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Abstract

The study of variational inequalities and free boundary problems finds application in a wide variety of disciplines
including physics, engineering and economics as well as potential theory and geometry. In this study, we con-
sider an application in physics and engineering where the steady state of the fluid flow through flow media rises
to free boundary problem for linear elliptic equations. This problem has been widely considered in literature by
Baiocchi [7], Brezis [9], Chipot [12] etc. At first, we deal with quantities defined on a domain. If the domain is
perturbed, the quantities are perturbed. Such variation with respect to domain perturbation is called Hadamard
variation. In this research, we present Hadamard variation as an iterative scheme for computing solutions of a
free boundary problem. We also combine this scheme with the other iterative scheme, traction method. The
iteration converges smoothly, beginning from a suitably defined initial guess. We then study the Hadamard vari-
ational formula theoretically. Particularly, we obtain Hadamard second variational formula which is an extension
of Garabedian-Schiffer’s formula, developing a simple methodology which provide a clearer understanding of
Hadamard variational formula.
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Introduction

Filtration Problem

Filtration or dam problem is a mathematical problem of understanding the fluid behaviour solving free boundary
problem. In general, such a free boundary is not a priori known and the main problem is determining it. The dam
is occupies by fluid that is; water. In addition, the pressure and velocities which occupies the domain also need
to be determined. Besides the equations, an initial and boundary condition on the fixed boundary, the problem
description also requires an initial configuration of the liquid domain as well as some conditions which hold along
the free boundary. Here, steady flows in which water seeps through the dam built by porous media from a higher
reservoir to a lower reservoir will be consider. The water does not flow through the entire dam because of gravity,
and the lower reservoir side of the dam is dry. The interface separating the dry and wet regions of the dam is a
free boundary. The fluid can flow out of the domain through the lower reservoir side, while a free-slip condition
was imposed on the reservoir side and at the bottom. Numerically, the former approximation of the wet region of
the domain will be derived. The wet region was set before doing analysis to the filtration problem. Since the dam
has a free surface, an assumption to the dam shape has to be made which will be assumed as a rectangular shape.
There are many problems in tackling the free boundm;y. Therefore, we define the problem on the fixed domain

with the wet portion is in the admissible domain of the dam.

Mathematical Background

One method used to solve mathematical models of frec and moving boundary flow is the fixed domain method

which can be classified into two groups:
1. variational incquality.
2. extended pressure head method.
Fixed domain methods of variational problems can be divided into three parts:

1. variational inequality / quasi-variational inequality formulation.



2. general inequality formulations - set solved in fixed domains.

3. free residual flow.

1. Variational Inequality Formulation or Quasi- Variational Inequality Formulation: Baiocchi [5] was
the first to apply the variational inequality method. This method is one of the classical methods to solve free
boundary problems. It also uses an extension of the pressure head but adds an integral transformation. This

method possesscs a beautiful theoretical structure and yields simple numerical algorithms.

2. General Inequality Formulation: It was introduced by Brezis et. al. (1970’s) and Alt [1]. It was a new
approach and formulation which required no integral transformation. Variational inequalities compete well

with direct method for solving the seepage problem numerically.

More complicated, the solution is less regular but allowed more general cases especially regarding to the
geometric domain. Alt’s formulation allowed the possibility of partially saturated flow fields. General
formulation was treated from a numerical point of view. However, its framework was Testricted to a certain
types of finite elements. Fixed boundaries also could not be modelled precisely. Nevertheless, it was able,

for steady state cases, to predict zones of saturation and partial saturation in seepage flow fields.

3. Free Residual Flow: It was introduced by Dasai (1976), and he used finite element in conjunction to see

the essence of the approach.

Becoming a model of the variational theory of boundary value problems for partial differential equations, the
theory of variational inequality was developed very fast. Its theory represents a truly natural generalization of the
theory of the boundary value problems. It allows us to consider new problems arising from many fields of applied
mathematics such as mechanics and physics. Variational inequality also one of the well-known and strong tool to
deal with many free boundary problems arising from natural phenomena, especially fluid dynamics. From these
facts, we use variational inequality to solve the filtration problem. One of the methods in variational inequality is
the Hadamard variational formula.

The Hadamard variational formula is a famous formula for simplification of Laplace eigenvalue under Dirich-
let boundary conditions including Neumann and mixed boundary conditions. Hadamard variation is a process
where the boundary is modified gradually where we want to know how the boundary values will vary under the
perturbation of the domain (or the boundary). This process is also an optimization process. We present Hadamard
variation in this research as an iterative scheme for solving the filtration problem. Mathematical basis of the above

materials is listed in Appendices of this thesis.



Chapter 1

Analytic Methods to the Filtration Problem

1.1 Variational Inequality

We consider an incompressible stationary flow of water through an inhomogeneous porous media (say %+ #). The
dam is assumed to be with a parallel vertical walls, with the distuncg a apart, separated by two reservoirs of fluid
(water) and two water levels denoted by height, x; = 71y and x; = &, respectively (0 < hy < hy < x3). Let i
be the region of porous dam whose boundary is Lipschitz continuous. We assume that the boundary of the dam,
d(Z+n) contains three parts, 81, the impervious part, Bs, the part contacting with air, and B3, the part contacting
with water reservoirs. Let Q denote the portion of water in Zz# and let the boundary d(Zx#) consist of the

following:

I =5 the impervious part
[ C Zn the free boundary
[ =85 the part contacting with water reservoirs

I'ych the part contacting with air

This filtration problem has a free boundary part which connects with the water reservoirs. See Figure 1.1 below.

Figure 1.1: The configuration of the dam.



We assume that there are two disjoint reservoirs, R, (j = 1,2) and both parts touch the impervious basement.
Let h;(hy > hy) be the height of the water in Rj, (j = 1,2). Set Bé := dR; N B3 which implies B3 = B} UB3. Let

p be the hydrostatic pressure of the fluid and piezometric head, u defines by

u(x) = p(x) +x, (1.1)

for x = (xy,x3) in Q. Since the pressure p on Bg is given by h; —x3, it holds that u = A; on Bé, {(j=1,2). We then
introduce a subset of Zz«. Let £, be the point where the left surface of the contacts J( %), that is, {; = F; NB;.
Suppose that 11 > 0 is the angle between B} and / and the other is on B;. Then Gn® C Doa is defined using B!
and / (See Figurel.2). Set

D = {x = (x1,%2) € Doa — Do’ |x3 > h3}

Doan® = {x = (x1,x2) € Dttt — Dod®|xy < I3},

We define u° € H'(%u#) by

& ‘ C_z‘
Doin'! . Do’
Daa’®
 \ G’
Duk® _@iwo
Figure 1.2: 244’ (j =0,1,2).
hy, on Bl;
Wx) =4 xp, in Dua'; (1.2)
hy, in Zua’.
Define also
K:={{ e H'(2x4)|{ >0 on B;,{ =0 on Bs}. (1.3)

Then the problem is formulated to find the wet region Q C %z« and the piezometric function v € H 1(Q) that

defined on Q which satisfies
JoVu-V{ dx <0, Vv(eK,

(1.4)
u=1ul on THul3uly.
Remark: We consider the variational problem; finding » such that
uek, D(y) = minD(v), (1.5)

veK



where K = {CeK||¢{=u’ on TLUT;UTy}. Since K is convex, if u is a solution to (1.5) , then for any v € K

and 0 < & < 1, u+€(v— u) = u(1 — £)+ ev € K. Therefore, it holds that
D(u+ (e(v—u)) > D(u).

Hence,
D(u+£(v—u)):/Q%|V(u+£(v—u))|2 dx

> D(u)
1
:/—]Vulz dx, 0<Vexl.
Q2
Then, taking € | 0, we get
/Vu-V(v-—u)ZO, wek, uek.
Q

Applying Green’s formula, we obtain,

0J ~
—/Au-(v—u) dx + —u(v—u) ds>0, WwekK
Q aQ dn

if u is sufficiently regular. Then, we obtain

du PS
/QAu-(v—u) dxﬁ/(ma(v—u) ds, vve K.

(1.6)

(1.7)

(1.8)

(1.9)

By choosing v=u+€{, 0 <& <« 1, forany { € C3’(Q), we get v e K. Obviously v € H! (). Next, yv =

Y(u+ €v) = yu+ €yv = yu = yu®. Finally, v = u+ € > u in Q. Then, since v — u = 0 on dQ, we have

/Vzr(u—i—sC—u) dx <0
Q

/Qvu-vg <0, V{eCr(Q)

We can conclude that

/Q(Au)C dx =0, V¢ eCr(Q)

and therefore,

Au=0 in .

(1.10)

However, (1.4) is not equivalent to (1.5). We should note that I'; in (1.4) is also unknown. That is why (1.4) has

not been formulated by the variational inequality described in Appendix B.



1.2 PDE Formulation

Suppose that u is a solution to (1.4). We then extend & = 0 outside  which implies +§ € K, V€ € C7'(Q). Hence

/QVu-VJ; dx:/g(—Au)-é dx=0

Therefore, if u is regular, we obtain

Au=0 in Q.

Generally, when { € K, we get

du
/Qvu-v.g dx:/g(—Au)-C dx+/mé—’;.§ ds
9.
aQ on

C ds<0.

(1.11)

(1.12)

(1.13)

Given x¢ € T \ (endpoints). Let Q be a small ball with the center xo. Take & € Cy (ﬁ), and set { = +& |ge K.

Since £ and xq is an arbitrary, (1.13) implies

i

Figure 1.3: Support in Q

Ju

520 on I'y.

Similarly, gﬁ =0 onI%. Since %Z— = 0on T and I'; is proven, we have

du du
—~.cd :/ — . <0, V¢ e K.
/aQ on y U, on 6< ‘e

Since £ = 0 on I'; from (1.3), it holds that

Jdu u
/3 «:ds—/rﬂ.gso, VL e K.

Qon

(1.14)

(1.15)



Take xo € Ty \ (endpoints) and a small ball Q with center xo. Taking & € Cy (Q), VE >0, we have £ = & 5€ K.

Similarly to (1.14)
— <0 on I'y. (1.16)

Figure 1.4: Support at T'4.

Au=0 in Q,
g% =0 op F],
u=u" and %h‘i =0 on Iy, (1.17)
u=1u on I3,

u=u and §ﬂ<0 on I'y

where n := (n1,n2) is the unit outer normal vector on dQ. Here, I'; is the free boundary part, and we impose it
with both Dirichlet’s and Neumann’s conditions, while T4 is the part where the water comes out of the dam. In

fact, (1.4) is a weak form of (1.17).

Remark: Darcy’s law claims that u is the velocity potehtial of fluid:
v=—kVu

where £ is the permeability coefficient which is assumed to be constant. We assume that the density of the fluid is
a constant. Then, Iu[f{l @ = 2Dq(u) (where july1 gy is a seminorm) is equal to the kinetic energy of the fluid up

to a constant, where Dgq(v) is the Dirichlet integral defined by

1
Da(v) = 5/Q|Vv(x)]2 dx  forvek.

1.3 A New Variational Formulation

In this part, we define a new variational formulation of the dam problem.



Assumption 1.3.1. On the configuration of the Lipschitz domain Zs.u, we suppose the following conditions:

1. There are two reservoirs of water (one of them maybe empty) separated by the dam. Assuming without loss

of generality, water level of the left-hand side reservoir is higher than the other side.
2. Each reservoir contacts the impervious base.

3. By C d(Dww) (impervious part) and By \UBsy C 0(Zua) (air and water parts) are continuous, piecewise
C? curves, both are graphs in the direction of x3, and By U By lies above By. Particularly, B UBs is of C?

around the point f’i NTy (where By meets the surface of the right hand reservoir), if T§ #0.
4. For the exact solution Q C Yun, T's = dQ N B, is a connected non-empty interval in B,.

We consider a set of admissible domains, which are candidates for the solution of the filtration problem. Let

Q C Qua be a set which looks like Figure 1.1. As shown in Figure 1.1, we denote each portion of dQ by

I =8B,

I =0QN %un,

=B (j=12)and T3 =T} UTZ,
Iy =dQUB;.

Then, let ¥ = ¢ (Q) € H(Q) and #* = ¢*(Q) be its dual cone of ¢ (Q):

A ={ve H(Q)jv="0 on I UT,UT3,v>0 on Iy},

A ={ve H(Q)|(Vv,Vx) <0,Vx € K(Q)}.

Here, the boundary value of v € H'(Q) is taken in the sense of trace. Also, for ¥ € C*1(Q)NC?(Q) with Ay =0

in Q, we have

XEX(Q) & %SO on Ty.

In fact,
(V% V) / % 4 /vA dx <0
2 = v == ds— . <
= J3o¥ on o X
Since Ay = 0 and v € J# () is arbitrary, we get
X
£ <0
/1"4‘) on —
therefore,
a—XSO on Ty (1.18)
on



Then we define &7 (Q) € H'(Q) by

H(Q)={ve X" (Q)v=u’ on T,UT3UT,},

(1.19)

where ° is defined by (1.2). This set .o/ (2) may be “wild” as the free boundary I',. Assume that this T is

continuous. If & (Q) # 0, there exists a unique solution of ug € & (Q) which attains the minimum value of the

Dirichlet integral:
D = 1inf D .
a(ua) = if Da()
Hence,

D(ug+sC) 2 D(ug), VEeC5(Q)

where { is an arbitrary, |s| < 1 and v = ug +s5, { € &/(Q). Particularly, the function

s+ D(ug +s§)
attains its minimum at s = 0, so that
%Dg(ug +s¢) T 0.
Therefore,
%DQ(MQ -+ SC)L:O = /QVHQ -V dx
ie.

/VI/Q-VC dx=0, Ve XQ), v=2 on Q.
Q

If uq is sufficiently regular on Q, then Aug = 0 in Q. The relation

dug

—_ = r
5 0 on Ty

is obtained similarly. Thus ug satisfies

Aug=0in Q, ug=u’ on [LUT3UTy,

)
%2 6 on T, "aﬂ:
n

on 0 on Fl.

(1.20)

(1.21)

(1.22)

Although, %",? # 0 on T’ in gencral, g may be regarded as velocity potential of fluid whose region is Q. The

condition ¥ () # 0 says that the frec boundary I, is sufficiently smooth so that the flow was determined by the

potential ug that has the kinetic energy D{ugq).



Definition 1.3.2 (Admissible domain). Let Qo C Zuw be the exact solution of the dam problem, then from the

Assumption 1.3.1(4), T4 = dQqy N B, is a dis-connected interval with the lower end point {4 = f§ NTy.
We sct a nonempty interval b, C QU B, with 4 € b,. Take and fix M, as sufficiently large poéitive number.

Definition 1.3.3. Under the Assumption 1.3.1, a subset Q C Q. w is called an admissible domain if Q satisfies the

Sfollowing:
1. Q is a Lipschitz domain.
2. dQ D By UBs.
3 dQ\BjUBsisa C%! curve and is a monotone decreasing graph in the direction x;.
4. A (Q) #0and veiAn(g)DQ(v) < M.

5. 9QN B, is a connected interval in By and by C dQ N B,.

We define &7 as the set of an admissible domain.
Assume T4 # 0 as the exact solution of Q of the filtration problem from the Definition 1.3.3(5) associated with
Assumption 1.3.1 which are the conditions for lower semicontinuinity of J. Corresponding to <7 (€2) that defined

by (1.19), we define the subset for each Q € «y:
BQ)={ve H(Q)lv=1’ on T3UT,}. (1.23)

Obviously, & (Q) C B(Q) # 0 for each Q C . Using the Dirichlet integral Dq, we define a functional a(Q),
b(Q) and J(Q) by

a(@) = inf D(v) b(Q):veigg(fQ)D(v), J(Q) = a(Q) — b(Q). (1.24)

Since & (Q) C B(Q), we can see that J(Q) > 0. Note that 27 (Q) and ZB(Q) are closed convex subsets in HY(Q).

Both a(Q2) and b(€2) are attained by some ug € &/ (L2) and wo € B(Q), respectively

Awg=01in Q, wq=1u’ on T3UTY, %9:0 on [UTY,. (1.25)
In fact,
/Vv-va dx:/(—AwQ)-v dx =0 (1.26)
Q Q
Since v € Q,
Awg=0 in Q. (1.27)

10



Then,

/Vv»va dx:/(—AWQ)vv dx+/ Ma 4
Q Q oq on (1.28)
= Ina ds <0.
aQ on
Since v is arbitrary,
0
/ 2 _y (1.29)
Tur, an

is obtained. Hence, we get (1.25).

Let {Q,} C &/ be a sequence of admissible domains, which converges to Q C &/ uniformly. Let {; =
_1:; UT,. The point &, is where the d{ 24« ) contacts the surface of the left reservoir. We need to consider boundary
domain, which is vertical in the neighbourhood of §,. The domain Q, may have a cusp at point {;, and it will be
excluded in an explicit way.
Definition 1.3.4. I[f Q € o/ has a vertical wall around &, then, the following condition is satisfied:

Let a sufficiently small 11 > 0 be fixed. Consider the cones defined by a straight lines crossing at & with angle

1N and a connected subset of T'y. Then Q contains such a cone.

&

y

Ty I

Figure 1.5: The conc condition and a domain with a cusp

The exact solution Q contacts d(Zx«~) at the right angles of {;. Thus, we confirm that Q C «,. As for the

left vertical wall around, {;, the cone condition of Definition 1.3.4 is also essential for the compactness of o7,
Problem 1.3.5. We want to find Q € /.y such that there exists a unique u € H' (Q) which satisfies (1.4) and (1.17).

Theorem 1.3.6. Under Assumption 1.3.1, Definition 1.3.3 and Definition 1.3.4 we have iI{lfJ =0 for the functional
(]
J: oy — R defined by (1.24). Moreover, an admissible domain Q € &g is a solution of Problem 1.3.5 if and only

ifJ(Q) = infJ = 0.
A

1.4 Conformal Mapping

In this section, we will provide the theory and the convergence of our new variational formulation. Supposc that

the configuration of a Zu« satisfies Assumption 1.3.1. Let z; = ¢2™V-1U=D/3 ;=1 2 3. Given Q € ./, we take
p 7

Il



G=T ﬂfi, & :]—“; NT; and § =T} ﬁﬁ~

From Riemann’s mapping theorem there exists a unique mapping @q for each Q € &75 admitting

¢ B — Q: conformal
¢q : B — Q : homeomorphic

¢alzj)=¢§ j=12,3

where B = {(u,v) € R? : u? +v* < 1} denotes the unit disk for any simply connected admissible domain Q € #75.

For each Q) € &/ there exists a conformal mapping ¢q : B — Q.

Definition 1.4.1. Let I" C R? be a continuous image of an open interval in R. Let 7 : R* — R be the canonical
projection defined by t((x),%2)) = x1. Then, T is a graph in the direction of x3, if (zt|r) ! (x1) is connected for all

X1 € n(I‘)

Figure 1.6: Canonical projection of a dam.

From Definition 1.4.1, we define T; € dBby T'; = ¢ 1(T), (j = 1,2,4) and for I}, = ¢ ' (T}) (i=1,2) for
each Q € #. Here, T} and Ty are not depend on ¢, while the others do. Let also #® = u® 0 @q. Therefore, (1.17)

is transformed into

Ali=0 in B,
o ~
8—::0 on I,
il -
= and 22X =0 on I, (1.30)
on
=i on I~“3,
i -
= and—u§0 on I'y.
dn

Proposition 1.4.2. If i is regular, then it satisfies (1.30) if and only if u = o (0 !satisfies (1.17).
Next we proceed to the problem that is defined from the conformal mapping.

12



Figure 1.7: Dam defined by the unit disk.

Problem 1.4.3 (Filtration problem or dam problem). Suppose that Assumption 1.3.1 holds. Find Q € s« such

that there exists a unique ii € H'(B) which satisfies (1.30).

Using the function spaces £7(Q) and Z#(Q) that defined in (1.19) and (1.23) respectively, we set

A (Q)={v=vopacH'(B)|ve #(Q)},

B(Q)={F=vopocH'(B) |ve B(Q)}.

We then define the functional 4(Q),5(Q) and J(Q) like before,

a(Q) = ElAn(fQ )Dg(v), Q) = vei;?éz )DB(ﬁ), J(Q) = a(Q) — Q).

Recall that g € «7(Q) and wg € ZB(Q) which attain a(Q) = ian D(v) and b(Q) = iB(fQ)D(v) satisfy (1.22)
VEHS

ve./ (82)
and (1.25), respectively. Then we define fig = ug o o € VZ(Q) and Wwg =wgopg € 33(9) which satisfy

Aug =90 in B, uQ=1/0 on I~‘2u1~"3 Uﬁ;,

_')..'_'Q-SO on ]7'47 %’—';")-ZO on f:l

n

and

Awg =0 in B, wo =1 on [3UT}, %’1520 on I UD,

according to (1.22) and (1.25), respectively. On the other hand, we have
DB(VO(pQ):/IV(vO(pQ)Iz di=Do(v), veH'(Q)
B

for any conformal mapping @q : B — Q. Thercfore, if fig attains Dg(ilq) = (Q) and Wg attains Dy (Wq) = b(Q),
it holds that

Alig =0 in B, iig= i on 1:2 U1~"3 Ul~"4,

13



(911(1 =~ 3179 =~
— <0 I — =
3, = on Iy, 5 0 on Iy, (1.3
~ . ~ ~0 = = aWQ = ~
Mg =0 in B, wo=i on Iy UTy, on =0 on I'UTH. (1.32)
n

Theorem 1.4.4. For the functional J : /g — R, we have inf,, /.f =0 and an admissible domain Q € /g is a

solution 10 Problem 1.4.3 if and only if J(Q) = inf,, J = 0.

cy’i/

Let us recall that each Q € &7, is identified with the conformal mapping @q : B — Q satistying ¢a(z;) = ;,

Jj =1,2,3. Therefore, we can define the distance in &5 by

dist(Q1,Q2) = |0, — 00, ||~

where || - || is the maximum norm defined on B. Let y be a sufficiently smooth curve with the length pa-

n-
_ 2
51y MOYOP gsdt < oo. H'/2(y) becomes a Hilbert space with the corresponding inner product. In the Lipschitz

ls—t[*

rameter. The norm of H'/2(y) is then defined by IVl g2y = (||V‘|1%Z(y)+ L |y agpe)'/2, where | v Lo

domain Q, if v € H'(Q), then v | 30€ H'/2(3Q). Conversely, if n € H'/?(9dQ) then there is u € H'(Q) such that

u |9o= n. The infimum of || Vul|; of such u is attained if Au = 0.

Definition 1.4.5. When a sequence {@q,} converges uniformly to @q, we say that {Q,} converges uniformly to

Qwhere Q,, Q€ gy, n=1,2,...

Corollary 1.4.6. Suppose that {Q,} C 2/ converges uniformly to Q C DAM and o5 C C(B;R?). Then Q € 2/5.

Figure 1.8: Monotone decreasing graphs are Lipschitz.

Proof. We have Definition 1.3.3(4) for Q. Since ¢q, |55 converges uniformly to g |55, Definition 1.3.3(2),(5)
and Definition 1.3.4 hold for Q. We show that Q is a Lipschitz domain. Recall that, a domain D C R? is called
Lipschitz if there exist finite open sets U; C R?, i = 1,--- N such that D C UY_,U; where 9D denote as the
boundary of the domain D and each dD N U; can be regarded as a graph of a Lipschitz function. Therefore, from

Assumption 1.3.1, we can define an open set and change of coordinates on dQ2N B; U B;. Since at the left hand
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side of dQ \ B} UBj; cannot contain a cusp because we excluded it, dQ is Lipschitz around the point.

From Definition 1.3.3(3), we know that dQ, \ B UBs is monotone decreasing in the direction x;, so 9Q\
B UB; is also monotone decreasing in the x, direction. Rotate the coordinates (x1,x;) by 377/4 radian through
two points on a decreasing graph of direction x;. The absolute value of its slope is less than or equal to 1 on
the new coordinate. This means that dQ \ Bj UB3 can be regarded as graph of Lipschitz function on the new

coordinates. Therefore, Q is Lipschitz and satisfies Definition 1.3.3(1), (3). Therefore, Q € /. O
We claim that if a sequence of admissible domains in &/ converge uniformly then they converge in H' (B; R?).

Lemma 1.4.7. Suppose that a sequence {Q, } C /5 converges uniformly to Q C DAM. Then we have

r}l_I)EH(PQn - (PQ“H’(B;RZ) =0 and r}g};“‘pﬂn los —0a |ap ”HI/Z(aB;]RZ) =0. (1.33)

Proof. Tt is obvious that the first convergence of (1.33) implies the second convergence of (1.33). Since ¢@q,
converges uniformly to ¢, we have r}_ll}l;lo 190, — 9all12(5.r2) = 0. We will use the dominated convergence theorem
of the Lebesgue integral to show ||Dg(@q, )| — |Dp(@gq)||. We denote |Q| as the Lebesgue measure for Q C o7.
Then, we take Yq,, Xa be the characteristic functions of Q, and Q. Since {dQ] = 0, we conclude that xo, — Yo
for a.a. in B as n — oo. From Lebesgue’s Dominated Convergence Theorem, we know that | Q, |= [g2 X, dx —
|| = [g2Xa dx as n — eo. Then we know that |Q,| = Dg(@q,) and |Q| = Dg(¢9q). Since Q is measurable,
therefore, || ¢g, || is bounded with |Q,| = (2Dp(¢q,))!/?. Thus, from @q, we can abstract a subscquence ¢q,,

such that
©q, — ¢o weakly in HI(B;Rz)» lim [ Dg(@q, )| = lim |Q,,| = |Q| = Dp(¢a)
i j—ro0 1 I—yoo

which means that g, convergesto ¢q in H'(B;R?). Therefore, {¢q, } converges to ¢q in H' (B;R?) and (1.33)
holds . O

Lemma 1.4.8. Suppose that {Q,} C 2y converges uniformly to Q C Qun. Then we have,

lim infa(Q,) > a(Q). (1.34)

n—oe

Thus, the functional a(Q) is lower semicontinuous with respect to uniform convergence.

Proof. Letiig, € &/ (,) attains the minimum value of Dg in 27 (€2,), that is Dg(iiq,) = a(2,) and iig, satisfies

(1.31) for Q = Q,,.. Define #ig as the solution of

. =~ = ) ~
Afig =0 in B, do =u’o@qy on I U3 UTY, —=0onTy. (1.35)
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Then, we have iig € &/ (), where &/ # 0. From the above assumption and maximum principle, {#iq, } converges

uniformly to #q in C(B). Since Dirichlet integral is a lower semi-continuity with respect to weak convergence, we

have from the Definition 1.3.3(4),

My > lim infa(Qy) = lim infDs(iiq,) > Da(fia) (1.36)
n—yoo

n—3oo

and i € H'(B). As we know, {iiq, } is bounded in H'(B). Therefore, it admits a subscquence {7ig, },

g, — fq, weakly in H'(B),

i, |ap— fia, [z weakly in H'?(3B).

Then we define H~'/2(dB) as the dual space of H'/?(dB). We denote the duality pairing as (-, VH-112(38) H\/2(3B)"
We know that u € H'(B), such that Au = 0 in B. Thus, 1 € H'/2(dB). Therefore, u =1 € H'/?(dB). Generally,
94 ¢ /~'/2(9B) and the map H'/*(B) > n — 94 H~'/2(dB) is continuous. Hence, since dgq, |95 converges
weakly to ugq |55 in H'/2(dB), %%’L converges weakly to 3—;,? in H-1/2(dB). This also means that for p €

H'*(9B),

2(50), ™ ()
e\ on H-1/2(3B),H/2(3B) on’ H-Y2(3B),H1/2(3B)

where p > 0isin H 1/ 2(dB) of which support is denoted as suppp. This suppp is also included in T4 for Q and

. oii fod .
Q,,. Since g’;’" < 0 on T4, we obtain

<%‘f‘—’,p> <0
n H~1/2(3B),H/2(3B)

from the support definition. Since p is arbitrary, we can conclude that %’ij} <0onTyforQ,iig € & () #0. From
the definition, #iq satisfy (1.31) and its Dirichlet integral attains the minimum value 4(Q) € & (Q). Therefore,

Dg(iiq) = a(€2). Hence, (1.34) indicates the lower semicontinuity and (1.36) follows. 0
We summarize the basic properties of space H'/2(y).
Lemma 1.4.9. Let Y= (a,b) C R be a bounded interval. Let f € C%! () and g € HY2(y).

1. We have the following estimates:

12y < COM N cor gy

178l g12(y) < CONS o llgll corgyy-
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2. If g satisfies, with some € > 0,
gx)=0((x~a)*), x\a, gx) =((b—x)%), x b,

then its O-extension g is defined by

{ g(x), xce,
0, xeR~vy
belongs to H'/2(R); g(x) € H'/2(R).
Lemma 1.4.10. Let y = (0,1). Suppose that there is a sequence {1, } C H'2(y) NC(7) satisfying the following:
1. {nn} converges to n € H'/2(y)NC(¥) in both H'/*(y) and C(7) norms.
2. There exists a sequence { ¢, C Y} such that
e limo, =€y
n—roo
o Ny (0,) = n(e) = h for any n, where h is a constant.

3. There exists a subinterval Yo C Y with o € Yy such that N, | € CY (), 1 | € C' (W) and Ny |y, converges

to 1 |y, inC(10).
Then, if we define p,, and p by

pn(t):{ Ma(t) €10, 00] p(t):{ n(t) te0,q

h te o, 1], h tela,l],

we have p,p, € H'/2(y) for sufficiently large n and lgn llpn—p ”m/z(y) = (.

Lemma 1.4.11. Let {Q,} C o/y. Suppose that {,} converges uniformly to Q C DAM. Let Y= (z1,z;) C 9B
be the curve between z1 and z,. Let iiq, € @ (Q,), fig € o (Q) be the functions satisfying (1.31). Then we have

fiq, |y fia |y in HY/2(y) as n — .

Proof. Let {4 = f? NT4. Letz} = q){znl (C4) and z4 = @ 1(&). Then, the boundary value on y of i, and fig are

ig, =hy on (21,2) C¥, dg,=¢5 on (Z4,22) CY, (137)

do="hy on (z1,24) Cy, dg=0} on (z4,22) CY,

where go, = (¢, , 95 ) and Qo = (¢}, 03). We know that ¢q, [,~ @q |y in C(%;R?), hence, lim z; = z4. If the

right hand side of water reservoir is empty, which means that I’ = @, then we have {; = ;. From Lemmas 3.2.7
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and 1.4.10 the right hand reservoir is not empty and {4 # &;. From Assumption 1.3.1(3), d(DAM) is a C? curve at
z4. Therefore, the boundary regularities of conformal mappings yield ¢q,, ¢o of C*€ around 24, z, for any €, 0 <
€ < 1. From Lemma 1.4.10, there exists a subinterval ¥ C y such that z4,2} € % and @q |y, @, %€ C* (1 R?)
for sufficiently large n. Since || @q, ||ct.e (y,.2) is bounded and C'(1; R?) C C' (y; R?) is compact. Therefore, we

can extract a subsequence {(pgnj} such that

¢o, |y ¢aly in C'(1:R?), nj— oo,
Hence,
ﬁQ"j iy—>ﬁ9|y in Hl(’}’), nj —> oo,
Therefore, we can conclude that {iig, } converges in H'/2(y). O

Theorem 1.4.12. Let {Q,} C &/g. Suppose that {Q,} converges uniformly to Q C DAM. Then we have

lim b(Q,) =b(Q) (1.38)
and consequently
liin infJ(Q,) > J(Q), li_r}n infJ(Q,) > J(Q). (1.39)
n—o0 n—yoo

Proof. Recall that Wg, and W, attain the minimum values of the Dirichlet integral in P, and Bq and satisfying

boundary value problems:

AWq, In B, Wq, =ilg, on i:3 Ui:4, 3_‘;% =0 on f]Ufz,
Awg =0, wq = g on f3U1:4, 3_8"’? =0 on i:1Ui:‘2.

Let s and {7 be the points contacting at the air part of the free boundary on Zx« for Q, and Q. Let 25 = (p§”1 (49
and z5 = Qg (¢s). As before, from the theory of conformal mappings, there exists conformal mappings of ¥, and
v which map B to a rectangle, R, = (0,k,) % (0,1) and R = (0,k) x (0,1) where k, and k are positive constants
with lim k,, = k and

frareet

Vn = W(ZZ) = (07 1)7 ‘Vn(Zs) = W(Z?’) = (070)7
Wn:(kn’l)7 W(Z5):(k71)7 l[/n(Zl):(kn,O), W(zn):(k’o)'

Then we denote the boundaries of the rectangles as dR,, and dR. Denote ¥, = Wq, o ¥, ! and ¥ = Wwq o w~! which

satisfy

AV, =0 in R, ¥,=p, on YU, %‘i;' =0 on UV,

AP=0in R, v=p on pUx, $£L=0on nU%M,
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where p,, =i, oy, ! and p =digoy~'. Consider v, = (x,x2) = ¥,(04,x1,x;) Where o, = k, /k. Then, v, satisfies

4 4
vs Ya
1z 28 1z, Zs
I R 123 73 R Yz
23 %8 K 23 i k

Figure 1.9: The rectangles and their boundaries.

AV, =(1-0a2)f, in R, V,=p, on pU%, —a% =0 on U,
where f, = 9?9, (ax1,x2)/9x3 € H™!(R), where H~(R) is the dual space of //'(R). From Lemma 1.4.11, we

know that p, — p in H'/2(15U7,), hence lim 0, = 1 and || fu[| -1 (g) is bounded. Therefore, we can conclude that
vl

# — vin H'(R). This mcans that
nli_?l”wﬂn —Wallm @ =90, 31_1)277(9") =b(Q).

Therefore, combining (1.34), this theorem is proven. O

Corollary 1.4.13. Let {Q,} C /g converge to Q € 7., such that ]i_>m J(Qn) = 0. Then we have J(Q) = 0 and Q

is the solution of the filtration problem.

Remark: Now we know that 5(€Q,) is continuous with respect to uniform convergence of {Q,}, while the
function &(£2,) is only lower semicontinuous. We clarify why they are like this. Let ¥ = (z1,22), 11 = (21,22] U

(22,23) C dB be the arcs between 7y, z; and z3. Recall that 1o, and W satisfy the boundary conditions

~ ~ aﬂ‘n ~
W, = ilg, on (z1,25) C ¥, —32 =0 on (,2), 1o, =M on (z,23),

- ~ I -
Wo =1iig on (21,z5) CY, % =0 on (z5.22), Wo=hm on (z,7),

Hence, using the fact that iiq, |y— éiq |y in H'/?(y) we have shown that the functional b(Q,) is continuous with

respect to uniform convergence of Q,,. While for #iq and fig, the boundary conditions are

fiq, =hy on (z1,2}), 179":(;)!22" on (z3,22), #iq, =M on (z,23)

7
ﬁQth on (21,24), ﬁgzqogzz on (24,22), I7Q=h1 on (22723).
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T

Figure 1.10: y and ¥, be the arcs between z;, z; and z3.

Generally, we cannot claim that i, |y, — #fiq |y, in H'/?(y) although we have iq,, fig € H'/?(71) and Lemma

1.4.11. That is why we cannot claim that 3(€2,) is continuous.

1.5 The Compactness of .27, in C(B;R?)

In this section, we want to show that &5 is sequentially compact in C (B;R?). We need to show that for any
sequence {Q,}°_, C g, there exists a subsequence {Qy,}, and an admissible domain Q € 5 such that {€2y, }
converges uniformly to Q.

We then define

Br(zo) ={w:|w—2z0| <r}, Si(z0) =BNBr(z0),
Cr(Z()) ZEﬂaBr(Zo).

If zy € dB, then C,(zg) can be rewritten as
Colzo) ={zo+7revV—10:6,(r) <O < 6,(r)}, 0<6(r)—6:(r) <.

Theorem 1.5.1. [14]. Every X € H'(B;RY) possesses a representative Z(r,0) of X (zo + reV=19), zy € B, which
is absolutely continuous with respect to 0 for a.a r € (0,2) and which has the following property:
For every 8(0,R?), 0 < R < 1, there is a measurable subset I C (8,V/8), whose I-dimensional Lebesgue

measure is positive, such that

1

1Z(p,0) — Z(p,0')| < /6 1Zo(p, 0)|d6 < n(8,R)|6 — /|2
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holds fora.ap € I and 61(p) <0 <0’ < 6,(p), where

1

n(0.k) = {log(i/fs) /swo) IVXF}E '

Then we have the following theorem.
Theorem 1.5.2. The functions {Qq |9p }aea, are equicontinuous on 0B.

Proof. We claim that there exists for all € > 0, a number 4 (€) > 0 which does not depend on Q with the following

property: any pair of points P,Q € JQ with
0<|P—-Q|<A(g)
decompose into two arcs Y (P, Q) and ¥, (P, Q) such that
disth(P,Q) < &

holds. Hence 0 < € < g = I}l‘l#lillc i — &il, then ¥1 (P, Q) could contairi at most one point {;. Consider the following
case,

Case 1 P,QeTi, i=120rP,Q€T,

Case 2 P,Q €T UTy,

Case 37P ¢ l'g, gel”or”Pel, Q¢ I3”or”P e 2 Qeluly”,

Case4 PcThUTy, Q€ 1"},.

Since I, UT4 is monotone, from the definition, it holds that Case 2 with A(€) = &. Since we extended the cusp at
&5, we also holds for Case 4. While for other cases,

Let & € (0,1) be a fixed point number with
2v/8 < minlz; —z| = V3.
J#k

For arbitrary €, 0 < € < &, we take some number 6 = §(g) > 0 such that there exist

1/2
(%) <Ale) and 8 < &, (1.40)

where M = 2|Zuw| > sup Dg(9q). From Courant-Lebesgue Lemma, for any zy € 9B, there exists p €
Qeyx@ p

(8,V/8) such that
4nM

1/2
a(2) — pa()] < (W) ,
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where z,Z € 9B is the intersection points of B and 9B, (zo). From (1.40), we infer sup | (z) — ¢a(Z)| < A(e),

whence
distY1(¢a(z) — ga(7)) <&
Therefore,
lpa(w) — pa(W)| <€ forany w,w €9B  with jw—w'| <28.
This means the equicontinuity of {¢q |55} on dB. O

Theorem 1.5.3. The set of admissible domains /g C C(B;R?) is sequentially compact. That is, for any sequence

{Q,} C oy, there exists a subsequence {Q,, } which converges to an admissible domain Q € o uniformly.

Proof. Let {Q,} be any sequence of admissible domain. By Theorem 1.5.2, {¢q, |55} is equicontinuous on dB.
We also know that {@q |55} is uniformly bounded. By Ascoli-Arzela’ theorem, we assure the conclusion that
there exists a subsequence {Qq, |55} and 11 € C(dB) that {Qaq, |a 3} converges to 1 on dB as n; — oo. From the
maximum principle of harmonic functions, @q, converges uniformly to ¢ in B. Therefore, ¢ € &/ and the proof

is complete. ' O

Corollary 1.5.4. Suppose that a sequence {2} C o satisfies 1i_r)n J(Q,) = 0. Then {Q,} converges uniformly

to the exact solution Q € @ of the filtration problem.
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Chapter 2

Numerical Methods to the Filtration Problem

In this chapter, we deal with quantities defined on a domain. If the domain is perturbed, the quantities are also
perturbed. Such a variation with respect to domain perturbation is called Hadamard’s variation. In this chapter, we
present an iterative scheme for computing solutions of a free boundary problem based on Hadamard’s variation.
Since the iterative scheme is based on rigorous mathematics, it is stable and effective. A numerical example shows

its usefulness.

2.1 Introduction

Suppose that there are two disjoint water reservoirs separated by a dam made of the porous medium (earth, for
example). There exists a flow of water in the dam (see Figure 1). Our task here is to find the flow region inside the
dam and the velocity potential function. This problem is called the filtration problem (or the seepage problem,
the dam problem, ctc.), and has been one of the most typical examples of free boundary problems. The filtration
problem is treated in many text books, see [7], [15], [18]. In this chapter, we denote the region of the dam by %x .

We assume that %+« is a Lipschitz domain in IR?.

Figure 1: The configuration of the dam.

Our aim is to present a new iterative scheme for computing the flow region. In [19], a new variational principle
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of the filtration problem is introduced (Section 3). With the variational principle, our iterative scheme is designed
as an optimization procedure. By such an iterative process, the boundary of the possible-flow region is modified
gradually. Therefore, it is important to know how much quantities related to the variational principle would vary
under domain perturbation. In this chapter, we give the first variation of the function which governs the filtration
i)roblem (Section 4). Using the first variation, we present a new iterative scheme (Section 3). Tt is called the traction
method and the basis of the traction method are given by Azegami [4]. Azegami presented the traction method
for optimal shape design. The authors have found that the traction method is also very effective for computing
numerical solutions of free boundary problems. Although, many authors have present iterative schemes for the
filtration problem, this is the first one which uses the first variation of any variational principle. A numerical

example shows its effectiveness.

2.2 Definition of the filtration problem

In this section, we formulate the filtration problem. For more details, see the above mentioned text books and [19].
We assume that the boundary d(Z%s«) consists of three parts: B, the impervious part; B;, the part in contact with
the air; and B; = Bé U B2, the part in contact with the water reservoirs Ry and R. We already assumed that the
levels of the water reservoirs (denoted by /1 and hy, hy > hy) are different and that there exists a steady water flow
inside Zwa. We denote by Q the portion of water flow in %« which is not a priori known. The boundary JQ

consists of four parts:

' =B (the impervious part)
I C Zuw (the free boundary)
T, = B, (the part in contact with

water reservoirR;, i = 1,2)
I =Tur}

I'sCBy (the part in contact with air)

Let I’ C IR? be a curve. Let 7 : IR? — IR be the canonical projection defined by m((x;,x2)) := x;. In this
chapter, we say that I" is a graph in the direction of xy, if (m|r)~1(x;) is connected for all x; € n(T’). For the

configuration of the Lipschitz domain, Z««, we assume the following properties in this paper:

(1) There are two reservoirs of water (one of them may be empty) separated by the dam. We assume without

loss of generality that the water level of the left-hand side reservoir is higher than that of the other.

(2) Each reservoir contacts the impervious base.
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(3) B1 C d(Zwn) (impervious part) and B, UB3 C d(Zuaw) (air and water parts) are continuous, piecewise C2

curves, both are graphs in the direction of x;, and B, U B3 lies above B;.

The problem is to find the flow region Q and the velocity potential function u of the flow. To define the

boundary value of # we introduce the following subsets of Zz#. Let {, be the point where the surface of the left

reservoir contacts d(Zu««). Thatis {; = B—é NB,. Let sufficiently small 17 > 0 be taken and fixed.

Let us assume that 2« splits into two connected subsets by a segment / C % such that the end points are

¢ and the other is on By. Suppose that the angle between B} and / is . Then, Zwa® C Don is defined as the

region between B} and / (see Figure 2). Set

Dun’ = {x = (x1,x2) € Pvtnw — Dua® | X3 > hz},

Dan* = {x = (x1,X2) € Dottt — Do’ fxp_ < hz}.

We then define u® € H' (%v#) by

u’(x) =

b onBl,

X in v,

h2 in @z{/ﬂ2.
In Q24°, 40 is defined in an appropriate way.
pprop
&
& 2
794
\ Gun?
\
Gv.n° A r°

Figure 2: 247 (j =0,1,2).

Then, the filtration problem is to find the flow region Q C 2« and the piezometric function (velocity

potential) « defined on Q which satisfies

u=u" and

du
an 0
du
b‘;SO

in Q,

only,
on Fz,
onl’,

on F4,

2.1)



where n := (ny,n) is the unit outer normal vector of dQ. Note that on the free boundary I, both Dirichlet’s and

Neumann'’s conditions are imposed.

2.3 A Variational Principle of the Filtration Problem

For both mathematical analysis and numerical computation, it would be nice if we have a variational principle of
the filtration problem. In this section, we explain a variational principle introduced in [19]. The idea is simple.
Let Q C “uu be a candidate of the exact solution of the filtration problem (that is, the true flow region). Let uq,

wa € H'(Q) be two harmonic functions with

ugp = uo aWQ
" odn

=0 only.

We suppose that ug, wq satisfy the boundary conditions of (2.1) on I'; U3 UT}. If Q is the exact solution,
uq must be equal to wg. If Q is not the exact solution, the “difference between ugq and wq” should represent
the distance between Q and the exact solution in some way. Although, one may take any norm to measure the
“difference between ug and wq”, we measure the difference in tho_e following manner.

At first, we define the subsets o7 (Q), B(Q) C H'(Q) by

F(Q) = {ve X (Q) ‘v:uo onTLUT3UT, },

BQ):={veH' (Q)|v=14" on T3UT4},
where £ *(Q) is defined by

H(Q) = {vEHl(Q) ] y=0onT UL UT3, vZOonI}},,

Q) = {ve H(Q) | (W, Vy) <0, Vxe X (Q)}.

Note that for a harmonic function y € C%'(Q) NC%(Q), x belongs to ¢~ if and only if dx/dn < 0 on T4 in the
variational sense. Take and fix My, a sufficiently large positive number. Let also Dg denotes the Dirichlet integral

on

Dq(v) := %/QIVVF.

" Definition 2.3.1. Under the setting defined so far, a subset Q C Za is called admissible if Q satisfies the fol-
lowing conditions: (1) Q is a Lipschitz domain. (2) d0Q D ByUB;. (3) dQ\BjUB3 is a C%! curve and is a
monotonously decreasing graph in the direction x,. (4) & (Q) # 0 and inf,c (@) Da(v) < Mo. We denote by g

the set of all admissible domains.
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The functional a(€2), 5(Q), J(Q) : &5 — IR are defined by

Q):= inf D b(Q):= inf D
a(Q) ve};(g) o(v), Q) veg(ﬂ) o(v),

>~
2
i

a(Q) — b(Q).

Since &7 () C B(Q), we have J(Q) > 0.
From the Dirichlet’s principle, we know that the values a(Q) and 5(Q) arc attained by the harmonic functions

o and wq (that is, a(Q) = Dg(ng) and b(€2) = Do (wq)), respectively, which satisfy the boundary conditions

ng = 1° on U UTy,
2.2)
%}} <0onTy, %;}:00111“1,

() ,
we = 1° on T3 UT, %zOOnFIUI}. 2.3)

We have the following variational principle for the filtration problem:

Theorem 2.3.2. We have inf,,, J = 0 for the functional J : 2le; — IR. Moreover, an admissible domain Q € s/,

is a solution of the filtration problem if and only if J(Q) = inf,, J = 0.

2.4 The Hadamard Variations of a(Q2) and 5(Q)

By Theorem 2.3.2, the filtration problem may be solved (in particular, numerically) by an optimization process.
In an optimization process, the boundary would be modified gradually and, therefore, it is very important to know
how a(€2) and 5(€2) would vary under perturbation of the domain (or the boundary). Such variations with respect
to domain perturbation are called the Hadamard variations. In this section, we give the first variations of a(Q)
and H(Q) with respect to domain perturbation obtained in [20]. In the next section, we present an iterative scheme
using the obtained first variations.

Suppose that we have Q € &, and try to modify it. Let a vector field S € W'*(%#) be given. We consider

the ordinary equation

dc
() =S(e(), 120,

c(0)=x, x€ Aur.

Then, for each x € Z+« the solution c(¢) forms an integral curve. Then, J(x) := ¢(¢) satisfies the following:

o G(x)=x,Vx € Qun.

27



o 7 is a diffeomorphism of %z« for sufficiently small > 0.
e 7, is smooth with respect to £.

¢ 7, has the Taylor expansion

Fi(x) =x+1S{x)+o(t).

We use this .7, as perturbations of Zx#.
Now, let Q € <., be a candidate of the solution of the filtration problem. To consider a perturbation of €, only

the free boundary I'; and T'y would be moved. Hence, we may assume that
suppS NQ C %’ or suppSNIQ C T, UTy. 24

The harmonic function ug € & () is a solution of the boundary value problem (2.2). Its weak form is

(VMQ,VV)(LQ =0, Wwe Vo(Q),

uQ:uO onTL UT3UTYy,

where

Vo(Q):={veH'(Q)|v=0 onT,UT3UT4}.

For a sufficiently small 1 > 0, let Q, := Z;(Q) and suppose that Q; € &/5. We also consider the harmonic

function ug, such that a(Q;) := Dg, (ug, ). Setting Ty 1= 0Q, N Ga, Ty := 9Q; N By and
Vo(Q) := {ve H'(Q) | v=0 onTHUT3UT,},
ug, satisfies a similar weak form as above, and we have
VEV(Q) <= V0 F € Vp(Q). (2.5)

To show the theorem below, (2.5) plays an important role. Let (-, -)r,ur, denote the duality pair of H ~1/2(1 UTy)
and H'/2(I"; UT). The first variation 8a(Q) is defined by

lim a{€y) —a(Q)
t—40 t

da(Q) :=

K

and we have the following theorem.

Theorem 2.4.1. Let Q € o7 be an admissible domain. Suppose that the perturbation J;(x) = x +1S(x) + o(t)
satisfies that Q; == F;(Q) € g for all sufficiently smallt >0 and (2.4). Then, the first variation 8a(Q) is written
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by

6a(Q)=%<1—<‘%2>2,5p> )

THUlNy

where p := g —x3 and 8p := S n is the normal component of S.

Remark:In the classical sense, if T'; is sufficiently smooth, dug/dx; and dug/dx; exist at almost all points on

I';. Then, the first variation is written as a usual integral over I'; UT:

Sa(Q) = - 1~<‘9’£>2 Spd
a(Q) =3 o, > pds.

The harmonic function wg € J#(Q) is a solution of the boundary value problem (2.3). Its weak form is

(Vwa,Vv)oo =0, Vveli(Q),

wa =1’ on T3 UTy,

where

V(Q):={ve H'(Q)|v=0 onT3UT}y}.

We now consider the harmonic function wq, € %(Q,) which satisfies a similar weak form with
Vi(Q) = {vel' (@) |v=0 onT3UT}},
where Ty := dQ, N B,. The difficulty here comes from the fact that
5 Vi(Q) <> ¥0 T € 1(Q) (2.6)

is not valid in general since the boundary point {5 := T, NTy may be “peeled off” by the perturbation (see

Figure 3).

Figure 3: The boundary point {5 may be “peeled oft” by the perturbation.

Thercfore, we necd to imposc an additional assumption on perturbation. If (2.6) holds for all sufficiently

small ¢ > 0, the perturbation 7 of I'; UTy is said to satisfy the NPO condition. (The term “NPO” stands for
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“Non-Peeling-Off.”) Let b(€Y) := Dg, (wg, ). Then, the first variation 65(Q) of b(Q) is defined by

Theorem 2.4.2. Let Q € 7 be an admissible domain and wg € :A(Q) be such that b(Q) = Do (wa). Suppose
that the perturbation F;(x) = x +1S(x) + o(t) satisfies that Q, := F(Q) € s/, for all sufficiently small t >0 and
(2.4). Moreover, we assume that the NPO condition (2.6) holds. Then, the first variation 8b(Q) of the functional

5b(Q) = % < (‘%ﬂ)z ,5p> ,

)

b(Q) is written by

where d/9s is tangential derivative along Ty and 6p :=S - n is the normal component of S.
Corollary 2.4.3. Suppose that all assumptions of Theorem 3 and 4 hold. Then, the first variation 6J(Q) of the

Sfunctional J(Q) := a(Q) — b(Q) is written by

6J(Q) = tim 2 =)

t—0+ !

1 Ipa\? [dwa\?

_5<1_(8n) —(—(—93—> ,0p r. 2.7
2

Moreover, 8J() = 0 for any sufficiently small 8p if and only if Q € 2/g is the solution of the filtration problem.

2.5 The Traction Method — an Iterative Scheme

From this previous section, we present Hadamard variation as an iterative scheme in this section. Suppose that we
are trying to obtain the flow region Q and the potential » by an iterative scheme. Let Q¥ and ng) c QW be k-th
guess of the flow region and the free boundary, respectively. Since the first variation of the functional J : &g — IR

is

8p k 2 aW k 2
Wy _ /1 _ [ PPaw Q)
sJ(Q¥) = (1 ( - > ( - ) ,5p>rgk>,

an intuitive iterative scheme is defined by

o Bpg(k) 2 ng(k) 2
et (Y (22,

i) = Les eFV () ‘ xer{l, 2.8)
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forx € I“gk), where £ is a positive dumping parameter, and »(x) is the unit outer normal vector at x € ng) . This

scheme (2.8) might be called a steepest descent method. However, even when ¢ is set very small, numerical
experiments show that this scheme does not work at all.

After several iterations, ng) becomes “‘jagged” and computation cannot be carried out any more.

We next propose another iterative scheme which is defined in the following way. Let z*) e /! (QU‘)) be the

solution of the boundary value problem:

A0 =0  inQ®,

P =0 onf3U ng) ,

(k) 2.9)
8; =0 only,

n

(k)
8;_ =FV on l"gk).

n

Then, the iteration is defined by
rin - {x — 28 (x)n(x) j xerP } .

The method is called the traction method and was presented by Azegami (see {4] [17] and the references therein)
as a numerical iterative scheme for optimal shape design. Numerical experiments show that the traction method
works very well for the filtration problem. Beginning from a suitably defined initial guess, the iteration converges
smoothly to a numerical solution.

In the following, we point out the two significant natures of the traction method. Firstly, the traction method
decreases the value of J(2) in its iterative process. Let Q C Z+ be an admissible domain. Suppose that the

perturbed domain - is defined by the traction method
I;:.= {x— Tz(x)n(x) ’xe Fz}, 7>0,

where z(x) is a solution of the boundary value problem similar to (2.9). Letting 8p := —z and FV := dz/dn on

I'; and 8p := FV := 0 clsewherc on dQ2, we have

8}, = (02))

2
_Joz _ _ 2
- <% (-4)>Q _ /Q Vz2dx
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and

J(Q7) =J(Q) + T8(Q) +0(7)
=J(Q)+ T(FV,8p)r, +0(7)

—J(Q) r/Q VzPdx+ o(7).

Therefore, we may expect

J(Qq) <J(Q)

at each step of the traction method. This nature of the traction method is already pointed out by Kaizu and Azegami
[17] in a different context.

Secondly, numerical experiments suggest that the traction method seems to have a stabilizing and smoothing
effect of the free boundary. Although, the mechanism effect of the traction method is not understood completely
at this point, we here give a partial explanation. Let the k-th guess ng) of the free boundary is in C1% class

(0 < o < 1). Then, it follows from the regularity theory of linear elliptic partial differential equations(PDE) that

’ k
Uy s Pl s Wob) € Cl’a(Q(k) UF(Z )) and

L (9pgw [ Iwaw 2 —
FV._I—( - )—( > ) € Co*(TyY).

Since the Neumann-Dirichlet map

COa az(k) (k) 1,0
’ (rz)BFVZ—a;—'—)Z eCh (Fz)

is used in the iterative procedure of the traction method, the updated I“gk“) is in C1® class again. Hence, the
traction method at least preserves the smoothness of the free boundary. If ng) is updated by the “steepest descend
method” (2.8), however, ng+1) is only in C%%. Probably, this is a reason of the unstable behaviour of the scheme

(2.8).

2.6 A Numerical Example

In this section, we give a numerical example which show the effectiveness of the traction method. Let positive
numbers h; > iy > 0, a > 0 be given. As %z we take a rectangle Zsa := (0,h)) x (0,a) (see Figure 4).

In the case that %« is rectangle, the filtration problem is reformulated as a variational inequality, and the
existence and the uniqueness are proved nicely (see Appendix). First, we compute the solution of the variational

inequality and use it to obtain the initial guess for iterative scheme. We set the values a = 1.62, h; = 3.22,
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Figure 4: A rectangle dam.

hy = 0.84. In Figure 5, we show the numerical solution of the variational inequality. Suppose that w € H'(Zx#)
is the solution of the variational inequality. Then the flow region Q is represented as Q = {x € Zuw : w(x) > 0}.
In Figure 5, therefore, we draw all triangle elements on which the finite element solution is positive. The union of

such elements can be regarded as a numerical approximation of the flow region.

5

T Naiknd by —

R
D
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AT

(O I T L L A T |

Figure 5: The numerical solution of the variational inequality.

Then, we use the approximated region as an initial region for the traction method (Figure 6).
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L T R ]
Figure 6: The initial guess made by the variational inequality.

After several steps, the traction method converges smoothly, and we obtain a numerical solution.

0 L L L L A
[ T R R P N F A

Figure 7: The numerical solution of the traction method.

2.7 Numerical Example (continued) — Level Set approaches

There are two types of level-set approaches; one of them reformulates the problem into a variational inequality
when the dam Zx« is a rectangle. In the other level-set approach, the filtration problem is reformulated into a
problem to find a pair (p,y), where p is the pressure of the flow and ¥ is the characteristic function of the flow
region. In this section, we explain them briefly.

In the case that the dam is a rectangle, Baiocchi [5] transformed the problem into a variational inequality, and
showed the existence and uniqueness of the solution of the filtration problem (see also [18]). Leta >0, 71 > 7y >0

be positive constants. Let Z«# := (0,a) x (0,4;) be a rectangle dam. Let the function g € H>*(Zx«) be defined
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by

St —x) 5L —x)?, 0<xa<hy
glxi,x2) 1=
A —x)?, m<xn<h

Let K C H'(Zwa) be defined by
K:={vEH (Qun):v>0in uu, v=gon o(QAnn)}

From the theory of variational inequalities (see [18]), there exists a unique solution w € K of the variational
inequality

Vw~V(v—w)2—/ (v—w), ¥veK.
AIH

7 24
Then, the domain Q := {x € %« : w > 0} is the desired flow region and u := x; — dw/dx; is the desired velocity
potential. Unfortunately, this beautiful thecory works only for the cases that the both sides walls of the dam is

vertical.

Later, Alt [1] and Brezis-Kinderlehrer-Stampacchia [9] gave different approaches which can treat general
situations, and proved the existence of a solution of the filtration problem. The uniqueness of the solution was
proved by Alt-Gilardi [3] and Carrillo-Chipot [11]. In this approach, the filtration problem is formulated to find a

pair (p,7) as is stated in the following. Let e := (0,1).

Problem 2.7.1. Find a pair (p,7y), where p € H' (%), ¥ € L (24 such that
0<y<l1l, yv=lon{p>0}

= p0 on By U B3 such that

V¢ (Vp+7ye) <0, V¢ eH (%)
a4l n

with £ > 00n By and { =0 on B;.

As stated above, it has been proved that there exists a unique solution (p,y). Also, it is shown that ¥ is the
characteristic function of the region {p > 0}: y= X{p>0}> and u := p+x; is the velocity potential of flow inside
Giva (see [15] for detail).

As long as we know, any level-set approaches for the filtration problem so far are modifications of one of the

above mentioned theorems.
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Chapter 3

Unified Approach to the Hadamard Variation

In this chapter, we present a new variational formula for Hadamard variation. We use and derive Hadamard first

variational formula and obtain a new Hadamard second variational formula which also an extension of Garabedian-

Schiffer’s formula. We develop a new methodology which provides a much clearer understanding of Hadamard

variational formula. We also obtain a simple proof of Hadamard variational formula.

3.1 General Domain Perturbation

Let © C R be a bounded Lipschitz domain and let 7; : Q@ — ZQ = €, be a bi-Lipschitz homeomorphism. Assume

that domain deformation x takes the Taylor expansion
1, 2
Jrx =x+15x+ 5! Tx+o0(t°).

Thus it holds that
09x
ot

t=0

‘We then define,
_ d9x

ot

ép

t=0

=S-n, x€oQ

We differentiate again (3.1) and obtain
0% Fx

32 =Tx

=0
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Figure 3.1: Domain perturbation.

3.2 Remarks:

3.2.1 Lie Perturbation

Let v = v(x) be a C%! vector field in Q, Q CC Q. For all x € Q, we have the ordinary differential equation

delt) _

=), () =x

where the integral curve ¢ : (—¢, &) — Q is determined. Let

c(t) = Fix.
Hence
Tix]g =1, af" = V()
aj}" =V,
%{ 0™ Vv(Zx)- afx = (v-V)v(x)

Therefore, we have the Taylor expansion as

Fi(x) =x+1v(x)+ g(v -V)V(x) +o(t?).
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Therefore, we have the Taylor expansion as

Fi(x) =x+1v(x)+ g(v V)v(x) +o(t?).

Hence

Sx = v(x), Tx=(v-V)v(x).

3.2.2 Non Peeling off Condition

Given a part y C T = dQ. We say that non peeling off (N.P.O) condition on 7 is achieved if S-» = 0 on . This

will not be satisfied for the normal perturbation described below.

Figure 3.2: Non peeling of condition at B,.

3.2.3 Normal Perturbation

If 9Qis C', we take a C' deformation of I = 9Q. Let I, = oT : x+¢(3p)(x) - ny, x € IQ where 8p is a given

function on dQ. There exist a C! diffeomorphism .7 : Q — Q,, || < 1. Therefore,

_909x .
ot "

t=0

op x €dQ

where 82p = 0 and {s},...,s,_1} is an orthonormal basis of 9Q. This deformation does not work if 9 has a

cormer.
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3.3 Dirichlet Problem

3.3.1 Chain Rule

Given a CH! scalar field f(x), the Hesse matrix

2
——cy
! =1,...,n

.....

is a symmetric matrix of the second order tensor and let H, f - (S)? = ((Hyf)S,S)pn, S is a vector. Combining the

functional differential equations, we obtain

du du d7x
— (Fxt) = E(%CJH( a; )-Vu(ﬂ?x,t) (33)

and

(ﬂx 1=

‘; 2 (T, 0 +2 (a?) (‘;‘t’(yx t)>

(8 Tix dJx aﬂ,x>

34
72’_> -Vu(Tix,t) + ((qu(ﬁ,x,z)) -3

In fact, from the right hand side of (3.3),

& dfa 37,
du __{5‘7‘(9;)(,:) a"vu(yxz)}

Pu a 2Tx o du
(% 1) = (% z)+dt{ 5 g—t—(ﬂtx,t)} 3.5)

and from the right hand side of second last equation of (3.5),

d (39x 3T 0Tx d
E{ = .Vu(y,x,t)}_ V(T )+ 25 2 ()
_3 ﬂx Bﬁx Ju dTx o
= % Vu( T ) + {atV(zx,z)+ SV u(y,x,t)}
8 Tix aﬂfx , 8u 09x aﬁx
=57 -Vu(Tx,t) + = 8 —(Fx,t) + Heu( Fix, t) —=— 3 3

Therefore, ) ,
d du 25 d
i ) = ki +2 (22) v (Grinn)

32 Tx 09x B%x
+ == 2 Vu(Tx,t) + Hau(Fpx, t) —— o5 3
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3.3.2 Green’s Function

Given ¢ € C(Q). Letu = u(x,r) € C11(;) be the solution of the boundary value problem

{ Au(-,t)=0 in 656)

u(,t)=¢ on JQ,.

Here, A= 92 /dx? +---+ 9% /9x2 is Laplacian and x = (x;,...,x,). Let G = G(x,y) be Green’s function of —A:

Proposition 3.3.1. If f € C?(Q),

fy)=- / G(x,y)Af(x) dx— /f any) ds,, yeQ. (3.7)

Proof. Lety € Q. Forr > 00f B,(y) CQ,let B,(y) = {z€ R": |z—y| < r}. Define also Q, = Q\ B,(y). Consider

the fundamental solution of I'(x) for Laplacian A

-——1—10 x|, n=2,
F(x):{ 2lx]
(

n- 2)(0,,

where @, = [S"71], 571 = 9B(0,1). In Q\ {y}, I'(x — y) is harmonic. Let f be a smooth function. We obtain

/ T(x— )Af(x) dx+/ (X (x—y) ds—/ f(x (x—y) ds (3.8)

by Green’s Formula where ds is the area element. On the boundary 9B, (y),

d d 1 -
G = LT =t [ (ds= [ 17 do

At the right hand side of (3.8)

P P
S5 (x =) ds. = / F0) 5Tl =) ds+ / SO+8) gy ds

[ w3 cxyw+—/ foy+ra) d

f()( I'x—y) ds+ f(y) as r—0+.

Hence,

I(x—y) ds+ f(). (3.9

~/QF(xAy)Af(x) dx+/(;ga—§1x—) ds_/ 1)
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1t holds that ‘
Au=0 on Q, u(x) = -T(x—y), x€dQ (3.10)

where

G(x,y) =T(x—y) +u(x).

In fact, fix y € Q.

~AG(x,y)=8(x—-y) inQ, G| 0 on 9dQ.

xed T
—Al(x—y)=8(x—y) in Q,
u(x) = G(x,y) -T{x —y).

Then, ‘
Au=0 in Q, u(x)]xeaQ =-T(x—y) on JdQ

Hence, functions « and f in Green’s formula satisfy

0
—/Qu(x)Af(x) dx+/ag —%u(x) ds‘:/(mf(x)ag(:) ds. (3.11)
df(x) _ d
—/QF(x——y)Af(x) dx+/ag L —y) ds-‘/an(x)g;F(x—y) ds+ () (3.12)
——/Qu(x)Af(x) dx+/39 ag(nx)u(x) ds:/(;gf(x)%’f—Z ds (3.13)
From (3.9) and (3.13) we get (3.7). ' O

Taking a C? family as a subdomains such that by taking a small Q; CC Q, (i T Q, we obtain the following.

Lemma 3.3.2. Let Q be C%! and f € C1(Q).
Af=0in Q

then

d
== [ S5y ds,  yeQ (3.14)

3.4 Liouville’s Theorem

In this section, we discuss about Liouville’s theorem which play an important role in Hadamard second deriva-

tional formula. Following Garabedian [16] where S and T are components of outer normal vectors and recall
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that

09 XA
éop=—| -n=S-n, 8%p = .
L P 9 |
Theorem 3.4.1. Consider that we have
o det(JTx) V.S
g 2 -
=0
and
9?2
Falez(Jy,x) = V- T(x)+2 ;(S,-x,.ijj — Six;S)x,)-
- i<y
Proof. Consider Jacobi matrix of Jx:
14181y, + 32Ty, 1810, + 32Ty, s 181y, + 1T,
1S90, + 317 Toy, 141804 387 oy, 0 1Sa, + 12Ty,
JIx =
1S, + 3% Ty, 1Spxy + 32T, o 1 1Sy + 42T,
Then it holds that

12
det Trx = 1413 (Sjx; +Six) +1° 2 (SicsSjx; = S Sj;) + 5 2T
i

i<j i<j

and have the first derivation of detJ Zx,

0
E(detJﬂ,x) = D (Spx; + Six) +2 Y (Six; S =S Sjx;)
=0 I<J i<j
= Z(Sij + SiXi)
i<j
=V-S

and also the second derivation of detJJ}x,

32
2 (QetTx)| = (S +Sin) 20 3 (S Sje; — Sies Sy
or? ' ] j
=0 <) I
=V.T-+2 Z(Szx,-ij,- = Si;Sjx;)
i<j

Corollary 3.4.2. (First Derivation of Liouville's Theorem) Consider C%! function c(x,1),
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(3.16)

(3.17)

(3.18)

|

t| <& x€Q, and let



Q, = Q. Then,

_ / (¢ (x,0) + V- (c(x,0)Sx) dx
o (3.19)

:/ ¢r(x,0) dx+/ c(x,0)8p ds.
Q 0
Proof. 1t also holds that
/Q c(x.1) dx= /Q o(Tix, )det(JTx) dx (3.20)

where J.Zx is the Jacobi matrix of Zx. Using (3.3), we have

d 0
E;/agc(x’t) dx:/g<c,(.7,x,t)+Vc(9,x,t)-7rx) det(JTx) dx

9 G321
+ / c(Fx,t)=-det(J Tx) dx.
Q ot
If+ — 0, then a
a = Fix
c—ﬁ/an(x,t) dx zzo—/Q(cf(x,OH—Vc(x,()).T dx
+/ c(x,0)V -Sx) dx.
Q
O

From the first derivation of Liouville’s Theorem, we try to obtain second derivation of Liouville’s Theorem.

Assume that dQ, ¢, and S is sufficiently smooth. Therefore,

Corollary 3.4.3. (Second Derivation of Liouville’s Theorem) Let c(x,t),c/(x,t) € C% and Q; = Z;(Q2). Then,

with 8p =S-n,

j—; (/Q’c(x,t) dx)

Proof. Using (3.4) and (3.21), we differentiate it again by 7 and get

=/§2c,,(x,0) dx+ (26,(-,0) + V- (c(1,0)5), 5050 - (3.22)

t=0

2
d (/ c(x,t) dx) :/Q[c,,(%x,t)+2vxc,($x,t)5 + Hee(Fx,t)-S - Sldet(J Fx) dx
Q

ar?
82
+/ Vic(Tx,t) - T)det(J Fx) dx+/ c(Tx,t)==det(JTx) dx
Q Q ot?
) /Q ler(Tx, 1) + Vac( Fix,1) - ) %der(mx) dx.
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when t — 0+,

- /Q [ex (6,0) + 2V,cr (x,0) - S + Hic(x,0)S -] dx
4 /Q [Vec(x,0)-T] dx+ /Q c(x,0)[V - T+ 23 Sy, — S Sy dx
+2/Q[c,(x,0)—|—ch(x,0)-S]V~S dx

- /Q lea (x,0) + 2V, (x,0) - S + Ve (x,0) - T + Hyc(x,0)S - S| dx
+2/Q[c,(x,0)+vxc(}c,0).sw-s dx

+AC(X,O)[V'T+ZZSixiSij‘Siijin] dx.

i<j

Using (3.17), therefore,

% (/Qlc(x,t) dt)

t:():/ﬂc,,(x,O) dx—i—/Qch(x,O)SS dx—|—2/(mc,(x,0)5p ds
2 . .
+ /t9 cl0)8%p ds+2 /Q (Vic(x,0)-S)(V-S) dx (3.23)

+2/QC(X,0)2(SL'XJ.SM—ij‘.ijj) dx.

i<j
For vector S in (3;.23), using Divergence theorem we got Jacobi matrix J(S) as
/ (Vic(x,0)-S)(V-S) dx =2 / (Vic(x,0)-S)8p ds
Q 2Q
- /Q Heelx,0)5-S) dx— /Q (J(S)S) - Vxc(x,0) dx.

We then substitute into (3.23),

j—; (/Q c(x,1) dx)

:/c,,(x,O) dx+2/ ai(x,0)8p a’s+/ c(x,08%p ds
-0 Jo 0 E1)

- /Q Hee(x,0)S-S dx—2 /Q (J(S)(S)) - Vac(x,0) dx (3.24)

42 /Q 0(x,0) (S Sy — SpeSic)) dx+2 /a e (x,0)8p ds.
Q

i<j
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Here the left hand side of (3.24) can be written as

W= 2/(;Q(ch(x,0)~5)5p ds
N /Q Hec(x,0)5-5 dx
Y= -2 /Q (J(S)S) - Vic(x,0) dx

Z=2 /Q ¢(x,0) ¥ (Six;Sjx; — Sax;Sj;) dlx

i<j
Then, we “differentiate’ the last dx and get
X+y=-% / CopesSiS; — 23 6y S
ij 7 ij
= Ve-S)op + /c.S~S-.— /c.S S; dx
/89( )P %QX,I]XJ %Qx,zx]j

= —AQ(VC-S)59+Z/S)cxi(SiSij — Six,S;) dx
t’.}

z:zz/ cSiijjni—ZZ/ cx,.SiSm—zz:/ csiij,nj+2z/ e SiSe
i<y’ oQ i<y /8 i<y’ o0 i<j/
:22/ cSi(S,-ijjni—S,-ijinj) dS—ZZ/(Cxi—ij)Sijxi.
i<j/oQ i<j’Q

Hence

X+Y+Z:—/ V.c(x,0)-S)ép +2 / CSiSix,ni—2 / cSiSjxn;

aQ(x( )-S)op g’jaﬂlﬁjl Z’jaglﬂj
- /CxiSiijj+2/CxiSiijj +2/ijSiij,-‘Z/ijSiiji-
i’ i>j/Q i</ >/

Therefore,

X+Y+Z= _/HQ(VXC(X7O) -S)5p+2/()QcSiijjn,-—Z/‘mcSiijinj

i<j i<j

+Z/mcS,-x,.Sjnj~Z/(mcSiijjn,u

i<j i<j

Hence, changing i and j,
X4Y+Z= _/a (V:C(x,0)-S)8p +c(V-S)8p —c(x,0)8%p ds.
Q
Using (3.15), W +X+Y + Z,

W+X+Y+Z:/a (Vee(x,0) -5)8p +c(x,0)(V-S)8p — c(x,0)8%p ds.
Q
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Therefore,

j—; (L/c(x,t))

- /Q ca(6,0) dx+ (26,(x,0) + V- (c(x,0)5),5p)5q - (3.30)
=0

3.5 First Variational Formula

First, we will discuss about the first variation 8G(x,y) concerning the perturbation domain of Green’s function
G(x,y) of Laplacian A. Recall that J : Q — €, = ZQ be bi-Lipschitz. Let G;(x,y) be Green’s function on €,
and u(x,7) = Gy (x,y) —T'(x —y).

Let Q C R” and G(x,y,¢) be Green’s function on €, and
Glx,y,t) =T(x —y) +ulx,t).
Then the boundary value problem define as,
Au(x,t)=0 on £, u(x,t) = ~T(x—y), x €9 (3.31)

We have G(x,y,0) = G(x,y), u(x,0) = u(x). Let y € Q is the inner point and take 7 small so that y € €,. There

exists 22(.7, 71 (x),)],_, local uniformly in Q x Q. Hence we obtain the existence of

_ 9Gi(x,y) _ du(x) .
8G(xy) = —5- e u(x).

For x € dQ, u(Jx,t) = —T'(Jx — y). Hence from (3.3),

du 09x _ d9x

a—t(y,x,t) + Y Vu{Tx,t) = — o -VI(Fx —y). (3.32)
Therefore,

Au=0 in Q
(3.33)

i=~S V(u+T(-~y)=—5-VG(-y) = ~8p?%2  on 90

where 8p =S - . This implies the first variational formula.

Theorem 3.5.1. Let Q be C%! and 7, : Q — F,Q be bi-Lipschitz. Then

IG(-,x) 8G(~,y)> (3.34)

5G(xay) = -‘< on a5p on
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Proposition 3.5.2. Let dQ be C®! and g is harmonic in Q. Then,

xeQ. (3.35)

(V86(..0).Vg) = - (8p 25 %),

on ' an

Proof. There exists g be C%! in Q with gl = & We take smooth Q; | Q and we define g by
Agk =0 in Qk, gk = g on an.

It holds that g — g in C%! on Q. Given k, we have

d
(VGi(-,x), Ve)r :/mt G- x) 2k ds—/Q' Gi(-,x)Agy dx =0 (3.36)
for |¢| < 1. Then for & - | _,, k — o; it holds that
(VSG(-,x),Vg)—F/a V- (SVG(-,x)-Vg) ds=0. (3.37)
Q

Hence, forAg =01in Q,

(V8G(-,x),Vg) = —/99V(SVG(~,x) -Vg) ds= _/39 [VG(-,x)-Vg]bp ds
_ _<5p8G(',x) 3g>.

on on
O
Lemma 3.5.3. Giveny € Q, let
h(x) = (V8G(-,x), VEG(-,)). (3.38)
Then
du
Al =0, h=-8p— on JQ, (3.39)
on
where

u=06G(.y).

Proof. We apply Proposition 3.5.2 for g = 8G(,y) = . Since

Au=0 on Q
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it holds that

- SPaG(ax)7a5G(7y) , x,yEQ
on on
B ~< on -%p on ‘
Therefore,
Ah =0 on Q h:—5p£9—u on dQ
dn

by Proposition 3.5.2.

3.6 Second Variational Formula

(3.40)

(3.41)

In this section, we compute the second variation of the Green’s function with respect to domain perturbation. Let

u(x,1) be a solution of the Dirichlet problem (3.31). Consider the second variation of Green’s function, §%G(x, ).

Let 8G{x,y) = u(x), y € Q. It holds that

5G(x,y) = 4,;@, x€9Q.

nx
We define the second variation of the Green function, §*G(x,y) by

*G(x,y,1)
2 - (24 s
6°Gix,y) = 7 T i(x).
Recall that the harmonic functionis a solution of the Dirichlet problem

Au=0 in Q, u=-I(--y) on JdQ

and we have u(-,y) +T'(-,y) = G(-,y). Then u; = G,(-,y) —T'(-,y) satisfies

Au, =0 in Qt, Uy = _F( —y) on aQ,

Similarly to the first variation, we use u(Jx,t) = —I'(9x —y), x € L to obtain the following lemma.

Lemma 3.6.1. Giveny € Q, define

H(x) = ii(x) +2(VOG(-,x),VIG(-,y)) = ii(x) + 2h(x).
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Then,

AH=0 in Q
(3.44)
H(x) = -T -VG(-,y) — H:G(-,y)S-S =25 -V, 8G(-,y) +2h on Q.
Proof. First, it holds that
Aii=0 in Q. (3.45)
By (3.4), we have
i +2S-V8G(-,y) + T-VG(,y) + H,G(-,»)S:S=0  on Q. (3.46)
From Lemma 3.5.3, it follows that
H=idi+2h
(3.47)
=T -G(-,y) - HyG(-,y)S-S —25-V,8G(-,y) +2h  on JQ.
[
Lemma 3.6.2. Let {s1,...,5,-1,n} be the orthogonal system of the tangential space dQ2 and n be the unit normal.

Let f be a C? generic function. Assume that V f is Lipschitz continuous on Q.Then the Hesse matrix of Hf,
g p.

Hf =V(Vf) is given by

n—1 E)f 2f
Hf = Z;(Vsi)a—Si + ,;1SI®SJ 35i9s,
- iy 2 (3.48)
«{-22(3,‘@11—1—n®s,)a on +n ®na R

i=1

Proof. Here we have,
1
Hf = V®<2s,a 3£)
Bf af af
_Z(V +(V +2 ’®V<a_s,~>+"®v<$>'

n—1 8f 8f n—1 2f
Hf= ;(Vsi)a—& -{—(Vn)m—l—i’Jz——:ls,@)sja 55

n—1 2f 2f

—}-Z;(si@n—i—n@)s)a = +n®nb—

Hence , 1 5
i oG aG c d°G
HG = i:zl(vsi)a_si+(v 5+ Z i @8 = 5505,
(3.49)
+’§( i ®n+n® )azG +n® %6
& Sixn S asa n na 5
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Proposition 3.6.3. If %}—{ are Lipschitz on Q, f |30="0, then

Af=(V- )—+§~21 on dQ

Proof Let {s1,...,8,=1,n} be the orthonormal system of the tangential space of dQ. Then f loo= 0 implies
as, laQ T”.L Iag = 0. Then it implies from (3.48)
af n—1 aZf aZf
Hf= (Vn)§,7+ ;(Si®n+n®si)3si9 +n®nm.

Here we have

Sk®n+n®sy = (sin/ +sin');.

Hence,
tr(sp @n+n®s;) = Z(s};nj +)IiS]{) =25-n=0
ij
and

tr(n®n) = znn/ In)? =1.

Then we have

Af=tr(Hf)=V- 8_]_"4_%‘ on dQ.

By Proposition 3.6.3, we have
azG(ay>
an?

9G(-.y)

- ‘_(V.") an

by
2
AG(.’),) — M + (V.n)

dn? o 0

on

Then we define sectional curvatures of dQ that denoted by 3, i=1,2,....N—1 as

on
()S,‘

= K;$;.

We define also
a®b=(ab;)ij =ab,

where a = (a;); and b = (b;);,

B

|
TN

W

N R
N—
S
S

<

N

I

(%)
ox; Jjk
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with s; = (s%); and n = (nF)y,
n—1
Vn= z K;s; ®S; (3.53)
i=

and

r(Kis; € 5;5) = ZA =V-n.

Lemma 3.6.4. For H = H(x) defined from Lemma 3.6.1, it holds that

H=-2h+y a(’y) on IQ

where

x =+ 3 (K (5p)") 2 252

Proof We have

H=-T-VG(.,y)-S-[V?G(-,»)]S—25-Vui+2h  on dQ

where G(-,y) = a%(s"_’” =0,0= —5p§% on JQ, and 3%—'; anas Define
09, n—1
S= a’x = (8p)n+ 3. (S-s))si (3.54)
t =0 =1

by 6p = ‘9‘%‘ o Putting S - 5; = 1;, we obtain

n—1
S=(8p)n+ Y, wsi (3.55)
i=1
and hence
S-S5= zlixlij (si,57)+28p(n ZLL,S,)—)— 8p)*(n,n). (3.56)
Here,
T-VG(y) = aGa( Y 2 Tn
Since

[p®n]s- s—Zn n'sisp=(n-s)(n-s)=0
(& n ns—Znnn;sk (n-n)(n-s)=0

[r®n)n- n*Zn nlang = (n-n)(n-n) =1,
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it holds that
2G(’y)(SS) (5 )28 G( 7})) ( n)(sp)ZaG(J))

" on? on
by (3.50). We have also
(Vn)a—%("—y)(s-S)
(z“ (Vn)si-oj+2 Zuzﬁp (Vn)si-n+(8p)2(Vrjn- ) o
i=1
and
2G(-,y) sl 92 ,y)
(rontn®s) =5 5, (551 =2(8p) X =

by (3.55). Therefore,

S-[V2G(-»)]S = H:G(-,»)S-S

203
:)1®n§—g£§1¥l(5~5) +(Vn )aG(’y)(S-S)

+'§(s,~®n+n®s,)aaG(a’y)(S S).

i=1

n—1 n—1
Since Vn = Z K;s; @ 5; and 2 K; = V-n. It holds that
i=1 i=1
n—1
(Vns;i-s; = ( z KnSm @ Sm)Si - S; = KOy

m=1

where

[5i @8] 8% -5 = Zs s st s = (Sm - Sk)(Sm = 1) = O Oy
Thus,

‘ n—1 2 .
S-[V*G(.y)]S=28p Z ui%(-,y) — (V. n)(.sp)z—a(;(’;y)

n—1 )
(Z“' (Vi)si-s;+2 3, (1)8p (Vn)si- -+ (8p)X(Vn)n ”)a(;(n’y)
i=1

n-1 207, n— )
= 25[) 2 'u’aaia,:) + (; Ki((“i)z - (‘Sp)z)) aGa(n,y) .

i=1

Here we have,

o ()5G(,y)

25-V8G(y)=2 3 1 42502960
i=1

os; on
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where i = —5pa—G§);—’yl on dQ and (3.39), we have

ol 95G ,y)

25-V6G(-,y) = 2 ~2h  on 0Q.
Hence,
n—1 oG(-
25-V5G(.0) + HG(.9)S S = ~2h+' . ()t - (3p)7) 22
n—1 :‘)_IG( ) n—1 aZG( ) (3'59)
4
+2§{/¢,————(9 +268p Z[J, oo
From (3.42),
J IG(,y)\ _ 98G(,y) , 9(8p) dG(.,y) 2*G(-y)
os; <6G(" )+op on >~ os; + os; on +0p dsion
It follows that
d8G(,y) ?G(y) __9(8p) 9G(.y)
ds; +op dsion ds; on (3.60)
Also from (3.59), it holds that
'« , [98G(y) < 9*G(.y) o, 9(8p) IG(-y)
D e P v Pl B D . o PR P
Then (3.59) implies
25-VoG(-,y)+ H:G(-,»)S-S
S 3(8p)] 9G(-.») (61
- _ ((11.)2 — PANIN, FT Rl Sl oV B W24
_ 2h+i:zl[ng<u,> (60— 21, a] )
Thus,
aG(., n] a(8p)] IG(-,
= 2n 57252 LS L - B -2 2L | 2502
i=1 Si n
= —2h+xaGa( ) on 9Q
where
_~52‘ = a2 (P) 62
x=0p+ 3 |x((w)? = (8p)") —2p—5— (3.62)
=1 Si
O

Remark that < a = K;$;,

n—1 n—1 on
iS'Si S'Si = S'S,‘ S iSi) = S'Si S-— 1.
3 x(5:5)(S+5) = 2, (5-5) (5 xs) = (5-5) (- 57
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As we know,

d aS on

5 s ) i ( o (@) )

i=1

Therefore,

~1
where z ki =V -n. Recall that 6p =S -n,8%p =T - nand = 0. Therefore,
i=1

ZS(?)SZSWM VS(;#:SI
= ((VS-(S—8pn))-n)
=8p-8p (? »n)
S

At the same time,

n—1
$ 55 202) - 9(60)- (3, 59 = V(3p)- (5~ 3p-n)

V(ép)—6pV(6p)-n

= (5-V - 6p2)(3p)

—(5-V)8p — 1 ‘9(‘5”)
where 5p_2 59) . By normal boundary perturbationS-s;, =0,i=1,...,n—1,
2
8%p =(5-V)dp = lM
2 dn

From Proposition 3.6.3,
?G(.y) _  -9G(-y)
an? an

n—1
where €= Y K=V n
=

Theorem 3.6.5. Let 8p =S -nand §2p =T -n. Therefore,

W= 52G(x,y) =H—-2(V3G(-,x),V8G(-,»))

-2(V8G(-,x),V8G(-,y))

3(8p)*7 9G(-,x) aG(-,y)>
an 8n ’ 8n

+ < {—fc(ﬁpf —(S-V)8p -+
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n-1
3.9 2 27, M =
where 8p = % o™ §p =53 o™ S=5¢ Y and K = Z{ ki =V -n. Recall that
i=

h = (V8G(-,x),V8G(-y))

n—1
Proof. Lety =8%p+ Y [K,-((s 5% = (8p)?) —2(S - 53) a(;vp)}_ Then, using (3.64) and (3.65)
i=1 i

x=5p+ (552000 55, (52 ) - kiopy -85 252

asi d i asz
3(ép) S -
— 2 —_— . + —— e . . — —_— 2
=6 p+{ S-s o5, Ss,(aSi n) K(5p)}
9(8p)

= —k(3p) — (5-V)8p+ Z5F

Therefore,

8%2G(x,y) = H —2(V8G(-,x),V8G(-,»))

2 o x .
= —2(V8G(-,x),V8G(-y)) + < [—ﬂﬁp)z —(5-V)op+ 8(35 ) aGa(J ¥ a%(n’y) >

O

Let Q is a Lipschitz domain with W' and Jx is a perturbation of the Green’s function G(-,y) of second

variation 82G(-,y). Therefore,

8%G(x,y) = <xa—Ga("1—”‘), aia(;y—))m —2(V8G(-,x),V8G(-,»))a, (3.68)

where

1= k(60 - (5 Wsp + 2007

Theorem 3.6.6 (General Garabedian-Schiffer). Given S-5; =0, i=1,--- ,n— 1 as the normal boundary pertur-

bation,

82G(x,y) = <(52p —%(6p)%) aGa(;x) , @%Q ~2(V8G(-,x),V8G(-.y))a (3.69)

called as the General Garabedian-Schiffer’s formula.

Proof GivenS-s;=0,i=1,---,n— 1, where (S-V)8p = §%p. Therefore,

8%G(x,y) = =2(V8G(-,x),V8G(-y)) + < [—fc(ap)2 —(S-V)ép + 8(5p)2} 9G(.x) 96()

on on ' dn > (3.70)
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Given normal perturbation S-5; =0,i=1,--- ,n — 1. Hence,

_ 5,0 s 19(8p)
(S-V)Sp_Span(Sp-—2 5,

Therefore

§2G(x,y) = —2(VEG(-,x),V8G(-,y)) + < [~&(8p)2 — (S-V)8p +2(S - V)5p] Q—G;"q’—"), @>
< 3G(x) IG(.y) G-7D

= =2(V8G(.x),V3G(-,y)) + ( [-R(8p)* +8%p] —-1=2, — >

3.7 Case Study

In this section, we consider the dimensional of n = 2, and Q = B(0,1).

3.7.1 Material Derivative

Let Sx = x and Z;x = €’x. Given G; = # log ﬁL' and T'(x) = ﬁ log Fcl—l Therefore,
t
u(x,t) = G;(x,0) —T'(x) = s

Hence,
1
8§G(x,0) = u(x,0) = S 8%G(x,0) = ii(x,0) =0, x € Q.

2
Given also unit tangent vector, S = |;‘—[, op=n-x=x=1, %i(—gf—) =1land K = V-n=1. Therefore,

x
52p=T-n:x-H:}x|

Then, we get
k(8p)*+8%p — %(5,))2: 1'141-2=0

which implics

(V8G(-,x),V8G(-,y)) = 0. (3.72)

Consider

Lo 1=2cy+[xPpf
Glx.y) = an log —yP
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We then get
1-2(e™x) - (e”'y) +le "xPle”y]?

i
GleT'x,e”'y) = —1
(e"x,e7y) = —log

] EEEpNE
1 2t R —2t1121+,12

=—10ge 2x -y +e x|yl ‘
2 e —y|?

Then we obtain
_9Gixy) _ 1 1P

0G(y, S
(v.7) ot 2m 1 - 2% y+ p2h?
which implics
0,560y = LDy (1 xRy
T (1= 2x-y+ |x[|y?)? '

We have then 2 2xf?
U [ 2 (=142 x)z+ (1 — |z ] )x
(VéG(~,x),VSG(-,y))=;/Q 2l ((1:Lzz.)3++|;_v(|2|x|2|)l2l :
' 22 (=14 z-p)z+ (1 — |z]2y[?)
(1=2z-y+|z2y}?)?

ydz

which then implies (3.72)

3.7.2 Normal Boundary Perturbation

LetT, :x+1t8p(x)ny, x €T Given dp(x) =1, n= ﬁ =xand T, = (1+1¢)T. Hence,

G (x,y) = G((l +t)_1x,(1 -{-t)_ly)

1 1+1¢
G,(x,O)zﬁlogW

u(x,t) = G,(x,O') -T(x)= :—Z%log(l +1)

8G(x,0) = u(x) = %

1
8%G(x,0) = ——
(x,0) 2%
It holds that

Gt(xvy) = Gt((l +t)_1x7(1 +t)_1y)
L 14+2( ) e (140" W)+ U+ kP +0)

=—1

an F ) x— (1+1) P
_ L (024 20y (L) 2R
Tan 't PR '

Hence, the derivative of G(x,y) is given by

_1 2P 1 2(x-y)
TAn 1-2x-y+ P2 4w x—y

V.:G(x,y)
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When x- V,G(x,y),

L PP —xy 1 xP-xy
VoG(x,y) = — “or '
x (x.5) 2l =2x-y+x]2y)2 27 |x-—y2
Therefore, 2
G(x,y) 1 pfP-xy 11-xy
v = om
% Vi) oy = on 2r 1 =2x-y+ [y 27 [x—yf?
_ 1P
27 x—yP?
Here,

dG(-,x) dG(.,y) 1 (1=xA(1 =P
< > /Izl ! @z

on ' on 4m2 Iz —x[?|z —y|?
We then obtain

2r

<8C;(nx)’ 8Ga(n0)> 1

3.8 Mixed Problem

3.8.1 First Variational Formula
Let 9Q = P U¥!, where YN y! = 0 is a piecewise smooth. Let 1° = 7;(°) and ¥ = Z(y"). We consider the

Green’s function as a boundary value solution

. &G "y
~AG(, )i =8y in Q, Gi(-»)=0, on —%yl:o on . (3.73)
t

Consider y € &, then we fix u(x,t) = G;(x,y} — T'(x —y). Therefore

. P
Au(t)=0 in Q, u(-t)=-T(-—) on 9, a:( 1) = b%r(-—y) on . (3.74)
t !

IfAf =0, in Q, then it holds that

10)= [ ~100 2520 4 L i as,

<f, oot ")>w <‘9f G(. ,})>Y1, yeQ

where G = Go(x,y). Then u(x,1) = G,(x,y) —['(x —y), y € Q satisfies

Au(-,t) =0 in € u(-,t) = -T(-—y) on y°

du ar |
8—n,("t) = *m(' —y) on y,.

(3.75)
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Letu= % . Therefore,

t=0

Ar=0 in Q, u:—Sp(a—Cg’:l) on Y. (3.76)

For x € ¥, we consider x = Zx + sn,.

0
3 {u(Gx + sm ) + T(Fpx +sn —y) } L:o =0

which implies
2

O omat)+ (T o)

3591 =0.

s=0 o

Similar to (3.32),

d d
a—l;(ﬂtx—!—sn,,t) + Z(f,x—%—sn,) -Vu(Gx + sny, 1)

5 (3.77)
:——a—;(&%x+sn,)-VI“(L7,x+sn,~y)‘
We differentiate (3.77) by s, then at the right hand side we get
4 i(ﬂ +sny) - VI(Fpx + sn; — y)
=13 X+ Sy X t—Y o040
d d d
= ——(Fx+sn) - = (VT(Fx+sn —y)) + = (Tx+sm) -T(Fex +sm. — y)
ds Jt ot 52070
=— ?ﬁ VI (Jx - y) + [Vzl"(ﬁ,x—y)] 07 “ny (3.78)
dt ot =0
=S V() + [P T )] 5m
=0
an 2
=-Z2|  VI(x—y)+ [V T(x-»)]S n
dti,_o
While at the left hand side of (3.77),
dfo Tix+sng,t) - Vu(Tix +sn t)+€z(9x+sn t)}
a5 | 9 Tx e T " Jimoi=o
d d d Ju
=— (9,x+sn,)—(Vu(9,x+sn,,t))+—(@x%—sn,)Vu(ﬂ,x—l—sn,,tH—n,~V—(9,x,t)
ds dt ot at =04=0 (3 79)
[ 2 dTx du } '
_{W.Vu((%x,t)—k[v W TN G e VST |
:% -Vu+[V2u}S'n+nAV1J.
91 |1
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Therefore,

v O-Vu—S-[Vzu]n
=2 YT ) - S VT )
t=0
=2 YG(y) -5 [V’G(y)ln

where G(-,y) = u—T(-,y). At the last part of the right hand side of the (3.80), using (3.49) where ‘?Tf =

we obtain
oG 3*G 9’°G
HG= szla —|—2s,®sj& o5, —f—n®na 5
As we know,
S= 2 Wisi+ (8pHin.
Therefore,

IG(,y

(V2G(-,y)]S-n= (Vs,- 55 -I-Z 5 ® ,aaG(a’y)+n®na—gr(7—’y—)> (2;1,3, n+(8p)n- )

We rewrite at the right hand side of (3.82) as

X

i

<s,® ,a;fg y)) Zu,s, n+(8p)n-n)

32 n-1
Y= (n® g,(lz )> (ZT Hisi-n+(6p)n-n).

3 n—1
zZ= <Vs,<8Ga(sfy)) (Y, tisi-n+(8p)n-n).
i Li=1
It holds that

[sk ®571](Sm 1) = ZSks’an = (87 Sm)(sx-n)=0
iJ

sk ®s/](n-n)= ZSks’nfn = (s;-n)(sx-n)=0
[si ®s5;1(8p) = (5:5)S-n=0
[n@n|(sy-n) = Zninj.vini =n’st-n=0
LJ

[n®n)(n-n)= Zninjnjni = [nf*|n)? =1
ij

n®nj(8p) = (nn')(S - n) = Bp
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k P as,-

d dn
= %(S,"n) —Sia =0.

Hence,

[Vsi]S - n=—(S-s)(V-n) = ZM,K,

Therefore, we get

X= ( ®s3) asg;,y)> Zu,sz n+(8p)n-n)=

Yz(n® 3G“”) Zﬂmzn+®PM'0 5p 202,

on?
aG(- nl n—1
Z= (Vsi'_aw> (Y, tisi-n+(8p)n-n) =~ Y wix; ,aG( ,y)
Si i=1 = ds;

Thus,
n—1 .,
PGy ', 90

— V26
X+Y+Z=[V*G(.y)]S-n=6p 3.2 2 2,

Therefore we can have the following theorem.

Theorem 3.8.1. It holds that

Ai=0 in Q, u=~6pm on Y
du _ _dnm .VG(.,y)_Spa G( ,y +2 ,rc, _ ) on !

b_n—_at =0

where 1 = 6 G(x,y).
Let Q be Lipschitz and g € C%' (Q) be harmonic in Q. Hence, from (3.87)

Suf, 2520 = [ (s0m 5252 ) S i
N [ <85G( ,Y) L om any

azG("y)

on ot

Next, from Lie Perturbation, we have

f:f(§1,~-~7§n_1)€’yl, é:(él""aénﬂl)
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Ix 0 9x
&’ silt) = ot

Si =

where %(¢) = ;% € ) and n, -5,(t) = 0. Given that

on, _ 980 oSk
at |y ¢, 9E
Therefore,
ag‘z’) - a%s”) = [VS]n-s5i+[Vnlsi-S = [(si- V)] S - n+ Kyt
We define

n—1 G -
VG(vy) = zsi a(Sy) .

i=1

Then we obtain,

ant an, nol aG(,y)
—97 t= ( ’y) 3[ 1=0 Z{S, asi
__98% NV 9G(y)
aéi ni:l ()S,'

ol 28\ IG(-»)
= _ig{ </Ji7(i— Fs—,_) as;

Therefore, from (3.87)

du _ ant = aG(vy) BZG(vy)
I ot o VG("”*Z""“" 95 P Ton
nl /98 aG(-,y) 2l aG , *°G(-,y
2( P ) (y Z’ (y) —8p a;(ﬂ)) (3.88)
%080 9G(y) ;. 9G(y)
“ dn Os; 8n2 '
Now we apply (3.49),
azG(ay) = ()ZG(,y) aG(vy)
o2 _Z;{ os? +Vsi ds; }
Here
tr{Vs;} =0
where 5 ; 5
98 o OS5
anSi81) = g st sig, =0
8 85,— aSj___
a—Sk(S[Sj)—'aTk'SJ-I-SlE—O
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fori,j,k=1,...,n—1. Then (3.88) can be simplified as

"< 98p IG(y )+"*1 3’G(-,y)

an “~ 8s, os; = 16p ds?
(3.89)
“"21 d ()G( ,y)
S dsi e A

Therefore using Stokes Theorem, the first variational formula can be derived as follows:

Theorem 3.8.2. If Q is a C%' bounded domain and J; : Q — F(Q) = Q, |t| < 1 is a family of bi-Lipschitz

homeomorphisms satisfying the domain deformation, then it holds that

X . n—1 X )
st = (55200 750) -3 (a0 o)
! i 7

i=1

(3.90)
IG(:.y)
+ & G(+,x),0p—=—=>, x,y €.

ds;
3.8.2 Second Variational Formula
Let
Aii =0 in Q, u+2apg“+xlangy):o on Y
where
x=38p- (3P)2V'"+§;l~li (#i'fi —2%) , Mi=S-si.
Letxe 7!, 7

4 i(ﬂ,x-{—sn,)-Vu(,%x—i—sn,,t)—|—u,(,?,x+sn,,t) :—i —a—(ﬂ,x—}—sn,)vr(ﬁxﬁ-snt—y) . (39D
ds | ot . ds | ot
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Hence, the left hand side of (3.91),

d [d
P {E(%x—f—sn,)-Vu(,%x+sn,,t) +u,(9,x—|—sn,,t)}

s=0,=0
d | 92
= g{ﬁ(ﬁxwhsn,) Vu(Tx+ sn,t)

d
+ E(ﬁ,x-ksn,) Y [E(ﬁ,xﬁ-sm)-Vu(‘%x—i—sn,,t) —+—u,(9,x+sn,,t)}

0
+ b—t(ﬂx—f—sn,)-Vu,(y,x—i—sn,,t) +u,,(9,x+sn,,t)}

s=0
82711 2 on .
=357 Vu+T-[V u]n—l——é—t’— -VIS-Vu+1
t=0 t=0
ony 2 . ony du  dii
+S-V [7 ,_O-Vu+S-(V u)n—!—Vu-n} +_o77 I“O-Vu«f-S-Van«#%.

While at the right hand side of (3.91),

d {0
— {E(ngrsn,)VF(%ansnr —y)}

s=0,=0
-7 “81(94' )- VI (Zix + +—a—9 v[2(% V(7
T ds) o\t St CRE at( () [a,( tX + sny) (1+5nt—y)]
_ aznt
) 92

5s=0

VI(x—y)+T-V.T(- = y)|n+Vii-n

=0
ant anl 2
+W ‘V[S-VI'(- = y)]+S-V 5 T =»)+S-VI(T(-—p))n| ;.
1=0 =0
Hence
92 d
ZE| VO AT [VEG(-y)]n+ 5L V[S-VG(y)+il
2, o dt o
an, all
5.V |22 VG- T [V3G(- ==
+ [a, 3 G(.y)+T-[V2G(-.p)] n+ an}
an, . au au 1
+EI—O.VM+S'V8}1+E;_O on y.

Before we proceed to the second variation, we need to define the second variation #, we need to calculate %—zl lr=0.
First we use |n,|2 = 1,

o o P jonp
o TV o T i |
Thus,
o n = pa 5 nj . (3.92)

65



Then the relation #, - 5;(¢) = 0 implies

any A dsi(1)
E-sl(t)—}—nt-T.
We differcntiate again and we get
Jd [dn ds;i(t 9%n dn, ds;t st
3 <a—t' ~si(t)+ny- 85 )> = a—ﬂi -si(t)JrZa—;- 85 ) +n- 8t2( ) =0. (3.93)
Hence
*n, . On Osi(t) d%si(t)
gz =250 g T
P SN (9 N
a2 li=o ™' “~\ ot 57 )SymSim e
(3.94)
_ LY (@.n) (S..3_5%> _p.9%%
2\3g ")\V g 3%
Then we get
%n, nol(nl /9SE 9S% 09%
S5 (E ) R S
1 (3.95)

Then the second variation # can be defined by (3.92), (3.94) and (3.95). Since the value % on 7! is prescribed in

the first variational formula, the unknown data involved by # are reduced to

AH=0 on Q, H:-26p? on Y,
o (3.96)
IH _ ,om) g 25p2E on
on ot li=0 " Pon 4
where H = —2h.
Theorem 3.8.3. Assume
dp=S-n=0 on o (3.97)

and 8 G(x,y) be the first variation of G(x,y) concerning deformations

2
FO% = x+1Spx + 3T0x +o(t?).

So should satisfy

ép on
So-nz{ P 7

0 on Y.
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Therefore,

h=(V8G(-,x),V8G(-,y)) + (V&G(-,x),VEG(-,y)) + (VEG(-,x),VE G(-,3)).

Proof. From the first variation, u; = 8y G(-,x) should satisfy

dG(-,x) on 7,
on

Jur "l 9 IG(-,x) 1
E—ZJS‘:((SP—TS, ) on y.

i=1

A'=0 on Q, u =-8p

From Lemma 3.5.3, we have,

(V& G(-,x),VEG(-,y)) = (Viis,, Vit) = <a”3 u>

dn
Since #* = 8§G(-,x) satisfies
A =0 in Q, ut = —5paia("1’i) on ¥°
=l oy
o2 (P05) o

(VG(-,x),V8G(-,y)) = (Vi*, Vi)

20
“\" o

_ /3G(-x) . du /.0 9G(-,y)
= < 3 ,5P§;>W+Z<u,5;<5p—“asi >>71

Then we have

and
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Thus, we obtain

= (V8G(-,x),V8G(-,»)) + (V& G(-,x),VEG(-,y)) + (VOG(-,x) + V&G(-,y))

= (V& G(-,x),VOG(-,y)) + (VOG(-,x), VB G(-,y) + VG(-.y)) (3.104)

_/9G(x) . dit oy 9 du
—< on ’5p3n>w+<50(’x)’asi (66( )35,>>

(]
Then we recalculate again Lemma 3.6.2 and Proposition 3.6.3, and we obtain,
n—1
Asz-Vf:V-(Zs, 8f>
o 0f af af af
:Zv,a +Vn 5yt ®Va +n ®Va
= (3.105)
nl 0 d
2 (Vs;) f+s,®Vaf +(V-n) f+ V== of
= ds; on on
B Bf aZf n-1 8f aZf
~ @G (g 5T)
Recall that
dn ds;
> 0, 5 0 and 8,_,('3'

and from Frenet-Serret formula,

Figure 3.3: Curve S with component {e3(s;),e1(s)}

7
e (si) = xea(si) ey(si) = —xey(sy)
aSi y K K an el Ke K.
—_— =, = ey = —Kn _— = — = — = K§;.
as; 1T 2 s 2 P=
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Hence,

v 8n &5+ (9}’1 ® Ks; ® v Bs,- &5+ 85‘,‘
n==—Qsi+—On=Ks;Qs; Vsi=— Q8+ —
ds;i =" On ! YT sy ST on

Von=tr(Vn) = Z K, V-.si=tr(Vs;)=0.
i=1

Therefore, from Lemma 3.6.2 and (3.105) we get

—,-:1 N S; asi i1 8; a = 151 S]asiasj
n—1 2 2
f o°f
;(s,®n+n®s)a > +n®nan
and | ,
- 8 8 -
=1
~3f 92 "‘lazs,-
”‘55*5;72*,21 FER
Recall from (3.46)

i+25-V8G(-,y)+T-VG(-,y) + H:G(-,)S:S=0  on JIQ
and since AG(-,y) =0,

on? Con

Now we proceed to calculate (3.108). By using (3.54),
dn

While

n—1 G .’ BG JG(: TY\LY
J

i=1

n=—-xKkns;

+ :: (si®@n+n®s;) aj)f,(anV) +n®n aZg’E.Z,y)

= j;:(xis,-®s,~)aG(?("y) —I—E(& ®n+n®s;) a;f,(a;j) +n®n(92((;’(1-2,y)

= ::(K,-s,@si)y —g Ki(n®n)8ia(’;’y—) +:g(si ®n+n®s,‘)%
:n—IK,-[(s,-(}z)s,-)—(n'®n)}?G—a(,.”Z2 +’il(si®r1+n®s,-)%j—).

i=1

I
—
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Therefore,

n—1

. n-1
(HG(-,y))S = ZKi[(s,'®Si)—(n®n)]a—%(jy—)+Z( ®n+n®sz) }(2#151

i=1 i=1

(3.111)
Now we consider at the first right hand side of (3.111).
[Kisi ® s — Kin ® a 2
5 @i = Kin & r)n : Hasi+ )
It holds that 1 1 1
Z (K.',S, ®S; Z Hisi = Z(Kis,-@)s,-)(s - (5[))71)
i=1 i=1 i=1
n—1 n—1
Y. (xn®n) 2 tisi = . (kin®@n)(S— (8p)n)
i=1 i=1 i=1
n-—-1
Y (kisi ®s;)(8p) =0
i=1
n—1
Z(K'm®n)(5p)n: 0.
i=1
Hence,
X n—1
[KiSj KRsi—Kin® n] aGa(n’y) ( Wisi + (5p)n)
,~=11 (3.112)
N dG(,y)
= P Ki(lisi — (6p)n) on
While at second right hand side of (3.111).
n—1 a
Z(s;®n+n®s, ; ZA,S, +{(8p)n
i=1 )
Then it also holds that |
Y (si®n)(wisi) = ZS, ®n(S—(8p)n Z Win
i=1
n—1
Y (n@si)(pisi) = Z (n®si)(S—(8p)n) = (8p)si
i=1 i=1
n—1t
Y (si®@n)(8p)n=0
i=1
n—1
Y (n®si)(8p)n=0.
i=1
Hence
n—1 82
g{(si@)n—!-n@s = an ] (Z;[J,s, )
- (3.113)

1 G(-
=3 (e Gp)) T
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Therefore

n—1 ple: N n—1 82G .
(HG)S = 3 wtusi— (30)m) “5 2 1S (i + (8p)5) o)
=1 =1 i .
(3.114)
S (.9°G(-y) IG(,y) 'S (5.9G(y) | *G(.y)
;(6’) dsion Rk on )Si+i§1‘<6p dn tH dsion )
Using (3.106) and we obtain
< 98G(y) ,38G(y)
2V8G(-,y) ; a Si+2—
e . 96(.) 9(3p) 9G(-y) G119
ay HY P . Y
Z‘( as,an dn  ds; >S1+2 o
Hence
S 9*G(.y) . 9(8p) 9G(-,y) 2*G(:.y) IG(-,y)
2VG(-,y) + (H:G( ,J’))S_,:1< dsidn 2 ds;  on +9p ds;idn i )s,-
% [, 96 9G(,y) 9G(y)
+,=1 (ul 3s,3n ~xi(op) dn >n+2 on
& 9G(y) ,d(8p) IG(-,y) 9*G(-y)
= (uﬂ(i on dsi  dn si—9p dsion )Si
(= azG(vy) aG()y) aG( ay)
+1.:1 (ui dsidn ~xlop) an >n+2 dn
Therefore,
n_l (8 2G(-, aG(:,
S-2VG) + (HGC)S] = S, (s(u)? — (0p) -2 2001 ) ) 4 5(5)200)
o . 0E0)) 26Lw) 3Gy
- ()2 = (50)2) — 2, ZL0P) | 9GLLY) Y
=S (sttm? - @1 -2 252 ) 252 1 (5) 20
Similar to Lemma 3.6.4, it holds that
i=8%G(,y) = 2h+xaGa( ) (3.117)
where
n—1 a 5
X =8+ 3 () - (3p)) 20,2 P (.118)

i=1

Therefore, we can proof the second variational formula of Hadamard variation for mixed problem similar to the
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Hadamard variational formula in Section 3.6 where

N aép) . &
- — 2 _— . —_— —_— 13
x=—k(6p) —(5-V)dp+ E K= i=§1 K;.

From (3.104) and (3.117), we obtain the following theorem,

Theorem 3.8.4. Let Q is a Lipschitz domain with W and x is a perturbation of Green's function of second

variation 8*G(-,y). Therefore, we have

82G(-,y) = 2AV&G(-,x),V8G(,y)) — 2(VEG(,x), VB G(',y) + VEG(-.y))

o([Frtop? - (5-Wysp + 2001 2600 2001 G.19)

an dn ' dn

Particularly, given that S -s; =0, i = 1,...,n— 1 as the normal boundary perturbation,

82G(-,y) = 2(V&G(-,x),VOG(,y)) — 2(V8G(-,x), V& G(.y) + V8G(-.y))

N . (3.120)
+ (0% - k(oo 25 20 )
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Chapter 4

Conclusions and Future Works

This chapter discusses the work which has been done and overall conclusion and future works to complete this
study.

The study of variational inequalities and frec boundary problems find application in a wide variety of disci-
plines in physics, engincering, economics etc.. In this thesis we study about the Hadamard variational formula
that includes in one of the topics in the study of variational incqualit{cs. We implement our Hadamard variational
formula to one of the dam or filtration problem. Dam problem is one of the famous problem in a free boundary
problem. We implement our first variational formula to the dam problem by doing numerical analysis. For this
numerical simulation, we used level-set approach and we changed Hadamard variational formula into a boundary
trial method along with the finite element. Then to get an optimal shapc design, we used the approximated region
as an initial region for the traction method. As a result we found that the Hadamard first variational formula was
suitable to solve the free boundary problem of the dam problem.

In this thesis also we include our study on the mathématical analysis of the Hadamard variational formula. We
develop a method that gives a simple and clear proof to understand the Hadamard variational formula. We also
obtain Hadamard sccond variational formula that is also an extension of the Garabedian-Schiffer formula.

For now, we only consider the Dirichlet problem for the Hadamard variational formula. For further investiga-
tion, we would like also to consider this Hadamard variational formula for the Neumann problem. Furthermore,
we also want to implement our sccond variational formula to the dam problem as for the numerical analysis. Two
methods that we still consider for solving our dam problem are: finite element method and Newton method for
the optimal shape design. We consider this Newton method as our next method in order to implement our second

Hadamard variational formula because it is simple and more efficient to solve our free boundary problem.
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Appendix A

Functional Analysis

A.1 Sobolev Spaces

Definition A.1.1. Let Q be un open subset R”. The Lebesque space is defined as
LP(Q)(or Ly(Q) = {v:Q— Rl/ NP dx < oo}
Q
This is a Banach space with norm defined by
i
Moty = ([ M)

When p =2, the space L*(Q) is a Hilbert space.
There are two phase requirements of functional space need to be consider Soboley spaces.

Definition A.L.2. Let k a nonnegative integer, p > 1. The function
{ue WH(Q); D% € LP(Q), for any o with o] < k}

endowed with the norm ]

lll () = (/Q Y, [D%ul? dx)

lox|:<k

is called Sobolev space, denoted by W*P(Q). Sobolev space also can be noted as

H'(Q)=w"Q)
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where k = 1 and p = 2 which is a Hilbert space with the inner product

(V) r () = Y, D%u-D% dx, u,v € HY(Q).
2 o<k

Let gx—vj e [2(Q) (1 <j<n)is taken for v € L*(Q). Therefore, v € HY(Q)if v L2(Q) and

9o
Lyge=-lye  wea@) A1)

forv; € L*(Q), (1 < j <-n). Here, C5'(Q) is a set of functions support on compact set in €2 are infinitely differen-

tiable function.

A.2 Banach and Hilbert Spaces

Let © be a real vector space. A function
Q=R nd |

is called norm on Q if it satisfies vE Qand all A € R,
o Wl 200 =0 iff x=0
o [[Av]=IA[Ivd
o [[A+v|l = A+ vl

This norm is complete when from definition,

Definition A.2.1. Let Q be a normed vector space with norm || - ||. A sequence {vi} in Q is said to be convergence
toveQif

lim [|vg — va|| = 0.
k—roo

A sequence {vi} in Q is called a Cauchy sequence if V€ > 0 exist N(¢&) such that -
mk > N(g) = ||vi —vall < €.

It is also called a Banach space when the norm is a complete normed space i.e., only Cauchy sequence con-

verges. An inner product space is a normed space. Then, it is a Hilbert space if it is a Banach space which respect
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to this norm. It is easy to say that the norm is induced by the inner product satisfies parallelogram law:

tul? +iv—ul? =<v+uv+u>—+<v-uv—u>
=P+ <vu>+ <uv> +u)P+ VP- <vu>—<uv> 4|}
= 2([vI1? + 2l 20wl ]| — 2 vl
= 2(V112 + ).
A Hilbert space is a Banach space where it has a subsequence of weak convergence for arbitrary bounded sequence.

Theorem A.2.2. For every bounded linear functional F on the Hilbert space H, there is a uniquely determined

element u € H such that F(v) = (v,u) for all v € H and ||F|| = ||u]|.

Theorem A.2.3. Let M be a closed subspace of Hilbert space H. Then for every x € H we have x +y = z where
yE Mandze M-

Proposition A.2.4. Let H be a Hilbert space and L : H — F' is a linear functional. The following statements are

equivalent.
1. L is continuous.
2. L is continuous at 0.
3. L is continuous at some point.
4. There is a constant ¢ > 0 such that |L{(1)| < ||ul| for every u in H.

Definition A.2.5. 4 bounded linear functional L on H is a linear functional for which there is a constant C > 0

such that |L(u)| < Cllu|| for all uin H.

DefineL: H — F,

L]l = sup{|ZL()] - IL(u)]| < 1},
for a bounded linear functional where ||L|| < e and [[L|| is the norm of L.

Proposition A.2.6. IfL is bounded linear functional, then

IL]| = sup{|L(){ : fJu|| = 1}
= sup{|L()|/||ull : u € H,u # 0}

=inf{C > 0:|L(u)| < Cllul|,u € H}.

L) < L, Vor € H.
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A.3 Monotone Operators

Let K be a closed convex set in real Hilbert space H, and let yg be a point in H. Then there exists xp € K (called

the projection of yg on K) which is nearest to yy, that is,
llxo — yoll < Ilx = yol|s vx e K.
Rewrite the above cquation into
(x0 —yo,x —x0) 20, Vx €K (%)

Let X be a reflexive Banach space with X’ as its duality. The pairing (,), between X and X’ and X is a closed

convex set of X. Hence,

Definition A.3.1. A (nonlinear) operator A : K — X' is called monotone if
(Au—Av,u—v) >0, Vu,ve K. (A2)

1t is strictly monotone if
(Au—Avyu—v)=0
implies for u = v.

When K is convex, 4 is called hemicontinuous if given u,v € K, the mapping
[0,1] 2t — (A(tu+ (1 —1)v),u—v)

is continuous.

Definition A.3.2. The operator A : k — X' is continuous on finite dimensional subspaces if for every finite-

dimensional subspace M of X the mapping A : KN M — X' is weakly continuous.

Theorem A.3.3. Suppose that A: X — X' is monotone and hemicontinuous [K=X]. Then for any bounded closed
convex subset K of X there exists a up € K such that
{Aug,v—ug) >0 YveKk. (A.3)

YV

The above theorem is a direct consequence of the following
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Theorem A.3.4. Let K be a bounded closed convex subset of X and suppose that A : K — X' is monotone and A

is continuous on finite-dimensional subspaces of K. Then there exist a ug € K such that (4.3) holds.

Proof of these two theorem depends on Minty s Lemma:

Lemma A.3.5 (Minty’s Lemma). Let K be a nonempty closed convex set of X and let 4 : K — X' be monotone

and hemicontinuous. Then ug satisfies (4.3) if only if

(Av,v—up) > 0 YWweK.

- Y

Proof. By monotocity of 4,

0 < (Av —Aug,v—ug) = (Av,v — ug) — (Aug,v — uy),

Thus,

0 < (Aug,v —ug) < {Av,v — 1)

so that (A.3) implies (A.4). Conversely, for any w € K,

v=tw+(1—-tup=u+t{w—up) in K if 0 <t < 1.

Then from (A.4),

(A(u+t(w—1ug)),w—1ug) >0

Taking t — 0, we obtain (A.3) forany v=w e K.

(A.4)

O

Theorem A.3.6 (Brouwer’s Fixed-Point Theorem). If'1 < d < o, B = the closed unit ball of R and T : B — B is

a continuous map, then therve is a point u in B such that T (ug) = uy.

Corollary A.3.7. Let K be a compact convex bounded subset of a Banach space, X, and T : K — K is completely

continuous mapping. Then T has a fixed point uy in K that is Tug = .

Proof. (Theorem A.3.3) Let M be any finite-dimensional subspace of X and define j : M — X and dual map

J*:X = M. Then

J*Aj maps bounded sets of M into boundcd scts of M'.

(A.5)

Otherwise there exists a sequence v, € M, 0 < [|v,|| < C such that ||j*4v,|| — . The monotocity of 4 implies

that

(j Avy — j Au, v, — u) > 0, Yu e M.
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Hence

J Au JrAv,
L —u)>0 h = .
<y A ”> =0 eI T

Since y, are elements of M, there exist a subsequence y, — y,|[y|| = 1. Also, suppose that v, — v. But then

{y,v —u) > 0,Yu € M which gives y = 0 a contradiction. O

Definition A.3.8. A is coercive on K if there exist an element ¢ € K such that

i
W(Au—A¢7u—¢>—>+oo, ucK,|ul| = oo (A.6)

Theorem A.3.9. Let K be unbounded closed convex set and A be as in Theorem A.3.3 or A.3.4. If A is coercive,
then there exist a solution of

{Aug,v —ug) >0, Ywek. (A7)
Proof. Let R > 0, there exist at least one solution of the variational inequality
(Aug,v—ug) >0, Vug,ve K.
We introduce the bounded convex set
Kr = K0 {[Jull <R}

Since

|lur|| <R, for some R >0, (A.8)

given Vv € K, there exists an £ > 0 sufficiently small so that
w=ug+€e(v—ug)

belongs to Kg. Hence

0 < (Augp,w —ug)
= {Aug,&(v — ug))
= e{Aug,v — ug)

and (A.7) follows for ug = ug with any v € K. Then it follows that for any C > 0, there is an R > 0 such that
R>||¢| and
(Av—Ao,v—9) > Cllv— 9], YweKk, v =R
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Take C > ||[49||. Then
(Av,v=9) 2 Cllv— 0] + (49,v— ¢)

>Clv—oli—ll49[lv— ol
> (C—l4o)iv—2ll
2 (C =l 4l ivil = llel)

>0

For {lug|| = R and upon taking v = ug, the inequalities become
(Aug,up — ¢) > 0.

which is a contradiction to the variational inequality that satisfied ug. O

A.4 Schauder’s Fixed Point Theorem

Schauder’s fixed point theorem is the extension of Brouwer’s fixed point theorem to a topological vector space

which may be of infinite dimension.

Definition A.4.1. If X is a normed space and E C X, a function T : E — X is said to be compact if T is continuous

and T (M) is compact whenever M is a bounded subset of E.

If E is itsclf a compact subset of X, then cvery continuous function from E into X is compact.

The following lemma is needed in the proof of Schauder’s theorem.

Theorem A.4.2 (Schauder’s Fixed Point Theorem). Let K be a compact convex subset of Banach space of X. If

T :K — K is continuous , then T has a fixed point in K.

Corollary A4.3. Let K be a closed and bounded convex subset of a Banach space X and T : K — K a completely

continuous mapping. Then T has a fixed point in K.

Proof. Let K’ = the closed convex hull of 7'(k). It follows that K’ is compact and thus T mapping K’ into K’ has

a fixed point in K'. |

A.5 Compact operators

Definition A.5.1. Let X andY be normed linear spaces. Suppose T is a linear operator with domain and range in
Y. We say that T is compact if for each bounded sequence {x,} in X, the sequence {Tx, } contains a subsequence

converging to some limitin Y.
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A.6 Variational Inequality in Hilbert Spaces

Let V be a real Hilbert space and

V' ={f:V — R|bounded linear} (A9)
denotes the dual of it. We set (,) the inner product on ¥ and its norm || - ||, K is a closed convex sct in ¥, and
VixV —R.
fx = {fix)

the pairing between V and V’. Let a(u,v) be a bilinear form on ¥ x ¥ which is bounded, that is,
| a(u,v) |< Clluliliv]], Yu,v V. (A.10)
Definition A.6.1. The bilinear form a(u,v) is coercive on 'V if there exists o > 0 such that
a(u,u) > allu?, " Vuel. (A.1D)
Example: 4(u,v) = JoVu-Vv dx,u,v € V = H}(Q) in (B.21) is a bounded bilinear form. In fact,

|A(u,v)|=/Q|Vu-Vv| dx

<IVull 2oy I VIl 2 (e

= [lulllv,
where ||u|| = ||Vul|2(q) is a norm of V" by Poincaré’s Inequality, see Theorem B.1.1.
Proposition A.6.2. The above A(u,v)-is coercive.

Proof. In fact,
1 1
A(u,u):/ | Vu ? dx:—/ | Vu P dx+—/ \Vu P dx.
Q 2Ja 2 Ja

Using Poincaré’s inequality, we have [|u|? < ¥||Vul|,Vu € V hence

a(uu) >+ J1vu P dreClul?
2Ja

>C'lul)? YueV,

where C = %,, C = min(%, %) are positive constants. |
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Theorem A.6.3. If K # 0 is a closed convex set in V, and a(u,v) is a symmetric bounded coercive bilinear form

inV, there exists a unique solution u of the variational inequality
uekK, alu,v—u)> (f,v—u), YyveK. (A.12)
Further, the map f — u is Lipschitz, that is, if uy,u; are solutions to (A.12), the corresponding to fi, f» € V', then

s = zlly < <L~ fll (A13)

Proof. The existence of the solution to (A.12) is similar to the obstacle problem in Section 2.4. There exists
a solution to the variational problem % 121£ a(u,v) which satisfies (A.12). The uniqueness follows from (A.13).
v

Supposc that there exist #;,u; € ¥’ solution of the variational inequalities
w €K alup,v—u) > (fi,v—uw), WeK,i=12.
Adding v = u; for u; and v = u; for u,, we obtain upon adding
a(uy — uz,uy —u2) < (fy — fr,u1 —ua).

Hence by the coerciveness of a,

ol —wlly < (fi = foour — ) S WA = Bllyr - llur — ).

Therefore,

s =l < /i~ Aol
O

Generally, if a(u,v) is symmetric, then a scalar product in ¥ is defined by ((,v)) = a(u,v). Setting (f,v) =
((f:, v)), (A.12) means that the solution u is the projection off on K. If a(u,v) is not symmetric, we introduce the

coercive bilinear form

ay(u,v)y = s(u,v) +1o(u,v), 0<t <1 (A.14)

where

1
s(u,v) = 3 (a(u,v) +a(v,u)),
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Figure A.1: Projection of f on K with u as the solution.

shortest path

i ety

Figure A.2: Projection f on K with shortest path to u.
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and

1
o(u,v) = E(a(u, v) —a(v,u))

which are symmetric and skew-symmetric of parts a(u, v) and set a;(u,v) = s(u,v) + 16 (u,v) fora < 7 < 1. Since
if t = 0 the existence of the solution to

uckKar(uv—u)>< fiv—u> WwWwek (A.15)
has been already established, here, we proceed to extend the existence into t-intervals step by step, until r = 1,
using (A.13) and a contraction mapping theorem.
Definition A.6.4. Let F': X — X be a metric space to itself. 4 point a € X is called a fixed point of F if F(a) = a.
Definition A.6.5. Let (X,dx) and (Y,dy) be a metric spaces. A map ¢ : X — Y is called a contraction if there

exists a positive number c < | such that

dy(¢(x),90()) < cdx(x,y)

Jorallx,y e X.

Theorem A.6.6 (Contraction Mapping Theorem). Let X be complete metric space and let F : X — X be a con-

traction mapping. Then there exist a unique fixed point of F.

Proof. By the definition, there exists a number ¢ € (0,1) such that

d(¢(x),¢(»)) <cd(x,y) (A.16)

Let ay € X be an arbitrary point. Define a sequence a, inductively by sctting a, ., = ¢(ay). Here, we claim
that {a,} is a Cauchy scquence. First, note that for any 1 > 1, from (A.16), d(apiy,an) = d(¢(an),9(a,-1)) <
cd(ay,a,—1). Then from the induction,

d(a,,H,a,,) < cnd(alaa()) (A17)

foralln>1.

d(ap1,a,) < cd(ap_1,ay) < czc/(anAz,an_l) <L MNanan).
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This implies that a,’s are Cauchy’s. Therefore, form >n > 1,

d(amvan) < d(GMaam—1)+d(am—lvam—2) +.. '+d(an+lvan)

< ("N 424 Md(ay, an)

vl

1—c

S d(a17a0)'

This show that d(a,;,a,) — 0 as n,nm — oo,

Since (X, d) is complete, there exists a € X such that @, — a. Being a contraction, ¢ is continuous. Hence,

¢(a) = lim ¢(a) = nli_rgan“ =a. (A.18)

n—soo

Thus a is a fixed point of ¢.

If b € X is also a fixed point of ¢, then
d(a,b) = d(¢(a),9(b)) < cd(a,b)

which implies, since ¢ < 1, that d(a,b) = 0 and hence that a = b. Thus the fixed point is unique. O

Suppose that we have already proved the existence for all 0 <7 <¢; and set T =1;. We rewrite

a{u,v—u) > (f,v—u)

in the form
ar(u,v—u) > F,(v—u)
where
F,(v)={fv)+(t—71)o(u,v)
In fact,

ar(u,v—u) > (f,v—u)+ (1 —1)0(u,v —u)

Taking that 7 = 7, we get

ac(u,v—u) > {f,v—u)

This mapping v — F,(v) is a bounded linear functional on ¥ and thus can be written as (f,,v), f, € V.

For any w € V, consider the variational inequality

veKk, ac(z,v—2) 2 (fw,v—12), YveK. (A.19)
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From our assumption, (A.19) has a unique solution z. Let z = Tw. Given u; = Tw) and u = T'w,,
1
[ Twy — Twy|| < a”fw, = farlly S Clt=tl[lwi —w2 .

Taking |t — 7| < %, we conclude that T is a contraction mapping in ¥ and admits a unique fixed point #. For this
u=w,

uek, a(u,v—u)>{f,v—u) for vek.

If #.is a finite number of times, and if 7 = 1 then it admits a solution to (A.12).

When the convex set K varies, we formulate it in the setting of Theorem A.6.3 for simplicity. We set condition
K, are closed convex sets, K =w—1limK,,. (A.20)

This condition means that
1. if x € K then there exist x,, € K, with ||x, — x| — 0,
2. the weak limit of any sequence x,,(x,y € K,») is in K.
The condition 2. above is satisfied, for instance, if K,, C K.

Theorem A.6.7. Let a(u,v) and K be as in Theorem A.6.3, and let K,, satisfy (4.20). Let f, € V', f,, — fev,

and denote by uy, the solution of
un €Ky, alug,v—uy) > (f,v—uy), Vv eK,. (A.21)

Then u, — u is weakly convergence in V.
Proof. LetveK,
otf|un = VI < aliry —v,un — v)
= a(tty, 1ty —v) —alv,u, — v)

Thus, from Theorem A.6.3,
ottt = V)2 < (foy tt = v+ ClV| 120 — v}

< (I + A fallyr Yt = vl

By taking v = v, — v* € K, the equation above become ||u, || < C, with C is a constant. Hence, u,, has a weakly
convergence. This means that u, — w weakly implics that w is the unique solution of (A.12). Since u — a{v,u) is

continuous,

a(v,i,) — a(v,w), (A.22)
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By Minty’s lemma,

a(v,,,v,, - un) > <fnavn - un>
for any v € K. Take any v € K and v, such that ||v, — v|| = 0, then
la(v,v —up) — a(Vy, vy — )| = |a(v — v, v — thy) + a(vyy, v — )]

S Cllv = valllly = unll + Cllvall v = un|

<C||v— ]| — 0.

It follows that

a(v,v —uy) > {fn,Vn — tn) + En, g, — 0.

Therefore,

(fnsVn =) = (frv—w)

and using (A.22) we obtain,

alvyv—w) > {f,v—w), YveKk.

Since w € K, w is the unique solution of the variational inequality (A.12)
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Appendix B

Elliptic Problems and Calculus of

Variation

B.1 Laplace Equation

Dirichlet Principle

Let Q C R” be a bounded domain with smooth boundary dQ, and
1 2
Jv) = —/ [Vv|” dx, (B.1)
2Ja
where v € H(Q). Given u° € H'(Q), we want to attain
minF(v), ve HY(Q), v=u on 9Q. (B.2)
If & attains this minimum, then it is a weak solution to
Au=0 on Q, u=u" on 9Q, (B.3)

2 2 . .
where A = g—xz + ... %, x=(x],x2,...,%,) € Q is the Laplacian.
1 n

To sce this, lct v € H} (Q) be arbitrary, where

Hy(Q)={ve H'(Q)|v=0 on IQ}.
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Then w=u+¢&ve H(Q), w=u’ on dQ, where € € R is arbitrary. Since u attains (B.2), it holds that F (1) < F (w),
or equivalently,

Flu+ev) > F(u), Ve € R.

In particular, the function

e fle) =F(u+ev).

attains the minimum at € = 0, so that

d
0=—F(u+ev)

de £=0
Here,
fle)=F(u+ev)
1
:-/ \V(u+ev) dx
2Ja
1 2
:—/ [Vu+eVy|® dx
2 Ja
1
= 5/ (V2 +26Vu- Vv e2[Vv]? dx
o}
and hence .
f(s):/ V. Vyte|Vy] dx.
Q
In particular
d
0= 2 Flu+tev) :f(O):/ Vu-Vv dx
de £= Q
ie.

/ Vu-Vv dx=0, WweHNQ),  u=u’ on IQ. (B.4)
Q

This means that u is a weak solution to (2). In fact, if u = u(x) is sufficiently regular on Q, then

/Vu-Vv dx:—/Au'v dx—|~/ —a-z~v ds=/Au-v dx=10 (B.5)
Q Q 9 dV Q

for v € H} (Q), where v denotes the unit normal vector on dQ. Since v € H}(Q) is arbitrary, u solves Au =0 in Q

at (B.2) if u is regular.

Trace to the Boundary
We have seen that, if v attains (B.2), then it is a weak solution to (B.3). Here, we will have the following problem:
1. Existence of the solution for variation of problem (B.2).

2. The regularity of u, the minimizer of (B.2).
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For the first problem, we note that #'(Q) with norm

M = { [ (9 + o) | ®6)

is a Hilbert space. Every element in /' (Q) may take the boundary value. For cxample, if Q satisfies the “restricted

cone property” the operator,

Y:veC(Q) = Vo€ C(dQ) (B.7)
is extended as a bounded linear operator: H!(Q) — L2(9Q) denoted by the symbol 7. It is called the trace operator.

Proof. We shall examine this property for the case Q = RY = {x € R¥,xy > 0}, a half space.

In fact, letve Cy RY). With the notation x = (x’ ,Xn ), we have
o Wy

Figure B.1: Trace

teo oo p)
[v(x',0))* = — —v(x,xy ) dxy = —2/ v(x',xN)—‘V(x',xN) dxy.
0 Oxy 0 dxy

Using the inequality 2ab < a? + b2, we obtain
W OP < [ )+ 5w
By integration in x’,
Jo 0P < [ (P S 0P) s
that is {[v]| 2 o) < [I¥l11py)- BY the density ofCS“(ﬁ]i) in H'(RY), thercfore, the result has been shown. [

Conversely, given a function #°() on 9Q. Its extension over Q will be useful. For simplicity, we assumc
that 1°(£), & € 9Q is a trace of an element in H'(Q), denoted by the same symbol #°. A domain Q is called

Lipschitz if its boundary d€Q is Lipschitz continuous. The Lipschitz domain can take a corner on the boundary,
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but it satisfies the restricted cone property. If Q is a Lipschitz domain, then,

v € H} (Q) & veHHQ), w=0, (B.8)
where FI}(Q) is a Hilbert space defined as a closure C(Q) in H'(Q).
Poincaré Inequality
Henceforth, || - ||, is a standard norm L?,1 < p < o,
Theorem B.1.1. IfQ C R” is a bounded domain then there is C = C(Q) > 0 such that
Ivll2 < CVvll2 (v € Hy(Q)). (B.9)

Proof. It suffices to show (B.9) for v € Ci(Q). In fact by the definition, for every v € H}(Q). There is a sequence
{wk} C C5 (L) satisfy

|lve —v|| = 0,

Recall (B.6). In particular,

Vvrlla — 1Vvll, fvell2 = [IV]]2-

Then (B.9) will follow from

[Villz < ClIVwell2

with C > 0 independentof k = 1,2,---.

vo= (v

b

f

e i T e -
a7 . /
S A N ,
./"/ ’ s ll p v ;I: - g
s ( /
A e -
/ N -
AN S
R 4] . - . e -
/.,/ . - ’.7'/"’/' s .
T b7 -
~ e

v.)
e
//

e -
o P e

\4

w~
-

suppy, ={v € Oiv, =0} 0

Figure B.2: Support of v
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Let v € C5(£2). Since Q is bounded there exists a constant £ > 0:
QC {x=(x),x2,...x,) ER"|0 < x; < £}.

Define v = 0 outside Q. For any x = (x1,x3,--- ,x,) € R", 1 < p < , it holds that v(x) = Jo! Div(t,x2,+ ,x,)dt

and there,
= [ Divleay i) i
0

¢
S(/ [D1v(t,x2,...,%)| dt)?
0
¢
S/ [Div(t,x2,. .., xn)|P dt"éfl thrcﬁ’ =p-1
0 P
'3
:€p71 / 'Dlv(I,XQ_,...,X,;)VJ dr.
0

Integrating over Q and putting p = 2,

= [ e ax
- /R P dr

. .
gf/ dt/ ID1v(t,x3,...,xn)|* dx
0 In

t £
Zf/ df-/ dx1~/ |D]V(l,X2,"' ,X,,)'deZ...dxn
0 0 R7-1 ,
¢
:e2/ a’t/ ID(t,x1, %2, 5)|
0 Rn-1
= 2||Dyy|)?

< 2|V
Thercfore, (B.9) is shown for v € C7(Q). . O

Existence of the Weak Solution

We shall show the existence of the weak solution to (B.3) by the Dirichlet principle. Let Q be a Lipschitz domain

with boundary dQ and «° € H(Q).

Theovem B.1.2. The variational problem (B.2), i.e, mi[l]J (v),
vl
E={veH (Q)v=u" on IQ} (B.10)

is attained.

1 .
Proof. Since J(v) = EfQ]ijzdx >0, there is {w} C E,k=1,2,... such that J(v;) — j = ing J{v). Since
ve
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v —u0 € H} (Q), we have

e =l < CIIVx = )2 (B.11)

with a constant C = C(Q) > 0.
Therefore

[villz < le®ll2 + C{UIVvil2 + Vel l2} < (B.12)

by J(vi) < C; where C),Ca are constant. This incquality implies

[vills + IVvi|l2 < Cp with a constant o, and
hence {v;} C E C H'(Q) is bounded.

There exists a subsequence, denoted by the same symbol, and u € H' (Q) such that
ve—u in H(Q). (B.13)

Since the operator 7 : H' (Q) —» L2(9Q) is continuous, (B.13) implies v; |3o— # |3o. Therefore, u = u° on 9Q

by vy € E. Thus we obtain # € E. Since
1
ve HNQ) I = 5 / - |Vv2dsx. (B.14)
Q

is weakly lower semi-continuous, (B.13) implies

lim J(ve) > J(u). (B.15)
k—es
Thus J[u] = 12£ J[v] and hence this minimum is attained by v = u. a
Vi

B.2 Poisson Equation

Let Q C R” be a bounded domain with piecewise smooth boundary Q. We consider
—Au = f(x) € I*(Q) (B.16)
in Q. The Dirichlet problem for (B.16) with homogeneous boundary condition

U |y0="0 (B.17)
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is further imposed.

Assume u € C?(Q) is a solution of (B.16), and v € C(Q) is arbitrary. We multiply v and integrate over Q:

—/QAuvv dx:/va dx. | (B.18)

By integrating by parts the left hand side of (B.18),

—/Au~v dx:/Vu-Vv dx:—/u~Av dx.
Q Q Q

The equation (B.18) then becomes
—/ u-Av dx:/fv dx (B.19)
Q Q

which denotes that  is a solution to (B.16) in the distributional sense.

Denote that (f,v) and 4(u,v) the inner product of L? and the Dirichlet form, respectively,
(fiv) = / fv dx, (B.20)
o

A(u,v) :/QVu-Vv dx. (B.21)

We say that u € H} (Q) a weak solution to (B.16)-(B.17) if
Au,v) = / Vu Vv de=(f,v) Wve Q) (B.22)
Q

We shall use Riesz’s represcntation theorem to guarantce the weak solution to (B.16)-(B.17).
Theorem B.2.1. Given f € L*(Q), we have a unique weak solution to (B.16)-(B.17).

Proof. We show that
A(u,v) :/ Vu-Vv dx
Q

casts the inner product on /4] (). It suffices to note that by the Poincaré inequality, 4(x,u) = 0 in H} (Q) implies
that w = 0.
Clearly, for any f € L?(Q),

F(v):/gfv dx, veE HN Q)

is a bounded lincar functional in H}(Q) by [F(¥)| < || fll2livIl2 < ClIf1|IIV¥|)2. From Theorem B.2.1, there exists
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a unique » € H} (Q) such that

Au,v)=F(v) = / fv dx, vv € H(Q)
Q
1.e.
/ Vi-Vy dx= / fv dx, Vv e 115 (Q)
Q Q
This shows the unique existence of the weak solution of Dirichlet problem of (B.16) and (B.17). O

Instead of Riesz representation theorem, we can show the existence of the solution to the Poisson equation by

the direct method of calculus of variation. Let

1
I = = / Vy? dx - / fv dx (B.23)
2Ja Q
If u € H} () attain the minimum of J[v] in H} (), then for any @ € H (), as for a function of &,

F(g)=Ju+¢ev)
:%/QW(u-i—sv)l2 dx—/gf(u%»sv) dx

2
=—12—/ |Vul? +2eVu - Vv + €| Vv dx—/f(u+£v) dx
Q Q

achieves its minimum at £ = 0 and hence F'(0) = 0. Since

/

F(e):/ﬂ(vu+svv).vv a’x—/va dx.

F'(O):/Qﬁu-Vv dx—/va dx

F'(0) = 0 implies (B.19) for any v € Hy (). We say that u € Hy () is an extremal of J[v] if 4 F(u+ev) =0

£=0

for any v € H; (Q).

Proposition B.2.2. If u € H}(Q) is an extremal of the functional J{v| in H} (Q), then u is a weak solution of the

Dirichlet problem of B.16 and B.17.
To proof the existence of a minimizer of the corresponding functional is as follows.

Lemma B.2.3. For any f € L*(Q), the functional J|v) is bounded from below in H} ().
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Proof. By Poincaré’s inequality Theorem B.2.1 and Cauchy inequality with € > 0, for any v € H}(Q)

(e [ (Epi Ll
J[v]—zu/gv dx /gz(2v+2£f)dx

_ Ll g L[ p
_2(11 8)/9\/ dx 2€/Qf dx

where i > 0 is the Poincaré constant:
pIVVIE 2 V5, ve H(Q).
Taking & > 0 such that £ < ﬁ, therefore
1
Iy >—-= [ f* d
W2 -5 [ dr
and the boundedness from below of J[v] in H}(Q) is proved. O

By Lemma B.2.3, ir}f JIv] is a finite number. Then it implies that there exists u; € H} (Q) such that
veH; (Q)

lim J[uy] = inf J[v]
k—yeo HHQ)

This {u} is called a minimizing sequence of J[v] € H}(Q). The existence of the limit l}im Jlui] implics the
—3o0

boundedness of J{uy], i.e. for some constant M,
]| < M, k=12,

Lemma B.2.4. For anyv € H} and f € [*(Q),

/ Vv dx < 4p / 1? du+ 4] (B.24)
Q Q

/ Vdx < 42 / 12 dx+4pJ)] (B.25)
Q Q

where [t > 0 is the Poincaré constant.

Proof. Using the Cauchy incquality and the Poincaré incquality,

/Q|Vv|2 desL(¥+éf2) dx+2Jv]

1
Ss,u/ V32 dx+—/f2+2.][v],
Q EJQ
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where £ > 0. Choosing € = 3,

/ |Vv]? dx < l/ IVy|? dx+2[.1/f2 dx +2J]v]
Q 2Ja Q

/ Vv dx < 4 / 7 det 4]
Q Q

Using the Poincar¢ incquality, we have

/m]z dx§4u2/f2 dx +4uJ]
Q Q
/sz dx§4,uz/gf2 dx + 4.
O

From these two inequalities, it can be shown that {;} is bounded in H} (Q) i.e. {ux} and {Vu;} are bounded
in L?(€), which implies the existence of a subsequence {uy,} of {ux} and a function u € Hj () such that uy, — u,

Vuy, — Vu (i — o) in L*(Q). In particular,

lim [ fuy, de= / fu dx.
Q Q

i—yea

Moreover from

/QW(uki—u){2 dx>0

ie.
/ Vi |2 dx—Z/Vuki-Vu dx+/ \Vul? dx>0
Q Q Q
/qukilz dx22/ Vuy, - Vu dx—/ \Vul? dx
Q - JQ Q
it follows
h_m/ |V, |2 deZlim/ Vi, - Vu dx—/ |Vul? dx
i—yo0 JQ 1= JQ Q
:2/ Vul? dx—/ Vul? dx
Q Q
- / Vul® dx
Q
from Vuy, — Vu.
So,
limJ[uy| = » lim / Vi [? dx — lim / fuy, dx
i—yoo 2i~>eo Q =0 JQ)

Zl/ |Vul? dx—/fu dx
2Ja Q
=Jy
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Hence,

inf Jv] < limJ{uy,] = limJ{ug,] = inf J|
HH(Q) oo [—ee HA(Q)

Thus J{u] = i]nf J[V] i.e. u is a minimizer of J[v] in H}(Q).
Hy(Q)

Proposition B.2.5. For any f € L*(Q), the function J[v] admits a minimum in H(Q). Combining Propositions

B.2.1 and Lemma B.2.4, we obtain again the existence of the weak solution to (B.16) and (B.17).

Uniqueness of the weak solution can be shown in the following way. Let u1,u; € H} (Q) be weak solutions of

(B.16) and (B.17). Then by definition of weak solutions,
/ Vi Vv dx — / fvdy,  veCq(@) (i=1,2).
Q Q

Hence

/Vu,-~Vv dx:/fv dx,  veHN(Q) (i=1,2)
Q Q

Denote # =u; —uy. Then,

/Vu-Vv dx =0, v & H)(Q).
Q
Therefore,
/ Vu-Vu dx = / IVul* =0
Q Q
Thus, Vi = 0 in Q and using the homogencous boundary value conditions yields # = 0 in Q. O

B3 WP Regularity for the General Elliptic Problem

Holder Continuity

Denote by C*(€2) where 0 < o < 1, Q is an open set in R”, the space of functions which are Hélder continuous

with exponent @, that is, v € C*(Q) if and only if

Ho(u) = sup M < oo, (B.26)

xAye@ P —yl*

This C*(Q) is a Banach space with the norm
[ller = felleo + Hoe (1),

where ||11].. is the maximum norm of u(x)

]l = sup [u(x)|.

xeQ)
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If (B.26) is finite for o = 1, then u is called a Lipschitz function: |u(x) —u(y)| < C|x — y|, where C is a constant.

Similarly, » € C"*%*(Q) (m is a positive integer) if

lllmsa = llullm+ Y, Ha(DPu) < oo,
|Bi=m

where

ulln =¥, 1DPull...

|Bl=m

Here, DP = (;2)P1,...,(52)P, B = (B1,...,By) is the multi index, and |B| = B1 + -+ By.

n

Consider the operator

du= 3 ) T b P el ay) = ao) ®27)
v ij=1 A 8x,—3xj = i axi cl\x)u, ajjx) = a;i(x). .

Definition B.3.1. A is said to be elliptic in Q if its coefficient matrix (a;;(x}) is positive definite as a symmetric

matrix, that is if
Y a®EE 2 hEP (A >0) (B.28)

ij=1

forallx € Q, & € R"; it is uniformly elliptic if Ax > 3A >0 for all x € Q.

1
Excercise 1. y(u) = x3 is a Holder continuous with exponent ot = ]5 onx € [—1,1] the graph is,

v
T A

1
Figure B.3: Graphy = x2.

sup I ZHOIL (B.29)
xyeQ |x —y|
"x#y
but for the case of & > %,
sup ML ¥ON _ (B.30)
X yeQ ‘x "y|
x#y
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Exercise 2. A = % +...+ 5—;2 in R” is uniformly elliptic:
0 n
: : - : VoG=5n :
A is a uniformly elliptic operator is replaced by Au = aj;u;;, where ajj = . 4 1s elliptic at a point
0 (#))

x € Q if the coefficient matrix [a;;] is positive; that is if Ami, in (B.28) denote as minimum eigenvalues of laij],
Amin > 0. In this case we have O4in = 1 = A. Then, A is bounded on Q and a;j is bounded. Therefore, 4 is
uniformly elliptic in Q.

Schauder’s Boundary Estimates

Suppose that dQ is locally C2+®, f € C*(Q), ¢ € C*+*(Q), 0 < ot < 1 and

2laijla+ X Nbilla+licla <K,

Dai(0)&E > AJEP VxeQ,E R (A >0).
Ifu € C?*%(Q) and
Au=f in Q,

u=¢ in 0Q,

then

lll2+a < CUflloe + lltleo + N1 @1]2+c)

where C is a constant depending only on A, K and Q.

The Schauder interior estimates involve norms ||u||,, , , which defined as follows:

|(x) —u(y)|

Hjo(u) = sup dit =701 Hy =Ho,q,
_/,(l( ) xvye% X,y |x_y,a [24 Ned

where d, = dist(x,dQ), dr, = min(d,d,),

lell = Netlew + Hee(),

Ullpra = 3, supld? DPu)|+ 3 Hya(D%).
IBlm @ IB1=m

Ifmme < oo, then we say that « belongs to _C_’m+a(Q).

Schauder’s Interior Estimates

Theorem B.3.2. Let Q be an open subset of R” with domain diameter < D, f € c” (Q) be a bounded solution

and a;;, bj, ¢ are measurable

S lailly + 2ol + el < K,
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Yay(&E > AEP VxeQ, ECR (A >0).
Let u € C*(Q)NL=(Q) be a bounded solution in Q of

Au=f in Q,

then

where C is depending only A, K, and D.

If u € C"F%(Qy) for any open subset Qg with Q) C Q. Therefore, u € C"**. Then it can be deduced that if
ajj, bi, c and f belong to C"*+%, then u belongs to C™H2+®(Q). LP estimates where 1 < p < oo is needed here with

assumptions on 4, f is weaker:

|aij(x) — a;;(»)| < @(lx —y]) [o(t) =0 if 0], (B.31)
i ay(x)&E; > AEP vxeQ,  LeR" (A>0) (B.32)

ij=1
¥ laijfl + X |bil + el < K. (B.33)

The L? Estimates

Theorem B.3.3. Let dQ belong to C* locally, f € LP(Q), ¢ € W*P(Q), 1 < p <o Ifu € WHP(Q),
Au=f in Q,

u—~¢€H(}(Q),

then

lul2,p <C(|flp+1002p),

where C is constant depending only on A, K, the modulus of continuity @ and domain Q.

The interior L? elliptic estimates with G is any compact subdomain of €2 and C is a constant depending only

on A, K, @, Q and G are in the form of

|u|ZG,p S C(lflp + lu‘p)v

|u|§; » stands for WP norm of u in G. If 3G N IQ is nonempty, we need local L? estimates in a subdomain G of

Q.
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Theorem B.3.4. Suppose that G, is an open set, G C Gy C Q, dGNIQ is contained in the interior of Gy NI,

IGNQC G If
Au=f in Gy,

C(u—¢) € Hy(Gy)

Jor any § € C*(R"),{ = 0 in a neighbourhood of G, N, then
ulZ, < CUAIG +ulg +1015)

Strong Maximum Principle
Let u be a function in H2(Q) N C(Q) satistying Au < 0 in Q. If at some point x° in , v assumes to be positive
maximum, then u = constant in Q (then ¢ = 0 a.e.). If u is not necessarily continuous in Q; “maximum” of u is
replaced by “essential supremum” (esssup) of u: If esssupg u is positive and coincides with ess supy u for any ball

center xgy and arbitrarily small radius, then » = const. This implies:

If well*(Q)NHN(Q), Ar<0 ae. in Q then <0 ae. in Q. (B.34)

The Schauder boundary estimates can be used to solve the Dirichlet Problem

Theorem B.3.5. Let Q be a CPH* domain in R”, and let A be strictly elliptic in Q with coefficients in C* () and

with ¢ > 0, then,

Au=f in
(B.35)

H=¢ on JQ,

where A, f, ¢ and Q are as in the statement of the estimates have a unique C*+*(Q) solution Jor all such f and ¢.

L7 estimates also can be used to solve Dirichlet problem.

B.4 Obstacle Problem

Here, we consider an example of the variational inequality.

Consider the functional

J(u)y = %/Q[thz dx~/qu dx (B.36)

and the closed convex set in H'(Q),

K={wu—u"c H(Q),u>¢ ae} (B.37)
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where f € L(Q), ¢(x) is a continuous function in Q, and ° € H'(Q). Here we note the following lemma.

i,

Figure B.4: Obstacle problem.

Lemma B.4.1. K is closed and convex in H'(Q).

Proof. To show that K is closed, suppose that u; —u € H 1(Q) for u; € K. Since the boundary JQ is sufficiently
regular, we can uniquely define the trace yu of u € H'(Q) on 9Q, and yu € Hi (dQ). The mapping u — Yu is

linear continuous: H' (Q) — H? (0Q). By € = yu®, the set X is equal to:
K={uluec H(Q), yu=C,u>¢ ae. in Q}.

Since y: H'(Q) — Hi (0Q) is continuous, u; — u in H' (Q) implies yu; — yu in H? (dQ). But yu; = { so that
yu = § follows. Thus we have only to show u > ¢ a.e. in Q. In fact, u; — u in L*(Q) by u; — u in H'(Q),
therefore there exists {«/;} C {u;} such thatu; — v a.e. in Q. We shall write u'; = uj for simplicity. Since u; > ¢

a.e. in Q, there exists a Lebesgue measureable set 4;,| 4; |= 0 such that,
uj(x) > ¢(x), Vx e Q\4;.
While for u} — ua.e. in Q, there exists Ao, | 49 |= 0, such that
uj(x) — u(x), Vx € Q\ 4.
We put 4 = U7 4;UAg which implies | 4 [< i | 4; |+ | A |=0. Here, | 4 |= 0. We obtain,
=1

7

uj(x) > ¢(x), Vxe Q\ 4
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and

uj(x) — u(x), Vx € Q\ 4.

Then it follows that, u(x) > ¢(x),Vx € Q\ 4. Therefore u > ¢ a.e. in Q.
To show that K is convex, we consider 0 < € < 1, take u,v € K, and put w = gv+ (1 — €)u. Then e{ + (1 —£){

H'(Q) as H'(Q) is a vector space. Then it follows that
w=epw+(l-gjpu=ef+(1-e)f=C

while

ev+(l—-8u>ep+{(1—-€)p=¢ a.e.on Q
because #,v > ¢ a.c. in Q. Thus w = ev+ (1 — €)u € K and hence, K is convex. O

Assume that #” > ¢; then K is nonempty because #° € K. Suppose that « is a solution to

uek, Ju)= mi}(lJ(v). (B.38)
ve

. or
K
)
~_

Figure B.5: K is a closed convex sct.

We consider a variational problem; finding « such that
uekK, Ju)= mil?J(v). (B.39)
ve

If u is a solution of the problem (B.39), then for any ve K and 0 < e <1, u+e(v—u) = (1 —€)u+¢evin K

because K is convex. Therefore, for

Ju+elv—u))>J(u).
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Hence, one has |
Ju+e(v—u))= /QE | V(u+e(v—u) |? —fu+elv—u)) dx

1
ZJ(u):/Q§|Vu|2—fu dx, 0<Ve<l.

Then
1 , . € e ) 1 2
/—|Vu| +2-Vu-Vv—u)+— |Vv—u) | —fu—€ef(v—u) de/—]Vu] —fu dx
0?2 2 2 o2

/;ZSVM'V(V—LI)—,-% |Vv—u) > ~ef(v—u) dx>0

/Qvu.V(v—u)JrglV(v—u)F de/Qf(v~u) dx.

Taking € | 0, we get
/Vu-V(v——u) a’xZ/f(v—u) dx Wek; uek. (B.40)

If u € H*(Q), by applying Green’s formula to the left hand-side of (B.40), we obtain
du
/ —Au(v—u) dx—|—/ —((v—u) dsZ/f(v—u) dx YveK. (B.41)
Q 20 an Q

We then obtain

/(Au+f)(v—u) dxg/lm%(v—u) ds Vvek. (B.42)

By choosing v =u+¢€§,{ > 0,0 < £ < 1,V{ € C5(Q), we get v € K. In fact, obviously v € H'(Q). Next,
= Y(u+€el) = yu+ey{ = yu=yu. Finally,v=u+€{ >u > ¢ a.e. in Q. Then since v—u =0 on dQ, we

have

/ (but f)C dx<0.
Q

Since § >0, € C7 (Q) is arbitrary, it follows that
Au+f<0 in Q. (B.43)
Assuming the existence of the continuous solution u to (B.39), the set
N={xeQux) > ¢(x)} (B.44)
is open, while

A= {xeQulx)=9(x)} ‘ (B.45)
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is closed, where N is called the noncoincidence set and A is called the coincidence set. For any ¢ € C5(N) the

{=yu’=0
Figure B.6: Coincidence and noncoincidence set

functiony =u+eC inK, 0 < & < 1. In fact, obviously v =u+e{ € H'(Q). Next, yv = y(u+e{) = yu+ eyl =
yu = y°. Finally, since supp{ C N, it holds that u + € > ¢ a.e, provided that 0 < € < 1. Then from (B.40), we

obtain

is/(Vu-VC—i—fC) dx:ie/(Au—f-f)C d;CSO, V¢ € C5(N)
Q N

whence we can conclude that
[ @+ g ax=o, v € G ()

and, therefore

Au+f=0 inn N={u(x) > ¢(x)}, (B.46)

Thercfore if u is the solution to (B.39) which belongs to H?(Q) NC(Q), then,

Au+f<0 in Q,

u>¢ in Q,
(Au+fY(u—¢)=0 in Q,
u—u’ € H}(Q).

The third equality holds by (B.46). In fact, if x € N then Au(x) + f(x) = 0, and hence (Au+ f) - (u—¢) =0 at x.
In the other case of x ¢ N, it holds that x € A, so that u(x) — ¢(x) = 0 and hence (Au+ £) - (u— ¢) = 0.

The set K is called the constraint sct, and in the casc of (B.37), ¢ is an obstacle and (B.39) is the obstacle problem.
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L - ., us= u®
T -
¢ ) )
A R I )
- T
P '
a0 F=0NnQ

{free boundary?)

Un-preseribed (determine by the solution?

Figure B.7: Coincidence and noncoincidence set from above view.

The boundary of the noncoincidence set in €2,
r=dNNQ,

is called free boundary. In fact, since the function u — ¢ attains its minimum value zero at any point in A, if u — ¢

has first derivatives continuous, one has u, = ¢, and u, = ¢, on I'. It follows that
u—¢ =0, Viu—9¢)=0 onT. (B.47)

The above u may be regarded as the solution of the Dirichlet problem,

Au+f=0 in N,
u=u" on dNNIQ, (B.48)
u=2¢ on dNNT,
with additional condition
Vu=V¢ on dNNT (B.49)

compensating that I is not a priori unknown.

Consider the special case n = 1, f = 0. Then the variational inequality (B.37), (B.3 8) is to minimize
b
[ e ax

with u(a) = uy,u(b) = u and u(x) > ¢(x). Take u; > ¢(a),u2 > ¢(b). Assume that ¢(x) is strictly convex, and

from (B.48) and (B.49) we deduce that the curve y = u(x) consists of three arcs:

1. A line segment /; connecting (a,;) to a point (a’,¢(d’)), tangent toy = ¢(x) atx = o',
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2. Anarcy:y=¢(x),d <x<b.

3. A line segment /, connecting (b',¢(b")) to (b,u;), tangent to y = ¢(x) atx = /.

y=O(x)

Uy Uz
; |
! N yA i » X
a a’ \/ b’ b
v o u(x}

Figure B.8: A graph consists three arcs

The free boundary consists two points (&, ¢(a’)) and (&', ¢(b')). Thus, u”(x) has a jump discontinuity at x = 4.

Let £ C R” be an open set with (B.21) and let ¢ (x) (the obstacle) be the function that satisfying
¢ € CH(Q) (B.50)

and assume that
the coef ficients of A are in C*(Q),

(B.51)
A is uniformly elliptic in Q, ¢(x) > 0;
Q isin C?+e,
fECHQ), u'eC(Q), (B.52)
>0 on 9Q.

Theorem B.4.2. Assume that (B.50)-(B.52) holds. Then there exists a solution u of the variational inequality

Au—f >0
u >¢ }a.e. in Q, (B.53)

(Au—f)u—9) =0

andu € W*P(Q) for any 1 < p < oo,
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Theorem B.4.3. Let uy,u; be a solution to W%(Q) NC(Q) of the variational inequality (B.53) corresponding to

frand fo. If fL > fo, thenuy 2 u;.
Theorem B.4.4. Under the assumptions of (B.50)-(B.52), the variational inequality (B.53) is unique.

Equation (B.50) can be replace by

e CO1(Qy),
{ ¢2 () (B.54)
%—g > —C in D/(Qq), forany direction &,

where Q is a neighbourhood of Q.

Theorem B.4.5. Let (B.51), (B.52) and (B.54) hold, then the assertion of Theorem B.4.2 is valid.
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