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Abstract
Solid hydrogen was predicted to be metallic and even a room-temperature

superconductor under very high pressure. The pressure is predicted to be so enormous

exceeding 400 GPa [l], which is still out of range for experimentalists. Hence, the

pressurized hydrogen-rich materials are expected as alternative approach which may

offer a great promise that could be a so-called "chemical pre-compression" from the

metal atoms combining additional pressure, facilitating hydrogen densities in the range

where the metallization could occur. Two systems are focused in this thesis. The first

system is YH: and the second is perovskite hydrides CaCoH3 and CaNiH3. Relatively

high volumetric hydrogen content are expected in both sample to emerge at pressure

accessible in a diamond-anvil cell.

- Yttrium can form a hydride able to absorb about 300 mol% hydrogen, which is a

yellowish transparent insulator with hcp-structured YH3 at ambient pressure. The band

gap is very large with 2.8 eV [2]. From a study of the optical properties at ambient

pressure, the semiconductor gap remains open until at least 25 GPa. Further extrapolating

the pressure dependence of the gap, an insulator to metal (I-M) transition is expected at

55 + 8 GPa [3]. A theoretical prediction indicated the occurrence of pressure-induced

superconductivity with I. of 40 K at 17 .7 GPa in the high-pressure fcc phase of YH: [4].

We focus our attention to unravel the metallization in YH3 via electrical resistance

measurement under high pressure and low temperature. We have succeeded in

synthesized the insulating transparent YH3 samples by hydrogenation from yttrium metal

in fluid Hz under high pressure. Measurement of the electrical resistivity at high pressure

and low temperature demonstrated an electronic phase transition from insulator to metal

at around 70 GPa in the fcc phase.

- The cubic perovskite-type ABH3 comprised of a divalent metal (A) and a

transition metal (B) exhibit a variable degree of hydrogen deficiency, but the ideal

perovskite structure is stable at ambient pressure [5]. However, the possibility to induced

I-M transition by applying pressure of perovskite-type hydride has never been considered.

This hydride conelate with the characteristics of the transition metal d-band, the 4s band

may lie between the localized 3d-like states. There are perovskite hydrides CaCoH: and



CaNiH3. Both samples reveal that the cubic perovskite phase is found to be stable in a
wide range of high pressure, and no structure phase transition at room temperatur e to 62

GPa and 83 GPa, respectively. The I-M transition at high pressure in CaT-H: for T = Ni,

Co were found. In CaCoH:, the negative slope of dp/dT manifests the non-metallic

behavior at 17 GPa. Upon increasing the pressure, above 40 GPa the dp/dT slope

reversed to positive, leading support to the occurence of metallization. In the case of
CaNiH3, the onset pressure of metallization is l5 GPa. However, the superconductivity

was not observed yet up to 80 GPa in both samples.

These results could be an important step towards understanding underlying

physics of superconducting metallic hydrogen-rich systems which a new system to study

high temperature superconductivity.

Document structure

This document consists of five chapters. The various chapters are further divided

into sections and subsections. Chapter I outlines the background f<lr this work. Chapter 2

gives a description of the experimental setup. The experimental results and discussions

are given in Chapter 3 and 4 and the conclusions with some recommendations for future

work are presented in Chapter 5.
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Chapter 1. Introduction

Hydrogen is one of the basic materials in science, and many major discovenes

have been made from studies of atomic and molecular hydrogen. In more than half a

century since, the predicted pressure for the metallization has risen from 25 GPa to

600 GPa regions. Metallic hydrogen has not been yet found at these pressures. This

chapter mainly covers the trials for the creation of "metallic hydrogen" in the

experimental research, which is one of the principal goals of high-pressure research.

1.1 High pressure

Pressure is one of the fundamental thermodynamic variables, which can be

varied over range of more than sixty orders of magnitude, from the vacuum of outer

space to pressures in the interior of neutron stars. The study of the behavior of

materials at high pressures and low temperatures has been useful not only in

understanding the properties of these materials but also in the observation of new

features of the physicochemical properties; therefore a combination of high pressures

with low temperatures is a logical step in pursuing this phenomenon.

It is now believed that almost all materials will become metallic at sufficiently high

pressures. To examine materials under extreme pressures, we often use a device called

a diamond-anvil cell (DAC) []. This small mechanical press forces together the tiny,

flat tips of two flawless diamond anvils. As the diamond tips slowly compress a

microgram sample of a material, where pressure is up to almost 400 GPa.

Subsequently techniques in the combination with low temperatures were developed to

allow the study of transport properties as well as superconductivity as showed in l2],

[3]. This detail will be show in chapter 2.



1.2 Pressure effect on superconductors

High-pressure experiments can provide valuable assistance in the search for

superconductors with new value of 2". The critical temperature of a superconductor

depends on both lattice and electronic propefiies, one in general expects pressure to

have a profound and possibly complicated effect on f.. High pressure studies can

advance the field of superconductivity to improve the properties of known

superconductors and create new superconductors. McMillan expression [4] is often

used for the electron-phonon coupling parameter and equation of the critical

temperature for the transition to superconductivity in BCS theory for exploring the

effect of pressure on superconductivity.

).- N(E,,) < I' >
(1)  , η=Ⅳ(El).<ノ

2>
M <col >

= l" =Jk I M ."*pl_k trtl e)
Where <I2> and <o2> are the average square electronic matrix element and average

square phonon frequency respectively. So that T, nJV M

The spring constant ft increases under pressure due to lattice stiffening, and 17 also

normally increases under pressure. The k inside of the exponent in Equation (2)

outweighs the ft in the prefactor so that an increase in ft leads to a decrease in I.. It is
possible for Z. to increase if ry increases more rapidly than k under pressure. Therefore,

dT"ldP depends on the relative magnitude of pressure-induced changes in lattice

versus electronic properties. In the simple metal superconductors, pressure-induced

lattice stiffening dominates over the relatively modest changes in electronic properlies

so that Z" decreases rapidly under pressure in these materials. In the transition metals,

T" may either increase or decrease under pressure. Fig. l.l illustrates pressure elfect

on simple elements [5].
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Fig. l.l : Superconducting elements under high pressure [5]

□

□

1.3 High-pressure properties of hydrogen

1.3.1 Hydrogen under high pressure:

Hydrogen is the simplest of all atoms, with a single proton and electron,

doubled in the molecule. Hydrogen was first liquefied in 1898 and solidified in 1899

by James Dewar. Both these condensed phases are transparent insulators and had

predicted that the condensed phases would be metals at atmospheric pressure.

However, the quest for metallic hydrogen has been going on for over one hundred

years. At low pressure, hydrogen crystallizes as an insulating molecular solid, but it

was recognized that extreme pressure conditions hydrogen would form dense plasma.

An idea leading conjecture that all materials will become metallic under sufficiently

high pressure. An investigation of the insulator-metal transition in hydrogen have

predicted under high pressure. The pressure required to make metallization for

hydrogen is so enormous up to 400 GPa [6]. Further predictions for metallic hydrogen

may be a room temperature superconductor. This has been directed toward the highest

static pressures achieved in DAC with hydrogen remaining an insulating molecular

solid by experiment. However, solid metallic hydrogen has not been observed at

pressures up to 340 GPa [7], that is about three million times atmospheric pressure and

-3-



just about the limit of DAC used in such experiments and the required pressure might

be as large as 400 GPa.

1.3.2 The structures of solid hydrogen under high pressures

Wigner and Huntington (1935) were the first to predict that, under extreme

pressure, the molecules of solid hydrogen will dissociate to form a metallic solid (Fig

1.2), and this was predicted to occur at pressure of 25 GPa [8].

Solid H, at 1 bar
hcp structure H, molecule

c=4.7

a=3.24
Fig. L2: ldealized structures of solid molecular hydrogen (disordered

hexagonal-close packed). The bond length in the solid at ambient

pressure is that of the free molecule of 0.74 A and intermolecular

distance of 3.2 A t8l.

The crystal structure is one of the most fundamental of information needed for

characterizing a material at high pressure. Structural studies of hydrogen at high-

pressure in DAC by X-ray diffraction appeared severely restricted by the low intensity

of the diffraction peaks. Three different phases, called phase I, II and III, have been

experimentally identified through spectroscopic analysis of samples pressurized in

DAC as show in Fig. 1.3.

-4-



Hydrogen
at High Pressure
and Temperature

SOlid H2

BSP(‖ )

2000

1500

Pressure (GPa)

Fig. l.3: Illustrates the hydrogen phase diagram, summarizing both experimental

[9, 10, ll, 12, 13, 14) and computer simulation data [ 5, 16, l7]

The phase II is stable only in a restricted interval of pressures and for

temperatures below 100 K. Phase I occupies the major part of the solid region of the

phase diagram, being stable up to the melting in a wide range of pressures. At

pressures higher than 160 GPa the phase III appears.

Structural studies of hydrogen solids are not an easy using X-ray diffraction.

The electrons of hydrogen atoms are few hence the obtained diffraction patterns are

only low resolved. The structures of those phases are not completely determined.

Phase I is an hcp, but the molecular rotations are frozen and the molecular bonds are

oriented. More recent X-ray and neutron diffraction studies [8, 19] advanced the

possibility of the existence of distorted hcp structures for the phase II solid. The

structural properties of the phase III are still under debate. According to the analysis of

Raman, the most plausible structures for the phase III might be a monoclinic structure

belonging to the C2lc space group symmetry for pressures up to 250 GPa [20].

（
】
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Here some resent topics are shown.

- Melting curve: The transition from the low temperature molecular solid to the high

temperature molecular fluid phase is well studied experimentally up to 150 GPa [9, 10,

11, 12] as showed in Fig. 1.3. The transition is the shape of the melting temperature

curve, which at first increases with the pressure, then reaches a maximum and finally

starts to decrease.

- Metallization in the fluid phase: A large number of experiments were carried on

using dynamic compression techniques in order to study the properties of high-

pressure fluid hydrogen 121,22,23,24.251. A liquid-liquid transition, from the

insulating to the conducting fluid, was observed during shock wave experiments by

Nellis. [9]. The insulator-metal transition in hydrogen predictions of the metallization

pressure have ranged as high as 200 GPa.

- Metallization in the solid phase: Despite the pressures experimentally reached at

present are one order of magnitude higher than the Wigner estimated [7] of the

metallization pressure (of 25 GPa), no evidence of a metallic behavior has been found

in the solid phases, up to 340 GPa 126. 271. P. Laubeyre reported optical

measurements of solid hydrogen up to a pressure of 320 GPa at 100 K. They measure

the absorption edge of hydrogen above 300 GPa, observing features characteristic of a

direct electronic band-gap. They predict that metal hydrogen should be observed at

about 450 GPa when the direct gap closes.

-6-



l. 4 Hydride for alternative for dense hydrogen

1.4.1 The hydrogen rich system

Many metals dissolve considerable amounts of hydrogen in an exothermic

reaction up to 100 atomic o/o in transition metals and up to 300 atomic %o in rare earth

metals. In many compounds the density of the dissolved hydrogen is higher than that

of solid hydrogen. We calculated density of hydrogen in the atom unit as show Fig 1 .4.

Density of hydrogen in YH3 is 44 atom/nm3 and solid hydrogen is 37 atomlr:urr3. The.e

showed that YH: is more the dense of hydrogen than hydrogen solid.

SOlid H2 at l bar

h"Structure H, molecule
YH3 atl bar

hcp Structure

嘲 A

atoms/unit volumei :\'r=

Density of lrydrogen atoms: 37lnm3 :

４

一螺

つ

・

rr 6,\. - _tr 
- [;1J 1,

2

44lnn3

Fig. 1.4: Compounds the density of the dissolved hydrogen is higher than

that of solid hydrogen

1.4.2 Chemical pre-compression in hydride

The pressurized hydrogen-rich materials are expected as alternative approach

which may offer a great promise that could a so-called "chemical pre-compression"

from the metal atoms combines and additional pressure facilitate hydrogen densities in

the range where the metallization could occur. For example, metallization in silane

a=3.2A
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(SiH4) has been experimentally observed [28, 29] and was analyzed from a theoretical

perspective [30]. Much metal hydride- MH3 system with M(Y, Sc, Er, Lu, Al, ...)-
investi gated for metal lization and superconductivity.

1.4.3 Hydrogen dissociation and hydride formation

Far away from the surface, the H2-molecule and the metal are in their

respective ground states. The hydrogen molecule dissociates and absorb into Y pure

metal lattice as show in Fig 1.4 L31]. Close to the metallic surface van der Waals

forces between the molecule and the metal surface result in a physisorbed state.

In the reference [31], they showed that the H-M bond was of electronic nature, on

the surface as well as in the bulk. Whenever the hydrogen atom approaches the metal,

its 1 s electron hybridizes with the electrons of the metal. The resulting hydrides can

be classified by the nature of the hydrogen bond into three different principal

categories, covalent, ionic or metallic. The term "hydride" will be used to describe the

binary combination of hydrogen and a metal.

- Covalent hydrides may be solid, liquid or gaseous. The H-M bond is of the

non-polar electron sharing type. Forces between the molecules of covalent

bonded hydrides are not strong, resulting in low melting points. Most of them

are thermally unstable. Typical examples of covalent hydrides are aluminum

hydride, tin hydride and the boron hydrides.

Ionic hydrides are formed by the reaction of the strongly electropositive metals

like alkali metals and hydrogen by electron transfer. Their bonds result from

the strong electrostatic forces between the dissimilar electric charges of the

ions. The saline hydrides are crystalline. They exhibit large heats of formation

and high melting points.

-8-



- Metallic hydrides are formed by the transition metals. They possess metallic

properties like thermal conductivity or hardness. Because of the wide

homogeneity ranges of most of the metallic hydrides, they are often regarded

as solid solutions. There are two models describing the chemical bond of

metallic hydrides. In this model, Yttrium forms metallic hydrides. The H-Y

system will be discussed in detail in the chapter 3.

1.4.4 Predicted T. of YH3 under high pressure

Pure yttrium becomes superconducting under pressure and the 7". increases

monotonically with pressure up to 115 GPa (with I.: 19.5 K) [32]. Few theoretical

calculations using linear response theory [35, 36] to estimate Trhave found qualitative

agreement with the experiment [32] as shown Fig 1.5.

20

Tc(K)

s0 100

Pressure (GPa)

Fig. 1.5: Superconductivity transition temperature I. of fcc Y with pressure.

Yttrium can form a hydride able to absorb about 300 mol% hydrogen, which is

a yellowish transparent insulator with hcp-structured YH3 at ambient pressure [38]. In

experiment, hcp-YH3 transforms sluggishly into fcc-YH3 oeor 10 GPa 133,371 and

becomes a metal at around 25 GPa [33]. Therefore, in theory, there is the possibility to

10
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study high- I. superconductivity in hydrogen-dense materials with fcc-YH3 under

pressure [39].

Fig. 1.6a displays a schematic of the fcc-YH3 crystal structure at 17.7 GPa

combined with the electron localization function. There exist one type of yttrium atom

occupying the fcc site and two types of hydrogen: H(1) and H(2), tetrahedral and

octahedral coordinated, respectively. ln Fig. 1.6(b-e), there have the shift of peak at

three pressure values (15,30, and 45 GPa) near Fermi level. At lower pressure, the

electron belonging to H(2) is responsible for a peak near the Fermi level (Fig. 1.6, b-

e), strongly affecting conductance properties of YH3. With increasing pressure, this

peak shifts towards higher energy values, leading to a reduction in conductivity. .

Based on first-principles calculations as discuss in [39], assessing the electron-phonon

coupling strength 1", there predict high-temperature superconductivity in fcc-YH3.

abd

lβイン

=X8::″
/1

=選ツ
/

Fig. 1.6: Electronic structure of cubic YH3. (a) Crystal structure and electron

localization function plot at 17.7 GPa. Blue spheres represent yttrium, while white

small spheres represent hydrogen, with H(l) at tetragonal sites and H(2) at

octahedral sites. Electron density of states plot in fcc-YH3. (b) Total DOS and

projected DOS onto (c) Y, (d) H(l), and (e) H(2) near Ep for three different pressure

values. The vertical dashed line indicates the position of the Fermi level and the

shaded regions exhibit the peak-shift with pressure [39].
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As it can be seen in Fig. 1.7a, the occurrence of pressure-induced

superconductivity with Z" of 40 K at 17.7 GPa in the high-pressure fcc phase of YH3

based on calculations of D.Y. Kim [39], and Z. will be decrease at higher-pressure

value. From Fig. I .7a,it finds a steep drop in 7'. at a pressure of around 25 GPa, which

is a transition from superconducting to normal metallic state. Upon higher pressure,

where is expressed the superconducting behavior above 45 GPa, and fcc-YH3 remains

in the metallic state until 45 GPa. So that, there is showed the pressure-dependence of

Z" in fcc-YHl.

Fig. 1.7: (a) Pressure dependency of T"andalog. The inset shows the evolution of

the electron-phonon coupling constant l. with pressure. (b) shows the spectral

function a2F (red shaded area), integrated l. (red line), and phonon DOS (blue

curves) as a function of frequency at P : 17 .7, 36, and 73 GPa, respectively. (c)

Hybridization between d-state of Y (lower panel of the inset) and s-state of H(2)

(upper panel of the inset) at the Fermi level under pressure.
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Chapter 2. Experimental

In this session, the use of the diamond anvil cell (DAC) for ultrahigh-pressure

generation and the various techniques employs in studying under high pressure are

mainly reviewed. There are descriptions of technique for measurements of the

electrical resistance at low temperatures, x-ray diffraction and so on.

2.1 Diamond-Anvil Cell (DAC)

The DAC is very simple and is illustrated in Fig.2.1. The main body of the

cell was made of a Cu-Be alloy to make good thermal conductivity. A pair of diamond

anvils is set in opposed anvil configuration. When a metal gasket is compressed

between the small flat faces of two diamonds, high pressure is generated in the gasket

hole, which is usually filled with a pressure transmitting medium, or the sample itself.

The cell works at high pressure, when the two anvil flats are accurately centered and

parallel to each other. The selection of diamond type and the culet size are needed to

employ the maximum pressure [1].

Force I
pr6s3ur6
rnedia

Sample

Fig. 2.1: The DAC is based upon the opposed-diamond configuration, in

which a sample is placed between the polished culets of two diamonds and is

contained on the sides by a metal gasket (left). Main body of the DAC was

made of a Cu-Be, non-magnetic material (right).

14-
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Following properties can be studied with DAC:

- Crystal structure by diffraction of X-rays or neutrons

- Electrical resistivity

- Optical properties, such as absorption, reflection, and luminescence

The top of anvil can be repolished, it is possible some shallow cracks or

damage appears after experiment. Parallelism of the culet flat with the diamond table

is important. That is the most dangerous points at top of the anvils. The anvils need a

large force, and high pressure can occur to plastic deformation of the seats and

possible failure of the anvil.

A key component of the diamond anvil cell is the gasket. The gasket reduces

the strain at the diamond culets and makes it possible to surround the sample with a

pressure medium. The gasket foil is first pre-indented to a thickness dependent on the

diameter of the diamond culet. The pre-indented thickness should be approximately

119 of the culet diameter and l13 of the hole diameter. The hole is drilled through the

center of the pre-indented area. The purpose of gasket is to provide a chamber in

which can be contained a sample with pressure medium. Depending on the sample and

pressure medium, the initial diameter of the hole should be adjusted the diameter of

hole at high pressure. The gasket material must be both hard and ductile. If the

gasket's ductility is too low, it can suffer brittle failure under pressure, resulting in

destruction of the diamonds. The gasket material must remain non-magnetic at low

temperature. If the gasket is magnetic, the signal from the sample will be obscure by

the signal from the gasket. Several gasket materials were used during this dissertation

work, including Re, Cu-Be, SUS310S. . ..

The DAC was also required to be non-magnetic at low temperature to avoid

the suppression of superconductivity by the magnetic field from the magnetic parts

used in the DAC. The backing material was made of WC (tungsten-carbide)-alloy and

could be replaced with Cu-Be depending on the experiment. The high-pressure device

is the screw pressure-type DAC, as schematically shown in Fig. 2.3. A is the upper

diamond holder, B is the main body, C is the piston with lower diamond, D is the

driving nut, G is metal gasket, b is ball bearing, d is the pair of diamonds, and s is the

plastic ring. The cell body of our DAC is made of nonmagnetic Be-Cu alloy favorable

for characterization of magnetic properties of sample. The generation of pressure is
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usuaHy carricd out at room tcmperature, but diffcrent thermal contraction of cach

componcnt givcs rise to unexpcctcd increment in pressurc upon decreasing thc

temperature and results in changc of prcssure.To avoid the big change of prcssurc at

low tempcraturc,a plastic ring(s)iS inserted between thc driving nut(D)and piStOn

(C)inSide the DAC.The large thcllllal contraction of the plastic ring providcs

considerablc compensation for the pressure differencc. Thc pressurc is generated by

pushing thc piston(C)tO advancc into thc ccn body(B)thrOugh rotating the driving

nut(D)with the blade of gearbox mcchanism.Two ends of a screw bolt can flt into

thc scrcw groove machined on thc piston and sliding tube,respectively.

劇i3■ement ofthe dialEondl

A

d

C

Fig.2.3: The construction of the DAC: A is the upper diamond holder, B is

the main body, C is the piston with lower diamond, D is the driving nut, G is

metal gasket, b is ball bearing, d is the pair of diamonds, and s is the plastic

2.1.t Sample setting

Fig.2.3 shows our typical experimental setup in this study.

- First a metal gasket is compressed between two small flat surfaces (flattened

by grinding and polishing of the culet) of two diamonds set in opposed anvil

Ｓ

ｂ

Ｄ
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configuration. For the successful operation of the diamond cell, the two anvil flats

should be accurately centered ad set parallel to each other. After that, and sample hole

is made using laser cutting technique. After the hole is made, sample can be prepared

by the desired shape and dimension in Frg.2.4a.

- The next step is sample setting inside the DAC, involving putting pressure

medium, putting the sample inside the hole, connecting the electrodes to the sample,

and putting ruby as pressure reference. In this experiment, these samples are highly

reactive with water, oxygen and nitrogen. To avoid the chemical reaction and

contamination of the sample, it was kept inside a glove box filled with Ar-gas in Fig.

2.4b. All procedures of the sample preparation and pressure cell loading were carried

out inside the glove box. After loading sample, the pressure was increased to some

pressure to seal the sample chamber completely. Pressure inside the diamond anvil cell

is adjusted by pressure gearbox and pressure measurement is done using ruby

fluorescence method.

- Finally, the properties of the sample can be determined by electrical resistivity,

Raman, and X-ray diffraction measurement.

Fig. 2.4a. DAC: The culet of the diamond anvil: 300 pm;

SUS3l0S; thickness of gasket: 50p m; insulator layer: diamond

electrode material: Pt; pressure media : NaCl

Fig. 2.4b: Inside the glove-box is full of Ar-gas and Oz, HzO

(0.00r %)

gasket material:

powder +epoxy;

level < I ppm

!'--- El '*
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2.1.2 Pressure determination

Pressure was determined by the conventional ruby fluorescence. Ruby has a strong

luminescent doublet at 694.2 nm (Rl) and 692.8 nm (R2) at room temperature, which

comes from the transition between the crystal electric fields levels. Ruby can be

efficiently pumped into an excited state by illumination with light. The shift in the Rl

line is used to determine pressure as shown in Fig. 2.5.

T∞OK     R:

ヽ

n、

20 5 GPa

pressure
media

Sample
11_ ■_L____■ _ょ _コ_一 Ⅲl_■ _.」 ^_4_■ _ L_ム __L
田0 02 0辟  698 008 7m 7" ア

“Wau*rglh {trm)

Fig 2.5. The Ruby luminescence line at GPa pressure and atmospheres pressure

[8]. The fluorescence lines show red-shift with pressure. The shift in the Rl

line is used to determine pressure (right).

When the pressure is applied up to around 100 GPa the intensity of the Rl-line

decreases. So that pressure was determined by the first-order Raman band spectra of

the diamond anvil facing to the sample. The high frequency edge was defined as a

minimum of the differential spectrum, dl I du, as shown in the Fig. 2.6. The high

frequency edge of the Raman band shows the nearly linear pressure dependence 12,31.

The dependence is almost independent on loading conditions Since the diamond

vibron shifts monotonically to higher frequency under pressure, the high-frequency

edge of the anvils Raman spectrum gives the pressure at the center of the culet where
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the sample is located. The most recent calibration of the high-frequency edge of the

Raman spectrum of the diamond anvil is that of Akahama et al. [9]. Using the equation

of state of platinum as a standard and found that the calibration is nearly independent

of the gasket material, sample or pressure medium. Pressure is expressed by the

following quadratic function of the Raman frequency u (cm-r).

P(GPa) : 66.9(7)+ 0.5281(4) x u + 3.585(3) x l0a x u2

1200 1300 1400 1500 16(n

Raman sfrfi (cm'')

Fig.2.6: Raman band was determined from differential spectrum dl I dv,
' 

indicated with a gray line [8].

This may be particularly useful in the case of optical absorption measurements

where having ruby within the cell may falsify the results since some of the light will

pass through the ruby pieces instead of the sample. In addition, the diamond vibron

manometer is useful in the case of studies (such as resistivity), which often use no

pressure medium; in this situation large pressure differences may exist between the

sample and ruby if they are not directly on top of each other. With the diamond vibron

of the anvil, one can always measure the pressure at the same lateral location as the

sample.

（コ
一Ｅ
コ
．捏
こ

心

∽ヽ
ミ
■
ミ

1′  六

li√ 1

‐

‐，
Ｌ

‐

■

v=1463.3 cm‐
1

，

占枕へ″午ハ｀` 暉`い`ごにヽ・́レヾν`・～

…19-



2.2 Measurements

2.2.1 X-ray diffraction

Crystal structure at high pressure is studied using X-ray diffraction. We performed

X-ray diffraction measurement on materials at the pressures at room temperature using

synchrotron radiation with wavelength of around 0.41 A at the beamline BL1OXU in

the SPring-8.

The beamline BLIOXU is fully dedicated for X-ray diffraction measurements at

high pressure and low/high temperature using a diamond anvil cell (DAC) (Figure 2.7)

[5]. The high-resolution monochromatic angle-dispersive X-ray diffraction patterns

allow us to the accurate determination of equations of state, precise determination of

Experimental Hutch I: Expcrimcntcl Hutch 2 :

simultancoue mcaeurcmcnt with XRD XRD under extreme cond

Ｕｎｄｕ‐ａｔ。ｒ２′４ｃｍｍ】

BL10XU Op憮8 HutCh

doubb crystal(dhmond lll) 1蝿 |だ

―

Figure 2.7. Schematic layout of beamline BLIOXU [5]. The DAC was placed in

the Hutch 1 or Hutch 2.X-ray is focused an collimated to approximately a few pm

in FWHM using polymer refractive lenses (SU-8). The collimated X-ray passes

through the optical windows and the sample in a DAC with the cell axis oriented

along the X-ray beam. Diffracted X-ray was collected on a imaging plate (lP).

Conventional diffraction diagrams were obtained by integration of the two-

dimensional images using PIP software. The X-ray wave length was varied 0.4102

At:o t<ev) and 0.4976 A(zs tcev).

Frillor.rin cpeotrometer
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phase relation, structure refinement by Rietveld analysis, and charge density

distribution analysis in crystals submitted to extreme pressures.

2.2.2 Electrical resistance measurement

The technique for resistivity measurements in DAC was performed with ac

four-probe method. Four Pt films with 5 prm in thickness were attached to the sample.

The metal gasket is pre-indented and coated with an insulating mixture of cubic boron

nitride (c-BN) powder and stycast epoxy. The insulation between the electrodes can

hold up even under extreme pressure. A sample chamber can be drilled into the

insulating material by focused laser beam.

Ruby

sample

4 probes (Pt)

-

insulator layer

(c-BN + epoxy)

Pressure medium

(NaCl)

Fig. 2.8 The electrical resistivity was measured by ac 4-probes. Arrangement

of sample and electrodes in the DAC: Ruby for pressure marker; sample; Pt

film electrode (5 pmr ); insulator layer; pressure medium (NaCl); metal gasket

(Re).

Electrodes with sharp tips are cut from 5-pm thick platinum foil. The wires contacted

to the sample by pressing the wires against the sample in the diamond anvil. The

configuration around sample is shown in Figs. 2.8.

Re

Top view
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2.2.3 Low temperature measurement

The majority of superconducting transitions measured at low temperature. The

temperature range can close to the 50 mK. For electrical measurements at low

temperature, we used a Top-loading 3He/aHe dilution refrigerator down to -50 m K. In

Fig.2.9, the most parts of the DAC are consisted of the non-magnetic Cu-Be alloy to

Chsractcrigtics
.Base temperature. 50mK
.Measurements 

:

Resistivity (up to forn samples)

AC-calorimetry
SQUID

.Samp.le is exchangeable during
operaflon

.High cooling powerl

Vicuruny' pulrrlp
Liq.HoH E

(42K)、
、

(300K)

Colldenger

lK Pot

(1.3K)
:●   )

●

一  Stin

(o7K)
＼
hnperlrnce

HE

Phase

卜I鰊五lg cinlnber

(50mK)

9eprrihon
DAC

H.E. : Hert Exchanger

Fig.2.9: The electrical resistivity measurements were carried out in a 
3He/oHe

dilution. Lowest temperature: 50 mK; measurement of resistivity up to 3 samples.
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make thermal conductivity good. Temperatures were determined below 5 K using the

calibrated RuOz resistance thermometer, and the CERNOX resistance thermometer

was used above 5 K. We usually and clamped the pressure at room temperature before

low-temperature runs. The DAC was fixed on the mixing chamber of the 'He/oH"
dilution refrigerator. The detail is showed in reference [4].

2.2.4 Photoconductivity via visible light at high pressure

By varying the photon energy spanning infrared, visible and X-ray, we manifested

significantly enhanced conductivity in the semiconducting YH* upon illuminated by

visible light, whereas, neither the infrared light nor the X-ray affects the conductivity

obviously.

The light illumination-induced conductivity change can be measured with different

light of l" : 514, 488, 1064 nm. Upon the laser is ON, resistance of sample drops

rapidly and become saturated within 10 minutes. Once the laser is switched ofl-

resistance increases gradually and eventually resumes the initial value within a large

relaxation time. The detail will be study in chapter 3.

2.3 Hydrogen Loading System

To synthesizeYH3, we developed the loading the gas in cryostat system. With

a simple method the diamond anvil cell (DAC) is cooled at low temperature in the

region of liquid phase diagram of gases and the gas flowed into chamber as a liquid.

The samples were prepared from the yttrium metal.

The simplest method to load the DAC with hydrogen is to place in a vessel [7].

Thermodynamic equilibrium parameters of the solid-liquid-gas phase transition (Fig.

2.10) are very important to understand the process. Hydrogen also works as a

pressure-transmitting medium. Hydrogen was liquid at 20 K, and solid < 15 K at

atmospheric pressure.
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Fig. 2.10: Phase diagram of hydrogen. Hydrogen is liquid at 20 K, and

solid < l5 K at atmospheric pressure.

2.3.1 Instrumentation

As shown in Fig. 2.ll(a), the whole system consists of packaged vacuum

pumping unit (DS-A3lzz, DIAVAC LIMITED), cryostato gearbox mechanism,

helium compressor unit (CKw-21, Sumitomo Heavy Industries, Ltd.), cold head

(RDK-205D, Sumitomo Heavy Industries, Ltd.), microscope (Lambda Vision),

spectrometer (Ocean Optics), temperature controller (328, CRYOGENIC CONTROL

SYSTEMS, Inc.) and computer. The schematic diagram of the whole system and the

portion highlighting the DAC and the "sliding tube" in the liquid H2 reservoir is

displayed in Fig.2.11(b) and Fig.2.l1(c), respectively. The packaged pumping unit

(e) evacuates the liquid H2 reservoir (o) and outer vacuum chamber of the cryostat (m)

for thermal insulation with ambience. The helium compressor unit (l) runs to

refrigerate the cold head in a closed cycle mode. The thermal link (n) between cold

head and liquid reservoir is realized with bundles of copper wire. One window (p) is

made on the side of cryostat to observe the liquid level in the reservoir; the other

window (p) made on the bottom of cryostat is used for observation of the sample

assembly.
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P-measuremenl

Agear box
B:cold head

C:cryostat

Fig.2.l I : (a) Photograph of the cryogenic loading system;
(b) Schematic diagram of the whole system; a: H2 gas bottle, b: regulator, c: gasflow
control valve, d: valve, e: packaged vacuum pump, f: a balloon which is used to count
introduced gas amount, g: exhaust tube for excessive H2 gas, h: relief valve, i:
pressure gauge, j: gearbox system, k: sliding tube, l: closed cycle refrigerator, m:
cryostat, n: bundles of metal wires, o: liquid H2 reservoir, p: optical windows, q: DAC
holder, r: microscope and camera system, s: spectrometer, t: laser, u: ruby
fluorescence output, v: photo image outputted on a monitor, w: inner tube, x: DAC
body, y: DAC piston, and z: driving nut.
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Microscope in combination with camera (r) is used for in situ observation and

snapshot of the condition in the sample chamber of DAC during the loading process.

The ruby fluorescence spectrum excited by green laser ()":532 nm) is recorded for

pressure measurement in the sample chamber using spectrometer (s) integrated with

microscope. The high-pressure device we commonly adopt is the screw pressure-type

DAC, as schematically shown in Fig. 2.12(a). A is the upper diamond holder, B is the

main body, C is the piston with lower diamond, D is the driving nut, G is metal gasket,

b is ball bearing, d is the pair of diamonds, s is the plastic ring. The cell body of our

DAC is made of nonmagnetic Be-Cu alloy favorable for characterization of magnetic

properties of sample. The generation of pressure is usually carried out at room

temperature, but different thermal contraction of each component gives rise to

unexpected increment in pressure upon decreasing the temperature and results in

breakage of diamond. To avoid the failure of diamond at low temperature, a plastic

ring (s) is inserted between the driving nut (D) and piston (C) inside the DAC. The

large thermal contraction of the plastic ring provides considerable compensation for

the pressure difference. Sample chamber made by laser ablation in the center of pre-

indented metal gasket is used for containment of sample, pressure marker and pressure

medium. The pressure is generated by pushing the piston (C) to advance into the cell

body (B) through rotating the driving nut (D) with the blade of gearbox mechanism.

Two ends of a screw bolt can fit into the screw groove machined on the piston and

sliding tube, respectively. Optical frber transmitting backlight for better visualization

of the sample assembly during loading process is inserted in the hole of screw bolt and

extends to the exit port on top of the gearbox mechanism. Fig. 2.12(b) is the

photograph of the gearbox mechanism. The blade for rotating the driving nut of DAC

and the screw bolt for opening the sample chamber are highlighted. Fig. 2.12(c) is the

photograph of DAC clamped with jacket. Fig. 2.12(d) is the photograph of DAC

assembled with gearbox mechanism. The gearbox mechanism (i) is equipped with

two inner tubes. One inner tube (w) with larger diameter is assembled with a blade

which can rotate the driving nut of DAC to control the force applied to the piston,

hence control the pressure in the sample chamber. The other inner tube with smaller

diameter, named "sliding tube" (k), passing through the center of the larger inner tube,

is assembled with a screw bolt which can fit into the screw sroove machined on the
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Fig. 2.12: (a) Schematic diagram of the screw-pressure type DAC; (b)
Gearbox mechanism; (c) DAC with clamping jacket; (d) DAC installed in the
holder of gearbox mechanism

piston of DAC. Using this "sliding tube", the operator can control the gap between the

culet of diamond anvil and gasket by moving the piston from outside the cryostat,

hence, the sample chamber of DAC can be opened and closed freely.

As a result, start over of the loading is enabled. Additionally, the "sliding tube"

mechanism can circumvent the contamination of sample by opening the sample

chamber after the surrounding atmosphere is evacuated and replaced by Hz or Dz in

the liquid reservoir, which is crucial for alkali metal, alkaline-earth metal, and rare-

earth metal, because they are chemically reactive with oxygen, water, and even

nitrogen. The combination of camera, spectrometer and microscope considerably

enhances the success rate and ensures the desired initial pressure for different loading.

2.3.2 Procedure of loading gases

At first, In the middle of the culet of one diamond, a foil yttrium is cut with a

thickness around I pm and loaded into the sample chamber. To avoid the chemical

reaction and contamination of the sample, Y was kept inside a glove box filled with

Ar-gas. All procedures of the sample preparation and pressure cell loading were

carried out inside the glove box and transferred into the cryostat, as shown in Figure

2.13a [7]. The status of the sample and pressure marker assembly in the sample

chamber is monitored by the microscope camera. The laser beam for exciting the ruby

fluorescence spectrum transmitted in optical fiber is focused on the ruby chip in the
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sample chamber for pressure measurement. After the liquid reservoir is pumped to be

free of air and moisture, the sample chamber of DAC is opened by the "sliding tube",

as shown in Fig. 2.13b One balloon of Hz gas is introduced into the liquid reservoir as

cryogen. Afterwards, the closed cycle refrigerator is switched on to cool down the

cryostat. The temperature of DAC is controlled to be stable between the melting point

and boiling point of Hz by temperature controller. H2 gas counted by balloon is

introduced into the liquid reservoir until the liquid level is above the surface of sample

chamber, as shown in Fig. 2.13c. The wavelength of the ruby fluorescence Rl line is

measured as reference for further pressure measurement upon trapping the liquid in

the sample chamber. The liquid is captured in the sample chamber by squeezing at

desired initial pressure, as shown in Fig. 2.13d. The sample is gradually hydrogenated

by stepwise warming up to room temperature, as shown in Fig. 2.13e. Therefore, the

pressure was applied to 3 GPa and kept constant with the gearbox system during

warming up to room temperature. Finally, Yttrium was kept surrounded by Hz liquid

in DAC at 3 GPa at room temperature.

Fig. 2.13 Schematic illustration of the loading process. (a) The DAC is

installed into the liquid reservoir. (b) The sample chamber is opened and the

DAC is cooled down to below the boiling point of H2 gas. (c) The liquid level

is increased to above the sample chamber. (d) The liquid is sealed in the

sample chamber. (e) The DAC is warmed up to room temperature.
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2.3.3 Sample preparation of YH3

Figure 2.14 shows our typical experimental setup in this study. In this

experiment, the YH3 sample is made by loading H2 liquid with Y metal in low

temperature. Therefore the sample yttrium hydride surrounded with hydrogen liquid

was prepared in DAC with the a sample hole drilled on a gasket. Hydrogenation

results the yellow-transparent YH3 phase in shown Fig. 3.15.

In glove-box

Foll Ytrum Inrid. hoL of fii gasl(tt in DAC
llquid H, -!-

Fig. 2.14: YH3 sample is made by loading H2 liquid with Y metal in low

temperature. The yttrium sample was placed into a DAC with the sample hole

drilled in a gasket. Ruby powder as pressure marker was compacted with the

sample. The sample was loaded in an argon-gas grove box (left). The sample

in DAC was then cooled down to liquid hydrogen temperature and the

hydrogen gas was flowed into the chamber in the cryostat. Y was kept

surrounded by Hz liquid in DAC at 3 GPa and warmed up to room temperature

(right).

We performed resistance measurements with ac four-probe with 4 Pt wire attach to

the sample in a chamber made by an electrical insulator with cBN-NaCl mixture.

Ruby chip as pressure marker were compacted in the sample chamber such as shown

in Fig.2.l6.

In the cryostat
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'l'lic synthcsizecl Yll.1 sillnplc was translormccl f}om tlie frrst DAC to the seconil

DAC and attached to the nreasurernent probes. Pressure was applicd at roonl

tempcrature and a tfle/tllc dilution refi'igeralor was used fbr low tempcrature

nteasurentent.

3 GPa
After loadincJ hydrOCJen YH、

I montlr

1暴、_

Fig. 2.15: Hydrogenation in liquid II: at room temperature. Hydrogenation

results in the yellow-transparent YI I,r. Tlie result showed the same transparent

fihn with ljLriberts grolrp il0]. To make sure hydrogenation. we wait enough

tinte. here take 1 month lbr hvdrosenation.
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Fig. 2.16: Electrical resistance measurement on YH3. A second (another) DAC

with 4 copper-foil probes on the gasket. The electric probes were electrically

insulated from the rhenium metal gasket by a cubic boron nitride (c-BN)

powder. Ruby powder as pressure marker was compacted with the sample. The

synthesized YH3 sample was transformed from the first DAC to the second

DAC and attached to the measurement probes.
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Chapter 3。 High―pressure effect on

yttrium hydride

Huiberts et al. [1] discovered that thin films of YH:-o can be switched between a

reflecting mirror and a transparent insulator by varying their hydrogen content, and

this has generated a great amount of attention over the past years. At ambient

conditions, it was found by neutron-diffraction measurements that the fully

hydrogenated state (YH:) crystallizes in hexagonal structure. At high pressure, YH3

undergoes a structural phase transformation induced and that this transformation is

accompanied by a metal-insulator transition [2-6]. Recently, a theoretical prediction

indicated the occurrence of pressure-induced superconductivity with I. of 40 K at 17 .7

GPa in the high-pressure fcc phase of stoichiometric YH3 [7]. In this chapter,

synthesized sample by hydrogenation from pure yttrium was pressurized in a

diamond-anvil cell and the pressure-dependent and temperature-dependent resistance

measurements were carried out. We found that the insulator-metal transition is driven

by the considerable negative slope of dpldL

3.1 Properties at ambient pressure

Hydrogen in metals has been investigated since Graham discovered in 1866

that palladium can absorb large amounts of hydrogen gas. Apart from Pd, there are

numerous other metals which exhibit the ability to absorb hydrogen. Within the metal,

the Hz molecule is dissociated and the H atoms occupy interstitial sites in the host

lattice.

The process of hydride formation can be explained as in reference [8]. The H-

M bond is electronic nature. Whenever the hydrogen atom approached the metal, its 1

s electron hybridizes with the electrons of the metal. New bonding and antibonding

bands will form within the metal. The resulting hydrides can be classified by the

nature of the hydrogen bond into three different principal categories, covalent, ionic or

metallic.
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The interaction of H2 with metal leads to absorption and the formation

hydrides which depends on the thermodynamic conditions. In the case of yttrium

hydride, the phase diagram consists of three basic parts as shown in Fig. 3.1 [1].

- a phase: metallic solid solution of hydrogen in yttrium (hcp).

- B phase: metallic dihydride (fcc) with two H atoms situated in two available

tetrahedral sites of the metal lattice.

- 7 phase: Trihydride (hcp) with a bigger unit cell than the original metal, and filling

up both tetrahedral sites and one octahedral site.

104

漫
還
‐

10・
1

Fig. 3.1 : Electrical resistance (a) and optical transmission
for 1.8 eV photons (b) during hydrogen [1].

3.1.1 Electronic properties

The increase in p with increasing H concentration in Fig.3.1 is indications of

the occurrence of a metal-insulator (MI) transition. pincreases with increasing

hydrogen concentration up to the cr phase limit, but the sample remains shiny metallic

[10]. When the Y is hydrogenated up to the B-phase, the two H-atoms per unit cell
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add two extra electrons to the system. For Y, the value of the resistance decreases to

20Yo in the dihydride phase. YHz is a better metal than pure Y. The main reason for the

increased electrical conductivity is the reduced electron phonon coupling. p increases

with increasing the hydrogen content above the limit of the B-phase, leads to a

growing volume fraction of the hexagonal y-phase. YH3 becomes insulator by

hydrogenation via an increase of the resistance of several orders of magnitude.

3.1.2 Optical switching

In 1995, Huiberts [1] discovered that yttrium and lanthanum hydride show

spectacular reversible optical changes when loaded from the dihydride to the

trihydride phase. Thin film samples are extremely reactive with oxygen. However,

Huiberts prepared thin films of yttrium by evaporation under UHV conditions. Before

exposure to air they are covered by a thin layer of Pd to prevent the yttrium from

oxidation and at the same time to catalyze the hydrogen absorption []. In Fig. 3.2,

these photographs show the behavior of a 50 nm thick Y film covered with a 20 nm

palladium protection layer in black part. The chessboard pattern is behind yttrium film.

Fig. 3.2: Hydrogenation results in the yellow-transparent [6]. The left picture is

yttrium film (a). Upon hydrogen absorption, the film is transformed into the fcc

YH2 phase, which has a weak transmission as shown in the middle picture (b).

Further hydrogenation results in the yellow-transparent hcp YH3 phase at the

right side (c).
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Chess is in front of the film to see the mirror image. Before hydrogenation, Y

film is metal and virtually all the photons in the visible range are reflected. The mirror

image of the knight is clearly visible (a). Upon hydrogen absorption, the film is

transformed into the fcc YH2 phase, which has a weak transmission as shown in the

middle picture (b). Further hydrogenation results in the yellow-transparent hcp YH3

phase at the right side (c) which is insulator with band gap - 2.8 eV.

3.1.3 Crystal structure

There is an important problem to determine the roles interstitial hydrogen (H)

atoms play in structural and electronic properties. Y metal is one of special interest

because of their ability to absorb up to three hydrogen atoms per metal atom. Yttrium

has the hcp P63lmmc structure at room temperature I l ] with lattice constants a :
3.3648 A and c:5.732 A. Within this structure the metal atoms occupy places with

atom co-ordinates at (0,0,0) and (l/3,213,1/2).Tetrahedral interstitial sites (T-sites)

arelocatedat(0,0, l/4-z),(0,0,3/4+z),(l/3,213,114+z),and(l/3,213,314-z) withz:
-1/3(cla)2. Octahedral interstitial sites (O-sites) occur at (113,213, l14\ and at (213, l13,

3t4\.

H Tetrahedral
H Octahedral

YHs metal (hcp) YH2 metal (fcc) YH3 insulator (hcp)

Fig. 3.3: Hydrogen position under ambient pressure [6].
YH2: two H atoms situated in two available tetrahedral sites of the metal lattice

with an fcc structure phase.

YH3: hydrogen is filling up both tetrahedral sites and one octahedral site with a

structural chanqe from cubic to hexasonal.
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Yttrium trihydride, YH:, exhibits a hexagonal metal lattice, which contains

three H atoms per metal atom in the interstitial spaces under ambient conditions in Fig.

3.3. Two H atoms are located at the tetrahedral (T) sites and the remaining H atom is

located near the Y metal plane in the octahedral (O) sites. On the other hand, dihydride

YH2 has an fcc metal lattice in which the T sites are filled with H atoms. YH* exhibits

a gradual opening of the band gap during hydrogenation over x: 2 with a structural

change from cubic to hexagonal. Hexagonal YH3 eventually becomes transparent at a

gap of 2.8 eV. Upon dehydrogenation into YH2, insulating YH3 transforms into

metallic YHz with a reversible hexagonal-cubic structural transition. It is considered

that the interstitial H atoms, especially the O-site H atoms, play a dominant role in the

hydrogen induced band-gap opening as well as in the structural transition.

3.2 Previous works

3.2.1Metallic behavior under high pressure

. The phase stability of YH: under high pressure was studied in the framework

of density function theory [14]. The crystal phase stability is analyzed by evaluating

the enthalpy (H : E+PV). Figure 3.4 shows the calculated enthalpy difference as a

function of pressure for the hexagonal and cubic phases of YH3. The calculations

correctly describe the ground state of YH3 and find that the hexagonal phase is

energetically more favorable near the equilibrium volume. However, under

compression the hexagonal YH3 undergoes a structural phase transformation and the

cubic phase becomes energetically more stable. Thus the metallic state has been

observed in this pressure region around 25 GPa, in agreement with experimental

findings showing that the metallic fcc phase appears above 25 GPa [3,6].

The effect of pressure on the electronic properties of cubic YH: is investigated

through the band structure. In Fig. 3.5, the valence band is mostly due to the

hybridization between Y d and H s states whereas the conduction band is primarily

formed by Y d states. Clearly, the Fermi level lies in the conduction band giving rise

to a metallic state. The GW corrected band overlap at the f point is 0.38 eV. However,

if the 4p states of Y are taken into account in the calculations as semicore states. the
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overlap is reduced to 0.15 eV whereas if 4s and 4p states are included as semicore

states, the overlap is further reduced to 0.12 eV.

Enthalp/ (H:E+PD

・ヽ、ヽ. hCP

、1∝
_ご

10        20        30        40
恥

“
■
"{GL〕

Fig. 3.4: Enthalpy difference as a function of pressure for YH3 [4].

GW band dispersions

5

-111

L X

Metalhc

Fig. 3.5: Electronic band structure along with the GW corrections for

the cubic phase of YH3 [4].
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3.2.2 Structural phase transition

Ahuja et al. predicted that YH3 undergoes a structural phase transformation

induced by pressure and that this transformation is accompanied by a metal-insulator

transition [2]. According to the density functional calculation of Kelly ll2l, a

transition from an insulating distorted to metallic phase is expected at l5Yo decrease of

the molar volume, corresponding to 14 GPa applied pressure. Using high-pressure

experiment, the pressure-induced structural transition has been investigated using

synchrotron radiation X-ray diffraction measurement at room temperature [3,4,5,13].

The hexagonal-fcc transition starts around l1 GPa and is complete near 20 GPa in Fig

3.5 [13].

Machida et al. [5] performed X-ray diffraction studies on YH3. The diffraction

patterns do not show apparent changes up to 10 GPa. As pressure increases beyond 1 1

GPa, the reflection peaks from the hexagonal structure gradually loose intensity and

several new peaks appear. A simple diffraction pattem with five reflection peaks is

obtained at pressures above 20 GPa and the observed reflection peaks are completely

indexed with a fcc unit cell.
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Fig. 3.6: X-ray diffraction patterns measured for YH3 [5] which

shows yttrium's structure changes hcp to fcc upon

compression.
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Fcc phase is stable up in high-pressure range. The intermediate state while in

the above pressure range has been interpreted as the coexistence of the low-pressure

hexagonal and high-pressure cubic phases. In Fig. 3.7, powder diffraction profiles are

simulated for various candidate structural models by systematically changing the

numbers of hexagonal-type (ABA-type) and fcc-type (ABC-type) layers contained in a

unit cell. The intermediate state was a single phase and their diffraction patterns were

well reproduced by models with long period stacking structures of Y metal layers

which arranged in ABA-type (H-type) and ABC-type (K-type) stacking sequence. In

pressure region at 14 GPa, structure of the sample has a 4-H and 5 K-layer sequence,

which were stacked up along the 3-fold axis. The 17.9 GPa structure was described

with consisted of a 2-H and 7-K layer sequence. The K+ype component increased in

number gradually with increasing pressure, and eventually become the only type lead

to fcc phase. The interstitial H atoms likely played a dominant role in the formation of

the long period structure.
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Fig. 3.7: Schematic illustrations of the long-period structures of

the yttrium sublattices at 14.0 and 17.9 GPa. The hexagonal and

cubic structures are also shown [5].
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3.2.3 Optical property

Using a diamond anvil cell (DAC), the infrared spectra of YH3 were measured

under high pressure [3,6]. The visible color change is shown in Fig. 3.8. The sample is

yellowish transparent at 6 GPa, but the transmission shifts towards the red at 20 GPa

to finally disappear completely at24.8 GPa. The transmission spectra are shown in Fig.

3.9. Optical transmission spectra show that the semiconductor gap remains open until

at least 25 GPa. The resulting pressure dependence of the optical Eap Eeis shown Fig.

3.10. Extrapolating the pressure dependence of the gap, an insulator to metal transition

is expected at 55 + 8 GPa.

Fig. 3.8: Transmission photographs of YH3 at high pressure in a DAC [3].

Transmission photographs of 500-nm thick YHg films at high pressure in a DAC.

There is sample in the centre of the picture of the gasket hole which is filled with H.

Images are taken at 6 GPa (a),13.6 GPa (b), 20 GPa (c) and 24.8 GPa (d). The sample

is yellowish transparent (a) at low pressure, but the transmission shifts towards the red

(b and c) to finally disappear completely from the visible spectrum (d).
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Fig. 3.9: Experimental transmission spectra of YH3 under high pressure at

various pressures [3].
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Fig. 3.10: Pressure dependence of the energy gap measured by the visible

absorption measurement [3]. The resulting pressure dependence of the

optical gap E. The latter fit extrapolates to a zero gap at 55.68 GPa, where an

insulator-to-metal (IM) transition is expected to take place.
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Fig. 3.1 l: Metal transition is expected at around 24 GPa.

(a) Transmission spectra measured at various pressures. Transmitted

light was completely lost in the whole infrared region at 23.5 GPa.

(b) The transmission intensity remained nearly constant as the

pressure was gradually increased from 17.2 to 22.6 GPa and dropped

to zero as the pressure was further increased to 23.5 GPa.

Fig. 3.1la shows the transmission spectra expanded over the entire infrared

region. The absorption peaks in the wave-number regions of 400-1200 and 4000-

5000 cm-l were due to the hydrogen vibrations of YHI and H2, respectively. The

absorption due to the interband electronic excitations was not observed at pressures

roughly below 16 GPa. The spectrum dramatically changed when the pressure

increased from22.6 to 23.5 GPa. The transmission spectrum abruptly collapsed over

the entire infrared region. The optical gap closed. The abrupt closing of the band gap

is more pronounced in Fig.3.1lb where the relative transmission intensity at a fixed

wave number of 2800 cm-r is plotted as a function of pressure. The transmission

intensity remained nearly constant as the pressure was gradually increased from 17.2

to 22.6 GPa and dropped to zero as the pressure was further increased to 23.5 GPa.

The transparent sample was recovered when the pressure was decreased to 16 GPa. A

rapid drop in intensity was again observed in the second compression at a pressure

between 24.4 and 26.9 GPa. The transition pressure slightly shifted to a higher
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pressure since the sample probably suffered from some degradation during the

compression and decompression cycles.

Comparing this result with in ref [3], that showed that the energy gap remained

up to 25 GPa, while the present infrared measurements indicated that the gap closure

was at 23-26 GPa. This discrepancy is probably explained by the sample conditions.

In the visible measurement, the hydride was prepared by evaporating a thin film of

yttrium metal, which was 0.5 pm thick, on the top surface of a diamond anvil, and

hydrogenating the film with hydrogen fluid under pressure. Thus, the thin film that

evaporated on the diamond may suffer from nonhydrostatic stress during compression

due to the significant mismatch in the compressibility between the hydride and

diamond. Howevet, in the present study the self-standing hydride foil was pressurized

in hydrogen fluid/solid under hydrostatic or nearly hydrostatic conditions and

probably underwent an insulator-metal transition at slightly lower pressures.
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3.3 Experimental Results

3.3.1 Raman spectrum

After loading Hz, sample was used to measure Raman spectrometer at 3 GPa as

shown in Fig.3.l2. The Raman measurements were performed at room temperature.

The laser beam of 532 run was focused on an area of the sample. We compare the

spectrum of this study with those of A.M Carsteanu's. 1271. Raman lines are

compatible with sample YH3 for the hcp structure which indicating the stoichiometry

of H is close to 3.

YHx was synthesized in f!uid H2 at 3(3Pa A‐M Carsteanu elθ ′Physical ReMew B 69,134102{2004)
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Fig 3.12: a) Typical Raman spectrum of YHr at 3 GPa obtained in this work.

b) Typical Raman spectrum of YHr of A.M.Carsteanu inl27l

3.3.2 Pressure dependence of electrical resistance at room
temperature

- YH: undergoes a structural transformation from the hexagonal hcp to cubic fcc via

an intermediate phase under high pressure 126] under high pressure. To observe I-M
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transition by the direct measurements of resistance in DAC, pressure dependence of
the resistance at room temperature were measured as shown in Fig. 3.13.

- We observed two maximums in the p-P curve at around 12 and 40 GPa, which is

consistent to our previous results [13]. The first maximum may correspond to the

appearance of the intermediate phase with long period stacking structures of yttrium.

According to the x-ray structural studies, [26] no change in the structure by yttrium

atom at the vicinity of the second maximum. This anomaly may be related to

rearrangement of the hydrogen at the pressure range, however determination of the

position of hydrogen atoms in the yttrium lattice is hardly possible at the high pressure.

After the first maximum, the resistivity showed logarithmical decrease in the

intermediate phase, which indicated the gradual appearance of a high conductive,

metallic phase, but the resistivity kept decreasing up to the highest pressure of 75 GPa.

Previous infrared transmission measurement showed a sudden transition to metallic

phase at around 23 GPa [15], showing a disagreement with the present results.

Another optical measurement claimed that metallization is expected with a continuous

gap closing at 55 + 8 GPa [3]. We confirmed that YH3 sample show color change in

transmission as shown in Fig. 3.14. The sample is yellowish transparent at 1.59 GPa,

changes the red at 9.95 GPa and finally to appear black color at 1 1 .3 8 GPa.
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Fig. 3.13: Pressure dependence of electrical resistance at room

YH3. A structural transition from hcp to fcc around 12 GPa.
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Fig。 3。 14:Translnission photographs ofYH3 at high pressure in a DAC

The sample was obseⅣ ed yellowlsh transparent at l.59 GPa to become

black color at ll.38 GPa。

3.3.3 Temperature dependence of electrical resistance

We measured the resistivity as a function of temperature at fixed pressures at

low temperature and the typical results are shown in Fig. 3.15. The temperature

dependence of the resistivity was negative slope (dddT < 0) at pressures below 50

GPa and became almost independent to temperature above 74 GPa, which indicates

the onset of metallization took place at pressure range from 50 to 74 GPa.

We calculated AE, with equation (l). The band gap seems to close to zero at

pressure about 90 GPa and I-M transition occurs in YHr.

晉

二

‥

σ(lr)%σO exp[―
i‖:争

]    (1)
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We compare the results of this study and the previous measurement of

resistance versus temperature in our lab as discussed in [3]. The plot of the resistance

versus temperature at several pressures is shown in Fig 3.17. Semiconducting or

insulating behavior of the sample was evident up to 4.4 GPa. With increasing pressure,

the onset of metallization seemed to take place at pressure of 44 GPa by the

considerable negative slope of dpldL

The reason for these discrepancies is not yet understood, however may be due

to the difference of the sample condition under pressure, such as nonhydrostatic stress.

No pressure medium was used in our experiment and the sample was pressurized

directly by the diamond-anvil surface. In fact p7" curves in our number of experiments

shows slightly different in each runs. In addition the previous samples in the optical

measurements were surrounded by hydrogen at pressure. As the result of the stress and

the lack of hydrogen, the number of hydrogen (value of x in YH*) may be slightly

smaller than 3 and the sample became inhomogeneous and semiconducting parts may

remain even at high pressure.
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Fig. 3.17: The temperature dependence of electrical resistance at

difference pressure.
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Fig.3.l8: Variety of R-7"curves

- metallization expected around 70 GPa in Run I and above 80 in Run 2

- metallization occurs around 40 GPa in run 4

In Fig.3.l8, there show variety of R-Icurve. That different is formed from hydrogen

content and pressure condition different. Here I did my best for keeping with the same

pressure condition. So that, those results are only depend on hydrogen content. Upon

investigation of the M-l transition in these metal hydrides would not to be complete

without a detailed study of the insulating YHr-a with very small 6. But YH: is sensitive

with 6 under high pressure.

Schematic drawing of the variety of stoichiometry of hydrogen in YH3-6 is to

show in Fig.3.l9. This may caused by deferent condition of the synthesis of hydrides

such as thickness of metal, time, and pressure.

Even the semiconducting character remained at pressures above 50 GPa, the

resistance showed a small drop with decreasing temperature around l0 K by

increasing the measuring current from l0 prA to 1 mA. A shown in Fig. 3.20 we

determined the critical temperature, 7x where the VT curve deviated from the trends

of semiconductor and plotted 7x as a function of pressure in Fig. 3.21. The value of 7x

is rather closed the superconducting transition temperatureof theoretical prediction [2],

however no magnetic field dependence of 7t was observed.
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YH3

Fig.3.l9: Schematic drawing of the variety of stoichiometry of hydrogen

in YH3-6.
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Fig.3.20 The small resistance drop at low temperature. The line shows a trend

of semiconducting curves observed at higher temperature. The arrow indicates

the 7x.
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Fig.3.2l: Pressure dependence of the transition temperature 7* of yH3.

We observed pressure-induced metallization in metal-hydride system, YH3.

The result should be important step towards understanding underlying physics of
hydrogen rich system.

3.3.4 Photocondu ctivitv

' Photoconductivity is an optical and electrical phenomenon in which a material

becomes more electrically conductive due to the absorption of electromagnetic

radiation such as visible light, ultraviolet light, infrared light, or gamma radiation.

Transparent orange yttrium hydride tums to black when illuminated by visible

laser light at pressures of several gigapascals at room temperature. The marked

reduction in optical transmittance extends over the infrared region, suggesting that

illumination creates persistent free carriers. The black sample retums to the

transparent orange hydride during room-temperature annealing for a few hours as

shown in Fig. 3.22. Photochromism is pronounced for the coexistent state of the

metallic fcc-YHz and the insulating hexagonal-YH3 state but is depressed for the

single phase of hexagonal-YH3 as discussed in [6]. These results indicate that light

illumination can modify the optical and possibly electronic properties during a ceftain

period of times the metal-insulator transition by hydrogenation.
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Fig.3.22: The radiated part turns opaque black immediately by 5 seconds

illumination with the 488 nm light from an Ar ion laser [6].

Our hydride sample was synthesized by hydrogen of pure yttrium in fluid Hz at

a pressure of 3 GPa. We manifested significantly enhanced conductivity in the

semiconducting YH* upon illuminated by visible light. We attribute the enhance

conductivity resulting from illumination by visible light to the following mechanism:

- Creation of free charge carriers.

- Inter band transition of electrons, existence of a donor level below the

conduction band edge; Deabsorbtion and recombination of H.

- Enhanced mobility of H and vacancy; Heating effect.

The result demonstrate a potential switch able function controlled by light

illumination, which is close with resistance of sample increases gradually and

eventually resumes the initial value within a large relaxation time. A illuminating with

different light from another Argon gas laser, respectively I:514,488,1064 nm in

laser power 0.3mW, which was focus to on the sample surface, immediately change

the resistance, as show Fig. 3.23.The resistance of sample drops rapidly and become

saturated within l0 minutes. Once the laser is switched off, resistance increases

gradually and eventually resumes the initial value within alarge relaxation time. There

are the same the laser power density and pressure at difference wavelength. The green

light illumination can induce 40%o drop of resistance at 1.6 GPa, the blue light is

induced 60 Yo drop of resistance and 2%o drop of resistance for red light. This is likely

due to the interference effects the long wave light, which can pass through the
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transparent. The sample was illuminated buy the 514 nm argon laser for l0 min. The

green light illumination can induced 40% drop of resistance at 1.6 GPa. During apply

pressure, the reduction of the resistance decreased above 50%. The illumination gets

small effect with 8% drop of resistance at I 1.49 GPa. There is the occunence a

structural phase transition around l0 GPa. This result is confirmed through the in situ

high-pressure measurement of resistance using the DAC at room temperature. The

maximum resistance expected at l0 GPa and start change phase transition from hcp-

fcc as shown in Fig. 3.25.
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drops rapidly; X-ray OFF, resistance increases gradually and eventually

resumes the initial value within a larse relaxation time.
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X-ray also affects the conductivity in YH3 obviously. The resistance decreased

about 50% by X-ray illumination as shown in Fig. 3.26. The pressure dependence of

the resistance is shown in Fig. 3.27 .

One possible mechanism is the site-to-site hydrogen transfer, the photon energy

dependence of photochromism. The light illumination can modify the optical and

electronic properties.

3.4 Summary

Hydrogenation causes yttrium to exhibit a metal-insulator transition. Structural

transformation from the original hexagonal to the fcc cubic structure under high

pressure. We observed pressure-induced metallization in metal-hydride system, YH3.

But we note that variety of hydrogen content may cause variety of conductivity. No

superconductivity was observed up to 80 GPa. The result should be important step

towards understanding underlying physics of hydrogen rich system.
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Chapter 4。 ヨ【ighEpreSSure effect on

perovskite hydrides

ln this chapter, the studies of metallization and superconductivity in hydrogen-rich

system of the cubic perovskite structure are described. We focus our attention to CaT-

H3 for T : Ni and Co at high pressure. These materials are not yet intensive studied

under high pressure.

4.1 Basic Properties

4.1.1Crystal structure

The perovskite-type hydrides is synthesized by solid-state reactions from the

elements and binary hydrides at673 -900 K at I - 20 MPa of hydrogen [3]. In this

study, the perovskite-type hydrides were prepared by mechanical milling with 20 steel

balls for 20-80 hours at I MPa of hydrogen at ambient temperature in hardened steel.

In the sample preparation, there has the mount of elemental Fe contamination during

the milling process, less than 0.3 mol %o. The sample always handled in a glove box

filled with purified helium or argon to avoid oxidation.

Fig. 4.1 : The crystal structure of perovskite type hydride,

ABH:. A and B are cations and H is an anion.

Ｈ
　
Ａ
　
Ｂ

・
●
●

-59-



Compound with perovskite structure are typically expressed as ABH:, where A,

B are cations and H is an anion. The idealized structure exhibits a primitive cubic unit

cell with ions A at the corners, B at the centers, and H at the faced-centered positions

of a unit cell composed of [BX6]-octahedral and [AX12]-cubo-octahedral. There are

many perovskite-type hydrides reported in references [1-16,,

The unit cell of CaTH: (T: Ni, Co, Fe, ...) identified as a cubic perovskite

structure in space group Pm-3m. This hydride correlates with the characteristics of the

transition metal's d-band. Ca atom places at the corner (0; 0; 0) and a transition metal

atom in the center (0.5; 0.5; 0.5), where the tree additional hydrogen atoms are placed

in octahedral sites at the face centers (0.5; 0.5; 0), (0.5; 0; 0.5) and (0; 0.5; 0.5)

respectively. The precise atomic structure of CaNiH:, schematically as shown in Fig

4.1, which was confirmed by the synchrotron X-ray diffraction measurement. The

result of the X-ray diffraction measurements of CaNiH: is shown in Fig. 4.2. The X-

ray diffraction pattern of hydrides Ca-Ni alloys could be index with a cubic unit cell a

:0.3553 A tt:1.

20    30    40    50    60    70    80
2θ (degree)

Fig.4.2:X―ray din[action profllcs at ambicnt tcmpcrature of

the as lllillcd and heat treated CaT― H,T=Ni.
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Table 2. Summary of crystal structure parameters of Cal*,Ni-H for

x:0,0.5 and 1.0 (space group Pm_3 no.22l) andZ: l)
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4.1.2 The stability of the perovskite-type hydrides ^t ambient
pressure

Compound with perovskite structure are typically expressed as ABH3, where A,

B are cations and H is an anion. In these coordinates, various perovskite-type hydrides

plotted in Fig. 4.3. Here introduced is the Goldschmidt's tolerance factor, t, which is a

geometrical factor to be commonly used for discussing the formation of perovskite-

type oxides. The tolerance factor, t, is defined as,

ノ=
RH tt R〃

(1)

JiG,, + R,)

Where, Rt, Ruand Rsare the ionic radii of A, H and B ions, respectively. This factor

provides necessary conditions for the formation ability of perovskite-type structure. In

the present case, for convenience, (R1+Rp) and (RB+Ri are replaced by the M-H

interionic distance in the AH binary hydride and the B-H interionic distance in the BH

binary hydride, respectively.

Every perovskite-type hydrides exists stably in the range of the t value from

0.9 to 1.16. If t is close to 1, the structure presumed to be closer to the ideal cubic unit

cell. When the value of R; is smaller than ideal and t is less than or equal to 0.81,
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many hydrides have slightly distorted variants with lower symmetry such as tetragonal,

orthorhombic and triagonal lattices [7, l8].
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The detailed for estimation of the formation ability of the perovskite-type

structures in Fig. 4.1. The perovskite-type structure is composed of [BH6] octahedral

and IAH12] cubo-octahedral for the composition of ABH:. On [BH6] octahedral, the

range of t for the perovskite-type hydrides with stoichiometric compositions (ABH3) is

narrow (0.9 < t < 1.1) than that for the perovskite-type oxides (0.78 < t < 1.05). This is

instability in the anion state of hydrogen compared to that of oxygen due to the smaller

value of its electronegativity. If hydrogen is stoichiometrically less than the perovskite

composition ABH3, the t values may tend to be smaller than 0.9. That the formation

ability of perovskite-type hydrides can reasonably explain on the basic of the

geometric restrictions on ions using the Goldschmidt tolerance factor. Fig. 4.4

compiles t for CaT-H3 for T : Co, Ni and the t values for the systems realizing the

Pm-3m structure fall in the range between 0.92 and 1.01, which is in agreement with

the general observation. This justifies the ionic bonding description of this class of

perovskite hydrides

4.1.3 Electronic structure

The band structure and DOS of CaNiHt are as shown in Fig. 4.5 artd 4.6,

respectively. The small lattice parameter of 3.5262 A implies a wide dispersion of the

hydrogen-based bands.

In CaNiH3, the at, e, splitting of these bands pronounced. The lower lying a1r

band dispersed over a region from -10 to -6 eV below the Fermi level. This band

contains a stabilizing contribution from the Ni-s state. Compared to the alrband, the e*

band is rather narrow and confined between -6.5 and -5.5 eV. Due to a substantial

admixture of Ni e" d states, this band is essentially responsible for Ni-H bonding. At -

2 eV the dispersion, non-bonding, Ni t2, d states centered. At even higher energies,

from -1.5 to 1.5 eV, the Ni-H antibonding e" band is distributed. This band is only

half filled, which makes CaNiH: a metallic conductor. A completely filled e*band

would put the Fermi level at the pseudo-gap at 1.5 eV. The contribution of Ca states to

the bands below the Fermi level is small. This suggests considering CaNiH3 es

consisting of a polyanionic framework [NiH:]2- counterbalanced by Ca2* cations.
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Fig.4.5: Band structure of CaNiH: at

the theoretical equilibrium volume.
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Fig.4.6:Total density of statcs of CaNiH3

and its decomposition into H― s, Ni―d and

Ca― s,p,d contributions(from abOve)。

M

4.2 Experimental and results

For many years, investigations on ABH: have been concentrated as hydrogen

storage material. However, to investigate the electrical transport properties of samples

under high pressure, we performed the electrical resistivity measurements at low

temperature and high pressures up to 80 GPa using a four-probe method in a diamond

anvil cell (DAC). The samples together with ruby chip as pressure marker were

compacted in the sample chamber of gasket in the glove box to avoid the reaction with

oxygen and moisture. We performed X-ray diffraction measurement on CaCoH: and

CaNiH: at the pressures up to 83 GPa and 62 GPa, respectively at room temperature

using synchrotron beam line BLI0XU in the SPring-8.
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4.2.1Sample setting

Figure 4.7 shows our typical experimental setup in this study. CaTHr is highly

reactive with water, oxygen and nitrogen. To avoid the chemical reaction and

contamination of the sample, it kept inside a glove box filled with Ar-gas in Fig. 4.7.b.

All procedures of the sample preparation and pressure cell loading carried out inside

of the glove box. After loading sample, the pressure increased to some pressure to seal

the sample chamber completely. To avoid any reactions between sample and

surrounding materials, the pressure kept below 8 GPa at room temperature.

Ruby

insulator layer

(c-BN + epoxy)

Top view

Fig.4.7: Electrical resistance measurement in CaTHl. (a) DAC setting: The culet

of the diamond anvil: 300 pm; gasket material: Rhenium; thickness of gasket: 50

pm; insulator layer: c-BN powder +epoxy; electrode material: Cu (+Kapton thin

film); pressure media: No; pressure marker: ruby.

(b) A glove box filled with Ar-gas.

(c) The top view of the setting for resistance measurement in DAC.
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To investigate the electrical transport properties of samples under high pressure,

we performed the electrical resistivity measurements at low temperature and high

pressures up to 80 GPa using four-probe method in a diamond anvil cell (DAC) in Fig.

4.7a.The sample embedded on the thin film Cu electrodes on Kapton film without any

pressure medium. The gasket made of c-BN and epoxy was covered by the Kapton

film to avoid the chemical reaction. Ruby chip as pressure marker were compacted in

the sample chamber.

The X-ray diffraction experiments carried out at beam line BLIOXU of

synchrotron radiation source SPring-8. Pressure medium was not be used as shown

Fig. 4.8. X-ray passes through the optical window and the sample CaT-Ht compressed

in a DAC with the cell axis oriented along the X-ray beam. The diffracted X-ray

patterns collected on a flat imaging plate (IP). Conventional diffraction diagrams

obtained using PIP software via integration of the two-dimensional images. The X-ray

wavelength was varied 0.413522 L. The well-collimated beam seems to have

contributed to avoid the obstacle intense diffraction from gasket.

Top view

Fig. 4.8: The samples together with ruby chip as pressure marker were compacted in the

sample chamber of metal gasket. The culet of the diamond anvil: 300 pm; gasket material:

Rhenium; thickness of gasket: 50 pm; pressure media: No; pressure marker: ruby
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4.2.2 Metallization of CaCoH3

CaCoH3 with perovskite-type structure has to show a non-metal with band gap

about 1 eV. The ground state of CaCoH3 is a nonmagnetic insulator with predominant

electron configuration of d6 of Co3* fully occupying the t2, level, exceeds the Hund's

rule coupling energy in [3]. As shown in Fig. 4.9, the resistance of CaCoH3 sample

decreased up to 40 GPa and saturated above 40 GPa at room temperature. It is note

that the resistance of the sample is semiconductor-like at ambient pressure, which

decreases sharply in the pressure range of 10 - 40 GPa by about five orders of

magnitude. This can be one of indication of the metallization of CaCoH3 under high

pressure. This metallized transition confirmed through the in situ high-pressure

measurement of resistance versus temperature using the DAC, with the metallization

pressure being above 40 GPa as shown in Fig. 4.10.

Since there is a phase transition at 40 GPa as discussed in the following

structure studies, thus inferred that the resistance decrease were caused by the

formation of the new high-pressure phase. When the pressure released, the resistance

increases again with the same line when loading totally returns to ambient pressure.

I

CaCoH
.3

I

It
- ll Itl..r I rrr I r r

P (GPa)

Fig. 4.9: Pressure dependence of electrical resistance at room temperature in

CaCoHr.
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）
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The electronic property seems to be reversible after pressure release. Here the crystal

structure of transition phase is reversible or not change crystal structure during

applying pressure.

The temperature dependence of electrical resistance was as shown in Fig. 4.10.

The resistance increased with decreasing temperature at 17 GPa. This negative slope

demonstrated semiconductor character. With pressure increasing, the absolute value of

resistance decreased and the semiconductive behavior was effectively to suppress at

high pressure. It is note that the R-Z curve becomes almost flat at 40 GPa. Upon

applying pressure, the R-Z slope changed to positive up to 80 GPa, indicating the

occurrence of metallization as the aforementioned measurements of resistance at room

temperature. The results showed no superconductivity and small increase of the

resistance at very low temperatures was observed.

CaC° H3

３〇
一
４２
〓
８０

100     200     300

T(K)

Fig. 4.1 0: Temperature dependence of electrical resistance at variety pressure.
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Fig. 4.1 1 : The energy gap in CaCoH: will close at around 45 GPa.

As shown in Fig. 4.1 l, the gap which estimated by activation energy will close

at around 45 GPa. The origin of this change in the resistivity at around 40 GPa will

discuss in X-ray diffraction. Fig.4.12 shows the spectra of X-ray diffraction results of

CaCoH: at various pressures. The diffraction data collected in the pressure range 0.96

- 83 GPa. All of the obtained diffraction peaks were able to be indexed with

previously reported fcc structures from Orimo group [3] with a lattice parameter of a

:3.5262 A. the fcc phase maintained up to 83 GPa. There are seven peaks of the

sample, indicated with (lll), (ll0), (ll1), (200), (211), (220), (310) in the X-ray

diffraction pattems. With pressure increasing, all peaks weakened gradually, and

shifted to higher degree. The (111) peaks become weak and disappeared at 33.5 GPa,

indicating that there maybe a crystal structure phase transition at 33.5 GPa. The (111)

peak return to the original sites when the pressure was released from the maximum to

ambient, so there is not the phase transition but deformation the crystal. The

relationships of d values of peaks in pattern versus pressure are showing in Fig.4.13.

The d-value of fcc CaCoH3 at ambient pressure are also included, indicating that

CaCoH3 does not decompose into CaCo and Hz in the experiment pressure range.

According to the peak intensity evolution and the d-value decreasing up to 83 GPa, the
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d value of the (l I l) peak is vanish at33.4 GPa which indicates the deformation crystal

of CaCoHl under high pressure.

i   CaCoH
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Fig.4.l2:
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Fig. 4.14: The value as a function of pressure during compression.

The result is consistent with the aforementioned in situ measurement of

resistance versus pressure. The vanish ofd-spacing ofpeak (l I l) in the pressure range

33.5 -83 GPa does not result in a change of volume of the primitive unit cell V as

shown in Fig. 4.14, which corresponds to the volume of one cubic cell of the initial

Pm-3m phase because the d-values of the other peaks are decreasing with increasing

pressure. It reveals that the cubic perovskite phase is stable in a wide range of high

pressure, and no phase transition at room temperature to 83 GPa.

4.2.3 Metallization of CaNiH3

Figure 4.15 shows the spectra of X-ray diffraction results of CaNiH: at various

pressures. Indexing can be a cubic perovskite up to 62 GPa. There is also a vanished

(l I l) peak at - 25 GPa. Comparing with CaCoH3, the same in relative peak intensity

attributed to the distortion of sample. The d-value and volume as a function of

pressure is shown in Fig. 4.16 and Fig.4.l7, respectively. It is demonstrate that the

most of transition metal in perovskite structure is usually very stable under high

pressure.
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Fig. 4.18: The color changed from black to reddish brown a gain in CaNiH3.

The color of the hydride was reddish brown. The lattice parameter was a:
0.35542 nm [9]. The color of the sample changed from black to reddish brown from

9 GPa up to 80 GPa as shown in Fig. 4.18. As show in Fig.4.l9, the resistance of the

sample decreased up to - 25 GPa, and increase up to 90 GPa.

The temperature dependence of electrical resistance of the CaNiH3 is shown in

Fig.4.20. The resistance decreased with decreasing temperature.at all pressures. These

slope demonstrated the metallic character. With pressure increasing, the absolute value

of resistance showed minima at 25 GPa. No superconductivity was observed. There

show a typical semiconductor temperature increases the resistance at very low

temperatures.

-73 -



（Ｃ
）∝

08

07

06

05

04

03

CaNiH3

・
■
。
。

10   20   30   40   50   60   70

P(G Pa)

Fig. 4.19: Pressure dependence of electrical resistance at room temperature.

CaNiH3
80 GPa

CPa

60 CPa

55 GPa

GPa
9 GPa

200

T(K)

Fi5.4.20. Temperature dependence of electrical resistance at different pressures.

５０

（Ｃ
）
∝

-74-



4.3 Summary

The temperature dependence of resistance shows metallic behavior indicating

the onset of the metallic state in CaCoHl above 40 GPa. No superconductivity was

observed. The cubic perovskite phase is stable in a wide range of high pressure, and no

phase transition at room temperature.
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Chapter 5. Conclusions

Purpose of this research is to search for a pressure-induced insulator to metal

transition in hydrogen rich systems. Two systems are focused in this thesis. The first

system is YH: and the second is perovskite hydrides CaCoH3 and CaNiH3, expecting

as alternative approach to "metallic hydrogen".

This thesis was done as a part of survey of dense hydrogen for high-

temperature superconductivity. The first part of the thesis derived the macroscopic

properties of hydrogen and reviews on developed high-pressure technique to make it

possible to routinely perform resistance measurements at high pressures.

Chapter 3 was for lttrium hydride. We have succeeded in synthesized the

insulating transparent YH3 samples by hydrogenation from l.ttrium metal in fluid Hz

under high pressure. Measurement of the electrical resistivity at high pressure and low

temperature demonstrated an electronic phase transition from insulator to metal at

around 70 GPa in the fcc phase.

In the Chapter 4, the perovskite hydride (CaNiH3, CaCoH3) is studied. Both

samples reveal that the cubic perovskite phase is stable in a wide range of pressure,

and no structure phase transition at room temperature to 62 GPa and 83 GPa,

respectively. The temperature dependence of resistance shows metallic behavior

indicating the onset of the metallic state in CaCoH3 above 40 GPa. In the case of

CaNiH3, the onset pressure of metallization is 15 GPa. However, the

superconductivity was not observed yet up to 80 GPa in both samples.

The improvements in technology through this thesis such as cryogenic

hydrogen loading systems, will works for further metal hydrides; FeH*, LaH2, PdH,

EuH*, ScH3 so on....

The result could be an important step towards understanding underlying

physics of superconducting metallic hydrogen rich system by the picture of both

materials, and provides a new system to study high temperature superconductivity.
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