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Abstract

In part 1 we study a class of cellular automata associated with the Kirillov-
Reshetikhin crystal B™! of type D{!). They have a commuting family of time
evolutions and solitons of length [ are labeled by Uq(ASzl)—crystal Bi’l. The
scattering rule of two solitons of lengths [; and I3 (I; > l3) including the phase shift
is identified with the combinatorial R-matrix for the U, (ASZ \)-crystal B%2 @ B3Y.
In part 2 we consider the Kirrilov-Reshetikhin crystal B%! for the exceptional affine
type Eél). We will give a conjecture on a statistic-preserving bijection between the
highest weight paths consisting of B%! and the corresponding rigged configuration.
The algorithm only uses the structure of the crystal graph, hence could also be
applied for other exceptional types. Our B%! has a different algorithm compared
our BY! because we must consider the element ¢, unique element in the highest
weight crystal of weight 0, in the crystal graph. We will give many examples

supporting the conjecture.
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Part 1

Scattering Rules in Soliton Cellular

Automata Associated with
U,(D\")-Crystal B!



1 Introduction

The box-ball system {33, 32] well-known as soliton cellular automata is a dynamical sys-
tem of balls in a one dimensional array of boxes. The discrete KAV equation through a
limiting procedure called ultradiscretization [36] was used to show the solitonic charac-
ter like the KdV solitons. The rules for soliton interactions and factorization property
of scattering matrices (Yang-Baxter equation) are justified by means of inverse ultra-
discretization [35]. In [35] it is shown that the dynamical systems of soliton cellular
automaton is described by an ultra-discrete equation obtained from extended Toda
molecule equation. Later it was studied by [3] that the scattering of two solitons in-
cluding the phase shift is described by isomorphism from the tensor product of two
affine crystals for the quantum enveloping algebra Uq(A(nlzl) to the other order of the
tensor product. The object they used is called combinatorial R-matrix [13]. The com-
binatorial R-matrix has an amazing property: it satisfies the Yang-Baxter equation,
which assures that the scattering of three solitions does not depend on the order of
scattering of the two solitons.

The new soliton cellular automata were constructed in (8] corresponding to Ug(gy,)
where g, = Agi)_l,Agfz,B,(Ll),C,(ll),D,(ll),Dﬁﬁl and their internal degree of freedom
was labeled by crystals of the smaller algebra U,(g,,—1). Then [7] studied the scatter-
ing rule of two solitons when they collide each other. They found that the scattering
rule for affine crystals corresponding to U,(g.) can be described by combinatorial R-
matrix of the smaller algebra U,(g,,—1). The affine crystal they used is called Kirillov-
Reshetikhin (KR) crystal denoted by BYt. (The KR crystal is parameterized by two
integers. The first index corresponds to a node of the Dynkin diagram of the affine
algebra except 0 and the second a positive integer.) A generalization to the KR crysial
B*?! for g = A", was studicd in [37] and their internal degree of freedom is given
by the product of U, (A" )-crystal BF~1! and U, (A1, )-crystal BYL. A case for
the exceptional algebra g = D§3) was also treated in [38]. In [38], it is shown that
the scattering rule for the crystal type U,,(Df)) is identified with the combinatorial
R-matrix for U,(A{!)-crystals and phase shifts are given by 3-times of thosc in the

well-known box ball system.

These results can be summarized and one might find the following conjectural
properties for the solitons and their scatterings of the soliton cellular automaton con-
structed from the KR crystal B%! of the quantum affine algebra U,(g). Let G be the
Dynkin diagram of the corresponding finite-dimensional simple Lie algebra of g. Lel
G be the Dynkin diagram obtained by removing the node k from G and let j be the
node of G that is connected to k in G. Let § be the corresponding affine algebra.



o The internal degree of freedom of soliton of length [ is described by the Ug(g)-
crystal Bt

o The exchange of the internal degree of freedom by the scattering of solitons of length
l; and Iy (I > Ip) is given by the crystal isomorphism B%!t @ Bi'23Ril2 @ Bl

e The phase shift of the scattering is described by the corresponding /1 function.

This property allows us to calculate the combinatorial R matrix for B# 1 ® BJl2
just by observing the scattering of solitons in the corresponding cellular automaton.
If G is not connected, then one needs to consider the tensor product as seen in [37).
Although this conjecture seems reasonable, the rigorous proof is yet to be given.

The purpose of this paper is to add another affirmative example to this conjecture.
We take g = D&l), k = n. The corresponding node is a spin node and the KR crystal
is B™1. According to the above conjecture, we have § = Agbl_)l,j =n— 2. In the
crystal theory, there is a notion of the dual crystal. The dual BY of a crystal B is
defined by setting (e;b)Y = f;bY, (fib)" = e;b”. Since we know (B; ® B2)Y = By ® BY
and (B#)Y = B"=3! for the KR crystal of type AL, we can expect the following

property on our soliton cellular automaton.

¢ The internal degree of freedom of a soliton of length [ is described by the Uq(Ag_)l)—
crystal Bg’l.

e The exchange of the internal degree of freedom by the scattering of solitons of length
Iy and Iy (I; > l2) is given by the crystal isomorphism Bi’lz ® BE"IV—TBi’h ® Bi’lz.

e The phase shift of the scattering is described by the corresponding H function.

We check these properties in this paper, thereby obtain our main theorem (Theo-
rem 3.16).

The paper is organized as follows. In Sec. 2, we recapitulate necessary facts from
the crystal theory. In Sec. 3, we construct conserved quantities. The main theorem is
given in Sec. 3, where the scattering of solitons is studied.

2 Preliminaries

In this section we review some basic definitions and facts about crystals for the
Ué(Ds))-crystal B™!' in Section 2.1. In order to describe the crystal graphs for
the finite-dimensional modules of quantum groups of classical type, Kashiwara and
Nakashima introduced the analogue of semi-standard tableaux, called Kashiwara-
Nakashima (KN) tableaux [16].



2.1 Crystal B™!

Crystal theory was introduced by Kashiwara [12] which provides a combinatorial way to
study the representation theory of the quantum algebra U,(g). In this paper g = DS)
is the corresponding quantum algebra. Let P be the weight lattice, {ai}to<i<n the sim-
ple roots, and {A;}o<i<n the fundamental weights of D%l) . Let A; denote the classical
part of A;. The crystal B is a finite set with weight decomposition B = LiycpB,. The
Kashiwara operators e;, f; (i =0,1,--- ,n) act on B as

€ : By —> Byiq, U {U}, fi: By — By_q, U {0}

These operators are nilpotent. By definition, we have f;b = b’ if and only if b = e;¥’.
Drawing b - b’ in such case, B is endowed with the structure of colored oriented graph

called crystal graph.

Let {e1, €2, ...,¢n} orthonormal basis of the weight space of D,,. The simple roots
and classical parts of fundamental weights for DS) are expressed as

g =0—€ —€, Op=€n_1+€,, @ =¢—€641, lori=12 ..n-1,
Ay = %(61 + ot €pa _en)v /_Xn = %(61 + et €p— +5n)-
Ai:€1+62+"'+€i fori:1,2,...,n—2,

We explain the Kirillov-Reshetikhin crystal B™!, [ € Z., . We set

A={1,2,---,n—1,n,nn—1,---,2 1} The set of letters order on

A:l<2<--<n—1< '<n-T=<--<3<1.
n

where there is no order between n and 7. Then the crystal B™! is given by

1:71.
iy €A, i1 < g < -+ <im,
B™! = "_{| a,a does not coexist for any a = 1,2,...,n. }, (2.1)
Zi There are even number of barred letters.
i1




Cin

where ¢jp = €jp1p

Ci | C2 C; , . :
Bl — leje B"’l, and setting ¢; = - for1 <p<n,

G2 1<j<l

The weight of b€ B™" is given by wt b= 33" ; 7;¢; where

+1 if 7 exist in b,
=

—1 if j exist in b

C1 | C2 C}

and that of b = € B™! is given by wt b = 23:1 wt c;.

2.2 Crystal structure on B™!
For:i=10,1,...,n

b if wt b = wt b+ a;(mod Z4),
0 if such ¥ does not exist in B™!,
b if wt b = wt b — a;{(mod ZJ),

0  if such b” does not exist in B™1!.

B™! is the crystal base [12] of the spin representation of the quantum affine algebra
U (D(l))
g\Fn )

Example 2.1 When n = 4, the crystal graph of B! is depicted as follows.



4 4 3 2 2 3 2
3 — 1 3
2 2 3 4
1 1 1 1
0 1
_ 0 1
1 1 1 1
2 V) 3 1
3 4 4 3
1 4 3 2 2 3 2

The crystal graph of B is the same as above by interchanging the colors as 1 < 4.

Example 2.2 When n =5, the crystal graph of B>! is depicted as follows.

We give the correspondence bétween the numbers in the crystal graph with our rep-

resentation of crystal elements.

ot

(3]=

P RS TR
[>]
Il

- W A OU e
=]
I

B W A O e
I

— R O W

5
Il
[l S I VL R ) (e |

5
4
- 3.
2
1



2 1 2 1 1 2
] 4 3 3 2 3
:5’ :5’ @:5’ :5’ :5’ :Zla
3 3 4 4 4 5
1 2 1 2 3 1
1 1 1 1
3 2 2 2
3]= 1, [14]-a, [158]= 3, [16]= 3
5 5 5 4
2 3 4 5

Example 2.3 When n = 6, the crystal graph of B®' is depicted as follows.

2 5 1
5
2 1

We give the correspondence between the numbers in the crystal graph with our rep-

resentation of crystal elements.
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Example 2.4 Consider the case n = 4.

4 3 2 1 i 1
Let Cp = 3 s c(l) = 4 s c(2) = 4 , 0(3) = 4 , c(4) = 3 , 6(5) = 2 .
2 2 3 3 4 4
1 1 1 2 2 3
62(C(2)) - c(l); fZ(C(Z)) = O: fo(C(2)) = 0.
Example 2.5 Consider the case n = 5.
5 4 3 2 1 3
4 5 5 5 5 4
Letto= 3,éW0=3,6@=4,e® =4 W=y 6=5,
2 2 2 3 3 2
1 1 1 1 2 1
@) =0,  [(ED) =3, fo@?)=0.
2.3 Crystal structure on B™
Let b € B™!.
R e R O A (2.3)

The actions of e;, f; for i # 0 can be calculated by using the rule called
signature rule. For b € B™! we associate an element ¢; @ ¢;_; ® --- ® ¢2 ® ¢; of
the tensor product (B™1)®! to find the indices j, j' such that



ei(a®c1® - ®a®ca)=qRc 10 Qec;® - Qca®c (2.4)

fila®a1® - ®cu®a)=aq®aq1® 8 ficy @@z ® ¢ (2.5)

With this element we associate an i-signature: —...— 4.4+ —...— 4.4+ .. —..— +. .+
L L e N’ N’

eilar) @iler) eila-1) wilc-1) ei(e1) wiler)

We then reduce the signature by deleting the adjacent +— pair successively. Even-
tually we obtain a reduced signature of the following form.

Then the action e; (resp. f;) corresponds to changing the rightmost — to
+ (resp. leftmost + to —). If therc is no — (resp. +) in the signature, then the
action of e; (resp. f;) should be set to 0. The value of £;(b) (resp. ¢;(b)) is given by
the number of —(resp. +) in the reduced signature.

Example 2.6 Since the signature rule enables us to celculate the multiple tensor prod-
uct of B™’s, we consider B4 @ B3 @ B*2. Let cY)(j =1,...,5) as in Ezample 2.4.

Consider an element b = (co <N e@) @ (¢p ¢ M) @ (cVe®) e B4 B4 ®
B%2. The 4-signature is given as follows

b= (C(z) @ ¢V o C(I) & Co) ® (C(l) & co ™ Co) o] (C(S) ® C(l))
M= - - + -+ + -

236
The reduced signature isny = — — +, where the upper number signifies the component

of the tensor product the sign belonged to. Therefore, we have

esb = (P ® ¢V R es(cM) ® o) ® (¢ & co ® o) ® (¥ ® V) = (co o M) ®
(CO o c(l)) ® (0(1)6(3))

Fib= (@ ®c® © D g ) ® (¢ ® falco) ® o) ® (¢ @ ) = (cp VW) @
(CO C(l)c(l)) ® (0(1)6(3))

10



Example 2.7 Since the signature rule enables us to calculate the multiple tensor prod-
uct of B™’s, we consider B4 @ B'® @ B2, Let &9 (j = 1,...,5) as in Example 2.5.

Consider an element b = (&g ¢VeMWED) @ (8 & eV) ® (6Me®) e B @ B3 @
B*2, The 5-signature is given as follows

V=02 e el ®é)e @V ®éed)e (E® eh)
N = - -+ -+ o+ -

236
The reduced signature is ns = — — +, where the upper number signifies the component
of the tensor product the sign belonged to. Therefore, we have

est = (6 @ eV @ es(eV) ® &) ® (6 ® & ® &) ® (63 ® ¢V = (& & EVEP) ®
(€0 & 1)) ® (6MEB3))

S0 = (@ @M @V @ &) ® (61 ® fa(éo) ® &) ® (6@ @ &) = (6 eWeMe?@) &
(& W) @ (€VE3)

2.4 B" and B" of type DY

We give an affine crystal action on B™!. To do this we need B"~ 1 of type DY), B™!
and B"~ 1! are associated to the spin nodes in the Dynkin diagram. As {1,2,...,n}-
crystals we have the isomorphisms

B™' = B(IA,), BV = B(IA,1). (2.6)

To define the affine crystal action, we introduce an involution o : B™! ¢ Bn~ Lt
corresponding to the Dynkin diagram automorphism that interchanges the nodes n to
n—1. Let-J = {2,3,...,n}. J is the J-highest if and only if e;b = 0 for every ¢ € J.
By definition in [2], o is required to commute with e;, f;(i € J). Hence it sufficies to
define o on J-highest elements in B™! and all of the form of the LHS of (2.7) with
some a, and mapped by o as

n--om 1.1 Ao 1---1
o: ' . — ) . (2.7)
2.2 : 2...2 :
1.1 2...2 1---1 2.--2
e R Y
a l—a l—a a

11



Example 2.8 When n = 4, the crystal graph of B>! of type Dil) is depicted as

follows.

4 3 3 i
3 3 4 2 4 L 4
2 2 3 3
1 1 1 2

0 4

0 4
1 1 1 2
-3 3 3 3
3 4 4 4
4 3 3 2 2 ! 1

Definition 2.9 The action eg and fo on B™! is given by

eg =00e€ 00, fo=o00fioo.

Example 2.10 Consider the case B™'’s, wheren = 4 and | = 5. Let c1¥) (j=1,..,5)
as in Example 2.4.

Consider an element b= (co co co ¢3c®)) € BY®. We are to calculate egb.

44 111
33 444
22 333
11 222

o(b) =

44 111 44 211
33 444 33 444
22 333 22 333
11 222 11 122

44 111
f 33 4441y (2.10)
22 333

11 222

But, o is required to commute with e;, fi(i € J). Then we apply ezes to get the
J-highest.

12



44 211 44 411
caey |33 444 _[33 344 (2.11)
22 333| |22 233

11 122 11 122

44 111
Since o(f2f3(0)) = fafso (V) and o(p) =| 33 222
22 333
11 222
44 T11] |44 111
33 444 4749
eob = fafso(t') = fafs 4441 133 442
22 333 22 334
11 222 11 223

fob = 0.

2.5 Energy function

Next consider a Z-valued function H on B ® B’ satisfying the following property For
any b € B,b € B’ and ¢ such that e;(b® V') #0

HO@V)+1 ifi=0, go(b) > co(t), ¢o(B) > eolb),
H(e(d®V) =S HbRV)—1 ifi=0, po(b) < eo(t), po(¥) < eo(b),
Hbeb) otherwise.

H is known to exist and unique up to additive constant. b and b’ are defined from the
combinatorial R matrix by R(b® b') = ¥ ® b. The existences of the isomorphism and
energy function H are guaranteed by the existence of the R matrix. See Ref [13].

Note that we normalized H so that we have H((co)! ® (¢co)*') = 0. Here and later, (co)*
means cg - - - ¢g € B™.
I

Definition 2.11 A combinatorial R matriz for the crystal B™* ® B™! is a map
R : B™s ®Bn,t - Bn,t ®Bn,s

satisfying
(1) Roe; =e;0R, Rof,=fioR fori=1,..,n, and

13



K] to 1 i (2]
Co Co Co Co | 1 €1 | C2 C2 Cp/ Cn’
R ce ® . . o .
t s’ t1 to t,s
Co Co Co Co | Cy C1 | C2 C2 Cn/ Cn/
n n—1 n—3
n—1 ) n—2
n—2 n—2 n—1
n—3 n—3 7
where cg = , €= , €3 = ,
1 1 1
2 1
3 2
3
toey = (if n is an odd number), ¢ = (if n is an even number),
n
1 n

n=[3landt,+to+ - Fty <s, F=s—(Li+ta+ - +itn).

We explain how to calculate R(b) for a general element b. Let b AN
b1 =% b, where e;(b) = 0 for every 7 # 0. Namecly, b is of the

€am1

by - - i

form

: bm—2

14

(2.12)

€ay

—



R(b) = R(fa, - famb) = fa, -+ far R(D).

Example 2.12

331 22
Setp—| 443 ® 43 and we calculate R(b).
224 34
112 11
444 33 4 4
b= eqex3eq’e3?e b = 333 ® L4 nd R(b) = 33 ®
222 22 22
111 11 11
33 221
‘ - i4 133
Since fofs* fi2FfaR(B) =| * % || # 33|
22 344
11 |112]
331 29 33 221
we have R 443®43 :44®433.
224 34 22 344
112 11 11 112

Lemma 2.13 We give all the images of the isomorphism B™! @ B! ~ Bl g Bnil
that will be needed in the next section. Let the symbol

B
a+ a'
/BI

signify a ® B f' ® o’ under the isomorphism. We also set

15



n—1 n—2 n—3 n—3
n n n—2 n—1
n-—2 n—1 n n
ca. = . 2 Cb == ’ b Cd = 7 Ce = 2 Cf =
2 2 2 2
1 1
and co is the column of height n without barred letters.
We list up the cascs as below where i, j, k,{,m,p € Z>g.
Case 1.
(iym>0 (i)l>0
Co
chcheb ey —|— gl efeep! chelekc 4+ chtteickc™
cf Cd
(iii)k>0 (iv)j>0 (v)i>0
chel ck + chtleleit chel + cpttel ! i+ ¢
Cp Cqy Co
Case 2.
(i-)i>0m>0 (i) m >0
Ca
chelcfchelp + ch” cJ“c,)cfflc’f” ! degchet + e flc;” !
Co Cs
(ii) 2> 0 (iv)i>0
RN k kol ket
cheheheh + g teltiebel cleyeq +citieley
Co Cd
v)k>0 (vi)j>0
Cq Ca
ik j+1 k-1 j j
cieg 4 e +d
Cp Ca
Case 3.

16




Hji>01>0

G kol b i o1 k1 -1

chcleb el 4 chel Tk e e 5
Cp

(iii) p > 0

k.l .p k+1 .1 p—1.m
chercheber +coc cgck i}
CE

(V)m>0 >0 (viy{>0
Cp
chepeher + eyt f“cgﬂc’fn ! cpebcl 4 cftterel
Cq Cd
(vii) m > 0 (viii) i > 0
Cp Cp
cfcfic’]ll + c{f“cfic}”“l chekcy - citektt cy
Cf Co
(ix) p>0 (x)l>0 (xi) k>0
Cp Ch
il + chtiept ek, +ck+1 -1 k4 cf
Ce Cp
Case 4.
(i)j>Ol>0 (>0, k>0
o € .
chehepcher +C7'+1 Lepe et chesesct + gty et
Cp
(iii) k > 0 (iv) j > 0
A Cd
cochcact + cheylegteR chelep £ criegrep
Cp Co
(v)i>0, 5>0, m>0. (Vi)k>0
) Ca .
cgcfic}"—}- ey el lcgc}" ! cocbcf +c3c{f lcdc}"
Cq Cp
(vii) i > 0, m > 0 (viii) 1> 0, >0 (ix) i > 0

(

ii)j>0

Cp
i g ok p i i—1ck+1p
cochcy ety +coel ey el f

(iv) i >0

17

Ca

Ch
7 ok m ~1 k+1
e de /s ¢, cqct

Ca



Cd

chehe —|— ey lcf;rzc}” ! chedel 4 el e cfi-l—c’ 1t
Ca Cd
(x)j>01>0 (‘)'>0 m>0 (xii) 7> 0
) Ca
CJCdcf_l,_COc] 1k 1c}"+1 che? +cz lcdcf c4CaCF 4 cCact
Ca
(xiii)i>0 m>0 (ivx)m>0 (ix) L > 0
cheact + cg e tepT! chcy + Cfiﬂc}n ! i+ ¢
Case 5.
(i)i>0 (i) 1> 0
chel ey + cy tehepceptt c) ckcher + chcfcy !
(iii) k& > 0 (iv)j>0 (V)m>0
o ocf
gt + clef™ teptt cef4 e eyt P4 cF
Ch Ca Cf

Proof for Case 1 whcre k> 0.

+k
( ®c®cd)®co _> (t* ® Co) ® co —"—> c8+]+k ® q, Reform cz+]+k ® cg to

k K fat
co®(co®c CHIHRY . Then cg®citT ———> ca®(cItFtecth) ——) a®(cf T @d ).

i+1 k—1

Hence R(chclef @ co) = c» ® 4™ ey

Definition 2.14 A combinaiorial R malriz for the crystal B ®@ B’ is a map R :
Af(B) @ A(B’) —» Af(B") & Aff(B) given by

R(z% ® Zd'bl) — A9 o Ld—H(bob)],

~

where b@ ¥ — b © b under the isomorphism B® B' 5 B’ ® B. The following result
is a direct consequence of the ordinary (i.e. nol combinatorial) Yang-Bazter equation.

18



2.6 Yang-Baxter equation

Let. us define the aflinization Aff(B) of the crystal B. We introduce an indeterminate
z ( the spectral parameter) and set

AfE(B) = {z% |d € Z,b € B}.

Thus Aff(B) is an infinite set. 20 € Aff(B) will often be written as b. Aff(B) also
admits the crystal structure by e;.z%b = 29t%0(e;b), f;.2% = 23~ %0 (£;b).

Proposition 2.15 (Yang-Bazter equation). Let B™' = B;. The following equation
hold on Aff(B)) ® Aff(Br) ® Aff(By»).

(RoD(1®R)(R®1)=(1® R)(R®1)(1®R).

3 Soliton cellular automata

3.1 States and time evolutions.

Consider the crystal (B™!1)®N for sufficiently large N. The elements of (B™1)®" we
have in mind are of the following form:

...®c0®...®co®cl®...®cl®co®...®co®...’

Namely, relatively few elements are non ¢g, and almost all are ¢g. In the assertions
below, we embed, if necessary, (B™1)®¥ into (B™1)®N' (N < N’) by

(Bn,1)®N <y (Bn,1)®N”

b1®"'®bNHb1®"'®bN®CO®"‘®CO-
N'—N

Lemma 3.1 By iterating B! ® B™' — B™! @ B™! we consider a map
Bn,l ®Bn,1 Q& Bn,l _’V_) Bn,l R - Bn,l ® Bn,l}
() ® - by b ®--- by ®D,

then there exists an integer No such that b= (co)! for N > Ny.
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Taking sufficiently large N such that the above lemma holds, we define a map
T : (B"’1)®N e (Bn’1)®N by h® - -Qby+—> El & --- ®BN.

Lemma 3.2 For o fized element of (B™Y)®N as a Lemma 3.1, there exists an integer
lo such that T} =T, for anyl > Iy.

Both lemmas are cbvious from Lemma 2.13.

An element of (B™1)®V having the property described in the beginning of this
subsection will be called a state. Lemma 3.1 and Lemma 3.2 enable us to define an
operator T = lim;_,, T} on the space of states. Application of T induces a transition
of state. Thus it can be regarded as a certain dynamical system, in which T plays the

role of ’time evolution’. By the same reason, 7; may also be viewed as another time
evolution. (In this paper, time evolution means the one by T unless otherwise stated.)

3.2 Conservation laws

Fix sufficiently large N and consider a composition of the combinatorial R matrices
Rl = RNN+1 T R23R12 B Aﬁ‘(Bn,l)®Aﬁ‘(Bn,l)®N — Aﬁ‘(Bn,l)@N®Aﬁ‘(Bn,l).

Here R;;.; signifies that the R matrix acts on the é-th and (i + 1)-th components
of the tensor product. Applying R; to an clement (co)'! ®p (p = b ® - ®by), we have

Ri((co)! ® p) = Mp @b @ ® 2V @ ZE'(p)(Co)l7
Ey(p) = - S3L, Hy, Hy = HRU D b)),
where b(®) = (¢p)! and bY) (1 < j < N) is defined by

Bn,l ® Bn,l ® - ® Bn,l‘ 2§1L’1 ® & Bn,l‘®Bn,17

J

~
J

(Co)l®b1®"'®bjl—)51®-~-®i)j®l)(j).

Lemma 3.3 Let H be the energy function and —H; = —H(bY~Yeb,) € {0,1,2,...,n'}.
Then bU~1) @b; commute with e;, f; until it will get in form cicl, ®cqg — co®ch eyt
as in Case 4 in Lemma 2.13. Then by using the rule in [24] we will get —H; = 1 if

e i—1 J+1
and only if cic,, ® ca — co ® ¢ it

Proof. Use the definition of energy function in {31] to prove it directly.
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Proposition 3.4 For an element p € (B™')®V, we have
(1) Ti'Tyv (p) = TvTi(p)-
(2) Ei(Ti(p)) = Eu(p). In particular, E(T(p)) = Li(p)-

We refer to [3] for the proof.

3.3 Soliton

A state of the following form is called an m soliton state of length Iy, lo, ..., I,

Here ---[l} - -+ denotes a local configuration such as

QBRI BC 1R 1 ®CV®co®:---, (cojclj02j---jcl)
T

where ¢y means column without barred letter and ¢; € B™! with exactly two barred
letters. That means we cannot form the soliton as above when the number of barred
letter is more than two. ¢ < ¢ if and only if a; (j-th entry of c), a; < aj for all
i=12,..,n.

Remark. It would be an interesting problem to consider color separation scheme
in [34]: §4.7 ]. A reasonable choice of By such as B* 1! or B"~%! seems to fail for

n =4.

Lemma 3.5 Let p be a one-soliton state of length I, then
(1) The kth conserved quantity of p is given by Ex(p) = min(k,1).
(2) The state Tx(p) is obtained by the rightward shift by Ey(p) lattice steps.

Proof. (1) Recall that the conserved quantity Ej is a sum of local H functions
—H; = —H®bY™ ®b;). 89D @b; = b; ® b9 commutes with fi(i € 1,2,...,n — 1)
until we will get the lowest weight where f;b = 0 for any 7 € {1,2,...,n — 1}. Then we
apply fo,eo and we will get (co)* ® co — co ® (co)*. By using Lemma 3.3, —H; = 1 if
and only if (co)ich ® cg = co ® (co)i'eit!. Ex(p) is the sum of the local ~H; =1 in
the tensor product in B™!. Hence Er=min(k,1). Similarly, the statement (2) follows
from the rule (2.3) and Lemma 3.1.

Definition 3.6 For any state p, the number Ny = N;(p) (1 =1,2,...) are defined by

E = Zk21mm(k5’l)Nk, Eq =0, N;=—-E_1+2E — Ej4;.
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By Lemma 3.5, we have

Proposition 3.7 For m-soliton state (3.1), N; is the number of solitons of length I,

Ny = #{jli; = 1}.

This proposition implies the stability of solitons, since the number E;(p), and hence

N,(p), are conserved.

3.4 Type A B™*

In this subsection, we recall the crystal structure of B™* for arbitrary r, s and the
combinatorial R for B™* @ B">*. Our reference is [31]. We use the French notation
for semistandard tableau, which is upside-down from [31].

Our U;(A(nl_)l)—crystal B (1<r<n-1, s € Zso) is as a sct, identified with the
set of semistandard tableau of rectangular shape (s™) with letters from {1,2,...,n}.
For an element t of B™°, let t;; denote the letter in the 4-th row from bottom and
J-th column of ¢. We first describe the action of e;, f; for i =1,2,...,n — 1. For this
purpose, let us define the Japanese reading word of ¢ by

J(t) :w(l)w@) -~-w(s), w(j) Ztljtgj“-trj (]Z 1,2,...,5).

We then regard J(t) as an element of (B11)®("*), Namely, each letter is considered to

be an element of BL1.

The bumping algorithm is defined for a pair of tableau ¢ and single word v and de-
picted as ¢ < u. First, let us consider the casc where ¢ is one-row tableau. If £ is empty,
t < u is defined to be the tableau u with one node. Otherwise, let ¢t = t11t12 - - - t1m

and look at
titin - tim ¢ .

If t1,n < u, then define

t—u="1%1;t12 tinu

and the algorithm stops (case (a)). Otherwise, set 41 = min{i [t;; > u} and de-

fine

22



te—u=1t1 -t —1ubs, 41 tim

and we have the single word t1;, bumped out from ¢ (case (b)). Now suppose we
bhave a tableau ¢ of I rows and let ¢; be the i-th row of ¢. The bumping algorithm
t « u proceeds as follows. Set t{ = t; + w. If case (&) occurs, the algorithm stops.
Otherwise, let up be the letter bumped out and set ¢ = 13 < ;. We again devide
the algorithm into the two cases. The algorithm proceeds until it stops. If case (b)
still occurs in the highest row, we append the empty row above it.

Example 3.8 Let

23444
11122

and uw = 1. The bumping algorithm proceeds as follows.

23444 23444 <+ 2
11122 « 1 11112
And we have the answer.
3
22444
11112
Example 3.9 Let
24555
11334

and u = 2. The bumping algorithm proceeds as follows.

24555 24555 <« 3
11834 « 2 11234
And we have the answer.
4
23555
11234

For a tableau t € B™* we define the row word row t by

row(t) =trbe—y -ty i =tato-tis (1=1,2,..,7).
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Let ¢ be a tableau and w = wjus---u; a word of length [. Let ¢ + w be a tableau
obtained by applying the bumping algorithm for a single word u; successively as

(ot w) ¢ ug) -4 ) .

Then we have the following proposition to obtain the combinatorial R for B™* & B™™.

Proposition 3.10 [31] Assumet € B™™ and ¢ € B™*. Then t' ®t is mapped to t Q1
by the crystal isomorphism

B™ @ B"™ —s B"™ ® B™* if and only if t < row(t) =t « row(t).

Moreover, the energy function H(t' ® t) is given by the number of nodes in the
shape of t < row(t’) that are strictly north of the r-th row.

Note that the decomposition of B™* ® B™™ into U(,(Aftl_)l)—crystals is multiplicity
free. From this fact, it follows that for a given pair ¢ ©t we can determine £, uniquely.
To cxplain the algorithm of computing £,# we prepare terminology. Let 6 be a skew
tableau, that is, set-theoretical difference of a Young diagram from a smaller one with
letters in each node. Let 7 be the shape of 0. 0 is called a vertical k-strip if |7] = k
and 7; < 1 for any 4 > 1. The algorithm to obtain ¢,# is given as follows. Let p be the
tableau obtained by the bumping algorithm ¢ + row(t’). We attach an integer from
1 to rm to cach node of the skew tablcau p — p/, where p’ is the NE part of p whosc
shape is (s7). The integer should be labeled in the following manner. Let #; be the
rightmost vertical r-strip in p — p’ as lower as possible. We attach integers 1 through
r from lower nodes. Remove 6, from p— p’ and define the vertical r-strip 6, in similar
manner. Continue it until we finish attaching all integers up to rm. Next we apply
the reverse bumping algorithm according to the order of the labeling. Namely we find
a word 1, and a tableau p; whose shape is (shape of p)-(node of label 1), such that
p1  u1 = p. (Note that such a pair py, ;) is unique.) We repeat this procedure to
obtain us and ps by replacing p and the node of label 1 with p, and the node of label
2 and continue until we arrive at a tableau of shape (s™). Then we have

T=((- (¢ Urm) & - ++) ¢ ua) < uy and ¥ = pypm.

Note that in [31], the energy function H(¢' ®t) is given by the number of nodes in
the shape of ¢’ + row(t) that are strictly east of the max(m, s)-th column.

We introduce v as a map sending an element b of the Ué(D,(11))-crystal B™! to
vb in the U(;(Agll_)l)—crystal B2%'. The operator v will change DY to Afll_)l as a set,
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identified with the set of semistandard tableaux of rectangular shape ({2) with let-
ters from {1,2,...,n}. That means the element vb in Bf“l is the barred letter from
Ué(D,(Ll))—crys(.n,] B! read from right to lefl. We give a restriction to the clement b of
the Ué(f)gll))-cryst,ul B™ with exactly two barred letters.

Lemina 3.11 Let v : B™ — Bi’l, then veb = f,vb where b € B™ and i €
{1,2,....,n—1}.

Proof.

LHS; The action e; for ¢ # 0 act on Uq(DS))-crystal can be calculated by using the
rule called signature rule. In this case e; will change the elements in Uq(DS) )-crystal
B™! from 7 (resp. i + 1) to i (resp. 7 + 1). Finally, the operator v acts on e;b and we
can see the element 4+ commute to 7 + 1.

RHS; The map v sends the U, (DY’ )-crystal B! to U, (A, )-crystal B%'. That
means the element ¢ = vb is the barred letter from Uq(DS))—crystal B™* read from
right to left. Note that for i-signature, letter 7 (resp. i+ 1) corresponds to + (resp. —).
In this case f; is given by applying the signature rule in subsection 3.4 to J(¢). Hence,
fi will commute the elements ¢ to 7 4 1.

We also introduce v as a map sending an element b; ® ba of the U;( gl))—crystal
B @ B2 to v(by) ® v(by) in the U,(AL ) )-crystal B © B3,

Lemma 3.12 Let v : Bh @ Bo2 — B%2 @ B3| then

(1) vei(by ® b2) = fiv(b ® ba), (2) vfi(by ® b2) = eiv(by ® b2),

where by € B, by € B™2 andi€ {1,..,n—1}.

Proof.
We only prove (1). Notice that

v(b2) @ vieb) if ei(b ® b2) = eiby ® by
ve;(by @ bo) =
vieiby) @v(by)  otherwise,
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v(ba) ® fiv(by) if fi(v(b2) @ v(b1)) = v(be) ® fiv(by)
fiv(hh ® by) =
fiv(b) @ v(by)  otherwise.

Suppose the i— singature of b, ® by is given by

—ee— A —— At
R N

a b c

where q, b are for b; and ¢, d are for b;. Then by Lemma 3.11 the ¢—signature of
v(b2) @ v(by) is given by

—e— Fok —— ot
T N Y N’
c a

Thus e;(by ® be) = e;b ® by if and only if f;(v(b2) ® v(b1)) = v(b2) ® fiv(h). The
claim then follow by Lemma 3.11.

Example 3.13 We check 2.12 (1) by an example.

Letb = b @b, = | 2114324 where by € B, by € B in type

223344 3344
111223 1233

W= NI
el
[T ]
| N1

DM,
332111 (3111
““““ 1133 2244 234444
LHS = (voen)(b) =vo | | 1134322222 | _ o
223344 [2344 1113~ 111233
111223] 1233

& .
1112 111233 1113 2 111233

Rnyfuwuwo:ho( SMM)::24 34444

3.5 Scattering of solitons

The following is an cxample of the time evolution (for t = 0,1,...,6) of a state which
shows the scattering of three solitons of length 3, 2 and 1.

Example 3.14
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c® ) B L @) L @
R G R C YRS LY RPN S R ¢ B
B DL D)3 (@) ),
) @, SRS I 3 2 (2
B et ) P C N R ¢
FACI RPN C Y NP €S RN L B @ @

1 1 1 2 3
where c(®) = 2 , ¢4 = 3 , ¢ = 1 , 2 = 4 , ) = 4

4 4 3 3 2

3 2 2 1 1
Example 3.15
e®) g4 2 . ) . L L F2)

&5 &2 . 4 &6 1) | @
&® 2y L AW 1) &3 &)
&5 &2 & Z3) ZB3) E(2)
&®) &2 L &2) . . &3 3 F2)
PO N CO R ¢) B L &3 F3) @

1 1 1 3 4

2 3 1 5 5
where 8 = 5 , &4 = 5 , &= 5 D= 4 , dV = 3

4 4 3 2 2

3 2 2 1 1

We introduce a labeling of solitons of length ! using Aff(B™!) for Ué(DS)). Suppose
there is a soliton of length {--- ® ® ¢ 1Q® - ®ec1 @ - (g = ¢—1 = - = ¢1) and
R IQ - ®E®--- (G = &y > --- > ¢1) where ¢j, & € B™! in (2.2) and
(-) means column without barred letter at time . Say it is at position (), if (¢;) and
(¢) is in the ~(t)th tensor component of B®L. From Proposition 3.4 (2), the posi-
tion (¢) under the time evolution Ty is given by v(t)= min(k, [)t+ v (min(k,I) is the
velocity and + is the phase) unless it interacts with other solitons. To such a soliton
we associate an elements z~Y(¢y,--- ,¢;1,¢) and 27 (é1, - ,&-1,6) € AF(B™!) for
Uy (D).

Now consider a state of m solitons illustrated as below.
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..... 23T 125 1O OO

We assume solitons are separated enough from each other and 1 > I3 > -+ > [,;,.
Since longer solitons move faster, we can expect that the state turns out to be

after sufficiently many times evolutions. (The proof of this fact is the same as the
main theorem.) We represent such a scattering process as

29b) ® 2%2by @ -« - ® 25mbpy > 2°mbl, @ -+ ® 2°2b © 1Y,

Here 2%b;, 26 b; are elements of Aff(B™%) under the identification in the previous
paragraph. With these notation, the scattering process in Example 3.14 is described

as

22cPeDe®) @ 273 (cWe@) @ 27%(cP) 5 275 (™) ® 273 (P M) (3.2)

Z—S (c(2) C(B) 0(3) ) .

Let us recall some useful fact derived from representation theory. Note that U‘;(Dﬁll))
contains Uy(An—_1) as subalgebra. This fact can be translated into the language of

crystals and guarantecs that
T}, commutes with e;, f; (i =1,2,--- ,n— 1) on Aff(B™h) ®---® Aff(B™').

Here the action of e;, fi (i = 1,2,---,n ~ 1) on the multicomponent tensor prod-
uct can be calculated using signature rule explained in Subsec. 2.3. By the actions,
the power of z in an element of Aff(B™!) is unaflected. We call this property Uy (A, —1)-
invariance. This property is also used to prove our tcorem. For instance, if we admit

in Example 3.14, we can show that

CZ(ZU(C(a)C(4)C(5)) ® Z_S(C(I)C(z)) ® 2_9(6(2))) — ZO(C(3)C(4)C(5)) ® Z_5(C(1)C(1)) ®
279 ?) ea(z278(c®)®z3 (M) 0275 (cP D)) == z—"'(c”’))@z"“(c“)c(‘*))@
Z‘s(C(l)C(Z)C(B)).

Of course, this invariance is valid in the intermediate stage of scattering. To prove
the theorem we need the operator v in the Lemma 3.11 and Lemma 3.12. The oper-
ator v as a map sending an element b; ® by of the U;(Dsll)}crystal B™it @ B2 to
v(ba) @ v(by) in the Ué(A(l) )-crystal B5" @ B%"*. The main results of this paper are

n—1
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the following.

Theorem 3.16

(1) Let by € B™1, by € B™'2 and the number of barred letters in each column in B™h
and B™'2 is 2. The two body scattering z°'by ® z°2by — 2%b, ® zflli)l of solitons of
length I, and length Iy (I; > l3) under the time evolution T, (r > lp) is described by
the combinatorial R mairiz for Ué(AS_)I){rystals:

AR(BL")®ARBLR) ~Aff(BS )@ Af(BY"),
2%ty Q 20ty 210 @ 2270, where § = H(ta @ 1) — 2.
Here t; = v(b;), & = v(b;) fori=1,2.

(2) The scattering of solitons is factorized into two body scatterings.

Some remarks may be in order.

(1) The combinatorial R matrix in Theorem 3.16 has an extra 2l in the power
of z. However, the Yang-Baxter equation (Proposition 2.15) holds as it is.

(2) Although we do not consider the case where there exist solitons with same length,
some part of the results can be generalized to such situations. Let us consider the state

...[Ck]....[ck] ..... .‘[cb]....[cb] ........ [ca]....[ca] ...... y
Nt e’ N — N s’
Nk Nb Na

consisting og N; solitons of length j (1 < j < k). By the same argument given
the following proof, we can show that the scattering of these solitons is factorized into
scattering of two bunches (1 < j <1 < k)

[Cz][CZ] ..... [CJ][C:’] ...... y .
N —

N; Nj

We conjecture this scattering is described by the product N;N; combinatorial R ma-
trices Aff(BY")®Aff(B%7) ~ Aff(B%?)®Aff(B%"). This conjecture is trivially true if
each solitons are separated enough.

Example 3.17 Using the Theorem 3.16, the scattering process in Example 7.14 is
calculated as
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22(c®, @ 3) @ 275(cM), @) @ 279(c@) = {2°(c®, W, ®) ® z75(cV, @)} ®
279%c®) — {Z—5+4(C(4),c(5)) ® 20—4(0(1),6(2)70(3))} ® 2—9(6(2)) = z71c®, ) ®
{2—4(6(1)70(2), 6(3))®Z—9(C(2))} — z“(c(“),c(5))®{z*9+1(c(l))®z*4*1(c(2), ¢ 3} =
{z71c™®,c®)) @ 278(c)} @ 273(c@, @), c®)) s {278+2(c®)) @ 271 72(cD, )} @
275(e?, @, ®)) = 27%(c®) ® z273(c®, M) ® 275, )| ),

The result is independent of the order of the scatterings due to the Yang-Baxter

equation.

Example 3.18 Using the Theorem 3.16, the scattering process in FExample 5.15 is

calculated as

20(5(2)’5(4)75(5)) ® z74(EM, B Z—9(5(2)) = {20(5(2),5(4)75(5)) ® 2—4(5(1J’5(3))} ®
279 = {2743 60 © 20-3(5(1),5(3)’5(4))} ® 2—9(5(2)) = z"1&?,e0) ®
{z73(EW @) M @z79(c@)} s 271 (E? | E8)R{270T (&)@ 737 1(e@ &3 é3)} =
{2—1(5(2), N e z*8(5(2))} ® Z~4(5(2)’§(3),5(3)) — {Z—8+2(5(5)) ® Z—1~2(5<2),5(2))} ®
2746, &3 E3)) = 278(E®)) @ 2736, 8D © z~4(&@), &3 &3)),

The result is independent of the order of the scatterings due to the Yang-Baxter

equation.

Proof of Theorem 3.16. (1) Two-soliton scattering rule: Due to the Uy(An_1)-
invariance, now we check the rule for the highest weights clements (¢, )*Q((ca)?, (e)*, (cg)™) €
Bt BUEHA™ (35 k4 14+ m, i.e. such that e;(bo®b)) =0 for any j = 1,...,n—1).

This corresponding state is given by

R0 R ROV RCOPVCIR - RCIRE R - QD RDC, DR R .
—_— — £

b1 }I m k T
(3.3)
where,
n-—1 n—2 n—3 n—3
n 7 n—2 n—2
n—2 n—1 7 n—1
R . . n
Cq = ’ Cy = 3 Cq = s Cf:
2 2 2
1 1 1

and cp is the column of height n without barred letters.
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Now consider the time evolution by Tkqi1m+1. If 5 > I, (¢,)* moves with velocity
k+1+m+1and ((c)!, (ep)*, (ca)™) with k +1+m. At some time,we arrive at the
state

-

"'®Ca®"'®ca®co®"'®Cq®fd®"'®c¢£®gb®"'®Cb®§a®"'®Ca®"'

N ' ==~ -~
i max(0, l-m) m k 1

(3.4)

Using Lemma 2.13, we see the state after ¢ time units from this moment as below.
Case m > l. We separate it into several phases.

Phase 1 (0<t<m—1).

"'®CO®”'®CO®CG®"'®ca®cf®“'®cf®cd®"'®cd‘®cb®“'®cé®

(k+l+m+1)t i—t t m—t k

(3.5)

Ca®...®ca®...
N——
1

Phase 2 (m— 1<t <i—k—2l).

BB RV RCRCFRRCEGFRGUY - RVCIRGHR - QX
= A 11 k

(k+l+m+1)t i—t m—1

(3.6)
ca®...®ca®...'
e’
t+2{—m
Phase 3 (a<t<a+m—1) wherea=i—k-2L

BB QRO B RCFR RV - BCIRGR -V ®
at(k+l+m)t . t+i-2a ot I+t—a e

(3.7)
Ca®"'®ca®"‘
T
1—K—m
Phase 4 (m — 14+ a <t) where a =14 —k— 2L

BB BB D BB BRI B CgRGHD R ®

T

(k+l+m)t+a m+k+! t+l-m—a m k

(3.8)
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Ca®...®ca®...
N’

i—k—m
After t > m — | + a, the solitons never interact again.
Case 2 (0 < m < ). We separate it into several phases.

Phase 1 (0<t<i—k~—1—m).

B ® BB OB RO RO VIR ® RO

'

(k+l4+m+1)t i—t l-m m k

(3.9)
ca®...®ca®...
e e’
1+t
Phase 2 (8 <t) where 3=i—k—-1—m.

R DR D DO D BRI DCgRGR B ®

(kt+l+m)i+8 k+l+m l+t—m—8 m %

(3.10)

ca®...®ca®...
———————

i-k—m

After t > (3, the solitons never interact again. Now we have to investigate the time
- evolution by T;.. Note that

T vmat = Tivrgma T2 (> k+1+m).
If a and b are sufficiently large, we can reduce the observation of the scattering by
T, in the right hand side to that by Tk 4m+1 in the left hand side, which we have just
finished. Let & (resp. d2) be the phase shift of the soliton of length ¢ ( resp. soliton of

length (k + [+ m)). They are given by

Case 1 (m > 1).
S=(ktlitmittat(mtktl)r@Etl-m)—a—(ktltmit)t=20+k

Go=(k+l+mit+(i—k-20)—i—(k+l+m)t=—(20+k).

Case 2 (0 <m < ).



b =(k+l+mit+8+(k+l+m)+(l+t-m—-p8)—(k+1l+m+1)i=20+k.
o=k+l+mit+@G-—k—-l-m)—i-(I-m)—(F+1+m)=—(2l+k).

Let I, = k+ 1+ m. Applying v we see the scattering rule agree with the onegiven
by the combinatorial R matrix. Usce the information from (3.1) to investigate the

combinatorial R matrix before two solitons collide each other. Let

i - n ---n i\ . n—2-..-n—2 n -+ n n ---n
1 = 2 —

n-1---n~1 n-3-n-3 n-2---n-2 n-1---n-1
S— " o

l
(3.11)
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Use the information from (3.8) or (3.10) to investigate the combinatorial R matrix
after two solitons collide each other. Let

n—1---n—1 n—3--n—-3 n-2.--n—-2 n—-1---n-1

~

k5>
-
I

k i—k—m

(3.12)

k+l+m m

Then we apply the Schensted’s bumping algorithm to decribe the combinatorial R

matrix.
p =1, < row(tz) (before collide), p = t1 « row(ty) (after collide).
n n
_n-1l-n-1 n - n
n—2---n—2 n—-1---n—1 n o---n n o--n
n-3---n-3 n-2--n-2 n-1.--n-1 n-1---n-1 n --- n

el

~
m k i—k—m i

Here, the energy function H(ty ® 1) (resp. H (t2 ® i1)) is given by the number of
nodes in the shape of #; « row(fg) (resp. {1 « row(fy)) that are strictly north of the
2nd row. Since H(t; ® {) = H(t; ® t)) = 2m + k, we have desired result.

Next we consider elements that are not neccessarily {1,...,n — 1}-highest. Let two
solitons before scattering is described as
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2°1h; ® 2°2by.
Then applying e;(j =1, ...,n — 1) we get the highest weight element.

€q,---€q,, (ch b ® z¢2 bz) = z4 Bl & z¢2 62

The state can be reduced to

Ca® - VCRCDO VR ® VGOV - Qb RC Q- V¢ .

-~

j m k l

~
T

Assumei)lzca@)-'-@c,, andlA)z:cd®---®cd®cb®---®cb®ca®---®ca. Then
N , N ¥ b a

: m A e

TlNeal...eam (2611 ® 2%2Dy) = TlN(zcllA)l ® zCZBg) where ay,...,am € {1,..,n—1}.

Consider the time evolution by T}, ... 1 (%151 ® 2¢2b3). For case m > I, we will
arrive at the state in (3.5),(3.68), (3.7) and (3.8). After t > m — [+ a the solitons never
interact again. For case 0 < m < [, we will arrive at the state in (3.9) and (3.10).
After t > i — k — [ the solitons never interact again. Then the state of solitons becomes

Tty mer (2 by ® 292by) 1y 202~ (2R, @ et ARG, (5= (20 + k))

* Finally, recommute the state with f;(2%21%by © 2¢1%b;) where j = 1,...,n — 1. Then

we will get
fam "‘fﬂl (ZCTHSBQ ® ch_éi)l) = ZCTHSF)Q ® Z(’.l—éi)l.

Assume Tlﬁl+m+1 2 290D & 292by > 2%, @ 279, Use v in both sides to get

Ué(ASll)—crysmls.
v(zhy @ 2%bg) > (22 1 oby @ 29 Oh)).
Hence 2%ty ® 29t + 271104, ® z6279¢,.
where t;, to, t; and #; are barred letters from by, by, by and by yielded from v.

See Lemma 3.11 and 3.12 for more details about v. Therefore we are left to show the
above map is realized by the combinatorial R matrix.
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Let fi,...fi,(t2 ® t1) = &2 ® &1 where i € {1,...,n —1}. We know H(t; ® t;) =
H(t; ® fl). This agree with the fact that the phasc shift does not change by applying
e t€{l,...,n—1}).

Let R(ig ® il) = il ® £2. Then, eil...eilR(fg ® fl) = eil...eilfl ® t:2
Reil €5, ('Ez ® il) = €4 ...eilfl ® iz

R(t2®t1) =t ® ta.

Finally z°%t; ® 2°t; — 27 %%; ® z°2%9%%, is described by the combinatorial R ma-
trix.

(2) Factorized property: We illustrate the proof by a scattering of three solitons
of length 3, 2 and 1. Other cases are similar. Now the initial state is

Use similar technique to [1]. By applying the operator T (a > 0) we have scat-
tering of [2] ® [1] and [3] ® [1].

After this the time evolution 7 act trivially. On the other hand, these evolution

can be written as
TTiTS = Té’TgTC.

In the right hand side, we first observe three-soliton scattering caused by T (¢ > 0)
and then TPT¢ act trivially. Hence, the three-soliton scattering in the right side is
factorized into 3x (two-soliton scattering) in the left hand side.

Example 3.19 Let
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oD = o2 — o) — FON o(6) —

N R Wi
W NI
= W NI
N =
Lo D

N W Wl

We use Theorem 3.16 to describe the scattering process for z°(c), ¢, ¢ D) ) (6))
z”7(c(2),c(4),c(6),c(6)). Let by € B*% and by € B** where B*® and B%* are the
U;(DLI))-crystal, Use v in Lemma 3.11 and Lemma 35.12 to send the elements b; and

by in U‘;(Dg))—crystal to Ué(ASllll)-crystal. Then we will get

(b ®by) =t, ®1 here t, = Soidd 2244
v = where t; = , = .
rer e e YT 9112337 7T 1112

By using Proposition 3.10 we have

410 48

312 311 3o

9 2 224444 4y

1 1 111715234,

p=t« row(t)=

Here, the energy function H(ty ® t1) s given by the number of nodes in the shape
of t1 <~ row(ts) that are strictly north of the 2nd row. So, H = 5.

2344
Since P12 = 1933 and U12U11 U0 UQUSUTUs US UL U3 UL U] = 121214141424

phase shift=H (t, ® t;) — 2l3 = 5 — 2(4) = —3.

2244 234444 224444 2344 . 224444 - 2344
& =~ ® where t, = , to .
1112 111233 111112 1233 111112 1233

Hence z7 "ty ® 29, — 273 @ 27 4,.

Example 3.20 Let

6(1) — 6(2) =

=N W O
[l N, TR L]
oL
&

H
[N R L B N |
o
=
I
N s O W

36



We use Theorem 3.16 to describe the scatlering process for z=*(¢(1), e e™) ®
2=&@). Let by € B> and by € B™! where B5® and B! are the Ué(D,(,,l))-crystal.
Use v in Lemma 5.11 and Lemma 3.12 to send the elements by and by in Ué(D,(,l))—

crystal to Ué(A(lll)-crystal. Then we will get

n

345 5
ty =

v(bi b)) =t ®t1 wheret; = 114 .

By using Proposition 3.10 we have

S
p=t+row(t’)= 34, 4,
115 33 51

Here, the energy function H(t2 ® t1) is given by the number of nodes in the shape
of t1 < row(tyz) that are strictly north of the 2nd row. So, H = 1.

5
Since p12 = 3 and ugususUsugu; = 141435

phase shift=H(t2 ® t1) — 2lp =1 - 2(1) = —1.

345 5 5, M5 pere i P g _ 445
~ where 1, = , = .
114 3 3 113 g P13

Hence z7%, ® 273, — 2741 ® 2z~ 81,.
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Part 11
KKR TYPE BIJECTION FOR

THE KIRILLOV-RESHETIKHIN
CRYSTAL B%! OF THE
EXCEPTIONAL AFFINE
ALGEBRA EY
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4 Introduction

Kerov, Kirillov and Reshetikhin [17] introduced a new combinatorial object, called
rigged configuration through Bethe ansatz analysis of the Heisenberg spin chain. The
bijection of IKerov, Kirillov and Reshetikhin [17, 18] is a bijection between semi-
standard Young tableaux and rigged configurations and yields a fermionic formula
for the Kostka-Foulkes polynomials. Subsequently, Nakayashiki and Yamada [23] have
shown that the set of paths I’(B, )) is in bijection with the set of semi-standard Young
tableaux SSYT(A, ) of shape A and content p = (uy, pi2, .-.), and the energy function
corresponds to the cocharge of Lascoux and Schitzenberger [21]. In [19], this bijec-
tion was generalized to B = ®;B"7:% of type AE}} 1 and show the bijection between
Littlewood-Richardson tableaux and rigged configurations.

Taking generating functions on both sides of the bijection, we obtain the so-called
X = M Theorem (see [29] for review for type Asllll). In [6, 5] such an equality X = M
are generalized and conjectured for any affine type by assuming the existence of crystal
bases for certain finite-dimensional modules, well-known as Kirillov-Reshetikhin (KR)
modules, for quantum affine algebras. Hence, it is natural to expert that a similar
bijection exists also for these generalized cases. For the X side, [14] and subsequently
[2} discovered the crystal bases for KR modules of nonexceptional types. Imitating
the one by KKR a bijection between rigged configurations and highest weight paths
consisting of elements of KR crystals for nonexceptional affine types other than Agll
was subsequently constructed in [27, 28, 30]. These bijections have an important
application for the analysis of the ultra-discrete integrable systems, also called box-
ball systems [3, 4, 7).

Io

16
(o] o] O lo]
1 2 3 4 5

Figure 4.1: Dynkin diagram for Eél)

In this paper we consider the KR crystal, named as Eél), for the exceptional affine
algebra Eél). We construct a map ® from rigged configurations to highest weight
elements of (B%!)®L by executing a fundamental procedure § repeatedly. We then
conjecture that ® is a statistic-preserving bijection (Conjecture 7.14). It is worth
mentioning that our procedure only uses the crystal graph structure of the KR crystal
B%! hence similar constructions could be possible for other exceptional types. We
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remark that there is a preceding work [25] which treats B! for type Eél). Ours has a
different algorithm compared to [25] because we must consider the element ¢, unique
element in the highest crystal of weight 0, in the crystal graph. We also introduced
”quasi singular” where we still remove the box although it is not singular with certain
condition. In this paper, we will give many examples supporting the conjecture.

5 Level 1 Perfect Crystals

In this scction, we recapitulate the theory in [1]. Following [1] we give a uniform con-
struction of level 1 perfect crystals for all affine Lie algebras.

Let J = {0,1,...,n} be an index set, and let A = (a;;); jecs be a Cartan matrix of
affinc type. Thus, A can be characterized by the following properties: a;; = 2 for all
i€ J,a;; €Z<o, and a; ; = 0if and only if a;; = 0 for all 4 # j in J. The rank of A is
n, and if v € R**! and Av > 0 (componentwise), then v > 0 or v = 0. We assume A
is indecomposable so that if J = J'UJ” where J' and J” are nonempty, then for some
i€ J and j € J”, the entry a; ; # 0. An affine Cartan matrix is always symmetrizable
— there exists a diagonal matrix D = diag(s; | ¢ € J) of positive integers such that

DA is symmetric.

The free abelian group
QY =Zhy & Zhy ®---DZh, & Zd (5.1)

is the extended coroot lattice. The linear functionals The linear «; and A; (3 € J) on
" the complexication h = C ®z QY of QY given by

(hj, ai> = ai(hj) = Qj3 <d, Oti> = ai(d) = 51',0

’

<hj,A,‘> = Az(h]) = (Si’j <d, A1> = Az(d) =0 (Z,_] € J)

are the simple roots and fundamental weights, respectively. Let [ = {e; | 2 € J}
denote the set of simple roots and [ = {h; | i € J} the set of simple coroots. The
weight lattice

P={\eb" | \NQ¥CZ) (5.2)

contains the set PT = {A € P | A(hi) € Z>o for all i € J} of dominant integral
weights. The affine Lie algebra § attached to the data (A,[[,]]", P, Q") has genera-
tors e;, f; (i € J), h € b, which satisfy certain relations ( see for example [12] or [10],
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Prop. 2.1.6]).

The canonical central element ¢ and the null root § are given by the expressions

c = cghg +crhy + -+ cphy, d =doao+d1og + - + dpoy, (5.3)

where ¢g = 1 and dg = 1. The first term comes from the fact that the center of the
corresponding affine Lie algebra § is generated by c, while the second comes from the
fact that the vector [do, dy, ..., d,]t € C™t! spans the null space of the cartan matrix
A. We say the dominant weight A\ € P* has level [ if (¢, \) := A(c) = L.

Since the perfect crystals reveal much about the structure of crystal bases for irre-
ducible modules, which in turn can be used to compute their weights and characters,
our goal in the subsequent sections will be to construct perfect crystals for all affine

Lie algebras and to calculate the corresponding energy functions. Let § be an affine
Lie algebra and let

0 =diay + -+ dnan

where the d; are as in (5.3). Thus, when g = x8M ( the so-called untwisted case), @ is
the highest root of g.

Let B(0) denote the crystal graph of the irreducible Uy(g)-module Ly(#). Thus,
the crystal graph B(#) corresponds to the adjoint representation of g( with highest
weight the highest short root). In the untwisted case equality holds, A = & U {0}.

Let ®1 and &~ = —®* denote the positive and negative roots respectively of g.
Set At =AN®*, A~ = —A", so that A = AT U{0} UA~. Then we write

B@)={z,lac AT}U{y; |as e At}u{z o |ae AT}
Hence in the twisted case, B(8) = {z41q | ¢ € @} U{y; | i =1,...,n}.

Set B(0) = {@} which we identify with the crystal graph of the one-dimensional
U,(g)-module L4(0). As we argue below, the set

B = B(6) U B(0) (5.4)

can be endowed with a crystal structure as follows:
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(i#0) 2o Bz5<=a—-a;=8 (o,B€EAN), (5.5)

T AN Y AN T_a, (0q €AT),

(i=0) zo Dzge=a+60=5 (a,f#=0), 050D zs  (5.6)

Our approach to proving this can be summarized as follows. We forget the 0-arrows
in B® B and view it as a crystal graph for the quantum algebra U,(g) associated to
the simple Lie algebra g:

B® B = (B(8) ® B(9)) LI (B(¢) ® B(0)) U (B(0) ® B(#)) u (B(0) ® B(0)). (5.7)

Since crystals corresponding to simple modules are connected, it sulfices to lo-
cate the maximal vectors (e;b = 0 for all ¢ € J\{0}) inside the components on the
right and show that they are all connected to one another by various é-arrows for ¢ € J.

There are obvious maximal vectors inside B ® B,
(1) zp & o

(2) z2g®¢

(3) pwzo

1) ¢

(5) zog®a_p

and they can be connected as displayed below:

¢®¢g>(/)®z0 m‘)(/)@(l?_g 9—).1‘9@:1:_9 g)a:g@d)—()—)zg@wg
where = indicates that an appropriate sequence of Kashiwara operators f; with
1 € J\{0} has been applied. All other maximal vectors have the form

(6) zo » Tg—qo for some a € AT or
(7) zp ® y; for some i such that o; € AT,

6 Affine Algebra Eél) and the KR Crystal

6.1 Affine algebra Eél)

We consider in this paper the exceptional affinc algebra Eél). The Dynkin diagram is
depicted in Figure 4.1. Note that we follow [25] for the labeling of the Dynkin nodes.
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Let I be the index set of the Dynkin nodes, and let o;, @, A; (¢ € I) be simple roots,
simple coroots, fundamental weights, respectively. Following the notation in [12] we
denote the projection of A; onto the weighl space of Eg by A; (i € Iy := I\{0}) and
sot P = 691’610 ZA;, = @ielo Zzox,‘ Let (Cij)ijer stand for the Cartan matrix
for Eél). Namely, Cj; =2 (i = j), —1(¢ ~ j), 0 (otherwise), where i ~ j means that ¢

aud j are adjacent in the Dynkin diagraimn.

6.2 KR crystal B%!

. Let g be any affine algebra and U, (g) the corresponding quantized enveloping alge-
bra without the degree operator. Among finite-dimensional U,(g)-modules there is a
distinguished family called Kirillov-Reshetikhin (KR) modules |20, 22, 9]. One of the
remarkable properties of KR modules is the existence of a crystal basis [15] called a
KR crystal. It was conjectured in [6, 5], and recently settled for all nonexceptional
types in {26]. The KR crystal is indexed by (a,1) (a € Iy, i € Z~o) and denoted by
B%t. For exceptional types the KR crystal is known to exist when the KR module is
irreducible or the index a is adjacent to 0 [14].

The KR crystal of type g = Eél) we are interested in this paper is B! and the
crystal structure is taken from [1], hence, it is the level 1 perfect crystal in §5 in the the
case of g = ES". The crystal structure of B! is depicted in Figure 6.1. Here vertices
in the graph signify elements of B! and b 4 ¥ stands for fib = b’ or equivalently
b= e;b’. We adopt the original convention for the tensor product of crystals. Namely,
if By and B, are crystals, then for b; ® by € B; ® Bs the action of e; is defined as

eib1 ® by if pi(b1) 2 £4(ba),
ei(bl ® bz) =
b1 ® e;by if else.

where £;(b) = max{k| e*b # 0} and ;(b) = max{k| f¥b +# 0}.

In what follows in this paper we assume B = B%!. The set of classically restricted
paths in B®L and A € P is by definition

P\ L) = {be B® |wt(b) = A and e;b = 0 for all i € iy} (6.1)

Then the following two are equivalent.

(1) b is classically restricted path of weight A € P

(2) by ® --- ® by, is classically restricted path of weight A — wt(br), and £;(by) <
(A —wt(br), ) for all i € I.
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The weight function wt : B — P is given by wt(b) = Y_,_;(:(b) — &;(b))A;. The
weight function wt : B®L — P is defined by wt(b; ® - -- ® br) = Zle wt(b;).

In Figure 6.1 we show the crystal graph for By. In this case By be the subgraph
obtained by ignoring the 0-arrows form B%!. All the O-arrows are listed below.

[63]%[e] >  [w]=>[3]  [2]>[4)  [68]>[5]
[o]  [es]>
* [20]

0
_)
5% [31] 62] 2

—
o

0 0
- -

\Lo
& O
\Lo

N
Ny

0 0
- —

o ~
g (g [3
\Lo
N EREIEY
E =
Qe
g (& [3]
[\
B
(S L0 I =]
[S 18 I N |
gl [g] [
Bl

\Lo
2|
—
B
E
[=>]

o 0
- -

®SE (NSO

The correspondence between the number in the graph and the crystal clements is
given below, where 0 = oy + 2as + 3oz + 204 + as + 2a5.

= Tg, = To—as> = Th-ap—wzs = T-ag—az—ay>r = Th-ag—-az—as—as,

= To-as—az—az> = Lh-asg—az—as—az> = T-ae—as—as—az—as>

@ =Th-vg—az—as—oaz—oas3; @ = T—as—2a3—as—az—as> @ = Th-ag—203—201—a2—0Qs

v = Th—2a5—a3—0g—02—03s = T8—2as—2a3—agq—az—an = Th—-2ag—203—2a4—az—as
= TH—206—3a3—2a4—az—as> = To—2as—3as—2as—2az—as> = T9—ag—az—az—aq s

= To—ag—as—aa—0r—a1)> = Th-—ag—az—ag—agy—o5—a1s = Th—ag—2a3—ag—~az—aq>
= T)—-2as—2az3—ag—az—a1 = T)—ag—as—2a3—as—az—ay

= T—2a6—a5—203—a4—2—ay 3 = Th—ag—as—203—2004— g — 1)

= T9-206—as—2a3~20s—0z—0 = Th—206—a5 -3y —204—a2—ar)

= Th—ag—203—0g—2u0—a1 = Te-2a5—203—aq4—202—a1s

= To—asg—as—2as—ag—202 ~a; = TO-2a6—a5—2a3—as—2az—ai>
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Figure 6.1: Crystal graph of By for B%!
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= Tf-ae—as—2az—204~202—a1) = Th-2a¢—as—2a3—2a4—2az—a1s

= T6—2a6—3as—as—2az—a1s = TP—2a6— s —3az—ag—2as—ays

= X9—206—3a3—2a4—203—a = Th—~ag—as—-3a3—204—-2ap— 03

:yly :x—ala :y27 ::L'—a;n :yS; :x-agy

= Y4, : T—ay : Ys, =T-as, = Ys, = ZT—qg)

= x—al‘aﬂi = x~0t1—0'2‘037 = x—al—az—aa—asa

=Teqy—ag—az—aqgr =T -a;—az—az—os—as: =Ty —ap—a3—04—0ss

=T-—ar1—az—az—og—as—ae> =T—o;-az~2a3-0s—06s

= T—a1—ap—203—0q4~a5 =063 = T—qy —og—2a3—2004 — 05 — g 1

=T-a;—-2a3—203—as—0es = T—a;—202-2as—04—as—ags

= T—ay—2a3—2az—2as—0as—aes =T—a;—2a3—3as—2a4—as—as s )

= T—a;—2a3-3az—2a4—as—2as> =T—as—as»

| =T—ag—ag—az—ag) = T—qp—g—5—az—ags = T—p~ag—as5—2003—vg)

' = T—ay—2a4—as—203—ae v =T —az—ag> =T_az—ays

= T-az—ag—ae) = T—az-as> = T-az—az—as>

=ZT—az-az—aqr = I—a;—a3 —0g—0vg ) =T—ay—as—as—as—ags

= T—ay—2a3—0s—ae = ¢.

Example 6.1 The element

b=[1]-[2]-[3]-[7]-[9]-[2]-[46]

of B®7 is a classically restricted path of weight 2A, + As + Ay. The dot - signifies
&.

= x—oq—as—aaa

-~
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6.3 One-dimensional sums

The energy function D : B®L — Z gives the grading on BYL. In our case where a
path is an clement of the tensor product of a single KR. crystal it takes a simple form.
Due to the existence of the universal R-malrix and the fact that B ® B is connected,
by [13] there is a unique (up to global additive constant) function H : B® B — Z
called the local energy function, such that

Hbeb)+1 ifi=0,and eg(b®V) =epb@ V¥,
H(e;(b®V) =q HO®V)—1 ifi=0,and eg(b@ V) = b® eol, (6.2)
HbeV) otherwise.

We normalize H by the condition

# ([1]e[1]) ~o. (6.3)

More specifically, the value of H is calculated as follows. Firstly, one knows the crystal
graph of By ® By decomposes into five connected components as

By ® By = B(2A4) ® B(A3 + Ag) ® B(A; + As + Ag) ® 3B(Ag) © 2B(0)

where B{)\) stands for the highest weight Fg-crystal of highest weight A and the highest

weight vector is given by ®, ®, ®, ® and ®. H is con-

stant on each component, and takes the value H (®) =0,H (®) = —1 and

H = -2 for the rest. One can confirm it from the fact that €2 ( ® ) =1|®

and eg ( ® ) =|1|® belong to the first and second component. Before this,
we also need the value of H = —1 for all H(1 ® ¢), H(¢® 1), H(¢ ® ¢). With this H
the energy function D is defined by

L-1
D(by®---®br) = > (L—j)H(b; ®bj11). (6.4)

=0

where by = . Define the one-dimensional sum X (), L; q) € Zxolg™'] by

X(\Ligy= >, ¢°® (6.5)
beP(AL)

47



7 Rigged Configuration and The Bijection

7.1 The fermionic formula

This subsection reviews the defination of the fermionic formula from [5, 6]. We at first
provide the definition that is valid for any simply laced affine type g and datum L,
and then restrict g and L to Eél) and the case corresponding to paths we consider in
this paper. Fix A € P and a matrix L = (Lga))ago,iezw of nonnegative integers,
almost all zero. Let v = (mﬁ")) be another auch matrix. Say that v is an admissible

configuration if it satisfies

Z im¥a, = Z iRy — A (7.1)
a€lg,i€Z~0 a€ly,i€Z~0
and
P9 >0 forallac Iand i€ Zso, (7.2)
where

pga) _ Z <L§a)min(i,j) — Z(aalab)mln( ,J)m (b )) (7.3)

JE€Z>o bely

" Write C'(), L) for the set of admissible configuration for A € P* and L. Define the

charge of a configuration v by

Z Z (g | )min(y, k ]- Z Z min( ],k)L(a) (a).

a,b€ly j,k€ZL~o a€lp j,k€Z%0
(7.4)
Using (7.3), c(v) is written as
1 a . .
c(v) = -3 Z pga) (@) 4 Z min(j, k)Lga)mgca) (7.5)

aEIo,i€Z>o aelo,j,kEZ>0

The fermionic formula is then defined by
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'ITL()
ma= ¥ T 0] &

veC(AL) a€lp i€Z>o

We now set g = Eél) and

L = Losbs  (a € Io,i € Zso) (7.7)

The latter restriction corresponds to considering paths in (B%!)®L. By abuse of
notation we denote the fermionic formula under the restriction (7.7) by M(\, L;q).
Then the X = M conjecture of [6, 5] states in this particular case that

X(A\L,q) = M(A L q). (7.8)

7.2 Rigged configuration

The fermionic formula M (), L; ¢) can be interpreted using combinatorial objects called
rigged configuration. These objects are a direct combinatorialization of the fermionic
formula M (A, L;q). Let v = (mﬁ“))ae Io.icZ, be an admissible conﬁguratlon We iden-
tlfy v with a sequence of partitions {v(®)},cy, such that v(®) = (1m Ygm’ -+). Let

= {J% } (a,i)eloxZso D€ & double sequence of partitions. Then a rigged conﬁguratio‘n
is a pair (v, J) subjek to the restriction (7.1) and the requirement that J = {J%*} be
a partition contained in m( ) x pE ) rectangle.

For a partition p and i € Z+, define

Qi(u) = Zmin(u]—, i), (7.9)

the area of u in the first ¢ columns. Then setting QE“) = Q;(¥'*) the vacancy number
(7.3) under the restriction (7.7) is rewritten as

P = Loas ~ 201 + QY (7.10)
b~a
where b ~ a stands for Cp, = —1 as desired in subsection 6.1. The set of rigged

configurations for fixed X and L is denoted by RC(A, L). Then (7.6) is equivalent to

ML= Y ¢, (711)

(v,J)eRC(A,L)
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where
c(v, J) = e(v) + |J| (7.12)

with c(v) as in (7.4) and |J| = £, jyeroxzso [77]- The set RC(X, L) with the re-
striction (7.7) is denoted by RC(A, L).
Example 7.1 A rigged configuration in RC(2As,3) is illusirated below.
ol 1o OBO o[ ]o OBO ol Jo QBQ
0 0 0 1
0
We have c(v) = =5, ¢(v, J) = —2.

Example 7.2 A rigged configuration in RC(A; + As,3) is illustrated below.

1o oo o[ Jo 0[]0 11 oo
0 0 0 0
0 0 0 ] 0
0 0
0
We have ¢(v) = -7, c(v,J) = —6.
Example 7.3 A rigged configuration in RC(A; + As, 3) is illustrated below.
11 oJo o Jo oo 1o o[]o
0 0 0 0
0 0 0 0
0 0
0
We have c(v) = -7, c¢(v,J) = —6.
Example 7.4 A rigged configuration in RC(A, + As,3) is illustrated below.
ol Jo o 1_1o o 1o o[ ] Jo oo o ]Jo
010 0 o 1o o[ [0
110 L 10

We have ¢(v) = -5, c(v,J) = —5.
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Example 7.5 A rigged configuration in RC(As,3) is illustrated below.

o _11o 0 0 0 0 0 ol 1 o

D
D
)
i)

We have c(v) = =5, ¢(v, J) = —5.

Example 7.6 A rigged configuration in RC(As,

3)
OBg 0 OE

0

OBO
0

IS
IO OD
JDOOD

We have c(v) = =8, ¢(v, J) = —T.

Example 7.7 A rigged configuration in RC(A3,3) is illustrated below.

o Jo OBg 1@; OBg ol 1o

1

We have c(v) = —6, c(v, J) = —3.

15 illustrated below.

QM
L1
D

I

DO~

DD

Example 7.8 A rigged configuration in RC(2A; + A3 + A4, 7) is illustrated below.

101 0 |0 ol 1o

~ O
]

—~
~

1
1

QOO

We have c(v) = =27, ¢(v, J) = —20.

Example 7.9 A rigged configuration in RC(A3,3) is illustrated below.
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ol 1o OBO 11 OE]O oo
0 1 0
0
We have c(v) = —6, ¢(v,J) = —4.

Example 7.10 A rigged configuration in RC(0,4) is illustrated below.

0 [ Jo 0 0 0 0 0 0 o T 11o
0 0 0 0 ol _lo
0

DO

We have c(v) = —10, c(v, J) = —T7.

Example 7.11 A rigged configuration in RC(As,3) is illustrated below.

o[ I lo 0 0 0 0 0 0 o[ Tlo

We have c(v) = —4, c(v,J) = —2.

Example 7.12 A rigged configuration in RC(2A¢.3) is illustrated below.

oo ol Jo o[ Jo 050 o o
0 0 0

0

We have ¢(v) = -4, ¢(v,J) = —1.

Example 7.13 A rigged configuration in RC(A3,3) is illustrated below.

o Jo 050 o 1o ()Bo ol Jo
0 0 0

0

We have c(v) = —4, c(v,J) = —4.
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7.3 The bijection from RCs to paths

We now describe the bijection ® : RC(A\, L) — P()\, L). Let (v,J) € RC(A, L). We
shall define a map v : RC()\, L) — B which associates to (v, J) an element of B. De-
note by RCy(), L) the elements of RC(A, L) such that A(v, J) = b. We shall define a
bijection & : RCy(A, L) — RC(A — wt(b), L — 1). The disjoint union of these bijections
then defines a bijection § : RC(A, L) — | ,e g RC(A — wt(b), L — 1).

The bijection ® is defined recursively as follows. For L = 0 the bijection ® sends
the empty rigged configuration (the only element of the set RC(A, L)) to the empty
path (the only element of P(X,L)). For L > 0 define ® recursively by

®(v,J) = ®((v, J)) ® y(v, J). (7.13)
Here follows the main conjecture.
Conjecture 7.14 ® : RC(A, L) — P(A, L) is a bijection such that

c(v, J) = D(®(v, J)) for all (v,J) € RC(A, L). (7.14)

8 The Procedure ) and Examples

In this section, for (v, J) € RC(\, L), an algorithm is given which defines b = y(v, J),
the new smaller rigged configuration (7, J) = §(v, J) such that (7, J) € RC(p,L - 1)
where p = A — wt(b).

Before explaining the algorithm § we prepare some terminologies. We call a row
in (@) singular (resp. quasi-singular) if its rigging (number on the right) is equal to
the corresponding vacancy number Pi(a) (resp. Pi(a) —1). We also set (¢1,--- ,¢6) =
(1,2,3,2,1,2).

Lemma 8.1 Let § = Z?:o c;oy 1s the Kac label.
Then (c1,..,c6) = (1,2,3,2,1,2)

8.1 Algorithm 0

First check wheather there are ¢; singular rows of length 1 in v(@ for any 1 < a < 6.
If this is true, we define v’ to be the sequence of diagrams obtained by removing all
these singular rows from (%), and set b = .

Otherwise, we start from b = in the crystal graph Bp and set £p = 1. Repeat
the following process for j = 1,2, ... until stopped. From b proceed by one step through
an arrow of color a. Find the minimal integer ¢ > £;_; such that (@) has a singular
row of length i and set £; = i, reset b to be the sink of the arrow. If there is no such
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integer, then set £; = oo and stop. If there are two or three arrows sourcing from b,
compare the minimal integers 7 and take the smaller one. If the integers are the same,
either one can be taken. If there is no such integers, then set £; = co and stop.

Suppose the process has not stopped until we arrive at either b :, , ,
, or . Search a quasi-singular row in »(%) of minimal length i such that

@ > £;_y. If there is no such row, set ¢; = oo and stop. Otherwise, set £; = . Then

there are two possibilities.

(S) ¢; > 2 and the corresponding row is singular.
(Q) ¢4; > 1 and the corresponding row is quasi-singular.

In either case reset b to be the sink of the arrow. Then b = , , , ,

or . If (@) occured, continue the same process as before, namely, continue to search
the minimal singular row of length 4 such that ¢ > £;_;. If (S) occured, we call this
row of length £;_; ”doubled”, set £; = £;_; and b to be the sink of second arrow of
color a. Next, let o’ be the color of the arrow sourcing from b. Search an integer &
such that k < j — 1, £, = €;_1. If such k exists, then we call this row ”doubled”, set
¢; = £;_, and b to be the sink of the arrow of color a’. Otherwise, search a singular
row of length 7 such that ¢ > ¢;_, and ¢ is minimal. If such ¢ exists, set £; = ¢, b to be
the sink of the arrow sourcing from a’, and stop calling this row ”doubled”.

We also introduce the notation éi‘l)(: ;) if at the j-th step the arrow has color a
and it is the k-th one having color a from the beginning.

8.2 New Rigged Configuration

The new configuration 7 = (7"

)) is changed to

ka
A = = 30, g0~ 5,0 ) &1
k=1

where kg is the maximum of k such that l’fc“) is finite. This is equivalent to say that we
remove a box from cach chosen during the process in 4. If a row is declared to be dou-
bled, remove two boxes. The rigging remains equal if no box is removed from the row.
If a box is removed, the new rigging is declared to be singular, except when a box of

a singular row next to case (Q) is removed, in which casc declared to be quasi-singular.

Example 8.2 The algorithm ® for the rigged configuration in Example 7.1 is described
at each step § below.
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0 1

ol o o o olo 0.0 ol o 2 2
0

0
B j!ﬂ
] 0 0 ] 0 0
51]!
0 0 ] 0 ] 0
5l|!
0 0 ] 1] 1] 0

Example 8.3 The algorithm ® for the rigged configuration in Example 7.2 is described
at each step & below.

1Mo 0!0 ol o 0!0 11 ol o
0 0 0 0
0 0 0 0
0 0
0
s | [
0 oo ol o ol o ] ol o
F K
s | (2]
? 1] 0 1] ] 1]
5J|I
0 1] ] 0 1] ]

Example 8.4 The algorithm ® for the rigged configuration in Example 7.9 is described
at each step § below.
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181 0!0 ol o 0!0 1Mo ol 0
0 0 0 0
0 0 0 0
0 0
0
5 |
0 ol o ol o ol o 0 0.0
. 0 0
5 |
] 1] ? 0 1] 1]
b l
1] ? 0 ] 1] ]

Example 8.5 The algorithm ® for the rigged configuration in Example 7.4 is described
at each step § below.

0 Jo OEFO 0 0 OEFO ol ]o 0 0
o 1o 0 o 1o ol o
0 0

5 |
ol o 0.0 0.0 0.0 ol o 1.1
0 0 0 0
0
5 |
] ] ] ] ] ]

Example 8.6 The algorithm ® for the rigged configuration in Example 7.5 is described
at each step § below.
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ol o UElU
0

ol o ol o
K
0 ]
1] ?

oMo /
ol 0
0

ol o 1| 1
E
1] ]
1] 1]

Example 8.7 The algorithm ® for the rigged configuration in Example 7.6 is described

at each step 6 below.

050 ol o
0 0
0
0
o[ ]o 050
0
ol o 0'0
0
0 1]

DI
SIS
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0 0
0
0
ol Jo 150
0
ol o ol o
0
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Example 8.8 The algorithm ® for the rigged configuration in Example 7.7 is described
at each step § below.

oMo il 1|8 1 oo oo oo
T TR B
;
0 0 0 0 0 oMo
6
0 0 0 0 0 0
b J
0 0 0 0 0 0

Example 8.9 The algorithm ® for the rigged configuration in Example 7.8 is described
at each step § below.

il ¥ 0 0 1 0 1 0 o o 0 0
1 1 1l 1 1 1 1
. 1 0 1 1
0 0
0 0
5 |
0 o[ T 1o 1 Jo o I ]o ) 0 0
oL |0 il 0
o 0
0
5 J
0 o Mo 0 0 o Mo 0 ol o
ol_]o 0
0 0
0
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0 oMo ’Hé oMo 0 OBZ
0
b j
0 0 ol o 0 0 0 (0)
g l
0 0 0 0 0 oo
5
0 0 0 0 0 0
5
0 0 0 0 0 (U

Hence this rigged configuration corresponds to the path in Example 6.1 by ®.

Example 8.10 The algorithm ® for the rigged configuration in Ezample 7.9 is de-
scribed at each step § below.

ol o 0.0 1|8 1 olo ol o ol o
0 1 0 0
0

0
5l

0 0 0 0 0 ol o
al

0 0 0 0 0 0
51



0 0 0 0 0 0

Example 8.11 The algorithm ® for the rigged configuration in Ezample 7.10 is de-
scribed at each step § below.

oi:I() 0 0 0
oo 0
ol 0

=)
S
S

oQ]o
oo

S
=)

ol Mo oElg oﬂg oElg ol Mo IElé
0

oo ol 0 olo oo oo 1.1
0 0 0 1
0
5 l @
] ] ] (] ] ]
5 l
] /] ) ] 1] ]

Example 8.12 The algorithm ® for the rigged configuration in Example 7.11 is de-
scribed at each step § below.

o Mo OEI(} 0 0 OElo o Mo zElz
0 0 0 1

oo 0.1) ol o 0.0 oo 1.1
0 0 0 1
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Example 8.13 The algorithm ® for the rigged configuration in Example 7.12 is de-
scribed at each step § below.

ol Jo 053 0@3 053 ol ]o 1Bg

0
5l
ol o ol 0 ol o ol o oo 118 1
lo lg lo lo
51
] ] ] 0] ] ?
5J
] 1] 1] 1] 1] 1]

Example 8.14 The algorithm ® for the rigged configuration in Ezample 7.13 is de-
scribed at each step § below.

Do o e B B

ol o olo ol o ol o ol o 1.1
0 0 0 0
0
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Conclusions

In Part 1, we study the behaviour of the soliton cellular automata associated with the
Kirillov-Reshetikhin crystal B™! of type DIV, They have a commuting family of the
time evolutions and solitons of length I which are labeled by U,,(Afllzl -crystal B?"l.
In my thesis, we give an.alternative way to calculate the scattering of two solitons
including phase shift and it can be identified with combinatorial R-matrix for the
Uq(ASZl)-crystal B}dlg ® Bi’ll. In Part 2, we give a conjecture on statistic-preserving
bijection between the highest weight path consisting of B! and corresponding rigged
configuration. In this part, we give many examples supporting the conjecture. Our
work is different from Okado and Sano [25] because we must consider a unique element
¢ in the crystal graph. To prove this conjecture is more complicated campared with
[25]. In my future work, we want to prove this conjecture and make this as a theorem.
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