create various constant objects. In the ordinary

algebraic and functional language systems, we

have to prepare distinct constant functions for

each different object. In Oar, however, l1sing

skeletal constant function, we can create unique

objects very s絈ply as discussed in Section 4.2

幻 When we need to modify 0切ects， no original

objects would be necessary after the modification

in many cases (although there may be exceptional

cases such that we intentionally keeps older

versions for making backup copies or other

reasons)

On the other hand, when we perform these

operations on the algebraic or functional

languagesI 出e original objects represented by the

expressions rnight be st日1 preserved. Therefore, if

we evaluate Oar expressions by using ordinary

絈plementation methods of algebraic and

functional languages, many copies of objects are

generated and the execution v々 ould be very

inefficient

To resolve this problem, Oar allows users to

specify object names to be preserved until the

execution terminales. If there is no specific

indication of the preservation, those objects are

deleted as temporary 0同ects (disct1ssed � Section

5)

ぷ
ぷ
山心

議5
W
柊み、久

喜\
ル

ぬ;
伐b
w

際~

Interactive Operation of

bjeds
Example of simple C program

ド As we have discussed in previo回目ctions，…v

雲凶子ぷhμ~ι目叫e酎叫叩x叩P戸re捌田四1旧lon問n悶山s刊。010伽a町r口r町e
与ざ勾ミ♂加a叩n actual c∞。mp叫e町r sy戸51悼em. In this section, we will
ベヘ

how the expr出ions are created under

~~r<" development processes of a C prograln. At first, a

長三 'specifi剖ion for the objective program is lnade

似ep 1), n削 C source program for the

伽tion is developed (白s自t匝ep 2),

;戸之竺〆ごγ:
絞 'IT宜mo

芯。b凶ned(5lep 4) , F伊re 3 sho，"。、ws th四e these

山n5 a山he obtained 岬出
わ以

心

;ゑ Sfepl

Create a text-type 0切ect. The user looks for a

長 suitable ope凶ion (function) which creates text
ぷ

ぶ type ob戸市引le Oar system di叩lays the 戸ssible

髭 operations whose range type is the t剖 Assllme

除制 the user selects cr四削te凶h点』
訟ぷ必ν c町re田a回 ヒ出ex叫t I 叩-> t悼e郎x坑t

際(町eate_t叫罵=創出凶itor) ;J

ダ努♂ B町y 叩明Pμly均仙 cr問e耐t

ゑ 配副t伽i卸iva酎te吋da目cco出n略g t加。 I出he 出制E叩roU"叩m. Exe町C 1お5ab加u山凶1日山恥川11，ル凶tトt-i

:言?安仇 fu山叩n叫1

2主♂ a 弔耶um削 In 帥 C叫 a text 副tor in the system

三 is invoked and a text created by the editor is
、一九

三 returned. This text is now represen ted as

;ふ create_text

Step2

,"'" Create C 5叩ce p吋ram. The tlser selects 叩d

applies cr四te_c_s附ce defined as follows

vぶ create_c_50urce I ー.> c_s曲目e
w
ι

三必ぶ子三ハ [cr目e田a坑te c source=一~ e郎xe白c (但edιL比t凶。ど吋) ;)

三二百Y this application, a text editor for C sOllrce

波 programs is invoked. After the completion of the

editing, the created 0切ect of a C source text is

n 四presen悼d as cr四te_c_SOU1'ce

ぷと
じ参
加

-53ー

Operation 口 bject

5tep1 屯~t ー〉

5tep4

Figure 3 C Program Development

Step3

Compile the C sOllrce program. The user selects an

operat綷n c.…compile defined as follow
c_co時iヱe I C_50山ceω>load_module

[c compile(X) == eχec(cc ， X))

Here, X represents a variable, which is replaced

、.vith an actual object of the C source type. In も.vhat

follows, a single capital character denotes a

variable. By applying this operation with object

create_c_source as X, C compilation is performed

A load_nlodule object obtained is expressed as

follows

c compile(create c sou玄ce)

Step4

Link the load module. Operation lillk is chosen

and applied with the load module object

link[load module -> executable
{ link(X) 田 exec (ln , X) ;J

After completion of these four steps, we get

four objects represented by the following

expresslons
crea乞e texヒ

crea乞e c ，凹rce

c_compile (creaヒe_c_so\Jどce)

link(c白compile(crea乞e c souどce))

These four objects directly show the characteristics

and the history of operations applied to the

objec悩

4.2 Unique ope四tion names

1n the previous example, we simply create

one 0切ect of the spe口f日tion texL We may want

to create more than one 。切ect of the 5戸cïfi四tion

1t would be considered that we simply repeat Step

1 to get more objects; however, repeating the 日me

steps creates more than one object having the

same object name (Ï.e. , same expressions) ,

cr叩te_text， although we may intend to have

distind object names

To prevent this ob炉ct name crush, we have

devised a mechanism for assigning unique object

name to each object. The Oar system al、叩ys

provides unique operation names when the user

selects an operation to apply, instead of always

display絜g same operation names as shown in

Section 4.1. For example, the operation shown at

Step 1 was
crea乞 e teλt I ー> text

Instead, a unique operation name actually the

sys悟mprovides is as follows:

objl :create_1乞exヒ l ー〉七ex乞，

[objl:create_text調耳 exec{ed比orl ;J

Here, the unique name is objl:crente_tex/. lt is

composed of a variable part (a unique part) ohjl:

and a f荿ed part (a skeletal part) creale戸 text. The

unique part is gene問lly rep児sented by 刈1 :，。句'2"

, obji:, ••. , in this paper. It is automatically

supplied by the Oar system or specified by the user

The user may choose either a supplied name or

his/her favorite name as the l1 ni司ue part. If the

user冶 favorite name is not unique in the system,

i.e., the same uni司l1 e part is already used, the

system warns. The overall name is an operation

、^lhich creates a unique constant of the text type

The object created by this ∞田tant ope凶ion

is also ohjl口eate_text. We can simply l1se an

abbreviation form objl for this object. When vve

repeat 5tep 1, the system provides the smne

skeletal operation name with a different ltni司ue

part such thaι

obj2 ;create….te:-:t J -> text
[obj2:Create日te:-:t属.. exec (editorJ ;]

By applying this operation, the editor is agnin

invoked and a different object obj2:crealc_text(or

simply obj2) is generated

Using 出ìs rnechanism, revisions of objects

are easily realized. An object already created is

modified, and a new object is created. The

modification of the text type object is performed by

operation,
obj3 :modify_'乞ext I teχヒ〉乞e:-:t

[obj3:modify texヒ (Y) exec(eよ孟tor ， YJ;)

Here, obj3 is a unique part given by the system,

and application of this operation with obj2

genera tes ob戸ct 0句'3 :modify_teλ l(obj2) (or simply

obj3)

4.3 Overloading operation names

For the cases such that an execl1tnble

program consists of several modules as discllssed

in the previous sectioll, first we would separately

compile each module and next link them

together. These operations are expressecl in Oar as

follows
objl :create_tex乞 1* Speci主主cation of module 1 求/
。bj2:create_c_source 1* C 50urce of module 1 求/

obj3:c_compile{obj町内 Co即ile and gencrate
a load module of module 1 *1

obj4:create_text 1* Specification of module 2 り

Obj5:create_c_source 1* C 50urce of module 2 *1
obj6:c_compile(obj51 1* Compile and generate

a load module of module 2 *1
obj7:1斗nk(obj3 ， obj6) 1* Create an e戸ecutable

objecヒり

1n this case, operation link has two load

modules as its arguments. Since it is not practical

to limit the nl1mber of arguments to two, we

allow to take arb羡rary number of arguments by

using overload of the function names defined as

folloもv

obj斗 link

obji:link 一
一
一
一
一

-54ー

4.4 User de劦nect types and constnlctors

In Section 4.5, the data types and functions

on them are provided by the sys担m. fn addはion

to these types and functions, users can define new

and functions on them

Consider the example of C program

into one module, we will define a new

mk_module, which creates a new type

This module is a tuple of those three

and the type declaration w0111d be as

。bj4:11品、._module I teは， c_source , load_module
> module

For example, lef objl , obj2, obj3 be the types

text, c_sOllrce, 10問d_l1l odule， respectìvely, and

applying this function creates object

obj4:mk_module(o匂L obj2, 0句3)

Extracting a component from a module

requires additional function gefl , gct2 , gef3

Together with these functions, axioms for

is defined as a constructor

module“> "叫 J

由j5:get2 1 module-> c_source;
。bj5:ge日 1 moduleー> load module ;
! obj5:getl(mk_moduleIX, y, Z)) ~= X

obj5 :get2 {耐~module (X, Y, Z)) 馬場 Y

。 bj5:geヒ3Imk_module{X， Y ， Z)) 冨罵 Z

Note that no unique names are attad四d to

When a constructor function is apply to an

object, the system does nothing but simply

generates an expression , such as

obj4:mk_module(objl , obj2 , obj3). When an

function such as get1 is app1ied,

expressi輓 obj5:get1(mk_11I odule(obj1 , obj2 , obj3))

is first made. Since 羡 is equivalent to objl by the

axiom, the system tel1s users that obj5 is

equivalent to 0町1 ， and 羡 changes the d可llay

name from _obj5 to objl
4.5 Built-in data structures

Commonly used data types such as list are

provided by the system as system bu�t-in data

structures (types). Users can tlse these dafa

structures 、"，ithout dec1arations of the dafa types

and functions on them

For example, a list of any objects can be

created by performing built-in function cons. lf the

type of the element is, say, load_ l11 odule , the

object cons(objl , nil) will be of the type of

list_of_Ioad_module. The l1sers 四n also use cnr

and cdr for this Iist_of_load_tI1odul� without

declarations. We cannot append different data

types such as にsource to list_of_load_l1l odl巾

5. Programming in Functional

Style
We have discussed how to define data types

and how to create 0同ects interactively. ln this

section, we wi11 discuss how to define functional

programs which perform var綷us operations on

objects. Using functions and data types already

defined as discussed in previotls sections, we can

define the functional prog問ms

5.1 S泊ple iteration

Consider a case such that there IS a list of C

source programs, and each of the elements is to be

compiled into load modules and connected

together into another 1ist of the load modules. For

this purpose, we define a function c01l1piie_all as

fo11ow5
obji:co岬ile all

1 list一。f_c_source_program ー〉

list _of _load_module "
! obji:c。仰tpile_all(L) if nuヱ 1(L) then nH

else cons(c_compile(car 仏))，
compile_al工 (00ど IL))) 1

After defin絜g this function, the user

applies this function to an existing list of C source

programs

The following example shows a process to

repeat text editing until a condition is satisfied

。bji:repeat I text ー.> tey.ヒ，

[obj主 repeat{X) 泊届 if cond(X) then X
else repeat(modify_teぉt(X))

Note that each time when lI1odijy_fcxf is

invoked, the genera恒d 0同ect is not preserved

except for the final result returned as obji. This

happens when executing a function having the

same range and domain types, and conditions for

'globalization' are satisfiedf21. This

implementation method helps to execロ te the

programs efficiently since there is no need to

remember each copy of original values. However,

it would cause some inconsistency for the

prog問ms such as shown below

。bji:f!text -> 1日ヒ_of_tex乞，

fobji:f同一cons(modify_text (x) ，

cons(modify_text(x) , nil))]
In this case, modify日texf(X) is evaluated

h円ce if no optimization for eliminating dllplicate

computation is performed[21. If we assume that an

expression is evaluated from the left to right, the

right expression modif1j_text(XJ is evalllated later,

and when the right expression is evaluated, object

X has been already modified and no original object

exists.

To prevent this problem, when the

globalization conditions are not satisfied, we will

specify them on the definitions of those functions

with key word obj: shown as fol1ows
obji:f Ite玄t ->ヱist_of_text;

[obji:f(均 一 cons(。同問。 dify. 七回ヒ (x) ,
cons(obj:modify_text(x) , nil))]

The system keeps the original objects when

it evaluates the sub-expressions with obj:, and the

objects ロeated for tho担問bexpressions are named

with the system-assigned unique names

5.2 Sequence of development processes

Consider the development processes shown

in Section 4.1. In that caSe, we first get a text of

speci自cation， a C source program, a load modllle,

and finally an executable object. Since each

operation is applied manually step by step, there

was no need to have control mechanism for these

application order.

If we want to perform those application

automatically, we wi1l def�e user defined

functions, which will create these objects as the

result. Cons禔er the following definition of g,

which creates those objects as a form of a tuple

w羡h type name tup
g' ー〉乞up

<obji:gO ..=羽以{乞up'

obj:crea乞eーよext ，

。bj:link(obj:c…compile(
obj :create_c_source))) 1

mk_tup !乞ext ， executable ー> tup;
[getl(時 tup(X，町}司眠X >

[get2(剖<_t ロ p(X， Y)) 包厚，y]

Although the application of this constant

function g generates the four objects we 、γant， the

order of invocation of t、vo editors for the

specification text and the C source program �H'e not

determined (actually, it would be determined by

the system implementation ways)

If the invocation order is essential to create

the objects, we consider that an object created by a

later invocation depends on the previoLls one and

the later invocation takes previous objects 騁S its

argument.

To real菶e this, we modify crcnle_c_source

and define crenle_c_source' shown below
。bji:create_c_source' ， text -> c_sourcc;
[obji:cre氾乞e_c_source' (X) --exec(cditor))

1n this definîtion, variable X does not affect the

result. If we aSSLlme that the functions are called

by value, the editor is not activated until object X

is passed to the funct旧n. Using this fllnction, we

can redefine g as foJlows

g! -> executabミe

【。bji:gO -
obj:link(

obj :c.…compilc(
obj:create_c_source' (obj:creaヒc_textl))

6. Implementation

In this section, we w日1 disCllSS how the Ora

system is 絈plemented on actl1aJ computer

system. We may think of variolls kinds of

architectl1ral design. Figure 4 5hoもNS one cflndidate

architectural design

-56

1) The user illterfnce provides a visual interface

between the Ora system and the users. In order

that the user is able to find out easily appropriale

Figure 4 Architectural Design of Oar System

operations to apply, the user interface shows

possible operations searched by the operat�n

names, the data types of the ranges, or 出ose of the

domains. The users are not necessary to inpllt

潛gebraic expressions, bllt simply selects a possible

operation. It also displays current 0切ects existing

in the expression list container in variol1s ways,

such as expressions sorted by the object names or

tree structures showing relations among objects

2) The type defﾎnitioll cotltaﾎller stores definitions

of the built~in data types and user defined data

types (i.e., definitiolls of COllstrllctors and

extraction functions). It keeps both type

The expressioll list contaﾎner holds lists

representing the objects which are created by the

user's interactive operations or by the applications

of user defined functions. A node in the 1ist may

have an object name annotated alltomati四l1y by

system or by the users. More than one list

co-exist in the container at the same time,

the user can specify and renlOve SOll"le of

from the con tainer

cOl1trol controls the' type

and the expression list container. It

the equivalence relations and renames

objects, when an extraction function for

constructors is applied. It also generates unique

object names tq distinguish newly created objects

from existing ones

5) The fUllct綷n definition contaﾎner contains the

definit綷ns of user defined functions which are

recursive forms or simple calls to the buil t-in

functions sllch as tool (uti1ity program) invocation ,

function exec. This container keeps both type

dec1arations and axioms

6) The envil'Onment stack container has a stack

which stores values for Cl1rrent environment,

such as actual parameters or temporary r占sults of

the eva1uation

7) The function control is responsible for the

execution of lIser defined functions. It contro1s

mutual and self recursive activations of the

functions. It a1so adds, deletes, and modifies the

definitions in the fllnction def絜ition container

8) The object interface maps the expression lists

into files on the actl1al file systems. A node in the

expression list container, corresponding to a

constructor, is not mapped to an actllal file, since
creating a file to remeinber information of only a

constructor is expensive. Other objects such as

texts of specifications and C source programs are

mapped on the actual file system

7. Conclusions

We have d凹ussed the concepts of object

management language Oar and the Oar system. By

using the Oar system, we can formally define

variolls object schemes, and can naturaUy manage

objects based on those schemes. Formal

verification of characteristics of objects can be

performed relative1y easily L1sing various

verjfication techniques of algebraic speαfications

-57-

We are currently doing detail design of the

Oar system and will start implementat�n of a

prototype. It will work stand-alone as rln object

management system, and aJso it will work with

our PDL system[3] which manages software

development processes. Together with the PDL

system, the Oar system would be a prototype of

Software Designer's Associatesl5, 9, 111. We are a150

developing a relatively large exampJes of Oar

programs. Th罇 program wi1l manage not only

objects but also development processes associated

with 0切ects

Acknowledgement We are grateful to the

members of Software Designer's Associate5

Consortium whose di5cu5sions contributed to the

design of our language and system. EspecîaUy,

authors would like to thank W. E. Riddle, L. G

Williams, J. H. Sayler, and K. Kishida. Many of the

ideas in this paper are resu1ts discussions with

them

日]

ロ1

白}

[4]

References

Ehrig, H. and Mahr, B., "Fundamentals of

Algebraic 5pecification 1 ", Springer-Verlag,

1985

Inoue, K., 5eki, H., Taniguchi, K., and Kasan1.l,

T., "Compiling and Optimizing Methods for

the Functional Language ASL/F", Sdence of

Computer Programming, 7, 11 , pp.297-312,

Nov.1986

Inoue, K., Ogihara, T., Kikuno, T., and Torii,

K., " A Formal Adaptation Method for Process

Descriptions", Proceedings of the 11 th

International Conference on Software

Engineerin島 Pittsburgh， PA, pp. 145-153, May

1989

Kim, W., Banerjee, J., Chou, H., Garza, J., and

Woelk, D., "Composite 01ヰect Support in an

Object-Oriented Database System" ,

Proceedings' of OOP5LA-87, Orlando, FL,

pp.118-125, October 1987

-58

白]

問

同

[8)

[9]

Kîshida, K , Katayama, T., Mats l1o, M.,

Miyamoto, 1., Ochimizu, K., Saito, N., Sayler,

J. H., Toriî, K., and Wi1liams, L. G.，唱DA ， A

Novel Approach to Software Environ.ment

Design and Construction", Proceedings of the
10th International Conference' on Software

Engineering, Raffes City Singapore, pp. 69-79,

April1988.

Osterweil, L., "Software Process Are Software
Too", Proceedings of the 9th International
Conference on Software Engineering,

Monterey, CA., pp.2-13, April19S7

Patel, 5., Orr, R., Norris, M., and Btlstard, D.,

"Tools to Support Formal Methods",

proceedings of the 11th In terna tiona 1

Conference on Software Engineering,

抗出burgh， PA, pp. 123-132, Mny 1989

Penedo, M. H., and Riddle, W. E., "Software

Engineering Environment Architectures",

IEEE 50fれ"are， 14, 6, pp. 689-696,)une 1988

Riddile , W. E., "Software Designer's

Associates A Preliminary Description",
Proceed�gs of the 20th Hawai� International

Conference on System Sciences, Kona ,

Hawaii, pp.371-381, January. 1987
[10] TorÎÎ, K., Morisawa, Y., Sugiyam.a, Y., and

Kasami, T., "Functional Programming and

Logic Programming for the Telegram

Analysis Problem九 proceedings of 7th

International Conference On Software

Engineering, Orlando, FL. pp.57-64, March

1984

[11J Williams, L. G., "ObJect Manageme叫 lssues

for Software Desﾎgner's Assoc日tes"， Software

Engineering ReseMch, Boulder, CO, July 1988

感光印刷所

