<table>
<thead>
<tr>
<th>Title</th>
<th>Soliton Cellular Automata constructed from a Uq(Dn(1))-Crystal Bn,1 and Kirillov-Reshetikhin type bijection for Uq(E6(1))-Crystal B6,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mahathir, Bin Mohamad</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>ETD</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/26847</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
論文内容の要旨

In part 1 we study a class of cellular automata associated with the Kirillov-Reshetikhin crystal $B^{1,1}$ of type $D_n^{(1)}$. They have a commuting family of time evolutions and solitons of length 1 are labeled by $U_q(A_{n+1}^{(1)})$-crystal $B_1^{1,1}$. The scattering rule of two solitons of lengths l_1 and l_2 ($l_1 > l_2$) including the phase shift is identified with the combinatorial R-matrix for the $U_q(A_{n+1}^{(1)})$-crystal $B_2^{1,1}$ \(\otimes B_1^{1,1} \). In part 2 we consider the Kirillov-Reshetikhin crystal $B^{(1)}_r$ for the exceptional affine type $E^{(1)}_6$. We will give a conjecture on a statistic-preserving bijection between the highest weight paths consisting of $E^{(1)}_6$ and the corresponding rigged configuration. The algorithm only uses the structure of the crystal graph, hence could also be applied for other exceptional types. Our $B_r^{(1)}$ has a different algorithm compared our $B_2^{1,1}$ because we must consider the element ϕ, unique element in the highest weight crystal of weight 0, in the crystal graph. We will give many examples supporting the conjecture.

論文委員の要旨

論文は2部に分かれている。第1部では、$U_q(A_{n+1}^{(1)})$型の量子アフィン代数の結晶をモデル化する方法が提案されている。この系にはソリトンが存在するが、それがl_1型量子アフィン代数の結晶を用いるポアントラズイに対応することを示した。第1部での主結果は2つのソリトンの相対位置の
内藤自由の変換則（故自由）である。故自由は、Markov ファクターの整合法則によって記述される。この内容は Journal of Physics A: Mathematical and Theoretical に投稿され、受稿されている。

第 2 章では、Markov 順序量のアフィン代数のデイニオンの加点に束縛するほどのクリスタルから構成される整合ゲンの対象物と基底配列と呼ばれる物との間の一対一対応について述べている。この仕事については先行研究があるが、申請者の場合は、先行研究になかった問題が 2 つ出現する。ひとつは、クリスタルグラフが連結でないために、操作をどの連結成分から始めるかを決めないといけないことであり、もうひとつは、基底配列のある行が特異といわれる状態でなくても、操作においてその行から崩れを取り除かないとけんくなることである。申請者は、たくさんの例を構成して従属することにより、これらの困難を取り除き、一対一対応を定義する基本操作を厳密に構成することに成功した。

以上の理由により、申請者が提出した論文は、博士（理学）の学位論文として価値のあるものと認める。