
Title コーディングにおける細粒度作業履歴を用いた手戻り
支援ツールの検討

Author(s) 梅川, 晃一; 井垣, 宏; 吉田, 則裕 他

Citation 電子情報通信学会技術研究報告. SS, ソフトウェアサ
イエンス. 2013, 113(24), p. 25-30

Version Type VoR

URL https://hdl.handle.net/11094/26837

rights Copyright © 2013 IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

一般社団法人電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFO臥仇TION AND C叫町田iICATION E剖GlNEERS

{苦学技報
IEICE Technical 宜eport

S82013-5 (2013日5)

コーディングにおける細粒度作業履歴を用いた手戻り支援ツールの検討

梅川晃一T 井垣 宏↑ 吉田則裕什井上克郎↑

↑大阪大学大学院情報科学研究科

〒 565-0871 大阪府吹田市山岡丘 l 番 5 号

↑↑奈良先端科学技術大学院大学

干 630-0192 奈良県生駒市高山町 8916 番地の 5

E-m四ail: ↑巾{作k一1阻1皿m蜘W帆吋，i岬i

あらまし コ一デデ、イング中に作業を遡りソ一スコ一ドを以前の状態に戻す作業を手戻りという.手戻りは故障(伊fa出“1註lu旧re吋)

が発生し，パグがどこにあるか分からない場合などに，プログラムを正常に動く状態に戻すためによく行われる.

手ßÇりを支援するツーノレとしては Subversion 等のパージョン管理システム (VCS) や， Eclipse などの IDE において

ソースコードに加えた編集作業を記録し，改訂履歴を提供するローカノレヒストロー機能が存在する しかしながら，

VCS で記録される変更履歴はバグ修正持の手戻りを行うには粒皮が荒すぎることが多い.また，ローカノレヒストリー

機能では作業履歴が自動で保存されるため，コードの構成要素を分断する形で作業履震が保存される場合がある.結

果として，プロジェクト全体をパグを混入させた直前の状態に戻すことが閤難になる

そこで本研究では，一定時間ごとにプロジェタトの状態を自動でパージョン管理システムにコミットし，細粒度作業

履歴を保存するツーノレを提案する また，それによって作成された作業履歴を状況によって分割，結合することによっ

て，細粒度リポジトリを作成する

評価実験として，コーディング、中にツーノレを適用した結果，指定したコードの構成要素で構築された締粧度リポジト

F が構築できたことを確認した.

キーワード ソフトウェア原発，手戻り，パージョン管理システム， IDE

Using fine grain version data to support sof伽rare development rework.

Koichi UMEKAWAt, Hiroshi IGAKlt , Norihiro YOSHIDAt↑ 3 乱nd K乱七suro INOUEt

• Graduate Schoo1 of Information Science 叩d Technology, Osaka University
Suita, Osaka 565・0871 ， Japan

•• Nara Ins七itute of Science 叩d Technology

Ikoma, Nara 630-0192, Japan
E-mail: ↑{k-u皿ekaw，igal叩noue}@ist.osal也 u.田 jp，↑tyoshida@is.n剖st.jp

Abstract Rework in coding process 田 usually conducted for reverting source code back to the old 目前e i汲 case

of inducing bugs accidentally. There are some tools like Version Con七rol Sys七ems(VCS) and local his七ory provided

by Eclipse to suppor七 such rework. On the other h凹d， most of such conver叫ional tools have granularity problems.

For example) a time interval between changes of source code 四cordedin VCS is large rel叫ively 加 revert the source

code back to old state. On the contrary, local history may record source code too frequently. In this research, we
propose a tool to 皿al母 a fine田grainedsoftware repository autorn叫ically 七hrough developeぱ codingprocess. In our

C回e study, we confirmed our tool could make a 畳間-grained repository which includes only one spec埠c program

element such as a line and a sentence in Qne revision

Key words Software Developme凶， Sof七ware Development Rework, Version Control Sys七em， IDE

- 25-
This article is a technical report without peer review. 叩dits polished and/or extended version may be published elsewhere

Copyright <1:>2013 by IEICE

1.はじめに

:/7 トウェア開発において，ソースコードは様々な理由によ

り常に改修され続ける その改修の過程において，正常に動作

していたソフトウェアが異常な振る舞いを起こすようになるこ

とも多い.

このような異常な振る舞いを引き起こす原因(パグ)が容易

に特定できるものであれば，そのパグを修正することで対応が

可能である しかしながら特定が鴎難なパグの場合，やむを得

ずYースコードを正常に動作していた状態に戻すことがある.

ここでは:/-スコ}ドを以前の状態に戻すことをソースコード

の手戻りと呼ぶ.

:/-スコードに対する手戻りは開発者によって手動で行われ

ることもあるが，隠発が進むにつれてファイノレやファイノレに含

まれるコード盈が膨大になると，手動ではどの状態にyース

コ}ドを戻せば良いかわからなくなる.また，手動での手戻り

はそれ自体がパグの混入原因となる恐れもある

そのため，通常この種の手渓りはパージョン管理システム [6]

開発潔境 (IDE) の機能を用いて行われることが多いノミージョ

ン管理システムを用いることで，過去に開発者が保存した任意

の状態にyースコードを手戻りさせることが可能となる.また

一部の IDE には，開発者がコーディング中のソースコードを

一定時間ごとやユーザが保存するごとに，手戻り可能な状態で

保存する機能がある [8]

一方でパージョン管理システムを用いた手戻りでは，開発者

が過去に保存した状態にしか戻れないため，パグが混入された

と想定される箇所よりも相当前の段皆に戻らざるをえない(過

度の手戻りと呼ぶ)ことがある.また， IDE の自動保存機能で

は，ソースコードが文の途中等の不完全な状態で保存されてい

ることも多いため，結果として手戻りが函難になることがある.

そこで我々は，これらの問題を改善し，開発者の意図した手

戻り筒所に容易に戻れるようにすることを目的として， lDE の

機能を利用した細粒度コーディング履歴を改行単位や文単位

といった開発者の意図した手戻り単位の履歴に再構築し，パー

ジョン管理システムに記録する手法を提案する

以降， 2 章では手戻りとそれを支援するツーノレ，手戻りにお

ける潤題点、を説明する.また， 3 主主では手戻りにおける問題点

を解決するためのキーアイディア， 4章ではキーアイディアを実

現するための実装について説明する 5 章ではケース只クデ、イ

として実装したツーノレを既存の開発履歴に適用した結果につい

て説明する.最後に 6 主主ではまとめと今後の課題について述

べる

2. 準備

2.1 コーディングにおける手戻り

本稿において，コーディングにおける手戻りとはコーデイン

グ持にソースコ}ドの記述を以前の状態に戻すことを指す通

常，正常に動作していたYフトウzアに対して修正や機能追加

を行った際に故障 (failmモ)が発生し，その原因となるパグがど

こにあるか分からない場合などに，プログラムを正常に動く状

態に戻すために行われることが多い.手戻りの方法は様々で，

正常に動いていた状態を確かめるために段階的にyースコード

を戻したり，正常勤作が確認されている初期状態まで一気に戻

したりといったことが開発中に行われる.このような手戻りは

手動で行われる場合もあるが，通常は既存のパ}ジョン管理シ

ステムやそれに類するツーノレを利用して行われる

ノミージョン管理システムとは，ソフトウzア開発の際に作成

されるソースコードなどのファイノレ変更履歴を管理するシステ

ムである [5]. 澱発者の操作(コミット)によって開発中のソー

スコードにリビジョン番号が付与され，パージョン管理システ

ム内のデータベ}ス(リポジトリと呼ぶ)に保存される 開発者

はリビジョン番号を指定することで，パージョン管理システム

より過去の状態のソースコードを取得することが可能である

現在， Subversion [3] や G誌 [1] 等，非常に多くのパ」ジョン管

理システムが実装されている.

これらのパージョン管理システムではコミットという操作に

よって，開発者が意図したタイミングでソースコードを保存す

ることができる コミット時にはコメントの付与も可能となっ

ており，パージョン管理システムにおいて良く実装されている

現在のYースコードと過去の任意のリピジョンとの差分表示機

能も併用することで，手戻り箇所の理解も容易であると考えら

れる

また， :/フトウzアの統合開発環境(lDE) には，開発者が

実装中のファイノレを 定期間ごとに自動保存する機能を持って

いるものがある 例えばlDE の一つである eclipse にはローカ

ノレヒストリーと呼ばれる機能がある ローカノレヒストリーは，

開発者が実装中のファイノレを対象として新規作成や保存といっ

た操作を行った際に，操作時のファイノレを手戻り可能な状態で

保存しておく機能である.ローカルヒストリーの機能を利用す

ることで，弱発者は IDE によって保存された過去の状態に手

戻 P することが可能となる.

より細かい粒度て、コーディング履歴を記録するツーノレとし

ては， Operation Recorder [7] が存在する.このツ}ノレは開発

者が IDE のエディタ上で行った編集操作を編集履援としてす

べて記録し，その情報をデータベースに格納することで，プ

ログラム変更理解のためのツ}ノレ構築を支援する Eclipse プラ

グインである 編集履歴には，コードの編集やコピー&ベース

ト，リファクタリング機能の利用などが含まれる， Operation

Recorder を用いることで，特定のYースコードに対して過去

に行われた編集操作を，その種類や時刻に応じて容易に取得可

能となるため，過去に行われた変更の意図を理解することが容

易になると考えられる.

2.2 手戻りにおける課題

ノ..;;~ジョン管理システムやlDE の自!liiJj果存機能を利用した

手戻りでは，保存されるリビジョン潤の時間間隔やyースコー

ドの状態が問題となることがある パージョン管理システムの

場合， 日どジョン関の時間間隔は開発者のコミットタイミング

に依存する.そのためリビジョン問に開発されたコード蚤が非

常に多くなることがある.そのため，開発者が手戻りを行いた

いとおもったときに，間隔が長すぎて都合の良いタイミングに

26 -

戻れるリビジョンが無い場合がある.そのようなケースでは結

果として手戻りができないか，戻れたとしてもバグが混入した

可能性の高いタイミングを通り過ぎた過去の状態にしか手戻り

ができないことになる

また， IDE のローカノレヒ只トリーや Opera七ionRecorder の

ような自動保存機能を用いた手渓りでは，バージョン管理シス

テムと比較して時間間隔がより締かく記録されるため，開発者

の意図したタイミングへの手戻りが行える可能性が高い しか

しながら，自動保存機能が実行されるタイミングは，開発者の

意図しないタイミングで実施されるため，実装途中で保存され

た結果，行の途中までや文の途中までといったYースコードを

構成する要素が分断された状態に手戻りが行われる可能性があ

る 結果として，手戻りを行った後のYースコードの理解が額

難になり，その状態が正常であるかを把握するのが困難になる

ことも考えられる

以上より，手戻り操作においては，リポジトリに保存されて

いる Yースコードが下記要求を満たすことが望ましいと考えら

れる

Rl: 9 ビジョン問の時間間隔は十分短いこと

R2 各リビジョンのソ}スコードにおいて，;;ースコードを

構成する要素が過度に分断されていないこと

Rl は開発者が戻りたい箇所どこにでも戻れるように，リビ

ジョン問の時間間隔が短いことを示す.一方で，時間関摘が短

すぎると， R2 で述べたソー只コードの分断が発生する.その

ため，十分に短い時間間隔でリピジョンが保存されており，各

日ビジョンに含まれる Yースコードの状態が行単位，文単位，

ブロック単位といった開発者の意図した最小構成要素を分wr し

ない粒度であることが望ましい そこで我々は IDE の自動保

存機能を利用しつつ，リピジョンごとにソースコ}ドの過度な

分断が起きないようなリポジトリを構成する手法について次節

で詳述する.

3. 細粒度作業履歴の作成

本童話では，2.2 君主で提示した既存の手戻り支援ツ}ノレが抱える

問題に対する解決案を提示する.

3.1 キーアイディア

手戻り支援ツーノレの問題点在解決するためのキーアイディア

を以下に提示する.

Kl IDE による細粒度作業履歴の自動収集

K2 締殺度作業履歴の分割lと合成による級粒皮リポジトリの

作成

以下で，これらのキーアイディアの目的と，これらを実現する

ための自動的かっ定期的に級殺度作業履歴を収集する手法と，

収集した作業履歴の分割と合成によって細校度H ポジトリを作

成する手法を提案する

3.2 全体像

キーアイディアの実現在行ったシステムの全体像を図 1 に示

す.以降で，Kl を実現するための IDE による絢粒度作業履歴の

自動収集手法と， K2 を実現するための籾粒度作業履歴の分割，

合成に関する説明を行う

図 1 システムの全体像

図 2 Kl:IDE による細極度作業履歴の自動収集

3.3 細粒度作業履歴の自動収集

2.2 でも説明した通~，パージョン管理システムはリビジョ

ン間の時隠間隔が長く都合の良い手戻り地点へ戻れない場合が

あり，また， IDE を用いた手戻りは文や行などのYースコード

の構成要素の途中に手戻りが行われる可能性がある問題がある.

そのため，関発者が意図したタイミングで，かっ;;-スコード

の構成要素を分断しない手戻りを行う手段が必要となる，そこ

で，本手法では IDE を用いて一定時間ごとにプロジェクトの

状態を自動的に保存する 具体的には， IDE がプロジェタト内

にあるファイノレの内容が変更され，かっその変更が保存されて

いない状態にあるとき，プロジェクトの状態を一定時間ごとに

保存する また，ファイノレが保存されたタイミングに同じくプ

ロジェタトの状態を保存する これらの方法で絢粒度作業履歴

を自動的かっ定期的に収集することが可能となる ここで作成

される細粒度作業履歴は，ファイノレごとに収集している.例を

図 2 に示す.

3.4 作業履歴の分割と合成

Kl で収集した細粒度作業履歴はリピジョン問の時間経過が

短い しかし，自動的に収集するため，一部がコードの格成要

素を分断する形で保存されている.そのため，南n粒度作業履歴

をさらに粒度を高めた上で，コードの構成要素を分断しない形

に整形する.コードの構成要素とは，具体的には行単位，ある

一叩 27 一一

図 3 K2 収集した作業履歴の分割l

Int 1=0;

whi!e(i < 10) {

町一ーと主
リビジョンC3
int 1=0;

whi!e(i <: 10) {
1++;

図 4 K2 同コード単位への作業履歴の合成

いはセンテンスなどの単位である.本論文では行単位での分割

を行う K1 で作成された籾粒度作業履歴が持つ前回の作業履

歴との差分を指定したコード単位で分割する 具体例を図 3 に

示す.分割された細粒度作業履歴で構成された新しい細粒皮作

業履歴のリポジトリを作成する. K2 によって作成される細粒

皮リポジトリ内の 1 つの締粒度作業履遼には必ず 1 ファイノレに

対する 1 つのコードの構成要素に対する変更のみが含まれる.

細粒度作業履歴の分割によって作成された分留された細粒度

作業履歴中では，同じコード判立に対する変更が 2 つ以上の作

業履歴に分かれている場合がある.これは， K1 において自動

で細粒度作業履歴を保存しているために， 1 つのコードの構成

要素に対する変更の途中で保存が行われるためである そのた

め， 1 つのコードの構成要素における変更を 1 つの細粒度作業

履歴として合成する 4 に具体例を示す.籾粒度作業履歴の合

成によって作成される新しい作業膝歴は，合成前のものと詞様

に必ず 1 ファイツレの 1 つのコードの構成要素に対する変更のみ

が含まれる ただし，合成前のものと遣い伺じコ}ド単位に対

する連続して変更を行う作業履歴は存在しない.

4. 実装

本ツーノレの実装についてキーアイディア K1， 21ζ分けて解

説する

4.1 K1 の実装

細粒度作業履歴収集プラグインは Java ソースコードによ

り作成された Eclipse プラグイン Save dirty Editor Eclipse

Plugin [2J を拡張して作成した.また作業履歴の保存のための

ノ〈ージョン管理システムとして G抗を用いて開発した この

Save dirty Editor Eclipse Plugin は，コーデイング中に以下の

2 つの動作を行う

・ 保存されていないファイノレの状態を 定待問ごとにパッ

クアップする

@ ファイノレを保存した時にパックアップファイノレを削除する

このパックアップとバックアップファイノレを削除するタイミン

グで，プロジェクトの状態を Git にコミットすることで作業履

歴を記録したリポジトリを作成する

4.2 K2 の実装

絢粒度リポジトリツーノレは， Java 'Y一月コードにより作成

されている.現状では K1 の実装とは独立したツーノレとなって

いる

4.2.1 細粒度作業履歴の分自lの実装

今回の実装では細粒度作業腹歴を行単位で分割する. K1 で

作成した各細粧度作業履歴において，その前後におけるファイ

ノレの差分を取得する その差分を 1 行ずつ適用したファイんを

新しいリポジトリにコミットする.この時，コミットコメント

として，

@ 対象のファイノレ名

@ 変更が行われた行番号

を追加する.以上で， 1 ファイノレに対する 1 行の変更をもっ細

粒度作業履歴を記録した新しいリポジトリを作成する

4.2.2 細粒度作業履歴の合成の実装

i罰粒皮作業履歴の合成の際は， 4.2.1 の実装において追加し

たコミットコメントを確認することで，同じファイノレの閉じ行

への変更を確認することができる 連続していない変更と連続

した変更のうち最後の変更のみを取得し，新しいリポジトリへ

コミットすることで，最終的に 1 ファイノレに対する 1 行の変更

をもち，連続して同ファイノレの同行への変更を行わない作業履

歴を作成する.

4.3 利用時の流れ

4. 3.1 ~m粒度作業履歴の収集

開発者は純粒度作業履歴収集プラグインの J紅ファイノレを利

用する Eclipse に予め導入する.その状態でコーディングを開

始することで，開発者が特別な設定をすることなく，作業履援

の収集が自動的に開始される 作業履援の収集に用いる Git の

リポジトリは，コーディングを行なっているファイルが含まれ

るプロジェクトの直下に自動的に作成される.

- 28 ー

l:pub1ic c1ass FizzBuzz {
2: public static void main(String[] args)(

3: lor (int i = 1; i <= 100; i++) (

4: il(i%3== 口&& i %5 ==0)

5: System.out.println("Fizz,Buzz“);
6・ else il (i % 3 == 0)

7・ System.out.println("Fizz");

8・ il(i % 5 == 0)

9: System.out.println("Buzz'市

10: else

11・ System.out.println(i);

12・ 1

13: }
14:}

図 5 対象コード

リビジョン7
pub!ic c1ass fizzbuzz {
pub!ic void main(String args[]) {
for (int i = 1; i <= 100; i++) (

+ î f(i 弘 3== 日 &&1)

リビジョン8
public dass fizzbuzz {

public void main(String 司rg'[]){

for (int i = 1; � <= 100; i++) (
if(i%3==0&&i)

+ if{ﾎ%3 ==0 && i%5==0)

+ System.out.println(" 日zz，Buzz");

+ else if (� % 3 == 0)

リビジョン9
pub1ic dass fizzbuzz {
pub!ic void m司in{Stringargs[]) {

for (int i = 1; i <= 100; i++l (

if(i%3 ==0 && i% S == 0)
System.out.println(叩izz，Buzz");

else if (i % 3 == 0)
十 sy坑em.out.println(咋izz");

+ if{i %S ==0)
+ System.outprint!n("Buzz");

+ else

図 6 対象コードの締粒度作業履歴

4.3.2 細粒度作業履歴の閲覧，適用

現状，締結度作業履歴の隣覧とプロジzタトへの適用は， Git

が公式に記布している Git GUI を用いて行う.細粒度作業履

歴を閲覧，適用したい場合，作業履歴収集プラグインで収集し

た作業履歴に対l-，細粒度作業履歴作成ツーノレを適用し，作成

された細粒度リポジトリを Git GUI を用いて閲覧，適用する

宅島

リビジョン7+ 8-1
public class fizzbuzz {

pubHc void main(String argsIJ) {

for (int i = 1; 1<= 100; トt+){
1- If(i%3==0&&i%5==O)

リピジョン8.2
P"凶icdass fizzbuzz (
publicvoid main(String args[]) { -

for (int i = 1; I <= 100; i++) (
If(i %3 == 0 && 1%5 ==0)

キ System.out.println("円ll， Buzz");

リビジョン8.3
public dass fizzbuzz (
public void main{Strlng args[]) {

for (int i = 1; i <= 100; i++) (
If{i % 3 == 0&&1%5== 0)

Sy'担m.out.println("Fizz，Buzz");
+ . el日 if(i%3==0)

リビジョン9.'
public class fizzbuzz {

pub!ic void main{String args[l) {
for (lnt I = 1; i <= 100; i++) (

if(I%3 == 0 && i %5 ==0)

Sγstem.out.println{"Fizz，Buzz");

elself{i%3==0)
+ System.out.prîntln("日zz");

‘

図 7 対象コ}ドの細粒度リポジトリ

5. ケーススタディ

ケーススタディとして，図 5 のコードを Eclipse 上で作成し，

本研究で作成したツールを用いて細粒度 F ポジトリを作成した.

そして，細粒度リポジトリが指定したコードの檎成要素で構築

されているかを調査した なお，細粒度作業履歴を収集する際

の，ファイノレの変更から保存までの時開設定は 5 秒とした ま

た，コードの桃成要素は行単位に指定した.

収集した細粒度作業駿歴の一部を図 6 に示す.図の中で行の

先頭にーがある赤し寸?は直前の日ビジョンから郎除された行，先

頭に+がある緑の行は直前のリピジョンから追加された行であ

る ある行への編集は，削除した後に追加をしたと表記される

ため，ーの行の次に+の行がある場合，その行は編集が行われて

いる.図 6 内では， Y ピジョン 8 の変更のうち最初の行は変更

が行われている.

収集した細粒度作業履歴を本手法に従って分割，合成を行つ

一ー 29 一ー

た 以下，例として 10 個のリビジョンのうちリビジョン 7， 8 ,

9 に対する処理の説明を行う まず，分割の処理について説明

する リビジョン 7 はリピジョン内に 1 行分の変更しか含まれ

ていないため，分割の必要はなかったりビジョン 8 は削除が 1

行，追加が 3行含まれていた.最初の削除 1 行と追加 1 行を合

わせて編集 l 行と判断するため，このリピジョンは編集 1 行と

追加 2 行でリピジョン 8-1 から 8-3 まで分割された リビジョ

ン 9 は，追加 4行で 9-1 から 9-4 に分けられた

次に同じ行への連続する変更を合成する処理について説明す

る.図 6 の中では リビジョン 7 の追加とりビジョン 8-1 に対

応する編集が同じ行への変更であった そのためリビジョン 7

とリビジョン 8-1 は合成された.

殴 7 に対し以上の分割と合成を行った細粒度日ポジトリの一

部が図 7である この締粒度リポジトリには 1 行単位の編集履

歴が記録されており，このロポジト担を確認した結果，本研究

で作成したツーノレは作業履歴を収集し，指定したコードの構成

要素の単位で細粒度リポジト F を構築できることが確認できた.

6. おわりに

本研究では，コ}ディング過程における細和勾主作業履歴を収

集し，指定したコードの構成要素単位で構成されたリビジョン

をもっ細粒度リポジトリを構築する手法を提案した

今後は PDG を用いた Faulトlocaliz叫lOn 手法 [4] 等と組み合

わせて，実際にパグが存在する可能性が高い筒所への手戻りを

支援する仕組みを構築して行きたい

謝辞本研究は，日本学術振興会科学研究費補助金若手研究

(B)(課題番号 24700030) の助成を得た

文献

[1] Git

[2] Save d註ty editor eclipse plugin

[3] Subversion
[4] A. Askaruni同 T. Manju，叩d B. Giri Babu. Fault 10叫iza­

tion for java programs using probabilistic program depenｭ

dence graph. CoRR, Vo1. abs/120L39S5, , 2012
[5] Peter H FeHer. Gonfiguration m即時ement models in ∞m

間罰百α 1 en叫ronmeη ts， Vo1. 258. 80庇ware Engineering ln

stitu七eP抗tsburgh， Pennsylvania, 1991
[6] Mike Mason，でびあんぐる監訳 Subve田lon 実践入門達人プ

ログラマに学ぶパ}ジョン管理(第 2 版)オーム社， 2007

[7] Omori Takayuki and Maruyama Katsuhisa. A method for

extracting source code modifications 仕'om recorded editing

opera七ions. IPSJ Journ叫 VoL 49, No. 7, pp. 2349-2359,
jul2008

伊] 長栂嘉秀ほか Eclipse クックブック O'Reilly Japau, 2004

- 30 ー

通

